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Abstract 

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and a main cause of 

dementia in the elderly. The main pathological hallmarks of AD are the accumulation of insoluble 

aggregates of amyloid--peptides (A), which are proteolytic cleavage products of the amyloid- 

precursor protein, and insoluble filaments composed of hyperphosphorylated tau protein. Familial 

forms of AD can raise the production of A peptides. 

Synaptic damage is a critical aspect of AD, and the best correlate with cognitive impairment 

ante mortem. Synapses, the loci of communication between neurons, are characterized by signature 

protein combinations arrayed at tightly apposed pre- and post-synaptic sites. The most widely studied 

trans-synaptic junctional complexes, which direct synaptogenesis and foster the maintenance and 

stability of the mature terminal, are conjunctions of presynaptic neurexins and postsynaptic 

neuroligins. The presynaptic neurexins bind with the neuroligins on the postsynaptic membrane. This 

pairing is implicated in synaptic signalling and the determination of whether a synapse will be 

excitatory or inhibitory. At the postsynaptic density, neuroligin-1 is specific for glutamatergic 

synapses, whereas neuroligin-2 is indicative of a GABAergic synapse. The neuroligins mediate 

connection with the presynaptic terminal mainly through -neurexin, which occurs in different 

isoforms derived from alternatively spliced transcripts. Fluctuations in the levels of neuroligins and 

neurexins can sway the balance between excitatory and inhibitory neurotransmission in the brain, 

and could lead to damage of synapses and dendrites. 

The main objective of the research set out below was to investigate possible disruptions of 

nerve-cell connections in AD through assay of the trans-synaptic neurexin and neuroligin proteins. 

The project explored differences in neuroligin and neurexin expression across different brain regions 

at various stages of the progression of the disease. I also investigated whether any differences 

occurred at the level of transcription or translation of the proteins. Additional work focused on a 

genetic study and the association between the NRXN-3 gene and AD. 
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To identify the differences in the level of protein expression, a sensitive immunodetection-

assay using recombinant protein standards was developed to measure concentrations of neuroligin-1, 

neuroligin-2 and -Neurexin-1 in AD cases and matched controls. Two regions that are 

pathologically affected in the AD brain, the hippocampus and the inferior temporal cortex, and one 

relatively spared region, the occipital cortex, were studied. Quantification showed higher expression 

in AD cases than in controls of both post-synaptic neuroligin-1 and pre-synaptic -neurexin-1. The 

expression of neuroligin-1 and -neurexin-1 was higher in AD hippocampus than in this region in 

controls, but the difference only reached significance for neuroligin-1. In contrast, the expression of 

neuroligin-2 protein was lower overall in AD cases than in controls. Lower expression in AD cases 

was seen in all areas and reached statistical significance in inferior temporal cortex. 

A mass spectrometry approach was employed to validate the quantification of these proteins 

using with two novel methods, multiple reaction monitoring (MRM) and sequential window 

acquisition of all theoretical fragment ion spectra (SWATH). Using these high-throughput techniques 

I identified several hundred synaptic proteins, including neuroligins and neurexins. However, an 

insufficient number of peptides was identified for each of these proteins, which precluded their 

quantification by these approaches. 

Protein data from the immunodetection assay were correlated with mRNA transcript levels by 

using quantitative real-time PCR assays, which were established for neuroligin-1, neuroligin-2 and 

-neurexin-1 transcripts in the same areas of AD cases and controls. Quantification revealed 

significantly lower expression of all three transcripts in AD hippocampus and inferior temporal 

cortex, but no difference in occipital cortex, compared with controls. Expression of the three 

transcripts was found to correlate with disease progression as indexed by the AD pathological 

markers A, neurofibrillary tangles, and neuronal loss. However, APOE genotype had no effect on 

mRNA transcript levels. 

To look for a genetic association between the NRXN-3 gene and AD, I attempted to 

replicate a published report that the single nucleotide polymorphism rs17757879 was a tag for the 
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gene in a Spanish cohort. AD cases and controls were genotyped by a Taqman assay to explore the 

association between rs17757879 in NRXN-3 and AD in an Australian Caucasian population. 

Overall, the data did not show a significant association between rs17757879 and AD. When the 

subjects were partitioned by gender, there was a trend toward a significant association between 

rs17757879 and the disease in males only. When alleles were divided according to the presence or 

absence of the T allele (CT plus TT compared with CC) association reached significance, and 

indicated that the T allele was protective against AD in males. 

The data from this project provides further understanding of the molecular characteristics of 

the neurexin-neuroligin complex in AD. An understanding of the roles of these molecules will likely 

open new therapeutic avenues for the treatment of AD. 
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Chapter 1 

1 Introduction 

1.1 Epidemiology and history 

Alzheimer’s disease (AD) is the most common form of organic dementia. It affects more than 

20% of people aged 65 years or older. It ultimately leads to the death of affected individuals on 

average 9 years after diagnosis (Reynolds, 2001). Worldwide, approximately 27 million individuals 

are affected by the disease (Ferri et al., 2005); and 4.6 million new cases arise every year. 8% of all 

medical costs in the United States of America are related to dementia. Between regional populations 

of 60 years old, people from North America and Western Europe are thought to show the highest 

prevalence and incident rate of AD, followed by people from Latin America and china (Fig. 1.1). 

Among western societies, prevalence and increase display with a cohort effect with individuals born 

later having a lower risk than individuals born earlier in the past century (Christensen et al., 2013, 

Matthews et al., 2013, Rocca et al., 2011, Schrijvers et al., 2012). The mortality from AD is 

predicted to increase dramatically over the next two to three decades as achievements in treating 

cancer and heart disease allow more individuals to reach the age of risk for dementias (Morgan, 

2010). 

 

Fig. 1.1. Global prevalence of AD 

The story of Alzheimer’s disease begins at the beginning of the 20th century, on November 

25, 1901 when a 51-year-old woman, her name Auguste D, was admitted to the Frankfurt State 

Asylum where she was examined by young psychiatrist Alois Alzheimer. The patient had a striking 
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group of symptoms such as cognitive impairment, loss of social appropriateness, a progressive 

decline in memory, and loss of capacity to communicate. Doctor Alzheimer remained interested in 

Auguste D’s case until her death in Frankfurt on April 8, 1906. Alzheimer requested the patient brain 

to be sent to Munich to study in his new neuropathology laboratory and he described the clinical and 

pathological findings at a conference in Tubingen on November 3, 1906. The title of his presentation 

was ‘On a peculiar disease process of the cerebral cortex’ and the reports of this conference were 

published the following year (Alzheimer et al., 1995). Alzheimer reported that on post-mortem 

examination of Auguste’s autopsy brain he found plaques, tangles and atherosclerotic alterations. 

The novel aspect in the 1906 case was their occurrence in an unusually young patient; however, 

Alzheimer did not claim to have discovered a new disease. Alzheimer’s case notes were missing for 

approximately a century but were revealed in the basement of the University of Munich by Konrad 

Maurer, which led to one of the basic publications of recent times about AD (Maurer et al., 1997) 

comprising a photograph of Auguste D and examples of Alzheimer’s handwritten notes on Auguste’s 

cognitive status. Two years later Professor Manuel Gräber and his team extracted and tested DNA 

and found that Auguste did not carry the 4 allele of the apolipoprotein E gene (Gräber et al., 1998), 

however the team were not able to screen for genetic mutations associated with early onset disease. 

The main feature of AD is memory loss. Memory is now considered to be a collection of 

mental abilities that use multiple systems and components within the brain. Memory researchers 

have characterised six major memory systems, which are: Episodic memory, Semantic memory, 

Short-term memory, Simple classical conditioning (which involves the pairing of two stimuli), 

Procedural memory, and Priming (which occurs when a prior encounter with a particular item 

changes the response to the current item). In AD, cognitive researcher found some of the six major 

memory systems to be highly impaired and others to be relatively preserved (Gold and Budson, 

2008). Episodic memory, which is critical for remembering new events, is considered to be the most 

clinically relevant in patients; its impairment is one of the earliest symptoms of AD (Gold and 

Budson, 2008). Other studies have shown semantic memory to be impaired in AD, with patients 

exhibiting particular deficits in naming categorized items (Tippett et al., 2007). The impairment of 
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semantic memory has often been related to pathology in the anterior and inferolateral temporal lobes 

and the frontal lobes, which leads to a loss of the dendritic arbor on neurons in these cortical regions 

(Davies et al., 2004). Other features of AD such as cognitive decline appear after the development of 

memory impairment. Language function and visuospatial skills are affected relatively early. 

Language dysfunction includes reduced vocabulary in spontaneous speech. However, impairment of 

motor functions usually only appears at late disease stages. 

1.1.1 Diagnosis (Clinical and post mortem) 

The clinical criteria usually used for the diagnosis of AD are based on the Diagnostic Manual 

of Mental Disorders, Fourth Edition (DSM- IV) and follow the criteria of the National Institute of 

Neurological and Communicative Disorders and Stroke and the Alzheimer’s Disease and Related 

Disorders Association (NINCDS-ADRDA; McKhann et al., 1984). Different screening tests have 

been established during the last years, however the Mini Mental State Examination (MMSE) is the 

most widely used. The Community Screening Instrument for Dementia (CSI-D) was developed to be 

used in cross-cultural studies. It is composed of language expression, attention and calculation, 

orientation to place and time, language comprehension, and memory recall. The CSI-D instrument 

correlates with the Mini Mental State Examination (MMSE) and 10-word-list–learning task (Liu et 

al., 2005). 

A general neurologic examination is usually normal in the demented patient with AD. 

Continuing gait problems can occur in the severe stages of AD, with a noticeably increased risk for 

falls. At present no laboratory test is available to confirm the diagnosis of AD. The main 

neuropathologic criteria for AD are those propagated by the National Institute on Aging (NIA) and 

National Institute of Neurological and Communicative Disorders and Stroke (NINCDS; Mirra et al., 

1993). 

Both DSM-IV and NINCDS-ADRDA criteria are based on history and neurologic 

examination, and current indication proposes that both have fallen behind because of new advances 

in scientific knowledge. Different biomarkers have been identified based on structural Magnetic 
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Resonance Imaging (MRI), molecular imaging and cerebrospinal fluid (CSF) analyses Structural 

MRI in patients with AD displays atrophy in the hippocampus that is predictive of future cognitive 

decline. 

On the other hand, post-mortem diagnosis of AD needs proof of the existence of 

neurofibrillary tangles (NTF) and -amyloid (A) in the brain and cases of dementia without these 

alterations must be classified as non-Alzheimer dementias. Brain alterations found in cases clinical 

diagnosed with AD often include both A and NFT (Braak et al., 2011). The main method used for 

staining A uses thioflavine S, which is insensitive and can determine NFT changes as well. Specific 

antibodies for the pathologic proteins are commercially available; yet, practical considerations limit 

their application to small sections and well-equipped laboratories. The use of modern silver methods 

that take advantage of the physical development of the nucleation sites and avoid variable 

ammoniacal silver solutions known as Gallyas techniques is recommended (Braak et al., 1988, Braak 

and Braak, 1991b). These methods are simpler to use and much more reliable, and can be applied to 

routinely fixed autopsy material even if it has been stored for decades in formaldehyde. 

1.2 Genetics of AD 

The first study signifying a genetic factor for AD was published when early reports focused 

on the constant progress of AD-like disease in Down’s syndrome patients after age 40, and the 

increased risk of disease in family members of AD patients (Harris, 1982). However, there are two 

different types of AD genetics, which are early onset AD (EOAD) and late onset AD (LOAD). 

1.2.1  EOAD genetics 

Genetic linkage studies and candidate gene analysis led to the identification of the three early 

onset familial AD (EOFAD) genes. The amyloid precursor protein (APP) gene on chromosome 21 

was the first one found to have a mutation that causes EOFAD (Goate et al., 1991). The association 

between Trisomy 21 (Down’s Syndrome) and AD allowed the researchers to focus on chromosome 

21 as the possible locus for an AD gene. Linkage of one locus on chromosome 21 was found in 

extended AD families with the autosomal dominant form of EOAD (St George-Hyslop et al., 1987). 
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A missense mutation in the APP gene at exon 17, which partially encoded the A peptide and led to 

a valine to isoleucine change at amino acid 717, was identified in some of the families included in 

the study (Goate et al., 1991). Afterward, 26 other mutations have been identified within APP from 

74 EOFAD families (Theuns et al., 2006). These studies delivered strong support for the amyloid 

hypothesis discussed in detail in the related section of this thesis. 

Linkage analysis studies led to the characterization of the second EOFAD gene, Presenilin-1 

PSEN1 on chromosome 14. Genome-wide studies found a significant association of a locus on 

chromosome 14 with EOFAD (Mullan et al., 1992, Schellenberg et al., 1992, St George-Hyslop et 

al., 1992). PSEN1 mutations are the most common known genetic mutations that lead to EOFAD, 

with 157 pathogenic PSEN1 mutations identified among 347 EOFAD families. The PSEN2 gene was 

found in a linkage study associated with EOFAD. A candidate gene study of PSEN2 identified 

sequence homology to PSEN1 that had a segregating mutation resulting in an asparagine to 

isoleucine substitution (Asn141Ile; Levy-Lahad et al., 1995). Simultaneously, a candidate gene study 

found different missense mutations in the same gene (Rogaev et al., 1995). 

1.2.2 LOAD genetics 

A genome search conducted among both EOAD and LOAD families found a novel locus on 

chromosome 19 that has a strong effect on LOAD (Pericak-Vance et al., 1991). Biochemical studies 

of lipids in AD brains using an antibody to Apolipoprotein E (APOE), a protein which has special 

relevance to nervous tissue, found that APOE immunoreactivity was associated with amyloid in both 

senile plaques and neurofibrillary tangles (Namba et al., 1991). Given that the APOE gene mapped to 

the locus recognized by the Pericak-Vance et al. (1991) linkage study, this allowed investigation of 

the genetic and biological associations of APOE with AD. In vitro studies showed that APOE binds 

A and that APOE 4, a particular allelic form of APOE, is found at a higher frequency in LOAD 

cases than in controls. The APOE gene is polymorphic, including three alleles, 2, 3 and 4, which 

differ at the 112
th

 and 158
th

 residues. These genes encode the corresponding apolipoproteins APOE2, 

APOE3 and APOE4, and produce six possible genotypes (Zannis et al., 1981, Zuo et al., 2006). 

APOE proteins have significant functions in mediating the uptake and distribution of cholesterol, and 
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each isoform is associated with specific lipoprotein elements (Puglielli et al., 2003). The 3 allele is 

the most common, found among 70–80% of the population. The corresponding APOE3 protein is 

involved in multiple functions in neuronal biology including neuronal remodelling and repair 

following injury (Boyles et al., 1989, Corder et al., 1993, Mahley, 1988). The 4 allele found in 12% 

of individuals. It is related to memory deficit and significantly increases the risk of AD. The APOE4 

protein inhibits dendrite outgrowth (Corder et al., 1993, Nathan et al., 1994). The 2 allele, found in 

5% of the population, could have a protective effect against the development of AD. The APOE 2 

allele has been shown to reduce cortical A, senile plaques and NFTs (Corder et al., 1994, Nagy et 

al., 1995, West et al., 1994). A population based prospective study found that 55% of AD cases are 

in the APOE 4/4 group (Myers et al., 1996), while 27% of people who carry APOE 3/4 develop 

the disease and 9% of APOE 3/3 carriers develop AD. 

Genome-wide association studies on AD on 6,000 cases and 10,000 controls showed 

associations of two new genes, CLU and PICALM, with LOAD as well as APOE (Lambert et al., 

2009, Harold et al., 2009). CLU encodes the protein clusterin, which has important roles in the 

clearance of cellular debris and mechanisms of apoptosis, lipid metabolism and cell proliferation 

(Rosenberg and Silkensen, 1995, Viard et al., 1999, Wong et al., 1994). PICALM encodes the protein 

phosphatidylinositol binding clathrin assembly protein, which has significant functions in the 

dynamics of endocytosis (Tebar et al., 1999). Nevertheless, different published findings have shown 

contradictory results between research groups and ethnic populations; and effect sizes are generally 

very modest. APOE is the gene with the most significant association with AD and the most studied 

gene in AD pathophysiology. 

In addition, a recent study found that a rare functional variant (R47H) in the TREM2 gene had 

a similar effect size to the 4 risk allele of apolipoprotein E in AD. TREM2 encodes a type I 

membrane protein that creates a receptor-signalling complex with the TYRO protein tyrosine kinase-

binding protein (TYROBP), which activates the immune responses in macrophages and dendritic 

cells (Paloneva et al., 2002). TREM2 is expressed throughout the central nervous system, and shows 

high concentrations in white matter, hippocampus and neocortex. An association was found between 
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R47H and LOAD in North American and European populations (Niemitz, 2013). An additional 

study detected the R47H variant in GWAS on an Icelandic LOAD population (Guerreiro et al., 

2013). Since the TREM2 risk variant modifies TREM2 protein function, these results suggest that 

TREM2 impairment could reduce phagocytic clearance of amyloid proteins and thus impair a 

protective mechanism in the brain. 

1.3 Pathological hallmarks of AD 

1.3.1 Neurofibrillary tangles 

Neurofibrillary tangles are a neuropathological hallmark of AD. They are composed of 

abnormally phosphorylated microtubule-associated protein  (MAPT). The MAPT gene is located on 

chromosome 17. Alternative splicing of exons 2, 3, and 10 leads to the production of six MAPT 

isoforms that are differentially expressed during brain development (Sergeant et al., 2005). The 

phosphorylation of MAPT controls its binding to microtubules and enhances their assembly. A 

normal level of phosphorylation is needed for optimal MAPT activity, while hyperphosphorylation 

disrupts its biological function. This modifies various processes that are controlled by the appropriate 

organization of the microtubule network (Alonso et al., 1994, Li et al., 2007). The relationship 

between A and MAPT in pathogenesis is not well understood. It has been suggested that changes in 

ion homeostasis and oxidative stress due to A aggregation destabilize phosphatases and kinases that 

control MAPT phosphorylation. As a result, MAPT hyperphosphorylation leads to synaptic 

dysfunction and neuron loss (Butner and Kirschner, 1991, Goode and Feinstein, 1994). 

Neurofibrillary tangles occur in other AD brain lesions, i.e., thickened neurites in senile 

plaques and neuropil threads. They are also found in other neurodegenerative diseases, such as 

progressive supranuclear palsy, dementia pugilistica, corticobasal degeneration, Pick’s disease, 

Downs syndrome, and Parkinson’s disease, which has led to the hypothesis that they are responsible, 

at least in part, for the neuronal damage (Joachim et al., 1987, Wood et al., 1986). This hypothesis is 

strengthened by the observation that mutations in the MAPT gene lead to the accumulation of paired 
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helical filaments in frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17; 

Clark et al., 1998, Hong et al., 1998, Hutton et al., 1998). 

There is older evidence that dementia correlates with intracellular NFT (Cummings et al., 

1998). Clinicopathological research related tangle load in the frontal cortex with agitation and 

aberrant motor behaviour (Tekin et al., 2001). Semi-quantitative post-mortem measurements of NFT 

in the hippocampus from demented patients showed that increased tangle load was linked to 

increased severity of aggressive behaviours and the presence of chronic aggression. These results 

suggest a pathogenic link between neurofibrillary tangle load in hippocampus and aggressive 

behaviours in dementia patients (Lai et al., 2010). Nevertheless, as discussed further below, current 

opinion strongly endorses synaptic loss as the key pathogenic feature of AD (Selkoe, 2002). 

In recent years several approaches have been made in animal models to therapeutically target 

tau pathology (Brunden et al., 2009). Different specific approaches aim to inhibit the creation of tau 

oligomers and fibrils, such as Targeting tau aggregation, Targeting microtubule stabilization, 

Targeting tau folding and Targeting tau phosphorylation. Blocking tau/tau aggregation with small-

molecule drugs is difficult because of the large surface areas that are involved in such interactions 

(Brunden et al., 2009). Targeting microtubule stabilization was performed by treating mice that had 

axonopathy and amyotrophy with the microtubule-stabilizing drug paclitaxel. These latter mice 

showed significant improvement of fast axonal transport (Ishihara et al., 1999). However, none of 

these approaches has yet been translated into clinical practice. In contrast, the clinically used drug 

Memantine, which is a non-competitive NMDA receptor antagonist, does sway the excitation-

inhibition balance away from over-excitation in AD cases. 

1.3.2 -Amyloid 

The second component essential for AD diagnosis is the senile plaque. Glenner and Wong 

(1984a, 1984b) and Masters et al. (1985) reported that the 42-residue amyloid -peptide, A42, is 

the main constituent of senile plaques. There are two main forms of -amyloid, a 40- (A40) and a 

42- (A42) amino acid peptide, although peptide length can range from 39 to 43 amino acids. There 
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is an additional N-terminally truncated species (Ingelsson et al., 2004). A42 builds up earlier in 

amyloid plaques and aggregates into fibrils more quickly than A40 in vitro (Jarrett et al., 1993, 

Roher et al., 1993). A is derived from a large amyloid precursor protein (APP) that undergoes 

multiple proteolytic cleavages. APP is an integral membrane protein that moves to the endoplasmic 

reticulum via its signal peptide and is subject to post-translational modifications. Heterogeneous 

forms of APP result from alternative splicing and different post-translational modifications (Hung 

and Selkoe, 1994, Selkoe et al., 1988, Weidemann et al., 1989). Neurons express high levels of the 

695-residue isoform (Haass et al., 1991). The enzyme -secretase first works on APP to cleave off a 

large soluble ectodomain fragment, sAPP, located in the lumen/extracellular space, and to leave an 

83-residue C-terminal fragment (CTF83) within the membrane. APP molecules not cleaved by -

secretase can be cleaved by -secretase to generate sAPP and C-terminal fragment 99 (CTF99), a 

99-residue peptide in the membrane (Seubert et al., 1993). The latter is then cleaved by -secretase to 

produce A and a 55-residue cytosolic peptide, the APP intracellular domain (AICD; Selkoe, 2001). 

Amyloid deposits may be present in AD brain up to a decade before the emergence of 

cognitive symptoms (Ingelsson et al., 2004, Mintun et al., 2006). Since Amyloid was a key 

component of Alzheimer’s own seminal paper some authorities require the presence of A for a 

diagnosis of AD, but tissue loads of plaques do not correlate well with dementia. The dominance of 

A in theories of AD pathogenesis derives from genetic studies on mutations of APP and presenilin 

(PS) genes in familial AD cases. Possession of the disease allele of any one of these genes leads to 

greater production of A or to a predominance of the A42 form, which has a propensity for 

misfolding and aggregation (Chapman et al., 2001, Selkoe, 1998). Several AD transgenic mice have 

been produced that have the mutant forms of human APP and PS1 or PS2 genes. They develop 

amyloid aggregates in the brain and show cognitive impairment (Ashe, 2001), although neuronal loss 

requires additional transgenic influence. 

1.3.3 Synaptic loss and synaptic proteins in AD 

While there is a significant negative correlation of synapse numbers and synaptic markers 

with cognitive decline in AD, neither neurofibrillary tangles nor senile plaques show strong 
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statistical association with clinical AD severity (Terry et al., 1991). Assays of synapses and synaptic 

markers in the AD brain (Bancher et al., 1993) and in transgenic mouse models (Buttini et al., 2005) 

support the hypothesis that synaptic degeneration and damage take place early in the development of 

the disease. Light and electron microscopy were used to study the form and density of synapses in 

the dentate gyrus of double-transgenic APP/PS1 mice. Both the numbers of synapses per unit volume 

and the morphology of the remaining synapses are affected in plaque-free regions of these animals 

(Alonso-Nanclares et al., 2013). Disrupted synaptic connections would result in neural dysfunction, 

and lead to the dementia and cognitive impairment observed in AD and other neurodegenerative 

disorders (Terry et al., 1991). Loss of synaptic connectivity could follow changes in pre- or post-

synaptic proteins. These proteins are located in synaptic vesicles, the cytoplasm, and the terminal 

membranes. Proteins may be altered differentially in different diseases. There is a link between 

changes in synaptic proteins and terminal loss in AD (Reddy et al., 2005, Tannenberg et al., 2006). 

Neuroimaging of autopsy brain supports a link between grey matter loss and synaptic protein 

reduction (Heindel et al., 1994). Nonetheless, synaptic proteins are dynamic, and their levels can be 

changed in animal models by memory and learning training, behavioural tasks, or administration of 

drugs (Sindi et al., 2014). Not all synaptic proteins are equally affected in specific brain regions in 

AD: these proteins are located in different compartments of synaptic terminals, play different roles, 

and can be enriched differentially in excitatory and inhibitory terminal classes. 

Levels of synaptic proteins vary among brain regions. The hippocampus is affected earlier 

than other regions in AD progression, and is the most affected region in late stages of the disease 

(Honer et al., 1992, Perdahl et al., 1984, Sze et al., 1997). Frontal cortex synaptic protein levels are 

lower in AD brain than in control brain; reported differences between AD frontal cortex and other 

AD brain regions are inconsistent (Lassmann et al., 1992, Sze et al., 1997, Tannenberg et al., 2006). 

1.3.4 Synaptic disruption by -amyloid 

Mechanisms underlying the failure of synaptic plasticity and the disruption of memory in AD 

are not clearly understood. Two opposing notions have been put forward to explicate this issue. 

Under normal physiological conditions, A may play a role in synaptic plasticity, and its deficiency, 
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through aggregation, could lead to abnormal functioning of the synapse. Alternatively, A could be 

responsible for synaptic disruption in AD. In the normal synapse, neuronal activity might regulate 

the production and secretion of A by controlling APP processing upstream of -secretase activity 

(Kamenetz et al., 2003). A levels in brain interstitial fluid are influenced by synaptic activity on a 

time scale of minutes to hours (Cirrito et al., 2005). In an acute brain slice model, the impact of 

synaptic activity on A levels is linked to synaptic vesicle exocytosis. Synaptic activity can alter A 

metabolism and area-specific A accumulation (Cirrito et al., 2005). Inhibiting - and -secretase 

activity may result in reduced levels of A that would enhance toxicity and the death of neurons, 

should A promote neuronal survival (Plant et al., 2003). 

Conversely, in vitro and in vivo studies have explored possible molecular and signalling 

mechanisms that promote synaptotoxic effects of A (Dinamarca et al., 2008, Haass and Selkoe, 

2007, Klyubin et al., 2005, Rowan et al., 2007, Selkoe, 2008). Koh et al. (1990) demonstrated that 

A peptides and glutamate are together more neurotoxic to cultured neurons than either agent alone. 

The mechanism of A synaptic toxicity is complex, because different multimeric forms of A 

exhibit effects ranging from reversible alterations in synaptic form and function to neuronal loss. 

High levels of A reduce glutamatergic synaptic transmission and lead to synaptic loss (Hsia et al., 

1999, Kamenetz et al., 2003, Mucke et al., 2000). Intracerebroventricular injection of soluble 

synthetic A40 dimers rapidly reduces the plasticity of excitatory synaptic transmission at doses 

(10–42 pmol) comparable to natural A concentrations (Hu et al., 2008). 

1.3.5 Oligomeric A and excitatory synapses 

Koffie et al. (2009) used Array tomography to assess the impact of free A on synaptic loss 

in double-transgenic APP/PS1 mice. They showed that amyloid plaques in these mice are enclosed 

by a halo of oligomeric A. Examination of more than 14,000 synapses revealed a 60% loss of 

excitatory synapses contiguous to the halo. Deposits of oligomeric A were linked to a subset of 

excitatory synapses that were smaller than those that did not interact with oligomeric A. In green 

fluorescent protein (GFP) Tg2576 APP mice, multiphoton live imaging revealed disruption of 

neurons and a lower dendritic spine density than in age-matched controls (Spires et al., 2005). 
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Axonal immunostaining and colocalization studies of synaptophysin and PSD-95 proteins showed a 

similar loss of pre- and post-synaptic partners near plaques in human autopsy brain (Spires et al., 

2005). 

A can affect the role of glutamate NMDA receptors (NMDARs) and eliminate induction of 

NMDAR-dependent LTP in the neuron (Shankar et al., 2007, Snyder et al., 2005). When NMDARs 

were quantified by biotinylation in cultured cortical neurons treated with A, there was an 80% 

reduction in subunit protein. Application of a -secretase inhibitor reduced the A concentration and 

returned NMDAR levels to normal. A oligomers also induce the endocytosis of NMDARs by a 

mechanism involving 7-nicotinic acetylcholine receptors (Snyder et al., 2005). Ronicke et al. 

(2011) showed that NMDAR-2B activation mediates A-induced LTP disruption. Application of an 

NMDAR-2B antagonist to hippocampal slice treated with A oligomer abolished the disruption. 

1.3.6 Oligomeric A and prion proteins 

Lauren et al. (2009) showed that the cellular prion protein PrP
c
 is a receptor for A oligomers 

with nanomolar affinity. The binding of PrP
c
 to A oligomers leads to loss of LTP. In hippocampal 

slices, anti-PrP
c
 antibodies reduce the binding of oligomeric A to PrP

c
 and prevent synaptic 

disruption. Deletion of PrP
c
 improves cognitive function in transgenic mice over-expressing mutant 

APP (APPswe and PS1E9), reduces premature neuronal death, and reverses the memory deficit 

(Gimbel et al., 2010). Antibody blockade prevents the PrP
c
-enhanced neurotoxicity of A oligomers 

(Kudo et al., 2012). 

1.3.7 Other A synaptic targets 

Excitatory synapses are formed and maintained by the homophilic trans-synaptic binding of 

N-cadherin (Fannon and Colman, 1996). A luciferase-complementation assay was used to show that 

N-cadherin enhances APP dimerization and the production of A (Asada-Utsugi et al., 2011). 

Application of A down-regulates N-cadherin expression, which weakens synapses and can further 

increase A production via interaction with the PS1 complex (Ando et al., 2011, Andreyeva et al., 

2012). 
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Other synaptic junction proteins play roles in A production. Expression of 4 and 3 

integrin is increased in neurons in the vicinity of plaques and tangles in AD autopsy brain tissue 

(Akiyama et al., 1991, Van Gool et al., 1994). Studies using integrin-blocking antibodies revealed 

that A accumulation and neurotoxicity in human cortical primary neurons are mediated by 21 

and 51 integrins. The 21 and 51 integrin signalling pathways may be critical to A 

neurotoxicity in AD (Wright et al., 2007). 

1.4 Cell adhesion molecules 

Protein complexes that link pre- and post-synaptic membranes have significant functions in 

regulating neural networks. Neurotransmitters released from the presynaptic terminal acting on 

receptors located on the post-synaptic membrane convey information between neurons at synapses 

(Dalva et al., 2007). Signalling can be facilitated by adhesion molecules, which cooperate across the 

synaptic junction (Bamji et al., 2003, Dalva et al., 2000, Graf et al., 2004, Hall et al., 2000, 

Scheiffele et al., 2000, Umemori et al., 2004). Synaptically localized cell adhesion molecules 

(CAMs) modulate the function of synapses through protein–protein interactions and signalling 

cascades, and also direct the formation of new synapses. Various CAMs organize synapse formation, 

control dendritic spine morphology, amend synaptic plasticity, and alter synaptic receptor function. 

These molecules arbitrate function and physical interactions between neurons at several stages in the 

life of a synapse (Fig. 1.2). 
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Fig. 1.2. The function of cell adhesion molecules at the synapse. During 

synaptogenesis, synaptic CAMs help stabilize contacts between neurons and recruit 

synaptic proteins via specific cytoplasmic or extracellular motifs such as PDZ-binding 

domains. Contacts among adhesion molecules may guide the activation of 

intracellular signalling events that lead to synapse maturation. In the mature synapse, 

synaptic CAMs work together with channels and other synaptic proteins to modulate 

their function. VGLUT (Vesicular glutamate transporter), CASK (Calcium/calmodin-

dependent serine protein kinase), AMPAR (-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid receptor), GRIP (Glutamate receptor-interacting protein) 

mGLUR (metabotropic Glutamate receptors). 

Different classes of CAMs play differing roles in synapses. CAMs include neurexins and 

neuroligins, N-cadherin, synaptic cell adhesion molecule-1 (SynCAM-1), and the ephrinB-receptor–

ephrinB system. The most widely described CAM pairing implicated in synaptogenesis and nerve-

terminal stability is the interface between neurexins and neuroligins that are located at pre-synaptic 

and post-synaptic sites respectively. 
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1.4.1 Neurexin–neuroligin complex 

The neurexin family was discovered in 1992 after the recognition that one member of the 

family is a receptor for -latrotoxin, a component of black widow spider venom that causes massive 

neurotransmitter release from the presynaptic terminal (Ushkaryov et al., 1992). Further studies over 

two decades delineated neurexins and their binding ligands, the neuroligins (Ichtchenko et al., 1995, 

1996). Scheiffele et al. (2000) showed that neuroligins occur on the surface of non-neuronal cells. In 

neurons they stimulate synaptic vesicle formation during functional pre-synaptic differentiation in 

contacting axons. Over-expression and knockdown studies in vitro have revealed that neurexin-

neuroligin complexes are key discriminants in GABAergic and glutamatergic synaptogenesis, and 

that patterns of differences in isoform binding affinities and localization determine this specificity 

and differentiation. 

1.4.2 Structures of neurexins and neuroligins 

1.4.2.1 Neurexins 

Neurexins are a family of highly polymorphic brain-specific proteins that are products of the 

three neurexin genes NRXNI, NRXNII, and NRXNIII. Each gene encodes two transcripts, -neurexin 

and -neurexin, which are expressed from upstream and downstream promoters of the same gene 

respectively (Fig. 1.3). 
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Fig. 1.3. Structure of - and -neurexins. A, -Neurexins consist of an N-terminal 

extracellular sequence containing the following: a signal peptide (SP); six laminin A, 

neurexin, and sex hormone binding protein (LNS) domains, three epidermal growth 

factor (EGF)–like sequences, and an O-glycosylation region (O-Glyc). There are five 

sites of alternative splicing in the extracellular sequence (S1–S5), which are indicated 

by arrowheads. The N-terminal extracellular region is followed by a carboxy-terminal 

sequence, which contains a transmembrane (TM) region as well as a short 

cytoplasmic region that comprises the PDZ II interaction site. B, The N-terminal 

extracellular sequence in -neurexins consists of a signal peptide, one LNS domain, 

and an O-Glyc region. There are only two alternative splice sites in -neurexins, as 

indicated. 

Molecular studies of NRXN transcripts have identified two alternative splice sites in the -

neurexins and five in the -neurexins. In consequence, at least six neurexins isoforms can be 

generated from these different genes: three -NRXNs, I, II and III, and three -NRXNs, I, II 

and III (Jarrett et al., 1993, Ullrich et al., 1995, Ushkaryov et al., 1994). The five alternative splice 

sites in -NRXN (S1-S5) are scattered among six laminin–neurexin–sex-hormone–binding protein 

(LNS) and three epidermal growth factor (EGF)–like domains (Fig. 1.3). -NRXNs are usually 



P a g e  | 17 

truncated forms of -NRXNs containing a single LNS domain (Fig. 1.3). Alternative splicing and N- 

and O-glycosylation add additional diversity to produce up to 1000 isoforms (Missler et al., 1998). 

As will be discussed later, alternative splicing of neurexins controls their roles at synapses. The 

range of alternative splicing provides a potent cellular mechanism for constructing a huge number of 

different cell-surface proteins that could be expressed in sub-populations of cells, giving specificity 

and variety for processes such as adhesion and recognition between cells as well as ligand–receptor 

interactions. In situ hybridization studies have shown that mRNA encoding both - and -neurexins 

can be expressed in the same neuron. Conversely, different types of NRXNs are widely distributed 

among diverse types of neurons (Ichtchenko et al., 1995). Immunofluorescence analysis and the roles 

of neurexins as -latrotoxin receptors show that the localization of neurexins is predominantly pre-

synaptic (Sugita et al., 1999, Ushkaryov et al., 1992). Nevertheless, it has not been confirmed 

whether this localization is exclusive: some studies indicate that the deletion of genes encoding -

neurexins also has post-synaptic effects (Kattenstroth et al., 2004, Taniguchi et al., 2007). 

1.4.2.2 Neuroligins 

There are three sets of neurexin-binding ligands in the mammalian brain: dystroglycan, 

neurexophilins, and neuroligins (NLGNs). The most intensively studied ligands are the neuroligins, 

which were discovered by affinity purification (Ichtchenko et al., 1995). Three genes coding 

neuroligins, NLGN1, NLGN2, and NLGN3, have been found in mice and rats; they are mostly 

expressed in the central nervous system (CNS; Ichtchenko et al., 1996). Five genes encoding 

neuroligin family members have been detected in human tissues, NLGN1, NLGN2, NLGN3, NLGN4, 

and NLGN4Y, with a sequence identity in their extracellular domains of more than 70% (Ylisaukko-

oja et al., 2005a). All neuroligin isoforms are post-synaptic transmembrane proteins. Neuroligin-1 is 

usually expressed in neurons at excitatory postsynaptic sites and found connected to NMDAR, 

postsynaptic density–95 (PSD-95) and synaptic scaffolding molecule (S-SCAM) at the synaptic 

junction and postsynaptic densities (Hirao et al., 1998, Ichtchenko et al., 1995, Kurschner et al., 

1998, Song et al., 1999). Neuroligin-2 is expressed mainly at inhibitory neuronal sites in CNS but is 

also expressed in pancreas, lung endothelia, and colon (Varoqueaux et al., 2004). Human neuroligin-
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3 is expressed in glia and dorsal root ganglia cells (Gilbert et al., 2001, Philibert et al., 2000). 

Expression of NLGN4 mRNA in human tissues is at its highest level in the heart; it is expressed only 

at low levels in the brain, pancreas, skeletal muscle, and liver (Bolliger et al., 2001, Nguyen and 

Südhof, 1997). Neuroligin-4Y, the gene for which is located in the Y chromosome, differs from 

neuroligin-4 by 19 amino acids and has also diverged in sequences within its introns (Bolliger et al., 

2001, Jamain et al., 2003; Fig. 1.4). 

 

Fig. 1.4. Neuroligin structure. The N-terminal extracellular sequence of neuroligins 

consists of a signal peptide (SP), cholinesterase-like domain (CLD) and a 

carbohydrate-attachment region for O-linked glycosylation (O-Glyc). The 

cholinesterase-like domain of neuroligin-1 contains two alternative splice sites (A and 

B) with insert sequence A1 and B, whereas neuroligin-2 contains one splice site (A) 

with insert sequence A2. Neuroligin-3 has one alternative splice site (A) with two 

insert sequences, one homologous to A1, the second homologous with A2 (A). The C-

termini of all neuroligins are identical and consist of a single transmembrane region as 

well as a short cytoplasmic sequence containing a type I PDZ-recognition motif. 

The extracellular domain of neuroligin-1 has two alternative splice sites (A and B), whereas 

neuroligin-2, neuroligin-3 and neuroligin-4 have one conserved alternative splice site (A). The 

variations among family members are due to differences in the insert sequences. In neuroligin-1, the 

insert at site A, called A1, has a calculated charge of+8 and an internal disulfide bond between 
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Cys172 and Cys181, whereas the insert at site B, which is unique to neuroligin-1, contains an N-

glycosylation consensus sequence at Asn303 (Hoffman et al., 2004). Neuroligin-2 has one insert at 

site A called A2; it has a calculated charge of –5 and lacks an internal disulfide bond. Neuroligin-3 

has two inserts at splice site A: one is homologous with the neuroligin-1 insert, and the second is 

homologous with neuroligin-2 insert (Ichtchenko et al., 1995, 1996; Fig. 3). Neuroligin-4 inserts 

have not yet been clearly delineated. 

Neuroligins are members of a protein family that possess a cholinesterase-like domain 

(CLD), and are known as cholinesterase-like adhesion molecules (CLAMs). All family members 

(glutactin, neurotactin, and gliotactin, as well as the neuroligins) lack one or more of the residues that 

are essential for catalytic activity. The function of the N-terminal sequence in neuroligins is 

heterophilic adhesion. Hence, this domain mediates the interaction between receptor and ligand, 

rather than the interaction between enzyme and substrate. Neuroligins lack a serine residue that is 

essential for enzymatic function in cholinesterases; important nearby residues are histidine and 

glutamic acid, which are close to the third disulfide loop (Holmquist, 2000, Hoffman et al., 2004). 

Two of the three disulfide loops in all members of CLAM family are conserved in 

acetylcholinesterases (Zeev-Ben-Mordehai et al., 2003). 

Members of the CLAM family form 3D structures that are very similar to that of 

acetylcholinesterase (AChE). Approximately 65% of the CLD is conserved between the 

cholinesterase superfamily and CLAM family members. The structure of AChE has three loops, 

which are stabilized by disulfide bonds that permit the right positioning of the enzyme active site. 

The first part of CLD is totally conserved between the families; it includes the first and second 

disulfide-bonded loops. The second part of the CLD is conserved only in the area of the cysteine 

residue. The majority of the conserved structures in CLAM proteins are those essential for shaping 

the - and -hydrolase folds and positioning the first component of the active site in the enzyme. 

The second part of the conserved CLD structure positions the other two components at the catalytic 

site and forms the mouth of the catalytic gorge. CLAM proteins differ from AChE by either total or 

partial loss of the third disulfide-bonded loop, which appreciably changes the conformation of the 
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gorge mouth and hence abrogates catalytic site function (Fig. 1.5). The review by Gilbert and Auld 

(2005) gives more detail on the 3D structure of the CLD in AChE and CLAM family proteins. 

 

Fig. 1.5. The 3D structure of CLD models of CLAM family protein in Drosophila 

acetylcholinesterase. A, the catalytic site; B, the first disulfide-bonded loop; C, the 

second disulfide-bonded loop; and D, the third disulfide-bonded loop. The domain in 

the third loop in the CLAM family is the most divergent in sequence. In vertebrates 

the neuroligin third loop is reduced in size, resulting in a considerably shorter loop, 

while this loop is not present at all in invertebrate neuroligins. 

Comparisons of the structures of cholinesterase family members with neuroligins have 

significantly increased our understanding of the relationship between structure and function in the 

neuroligins (Hoffman et al., 2004). Consideration of 2- and 3-dimensional analyses indicates that the 

CLD is a possible target for ligands to associate with CLAM family members, particularly to mediate 

neuroligin–neurexin binding. Over-expression of AChE decreases -neurexin levels in vitro and in 
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vivo, as well as having a negative effect on glutamatergic synapses in vitro, which suggests there is 

crosstalk between the neuroligin–neurexin complex and AChE (Andres et al., 1997). 

1.4.3 Neuroligin–neurexin interactions 

The neuroligin–neurexin interaction is controlled by different molecular and cellular 

mechanisms, including oligomerization, calcium binding, and alternative splicing. 

1.4.3.1  Oligomerization mechanisms 

Neuroligin-1 has five N-glycosylation sites as well as a domain rich in serine and threonine 

residues next to the transmembrane sequence that contains a number of sites for O-linked 

glycosylation (Ichtchenko et al., 1995). Blocking N-glycosylation in neuroligin-1 enhances its 

binding to neurexin to form the neuroligin–neurexin oligomer (Comoletti et al., 2003). In contrast, 

deglycosylation of neurexins does not influence neuroligin binding affinity. 

1.4.3.2 Calcium-dependent mechanisms 

The extracellular domains of neuroligin and neurexin bind to each other in the presence of 

calcium ion (Ca
2+

; Ichtchenko et al., 1995). With recombinant neuroligin-1 and -neurexins, binding 

occurs at differing concentrations of Ca
2+

 for different alternatively spliced isoforms (Nguyen and 

Südhof, 1997). Structural studies of the -neurexin LNS2 domain show that a splice site generates 

highly variable surfaces surrounded by Ca
2+

 ions (Sheckler et al., 2006). Ca
2+

 binding has low 

affinity and is decreased below detectable levels by the addition of 8- to 15-residue splice inserts. In 

consequence, Ca
2+

-dependent interactions of neurexins may be affected by changes in Ca
2+

 

concentration that are within the estimated variations within the synapse as a result of synaptic 

activity (Nguyen and Südhof, 1997). 

1.4.3.3 Alternative splicing mechanisms 

Neurexins exhibit a great deal of alternative splicing that produces more than 2,000 variants 

(Tabuchi and Südhof, 2002). The splice insert sequences and their locations are preserved between 

NRXN genes and between species, indicating that alternative splicing plays a significant role. 

Alternative splicing is not as extensive in neuroligin, but it takes place in the significant CLD 
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domain. The alternatively spliced regions in neuroligins and neurexins are the sites of interactions 

between them (Fig. 1.6). Alternative splicing changes binding affinity, and affects synapse 

development and neuronal functions in vitro (Boucard et al., 2005, Chih et al., 2006, Graf et al., 

2006). 

 

Fig. 1.6. Neurexin–neuroligin splice sites and the possible binding pairs. Splicing at 

site B in neuroligin and at site 4 in -neurexin-1 controls binding affinity and synapse 

function. In -neurexin, the presence of the 30-residue insert at site 4 decreases the 

affinity of binding, especially with neuroligin-1, which has an insert at site B (+B). 

This sequence can maintain high-affinity binding with neuroligin-1, which does not 

have an insert at site B (–B), or with neuroligin-2, which also does not have a B splice 

site. Similarly, -neurexins that do or do not contain an insert at site 4 can attach to 

B+ neuroligins (with splice site B included). In this case, the regulation of the 

interaction between the two proteins does not occur due to the presence of the B insert 

(9 amino acids), but takes place as a result of its N-linked glycosylation. Additional 

studies are required to verify how alternative splicing of neuroligin-1 (at site B) and 

-neurexins (at site 4) controls the binding of particular isoforms of these proteins as 

well as their adhesive properties. 
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1.4.3.4 Neuroligin/neurexin interactions and synaptic localization 

The roles of neuroligins and neurexins in specifying synapse formation as either excitatory or 

inhibitory have been delineated by studies conducted in vitro. Over-expression of neuroligin proteins 

increases synapse numbers, whereas knockdown of the same proteins decreases synapse numbers 

(Chih et al., 2005). Scheiffele et al. (2000) showed that expressing neuroligins in normal cells can 

stimulate pre-synaptic differentiation in contacting axons. On the other hand, the expression of 

neurexins in neurons can lead to clustering of proteins in post-synaptic dendrites (Graf et al., 2004). 

 

Fig. 1.7. The role of alternative splicing of the neurexin–neuroligin complex in 

determining synaptic function as either excitatory or inhibitory. Neurexins and 

neuroligins possess extracellular domains that are modified at different locations by 

alternative splicing. Splice site 4 (S4) of -neurexin and location B of neuroligin-1 

change the proteins’ binding specificity for their neuroligin or neurexin partners and 

change their capability to stimulate glutamatergic over GABA (-aminobutyric acid)–

mediated synaptogenesis. Each neurexin isoform binds a specific neuroligin isoform 

that guides the creation of specialized synapses. -neurexin that does not have the 

alternative splice site S4 (-neurexin1 [–S4]) pairs neuroligin-1s that has the inclusion 

of splice site B (neuroligin-1+B). The addition of the S4 in -neurexin prevents 

neuroligin-1 pairing and decreases accumulation of post-synaptic proteins that are 

specific to glutamatergic synapses. Conversely, -neurexin with an S4 (+S4) has high 
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affinity for neuroligin-2 and guides the formation of GABA-signaling synapses. On 

the post-synaptic membrane, neuroligin-1+B isoforms interact with -neurexin. On 

the other hand, –B isoforms can pair both neurexin types. neuroligin-1+B is confined 

to glutamatergic synapses. The majority of neuroligin-2 proteins that lack the B site 

have an alternative splice site at location A to guide their specific localization to the 

GABAergic synapse. 

In consequence, neuroligin–neurexin binding in vitro can control both the pre- and post-

synaptic sides of the synapse. The organization of synapse configuration as excitatory or inhibitory is 

controlled by the diverse neurexin and neuroligin types incorporated, as well as the splice variants 

that occur in the extracellular domain. Neuroligin-1 is located in excitatory synapses and supports the 

development of excitatory specializations, depending on alternative splicing (Fig. 1.6). Conversely, 

neuroligin-2 is located in inhibitory synapses and preferentially stimulates the formation of inhibitory 

contacts (Chih et al., 2005). Alternative splicing in the extracellular domain of neuroligins guides 

neuroligin–neurexin binding between neurons, and controls excitatory/inhibitory synapse formation 

(Boucard et al., 2005, Chih et al., 2006; Fig. 1.7). 

1.4.4 A role for the neuroligin–neurexin complex in triggering amyloid deposition in AD? 

Acetylcholinesterase interacts with senile plaques in AD brain. Both bovine AChE and 

human and murine recombinant AChE accelerate the accumulation of either wild-type or mutant A 

peptide as amyloid. The interaction of AChE and A does not depend on the subunit composition of 

the enzyme or on the presence of the AChE active site (Inestrosa et al., 1996). The neurotoxicity 

elicited by AChE–A complexes is more than that induced by the A alone (Inestrosa et al., 1996). 

Affinity-purified AChE increases the accumulation of APP in glial cells in selective brain regions in 

a concentration-dependent manner. The increased expression of APP in astrocytes and microglia 

induced by AChE is due to the activation of glial cells (von Bernhardi et al., 2003). Tg2576 mice, 

which express human APP and develop plaques at 9 months, crossed with transgenic mice 

expressing human AChE, produce F1 animals that express both transgenes in the brain. The F1 

cerebral cortex displays plaques at 6 months that are stained by thioflavin S and antibodies against 
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A40 and A42. Plaques accumulate in the hybrid mice 50% sooner than in the parental line and 

plaque quantity increases with age (Rees et al., 2003). 

Given that neuroligins have an extracellular sequence containing a domain that is 

homologous with AChE, and given that the CLD site in neuroligin lacks important residues (Scholl 

and Scheiffele, 2003), neuroligin has been proposed as a synaptic protein candidate that may affect 

A accumulation in AD. Fluorescence spectroscopy and surface plasmon resonance analysis show 

an interaction between oligomeric forms of A and the extracellular domain of neuroligin-1 with a 

Kd in the nanomolar range (Dinamarca et al., 2011, 2012), whereas the interaction between A and 

neuroligin-2 is very weak. Immunoprecipitation assays confirmed that A oligomers react with 

neuroligin-1 but not with neuroligin-2. Studies of A polymerization in a thioflavin-T assay showed 

that neuroligin-1 stabilized A accumulation in vitro. Neuroligin-1 behaved as a nucleating factor for 

A accumulation by inducing the formation of A oligomers (Dinamarca et al., 2012). These data 

suggested that neuroligin-1 stabilizes oligomeric assemblies of A in the glutamatergic synapse, 

where they may bind to neuroligin-1 in the post-synaptic membrane. This complex might then act as 

a local aggregation seed for more A oligomers that affect the post-synaptic region and promote 

synaptic toxicity in AD. 

1.4.4.1  Proteolytic processing of neuroligins and neurexins in AD 

Several studies have demonstrated that AD-related proteolytic enzymes can regulate synaptic 

efficacy by processing synaptic CAMs (Cartier et al., 2009, Mabb and Ehlers, 2010, Malinverno et 

al., 2010). Metalloproteases and -secretase are intramembrane aspartyl proteases that cleave single-

transmembrane proteins; both are implicated in AD. They cleave a range of substrates, the most 

extensively studied of which is APP. Other substrates include proteins involved in synapse 

maintenance such as EphRs, ephrins, cadherins, and nectin. PS1/-secretase can cleave full-length E-

cadherin and a transmembrane C-terminal fragment, which is a key regulator of the Wnt signaling 

pathway (Marambaud et al., 2002). PS1/-secretase regulates the processing of nectins in PS1-/- 

and+/+ primary hippocampal neurons. Lack of PS1/-secretase inhibits the processing of nectin-1 

and nectin-3 to their C-terminal fragments and leads to the accumulation of the full-length proteins 
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(Kim et al., 2011). PS1-dependent intramembrane cleavage followed by nectin shedding takes place 

at synapses, and is regulated during synaptic plasticity. In mice and rats, metalloproteases and -

secretase reduce the levels of synaptic proteins on both sides of the synapse to weaken synaptic 

transmission (Restituito et al., 2011). Activity-dependent substrate cleavage by these enzymes is a 

novel mechanism of synaptic regulation to alter synaptic transmission. 

A number of neuroligin-1 peptide fragments have been detected by immunoblotting in rat and 

mouse neuronal cultures (Suzuki et al., 2012), which indicates that neuroligin-1 undergoes 

proteolysis. The metalloproteinase ADAM10 cleaves the amino-terminus, extracellular domain of 

neuroligin-1, while the carboxy-terminus region is cleaved by -secretase. Addition of NMDA and 

soluble -neurexin to the medium in cell culture experiments increases the quantity of neuroligin-1 

N-terminal fragments (Suzuki et al., 2012), suggesting that neuroligin-1 cleavage can be stimulated 

by neuronal activity. The overstimulation of glutamate receptors that occurs in excitotoxic 

environments, such as AD-affected brain areas, could mediate synaptic damage. 

Increased neuron activity in vivo decreases synaptic levels of neuroligin-1. Reducing the 

action of metalloproteases by inhibitors like MMP9 blocks this effect, probably by mitigating the 

activity-induced cleavage of neuroligin-1 (Peixoto et al., 2012). This finding may provide a treatment 

avenue for neuroligin-mediated synaptic damage in AD. Peixoto et al. (2012) showed that cleavage 

of neuroligin-1 occurs at single activated dendritic spines and involves NMDA receptors and Ca
2+

-

calmodulin-dependent kinase (CaMK) signaling leading to the destabilization of presynaptic -

neurexin1. The cleavage of neuroligin-1 weakens the synapse by rapidly decreasing presynaptic 

transmitter release (Suzuki et al., 2012). Together, these data suggest that the acute activity 

stimulated by cleavage of neuroligin-1 is a local homeostatic mechanism to control structural and 

functional synaptic plasticity. 

The mechanism that controls neurexin function at synapses is not fully understood. The PS/-

secretase complex can process neurexins and inactivation of the complex stimulates the 

accumulation of neurexin at the pre-synaptic terminal in vivo and in vitro. Different familial AD 
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mutations in PS1 affect -neurexin-1 processing differently: some stimulate the processing of -

neurexin-1, whereas others have the opposite effect. Inhibition of PS and neurexin accumulation at 

sites controlled by neuroligin-1 suggests that PS organizes the processing of neurexins at 

glutamatergic synapses, and that impairment of neurexin processing by PS could involve at least part 

of a proposed familial AD pathogenesis pathway (Saura et al., 2011). Processing of neurexin-3 by 

-secretase produces an ~80-kDa extracellular N-terminal domain designated soluble neurexin-3 

and the transmembrane C-terminal fragment neurexin-3-CTF. Further processing of the C-terminal 

fragment by -secretase produces a 12-kDa intracellular domain neurexin-3-ICD (Bot et al., 2011). 

Mutated forms of PS1 that are associated with familial AD include PS1-L166P, PS1-P436Q, and 

PS1-9, which alter the catalytic core of -secretase and lead to a partial loss of enzyme function. The 

effect of these mutations on neurexin-3 processing has been elucidated by over-expressing them in 

Chinese hamster ovary cells stably expressing neurexin-3. The mutated proteins increase neurexin-

3-CTF levels and decrease neurexin-3-ICD formation (Bot et al., 2011). These data suggest that 

mutated forms of PS1/-secretase impair neurexin-3 processing and may cause the accumulation of 

the intracellular neurexin-3 C-terminal fragment. 

1.4.4.2 Neuroligins and neurexins in learning and memory 

Experiments on transgenic mice have revealed that overexpression of neuroligin-1 protein 

elicits learning and memory deficits, impairment of the induction of long-term potentiation (LTP), 

alterations in spine morphology, and reduced synaptic plasticity by altering the excitatory to 

inhibitory synapse ratio in hippocampus (Dahlhaus et al., 2010). Silencing of neuroligin-1 in the 

amygdala of mice showed that this protein plays an essential role in the storage of associative fear 

memory (Kim et al., 2008). Subsequent physiological experiments revealed that the lower 

neuroligin-1 levels weaken NMDA receptor-mediated currents and inhibit LTP (Jung et al., 2010). 

neuroligin-1 knockout mice show abnormalities in spatial learning and memory that are associated 

with impaired hippocampal LTP and a reduced NMDA/AMPA receptor ratio at corticostriatal 

synapses (Blundell et al., 2010). These data suggest that steady neuroligin-1 levels are essential for 

NMDA receptor-mediated synaptic transmission, which plays a central role in synaptic plasticity and 
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long-term memory formation in the amygdala of adult animals (Kim et al., 2008). NLGN3 R451C 

mutant mice exhibit impaired social interactions but improved spatial learning. Unexpectedly, these 

behavioural changes are induced by the stimulation of inhibitory synaptic transmission, with no 

effect at excitatory synapses. On the other hand, deletion of NLGN3 did not cause much alteration, 

indicating that the R451C substitution is a gain-of-function mutation. These results suggest that 

increased inhibitory synaptic transmission could play an important role in autism spectrum disorders 

(Taniguchi et al., 2007). Hines et al. (2008) manipulated transgenic mice overexpressing neuroligin-1 

and neuroligin-2 under the control of the Thy1 promoter, which leads to expression in various brain 

regions at early stages of development. Several abnormalities resulted from an increased expression 

of neuroligin-2, but not of neuroligin-1. A slight alteration in neuroligin-2 expression culminated in 

distended contacts at frontal cortex synapses and a general reduction in the excitatory to inhibitory 

synaptic ratio. These animals also showed impaired social behaviour and anxiety. A study using 

neuroligin-1 and neuroligin-3 knockdown showed that neuroligin-1 alternatively spliced at site B is 

required for LTP expression in young CA1 pyramidal cells, but that neuroligin-3 does not appear 

essential for LTP support (Shipman and Nicoll, 2012). 

Neurexin and neuroligin proteins at sensory-to-motor neuron synapses play roles in the gill-

withdrawal reflex in Aplysia, which exhibits sensitization (Shipman and Nicoll, 2012, Choi et al., 

2011). Reducing neurexin in the presynaptic sensory neuron or neuroligin in the postsynaptic motor 

neuron eliminates long-term facilitation and enhances the associated presynaptic growth elicited by 

frequent pulses of serotonin. These data suggest that activity-dependent regulation of the neurexin-

neuroligin contact could govern trans-synaptic signalling that is essential for the storage of long-term 

memory. An altered function of synaptic cell-adhesion molecules that leads to reduced excitatory 

synaptic transmission is a potential treatment target for neurological disorders. Such alterations may 

provide the neural basis for an imbalance in excitatory and inhibitory transmission and the 

behavioural changes related to disorders such as AD. Neuroligin-1 expression can modulate synapse 

morphology and LTP; abnormal synapse morphology, reduced synaptic plasticity, and deficits in 

learning occur in several neurological disorders, including AD. 
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1.5 Thesis outline 

1.5.1 Chapter 2 

Fluctuations in the levels of the synaptic proteins neuroligin-1 or neuroligin-2 in relation to 

synaptic loss in AD. This chapter describes the development of an immunodetection assay to 

quantify neuroligin-1 and neuroligin-2 proteins in autopsy brain tissues. Truncated versions of 

neuroligin-1 and neuroligin-2 were constructed, cloned, expressed, and purified. Different 

concentrations of the engineered protein were mixed with constant amounts of native protein 

extracted from tissue. Recombinant truncated protein separated clearly from the target protein as a 

sharp band. A standard curve with multiple points was created to show band intensity against 

quantity of standard in the different lanes on the same gel. The chapter then shows the successful use 

of the immunodetection assay in achieving precise estimates of the quantities of neuroligin-1 and 

neuroligin-2 present in each sample. 

1.5.2 Chapter 3 

Using the immunodetection assay from Chapter 2, concentrations of neuroligin-1 and 

neuroligin-2 were accurately quantified in hippocampus, inferior temporal cortex and occipital cortex 

autopsy tissue from 15 AD cases and 15 controls. These concentrations were compared between the 

two groups. Further statistical analyses assessed the effects of sex and the pathological severity of the 

disease on neuroligin-1 and neuroligin-2 protein levels. In addition, a similar immunodetection assay 

was used to quantify -neurexin in hippocampus, inferior temporal cortex and occipital cortex 

autopsy tissue from 15 AD cases and 15 controls. 

1.5.3 Chapter 4 

The aim of this chapter was to validate the data obtained from quantification of neuroligin-1, 

neuroligin-2 and -neurexin by using multiple reaction monitoring MRM assays, which are based on 

mass spectrometry and SWATH techniques, in AD cases and controls. This included sample 

preparation, validation and optimization of the best transitions and the actual quantification of the 

neuroligin and neurexin isoforms. 
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1.5.4 Chapter 5 

This chapter describes the development of a real time PCR assay to quantify neuroligin-1, 

neuroligin-2 and -neurexin transcripts in human autopsy brain tissues. The concentrations of theses 

transcripts were measured in hippocampus, inferior temporal cortex and occipital cortex from 14 AD 

cases and 14 controls, and then compared. 

1.5.5 Chapter 6 

The aim of this chapter was to confirm the association between Alzheimer disease and the 

single nucleotide polymorphism (SNP) rs17757879 in NRXN3 in an Australian Caucasian 

population using a case-control association approach, by using genomic DNA from the Queensland 

Brain Bank. 

1.5.6 Chapter 7 

Conclusions and future directions. 
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Chapter 2 

2 Development of an immunoassay to quantify neuroligin-1 and neuroligin-2 

2.1 Aim of the research 

1. To develop an immune-detection assay to quantify neuroligin-1 and neuroligin-2. 

2. To clone, express and purify recombinant truncated neuroligin-1 and neuroligin-2 protein 

standards. 

2.2 Introduction 

The use of brain autopsy tissues in neurobiological research has increased in recent years. 

Biochemical and proteomic experiments on human tissue are an essential component in establishing 

the roles that many proteins and pathways play in neurological disorders. Estimates of protein levels 

in autopsy brain tissue from cases and controls contribute to our understanding of the pathogenesis of 

disease. Recent developments in technology have been responsible for massive amounts of data on 

protein expression in different diseases, and have helped to delineate several drug targets. These 

approaches require that the molecular and biochemical state of the tissue is well maintained. Ideally, 

the target proteins should be undamaged and biologically active. Several studies have assessed the 

stability of transcripts and proteins isolated from human autopsy brain tissues (Johnson and Ferris, 

2002, Johnston et al., 1997, Köpke et al., 1993, Yasojima et al., 2001). Various factors affect post 

mortem yields of DNA, mRNA and protein, such as the method of tissues preparation, tissue pH, 

storage conditions, time in storage, and post-mortem interval (PMI; Kingsbury et al., 1995, Leonard 

et al., 1993, Ludes et al., 1993, Lukiw et al., 1990, Palmer et al., 1988, Schramm et al., 1999). It has 

been shown that cells can be obtained from human autopsy brain tissues and maintained alive in 

culture (Verwer et al., 2002). 

Proteomics uses several quantitative and qualitative techniques to detect the proteins in a 

tissue that differ in expression, for example in response to a disease. These include 2-dimensional 

differential gel electrophoresis (2D-DIGE), mass spectrometry (MS) and Western blotting. 2D-DIGE 
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has a limited capacity to detect alterations in expression or post-translational modification in low-

abundance proteins. Mass spectrometry needs high expression levels for protein quantification and 

requires large amount of starting material, which is an issue for work on human tissue. It also 

involves various steps that could affect protein integrity or lead to degradation. 

Western blotting (immunoblotting) is used to detect the presence of a particular protein in a 

complex biological extract. Although quantification can be problematic, immunoblotting can be 

effective in finding statistically significant alterations in the levels of protein linked to disease. As in 

gene expression, minor changes in protein expression in the brain might have major consequences in 

the tightly regulated CNS. More-complicated proteomic techniques may be unable to detect small 

significant differences in protein regulation, and simpler but more sensitive biochemical techniques 

needed to confirm any alterations found. Immunoblotting depends on three basic steps: (1) gel 

electrophoresis to separate a mixture of protein based on size; (2) effective transfer of separated 

proteins to a solid support; and (3) precise recognition of the protein of interest by selective primary 

and secondary antibodies. The band of the target protein is then visualized on the blotting membrane 

by using either X-ray film or an imaging system. 

Immunoblotting is one of the most common laboratory techniques due to its advantages in 

time, simplicity, and cost. Data obtained from immunoblotting are simple to interpret, distinctive, 

and unmistakable. Often when a result does not match expectations, there can be indications of what 

must be investigated to find the reason. Nevertheless, there are several limitations of the method, 

such as incomplete protein transfer from the gel to the membrane, the availability of specific 

antibodies for protein recognition, and the small number of proteins that can be detected in one 

assay. 

In this chapter I develop an immune-detection assay to specifically quantify neuroligin-1 and 

neuroligin-2 proteins in human autopsy brain tissue. -NRXN protein was purchase from Life 

Technology Company, therefore was not included in this chapter. The strategy to sensitively and 

precisely quantify neuroligin-1 and neuroligin-2 concentrations used known amounts of recombinant 
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expressed truncated versions of neuroligin-1 and neuroligin-2 respectively to construct standard 

curves. I used this to identify small but significant differences between cases and controls, which 

might not have been detected by other techniques due to large variations in the levels of individual 

proteins. These measures of the exact molar concentrations of the proteins in my data set allowed me 

to assess and contrast alterations in levels of synaptic adhesion molecules at the synapse. 

2.3 Materials and Methods 

Truncated recombinant versions of the proteins that contained the relevant epitopes for the 

primary antibodies used, in the N-terminus of neuroligin-1 and the internal region of neuroligin-2, 

were constructed. This permitted me to accurately measure native protein levels in autopsy brain 

tissue by in-gel immunodetection. The truncated proteins were smaller than their target proteins to 

allow easy separation by electrophoresis. The engineered transcript proteins were expressed in a 

bacterial system and purified, and a known amount added to each AD case and control sample lane 

in the gel. Each truncated protein separated clearly from its target protein as a sharp band. A standard 

curve with multiple points was created derived from the band intensities produced by adding 

differing known quantities of standard to different lanes on the gel. This method was used to achieve 

very precise estimates of the quantities of neuroligin1 and neuroligin-2 present in each sample. 

2.3.1 Recombinant neuroligin-1 and neuroligin-2 protein standards 

A modified 5' end was integrated into the design of the forward primers to facilitate 

directional cloning into the vector from Invitrogen, which has a 4-nucleotide overhang sequence. The 

reverse primers were designed against the sequence upstream of the stop codon to permit expression 

of a downstream histidine tag. Using the Champion™ pET Directional TOPO® Expression Kit 

system (Life Technologies Pty Ltd, Invitrogen, Mulgrave, Vic, Australia), PCR products can be 

directionally cloned by adding four bases to the forward primer (CACC). The overhang in the 

cloning vector (GTGG) invades the 5' end of the PCR product, anneals to the added nucleotides, and 

results in production of a PCR product at the right orientation. With this system the PCR amplicon 

can be cloned at very high efficiency. 
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 The forward and reverse primers sequences that were used to amplify a fragment of each 

protein are listed in Table 2.1. 

The cDNA used to amplify the PCR product was prepared from frozen tissue that was stored 

at –80°C in 0.32 M sucrose. Pieces of frozen human autopsy tissue about 1 cm
3
 were weighed and 

homogenized on ice in 10 (w/v) of TRIzol® (Invitrogen) using a motor-driven homogenizer 

(Polytron®, Kinematica, Bohemia, NY, USA). The homogenate was incubated for 5 min at room 

temperature and 0.2 (v/v) of chloroform was added and the incubation continued at RT for 2–3 min 

with shaking. The homogenate was centrifuged for 20 min at 10 000  g at 4°C and the top layer 

transferred to a new tube. 0.1 (v/v) of isopropanol was added and the mixture incubated for 10 min 

at RT, then centrifuged at 10 000  g for 15 min at 4°C. The pellet was resuspended in 1 ml of 75% 

ethanol and centrifuged at 20 000  g for 20 min at 4°C. The final pellet was dried and resuspended 

in 50 µl of pure water and incubated at 60°C for an additional 10 min. 

Table 2.1. NLGN1 and NLGN2 PCR and cloning details. 

 NLGN1 NLGN2 

Forward Primer 5'-CAC CAT GGC ACT GCC 

CAG AT-3' 

5'-CAC CTA CGT GCA GAA 

CCA GAG C-3' 

Reverse Primer 5'-ACC AGC TCG ATA CCA 

CAT AGC CTA A-3' 

5'-CCG ACT ACC AGT CTC 

CCG TCT AA-3' 

Size of PCR amplimer 

& recombinant protein 

1069 bp between nucleotides 421 

and 1491; 38 kDa 

1035 bp between nucleotides 465 

and 1510; 40 kDa  

Location of epitope  Residues 33–61 near N-terminus Internal region  

Sizes of native form 4861bp 4621 bp 

To reverse transcribe the RNA, DNase I was added to get rid of any contaminating genomic 

DNA. 1 µl of 10 DNase I reaction buffer (Fermentas Inc, Hanover, MD, USA) was added to 3 µg 

of RNA, then 40 U of RNase OUT (Fermentas) and 1 U of RNase-free DNase (Fermentas) were 
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added and the mixture incubated at 37°C for 30 min. EDTA was added to a final concentration of 

2.27 mM and the mixture incubated at 75°C for 5 min. cDNA was formed by adding the following: 

0.82 µg of DNase, 300 µM dNTPs (Promega Corp., Sydney, NSW Australia), 1 µg of Oligo (dT)12–

18 primers (Promega), and 0.5 µg of random hexamers (Promega). Nuclease-free MilliQ H2O was 

added to make the volume to 12 µl and the mixture incubated for 5 min at 65°C. The following 

reagents were added to perform the reverse transcriptase step: 5 first-strand buffer, 4.8 mM 

dithiothreitol (DTT), 40 U of RNaseOUT and 400 U of Superscript III Reverse Transcriptase® 

(Invitrogen). The mixture was incubated at 25°C for 5 min, then 50°C for 60 min and 70°C for 15 

min. To eliminate any residual contamination by RNA, 2U of DNase-free ribonuclease H 

(Invitrogen) was added and the incubation continued for 20 min at 37°C. The cDNA was stored at –

20°C. 

The PCR product of NLGN1 was amplified from cortical cDNA by incubating 1 µl of cDNA 

with 1 µl of 10 mM dNTPs, 1 µl of NLGN1 10 µM forward and reverse primers (final concentration 

0.2 µM), 5 µl of 10 Pfu buffer without MgSO4 (200 mM Tris-HCl, pH 8.8 at 25°C), 100 mM 

(NH4)2SO4, 100 mM KCl, 1% (v/v) Triton X-100, 1 mg/ml BSA), 4 µl of 25 mM MgSO4 (final 

concentration 2 mM) and 0.5 µl (1.25 U) of Pfu DNA polymerase. The PCR was performed using 

the following conditions: initial denaturation at 95°C for 2 min, then 35 cycles with denaturation at 

95°C for 30s. A gradient PCR cycler was used to get different annealing temperatures for different 

reactions at 58°C and 62°C for 30s and extension at 72°C for 2 min. Final extension was at 72°C for 

10 min. The PCR products were loaded onto a 1% agarose/ethidium bromide gel and run for 1h at 

100V. 

The PCR product of NLGN2 was amplified from cortical cDNA by incubating 1 µl of cDNA 

with 10 mM dNTP mixture (final concentration of each dNTP 200 µM), 10 µl buffer B (60 mM Tris-

SO4, 18 mM (NH4)2SO4, 2 mM MgSO4, pH 9.1), 10 µM NLGN2 forward and reverse primers (final 

concentration 200 nM), 1 µl of Elongase enzyme mix, finally topped up to 50 µl with MilliQ H2O. 

The following conditions were used to perform the amplifications: pre-amplification denaturation at 

94°C for 30s, then 35 cycles with denaturation at 94°C for 30s. A PCR gradient cycler was used to 
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get different annealing temperatures for different reactions for optimizations: 58°C, 60°C, 62°C and 

64°C, with gradient annealing for 30s. Extension was performed at 68°C for 1 min. After the 35 

cycles were completed a final extension at 68°C for 10 min was performed. The PCR products were 

loaded onto a 1% agarose/ethidium bromide gel and run for 1h at 100V. 

2.3.1.1 PCR clean-up 

To purify NLGN1 and NLGN2 PCR products from primers, nucleotides, polymerase and salt, 

and to obtain concentrated cDNA, I used the QIAquick PCR purification kit (QIAGEN Pty Ltd, 

Doncaster, VIC, Australia) as per the manufacturer’s specification. 

2.3.2 Topo cloning reaction 

The purified PCR products of NLGN1 and NLGN2 were ligated into Topo vector at a 0.5:1 

molar ratio of PCR product to vector. The ligation reaction was carried out in 6 µl total volume, 

which included 0.5 µl of purified PCR product, 1 µl salt solution, 1 µl Topo vector and 3.5 µl of 

MilliQ H2O. The reaction was mixed gently and incubated for 5 min at room temperature. The 

mixture was placed on ice for the E. coli transformation (see next). 

2.3.2.1  Transformation of E. coli 

pET TOPO NLGN1 and NLGN2 constructs were transformed into competent E. coli (One 

Shot® TOP10 Chemically Competent E. coli; Invitrogen) by adding 3 µl of the TOPO® Cloning 

reaction product (previous section) into a vial of the E. coli preparation and the reaction mixed gently 

and incubated on ice for half an hour. Cells were heat-shocked for 30s at 42°C without shaking and 

the tubes immediately transferred to ice. 250 µl of Super Optimal broth with Catabolite repression 

(S.O.C.; 2% Tryptone, 0.5% Yeast Extract, 10 mM NaCl, 2.5 mM KCl, 10 mM MgCl2, 10 mM 

MgSO4, 20 mM glucose) was added to the vial at room temperature and the mixture shaken 

horizontally (200 rpm) at 37°C for 1h. 100 µl and 200 µl of each transformation reaction were spread 

on pre-warmed LB agar + carbenicillin plates and incubated overnight at 37°C. 
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2.3.2.2 PCR colony screening 

Colonies obtained from the plates were streaked on new LB agar + carbenicillin plates and 

grown overnight at 37°C. Each growing colony was tip patched and incubated in a reaction 

containing 50 µl 2% Triton pH 12.4 (0.03 mM), 10 µl 6 loading dye (11 mM EDTA, 3.3 mM Tris-

HCl, 0.017% SDS, 0.015% bromophenol blue, pH 8.0) and 50 µl of the bottom layer of a 

chloroform/phenol/isoamyl alcohol 25:24:1 saturated with 10 mM Tris and 1 mM EDTA, pH 8.0. 

Tubes were vortex and centrifuged for 10 min at 13,000  g. The top layer of the mixture was loaded 

onto a 1% agarose/ethidium bromide gel with a 1 kbp ladder and run at 100V for 1h. Colonies with 

the right insert were identified from the banding pattern (Genomic DNA, Vector 5764 bp, insert 

NLGN1 and NLGN2 ~1000 bp). 

2.3.2.3 Plasmid purification 

A QIAprep Spin Miniprep Kit (QIAGEN) was used to purify high-copy plasmid DNA of 

NLGN1 and NLGN2 from 5 ml overnight cultures of E. coli in LB as per the manufacturer’s 

specifications. 

2.3.2.4 PCR screening 

PCR screening was used to analyse positive transformants of NLGN1 with the following 

reaction: 1 µl of 10 µM dNTPs, 1 µl of NLGN1 10 µM forward and reverse primers (final 

concentration 0.2 µM), 5 µl of 10 Pfu buffer without MgSO4 (see above), 4 µl of 25 mM MgSO4 

(final concentration 2 mM) and 0.5 µl (1.25 U) of Pfu DNA polymerase. Colonies with inserts were 

resuspended into the reaction mixture and PCR performed using the following thermal cycling: 

initial denaturation step of 2 mins at 95°C, then 35 cycles of a 30s, 95°C denaturing step, 58 ± 4°C 

gradient annealing for 30s, and a 2 min, 72°C extension step which was followed by a final extension 

step of 72°C for 10 min. 

2.3.2.5 Restriction enzyme analysis 

Restriction analysis of purified NLGN2 plasmid was conducted to confirm the presence and 

the correct orientation of the insert. The NEB cutter tool (New England BioLabs, Hitchin, UK) was 
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used to find non-overlapping open reading frames in DNA sequences of the E. coli genetic code and 

the sites for all Type II and commercially available Type III restriction enzymes that cut the 

sequence just once. Restriction enzyme APAI (New England Biolabs), which cut the insert at 

nucleotide 666 and cut the vector at nucleotide 5029, was used. The following reaction was 

conducted to perform NLGN2 restriction analysis in 20 µl: 2 µl of 10 NEBuffer, 0.2 µl of BSA 

100, 5 µl of purified plasmid, 0.5 µl of APAI enzyme and 12.3 µl of sterile deionized water. The 

mixture was incubated for 3h at 37C in a water bath and then for additional 10 min at 70°C, then 

loaded into a 1% agaros/ethidium bromide gel and run for 1h at 100V. 

2.3.2.6 Sequencing 

NLGN1 and NLGN2 constructs were sequenced using Illumina (San Diego, CA, USA) 

HiSeq2000 next generation sequencing at Australian Genome Research Centre to confirm that the 

NLGN1 and NLGN2 genes were in frame with the appropriate N-terminal or C-terminal fusion tags. 

The forward and reverse reaction mixtures of NLGN1 and NLGN2 were sent in 12 µl total volume 

(600 ng of plasmid and 0.6 µl of pET100/D-TOPO® T7 forward primer or 0.6 µl of reverse primer 

for pET100/D-TOPO® T7 reverse primer). 

2.3.2.7 Expression 

Successfully sequenced NLGN1 and NLGN2-PET101/D-Topo clone (plasmid) were 

transformed into BL21 Star™ (DE3), which is included with each Champion™ pET directional 

TOPO® Expression Kit. 0.5 µl of each plasmid DNA was loaded into thawed vial of BL21 Star™ 

(DE3) and mixed gently. Cells were incubated on ice for 30 min, then heat-shocked for 30s at 42°C 

without shaking. The tubes were immediately transferred to ice and 250 µl of room temperature SOC 

medium was added to each tube. The mixtures were incubated at 37°C for 60 minutes with shaking 

(200 rpm). Each entire transformation reaction was added to 10 ml of LB containing 10 µl 

Ampicillin antibiotic and grown overnight at 37°C with shaking. 

Because different recombinant proteins have different characteristics, pilot expression was 

performed in which a time course for expression was studied to determine the best condition for 
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protein expression. 500 µl of the overnight cultures were inoculated to 10 ml of LB containing 10 µl 

of Ampicillin and grown for 2h at 37°C with shaking (200 rpm) until the cells had reached mid-log 

phase (OD600 0.5–0.8). Each culture was split into two (5 ml each) and 0.5 mM IPTG final 

concentration (250 µl of 200 µM) added to one sample to induce expression. 500 µl aliquots were 

taken from each culture as a zero time point sample and centrifuged for 1 min at 13,000 rpm. 

Supernatants were aspirated and pellets were then frozen at –20°C. Cultures were kept in the 

incubator at 37°C with shaking and aliquots taken every hour up to 4h. At each time point, 500 µl 

from the induced and uninduced cultures were taken and centrifuged for 1 min at 13,000 rpm, the 

supernatants were discarded, and the pellets stored at –20°C for analysis. 

2.3.3 Analysing expression 

To analyse the pilot expression of NLGN1 and NLGN2, 10% of SDS separating gels were 

prepared by mixing 3.54 ml of MilliQ H2O, 3.75 ml of 1M Tris (pH = 8.8), 100 µl of 10% SDS, 2.5 

ml 40% Acrylamide, 100 µl of 10% APS (Ammonium persulfate) and 10 µl of TEMED (NNNN-

tetramethylenediamine). 4% stacking gels were prepared by mixing 3.77 ml of MilliQ H2O, 625 µl 

of 1M Tris (pH = 6.8), 50 µl of 10% SDS, 500 µl of 40% acrylamide, 50 µl of 10% APS and 5 µl of 

TEMED. Sample pellets from the pilot expression of NLGN1 and NLGN2 were thawed, suspended 

into 80 µl of 1 sample buffer, and boiled for 5 min at 100°C. 16 µl of each pellet and SDS-sample 

buffer mixture was loaded onto the gel and run for 45 min at 150V. Gels were stained with 

Coomassie Brilliant Blue (Sigma-Aldrich Pty Ltd, Castle Hill, NSW, Australia) in 50% methanol 

and 10% glacial acetic acid for 1h, then destained overnight with 45% methanol and 5% acetic acid. 

Gels were visualized on the Odyssey Infrared Imaging System (LI-COR Biotechnology, Cambridge, 

UK) at a scan intensity of 8 using the 700/800 nm fluorescence channel. 

2.3.3.1 Scaling up expression for purification 

To scale-up expression to 50 ml, 500 µl of overnight culture (previous step) was inoculated 

into 10 ml of LB containing 10 µl of ampicillin and grown overnight at 37°C with shaking (200 rpm) 

until the OD600 reached 1.0. One ml of the overnight culture was inoculated into 50 ml LB with 50 µl 

of Ampicillin and grown for 2h at 37°C with shaking (200rpm) until the cells reached mid-log phase 



P a g e  | 40 

(OD600 = ~0.5). 1 mM IPTG was added to each culture to induce expression and the incubation 

continued at 37°C with shaking for 4h. Cells were harvested by centrifugation for 10,000 rpm for 10 

minutes at +4°C. 

2.3.3.2 Purification 

Recombinant truncated neuroligin-1 and neuroligin-2 protein was purified under denaturating 

conditions using the Ni-NTA spin column kit (Qiagen) as per the manufacturer’s instructions. Cells 

from 50 ml cultures of neuroligin-1 and neuroligin-2 were thawed for 15 min and pellets were 

resuspended and lysed in 1 ml of 1 PBS and 5 µl of 20 mg/ml lysozyme, 10 µl DNAase and 7 ml of 

buffer B, denaturing lysis/binding buffer (7 M urea, 100 mM NaH2PO4, 100 mM Tris-HCl, pH 8.0). 

The mixtures were agitated at room temperature for 1h until the solution become translucent. To 

pellet the cellular debris, 700 µl of lysates were centrifuged at 12,000  g for 30 min at room 

temperature (25°C). The supernatant was collected and 20 µl of the cleared lysates saved for SDS-

PAGE analysis. 

2.3.3.3 Western blotting 

To validate the expression and purification of neuroligin-1 and neuroligin-2 recombinant 

protein, western blotting was used. Proteins eluted from NI-NTA columns were mixed with 3 SDS-

sample buffer (1:3 SDS buffer: protein) and loaded into 10% polyacrylamide gels. Proteins were 

separated for 30 min at 200V, then transferred to polyvinylidene difluoride (PVDF) membranes for 

90 min at 100V. Membranes were blocked with 1% skim milk in PBST for 1h with shaking, then 

incubated overnight at 4°C with blocking solution plus mouse monoclonal primary antibody against 

neuroligin-1 (1:20000 Neuroligin-1 (A-4): sc-365110, Santa Cruz Biotechnology Inc, Dallas, TX, 

USA) or goat polyclonal primary antibody against neuroligin-2 (1:20000 Neuroligin-2 (R-16): sc-

14089, Santa Cruz). Membranes were washed 3  10 min each in PBST and incubated at RT in the 

dark for 1h in skim milk blocking solution and PBST plus 1:20000 rabbit anti-goat 680 secondary 

antibodies (Invitrogen), then washed 3  10 min in PBST followed by 3  10 min in PBS. Finally, 

the membranes were dried and washed with methanol and visualized by the Odyssey infrared 

imaging system at  = 700 nm. 
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2.3.4 Quantification of neuroligin-1 and neuroligin-2 recombinant proteins 

The concentrations of neuroligin-1 and neuroligin-2 proteins were determined against a 

standard curve of BSA based on band intensity from the Odyssey imaging system. 

2.3.4.1 Quantification of neuroligin-1 and neuroligin-2 endogenous protein 

Variant amounts of purified neuroligin-1and neuroligin-2 were loaded onto separate SDS-

PAGE gels. Standard curves were created by plotting the intensity of each neuroligin-1 and 

neuroligin-2 band from the Odyssey imaging system against known amounts of recombinant 

truncated neuroligin-1 and neuroligin-2 proteins respectively. This method allowed me to accurately 

quantify the the endogenous proteins using the standard curve present on each gel. This reduced both 

gel to gel and well to well variation during quantification (Agarwal et al., 2008). 

2.4 Results 

2.4.1 NLGN1 cloning 

 

Fig. 2.1. Agarose ethidium bromide gel of NLGN1 PCR products. Bands in lanes 2–5 

represent temperature gradients 56–64°C. These bands represent the NLGN1 amplicon 

and were identified at 1069 bp, which is the correct size, under UV. 

To accurately quantify neuroligin-1 protein expression in human brain membrane samples, 

neuroligin-1 truncated protein was used as standard with different known concentrations. The 

fragment of neuroligin-1 amplified from occipital cortex cDNA corresponded to amino acids 421 to 

1491, which contains the antigenic epitope amino acids 33 to 61 near the N-terminus recognised by 
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the Santa Cruz antibodies. Bands of the correct size (1069 bp) of the NLGN1 amplicon were detected 

under UV light on an agarose ethidium bromide gel (Fig. 2.1). 

PCR products of NLGN1 were purified using the QIAquick PCR purification kit (Qiagen) 

and cloned into pET100/D-TOPO vector. The PET101/D-TOPO vector contains N-terminal or C-

terminal polyhistidine (6His) tags that facilitate the purification on a nickel column such as Ni-

NTA. The pET TOPO® vectors have a T7/lac promoter to induce the expression of the protein of 

interest in high levels of IPTG. The T7lac promoter contains a lac operon sequence that assists in 

binding to lac repressor and has a role to further repress T7 RNA polymerase-induced basal 

transcription of the gene of interest in BL21 Star™(DE3) cells. The pET TOPO® vector has 

advantages for rapid directional cloning. Therefore, the vector was transformed into One Shot 

TOP10 E. coli. Quick screening for the successful insert of NLGN1 into the TOPO vector was 

analysed by using phenol/chloroform/isoamyl alcohol (Fig. 2.2). 

 

Fig. 2.2. Gel photo of quick screening for the successful insert (PCR product of 

neuroligin-1) into the TOPO vector. This technique gives rough confirmation of the 

successful ligation by the size of both insert and vector in the gel. Random selection 

of the colonies obtained from the transformation reaction in plates was done. These 

colonies were streaked on one plate and incubated overnight. Streaked patch colonies 

were treated with 2% Triton X-100 pH 12.4, then with phenol/chloroform/isoamyl 

alcohol (25:24:1) and loaded into the gel. The first lane in the gel represents the DNA 
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ladder standard, while lanes 2–19 show the treated colonies. Wells number 9 and 18 

roughly show the successful ligation due to its size, which is slightly higher than the 

rest of the colonies in the gel. 

To further analyse the successful transformation of NLGN1, analysis was conducted to 

confirm the presence and correct orientation of the insert by using a restriction enzyme with one 

specific site in the vector and one in the insert. NEB cutter from New England Biolabs was used to 

find the best restriction enzyme that cut the NLGN1 insert. Plasmid digestion was performed as 

described in Section 2.3.2.5. 

2.4.1.1 NLGN1 AGRF sequencing 

AGRF sequencing was conducted to confirm the correct sequence and proper orientation of 

the insert for subsequent expression. See appendix for this chapter. 

 

Fig. 2.3. SDS-PAGE of neuroligin-1 expression. Cultures were treated with or without 

IPTG to induce expression in (+) samples, and then run on SDS-PAGE for 45 minutes 

as described in Methods. Lane 1, protein marker; lanes 2, 4, 6 and 8, induced protein 

expression at 1, 2, 3, and 4h; lanes 1, 3, 5, and 7, no IPTG induction at 1–4h. The 

expected size of the recombinant truncated protein was 40 kDa. 

 Precision plus 

Protein  
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2.4.1.2 Neuroligin-1 expression 

The purified plasmid of pET100/D-TOPO constructs of neuroligin-1 were transformed into 

BL21 Star™(DE3) One Shot E. coli for the expression studies. A time course of expression up to 4 

hours was performed to determine the best conditions for the expression neuroligin-1. SDS-PAGE 

was used to analyse neuroligin-1 expression and the Odyssey system used to visualize the 

Coomassie-stained gel (Fig. 2.3). 

2.4.2 NLGN2 cloning 

Neuroligin-2 recombinant truncated protein was used as a standard to accurately quantify 

neuroligin-2 native protein in human brain. PCR was used with human brain cDNA and primers 

(outlined in Table 1) to amplify a fragment of human neuroligin-2. The amplimer corresponds to 

amino acids 465 to 1510 and contains antigenic epitope. PCR optimization was done to generate the 

best conditions for amplifying NLGN2 with the Pfu enzyme. Figure 2.4 shows the PCR products. 

 

Fig. 2.4. PCR products of neuroligin-2. First lane is the 1 Kb ladder standard, lanes 2-

4 are the PCR product of neuroligin-2 with annealing temperatures of 56, 58, 60, 62, 

and 64°C respectively. 
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Neuroligin-2 restriction analysis was conducted to confirm the presence and correct 

orientation of the insert by using a restriction enzyme with one specific site in the vector and one in 

the insert. 

NLGN2 PCR products were purified and cloned as described in Methods. Quick screening for 

the successful insertion into the vector is shown in Fig. 2.5. 

 

Fig. 2.5. Quick screening for the successful insert (PCR product of neuroligin-2) into 

the TOPO vector. Lane 1, DNA ladder, lanes 2–16, treated colonies. Wells #8 and 12 

show successful ligation at slightly higher size than the rest of the extracts. 

2.4.2.1 Neuroligin-2 expression 

pET100/D-TOPO NLGN2 plasmid was transformed to BL21 Star™(DE3) One Shot E. coli. 

Pilot expression from 1–4 hours was conducted to determine the best expression conditions for 

neuroligin-2. Expression of neuroligin-2 protein was analysed by SDS-PAGE and Odyssey system 

was used to visualize the Coomassie-stained gel. 
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Fig. 2.6. SDS-PAGE of neuroligin-2 expression. Cultures were treated with (+) IPTG 

to induce expression, run on SDS-PAGE and stained as described in Methods. Lane 1, 

MW marker; lanes 2, 4, 5, 8, and 9, induced protein expression at 0, 1, 2, 3, and 4h; 

lanes 3, 6, 7, and 10, without IPTG induction at 1– 4h. The expected size of the 

recombinant protein is 40 kDa. 

2.4.2.2 Neuroligin-1 and neroligin-2 purification 

Maximum levels of recombinant neuroligin-1 and neuroligin-2 expression were attained at 4h 

after IPTG induction. Both proteins were purified on Ni-NTA columns from an upscale expression 

of 50 ml following 4h of IPTG addition (Figs 2.7 and 2.8). 

 

Fig. 2.7. Neuroligin-1 protein purificationon Ni-NTA columns. The second lane 

shows the whole lysate, the third lane the supernatant followed by flowthrough of the 
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supernatant, lanes 5 and 6 wash #1 and wash #2 respectively. The last two lanes that 

show the final eluates have the correct size of the recombinant truncated protein, 

38KDa. 

 

Fig. 2.8. Neuroligin-2 protein purification on Ni-NTA columns. Details as for Fig. 

2.7; the last two lanes represent the final elutes and have the correct size of truncated 

recombinant protein, 40KDa. 

 

Fig. 2.9. Quantification of neuroligin-1 and neuroligin-2 recombinant proteins. The 

concentrations of neuroligin-1 and neuroligin-2 proteins were determined against a 

standard curve of known quantities of BSA based on band intensity in the Odyssey 

imaging system. The final concentration of neuroligin-1 was 21.39 ng/µl while the 

final concentration of neuroligin-2 was 24.27 ng/µl. 
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Fig. 2.10. Neuroligin-1 recombinant standard. Different concentrations of truncated 

recombinant neuroligin-1 were loaded onto the gel (10–100 ng). Details as Fig. 2.11. 

 

Fig. 2.11. Neuroligin-2 recombinant protein standard. Different concentrations of 

truncated recombinant neuroligin-2 were loaded onto the gel (10–100 ng). Details as 

for Fig. 2.11. 

2.5 Discussion 

Human post-mortem brain tissues have been used widely to find novel biomarkers in 

neurodegenerative disease, including AD. Different proteomic approaches can be used to find 

biomarkers and protein differences in AD, such as 2-dimensional gel electrophoresis, 2D-DIGE, and 

liquid chromatography based high-resolution tandem mass spectrometry, LCMS. The separation of a 

protein in 2-DIGE is based on the charge (isoelectric point) and the molecular weight. This 

separation leads to different pattern of protein spots that can then be recognized using MS methods to 

identify and quantify the proteins. 2-DIGE separation has good resolving power; utilization of 
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different dyes permits quantitative analysis, and allows increased sensitivity, reproducibility, and 

throughput in proteome analysis (Friedman et al., 2004, 2007). 2D-DIGE has a significant function 

in detecting proteins with posttranslational modifications (PTMs), because phosphorylation and 

glycosylation can have impacts on the isoelectric point and molecular weight of proteins. Hence, 

2DIGE can be used to compare different samples, because the size (area) and intensity of spots alter 

according to variations in the expression of proteins. For these reasons, 2D-DIGE has been used to 

find biomarkers in CSF and plasma in neurodegenerative diseases such as AD (Castano et al., 2006, 

Davidsson et al., 2001, Hu et al., 2007). 

An essential and informative phase in protein biomarker discovery is to identify quantitative 

differences in protein expression between diseased cases and controls. Utilizing 2-DIGE to quantify 

expression has limitations: it can’t be used to quantify hydrophobic proteins such as membrane-

bound proteins, and it is not applicable to proteins/peptides smaller than 15 kDa. It cannot detect 

differences when protein alterations are modest. This is a significant concern for studies of the 

human brain, where small changes in expression might have a marked impact over time. 

There are simple and accurate proteomic techniques that can be used for validation, such as 

enzyme-linked immunosorbent assay (ELISA) and Western blotting. Western blotting is one of the 

less-expensive proteomic techniques, is quick to perform, sensitive, and needs less starting material, 

which are key considerations for work with human autopsy tissue. It can be used to identify and 

quantify a protein in a mixture by separating the protein in a gel based on its molecular weight. The 

protein is then transferred from the gel to a membrane, which is incubated with labelled antibodies 

specific to the protein of interest. Unbound antibody is washed off and the bands then visualized by 

an imaging system such as the Odyssey. If the primary antibodies are selective for the protein of 

interest, the visible band(s) represent that protein. The intensity of the band parallels to quantity of 

protein present. The use of a protein standard improves the quantification of the protein present. 

Western blotting can give inaccurate results across gels. An internal control for protein 

quantification is essential for reliable, precise comparison of protein levels. Using a truncated 
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recombinant protein as standard in each gel minimizes errors due to the gel to gel variations. In this 

chapter, truncated recombinant human neuroligin-1 and neuroligin-2 proteins were successfully 

prepared to aid expression studies in human autopsy brain tissues. They allow accurate measurement 

of the native protein levels by in-gel immunodetection. The recombinant proteins are smaller than 

the native proteins; a known amount is added to each lane in the gel for use as a standard. The 

recombinant truncated protein separated clearly from their target proteins as sharp bands. A standard 

curve was created from the band intensities of standard in the different lanes on the gel; the use of 

the technique will be elucidated in the next chapter. It gives precise estimates of the quantities of 

neuroligin-1 and neuroligin-2 present in each sample, and can detect the proteins in the pmol per µg 

concentration range that is necessary to quantify proteins within the synapse. A comparison of the 

levels of neuroligin-1 and neuroligin-2 with other synaptic proteins is also possible with this method. 

The Odyssey infrared imaging system has a wide and linear dynamic range to quantify high and low 

signals on the same Western blot. It provides images with low background, high signal to noise 

detection, and clear, sharp, and reproducible bands. 

Some limitations are associated with the quantification of proteins by immunodetection. 

These include incomplete protein transfer from the gel to membrane, and nonspecific binding of 

some antibodies. Staining of the polyacrylamide gel after transformation resolves this problem. 
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Chapter 3 

3 Quantification of neuroligin-1, neuroligin-2 and -neurexin-1 proteins 

3.1 Aims of the research 

1. To quantify the expression of the synaptic proteins neuroligin-1, neuroligin-2 and -neurexin-

1 in human post-mortem brain tissues from AD cases and controls. 

2. To evaluate differences in expression in three different regions of the brain (hippocampus, 

occipital cortex and inferior temporal cortex) in AD cases and controls. 

3. To assess the impact of age and gender on expression. 

4. To investigate expression according to the pathological severity of the disease. 

3.2 Introduction 

Synaptic transmission is crucial for nervous system function, and its disruption is considered 

an important cause for many neurobiological diseases, including AD. The progressive loss of 

synaptic proteins and hence neurological function in dementia has been a topic of interest since the 

relationship between synaptic loss and AD was first reported (Davies et al., 1987). Further studies 

have shown that synapse and synaptic protein loss have substantial effects on function in AD 

(DeKosky and Scheff, 1990, Scheff et al., 1990, Terry et al., 1991). Synapse loss is the major 

correlate of cognitive impairment. Synaptic weakening is considered to be a general component in 

the pathological alterations linked to dementia, and is the best correlate with dementia ante mortem 

(DeKosky and Scheff, 1990). An approximate 30% decrease in synapse number per cortical neuron 

has been observed in AD brain (Walch-Solimena et al., 1993). Synaptic pathology occurs early in 

AD progression and it is more strongly correlated with dementia than are senile plaques and NFT 

(Terry et al., 1991). Synaptic alterations in AD have been verified by electron microscopy as well as 

by proteomic approaches (Zhou et al., 2013, Masliah et al., 2001, Davies et al., 1987, Chang et al., 

2013). Gene expression assays using brain autopsy tissues from AD cases and controls have shown 

lower levels of different gene transcripts involved in synaptic vesicle trafficking (Liang et al., 2008). 

The mechanisms of synaptic pathology in AD are not totally clear, although several synaptic proteins 
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such as synaptophysin and gephyrin have been related to synaptic disruption in the disease (Agarwal 

et al., 2008, Tannenberg et al., 2006). It is not clear whether other synaptic proteins are involved in 

synaptic dysfunction in AD. Moreover, it remains unclear how synaptic organization, involving 

presynaptic, postsynaptic, and synaptic membrane proteins, is changed in AD. 

3.2.1 Fluctuations of synaptic proteins in AD 

Different studies have been conducted to quantify synaptic protein levels in human autopsy 

brain tissues from AD cases. For example, synaptophysin concentrations are lower in specific brain 

areas (Reddy et al., 2005, Lassmann et al., 1992, Honer et al., 1992, Hamos et al., 1989). However, 

different studies have shown contradictory results. Reduced synaptophysin levels were only detected 

at advanced stages of AD by Davidsson and Blennow (1998). The discrepancies between different 

studies may be due to differences in the region of brain tissue tested. 

Dynamin I is a presynaptic terminal protein and functions in synaptic vesicle recycling (Liu 

et al., 1996). Quantification studies have revealed lower dynamin I mRNA and protein levels in the 

superior frontal gyrus of AD cases than in controls (Yao et al., 2003). A major component of the 

postsynaptic density (PSD) is the -subunit of calcium/calmodulin-dependent protein kinase II 

(CaMKII), which comprises 2% of total protein in rodent hippocampus and 1% of total protein in 

the forebrain (Ziff, 1997). No difference in CaMKII level was observed in the hippocampi of AD 

cases and controls (Simonian et al., 1994). N-cadherin is a member of the cell-adhesion molecules 

that has important functions in neurite outgrowth, synaptic junctional complex formation, and 

synaptic stability (Shapiro and Colman, 1999, Tang et al., 1998). It is located with synaptophysin, 

synapsin I, PSD95, and GluR1 at the synapse both in the pre-synaptic membrane and on the PSD 

(Benson and Tanaka, 1998, Tanaka et al., 2000, Tang et al., 1998). Tannenberg et al. (2006) found 

that the level of N-cadherin protein was higher in all brain areas of 15 AD cases than in 15 controls. 

This might be explained by the increase in synaptic apposition length that occurs in AD (Scheff et 

al., 1990). 
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Complexin I is synaptic protein that controls inhibitory neurotransmitter release, while 

complexin II regulates excitatory neurotransmitter release. Both are membrane proteins that have 

roles in synaptic vesicle docking to the presynaptic membrane, which in turn mediates 

neurotransmitter release (Ono et al., 1998, Yamada et al., 1999). The expression of both complexins 

was significantly lower in all AD brain areas than in controls, but the ratio of complexin II to 

complexin I was not altered. These data show a loss of regulation of neurotransmitter release in AD 

in preserved presynaptic terminals. Quantitative immunohistochemistry in the entorhinal cortex from 

AD brain cf age-matched controls showed significantly higher levels of PSD-95 that positively 

correlated with -amyloid and phosphorylated tau proteins (Leuba et al., 2008b). Quantifying these 

different types of synaptic proteins has proved fruitful in measuring the degree of synapse loss in 

AD. Further study of the roles of these and related molecules could illuminate mechanisms behind 

the synaptic loss and dysfunction that are characteristics of the disease. 

3.2.2 Measurement of synapses and synaptic proteins 

Electron microscopy was the first method used to quantify synapses, which were detected by 

thickening of the synaptic membrane, in a brain with cognitive decline, (Davies et al., 1987). One 

limitation of this approach is the ability to quantify only small areas of tissue. It also requires the use 

of preserved and rapidly fixed material, which limits its use with much autopsy tissue. 

Antigen-specific immunochemical methods detect synapse loss in AD through the 

quantification of different synaptic proteins involved in the synaptic cycle. The immunochemical 

techniques utilized in the research of AD brain autopsies have linked synaptic loss with A oligomer 

proteins as well as recognized synapse loss as the best correlate to AD. 

Reliable and accurate techniques are able to precisely quantify proteins specific to different 

phases of the synaptic cycle. They can be correlated to disease stage as well as the region where the 

protein is expressed by using immunohistochemistry, enzyme-linked immunosorbent assay (ELISA) 

and immunoblotting methods. Immunohistochemistry measures synaptic protein levels by labelling 

synaptic proteins linked to presynaptic terminals or synaptic vesicles (Hamos et al., 1989). The 
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relative quantification of synaptic proteins can be measured via optical density of immunoreactive 

regions of the cortex. Utilizing immunoblotting to quantify synaptic density and synaptic proteins in 

neurological disease gives reproducible and specific results (Masliah et al., 1991). Acurate 

quantifications for neuroligin-1, neuroligin-2 and -neurexin were performedby using internal 

standard higher and lower than the unknown protein concentration in each gel in this chapter. 

3.3 Materials and Methods 

3.3.1 Tissue collection 

All brain tissues were obtained from the Queensland Brain Bank, which is located at the 

School of Chemistry and Molecular Bioscience at The University of Queensland. It is a part of the 

Australian Brain Bank Network, and offers services for Australian and international clinicians and 

researchers to study neurological diseases. Autopsies for this study were obtained with informed 

written consent from the next of kin. Diagnosis of AD was validated by examination of the tissue by 

qualified neuropathologists (Halliday et al., 2002). Tissues were dissected from specific areas of AD 

and control brains and stored in 0.32 M sucrose at –80°C (Dodd et al., 1986). 

3.3.2 Case selection and neuropathological severity score 

Fifteen cases and 15 controls were selected with an average age of 77 years for the AD cases 

and 76 years for the controls (Table 3.1). The average post mortem delay for the AD cases was 

approximately 27 hours while for the controls it was 25 hours. Tissue from three different areas —

hippocampus (Hipp), occipital cortex (OC) and inferior temporal cortex (ITC) — was obtained from 

each brain. 

These cases were all collected between 1993 and 2003. During this time, Alzheimer’s disease 

was classified using the CERAD neuropathologic assessment based on Mirra et al. (1993). The 

Braak & Braak system was not used by the neuropathologists who did the Brain Bank examinations 

during that time. The CERAD assessment is a combination of 1. A gross examination to determine if 

cerebrovascular disease was present. 2. Semi-quantitative analysis of the degree of cortical atrophy 

and ventricle enlargement. 3. Visual examination of the hippocampus and entorhinal cortex for 
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atrophy. 4. Examination of the pallor of the substantia nigra and locus ceruleus. 5. Examination of 

the blood vessels for atherosclerosis or obstruction, ischemic events or other anomalies. 6. Semi-

quantitative assessment of the presence and number of neocortical senile plaques (silver-positive 

neurites). 7. Evaluation of the substantia nigra for Lewy bodies, neuronal loss, gliosis and NFTs to 

rule out Parkinson’s disease. 8. Evaluation of clinical presence of dementia. The combination of 

these assessments result in a level of certainty of the diagnosis of AD: Definite (A), Probable (B), 

Possible (C). To determine the Braak & Braak level of these cases we used The National Institute for 

Aging and Ronald and Nancy Reagan Institute of the Alzheimer’s Association (NIA-Reagan 

Institute) combined criteria, which suggests that the two effectively correlate to one another in broad 

categories. Since further examination of these pathological samples is not possible due to the time 

that has elapsed since their collection, the exact Braak & Braak staging level cannot be determined. 

However, each area of each brain was given a neuropathological severity score from 0 to 3 according 

to the abundance of AD hallmarks NFT and A, and the extent of neuronal loss (Tannenberg et al., 

2006; Table 3.2). This allowed us to rate disease severity in each of three areas from each case, 

effectively tripling the number of samples available for determining the influence of pathology on 

expression, and also eliminating the averaging of pathology across tissue regions that is inherent in 

the Braak staging approach (Tannenberg et al., 2006; Table 3.2). Pathological score is a composite of 

three measures; in occipital cortex, A plaques are generally quite common, whereas neither tangles 

nor cell loss usually occur in this area except at very late disease stages. The pH of samples was not 

measured as it has no effect on the protein quality. Trabzuni et al. (2011) found that pH has no great 

effect on RNA or protein levels, and so is not a factor. That study assessed the influence of post-

mortem delay and tissue pH as predictors of gene expression measured on 1266 Affymetrix Exon 

Arrays. The study found that post-mortem delay and brain pH had negligible effects on array 

performance. 



P a g e  | 56 

Table 3.1. Details of AD cases and controls. 

Subject# Age, y PMD(h) Gender APOE 

AD1 65 34.83 M 3,4 

AD2 82 54.92 M 3,4 

AD3 72 25.00 M 3,3 

AD4 79 26.33 M 4,4 

AD5 92 48.00 F 3,3 

AD6 61 12.00 F 3,3 

AD7 84 18.42 M 3,4 

AD8 70 16.00 F 3,4 

AD9 87 35.50 F 3,3 

AD10 81 1.67 F 3,3 

AD11 82 41.25 F 3,4 

AD12 75 4.00 M 4,4 

AD13 73 48.00 M 4,4 

AD14 82 15.38 F 3,3 

AD15 66 18.83 M 3,4 

Average 77 ± 8.4 26.7 ± 15.9 8M, 7F 
 

NC1 78 4.00 F 3,4 

NC2 87 21.50 F 2,3 

NC3 57 9.75 F 3,3 

NC4 82 46.83 M 3,3 

NC5 85 24.50 M 2,3 

NC6 81 21.43 F 3,3 

NC7 74 85.25 M 3,3 

NC8 68 43.67 F 3,4 

NC9 72 15.42 F 3,3 

NC10 74 24.00 F 3,3 

NC11 71 7.75 F 3,4 

NC12 78 16.25 M 3,3 

NC13 68 28.17 M 2,2 

NC14 84 16.53 M 3,4 

NC15 76 24.00 F 3,3 

Average 76 ± 7.6 25.9 ± 11.3 6M, 9F 
 

AD, Alzheimer’s disease case; NC, normal control; M, male; F, female 
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Each area of each brain was given a neuropathological severity score from 0 to 3 according to 

the abundance of AD hallmarks NFT and A, and the extent of neuronal loss (Tannenberg et al., 

2006; Table 3.2). 

Table 3.2. Neuropathological score 

Subject# Hipp ITC Occ 

AD1 3 3 1 

AD2 3 3 1 

AD3 2 2 1 

AD4 3 3 1 

AD5 3 3 1 

AD6 3 3 2 

AD7 3 3 3 

AD8 2 3 2 

AD9 2 2 1 

AD10 1 2 1 

AD11 3 3 3 

AD12 3 3 1 

AD13 1 3 3 

AD14 2 1 1 

AD15 3 3 1 

NC1 0 0 0 

NC2 1 0 0 

NC3 0 0 0 

NC4 0 0 0 

NC5 0 0 0 

NC6 0 0 0 

NC7 0 0 0 

NC8 0 0 0 

NC9 1 0 0 

NC10 0 0 0 

NC11 0 0 0 

NC12 0 0 0 

NC13 0 0 0 

NC14 0 1 0 

NC15 0 0 0 
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3.3.3 Membrane preparations 

Tissues were homogenized in 10 (w/v) of 0.32 M sucrose at 4°C, and centrifuged for 10 min 

at 500  g in a Beckman JA20 at 4°C. The supernatant of the homogenate was centrifuged again for 

about 20 min at 12 000  g at 4°C. The final pellet was resuspended in 10 ml of 50 mM Tris-HCL, 

pH 7.4. Total protein concentrations were estimated by the Lowry et al. (1951) method. Samples 

were frozen at –80°C for long-term storage. 

3.3.4 Quantification of neuroligin-1, neuroligin-2 and -neurexin-1 proteins 

Different amounts of neuroligin-1, neuroligin-2 and -neurexin-1 recombinant protein 

ranging from 10 ng to 100 ng were mixed with each of the membrane protein samples (~30 µg). 

Only one replicate was performed for each sample due to tissue limitations for some of the cases 

used in the current study. All samples were diluted 2:3 with SDS buffer (1.7% SDS, 5% glycerol, 

1.55% DTT, 58 mM Tris-HCl, pH 6.8, with 0.002% bromophenol blue). The samples were heated 

for 5 min to 95°C, loaded onto 8% SDS-PAGE, and run for 35 min at 200V in running buffer (150 

mM glycine, 20 mM Tris, 0.1% SDS). Recombinant -neurexin-1 protein was purchased from 

Abnova (Walnut, CA, U.S.A). The truncated proteins neuroligin-1 (38kDa), neuroligin-2 (40Kda) 

and -neurexin-1 (36kDa) separated clearly from the target protein (110 kDa, 95 KDa and 46 kDa, 

respectively) as sharp bands. A standard curve was created by plotting the intensity of the truncated 

band against its concentration using Odyssey software. 

Proteins were then transferred from the gel to the PVDF membrane (Immobilon®-FL, 

Millipore, Billerica, MA, USA) in transfer buffer (10 mM NaHCO3, 3 mM Na2CO3, pH 9.9, with 

20% methanol). After transfer, the membrane was blocked in 1% skim milk in phosphate-buffered 

saline (PBST; 137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 2 mM KH2PO4, 0.1% Tween-20, pH 

7.4) with agitation for 1h at room temperature. A 1:10,000 dilution (2 µl/20,000 µl of blocking 

solution) of neuroligin-1, neuroligin-2 and -neurexin-1 primary antibodies was added to the 

corresponding membrane and all membranes were incubated overnight at 4°C with agitation. The 

membranes were washed with PBST three times for 10 min each. A 1:2, 0000 dilution of secondary 
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antibody (Alexa Fluor 680, goat anti-mouse IgG, Molecular Probes, Invitrogen) in 1% skim 

milk/PBST was added to neuroligin-1 membrane. A 1:2, 0000 dilution of secondary antibody (Alexa 

Fluor 680 of rabbit anti-goat IgG, Molecular Probes, Invitrogen) in 1% skim milk/PBST was added 

to both neuroligin-2 and -neurexin-1. All membranes were agitated for 1h at room temperature in 

the dark. Membranes were then washed with PBST three times for 10 min each followed by 

phosphate-buffered saline (PBS) twice for 10 min each. The intensities of the recombinant and target 

proteins bands were assessed using the LI-COR Odyssey scanner at 700 nm. 

3.3.5 Data analysis 

The intensities of the unknown bands fell within the intensity values of the lowest and highest 

concentrations of the recombinant proteins standards. Normal probability plots of each set of protein 

concentrations indicated that the data distribution was positively skewed. Box-Cox transformations 

performed with the Statistica software package (Tulsa, OK, USA) stabilized the variances and gave 

linear normal probability plots. Multiple comparisons were evaluated by ANOVA with appropriate 

post-hoc tests. Differences were considered statistically significant at P < 0.05. Mean and S.E.M. 

values were converted back to the original scale of measurement for presentation in text and figures. 

3.4 Results 

To quantify neuroligin-1, neuroligin-2 and -neurexin-1 in autopsy tissues, the 

immunodetection protocol with recombinant truncated neuroligin-1, neuroligin-2 and -neurexin-1 

proteins as standards was optimized as outlined in Chapter 2. This minimized error from gel to gel 

variations and allowed precise quantification. Membrane preparations from all samples gave sharp 

bands with the anti-neuroligin-1 antibody at ~110 kDa, anti-neuroligin-2 antibody at 95 kDa and 

anti--neurexin-1 antibody at 46 kDa (Figs 3.1, 3.2 and 3.3). The molecular masses of the bands 

were confirmed by measuring their migrations against those of the markers. Normal probability plots 

of the levels of each protein in each brain areas indicated that the data distributions were positively 

skewed (Fig. 3.4). Box-Cox transformations stabilized the variances and gave linear normal 

probability plots for neuroligin-1 (Fig. 3.5A), neuroligin-2 (Fig. 3.5B) and -neurexin-1 (Fig. 3.5C). 
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Fig. 3.1. Representative immunoblot of neuroligin-1 in hippocampus and inferior 

temporal and occipital cortices from two controls and one AD case selected at 

random. Neuroligin-1 recombinant truncated protein was detected at 38 kDa MW. 

Endogenous neuroligin-1 ran at 110 kDa and was quantified as described in the text. 

 

Fig. 3.2. Representative immunoblot of neuroligin-2 in the three brain areas from two 

controls and two AD cases selected at random. Neuroligin-2 recombinant truncated 

protein was detected at 40 kDa MW. Endogenous neuroligin-2 protein ran at 95 kDa 

and was quantified as described in the text. 

 

Fig. 3.3. Representative immunoblots of -neurexin-1 in the three brain areas from 
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two controls and two AD cases selected at random. -Neurexin-1 recombinant 

truncated protein was detected at 36 kDa MW. Endogenous -neurexin-1 protein was 

detected at 46 kDa and was quantified as described in the text. 
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Fig. 3.4. Normal probability plots for A, neuroligin-1, B, neuroligin-2 and C, -

neurexin-1 concentrations in unadjusted values. Shapiro-Wilks testing showed that 

most untransformed data distributions deviated significantly (P < 0.01) from normal 

as shown in the in-graph boxes. 
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Fig. 3.5. Normal probability plots for Box Cox transformations of A, neuroligin-1, B, 

neuroligin-2 and C, -neurexin-1 concentrations. Shapiro-Wilks testing showed the 

transformed data distributions did not deviate significantly (P > 0.25) from normal as 

shown in the in-graph boxes. 
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3.4.1 Post-mortem delay and age at death 

In order to obtain accurate results in the current study, post-mortem delay (PMD) and age at 

death were matched as closely as possible between the two groups. Some neurochemical research 

has shown that the quality of some proteins is not affected by PMD, while others have found that 

PMD and age can impact protein degradation. Furthermore, the levels of some proteins vary with age 

due to processes such as neuronal homeostasis, protein regulatory mechanisms, degradation 

pathways and increased oxidative stress. In the current study, regression analyses were performed to 

assess the effect of PMD and age on the expression of the three proteins; these were non-significant. 

To ensure there were no subtle influences of these potential confounds, a series analyses of 

covariance on neuroligin-1 and neuroligin-2 proteins showed there was no significant effect of either 

factor, alone or in combination, on expression values in combined subjects and areas, and that 

ANCOVA did not significantly reduce error variances. There was no significant effect of PMD or 

age on neuroligin-1 concentration (F1,88 = 0.356, P = 0.85 and F1,88 =1.457, P = 0.23; Figs 3.6A and 

3.6B), nor was there a significant effect of either PMD or age on neuroligin-2 concentration 

(F1,88 = 0.651, P = 0.42 and F1,88 =1.036, P = 0.31 respectively; Figs 3.6C and 3.6D). This allowed 

the expression values to be assessed by analyses of variance without further normalization. For -

neurexin-1, significant associations were observed between protein expression and both age and 

PMD (F1,88 =13.619, P < 0.001 and F1,88 = 5.480, P = 0.021 respectively; Figs 3.6E and 3.6F). To 

maintain consistency with the analyses of the other two proteins, and because AD cases and controls 

were reasonably well matched, ANOVA was also used for statistical testing of -neurexin-1, but this 

issue needs to be revisited with a larger data set. 

3.4.2 Neuroligin-1 expression by case-group 

ANOVA showed that the overall neuroligin-1 protein concentration was significantly higher 

in AD cases than in controls (F1,26 = 4.646, P = 0.041; Fig. 3.7). Expression differed significantly 

according to brain region (F2,52 = 14.100, P < 0.001; Fig. 3.8), being highest in hippocampus and 

lowest in inferior temporal cortex across all subjects, and each area differing significantly from both 

others (P < 0.05 in all instances, Newman-Keuls). 
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Fig. 3.6. Regression analyses of protein concentrations against age and PMD. A, 

neuroligin-1 expression on age and B, PMD; C, neuroligin-2 expression on age and 

D, PMD; E, -neurexin-1 expression on age and F, PMD. 
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Although the Group  Area interaction was not significant, post-hoc testing showed that 

expression in AD hippocampus was significantly higher than in both AD occipital cortex (P = 0.027) 

and AD inferior temporal cortex (P < 0.001), and also higher than in normal control hippocampus (P 

= 0.021; Fig. 3.8). Post-hoc analysis showed that the neuroligin-1 level was significantly higher in 

AD cases than in controls in both hippocampus (P = 0.036) and occipital cortex (P = 0.04). Values in 

inferior temporal cortex did not differ significantly (P = 0.09, Fig. 3.8). 

 

Fig. 3.7. Overall neuroligin-1 expression by case-group. Protein levels were averaged 

across the three areas studied (hippocampus, inferior temporal cortex and occipital 

cortex) in each group; *, significantly higher than in controls (n = 15, both groups). 

Error bars represent S.E.M. 

3.4.3 Neuroligin-1 level by gender 

No significant differences were observed in males between AD cases and controls. The level 

of neuroligin-1 in AD females was higher than in control females, but this was not statistically 

significant (Fig. 3.9). Regionally, post-hoc testing showed that the level of neuroligin-1 in the 

hippocampus was significantly higher in AD females than in AD males and significantly higher in 

AD females than in control females. There were no gender differences in either the occipital cortex 

or the inferior temporal cortex between cases and controls (Fig. 3.10). 
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Fig. 3.8. Neuroligin-1 protein by case-group and area. HP, hippocampus; OC, 

occipital cortex; ITC, inferior temporal cortex; *, significantly different from the level 

in the corresponding control sample, P < 0.05 by post-hoc Newman-Keuls test. 

 

Fig. 3.9. Overall neuroligin-1 expression by gender. Neuroligin-1 protein 

concentrations were averaged across the three brain regions in AD cases and controls 

partitioned by gender. 

3.4.4 Neuroligin-1 level and APOE genotype 

The most common genotype among the population is APOE 3; seven of the 15 normal 

controls in this study were 3,3 homozygotes and all but two had at least one 3 allele; the latter 

were 2,4 and 2,2, at no increased risk of AD. The AD cases included six 3,3 homozygotes; six 
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had one 3 allele, and non had an 2 allele. About 50% of AD cases carry at least one copy of the 

risk-factor 4 allele: this was true of 9/15 AD cases here, three of whom were 4,4 homozygotes; 

four normal controls had one 4 (three with one 3) allele, none was an 4,4 homozygote. The 

lowest frequency APOE allele is 2, found in 2–8% of the population (Schellenberg, 1995). This 

allele was only found in normal controls here, two of whom were ,3, another 2,2: all three of 

these subjects would have been at reduced risk of AD. 

 

Fig. 3.10. Neuroligin-1 expression by group, gender, and and area. Details as Fig. 3.9; 

*, significantly higher than in female controls and 
†
, significantly higher than in AD 

males, P < 0.05 by Newman-Keuls test. 

 

Fig. 3.11. APOE genotype and neuroligin-1expression in AD. AD cases were divided 

by whether they did (APOE2) or did not (APOE1) carry an APOE 4 allele. 
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Fig. 3.12. Neuroligin-1 expression by APOE genotype, group, and area. Key as for 

Fig. 3.11; *, significantly different from matched controls, P < 0.05, Newman-Keuls. 
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As the full range of six APOE genotypes was not represented in both groups we classified the 

subjects according to the number of 4 alleles they possessed to study genotype–phenotype 

interactions. Although the Group Nº of 4 alleles interaction was significant (F1,25 = 5.608; P = 

0.026), in essence because AD cases with no 4 alleles differed from all other subjects (P ≤ 0.01, 

Newman-Keuls), this result must be treated with caution because these few AD cases were 

confounded by gender: all were female (Fig. 3.11). Similarly, the Area  Group  Nº of 4 alleles 

interaction was significant (F2,52 = 3.281, P = 0.045), and a significantly higher neuroligin-1 level 

was found in AD cases with no 4 than in comparable controls in both hippocampus and occipital 

cortex (Fig. 3.12), but again, these effects are not statistically reliable. No significant differences 

were found in neuroligin-1 level between cases and controls in inferior temporal cortex (Fig. 3.12). 

3.4.5 Neuroligin-1 expression and severity of disease 

The impact of the severity of the disease on neuroligin-1 protein was studied. Tissue samples 

were divided according to the extent of A and tau deposition and the degree of neuronal loss, and 

given a score from 0 to 3 by an experienced neuropathologist blinded to diagnosis (Tannenberg et al., 

2006). In the AD cases, no sample had a score of zero; and because almost all control tissue samples 

gave scores of zero it was not possible to make an across-group comparison: so the analysis was 

confined solely to samples from AD cases. A slightly higher level of neuroligin-1 was found at 

pathological score 2 in all three areas, but this was not significant. The concentration of neuroligin-1 

was lower at pathological score 3 in all areas, but post-hoc testing showed no significant difference 

in neuroligin-1 level between tissue samples with differing pathological scores (Fig. 3.13). Regional 

expression did not vary significantly with pathological score (F2,42 = 1.142, P = 0.33; Fig. 3.14). 

3.4.6 Neuroligin-2 expression in AD cases and controls 

Overall expression of neuroligin-2 protein was significantly lower in AD cases than in 

controls (F1,28 = 4.690, P = 0.039; Fig. 3.15). Newman-Keuls post-hoc testing showed a significantly 

lower neuroligin-2 level in inferior temporal cortex in AD cases than in controls (P = 0.021). Levels 

in the other two areas were also lower in AD cases than in controls, but not statistically significant  
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Fig. 3.13. Overall expression of neuroligin-1 and pathological severity. AD tissue 

samples undifferentiated by region were divided according to pathological severity 

(PS) score between 1 and 3. No difference was statistically significant. 

 

Fig. 3.14. Pathological severity and regional neuroligin-1 protein expression. There 

were no differences in expression with pathological severity in any area by Newman-

Keuls post-hoc testing. 

(Fig. 3.16). When AD cases and controls were combined, the inferior temporal cortex showed the 

highest expression level of neroligin-2 compared to the occipital cortex and the hippocampus (see 

Fig. 3.16; graph not explicitly shown). 
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Fig. 3.15. Total neuroligin-2 protein concentrations averaged across the three areas 

studied; *, significantly lower than in controls, P < 0.05. 

 

Fig. 3.16. Neuroligin-2 protein expression by area. Key as for Fig. 3.8; *, significantly 

lower than in the same area in controls, P < 0.05 by Newman-Keuls post-hoc test. 

3.4.7 Neuroligin-2 level and gender 

The influence of gender on neurolign-2 protein expression was significant by ANOVA (F1,86 

= 13.461, P < 0.001; Fig. 3.17). No significant differences were found between AD cases and 

controls in hippocampus or occipital cortex in either sex. Neuroligin-2 protein level was lower in AD 

males than in control males in inferior temporal cortex, whereas the reverse was true for females in 

this area (Fig. 3.18). 
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Fig. 3.17. Neuroligin-2 expression by case-group and gender. Neuroligin-2 

concentrations were averaged across all areas studied in AD cases and controls. 

Newman-Keuls post hoc test showed that expression was significantly lower in male 

AD cases than in male controls (*; P < 0.001) or female AD cases (
†
; P = 0.002). 

 

Fig. 3.18. Gender effects on neuroligin-2 protein expression. In inferior temporal 

cortex: *, significantly lower than in male controls; 
†
, significantly lower than in AD 

females; both P < 0.001, Newman-Keuls post-hoc tests. 
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(F1,86 =0.212, P = 0.64; Fig. 3.20). Although the Group  Area  APOE interaction was not 

significant (F2,52 =1.316, P = 0.27), some differences were detected by post-hoc testing (Fig. 3.21). 

 

Fig. 3.19. Expression of neuroligin-2 by Nº of APOE 4 alleles in AD cases. Key as 

for Fig. 3.10; *, significantly different from cases without at least ne e4 allele, see 

text for details. 

 

Fig. 3.20. APOE 4 genotype, neuroligin-2 expression and group. Key as for Fig. 

3.10. No comparison was significant by Newman-Keuls post-hoc test. 

0

5

10

15

20

25

30

APOE1 APOE2

N
e

u
ro

lig
in

-2
 p

ro
te

in
 n

g/
μ

g 
o

f 
to

ta
l 

p
ro

te
in

  * 

0

5

10

15

20

25

30

APOE1 APOE2

N
e

u
ro

li
g

in
-2

 l
e

v
e

l 
n

g
/
μ

g
 o

f 
to

ta
l 

p
ro

te
in

  

AD

Control



P a g e  | 76 

 

 

 

Fig. 3.21. Neuroligin-2 expression by group, APOE, and area. Key as for Fig. 3.10. 
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AD APOE 4 carriers than in matched controls in hippocampus (P = 0.046). A trend 

was seen in AD APOE 4 non-carriers cf controls in occipital cortex (P = 0.071). 

3.4.9 Neuroligin-2 expression and severity of disease 

Overall neuroligin-2 protein expression was highest at the moderate stage, and lowest at the 

severe stage, but not statistically significant (F2,42 = 0.389, P = 0.68; Fig.3.20); neither was the PS  

Area interaction (F4,36 = 0.696, P = 0.59; Fig 3.21), although some post-hoc tests were. 

 

Fig. 3.22. Neuroligin-2 protein expression and disease severity. Key as for Fig. 3.12. 

 

Fig. 3.23. Neuroligin-2 expression by area and disease severity. Key as for Fig. 3.12. 
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showed that neuroligin-2 level at the moderate stage of AD was significantly higher 

than at the mild and severe stages, P < 0.05. 

3.4.10 -neurexin-1 by case-group and brain region 

Even though the level of -neurexin-1 was slightly higher in AD cases than in controls, the 

case-groups did not differ significantly (F1,86 = 0.157, P = 0.91; Fig. 3.24). Expression did not differ 

significantly by brain region between case-groups (F2,52 = 0.125 P = 0.88; Fig. 3.25). 

 

Fig. 3.24. Overall -neurexin-1 expression by case-group. Values were averaged 

across areas as described under Fig. 3.7. 

 

Fig. 3.25. Expression of -neurexin-1 protein by case-group and area. No difference 

between or within areas was significant, see text. 
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3.4.11 -neurexin-1 level and gender 

The effect of gender on -neurexin-1 expression was analysed. The Group  Gender 

interaction was not significant (F1,86 = 0.662, P = 0.42; Fig. 3.26), nor was the Group  Gender  

Area interaction (F2,52 = 0.059, P = 0.942; Fig. 3.27). 

 

Fig. 3.26. -neurexin-1 expression by case-group and gender. Details as for Fig. 3.16. 

 

Fig. 3.27. -neurexin-1 protein expression by goup, sex and area. See text for details. 

3.4.12 -Neurexin-1 level and APOE genotype 

The Group  Nº of APOE 4 alleles was significant (F1,26 = 6.431, P = 0.017), due to higher 

-neurexin-1 expression in AD APOE 4 carriers than in control 4 carriers (Fig. 3.28). 
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Fig. 3.28. APOE genotype and -neurexin-1 by case-group. Key as for Fig. 3.10. 

Newman-Keuls post-hoc testing showed that expression was significantly higher in 

AD APOE 4 carriers than in control 4 carriers (APOE2), P < 0.001. 

The brain region by group and 4 interaction was also significant (F2,52 = 5.376, P = 0.0075), 

most notably in inferior temporal cortex (Fig. 3.29). However, these and the statistics on overall 

expression by APOE genotype are not reliable, for the reasons outlined in Sections 3.4.4 and 3.4.8. 
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Fig. 3.29. APOE4 genotype effects on regional -neurexin-1 expression by case-

group. Key as for Fig. 3.10. Newman-Keuls post hoc test showed significantly higher 

expression in AD cases carrying at least one APOE 4 allele (APOE2) than in the 

equivalent controls in inferior temporal cortex, P = 0.004. Expression in AD cases 

carrying at least one APOE 4 allele (APOE2) was significantly higher (P = 0.006) 

than in AD cases without an APOE 4 allele (APOE1) in inferior temporal cortex. 

3.4.13 -neurexin-1 expression and severity of disease 

When AD tissue samples were divided by pathological score without regard to brain region 

there was no significant variation in -neurexin-1 expression (F2,40 = 2.481, P = 0.10; Fig. 3.30). 

Further examination showed that this was in part due to a regional confound; although the Group  
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Pathological  Score Area interaction was not significant (F4,36 = 0.528, P = 0.71), post-hoc testing 

revealed some regional differences (Fig. 3.31). 

 

Fig. 3.30. neurexin-1 protein expression by pathological severity of disease. Key as 

for Fig. 3.12. 

 

Fig. 3.31. Pathological severity and -neurexin-1 protein expression by region. Key 

as for Fig. 3.12. There were no variations in expression with pathological severity in 

hippocampus. Newman-Keuls post-hoc testing showed significantly lower expression 

in samples with pathological score 2 than in those with scores of 1 or 3 in both 

occipital cortex and inferior temporal cortex, P < 0.05. 
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3.5 Discussion 

3.5.1 Neuroligin-1 expression in AD 

There is much evidence that alterations in synaptic protein expression could have an impact 

on synaptic loss (Masliah et al., 2001, Arendt, 2009). Various brain autopsy studies have found 

synaptic protein differences between AD cases and controls (Agarwal et al., 2008, Proctor et al., 

2010, Tannenberg et al., 2006). Data from this chapter showed that the overall level of neuroligin-1 

was significantly higher in AD tissue samples than in age- and sex-matched controls, which suggests 

there might be post-synaptic excitatory dysfunction. The level of neuroligin-1 in AD cases was 

significantly higher than in the relevant controls in both hippocampus and occipital cortex, which 

might indicate synaptic toxicity in these two areas. It was surprising not to see significantly higher 

levels in AD inferior temporal cortex, because it is one of the most affected areas in AD. 

Neuroligin-1 levels did not vary with pathological score significantly in any of the three 

areas. However, levels were slightly higher in PS2 samples than in PS1 samples in all three areas, 

and lower in PS3 samples that exhibit the final stage of the disease. The low level in PS3 samples 

could be due to the marked loss of synapses at this stage. Taken together, these results show that 

neuroligin-1 differences in AD vary with both brain region and disease progression, which is 

consistent with documented asynchronous changes in synaptic protein levels in AD (Agarwal et al., 

2008, Kirvell et al., 2006). 

We found that neuroligin-1 level varied regionally. The highest concentration was found in 

control inferior temporal cortex, which is consistent with previous reports of the levels of other 

synaptic proteins such as synaptophysin, dynamin I, N-cadherin, and CaMKII in this area 

(Tannenberg et al., 2006). A higher neuroligin-1 level was observed in female cases than in female 

controls, and levels in AD females were higher than those in AD males. This result suggests that the 

higher expression level of neuroligin-1 could be gender specific. It is noteworthy that the age-

adjusted incidence of AD is higher in females (Schmidt et al., 2008). 
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The overall higher level of neuroligin-1 in AD cases compared with age- and sex-matched 

controls could indicate a role for this protein in excitotoxicity. The -neurexin-1–neuroligin-1 

complex is a powerful inducer of post-synaptic differentiation of glutamatergic synapses in vitro. It 

induces accumulation of, and can bind to, two crucial components of the PSD — PSD-95 and 

NMDAR — at mature synapses. The NMDAR has a critical function in neural circuit development 

and synaptic plasticity (Barria and Malinow, 2002), and selective neuronal death in AD may depend 

primarily on NMDAR activation (Greenamyre and Young, 1989). The function of neuroligin-1 in 

maintaining NMDAR-mediated excitatory post-synaptic currents (EPSCs) could be due to the 

modification of post-synaptic NMDARs rather than alterations in pre-synaptic transmitter release, 

because neuroligin-1 is located at post-synaptic sites (Song et al., 1999). The higher neuroligin-1 

levels in AD cases shown in this study could lead to increased numbers of NMDARs at post-synaptic 

sites, which has been reported recently (Leuba et al., 2014). The higher levels of neuroligin-1 in AD 

cases than in controls, found here in some regions, may reflect higher PSD-95 concentrations in AD 

cases (Leuba et al., 2008a, 2008b, Rubenstein and Merzenich, 2003). 

The higher neuroligin-1 level in AD cases might reflect a reduced rate of proteolytic cleavage 

in the synapse. Most -secretase substrates such as amyloid precursor protein (APP), Notch, ErbB4, 

E-cadherin and ephrinB2 shed their extracellular domains to yield a membrane-tethered C-terminal 

fragment (CTF) and a soluble ectodomain (Beel and Sanders, 2008, De Strooper et al., 1999, Wolfe, 

2008). In addition, ADAM10 cleaves a number of -secretase substrates such as APP, cadherin, and 

Notch (Jorissen et al., 2010, Kuhn et al., 2010, Reiss et al., 2005). Both -secretase and ADAM10 

metalloproteinase regulate neural stem cell numbers by changing Notch signalling in the mature 

synapse (Jorissen et al., 2010). They also mediate the cleavage of several substrates in neurons to 

control synaptic function (Restituito et al., 2011, Rivera et al., 2010). Neuroligin-1 undergoes 

proteolytic processing in rat brain and mouse primary cortical neuronal cultures (Suzuki et al., 2012). 

ADAM10 removes the extracellular domain of neuroligin-1 and -secretase removes the intracellular 

domain from the remaining membrane-tethered fragment of the protein. Incubating cultures with 

NMDA or -neurexin-1 increases N-terminal fragment (NTF)-neuroligin-1 levels. Thus, neuroligin-
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1 cleavage can be controlled by neuronal activity or by binding with -neurexin-1, which offers a 

mechanism for the regulation of neuroligin-1 levels on the neuronal membrane (Peixoto et al., 2012, 

Suzuki et al., 2012). 

Acute neuroligin-1 cleavage destabilizes -neurexin-1 and depresses excitatory 

neurotransmission by reducing the probability of neurotransmitter release. Consequently, inhibiting 

neuroligin-1 cleavage may increase the probability of pre-synaptic release. Neuroligin-1 cleavage 

can alter glutamate transmission and have an impact on post-synaptic dendritic spines (Sindi et al., 

2014). Changes in proteolytic processing of neuroligin-1 might enhance pathophysiology and 

provide a link between neuroligin-1 levels and the PSD in AD cases (Welberg, 2012). In conclusion, 

this study suggests a possible role of neuroligin-1 in the pathogenesis of AD. Its increased level 

could contribute to the dysfunction of excitatory synapses in AD. 

Treatment of cultured cortical neuron with neuroligin-1 increases the number of excitatory 

synapses on GABAergic interneurons. These data suggest that neuroligin-1 enhances the formation 

of new synapse in developing neurons only (Ting et al., 2011). Neuroligin-1 also increases the size 

of excitatory synapse on GABAergic interneurons, which suggest it can strengthen existing synapses. 

Neuronal excitability depends on the balance of excitatory and inhibitory input signals, which is 

regulated by excitatory and inhibitory synaptic contacts. As a result, promoting the effect of 

neuroligin-1 on excitatory synapses can be essential to the role of GABAergic interneurons. The 

overall increase of neuroligin-1 protein observed in the current study could lead to increasing the 

number of excitatory synapses on GABAergic interneurons. 

Synaptophysin was measured in an earlier study from the lab (Tannenberg et al., 2006) and 

we have now compared neuroligin-1 and synaptophysin in the cases that are in common between the 

two studies. We aim to publish this new data soon. We found no difference in synaptophysin 

between AD cases and normal controls in any of the three brain areas studied. The concentration of 

neuroligin and synaptophysin is expressed in ng/µg of total synaptosomal protein in the nerve-
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endings that remain in the preparation. That is, it is a measure of the concentration of each protein 

per synaptosome, and thus should not be affected by atrophy or synapse loss. 

3.5.2 Neuroligin-2 expression in AD 

Neuroligin-2 is a synaptic cell adhesion protein specific for inhibitory synapses. In the current 

study, neuroligin-2 levels were significantly lower in AD cases than in matched controls, signifying 

either a decrease in the number of inhibitory synapses in total or in the density of neuroligin-2 

clusters within such synapses. Neuroligin-2 levels varied with brain region. The highest 

concentration was found in control inferior temporal cortex samples, which is consistent with 

previous reports that higher levels of synaptic proteins such as synaptophysin, dynamin I, N-

cadherin, and CaMKII are found in this region than in other brain regions (Tannenberg et al., 

2006). The level of neuroligin-2 in both the hippocampus and occipital cortex did not differ 

significantly between AD cases and controls. One the other hand, neuroligin-2 in the inferior 

temporal cortex, which is one of the most-affected areas in the AD brain, was significantly lower in 

AD cases than in controls. In occipital cortex and inferior temporal cortex, neuroligin-2 was higher at 

a moderate pathological severity, which indicates it is prone to AD damage. At the severe disease 

stage the level of neuroligin-2 protein in these areas was again lower, which is consistent with the 

marked synaptic loss seen at the final stage of the disease. 

It was very surprising to find no significant differences in neuroligin-2 protein expression in 

the highly affected hippocampus when a significant reduction in neuroligin-2 proteins was observed 

in the AD inferior temporal cortex. Neurodegeneration in AD progresses through the brain in a 

predictable, region-specific manner (Braak and Braak, 1991a). Given that the hippocampus is one of 

the first areas affected in AD and one of the most degenerated, and that the inferior temporal cortex 

is affected after the hippocampus, it would be expected that the inferior temporal cortex would not be 

as degenerated as the hippocampus. The finding reported here could be explained by a specific 

decline of neuroligin-2 protein in the inferior temporal cortex that does not occur in hippocampus. 

More study on the associations between excitatory and inhibitory synaptic proteins in AD may 

provide an explanation of this conundrum with respect to excitotoxicity in AD. 
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The AD-specific paucity of neuroligin-2 was more noticeable in male than in female cases, 

and this underpinned the overall lower neuroligin-2 level in AD cases. Because AD has a higher 

incidence in females than males, the greater lack of neuroligin-2 in male cases appears contradictory. 

It could be explained by the younger average age at death in males than in females in this study, and 

hence the earlier age of disease onset, which would suggest a greater disease severity. Females died 

at a higher mean age, and may have had less-severe disease on average. However, the case numbers 

were limited in this study and it will be better to study more cases to obtain a more conclusive result. 

Neuroligin-2 is crucial for post-synaptic inhibitory function. Data from the current study is 

consistent with a report that deletion of neuroligin-2 impairs inhibitory synapse function as measured 

by evoked synaptic transmission (Chubykin et al., 2007). The paucity of neuroligin-2 in AD cases 

may portray a dysfunction in GABAergic transmission, and is in conformity to a previous report that 

NLGN2 knockout mice have decreased GABAergic transmission (Blundell et al., 2009). The role of 

neuroligin-2 in regulating GABAergic function is further illustrated by a loss-of-function mutation of 

this protein in patients with schizophrenia (Sun et al., 2011). 

3.5.3 -Neurexin-1 expression in AD 

-Neurexin-1 has not been previously quantified in AD cases and controls, and it was 

surprising to find that the level of -neurexin-1 was higher, although not significantly, in AD cases 

than in controls in all three brain regions. This higher level of -neurexin-1 is compatible with a 

previous study that quantified another pre-synaptic cell adhesion molecule, N-Cadherin, in AD cases 

and controls (Tannenberg et al., 2006). The higher levels of -neurexin-1 in AD cases derive from 

the increase in synaptic apposition length that occurs in AD (Scheff et al., 1990). Further work with a 

larger number of cases and controls is required to confirm this. 

The highest level of -neurexin-1 was observed in the inferior temporal cortex, which is 

compatible with previous findings of high synaptic protein abundance in this area. The lowest level 

of -neurexin-1 was observed in the occipital cortex. -Neurexin-1 protein level was found to be 

modulated by the pathology severity of disease. It was lower in all three regions at the moderate 
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severity stage and higher again at the severe stage. This increase in the final stage of AD may be 

triggered by a compensatory mechanism to offset some of the excitotoxic damage. 

This study was the first to examine neuroligin-1, neuroligin-2 and -neurexin-1 in subjects 

with AD. Overall, the data presented suggest a selective synaptic dysfunction in AD. The quantities 

of these synaptic proteins differed in AD in a regionally selective manner. 

The neuropathology of the AD cases used showed a contrasting result in the levels of 

neuroligin-1 and neuroligin-2 proteins, which are specific for glutamatergic and GABAergic 

synapses respectively. Both neuroligin-1 and -neurexin-1 levels were higher in AD cases than in 

controls. Variations in the levels of neuroligins and neurexins could sway the balance between 

excitatory and inhibitory neurotransmissions in the brain, and could lead to damage of synapses and 

dendrites and ultimately to the neuronal death seen in AD. 

3.5.4 APOE genotype and protein expression 

It was surprising to find a significant enhancement of neuroligin-1 levels in cases without an 

APOE 4 allele in the current study. The level of neuroligin-2 did not significantly differ between in 

AD APOE 4 carriers and AD cases without an APOE 4 allele. On the other hand, -neurexin-1 was 

higher in APOE 4 carriers than in AD 4 non-carriers. It must be emphasized that this analysis was 

badly underpowered because there were so few AD cases without an APOE 4 allele and because of 

the overall lack of representation of sufficient numbers of subjects in each allelic category; further 

work on this issue will require a much larger data set. APOE has an important function in 

synaptogenesis, and both APOE 2 and APOE 3 alleles, particularly the former, are protective 

against AD (Rebeck et al., 2002), while APOE 4 increases the risk of AD (Liu et al., 2013). 

Hemizygous and homozygous APOE 3 transgenic mice are protected against neurodegeneration 

compared with homozygous APOE 4 littermates (Buttini et al., 2000). As a consequence, AD cases 

with at least one 4 allele are likely to be more vulnerable to neurodegeneration than AD cases with 

2 or 3 alleles. There were no AD cases with an 2 allele in this study, and very few in the 

Queensland Brain Bank. 
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3.5.5 Limitations of the study 

Neuroligin-1, neuroligin-2 and -neurexin-1 proteins were quantified in AD cases and 

controls matched as closely as possible for age, gender, and post-mortem delay. Nevertheless, some 

data, such as medical history, environmental context, and family history, were missing for some AD 

cases and controls. Environmental factors such as smoking and alcohol dependence can have an 

impact on protein expression in the central nervous system. A meta-analysis of 43 studies showed 

that cigarette smoking significantly increases the risks dementia and cognitive decline (Anstey et al., 

2007). Another study showed a significant association of the NRXN1 gene with nicotine dependence 

in European- and African-American smokers, and indicated that smoking has an impact on neurexin 

levels (Nussbaum et al., 2008). Alcohol use reportedly increases the risk of AD (Piazza-Gardner et 

al., 2013) and influences synaptic protein expression in human subjects (Matsuda-Matsumoto et al., 

2007). Neurexin-3 polymorphisms are reportedly associated with alcohol dependence and altered 

expression of specific isoforms of the protein (Hishimoto et al., 2007). 

A limitation of the current study was the small number of samples with varying degrees of 

pathological severity in the three brain regions. Increasing the number of cases and controls can 

strengthen the study and enhance statistical power. Additional time and effort to extend the study 

would help in replicating the work for validation purposes. 

Some limitations are associated with the quantification of proteins by immunodetection. 

These include incomplete protein transfer from the gel to the membrane; different post-translational 

modifications might alter the efficiency of transfer. Non-specific binding of some antibodies can 

vary between the standard and the endogenous protein. Quantification of proteins by mass 

spectrometer-based assays will aid validation and help determine whether different post-translational 

modifications occur in the neuroligins and neurexins. Therefore, more time and effort should be put 

into the quantification of these molecules by the multiple reaction monitoring and SWATH 

techniques described in chapter 4. 
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Advanced imaging techniques such as FDG-PET can hopefully give new insights into disease 

progression in living subjects, based on the current study. However, at present, PET ligands are not 

available for the neuroligins and neurexins, and it is hard to get resolution down to the level of the 

nerve ending with current clinical scanner technology, but the data presented in this thesis may 

suggest that higher numbers of excitatory synapses will be found in pathologically affected areas of 

the AD brain when the new 7T instruments become available for clinical use. 

The approach to quantification used here is expensive, low-throughput, and time-consuming, 

and required the generation of critical recombinant reagents. The three proteins were identified in 

human brain membrane preparations at ~110 kDa for neuroligin-1, ~95 kDa for neuroligin-2 and ~46 

kDa for -neurexin-1. These predicted molecular weights were obtained from UniProt and it was 

assumed that each antibody used was specific only for the protein of interest and did not cross-react 

with any other protein. This should be verified independently, for example by the techniques set out 

in Chapter 4. The need for high-throughput techniques to explore several of the interesting 

preliminary results outlined in this Chapter was another motivation that led to the Chapter 4 study. 
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Chapter 4 

4 Quantification of neuroligin and neurexin proteins by MRM and SWATH 

4.1 Aims of the research 

1. To identify synaptic proteins in human autopsy brain tissues by mass spectrometry. 

2. To search for neuroligin-1, neuroligin-2, neuroligin-3, neuroligin-4 and neuroligin-4Y 

proteins in human autopsy brain tissue by mass spectrometry. 

3. To search for neurexin-1 and neurexin-1 in human autopsy brain tissue by mass 

spectrometry. 

4. To quantify neuroligins and neurexins with multiple reaction monitoring (MRM) and 

SWATH techniques. 

4.2 Introduction 

A range of experimental approaches is required to assess synaptic processes and their 

adaptive alterations, which are highly ordered and complex (Bard and Groc, 2011, Coba et al., 2009). 

Neuropathological diseases show characteristic molecular changes, with diverse ætiologies, that are 

mainly located at the synapse (Dosemeci et al., 2007, Fernandez et al., 2009, Husi et al., 2000). 

Studying the protein configuration of the synapse in autopsy brain tissues may provide useful 

insights into various diseases (Keller et al., 2007). Molecular and cellular studies of these processes 

have until recently been restricted to techniques that can study one molecule at a time within a 

network. Research into proteins in autopsy tissue is limited by the lack of good paradigms; it is 

essential to develop methods to quantify proteins and their post-translational modifications at the 

synapse as well as to develop strategies to validate the quantification of these entities. 

During the last decade, mass spectrometry (MS)-based proteomic techniques, and 

biochemical fractionation techniques, has allowed researchers to begin investigating the proteomes 

underlying synaptic signalling (Bayes et al., 2011, Cheng et al., 2006, Hahn, 2010, Peng et al., 2004). 
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Many proteins and post-translational modifications can be studied simultaneously, which allows 

investigation of signalling pathways in the context of various other intracellular molecular events. 

4.2.1 Mass spectrometry based techniques 

Protein analysis using MS first requires separating the proteins into fractions using methods 

such as electrophoresis and chromatography (Woods et al., 2012). After fractionation, each protein is 

analysed by MS. The initial fractionation before analysis is important to enhance sensitivity and to 

identify and characterise low-abundance proteins that may be masked in complex mixtures. 

However, some samples can be run in MS without fractionation. 

There are three main parts in a mass spectrometer: the ionization source, the mass analyser, 

and the detector. An ionization source ionizes the peptides in the sample, which then travel through 

the analyser according to their mass:charge (m/z) ratios. The ionized sample then hits the detector 

and spectra are recorded: the spectra are used to identify the proteins (Fig. 4.1) 

 

Fig. 4.1 Example of basic mass spectrometer experiment. The sample is fractionated 

by electrophoresis or HPLC and then digested by an enzyme such as trypsin. The 

digest is ionized in a MALDI-MS or ESI-MS. The ions fly and are sorted through 

different types of mass analysers. The ions are detected and then recorded and a mass 

spectrum is produced. 
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4.2.1.1 Ionization techniques 

Ionization techniques convert uncharged molecules into ions that can then be manipulated in 

electric or magnetic fields. The most important issue with biological molecules like peptides and 

proteins is to convert polar, zwitterionic molecules into gas-phase ions without degradation. The 

most common ionization methods for biological samples are electrospray ionization (ESI) and 

matrix-assisted laser desorption/ionization (MALDI). 

4.2.1.1.1 Electrospray ionization 

ESI generates ions by spraying an electrically generated fine mist of ions into the inlet of a 

mass spectrometer at atmospheric pressure (Fenn et al., 1989). Ionization is generated from the 

potential difference between the capillary inlets to the mass spectrometer in which the liquid flows 

and small droplets of liquid are formed. The liquid is translocated to a heating device that causes 

evaporation of the solvent. When the droplets reach the point at which charge repulsion exceeds the 

surface tension, ions are desorbed from the droplet to create bare ions, which are then transferred to 

the ion optics of the mass spectrometer. ESI transforms solution-phase molecules into gas-phase 

ions; the ions are created with different charges, which complicates the calculation of molecular 

weight due to a one-to-one association between the m/z value and molecular weight. Multiple 

charging has the advantage of lowering the m/z value detected in the spectrometer, which allows the 

use of less-sophisticated mass analysers. 

4.2.1.1.2  MALDI 

The second ionisation technique, MALDI, uses laser energy to alter molecules into gas-

phase ions. A matrix is mixed with the sample that absorbs the energy of the laser and is used to 

support thermal desorption. 

4.2.1.2 Mass analyser 

The different types of analysers include quadruple (Q), time-of-flight (TOF), and ion trap 

(IT), which have different applications. They differ in their physical principles and analytical 
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performance. MALDI sources are generally coupled with TOF or TOF/TOF mass analysers because 

of their pulse mode of action. Shotgun proteomics liquid chromatography (LC) is associated with 

mass spectrometry for the identification of proteins. The main advantage of LC-MALDI-MS over 

LC-ESI-MS is the robustness of the former in resisting very harsh LC conditions and the high m/z 

range of the TOF mass analyser (Ngounou Wetie et al., 2013, Sokolowska et al., 2013). The 

limitations of LC-MALDI-MS include the difficulty in spotting directly from the LC apparatus. In 

MS, proteins can be recognized by measuring the m/z of gas-phase ions. In general, LC-MS methods 

are valued for their capability to examine complex samples and difficult proteins, such as those 

embedded in membranes, and as a result offer better proteome coverage in comparison to other 

proteomic techniques. 

4.2.1.3 Sample preparation, fractionation, and tags 

Protein quantification is ideally carried out with internal standards that are added to the 

sample before preparation to eliminate differences resulting from the preparation itself. Both label-

based and label-free methods can be used (Gant-Branum et al., 2009). Label-based methods tag 

peptides or proteins before LC separation utilizing one of the three following techniques: 1, isobaric 

tags for relative or absolute quantification, iTRAQ (Applied Biosystems, AB Sciex, Foster City, CA, 

USA; Ross et al., 2004); 2, isotope-coded affinity tags, ICAT (Gygi et al., 1999); and 3, stable 

isotope labelling of amino acids in cell culture, SILAC (Darie et al., 2011, Mann, 2006, Spellman et 

al., 2008). The isotopic labelling approach has some disadvantages due to their elaborate chemistry. 

However, there are several label-free methods, such as multiple reaction monitoring, MRM, and 

sequential window acquisition of all theoretical fragment-ion spectra, SWATH, which have various 

advantages and will be discussed in detail in this chapter. 

4.2.1.4 Proteomic bioinformatics 

Computer processing of MS data allows large-scale and high-throughput analysis that has 

enabled proteomic studies. Different strategies have been established to find unique tandem mass 

spectra of amino acid sequences in publically available databases. All database methods are based on 

matching the theoretical fragmentation pattern of the target peptide with the fragmentation pattern in 
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the tandem mass spectrum. Each match peptide is given a score based on fragment ion frequencies, 

and cross-correlation (Eng et al., 1994, Perkins et al., 1999). Intensity models are used in correlation 

analyses to increase the matches between sequence and spectra, while probability-based methods 

offer a statistical measure for the fit between sequence and spectra (MacCoss et al., 2002, Perkins et 

al., 1999, Sadygov and Yates, 2003). Most of these programs are also appropriate for the study of 

protein modifications. There are various software packages for the analysis of LC/LC/MS/MS data, 

such as Mascot, PEAKS DP, ProteinPilot, and others. Proteomic studies can produce huge amounts 

of data; hence, a high level of automation of data analysis is required. 

4.2.2 Multiple reaction monitoring (MRM) 

MRM is an MS-based quantification method that is commonly used in triple-quadruple MS 

instruments. It is a robust multiplexed assay for the precise and sensitive detection of protein 

expression levels and post-translational protein modifications (Lange et al., 2008). It is used to 

identify and quantify from ten to a few hundred peptides, but can in principle be used for multiple 

peptides in a single assay. MRM assays can detect and quantify proteins present at low ng per ml 

concentrations, such as has been shown for serum (Keshishian et al., 2007, 2009). MRM also has the 

advantage of high reproducibility (Addona et al., 2009), which makes it a first choice for biomarker 

validation. It exploits the unique capabilities of triple-quadrupole (QQQ) MS for quantitative 

analysis. It is a selective workflow for mass spectrometry that can only identify a predefined 

combination of precursor and fragment ions. In MRM, the first and the third quadruples act as filters 

to specifically select predefined m/z values corresponding to the target peptide ion and a specific 

fragment ion of the precursor peptide (Fig. 4.2). In the second quadruple, which serves as a collision 

cell, the pre-defined peptides in Q1 are selected and fragmented. In quadruple three, transitions 

(precursor/fragment ion pairs) are monitored over time to produce a set of chromatographic traces 

with the retention time and signal intensity for each specific transition. Two types of mass selection 

with narrow mass windows lead to high selectivity and the successful filtering out of co-eluting 

background ions. Compared to other MS-based proteomic techniques, no full mass spectra are 

recorded in QQQ-based MRM analysis. The non-scanning property of this mode of operation 
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translates into an enlarged sensitivity by one or two orders of magnitude compared with-full scan 

techniques. Furthermore, it gives a linear response over a wide dynamic range of up to five orders of 

magnitude, which allows the detection of scarce proteins in highly complex mixtures: this is vital for 

systematic quantitative studies. 

 

Fig. 4.2. Diagram of information-dependent analysis (IDA) mass spectrometry and 

MRM mass spectrometry. In IDA, quadruple 1 (Q1) is used to select the most 

abundant precursor ion, which is then fragmented in Q2. Subsequent analysis of all 

fragment ions takes place in Q3. The resulting MS/MS spectrum is used to identify 

the fragmented precursor ions. In MRM, only pre-defined peptides in Q1 are chosen 

for fragmentation in Q2. Pre-selected fragment ions are selectively passed through Q3 

and identified. 

4.2.2.1 Selection of a target protein in MRM 

The first step in an MRM assay involves choosing the proteins of interest. MRM can target 

different proteins in one LC-MS analysis after the transitions have been optimized. Choosing the 

protein of interest may depend on previous experiments or relevant information from the literature. 

Different information resources on the Web can be used for this purpose, such as gene expression 

and protein expression data, protein–protein interaction data or the Kyoto Encyclopædia of Genes 
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and Genomes (KEGG) database. Network expansion can be used to enhance an initial set of proteins 

that have been revealed in quantitative screens (Table.4.1). Ideally, internal standards are chosen as 

an invariant reference set to minimize experimental error, such as variable protein amounts per 

sample. 

 Table 4.1. Online information resources relevant to the selection of a set of proteins of interest.  

Gene Expression  GEO http://www.ncbi.nlm.nih.gov/geo/ (Barrett et al., 2007) 

Protein expression ProteinAtlas http://www.proteinatlas.org/  (Uhlén and Pontén, 2005) 

Gene ontology group GO http://www.geneontology.org/  (Karp, 2000) 

Functional group  KEGG http://www.genome.jp/kegg/  (Kanehisa and Goto, 2000) 

Protein-protein interactions IntAct http://www.ebi.ac.uk/intact/  (Kerrien et al., 2007) 

Protein-protein interactions MINT http://mint.bio.uniroma2.it/  (Ferrari et al., 2011) 

4.2.2.2 Selection of the peptide 

After tryptic digestion, each protein produces tens to hundreds of peptides (Picotti et al., 

2007). However, only a few representative peptides for each protein are targeted to identify and 

quantify it in a sample. The right choice of peptides is crucial for the success of MRM. Different 

factors have an impact in choosing the right peptide, such as uniqueness and post-translational 

modification. 

4.2.2.3 Uniqueness 

Choosing peptides for targeted MS analysis is crucial. It is important to select unique 

peptides that are specific for the targeted protein or one of its isoforms. Thus, it is critical to choose 

peptides that differentiate between different splice isoforms. Information about splice variants can be 

obtained from Ensembl (www.ensembl.org/), NCBI (www.ncbi.nlm.nih.gov/sites/entrez, 

www.ncbi.nlm.nih.gov/projects/SNP/), and UniProt (http://www.uniprot.org/) databases. Peptide 

Atlas (www.Peptide Atlas.org/) can differentiate between several splice isoforms and different genes 

by reporting the number of genome locations for observed peptides and visualizing the peptide–

http://www.ncbi.nlm.nih.gov/geo/
http://www.proteinatlas.org/
http://www.geneontology.org/
http://www.genome.jp/kegg/
http://www.ebi.ac.uk/intact/
http://mint.bio.uniroma2.it/
http://www.ensembl.org/
http://www.ncbi.nlm.nih.gov/sites/entrez
http://www.ncbi.nlm.nih.gov/projects/SNP/
http://www.uniprot.org/
http://www.peptideatlas.org/
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protein relationship by cytoscape, an open source bioinformatics software platform for visualizing 

molecular interaction networks and integrating them with gene expression profiles (Shannon et al., 

2003). 

4.2.2.4 Post-translational modifications 

In the MRM assay, modified peptides cannot be identified without being specifically targeted 

due to mass differences caused by post-translation modifications (PTMs). Observed differences in 

the quantity of a peptide may portray alterations in the abundance of the protein across samples, or 

modification of the target peptide. For accurate quantification, at least two peptides should be 

monitored for each protein. It is essential to first consult sites such as Uniprot 

(http://www.uniprot.org/) to check that the targeted peptides are not known to be modified, and to 

avoid peptides with cysteine or methionine residues. Post-translation modification may lead to two 

peptides from the same protein displaying different relative abundances across samples. However, 

MRM can be used to quantify peptides with post-translational modifications if the PTM is known 

and transitions for those peptides can be established. Examples of different types of PTM that have 

been targeted by MRM in other studies include phosphorylation (Unwin et al., 2005, Williamson et 

al., 2006), ubiquitination (Mollah et al., 2007) and acetylation (Griffiths et al., 2007). 

4.2.2.5 Selection of MRM transitions 

In MRM, quantification of a peptide needs specific choices of m/z settings for the first and 

third quadruple to provide highly sensitive and selective detection of the peptide. The mass and 

predominant charge state of the peptide determines the m/z value used in the first quadrupole, while a 

specific fragment ion of the peptide is selected in the third quadrupole. The intensities of individual 

fragment ions resulting from one precursor ion can differ significantly. To attain very sensitive 

results it is best to choose transitions specific for the most intense fragments. Usually the best 2–4 

transitions for each peptide are chosen for quantitative assays. These choices may be based on data 

from shotgun experiments, which can be obtained from SRMAtlas or Peptide Atlas, or 

experimentally detected on the QQQ instrument. The condition of ionization can have an impact on 

http://www.uniprot.org/
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the charge state distribution as well as the intensity of the ion, which is dependent on the type of 

instrument used and the operating parameters. 

The fragment ion masses of the peptide of interest can be calculated and experimentally 

verified by MRM assay on a QQQ instrument that produces high-performing transitions. If two 

precursor charge states and multiple ions are considered, more than 30 transitions for each peptide 

could be measured. As a result, the number of peptides that can be examined in one LC-MS analysis 

is restricted due to the time required to acquire the data representing each transition. The number of 

transitions monitored can be increased by using scheduled MRM (Stahl-Zeng et al., 2007). The 

principle of this approach is to acquire the transitions of a specific peptide during a narrow time 

window around its expected elution time, rather than monitoring it across the entire LC-MS run. 

During this time more transitions can be examined so as to obtain the best-performing ones. To 

conduct this type of experiment, the instrument must have a scheduling functionality and the 

retention times of the peptides of interest must be known. The retention times of specific transitions 

can be obtained from previous experiments or predicted by tools such as SSRCalc 

(http://hs2.proteome.ca/SSRCalc/SSRCalc.html; Krokhin et al., 2004), although in most cases RT are 

empirically determined. Another approach is to first study a small number of transitions that are 

chosen based on available MS/MS data. Choosing 2–4 fragment ions from both doubly and triply 

charged precursor ions will produce at least one transition with reasonable performance from which 

to derive retention-time data for subsequent experiments. Restricting the final assay to 2–4 transitions 

for each peptide allows the study of many hundred peptides in one LC-MS analysis. 

4.2.2.6 Validation of transitions 

The QQQ MRM assay is a very specific approach using two consecutive mass filtering steps. 

However, an individual precursor/fragment ion combination may not be specific for a peptide 

targeted in a complex sample. An example of this problem is explained in Fig. 4.3. Incorrect signals 

can develop from other peptides with precursor/fragment ion pairs of identical masses. Peptides with 

the same precursor mass and fragment ion could have closely related sequences and as a result part 

of the transitions may be identical. Distinct sequences could by chance produce mass pairs that are 
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very hard to filter out in the quadrupoles; this nonspecific signal may be of lower intensity than the 

optimized transitions. When MRM is used to study peptides that are an order of magnitude of less 

abundant than the most abundant peptides, non-specific signals can be higher than the detection limit 

and sometimes more intense than the signal for the peptide of interest. Because there are no full-

range mass spectra in MRM, signals could be easily mistaken; these would give rise to mis-

quantification errors. In consequence, it is essential to validate the primary set of transitions to 

confirm that the quantified signals produced are from the peptide of interest. Two ways to validate 

the transition are 1, scanning the full MS/MS of the precursor ion to sequence the peptide: the scan 

can be manually checked to confirm that the fragment ions that were selected are the most abundant 

following collision-induced dissociation, CID; 2, parallel acquisition of multiple transitions for a 

targeted peptide. The latter is based on the elution time of peptide: The transitions produce a perfect 

set of ‘co-eluting’ intensity peaks if they are produced from the same peptide. By producing more 

transitions, the capability for a random match is markedly reduced if perfect co-elution is observed. 

Many non-target peptides with similar precursor m/z could produce a plethora of low-intensity non-

canonical fragment ions, which might generate transitions and lead to false quantification. It is 

strongly recommended that parallel acquisition of multiple transitions be checked by another kind of 

validation. The best approach to validate transitions is to acquire MS/MS spectra and sequence it 

from database searching to assure that the derived signals produced are from the peptide of interest. 

This process uses the QQQ tool for the MRM experiment under a protocol known as MRM-triggered 

MS/MS scanning (Unwin et al., 2005). In this procedure, the QQQ instrument is programmed to 

obtain a full fragmentation spectrum whenever a signal for a particular transition is identified. The 

MS/MS spectra produced can be compared with the predicted peptide fragments to confirm that the 

major MS/MS peaks are matched (Figure 4.3). This method provides assurance that the MRM 

signals are derived from the target peptide. 
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Fig. 4.3. Validation of transitions for the peptide VFAQFSSFVDSVIAK, which 

belongs to a protein of interest. A, MRM traces of five transitions. Two peaks with co-

eluting transitions are apparent at 37.5 and 43.3 min. B, MS/MS spectra of peaks 1, 

top panel and 2, lower panel. Peaks corresponding to the y ions are in red. Although 

MRM transition intensities are higher at 43.3 min, the MS/MS spectrum that 

corresponds to the targeted peptide elutes at 37.5min. If transition intensities at 43.3 

min were used without validation the quantification of the peptide would be in error. 

4.2.2.7 MRM software 

There are differences between MRM assays and shotgun proteomic experiments. In shotgun 

experiments, proteins are identified in samples without targeting, based on matching MS/MS spectra 

to databases, while in MRM experiments a software system allows MRM assays to be set up and 

supports the following: 1, choosing the target protein; 2, choosing the peptide signifying the protein 

of interest; 3, choosing the best transitions; and (4) validating the transitions by MS/MS spectra. 

An example of MRM software is Targeted Identification for Quantitative Analysis of MRM 

(TIQAM; Lange et al., 2008), which can integrate proteomic data from local experiments and the 

Peptide Atlas database to produce peptides in the best order. It can also generate MRM transition 

lists and detect the best performing transitions from previous MRM experiments. All the peptide and 

transition data is kept in a database to permit recovery of the validated transitions for quantitative 

purpose. There are several other software programs that can help set up MRM experiments, such as 

MRMPilot (Applied Biosystems), SRM Workflow Software (Thermo Scientific), Verify E (Waters), 

Optimizer (Agilent Technologies) and Skyline (MacCoss lab software). 

http://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click on image to zoom&p=PMC3&id=2583086_msb200861-f4.jpg
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4.2.3 MS/MS
ALL

 with SWATH
TM

 Acquisition assay 

MS/MS
ALL

 with SWATH
TM

 is a novel MS-based proteomics technique to quantify peptides 

and proteins in a sample by a single analysis. It utilizes a data-independent MS/MS acquisition to 

produce complete, high-specificity fragment ion maps that can be queried for the existence and 

quantity of any protein of interest using a targeted data analysis strategy. It utilizes an advanced 

hybrid quadrupole-time of flight mass spectrometer, the TripleTOF 5600® (AB SCIEX, 

Framingham, MA, USA). 

SWATH produces fragment ion information for all precursors in the monitored range. It 

differs from the traditional acquisition assay, which does not depend on precursor ion mass detection 

to trigger MS/MS acquisition. Rather, SWATH systematically fragments all components of a sample 

via a rapidly moving selection window (Fig. 4.4). 

SWATH can produce high-resolution fragment ion chromatograms for each target peptide 

that can be interrogated to detect the peptide of interest, similar to MRM. Using public libraries for 

ion data such as MRMAtlas, or database search software such as ProteinPilot
TM

, the ouput can be 

searched for quantitative data on the target peptides or proteins. SWATH delivers a complete 

qualitative and quantitative archive of the sample that can be interrogated in silico and post-

acquisition as new hypotheses are established. 

MRM and SWATH have become important techniques to study synaptic trafficking events in 

autopsy brain tissue and thereby to explore the ætiology of neural diseases (Craft et al., 2013). 

Neuropsychiatric diseases may result from aberrant synaptic signalling involving different proteins 

that are arrayed in a microdomain-specific manner. Studying the proteomes of synapses in autopsy 

brain will provide an understanding of disorders such as autism, depression, schizophrenia, and AD. 

It will help define targets for novel therapeutics for these disorders. It will allow the assessment of 

protein expression and trafficking with high precision using accurate techniques such as MRM and 

SWATH. Previous studies have successfully utilized MRM to quantify synaptic proteins in 

subcellular fractions prepared from autopsy human brain (Chang et al., 2014a, 2014b). A 
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bioinformatics search showed that these assays can quantify thousands of additional synaptic 

proteins in different model systems. 

 

Fig. 4.4. MS/MS ALL with SWATH Acquisition. The method depends on passing a 

wider window of analytes to the collision cell. More-complex MS/MS spectra are 

produced, which comprise all the analytes within the Q1 m/z window selected. As the 

fragment ions are high resolution, high quality XICs are produce post-acquisition to 

generate data similar to MRM. The Q1 window can be stepped across the mass range, 

collecting full-scan composite MS/MS spectra at each step, with an LC-compatible 

cycle time. This approach allows a data-independent LC workflow. 



P a g e  | 104 

In this chapter, the development of a LC-MRM/MS-based methodology for validation of 

neuroligin-1, neuroligin-2 and -neurexin-1 protein quantification in human autopsy brain tissues 

from AD cases and controls is described. Various optimizations were performed for SWATH to 

obtain the most accurate quantification protocols. 

4.3 Materials and Methods 

4.3.1 Reagents used 

Deoxycholate, trichloroacetic acid, sucrose, acetonitrile, acetone, urea, thiourea, ammonium 

bicarbonate, dithiothreitol, iodoacetamide, trypsin, and formic acid were obtained from standard 

suppliers and were of the highest grades available. The 2-D Quant kit was purchased from GE 

Healthcare Life Sciences, Rydalmere, NSW, Australia. 

4.3.2 Autopsy brain tissue preparation 

The Queensland Brain Bank at the School of Chemistry and Molecular Biosciences, The 

University of Queensland, a node of the Australian Brain Bank Network, provided autopsy brain 

tissue. Donors and the next of kin provided informed written consent for the research. Tissues were 

stored in ice-cold 0.32M sucrose at –80°C. The Medical Research Ethics Committee of The 

University of Queensland approved the project (Certificate #2010000105). 

Sectioning of the tissue was done on dry ice and preparation of the synaptosomes was 

performed as per Etheridge et al. (2009). To prepare the synaptosomes, 0.5 g tissue samples were 

homogenized with ice-cold 0.32 M sucrose (10 w/v) in a motor-driven Teflon-glass homogenizer 

using 8–10 pestle strokes. The mixture was transferred to a 15 ml polypropylene tube and 

centrifuged at 750  g for 10 min at 4°C in a Beckman JA 20 centrifuge (Beckman Coulter P/L, Lane 

Cove, NSW, Australia). The pellet was resuspended in the original volume of 0.32 M sucrose and 

centrifuged at 19,000  g for 20 min at 4°C. The pellet, which contained the crude synaptosomal 

fraction, was resuspended in a 5 ml 0.32 M sucrose, layered onto a gradient of 5 ml of 0.8 M sucrose 

overlying 5 ml of 1.2 M sucrose, and centrifuged at 82,500  g in a swinging bucket rotor (SW41 Ti, 

Beckman L8-60M ultracentrifuge) for 120 min at 4°C. Both myelin (at the 0.32/0.8 M interface) and 
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synaptosome (at the 0.8/1.2M interface) fractions were obtained by aspiration with a Pasteur pipette 

in minimal volumes. Mitochondria formed a pellet that was also retained for future studies. 

4.3.3 Trichloroacetic acid/deoxycholate/acetone precipitation 

Deoxycholate (DOC; 0.4 µg/µl, 20 µl) was added to each synaptosomal fraction (200 µl) to 

give a final concentration of ~0.04 µg/µl. The sample was incubated on ice for 30 min, then 25 µl of 

6.4 M trichloroacetic acid (TCA; 0.65 M final) was added and the sample incubated on ice for 60 

min. Samples were centrifuged at 10,000  g at room temperature for 10 min. The supernatants were 

removed and 1 ml of 90% ice-cold acetone was added to each tube. Samples were vortexed for 3–4s, 

left at –20°C overnight, then centrifuged at 10,000  g at 4°C for 20 min and supernatants removed. 

A second 1 ml of 90% ice-cold acetone was added to each tube, the procedure repeated, and the 

supernatants discarded. The pellets were dried for 5 min and 30 µl of rehydration buffer (8M urea 

and 2M thiourea in 50 mM NH4HCO3) was added. The tubes were incubated for 3h at room 

temperature, then stored overnight at –20°C. Samples were sonicated 3 briefly in an ice bath for 20s 

and frozen overnight at –20°C. This step was repeated three times to allow ice crystals to break up 

the pellets. 

4.3.4 Quantification of samples using the 2-D Quant Kit 

To determine the protein concentration of the samples, a 2-D Quant Kit (GE Healthcare Life 

Science) was used. Colour reagent A (5.15 ml) was mixed with colour reagent B (51.5 µl). A BSA 

standard was prepared between 0 and 4 µg. Each protein sample (2 µl) was placed in a separate tube 

and 100 µl of precipitant was added, including to the BSA standard samples. Tubes were vortexed 

and incubated for 2–3 min at room temperature. Co-precipitant (100 µl) was added and the samples 

mixed by inversion, then centrifuged at 10,000  g for 5 min and the supernatant discarded. Copper 

solution (20 µl) and of Milli QH2O (80 µl) were added and the tube vortexed briefly. Samples were 

aliquoted into a 96-well plate and 200 µl of assay mix (colour reagents A+B) added to each well. The 

plate was incubated for 20 min at room temperature. The absorbance of each sample and standard 

was read at 480 nm and a standard curve created to determine the sample protein concentrations. 
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4.3.5 Reduction and alkylation 

d,l-Dithiothreitol (30 µl of 10 mM; 5 mM final) was added to each sample (30 µl) and the 

mixture incubated at room temperature for 2h. Iodoacetamide (3 µl of 0.5 M; 25 mM final) was 

added and the incubation continued in the dark for 30 min. Finally, an additional 30 µl of 10 mM d,l-

dithiothreitol was added to each sample. 

4.3.6 Trypsin digestion 

Samples were diluted to 2 M in urea with 50 mM NH4HCO3 (26.8 µl). Each sample (76 µg; 

0.63 µg/µl) was then digested with trypsin (15µl, 20 ng/µl) by incubation for 6h at room temperature. 

The same amount of trypsin was added and the incubation continued overnight at 37°C. 

4.3.7 ZipTip sample cleanup 

Samples (10 µl) were aliquoted into Eppendorf tubes and subjected to ZipTip purification 

(Merck Millipore, Kilsyth, VIC, Australia) for sample binding. The ZipTip was washed with 100% 

acetonitrile twice, then equilibrated with 1% trifluoroacetic acid (TFA) twice. Samples (10 µg) of 

peptide digests were bound to the tip by fully depressing the pipette, then aspirated and dispensed 

through 10 cycles for maximum binding of the mixture. The Zip Tips samples were washed with 1% 

TFA twice, then 4 µl of 0.1%TFA in 80% acetonitrile was used to elute the peptides from the tips. 

Buffer B (0.1% formic acid in acetonitrile; 96 µl) was added and the samples placed in mass 

spectrometer tubes. 

4.3.8 Preparation of HPLC-QTRAP 5500 mass spectrometer for MRM analysis 

Chromatography was performed using an 1100/1200 capillary LC (Agilent Technologies, 

Mulgrave, Vic, Australia) with the following buffers: Buffer A (5% acetonitrile, 0.1 % formic acid) 

and Buffer B (0.1% formic acid in acetonitrile). Samples (20 µl) were loaded onto the column trap 

(ZORBAX 300SB-C18, 5  0.3 mm, 5 µm; Agilent Technologies) and washed for 5 min with Buffer 

A delivered at a flow rate of 20 µl/min. A QTRAP 5500 mass spectrometer (AB SCIEX) with a 

TurboSpray ion source in positive ion mode was used to detect the peptides. The settings for the ion 

source were: declustering potential 80V, entrance potential 10V, collision cell exit potential 35V, 
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curtain gas 20 psi, collision gas ‘high’, ionspray voltage 4kV, temperature 150°C, with first and 

second ion source gases set at 20 psi. 

4.3.8.1 Choosing the protein of interest, peptide and transitions 

Targeted protein accession numbers were input to the MRMPilot software, which were: 

neuroligin-1, NP_055747, neuroligin-2, AAM46111) and -neurexin-1, BAA87821.1. Multiple 

tryptic peptides were obtained and the best peptide sequences that had lengths of 4–22 amino acids 

and were free of any known chemical and/or post-translational modifications were chosen. Peptides 

with methionine or cysteine residues were deselected because they are prone to modification 

(oxidation and alkylation, respectively). The best peptides were utilized for automated MRM 

selection and method building. For each peptide at least four MRM transitions were selected. 

4.3.8.2 Verification of peptide selections and development of transitions 

The digested peptides were subjected to analysis with the QTRAP 5500 mass spectrometer in 

MRM-initiated detection and sequencing (MIDAS) mode to produce MS/MS spectra of targeted 

transitions. MIDAS involves MRM-based high-sensitivity product-ion scans and triggers a full 

MS/MS scan for sequence confirmation. All transitions that had peak intensities below 800 cps, as 

well as nonspecific multiple peaks, were excluded. IDA files were exported to MASCOT (generic 

format) for a database search against the UniProt database (MASCOT: 

http://www.matrixscience.com) for human entries with carbamidomethylation as fixed and 

methionine oxidation as variable modifications. The following setting was used for the search: 

Peptide tolerance 0.4Da, MS/MS tolerance 0.4Da, peptide charge 2+, 3+ and 4+. Because none of 

the peptides were matched to the target protein MASCOT search, manual sequencing of the MS/MS 

spectra using PeakView software (AB SCIEX) was performed. 

4.3.9 MS/MS
ALL

 with SWATH
TM

 Acquisition 

4.3.9.1 Membrane sample preparation for SWATH 

Brain tissues were slowly frozen and stored in 0.32 M sucrose at –80°C (Dodd et al., 1986). 

Thawed tissues were homogenized in 10 (w/v) of 0.32M sucrose at 4°C in a motor-driven Teflon-

http://www.matrixscience.com/
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glass homogenizer at 500 rpm and the suspension centrifuged for 10 min at 756 g. The supernatant 

was centrifuged at 13,700 g at 4°C for 20 min. The supernatant was discarded and the pellet 

resuspended in 50 mM Tris-HCl, pH 7. 

4.3.9.2  Protein extraction, quantification, digestion and ZipTip 

Refer to methods section 4.2.3, 4.2.4, 4.2.5, 4.2.6 and 4.2.7. 

4.3.9.3 Strong cation exchange (SCX) with the LC Agilent fractionator 

The system was equipped with a 4.6  50 mm SCX column (ZORBAX Bio-SCX Series II). 

The following buffers were used for washing and column preparation: Buffer A (0.5% acetic acid, 

2% acetonitrile), Buffer B (0.5% acetic acid, 2% acetonitrile 250 mM ammonium acetate). A sample 

(50 µg) of the reduced and alkylated protein was loaded into the injector port at 0.4 ml/min. 

Proteins were eluted with buffers A and B in 96-well plates according to charge and salt 

gradient. Flow-through fractions (47 in total) were collected in a 96-well plate over 45 min. Adjacent 

fractions were combined to obtain 6 pooled fractions that were subjected to ZipTip clean-up (Section 

4.3.7) for desalting before MS analysis. 

4.3.9.4 In-gel digestion 

Protein concentration was measured with the 2-D Quant protein assay kit (Section 4.3.4). 

Samples (40 µg of protein) were loaded onto a 1 mm 10-well 8% SDS-PAGE gel and separated for 

1h at 120V. The gel was stained with Coomassie Brilliant Blue (Sigma) in 50% methanol and 10% 

glacial acetic acid for 1h then destained overnight with 45% methanol, 5% acetic acid at room 

temperature. Neuroligin-1 and neuroligin-2 proteins bands, which separated at 110 and 95 kDa 

respectively, were manually excised from the gel, destained and dehydrated with acetonitrile, 

reduced and alkylated with 10 mM dithiothreitol at 60°C for 30 min and 50 mM iodoacetamide at 

room temperature for 30 min in the dark. Prior to enzymatic digestion, excess reagents were removed 

and the gel pieces washed twice with 50 mM NH4HCO3 and dehydrated with 100% acetonitrile. For 

protein digestion, gel samples were incubated with 10 µl of trypsin (10 ng/µl in 50 mM NH4HCO3) 
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for 15 min at 4°C. An additional 15 µl of 50 mM NH4HCO buffer was added and the incubation 

overnight at 37
o
C. Peptides were extracted from the gel by sonication twice for 10 min with 50 µl of 

50% acetonitrile/0.1% trifluoracetic acid. Samples were vacuum centrifuged to remove acetonitrile 

and ZipTipped before MS was performed. 

4.3.9.5 Sample analysis by mass spectrometry and chromatography 

Samples were analysed using an HPLC system connected to a TripleTof 5600 mass 

spectrometer (AB SCIEX). Samples were acquired in data dependent mode to obtain MS/MS spectra 

for the most abundant ions. 

4.3.9.6 Bioinformatics database search 

Mass spectrometer data were searched using the MASCOT server v2.3.02. Peak lists for 

MASCOT searches were produced by AB SCIEX MGF converter. MS/MS datasets were also 

analysed using ProteinPilot
TM

 software v4.5 (AB SCIEX), which uses the Paragon algorithm (Shilov 

et al., 2007) to search the SwissProt database. The settings for the search were as follows: cysteine 

alkylation, iodoacetamide; digestion, trypsin; fixed modification, carbamidomethylation; variable 

modification, methionine oxidation; detected protein P-value threshold 0.05. 

4.4 Results 

Three proteins were targeted for this study: neuroligin-1, neuroligin-2 and -neurexin-1. 

Proteotypic peptides (that uniquely represent these proteins) were chosen using MRM Pilot software 

(Fig. 4.5) and the best peptides with the highest mean intensity and best CV value were added from 

the peptide selection view (Fig. 4.6). Lists of all possible trypsin-digested peptides were produced for 

the three target proteins. To determine the true total protein abundance in the samples, peptides with 

methionine, cysteine, or amino acids with known chemical and/or post-translational modifications 

were excluded. Due to the susceptibility of methionine to oxidation and cysteine to alkylation, 

quantitative data attained from target peptides with these amino acids could produce errors. To 

produce a reliable MRM and to evaluate which is the most sensitive and reproducible, replicate 

samples are required. Fig. 4.7 is an example of results from running several replicates. 
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Different transitions were produced for these proteins. Several transitions were produced for 

each peptide (Table 4.2), and after MIDAS analysis on the QTRAP 5500, transitions that gave peak 

intensities below 700 cps, or different indistinct peaks, were removed from the list. To prevent false 

characterizations, MS/MS data produced from MIDAS analysis were searched against MASCOT to 

confirm protein identity. The MASCOT search failed to identify any peptides from neuroligin-1, 

neuroligin-2 or -neurexin-1. As none of the peptides matched the MASCOT search, manual 

sequencing of the MS/MS spectra from the MIDAS analysis were conducted to confirm their 

sequence using the fragment ion table for each peptide. B-, y- and a-ions between 100 and 999 m/z 

were searched within the spectra for all peptides. None of the peptides from the three proteins could 

be sequenced correctly (Figs 4.8, 4.9). The incorrect matching might result from highly abundant 

peptide/s with similar m/z values co-eluting with the peptides of interest and producing an error to 

the targeted transitions signal. 

 

Fig. 4.5. MRM peptide selection view. After importing proteins into MRM Pilot 

Software, MRM transitions are created. The best transitions for the best peptides for 

each protein were selected. The peptide fragment data is shown in the bottom pane for 

the selected peptide from neuroligin-1protein. 
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Fig. 4.6. MRM Table view. The table displays panes of data related to MRM for the 

selected protein. A table of all peptide MRM transitions is shown in the top pane for 

the selected protein. The top right pane displays a graph of MRM intensity vs 

variation (% CV) used to study the quality of the MRM transitions. This graph allows 

easy visualization of peptides with the highest intensity and reproducibility for 

quantitative purpose. The bottom pane has overlays of all extracted ion 

chromatograms (XIC) for the chosen MRM, spectra for the selected MRM, and full-

scan MS/MS data acquired using the MIDAS™ Workflow for confirmatory purposes. 

 

 

Fig. 4.7. MRM validation of the transitions. The summary graph in the top right of the 

MRM Table view shows the best MRM selected for optimization highlighted in blue 

and the remaining poor/failed MRM transitions highlighted in orange. 
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Table 4.2. MRM transitions and parameters for proteins of interest from MRMpilot software.  

Accession Nº 

Protein name 

Precursor 

mass, Da 

Fragment 

mass, Da RT
1 

CE
2 

Fragment 

type Sequence 

Mean 

height 

CV 

% 

NP_055747 

Neuroligin-1 

644.82 848.43 17.45 33 2+ / y7 QQPSPFSVDQR 5432 16.6 

642.33 827.44 14.03 33 2+ / y7 ELVDQDIQPAR 5263 13.3 

723.41 1111.68 15.61 37 2+ / y10 GNYGLLDLIQALR 3925 5.4 

817.45 946.5 20.3 44 4+ / y8 DYSTELSVTIAVGASL

LFLNILAFAALYYK 

3420 2.2 

698.84 784.42 16.59 36 2+ / y7 TGDPNQPVPQDTK 2260 14.8 

642.33 942.46 14.03 33 2+ / y8 ELVDQDIQPAR 2223 1.4 

699.37 1058.53 17.59 38 4+ / y10 ELNNEILGPVIQFLGV

PYAAPPTGER 

1466 2.1 

726.92 933.6 16.96 37 2+ / y8 DQLYLHIGLKPR 1147 19.6 

848.41 1192.61 20.21 42 2+ / y11 WTSENIGFFGGDPLR 1027 4.3 

826.91 957.48 16.27 41 2+ / y8 FQPPEPPSPWSDIR 960 10.9 

817.45 1059.59 20.3 44 4+ / y9 DYSTELSVTIAVGASL

LFLNILAFAALYYK 

908 13.6 

377.19 616.3 13.21 22 2+ / y5 HNPETR 769 17 

AAM46111 

Neuroligin-2 

981.98 1087.57 18.65 48 2+ / y11 GGGGPGGGAPGGPGL

GLGSLGEER 

30807 1.9 

707.7 1134.59 13.99 39 3+ / y9 AIAQSGTAISSWSVNY

QPLK 

2390 6.6 

718.4 1141.64 14.29 40 3+ / y11 TLLALFTDHQWVAPA

VATAK 

1061 12.2 

707.7 948.51 13.99 39 3+ / y8 AIAQSGTAISSWSVNY

QPLK 

1020 12.1 

769.89 1166.6 17.03 39 2+ / y11 FQPPEAPASWPGVR 729 8.4 

654.99 1184.63 18.65 37 3+ / y12 GGGGPGGGAPGGPGL

GLGSLGEER 

248 24.3 

NP_620072.1 

-Neurexin-1 

745.7 931.48 14.72 41 3+ / y9 FNVGTDDIAIEESNAII

NDGK 

996 2.6 

532.31 766.41 12.69 28 2+ / y7 LAIGFSTVQK 905 5.1 

532.31 709.39 12.69 28 2+ / y6 LAIGFSTVQK 762 23.9 

776.39 873.48 21.3 39 2+ / y9 NYISNSAQSNGAVVK 725 15.8 

914.96 1228.63 19.51 45 2+ / y10 SGGNATLQVDSWPVI

ER 

675 30.5 

596.83 831.51 13.32 31 2+ / y7 HHSVPIAIYR 637 9.5 

745.7 1189.57 14.72 41 3+ / y11 FNVGTDDIAIEESNAII

NDGK 

583 0.6 

596.83 732.44 13.32 31 2+ / y6 HHSVPIAIYR 488 4.6 
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532.31 879.49 12.69 28 2+ / y8 LAIGFSTVQK 456 6.4 

745.7 1060.53 14.72 41 3+ / y10 

FNVGTDDIAIEESNAII

NDGK 411 7.2 

613.31 845.42 16.37 32 2+ / y7 WPPNDRPSTR 342 1.4 

609.31 991.52 15.09 32 2+ / y9 EPYPGSAEVIR 313 6.6 

776.39 1074.55 21.3 39 2+ / y11 NYISNSAQSNGAVVK 227 29.9 

647.27 1049.46 17.37 33 2+ / y9 DEGSYHVDESR 203 39 

412.22 766.41 11.68 23 2+ / y7 GGGQITYK 195 60.9 

343.71 557.38 11.89 20 2+ / y5 EAVLVR 98 17.3 

282.15 332.16 9.82 17 2+ / b3 YPAGR 52 32.6 

309.17 471.22 17.94 19 2+ / b5 QPSSAK 35 30.7 

412.22 652.37 11.68 23 2+ / y5 GGGQITYK 34 87.3 

314.19 570.36 18.08 19 2+ / y5 GKPPTK 27 100 

315.68 456.25 10 19 2+ / b5 SPASLR 27 100 

282.15 400.23 9.82 17 2+ / y4 YPAGR 27 100 

287.13 444.21 4.91 18 2+ / y3 EYYV 20 49.5 

315.68 543.32 10 19 2+ / y5 SPASLR 20 49.5 

BAA87821.1 

-Neurexin-1 

515.25 784.4 12.72 28 2+ / y6 TGSISFDFR 5168 14.5 

516.3 918.5 15.67 28 2+ / y9 ITTQITAGAR 4064 10.1 

559.32 777.41 18.44 30 2+ / y7 NIIADPVTFK 2396 6.7 

380.24 545.34 12.36 22 2+ / y5 LTLASVR 1647 10.7 

623.29 869.43 15.58 32 2+ / y7 FNDNAWHDVK 1137 2.7 

500.75 742.41 17.76 27 2+ / y6 EEYIATFK 1062 20.1 

547.3 820.49 15.3 29 2+ / y7 SADYVNLALK 976 2.6 

547.3 935.52 15.3 29 2+ / y8 SADYVNLALK 777 15.4 

435.76 563.36 14.11 24 2+ / y5 IHGVVAFK 679 2.8 

559.32 706.38 18.44 30 2+ / y6 NIIADPVTFK 662 17.9 

516.3 716.4 15.67 28 2+ / y7 ITTQITAGAR 611 15.2 

507.76 899.49 14.75 27 2+ / y8 DTSNLHTVK 585 1.9 

511.76 794.4 13.18 28 2+ / y7 DLFIDGQSK 550 15.8 

387.21 660.33 12.58 22 2+ / y6 LELDAGR 516 1.5 

524.29 689.39 16.29 28 2+ / y6 SGTISVNTLR 457 12.4 

511.78 707.41 13.06 28 2+ / y7 SDLYIGGVAK 440 55 

778.37 1056.49 16.5 43 3+ / y8 

GPETLFAGYNLNDNE

WHTVR 438 5.7 

524.29 802.48 16.29 28 2+ / y7 SGTISVNTLR 431 0.8 

689.86 949.5 16.98 35 2+ / y8 NTTLFIDQVEAK 401 5.5 

387.21 599.3 12.58 22 2+ / b6 LELDAGR 344 1 

524.29 903.53 16.29 28 2+ / y8 SGTISVNTLR 294 11.8 
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500.75 871.46 17.76 27 2+ / y7 EEYIATFK 280 6.6 

263.64 379.21 20.13 17 2+ / y3 FGFR 273 32.6 

632 1161.63 17.82 36 3+ / y11 

GYLHYVFDLGNGAN

LIK 204 1.4 

260.64 391.23 17.38 16 2+ / y3 EPFK 123 48.3 

272.64 416.21 17.73 17 2+ / y4 QGDPK 80 100 

260.64 374.17 17.38 16 2+ / b3 EPFK 55 97.7 

263.64 352.17 20.13 17 2+ / b3 FGFR 40 100 

309.18 504.28 9.87 19 2+ / y4 LELSR 40 100 

259.16 343.2 7.23 16 2+ / b3 TLQR 40 100 

324.15 532.26 8.19 19 2+ / y4 DGWNR 27 100 

270.64 310.18 10.1 17 2+ / y2 ETYK 27 100 

266.16 474.28 7.46 17 2+ / y3 GWIR 13 100 

Notes: 
1
, RT, retention time detected for a peak matching the transitions listed that subsequently 

was found to not match the specific protein of interest; 
2
, CE, collision energy, V. 

 

Fig. 4.8. Validation of transitions by examination of the full MS/MS spectrum during 

MRM set-up. Example of manual sequencing for a peptide (ELVDQDIQPAR) that 
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could not be identified by MASCOT search. The fragment ion for the peptide was 

determined using the web-base fragment ion calculator 

http://db.systemsbiology.net:8080/proteomicsToolkit/FragIonServlet.html. The table 

at the top right shows the b/y ions obtained from the fragment ion calculator for the 

peptide. A peak that matched the calculated b- and y-ion masses was searched on a 

MS/MS spectrum. 

 

Fig. 4.9. Validation of the transitions by examination of the full MS/MS spectrum in 

the MRM set-up. Example of manual sequencing for a peptide (QQPSPFSVDQR) 

peptide that could not be identified using MASCOT search. Detail as for Fig. 4.8. 

The IDA results from in-solution samples were searched using both MASCOT and Protein 

Pilot software. This approach detected several hundred proteins that are listed in Supplementary 

Table 4.3 in the Appendix for this chapter. However, none of the proteins of interest (neuroligin-1, 

neuroligin-2 or -neurexin) was found in the search lists. This could be due to the complexity of the 

http://db.systemsbiology.net:8080/proteomicsToolkit/FragIonServlet.html
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sample or to the low abundance of these proteins. Hence, SCX fractionation was used prior to mass 

spectrometry. Data obtained were searched using both MASCOT and Protein Pilot. Again, more than 

200 proteins were identified that did not include the proteins of interest (Supplementary Table 4.4 in 

the Appendix for this chapter). 

A final approach used to find these proteins was SDS-PAGE separation and in-gel digestion. 

Sections of gel representing proteins around 100 kDa in size was excised and the protein extracted. 

MASCOT search identified all five neuroligin proteins (neuroligin-1, -2, -3, -4 and -4Y). However, 

each protein identification was based on only one or two peptides, with one peptide in common to all 

five proteins. This meant that no unique peptide was detected for any individual protein. Some of the 

scores of peptides matching to neuroligin proteins were very low, such as 6, 1 and 2 for neuroligin-1, 

neuroligin-2 and neuroligin-3 respectively, which is not reliable data for quantification (Table 4.5). 

Table 4.5. Neuroligin peptides obtained from in-gel digestion. 

Query Observed Mr(expt) Mr(calc) ppm Miss Score Expect Rank Unique Peptide 

NLGN1_HUMAN: Mass: 94574 Score: 74 Matches: 4(2) Sequences: 2(1) emPAI: 0.03 

6676 723.4040 1444.7934  1444.8038 –7.16 0 6 19 1 U K.GNYGLLDLIQALR.W 

6934 738.9209  1475.8272  1475.7984 19.5 0 49 0.00064 1 – R.LGVLGFLSTGDQAAK.G 

NLGN2_HUMAN: Mass: 91333 Score: 218 Matches: 7(5) Sequences: 3(2) emPAI: 0.07 

2802 562.3078  1122.6010  1122.5822  16.8 0 1 96 8 U R.FPVVNTAYGR.V 

6790 730.9128  1459.8110  1459.7783  22.4 0 90 5.110
–8

 1 – K.GNYGLLDQIQALR 

6934 738.9209  1475.8272  1475.7984  19.5 0 49 0.00064 1 – R.LGVLGFLSTGDQAAK 

NLGN3_HUMAN: Mass: 94463 Score: 168 Matches: 5(3) Sequences: 3(1) emPAI: 0.03 

6790 730.9128 1459.8110  1459.7783  22.4 0 90 5.110
–8

 1 – K.GNYGLLDQIQALR 

7434 766.9205  1531.8264 1531.8722  –29.87 1 20 0.59 2 U R.LTALPDYTLTLRR 

8480 846.9831 1691.9516 1691.9433  4.95 0 2 23 8 U R.SLCLTLWFLSLALR 

NLGN4_HUMAN Mass: 92427 Score: 213 Matches: 6(5) Sequences: 2(2) emPAI: 0.07 

6790  730.9128  1459.8110  1459.7783  22.4 0 90 5.110
–8

 1 – K.GNYGLLDQIQALR.W 

7090 745.9289  1489.8432  1489.8140  19.6 0 54 0.00016 1 U R.LGILGFLSTGDQAAK.G 

4.4.1 Identification of other synaptic proteins by these methods 

Several hundred membrane proteins as well as synaptic proteins were identified using 

quadrupole Triple TOF 5600 mass spectrometry and MASCOT search with the different approaches 
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utilized. Examples of these were synapsin-1, Vesicle-associated membrane protein 2, excitatory 

amino acid transporter 1 and 2, synapsin-2, synaptosomal-associated protein 25, septin-5 and -9, 

synaptic vesicle membrane protein, synaptic vesicle glycoprotein, synaptophysin, neural cell 

adhesion molecule, cadherin and vesicular glutamate transporter 3. These proteins were detected 

with sufficient number of unique peptides and a high score of identity. An example is shown below: 

Protein View: EAA2_HUMAN; Excitatory amino acid transporter 2 OS=Homo sapiens 

GN=SLC1A2 PE=1 SV=2; Database: SwissProt; Score: 58; Nominal mass (Mr): 62577; Calculated 

pI: 6.09; Taxonomy: Homo sapiens; Protein sequence coverage: 6% 

Matched peptides are shown in bold. 

1 MASTEGANNM PKQVEVRMHD SHLGSEEPKH RHLGLRLCDK LGKNLLLTLT 

51 VFGVILGAVC GGLLRLASPI HPDVVMLIAF PGDILMRMLK MLILPLIISS 

101 LITGLSGLDA KASGRLGTRA MVYYMSTTII AAVLGVILVL AIHPGNPKLK 

151 KQLGPGKKND EVSSLDAFLD LIRNLFPENL VQACFQQIQT VTKKVLVAPP 

201 PDEEANATSA VVSLLNETVT EVPEETKMVI KKGLEFKDGM NVLGLIGFFI 

251 AFGIAMGKMG DQAKLMVDFF NILNEIVMKL VIMIMWYSPL GIACLICGKI 

301 IAIKDLEVVA RQLGMYMVTV IIGLIIHGGI FLPLIYFVVT RKNPFSFFAG 

351 IFQAWITALG TASSAGTLPV TFRCLEENLG IDKRVTRFVL PVGATINMDG 

401 TALYEAVAAI FIAQMNGVVL DGGQIVTVSL TATLASVGAA SIPSAGLVTM 

451 LLILTAVGLP TEDISLLVAV DWLLDRMRTS VNVVGDSFGA GIVYHLSKSE 

501 LDTIDSQHRV HEDIEMTKTQ SIYDDMKNHR ESNSNQCVYA AHNSVIVDEC 

551 KVTLAANGKS ADCSVEEEPW KREK 
  

4.5 Discussion 

The purpose of the study in this chapter was to validate the quantifications of neuroligin, and 

neurexin proteins in human autopsy brain tissues from AD cases and controls performed in chapter 3. 

It is essential to use more accurate and sensitive techniques to validate the immunoblotting approach, 

due to the possibility of off-target antibody binding. The study aimed to demonstrate the feasibility 

of isolating the neurexin-neuroligin complex from autopsy specimens for quantitative mass 

spectrometric proteomic analysis. MRM was chosen for its advantages of capacity for high 
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throughput in quantification and ability to detect up to 100 proteins in complex mixtures (Picotti et 

al., 2009), and its good reproducibility across laboratories (Addona et al., 2009). 

Autopsy brain whole-membrane samples from hippocampus, occipital cortex and inferior 

temporal cortex were and trypsin-digested for mass spectrometry for MRM quantification of the 

proteins. Samples were run on the QTRAP 5600 for MIDAS analysis and various transitions from 

each protein were obtained. Due to the possibility of incorrect signals derived from other peptides 

with precursor/fragment ion pairs of similar m/z values for the specific transitions, validation of the 

transitions obtained were performed both by the parallel acquisition of multiple transitions approach 

and by scanning the full MS/MS spectra manually. Unfortunately, neither approach matched the 

transitions to the proteins of interest, which may suggest that these proteins are of very low 

abundance in brain samples. In consequence I could not use MRM for quantification. 

Although MRM is very powerful for proteomics and can detect scarce proteins, it has some 

limitations. For each protein, at least two peptides are required to confirm the identity of the protein 

of interest and determine its quantity. It is necessary to differentiate between correctly identified 

peptides and false positives: digested peptides can share considerable homology. MRM results can 

be degenerate if there are sequence similarities between the target peptide and any other peptide in 

the sample. In the current study, I could not obtain any transitions matching the protein of interests 

due to variations in the elution time of the same transitions. This was confirmed by full MS/MS 

spectra manual sequencing. As a result the technique could not be used. 

Alternatively, I attempted to use SWATH, which is a new technique introduced for targeted 

protein quantification to provide MRM-like reproducibility but with higher multiplexing. Samples of 

hippocampus, occipital cortex and inferior cortex from AD cases and controls were prepared in 

solution form (The preparation of these samples resemble that for MRM). To perform SWATH to 

quantify proteins of interest, samples should be run on an HPLC system connected to a quadrupole 

triple TOF mass spectrometer to obtain data using an information dependent acquisition mode to 

generate MS/MS spectra based on the precursor ions detected in the sample. These data were 
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subsequently analysed using Protein Pilot software and the MASCOT search algorithm to identify 

the proteins. Unfortunately, none of the proteins of interest was found in any of the samples run on 

the mass spectrometer. Nevertheless, several hundred proteins were identified in the sample mixture. 

Proteomics based on mass spectrometry can to detect and identify very small amounts of 

proteins in the femtomole to attomole range, but sample complexity can result in difficulties in 

detecting and quantifying proteins present at two to three orders of magnitude lower than the most 

abundant ones. Hence, extensive fractionation is crucial to reduce the concentration range and 

improve the coverage of the proteins in the sample mixture. SCX fractionation was used in the 

current study to overcome this problem. After fractionation the peptides were run on an HPLC 

system connected to a Triple TOF mass spectrometer. Data were analysed using both MASCOT 

search and Protein Pilot software. Many proteins were identified using this approach, but none of 

them was a protein of interest. 

Finally, an alternative approach was used to fractionate the sample mixture, in-gel digestion. 

This is a popular sample preparation method that offers a simple way of protein pre-fractionation 

based on size. Subsequent gel excision of the approximate range of the protein of interest means the 

removal of low- and high-molecular weight proteins irrelevant to the project. In-gel digestion was 

combined with a gel-staining protocol that does not interfere with protein digestion (Vasilj et al., 

2012, Piersma et al., 2013). After the extraction of proteins at the expected molecular weight from 

the gel, samples were run on an HPLC system connected to a Triple TOF mass spectrometer. Data 

were analysed using both MASCOT search and Protein Pilot software. This approach gave fewer 

proteins, but all neuroligin isoforms were found in Mascot search but not in ProteinPilot software. 

On closer inspection, only two peptides were obtained for neuroligin-1 and neuroligin-4 and three 

peptides for neuroligin-2 and neuroligin-3. As mentioned above, uniqueness of the peptides to the 

protein of interest is crucial to the assay. I found one peptide in common to all four proteins 

(GNYGLLDLIQALR), which left neuroligin-1 and neuroligin-4 with only one peptide and 

neuroligin-2 and neuroligin-3 with 2 peptides in total. The confidence in the identification scores for 

the remaining peptides was very low, and did not allow me to confirm that these peptides belong to 
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the proteins of interest. In consequence, I could not use SWATH to quantify neuroligins and 

neurexins in AD cases and controls. 

The inability to detect a sufficient number of peptides in neuroligin-1, neuroligin-2 and -

neurexin-1 could reflect their relatively low abundance in the synaptic membrane. It is also possible 

that some of these proteins migrate with more-abundant proteins and are thus difficult to detect by 

mass spectrometry. It is noteworthy that the low abundance of a protein in a membrane preparation 

does not necessarily indicate that it is absent from the synaptic terminal in vivo. It is more likely that 

the association of some proteins with other synaptic proteins is disrupted by extraction with the 

reagents used in the methodology. The inability to detect neurexins and neuroligins in the current 

study conforms to a previous report on the identification of proteins in the postsynaptic density 

fraction by mass spectrometry (Walikonis et al., 2000). Multiple synaptic proteins located at the post 

synaptic density could not be identified, such as SHANK, GKAP, PSD-95 and SAP102 (Müller et 

al., 1996), even though they have been reported to be enriched in PSD. This is interesting because 

neuroligin binds to PSD-95 via its PDZ domains, and PSD-95 in turn, interacts with GKAP and 

SHANK, which lie deep in the PSD. GKAP and SHANK also bind through their PDZ domain to the 

C terminus of PSD-95. All these proteins are located in the PSD and attached to each other, and their 

strong association to the synaptic membrane could prevent their extraction by the protocols used 

here. Additional methods, such as high-resolution immunolocalization, will be needed to ascertain 

the full protein composition of the synaptic proteome. Increasing the amount of starting material or 

modifying the fractionation strategy, such as immunoprecipitation followed by mass spectrometry, 

might be worth pursuing in the future. 

4.6 Supplementary material for Chapter 4 Appendix 

Table 4.3. Membrane proteins identified using in-solution detection. 

Table 4.4. Proteins identified by MASCOT search using SCX fractionation. 
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Chapter 5 

5  Quantification of neuroligin-1, neuroligin-2 and -neurexin-1 mRNA 

5.1 Aim of the research 

1. To assay NLGN-1, NLGN-2 and -NRXN-1 messenger RNA (mRNA) transcript expression in 

human autopsy brain tissue in AD cases and matched controls. 

2. To compare transcript expression across the three brain regions studied. 

3. To evaluate the impact of age, gender, and post-mortem delay on transcript expression 

4. To assess transcript expression according to severity of AD pathology and APOE genotype. 

5.2 Introduction 

To understand the biological machinery involved in neuronal survival and death, it is 

important to study gene expression to gain information about cellular pathways. Neuronal functions 

and behavioural alterations in an organism are modified by gene expression and the resulting 

functional consequences. The death of a neuron can be mediated by disorders in processes that are 

derived from altered gene expression, which can lead to functional changes. Cellular pathways in the 

brain are highly regulated, and minor alterations in mRNA expression can have strong effects. To 

understand AD ætiology and disease progression, and to aid the development of new therapeutics, 

the characterization of changes in cellular and molecular pathways responsible for neuronal survival 

will provide relevant information. Small changes in gene expression can have large impacts on 

cellular pathways. Alterations of many synaptic proteins involved in mechanisms of plasticity, 

memory, and learning have been studied at the level of gene transcription. These changes could play 

roles in synaptic damage. Nerve-endings require mRNA to express the proteins required for synaptic 

activity. Impairment of LTP occurs prior to neuronal loss in hippocampal neurons harvested from 

transgenic AD animal models; by analogy, altered gene expression could be implicated in cognitive 

impairment in AD. Comparisons of confirmed AD cases and controls using autopsy brain tissue have 

shown differences in the expression of genes involved in memory processing and learning. Most of 

these studies report down-regulation of these genes in the AD cases. 
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The structure of the human brain is complicated and heterogeneous. Advanced technologies 

can be used to quantify transcript expression, including high-throughput gene expression assays 

(microarrays). Microarray techniques allow researchers to analyse thousands of mRNA transcripts 

and portray patterns of differentially regulated genes in the disease state. The techniques produce a 

huge amount of information that highlights pathogenic pathways. A limitation of the microarray 

approach is the inability to distinguish between gene variants that arise by alternate RNA splicing. 

Techniques that can be used to validate high-throughput assays include Northern blot, quantitative 

real time reverse-transcription (RT)-PCR (Gutala and Reddy, 2004, Reddy et al., 2004, Therianos et 

al., 2004) and in situ hybridization (Mirnics et al., 2000, Yang et al., 1999). Each technique has 

advantages and limitations. Northern blotting, for example, uses electrophoresis to separate RNA 

transcripts by size, and the transcripts of interest are detected by probe hybridization. This technique 

can determine minor changes that RNA microarrays cannot, and can yield data about the size of the 

transcript, but has low sensitivity, is time consuming, and needs large amounts of RNA. The last-

mentioned is an issue with the limited amounts of starting material available from autopsy tissues. In 

situ hybridization can be used to determine the location and distribution of mRNA transcripts across 

tissues, but its facility for quantifying the transcript is low. End-point relative RT-PCR quantifies the 

transcript at the final stage of a PCR reaction on a DNA acrylamide gel. This technique has some 

limitations such as limited dynamic range and resolution, poor precision, and it requires post-PCR 

processing. 

Real time RT-PCR is considered the most sensitive quantitative gene transcription assay. It 

has a broad (10
7
) dynamic range and allows the measurement of both abundant and scarce transcripts 

(Higuchi et al., 1992). There are two RT-PCR chemistry strategies available: fluorescent probes such 

as TaqMan®, Molecular Beacons, or Scorpions®, and the SYBR® Green method. The SYBR® 

Green I method utilizes a DNA binding dye that intercalates into the minor groove of double-

stranded DNA as the fluorescent reporter. During amplification of the target sequence by PCR, 

SYBR® Green I attaches to the amplified sequence and then fluoresces, so that as the amplicon 

concentration increases following each PCR cycle, the fluorescence increases proportionally and can 
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be quantified. Although this method is cost effective it has the disadvantage that the probe binds to 

all double-stranded DNA, including primer-dimers and any non-specific products present, some of 

which cannot be effectively removed from the assay. 

RT-PCR quantification by the gene-specific TaqMan® probe and primer method has 

advantages for quantitative gene expression studies. The assay comprises an 6-carboxyfluorescein 

(FAM™) dye-labelled TaqMan® minor groove binder (MGB) probe and two PCR primers 

combined in one tube. As the specific target is amplified the probe gets cleaved, decoupling the 

fluorescent and quencher moiety and preventing fluorescence resonant energy transfer, so the total 

reaction fluorescence increases with each amplification cycle. The fluorescence increase takes place 

in proportion to the original concentration of target mRNA present, which can be accurately 

quantified. The assay is optimized to run under universal thermal cycling conditions with a final 

reaction concentration of 250 nM for the probe and 900 nM for each primer. The technique has 

several advantages over the SYBR Green method in that it is customized, fast, and easy to set up. It 

is specific and sensitive as well as cost effective compared with microarrays. The TaqMan® probe 

and primer RT-PCR assay was chosen for the study. 

RT-PCR quantification can be either relative or absolute. In relative qRT-PCR the level of 

the target gene is normalized to a housekeeper reference gene that is uniformly expressed across all 

samples. Unfortunately, the levels of many commonly used housekeeper genes, which are involved 

in energy metabolism, cell cycling, communication, and cytoarchitecture, differ between AD cases 

and controls (Gebhardt et al., 2010). Absolute qRT-PCR is more accurate because it utilizes a 

standard curve of known concentrations of either RNA or DNA to quantify the target gene. Most 

absolute quantification methods use known concentrations of recombinant plasmids that contain the 

transcript of interest to calculate the copy number of the transcript in each unknown sample. In the 

current study I chose this approach. An absolute TaqMan qRT-PCR assay was developed to quantify 

the levels of neuroligin-1, neuroligin-2 and -neurexin mRNA transcript in autopsy brain tissue from 

AD cases and controls. 
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5.3 Methods 

5.3.1 Tissue collection and storage 

See Chapter 3, Section 3.2.1. 

Table 5.1. Details of AD cases and controls. 

#  Age, y PMD, h Gender ApoE Pathological score 

     
Hipp ITC OCC 

AD cases 
 

AD1 65 34.83 M 3,4 3 3 1 

AD2 82 54.92 M 3,4 3 3 1 

AD3 79 26.33 M 4,4 3 3 1 

AD4 91 48.00 F 3,3 3 3 1 

AD5 86 35.50 F 3,3 2 2 1 

AD6 81 1.67 F 3,3 1 2 1 

AD7 82 41.25 F 3,4 3 3 3 

AD8 75 4.00 M 4,4 3 3 1 

AD9 82 15.38 F 3,3 2 1 1 

AD10 66 18.83 M 3,4 3 3 1 

AD11 78 7.50 F 2,3 3 3 0 

AD12 77 19.50 M 2,3 3 3 2 

AD13 84 25.40 M 4,4 3 2 3 

AD14 72 80.00 M 4,4 3 3 2 

Average  78.7 ± 7.1 29.67 ±21 8M, 6F     

Normal controls 
      

NC1 78 4.00 F 3,4 0 0 0 

NC2 87 21.50 F 2,3 1 0 0 

NC3 82 46.83 M 3,3 0 0 0 

NC4 85 24.50 M 2,3 0 0 0 

NC5 75 24.43 F 3,3 0 0 0 

NC6 68 43.66 F 3,4 0 0 0 

NC7 72 15.41 F 3,3 1 0 0 

NC8 71 7.75 F 3,4 0 0 0 

NC9 78 16.25 M 3,3 0 0 0 

NC10 68 28.16 M 2,2 0 0 0 

NC11 76 24.00 F 3,3 0 0 0 

NC12 73 85.15 M 2,3 1 0 0 

NC13 77 18.00 F 3,4 0 0 0 

NC14 80 47.15 M 3,3 0 0 0 

Average 76.6 ± 5.5 24.8 ± 12.8 6M, 8F     
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5.3.2 Case selection and neuropathological classification 

Fourteen AD cases and 14 controls were selected and matched as closely as possible for age, 

PMD and gender. The average age at death for AD cases was 78.7 years, for controls 76.6 years. The 

average post-mortem delay for the AD cases was 29.7h, for controls 24.8h. Tissue from the three 

different areas used in other Chapters was obtained from each brain, although some AD cases were 

replaced because of a lack of available tissue. Each area of each brain was given a neuropathological 

severity score from 0-3 based on AD hallmarks, which are the severity of neuronal loss and the 

abundance NFTs and A (Table 5.1). 

5.3.3 RNA extraction 

RNA was extracted from frozen tissue that had been stored in 0.32 M sucrose at –80°C. The 

TRIzol® (Invitrogen) extraction protocol was used according to the manufacturer’s instructions. 

Tissue pieces were rapidly thawed and homogenized on ice in 10 (w/v) of TRIzol® using a 

Polytron® homogenizer (Kinematica). The homogenate was incubated for 5 min at room temp., 0.2 

(v/v) of chloroform was added, the mixture incubated at room temp. for 2–3 min with shaking, then 

centrifuged for 20 min at 10 000  g at 4°C and the aqueous phase transferred to a new tube. A one-

tenth volume of isopropanol was added and the mixture incubated at room temp. for 10 min. To 

deposit the RNA, samples were centrifuged at 10 000  g for 15 min at 4°C. The pellet was 

resuspended in 1 ml of 75% ethanol and the mixture centrifuged at 10 000  g for 20 min at 4°C. The 

pellet was dried, resuspended in 50 µl of nuclease-free MilliQ H2O, and incubated for 10 min at 

60°C. 

5.3.4 RNA integrity 

The quality of the RNA was tested by electrophoresis on a 1.5% agarose/2.2 M formaldehyde 

gel. The integrity of the RNA was checked using an Agilent RNA 6000 Nano kit as per the 

manufacturer’s instructions. The Agilent software gives an RNA integrity number (RIN) between 1 

and 10, where 1 is the poorest quality and 10 is the best (Imbeaud et al., 2005). RNA samples with a 
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RIN below 2 were discarded. The quantity of RNA was measured by UV spectrometry at the 

absorbance wavelengths () 240, 280 and 320 nm. 

5.3.5 Reverse transcriptase 

To remove contaminating genomic DNA, DNase was added (1 µl of 10 DNase I reaction 

buffer, Fermentas) was added to each 3 µg of RNA and the mixture incubated with 40 U of RNase 

OUT (Fermentas) and 1 U of RNase-free DNase (Fermentas) for 30 min at –37°C. EDTA was added 

to a final concentration of 2.27 mM and the incubation continued for 5 min at 75°C. 

The synthesis of cDNA was conducted by adding 0.82 µg of DNase and 300 µM dNTPs 

(Promega), 1 µg of Oligo (dT) 12–18 primers (Promega) and 0.5 µg of random hexamers (Promega) 

to the RNA. The volume adjusted to 12 µl with nuclease-free MilliQ H2O and the mixture incubated 

for 5 min at 65°C. 5 first-strand buffer, 4.8 mM DTT, 40 U of RNaseOUT and 400 U of Superscript 

III Reverse Transcriptase® (Invitrogen) were added and the mixture incubated for 5 min at 25°C, 

then for 60 min at 50°C, then for 15 min at 70°C. To remove contamination 2 U of DNase-free 

ribonuclease H (Invitrogen) was added and the incubation continued for 20 min at 37°C. The cDNA 

was stored in –80°C. 

5.3.6 Standard preparation and dilution 

NLGN-1 and NLGN-2 standards were prepared by the method outlined in Chapter 2, Section 

2.2.1. QIAprep Spin Miniprep kits (QIAGEN) were used to purify high-copy plasmid DNA. The 

concentrations of the plasmids were measured by nanodrop and aliquots of the dilutions were kept at 

–80°C to prevent degradation and avoid experimental variation between RT-PCR assays 

(Dhanasekaran et al., 2010). A fresh aliquot of each standard was used for each RT-PCR assay. 

-NRXN-1 plasmid was obtained from GeneArt® Gene Synthesis (Life Technologies). The 

following is the sequence of the-NRXN-1 standard used: 

1 CCCCGCCATG TACCAGAGGA TGCTCCGGTG CGGCGCCGAG CTGGGCTCGC CCGGGGGCGG 

61 CGGCGGCGGC GGCGGCGGCG GCGGCGCAGG GGGGCGCCTG GCCCTGCTTT GGATAGTCCC 

121 GCTCACCCTC AGCGGCCTCC TAGGAGTGGC GTGGGGGGCA TCCAGTTTGG GAGCGCACCA 
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181 CATCCACCAT TTCCATGGCA GCAGCAAGCA TCATTCAGTG CCTATTGCAA TCTACAGGTC 

241 ACCGGCATCC TTGCGAGGCG GACACGCTGG GACGACATAT ATCTTTAGCA AAGGTGGTGG 

301 ACAAATCACG TATAAGTGGC CTCCTAATGA CCGACCCAGT ACACGAGCAG ACAGACTGGC 

361 CATAGGTTTT AGCACTGTTC AGAAAGAAGC CGTATTGGTG CGAGTGGACA GTTCTTCAGG 

421 CTTGGGTGAC TACCTAGAAC TGCATATACA CCAGGGAAAA ATTGGAGTTA AGTTTAATGT 

481 TGGGACAGAT GACATCGCCA TTGAAGAATC CAATGCAATC ATTAATGATG GGAAATACCA 

541 TGTAGTTCGT TTCACGAGGA GTGGTGGCAA TGCCACGTTG CAGGTGGACA GCTGGCCAGT 

601 GATCGAGCGC TACCCTGCAG GGCGTCAGCT CACAATCTTC AATAGCCAAG CAACCATAAT 

661 AATTGGCGGG AAAGAGCAGG GCCAGCCCTT CCAGGGCCAG CTCTCTGGGC TGTACTACAA 

721 TGGCTTGAAA GTTCTGAATA TGGCAGCCGA AAACGATGCC AACATCGCCA TAGTGGGAAA 

781 TGTGAGACTG GTTGGTGAAG TGCCTTCCTC TATGACAACT GAGTCAACAG CCACTGCCAT 

841 GCAATCAGAG ATGTCCACAT CAATTATGGA GACTACCACG ACCCTGGCTA CTAGCACAGC 

901 CAGAAGAGGA AAGCCCCCGA CAAAAGAACC CATTAGCCAG ACCACAGATG ACATCCTTGT 

961 GGCCTCAGCA GAGTGTCCCA GCGATGATGA GGACATTGAC CCCTGTGAGC CGAGCTCAGG 

1021TGGGTTAGCC AACCCAACCC GAGCAGGCGG CAGAGAGCCG TATCCAGGCT CAGCAGAAGT 

1081 GATCCGGGAG TCCAGCAGCA CCACGGGTAT GGTCGTTGGG ATAGTAGCCG CTGCCGCCCT 

1141 GTGC 

5.3.7 Taqman PCR assay 

Assays were carried out in duplicate on MicroAmp® optical 384-well reaction plates 

(Applied Biosystems) on an ABI Prism® 7900HT Sequence Detection System. cDNA was diluted 

1:8; 2 µl was added to each 10 µl reaction mix containing 5 µl PCR universal master mix (Applied 

Biosystems), 0.5 µl of primer probes (NLGN1: Hs00208784_m1; NLGN2: Hs00395803_ml; 

NRXN1: Hs00373346_m1; and RPL13; Life Technologies). An EpMotion 5075 robotics system 

(Eppendorf South Pacific P/L, North Ryde, NSW, Australia) was used to ensure accurate pipetting. 
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5.3.8 Data Analysis 

Multiple comparisons were evaluated by ANCOVA and ANOVA using the SPSS (Chicago, 

IL, USA) and Statistica (Tulsa, OK, USA) software packages with appropriate post-hoc tests. 

Differences were considered statistically significant at P < 0.05. 

5.4 Results 

RT-PCR assays were utilized to measure the absolute expression of NLGN1, NLGN1 and 

NRXN1 transcxripts in RNA extracted from samples of hippocampus, inferior temporal cortex and 

occipital cortex from AD and control subjects. The absolute quantities of the three trancripts were 

calculated by interpolation from their respective known plasmid copy-number standard curves based 

on their observed Ct value (Fig. 5.1). 
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Fig. 5.1. Standard curves for absolute quantification. Standards, black squares, 

unknowns, red crosses; A, neuroligin-1, B, neuroligin-2, C, -neurexin-1. 

5.4.1 Data distribution 

Normal probability plots of non-adjusted levels of NLGN1, NLGN2 and NRXN1 showed 

positively skewed distributions that deviated significantly from normal (Fig. 5.2). 
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Fig. 5.2. Normal probability plots of transcript expression. A, NLGN1, B, NLGN2, C, 
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NRXN1 across the three areas. Shapiro-Wilks testing showed that all traces deviated 

significantly from the normal distribution, as shown in the in-graph boxes. 

Transforming the values using the Box-Cox algorithm, available in the Statistica package, 

stabilized the variances and corrected the distributions (Fig. 5.3). This permitted parametric statistics 

to be used for the rest of the analyses, which was critical because the aim of the study was to 

undertake a quantitatve assessment of expression in AD cases and controls. 
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Fig. 5.3. Normal probability plots of Box-Cox transformed data. A, NLGN1, B, 

NLGN2, C, NRXN1. Details as for Fig. 5.1. Shapiro-Wilks tests showed that no trace 



P a g e  | 133 

deviated significantly from the normal distribution, as shown in the in-graph boxes. 

Table 5.2. RNA integrity number 

 AD Cases 
 

 Controls 

 HP OC ITC  HP OC ITC 

AD1 3.3 4.8 4.5 NC1 6.3 6.4 7 

AD2 4.7 5 4.8 NC2 4.8 2.3 4.8 

AD3 4.7 5.3 4.6 NC3 6 5.9 6.6 

AD4 4.9 5 5.3 NC4 3.4 5.1 4.1 

AD5 5 5.9 5 NC5 6.1 6.8 7 

AD6 5.3 4.8 5 NC6 3.9 3.4 4.5 

AD7 5 5 3.2 NC7 6.2 7 5.8 

AD8 4.7 3.6 4.8 NC8 2.2 3.8 3.2 

AD9 5.1 5.5 5.7 NC9 5.1 4.6 5.4 

AD10 3.2 2.5 2.7 NC10 4.4 3 4.3 

AD11 2.9 2.6 3.4 NC11 5.9 6.8 6.2 

AD12 2.6 3.8 2.7 NC12 4.9 3 4 

AD13 3.5 3.3 2.9 NC13 5.3 4.6 5.3 

AD14 4.3 4.2 3.5 NC14 5.5 4.8 4.5 

5.4.2 RNA integrity 

RNA integrity was estimated in each sample to check whether the quality of the RNA would 

impact the concentration of transcripts measured (Table 5.2). A number of studies have reported on 

the impact of age at death and PMD on the quality of the mRNA, and shown that neither has a 

marked effect (Chevyreva et al., 2008, Harrison et al., 1991). RNA in autopsy tissue is stable for up 

to 120h post-mortem (Hynd et al., 2003). In this study regression analyses showed that post-mortem 

delay had no effect on the integrity of RNA (F1,82 = 0.146, P = 0.70), while age showed a just-

significant effect on RIN (F1,82 = 3.757, P = 0.056; Fig. 5.4). RIN was normally distributed (Fig. 5.5) 
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Fig. 5.4. Scatterplots of RIN against A, age, B, PMD. 
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Normal Probability Plot of RIN
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 RIN:  SW-W = 0.974, p = 0.0863  

Fig. 5.5. Normal probability plot of RIN. Data did not deviate significantly from the 

normal distribution by Shapiro-Wilks testing as shown in the in-graph box. 

5.4.3 Reference gene (RPL13 expression) 

There are several housekeeper genes that are uniformly expressed across many tissue and cell 

types, such as glyceraldehyde-3-phosphate dehydrogenase (GAPDH), HSP90, CYC1, EIF4A2 and -

actin. However, the expression of these genes may vary depending on experimental and pathological 

conditions. In the RT-PCR assay, there is no universal reference gene suitable for all experimental 

conditions. Careful validation of housekeepers should be performed to choose the most appropriate. 

Differences in the expression of the reference gene between study samples and controls can 

profoundly compromise interpretation. Most RT-PCR studies in the literature use GAPDH 

(NM_002046.3) as the reference gene for normalization. In AD, reduced synthesis of GAPDH 

mRNA, abnormal aggregation of GAPDH protein in the nucleus of, and increased activity of the 

enzyme cells have been observed in diseased tissues, suggesting a direct or indirect relationship of 

GAPDH with the neurodegenerative process. This makes GAPDH unsuitable as a reference gene in 
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this study. The housekeeping gene that showed the most constant expression in AD cases and 

controls in autopsy tissues was RPL13, which is a component of the 60S ribosomal subunit 

(Gebhardt et al., 2010). In this study RPL13 was used as a housekeeper. Its expression across 

samples showed no overall difference between AD cases and controls (F1,80 = 0.078, P = 0.78; Fig. 

5.6). No variation in RPL13 expression was observed between cases and controls in any brain area 

(F2,50 = 0.092, P = 0.91; Fig. 5.7). 

 

Fig. 5.6. RPL13 expression by case-group. 

 

Fig. 5.7. RPL13 by case-group across brain regions. 
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(F1,82 = 0.010, P = 0.92; F1,82 = 3.921, P = 0.051 respectively; Fig. 5.8). 

 

 

Fig. 5.8. Regression of RPL13 CT value on A, PMD and B, Age. 
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No significant association was observed between PMD and the expression of NLGN1 (F1,82 = 

0.004, P = 0.94), NLGN2 (F1,82 = 0.261, P = 0.61) or NRXN1 (F1,82 = 0.011, P = 0.91). NLGN1 

showed a near-significant relation with age (F1,82 = 3.836, P = 0.053), although NLGN2 (F1,82 = 

0.042, P = 0.83) and NRXN1 (F1,82 = 1.375, P = 0.24) did not (Fig. 5.9). As a result age was used as 

a covariant in subsequent analyses for all transcripts. 

5.4.5 Neuroligin-1 transcript expression between cases and controls 

The copy number of NLGN1 transcript was quantified by RT-PCR assay using a standard 

curve with known copy numbers of recombinant plasmid and adjusted for RIN. There was 

significant difference in expression levels averaged across all areas between AD cases and controls 

(F1,82 = 8.978, P = 0.004). The transcript copy number of neuroligin-1 mRNA was lower in AD cases 

and controls (Fig. 5.10). The Group  Area interaction was significant (F2,52 = 4.780, P = 0.012), and 

was probed further by post-hoc testing (Fig. 5.11). The level of neuroligin-1 transcripts measured 

was lowest in the occipital cortex and highest in inferior temporal cortex. 
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Scatterplot of Age against log cn

Beta neurexin-copy number 9v*84c
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Scatterplot of PMD against log cn

Beta neurexin-copy number 9v*84c
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Fig. 5.9. Regression of NLGN1, NLGN2 and NRXN1 transforms on age at death and 

PMD. See text for details. 

 

Fig. 5.10. NLGN1 transcript level by case-group averaged across the three areas. *, 

Significantly different from controls, see text. Bars show mean copy number  10
3
 per 

µg of total RNA ± S.E.M. 
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Fig. 5.11. NLGN1 mRNA copy numbers by case-group and area. Details as for Fig. 

5.10; *, significantly different from controls in the same area, P < 0.05 by Newman-

Keuls post-hoc test. 

5.4.6 Neuroligin-1 transcript expression and gender 

Gender is a significant factor in disease progression, and medications targeting proteins that 

are differentially expressed between males and females may significantly impact treatment (Vina and 

Lloret, 2010). Some genes that shown similar expression levels in both sexes in normal healthy 

controls could be differentially expressed between genders in disease (Vawter et al., 2004). Gender 

may be important in disease progression (Hynd et al., 2003). In this study the main effect for Gender 

was significant (F1,82 = 8.909, P = 0.003) because NLGN1 expression was expression was lower 

overall in males than in females. This pattern was similar in both case-groups: the Group  Sex 

interaction on NLGN1 was not significant (F1,80 = 0.024, P = 0.87), in essence because expression 

was higher in females in both groups, as revealed by post-hoc testing (Fig. 5.12). When samples 

were further divided by area, the NLGN1 copy number was higher in females than in males in all 

three areas and in both groups. This resulted in a non-significant Group  Gender  Area interaction 

(F2,48 = 0.692, P = 0.50), but post-hoc testing showed that regional differences reached significance 

in both hippocampus and inferior temporal cortex (Fig. 5.13). 
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Fig. 5.12. NLGN1 mRNA expression by case-group and sex. Details as for Fig. 5.11; 

*, significantly higher than expression in males in the same case-group, P < 0.05 by 

Newman-Keuls post-hoc test. 

 

Fig. 5.13. NLGN1 expression by case-group, sex, and area. Details as for Fig. 5.11; *, 

significantly different from same-sex controls, and 
†
, opposite-sex AD cases, in the same 

area, P < 0.01 by Newman-Keuls post-hoc testing. 

5.4.7 NLGN1 transcript expression and APOE genotype 

As noted in Chapter 3, not all APOE genotypes were present in the dataset. For statistical 

analysis subjects were divided into two groups: 4 allele carriers and 4 non-carriers. These two 
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of the 4 allele and finally cases with two copies of the 4 allele. Because 2 allele is known to be 

neuroprotective, it was decided that 2,4 carriers resembled 3,3 cases, and as a result these two 

genotypes were combined in the same class. 

NLGN1 expression was significantly lower overall in APOE 4 carriers than in those without 

an 4 allele (F1,82 = 6.203, P = 0.014; Fig. 5.14). The patterns were parallel in AD cases and controls, 

hence the Group  Nº of 4 alleles interaction was not significant (F1,80 = 0.767, P = 0.384) but the 

differences remained significant in AD cases under post-hoc testing (Fig. 5.15). There was no 

significant regional variation in NLGN1 expression pattern (F2,52 = 0.149, P = 0.86; Fig. 5.16), and 

the statistics had insufficient power to find differences between the genotypes within case-groups at 

this level by post-hoc testing. However, there were differences in NLGN1 expression between AD 

cases and matched controls in both hippocampus and inferior temporal cortex in subjects that did not 

carry any 4 allele. 

 

Fig. 5.14. NLGN1 transcript expression by APOE genotype. Display details as for Fig. 

5.10. Subjects were combined across case-groups and divided into those who had no 

(APOE1) or at least one (APOE2) APOE 4 allele; *, significantly different from 

subjects with no 4 allele, P < 0.02, see text. 
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Fig. 5.15. NLGN1 expression by case-group and Nº of APOE 4 alleles. Details as for 

Fig. 5.14; *, significantly different from AD cases with no 4 allele, P < 0.05 by 

Newman-Keuls post-hoc test. 

 

Fig. 5.16. NLGN1 expression by case-group, area, and Nº of APOE 4 alleles. Details 

as for Fig. 5.14; *, significantly different from controls with the same genotype, 

P < 0.02 by Newman-Keuls post-hoc tests. 

5.4.8 NLGN1 expression and disease severity 

AS explained in Chapter 3, only AD cases were analysed by pathological score. Overall, the 

effect of disease severity on NLGN1 expression only trended toward significance (F2,39 =2.973, 

P = 0.062), in part because the generally spared occipital cortex showed a different pattern from the 
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other two areas (Fig. 5.17). In conformity with this regional difference in patter, the PS  Area 

interaction was significant (F4,33 = 3.016, P = 0.031).The level of NLGN1 transcript in inferior 

temporal cortex samples from AD cases at a moderate stage of disease were significantly lower than 

from those with mild disease, and significantly lower again in cases that showed severe disease 

features. Only the latter comparison reached significance in hippocampus (Fig. 5.17). 

 

Fig. 5.17. NLGN1 transcript expression by disease severity. Tissue samples from AD 

cases were divided according to the index of pathological severity as described in the 

text. Newman-Keuls post-hoc testing showed that expression in hippocampus at the 

severe stage was significantly lower than at the moderate stage (P = 0.006). In inferior 

temporal cortex expression was significantly lower at the moderate stage than at the 

mild stage (P = 0.001) and significantly lower again at the severe stage (P = 0.013). 

Expression did not vary significantly with disease severity in AD occipital cortex. 

5.4.9 Neuroligin-2 transcript expression by case-group 

The copy number of neuroligin-2 transcript was quantified by RT-PCR assay as described in 

Methods. Statistical tests were performed on Box-Cox transforms of the values as outlined in Section 

5.4.1 and the means converted to the original scale for presentation. The transcript copy number of 

neuroligin-2 was averaged and quantified across all three areas. Overall, NLGN2 expression was 

significantly lower in AD cases than in controls (F1,82 =23.515, P < 0.001; Fig. 5.18). The Group  
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Area interaction also reached significance (F2,52 =4.345, P =017); although expression was lower in 

AD cases than controls in all areas, it was more marked, and significant, in the two areas most 

affected by disease pathology (Fig. 5.19). 

 

Fig. 5.18. NLGN2 transcript expression by case-group averaged across the three areas. 

Details as for Fig. 5.10; *, significantly different from controls, see text. 

 

Fig. 5.19. NLGN2 mRNA copy numbers by case-group and area. Details as for Fig. 

5.11; *, significantly different from controls in the same area. Post-hoc Newman-

Keuls testing showed significantly lower expression in AD cases than controls in 

hippocampus (P = 0.002) and inferior temporal cortex (P = 0.001). No significant 

difference was found in occipital cortex. 
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5.4.10 Neuroligin-2 transcript expression and gender 

The influence of gender on the expression of NLGN2 transcripts was studied no significant 

difference was found (F1,80 = 0.175, P =0.67). Post-hoc testing showed there were significantly lower 

NLGN2 mRNA levels in in both male and female AD cases than in same-sex controls (Fig. 5.20). 

The Group  Gender  Area interaction was not significant (F2,48 =0.015, P = 0.98) because patterns 

were similar in the three regions, as portrayed by post-hoc testing (Fig. 5.21). 

 

Fig. 5.20. NLGN2 copy numbers by case-group and sex. Details as for Fig. 5.11; *, 

significantly lower than expression in same-sex controls, P < 0.05 by Newman-Keuls 

post-hoc test. 

5.4.11 Neuroligin-2 transcript expression and APOE genotype 

Expression trended lower in AD cases carrying the APOE 4 allele than in non-carrier 

AD cases, but did not reach significance (F1,82 = 3.028, P = 0.08; Fig. 5.22). The Group  Nº 

of APOE alleles interaction was not significant (F1,80 = 0.160, P = 0.68), in essence because 

the same pattern was seen in subjects with the same genotype (Fig. 5.23). The further 

interaction with area was also not significant, for a similar reason (Fig. 5.24). 
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Fig. 5.21. NLGN2 copy numbers by case-group, area, and sex. Details as for Fig. 

5.11; *, significantly lower in AD cases than in same-sex controls by Newman-Keuls 

post-hoc testing, P < 0.001. No other comparison was statistically significant. 

 

Fig. 5.22. NLGN2 transcript expression by APOE genotype. Details as for Fig. 5.14. 
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Fig. 5.23. NLGN2 transcript expression by case-group and the Nº of APOE 4 alleles. 

AD cases and controls were separated by APOE genotype as set out in Fig. 5.14 

legend; *, there was significantly lower expression in AD cases than controls both in 

subjects without an 4 allele (P = 0.014) and those with at least one (P = 0.002) by 

Newman-Keuls post-hoc test. 

 

Fig. 5.24. NLGN2 mRNA copy numbers by case-group, APOE genotype and area. 

Details as for Fig. 5.14; *, in hippocampus, expression was significantly lower in AD 

cases with no 4 alleles than in matched controls, while in inferior temporal cortex 

AD cases with at least one 4 allele showed lower expression than the corresponding 

controls, P < 0.001 by Newman-Keuls post-hoc testing. 
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5.4.12 Neuroligin-2 transcript expression and pathological score 

The PS main effect on NLGN2 expression was not significant (F2,39 = 1.858, P = 0.16), but 

the PS  Area interaction was (F4,33 = 3.097, P = 0.02). There was a graded reduction in NLGN2 

copy number with disease stage in hippocampus. In occipital cortex the copy number did not vary. In 

inferior temporal cortex, there was no significant difference between mild and moderate stages but 

expression was markedly attenuated at the severe stage of the disease (Fig. 5.25). 

 

Fig. 5.25. NLGN2 copy number and pathological score. Details as for Fig. 5.17. 

Expression was significantly lower in hippocampus at the moderate stage than the 

mild stage (P < 0.001) and lower again at the severe stage (P < 0.001). Inferior 

temporal cortex showed significantly lower expression at the severe stage than at 

either earlier stage (P < 0.001). Newman-Keuls post-hoc tests. 

5.4.13 -Neurexin-1 transcript expression by case-group 

The copy number of NRXN1 transcripts was quantified as described in Methods, Section 

5.3. NRXN1 mRNA expression was significantly lower overall in AD cases than in controls 

(F1,82 = 5.303, P = 0.02; Fig. 5.26). The Group  Area interaction was not significant (F2,52 =0.777, 

P = 0.46), in essence because the same general pattern was seen in all three areas (Fig. 5.27). None of 

the within-area differences between cases and controls reached significance on post-hoc testing, but 
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within AD cases the expression in hippocampus was significantly lower than in the other two areas 

(Fig. 5.27). 

 

Fig. 5.26. NRXN1 transcript level by case-group averaged across the three areas. 

Details as for Fig. 5.10; *, significantly different from controls, see text. 

 

Fig. 5.27. NRXN1 mRNA copy numbers by case-group and area. Details as for Fig. 

5.11; †, significantly different from occipital cortex and inferior temporal cortex in the 

same cases, P < 0.001 by Newman-Keuls post-hoc test. The differences between AD 

cases and controls showed a strong trend in inferior temporal cortex (P = 0.06), and a 

weak trend in hippocampus (P = 0.13), by Newman-Keuls test. 
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5.4.14 -Neurexin-1 transcript expression by gender 

Overall NRXN1 expression was significantly lower in males than in females (F1, 40 = 6.192, 

P = 0.017, and because the same pattern was seen in both case-groups the Group  Sex interaction 

was not significant (F1,80 = 1.457, P =0.23). Post-hoc testing confirmed the differences between cases 

and controls in each sex/between sexes in each case-group (Fig. 5.28). 

 

Fig. 5.28. NRXN1 copy numbers by case-group and sex. Details as for Fig. 5.11; *, 

significantly lower than expression in same-sex controls, and 
†
, significantly different 

from opposite-sex subjects in the same case-group, P < 0.05 by Newman-Keuls post-

hoc test. 

The Group  Sex  Area interaction was not significant (F2,48 = 0.839, P = 0.43), in part 

because the pattern seen in Fig. 5.28 was repeated across the three areas (Fig. 5.29), and in part 

because the statistics for such a deep-level interaction were underpowered. Post-hoc testing revealed 

that the between-group difference only reached significance in occipital cortex in females, though 

there was a trend in inferior temporal cortex (Fig. 5.29). Within-subject expression was significantly 

lower in occipital cortex, a pathologically spared area, than in inferior temporal cortex, a strongly 

affected area, in female AD cases (Fig. 5.29). 
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Fig. 5.29. NRXN1 copy numbers by case-group, area, and sex. Details as for Fig. 

5.11; *, significantly lower in female AD cases than in female controls, P < 0.001, and 

†
, significantly higher than in occipital cortex in AD males, P = 0.013, by Newman-

Keuls post-hoc testing. No other comparison was statistically significant. 

5.4.15 -Neurexin-1 transcript expression by APOE genotype 

When not divided by diagnosis, the overall level of NRXN1 transcript was lower in subjects 

with at least one 4 allele (F1,82 =6.612, P = 0.01; Fig. 5.30). The level of NRXN1transcript trended 

lower for both genotypes in AD cases than in matched controls, but the Group  Nº of 4 alleles was 

not significant (F1,80 =0.430, P =0.51; Fig. 5.31). There was a trend toward significance in the Group 

 Area  Nº of 4 alleles interaction but it was not significant (F1,80 = 1.770, P = 0.181). Post-hoc 

testing showed no significant difference in expression between AD cases and controls matched for 

APOE genotype in any area of the brain (Fig. 5.32). 

5.4.16 -Neurexin-1 transcript expression and pathological score 

There was a graded reduction in -neurexin-1 copy number with pathological score in all 

three areas of the AD cases, and the Area  Disease severity interaction was significant (F2,39 =8.255, 

P = 0.001). The pattern varied from region to region, and was most pronounced in inferior temporal 

cortex (Fig. 5.33), but all area showed markedly lower NLGN1 mRNA levels by the severe stage of 

the disease. 
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Fig. 5.30. NRXN1 transcript expression by APOE genotype. Details as for Fig. 5.14; 

*, significantly lower in subjects with at least one APOE 4 allele, see text. 

 

Fig. 5.31. NRXN1 transcript expression by case-group and the Nº of APOE 4 

alleles. Subjects were separated by APOE genotype as set out in Fig. 5.14 legend; 

there was a trend toward significantly lower expression in AD cases with at least one 

4 allele than in matched controls, P = 0.09 by Newman-Keuls post-hoc test. 
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Fig. 5.32. NRXN1 mRNA copy numbers by case-group, APOE genotype and area. 

Details as for Fig. 5.14; *, in hippocampus, expression was significantly lower in AD 

cases with no 4 alleles than in matched controls, while in inferior temporal cortex 

AD cases with at least one 4 allele showed lower expression than the corresponding 

controls, P = 0.001 by Newman-Keuls post-hoc testing. 

 

Fig. 5.33. NRXN1 copy number and pathological score. Details as for Fig. 5.17. 

Expression was significantly lower in hippocampus at the severe stage than at either 

earlier stage (P = 0.01 and P = 0.001). In occipital cortex, expression was lower at 

both moderate (P = 0.03) and severe (P = 0.001) stages than at the mild stage. 

Expression trended lower in inferior temporal cortex at the moderate stage than at the 
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mild stage, (P = 0.063) and was significantly lower at the severe stage than at the mild 

stage (P < 0.001). Newman-Keuls post-hoc tests. 

5.5 Discussion 

Loss of memory and cognitive dysfunction are associated with the regional impairment of 

specific synapses, which precedes neuron loss, in the AD brain. Synaptic impairment occurs at early 

in AD stages and may result from a loss in the amounts and activities of key synaptic proteins, 

enzymes and receptors. Alterations in the quantities of synaptic proteins that mediate memory, 

learning, synaptic strength, and plasticity have been reported in the early stages of AD, and underpin 

the changes in LTP and LTD in animal cell culture models of AD and other diseases. Most changes 

in synaptic protein expression in many neurological diseases take place at the level of transcription. 

In the current study, methods were developed to quantify the mRNA levels of the post-synaptic 

proteins neuroligin-1 and -2 and the pre-synaptic protein -neurexin-1 by absolute qRT-PCR assays. 

Expression of the three transcripts was assessed using human autopsy brain tissue from AD cases 

and gender- and age-matched controls. Two of the areas studied are the most affected areas in AD: 

hippocampus and inferior temporal cortex, while the relatively spread occipital cortex was used as a 

regional control. Expression of the three transcripts was also evaluated with respect to gender, APOE 

genotype and pathological severity. 

5.5.1 Neuroligin-1 mRNA expression 

Neuroligin-1 is a post-synaptic protein located in the excitatory synapse that has been 

primarily implicated in autism spectrum disorders (ASD) as mutations in gene encoding neuroligin-1 

has been linked with some rare cases of inherited ASD (Jamain et al., 2003, 2008, Hines et al., 2008, 

Lawson-Yuen et al., 2008, Talebizadeh et al., 2005, Yan et al., 2005, Ylisaukko-Oja et al., 2005b). 

The involvement of neuroligins in synapse formation has been addressed in several studies (Lisé and 

El-Husseini, 2006, Craig and Kang, 2007). The role of neuroligin-1 in LTP in the amygdala and the 

development of associative fear memory in adult animals has been established (Kim et al., 2008). 

Neuroinflammation activated by amyloid deposition results in epigenetic suppression of neuroligin-1 
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expression and consequent damage of synaptic function and memory (Malkki, 2014). These data 

help to explain the pathogenic effects of amyloid deposition at the molecular level. The reduction of 

neuroligin-1 expression lowers synaptic efficacy, impairs synaptic plasticity, and disrupts memory. 

In line with these findings, the data presented here showed that NLGN1 mRNA copy numbers were 

lower in AD cases than in controls. This finding was surprising because it conflicts with data on 

neuroligin-1 protein level presented in Chapter 3, which were high in AD cases than in controls. 

Significant differences were observed in NLGN1 transcript level between AD cases and controls in 

both hippocampus and inferior temporal cortex. 

The highest level of NLGN1 transcript expression was found in occipital cortex, which is 

relatively spared in AD. Both hippocampus and inferior temporal cortex showed lower transcript 

levels. Also noteworthy was the significant, graded decrease in NLGN1 transcript levels with 

increasing severity of disease in both hippocampus and inferior temporal cortex. In occipital cortex, 

NLGN1 transcript copy number was lower at the moderate stage of disease than at the mild stage, but 

higher again at the severe stage. The latter could portray attempts by neurons to form new contacts in 

this region that is resistant to AD pathology, as neuroligin is critical in this process. NLGN1 

transcript copy number was significantly lower in AD males than in AD females, especially in 

hippocampus and inferior temporal cortex, and lower in AD males than in male controls. 

5.5.2 Neuroligin-2 mRNA expression 

Neuroligin-2 and its presynaptic binding partner, neurexin, form a complex in the synapse 

that has an important role in synaptogenesis (Huang and Scheiffele, 2008, Südhof, 2008). NLGN2 

gene knockout in vivo and acute NLGN2 transcript knockdown by shRNAs in vitro both generate 

significant deficits in synaptic transmission (Varoqueaux et al., 2006, Chih et al., 2005). 

Overexpression of NLGN2 with GABAA receptors in HEK cells can induce functional GABAergic 

innervation from surrounding neurons (Dong et al., 2007), whereas knockdown of NLGN2 markedly 

reduces GABAergic synaptogenesis (Sun et al., 2013, Poulopoulos et al., 2009). Transgenic mice 

overexpressing NLGN2 display improved GABAergic transmission (Hines et al., 2008), which is 

impaired in NLGN2 knockout mice (Blundell et al., 2009). 



P a g e  | 159 

In the current study, the expression of NLGN2 transcripts was significantly lower in AD cases 

than in age- and gender-matched controls. Regionally, NLGN2 expression in both AD cases and 

controls was lowest in occipital cortex and highest in inferior temporal cortex and hippocampus. The 

high level in hippocampus could relate to the critical function of this molecule in regulating 

contextually appropriate emotional behaviour (Jackson et al., 2012, Belichenko et al., 2009). 

The level of NLGN2 transcript varied with pathological score in AD cases. In hippocampus, 

NLGN2 expression decreased with increasing severity of disease. For occipital cortex and inferior 

temporal cortex, the transcript level was higher at moderate stages but lower again at late stages of 

the disease. However, dividing the data by transcript, area and pathological score gave a limited 

number of data points with some of the pathological scores in this higher-order analysis, and adding 

more cases to the study would help detect trends. NLGN2 transcript expression was lower in male 

AD cases than in male controls. The variations in NLGN2 transcript levels in AD cases and controls 

were compatible with neuroligin-2 protein expression, which showed the same trends. 

5.5.3 -Neurexin-1 transcript expression 

In the current study, NRXN1 mRNA copy number was significantly lower in AD cases than 

in age- and gender-matched controls. The highest transcript expression was found the occipital 

cortex area, which is the area least affected by AD of the three studied, while the lowest expression 

was observed in the hippocampus, which is the most-affected area in the AD brain. NRXN1 

expression was lower in male AD cases than in male controls. The variations in NRXN1 level in 

males were compatible with NLGN1 and NLGN2 transcript levels in AD cases and controls. This 

may indicate that the male cases included in the current study had more-severe Alzheimer’s disease 

than the females. From Table 5.1 it may be seen that the males were on average younger (75 ± 2.5y) 

than the females (83 ± 2y), and this was statistically significant (t12 = 2.367, P = 0.036); earlier age at 

death can been argued to be an inverse index of severity (Hynd et al., 2001). 

NRXN1 mRNA copy number was lower in AD cases carrying APOE 4 alleles than in non-

carriers. Note, however, that most AD cases in the current study carried at least on APOE 4 allele 
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(9/14), so this finding must be treated with caution. NRXN1 transcript expression decreased with 

increasing pathological severity of disease, both overall and in all three areas, which may stem from 

the reduction in total synaptic number. However, additional cases are needed to validate this. 

5.5.4 APOE genotype and transcript expression 

APOE genotype adds more complexity to the pathophysiology of AD. The APOE 4 allele 

influences the prevalence of AD and lowers the age of onset in sporadic cases (Ashford, 2004). It is 

noteworthy that in this study, two of the AD cases possessed a copy of the “protective” 2 allele, 

and, as in the Chapter 3 study, several of the controls had the “deleterious” 4 allele, clearly 

demonstrating that these factors influence risk rather than exhibiting classical Mendelian genetics. 

It was predicted that the 4 allele might impact the pathological severity of brain samples 

from AD cases. In this study, the quality of RNA was poorer in AD cases than in controls, as 

assessed by RIN. Nevertheless, no differences were observed in the expression of any of the three 

transcripts with respect to APOE 4 genotype by group. The current study used AD cases and 

controls in whom both diagnoses were pathologically confirmed by detailed examination at autopsy. 

The brain tissue was mostly from late-onset patients, and the transcripts detected reflect the impact of 

end-stage AD. The conclusions from these mRNA studies give a range of insights and add new data 

to assist in understanding AD progression and pathology. 

5.5.5 Limitations of the study 

Overall, the data presented here on NLGN1, NLGN2 and NRXN1 transcript expression by 

qRT-PCR in AD cases and controls show complex variations in gene expression patterns that suggest 

the involvement of multiple cellular pathways in AD progression. Studies of expression in human 

autopsy brain are restricted by various factors such as mRNA variability between patient–patient and 

control–control groups, which can occur due to differences in genetic makeup and lifestyle. These 

may make gene expression patterns complex in ways are not faced in animal studies (Mirnics and 

Pevsner, 2004). The most important lifestyle factors to be considered include smoking, alcohol 

consumption, physical exercise, and diet, which have significant effect on gene expression in the 
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brain (Dodd et al., 2006, Cotman and Berchtold, 2002). Additional factors like education and 

exposure to environmental contaminants could also have impacts (Thiriet et al., 2008, Miller et al., 

2009, Andin et al., 2007). 

The medical history of the subjects is an important potential confound for consideration, 

because medication can change mRNA expression, but in the current study medical histories were 

not available. To fully explore AD pathogenesis, it would be ideal to examine brain tissues from 

unmedicated subjects, but this is unlikely for both AD cases and controls in this age-group. The 

results from this study might be aided by comparisons with mRNA expression in AD post-mortem 

brains by conventional methods such as Northern blots and microarrays, but the methodology used is 

currently considered to be the gold standard for quantification. An important consideration is th the 

in AD that neuropathology of AD does not affect all brain regions to the same extent; this was 

exploited here by comparing several regions from each brain, such the subjects acted as their own 

controls. This is particularly important to help reduce the impacts of some of the factors discussed 

above. 

Correlating synaptic protein transcript levels at autopsy with clinical changes observed ante-

mortem an important goal for future work, to obtain a more complete picture of the cases included in 

the study. Clinical data such as the Mini-Mental State Examination (MMSE) and ADAScog for each 

subject was not available for most cases used here, which come mainly from community donors. 

Thus, clinical correlates could not be studied. For autopsies that have been in the brain bank for a 

long time, there are legal aspects of privacy and ethics which made it difficult to recover data, if 

permission was not explicitly gained from the next of kin at the time of autopsy. Many subjects now 

being collected have a much higher level of clinical and other data available. 

The method used to determine the pathological score of disease severity is not the same as 

Braak staging, which is based on measuring the spread of NFTs and A across all areas in a brain 

and gives an accurate representation of actual AD severity. The method used to check the severity of 

the disease in separate tissue samples here was based on the A plaque and NFT load, neuronal loss 
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and gliosis. This gave a score from 0 to 3 corresponding to the stages of none, mild, moderate and 

severe AD in the particular tissues from different brain areas. Both methods have the disadvantage of 

being semi-quantitative observations of histology markers, and require experienced pathologists who 

are blinded to diagnosis. 

Giving a pathological severity score for each area used can overcome problems related to 

determining the significance of more-complex, localized interactions, but in the current study it was 

difficult to obtain sufficiently large numbers of samples with some scores. For instance, there were 

relatively few samples with pathology scores of 1 or 2 available for hippocampus and inferior 

temporal cortex, while the opposite was true for occipital cortex. Therefore, it was difficult to obtain 

statistically significant differences with the number of AD cases available. This problem impacts the 

transcript level by area, APOE, and pathological score interactions. 

It has been widely noted that transcript expression often does not relate to protein expression 

for the products of the same gene, but it can predict overall protein expression. That can be due to 

different post-translational factors that might impact overall protein isoforms, trafficking, recycling 

and degradation. These processes may be badly disrupted in neurodegenerative disease. As a result, 

some differences were not detected in the expression of neuroligin and neurexin transcripts between 

AD cases and controls, even though marked differences were found at the level of protein expression 

of these synaptic adhesion molecules. 

It’s hard to correlate the RNA and protein data because the scales are so different. We applied 

different Box-Cox transforms to the protein and RNA data, which makes regression analysis very 

problematic. In preparing the protein-RNA comparison data for publication we will seek the advice 

of a professional statistician on this point. It is noteworthy that all possible variations can be found in 

the literature: RNA concentrations can show differences between disease cases and controls that are 

not reflected in protein levels; or the two moieties can be congruent; or protein levels can differ 

where no differences in RNA concentrations can be found. The present work is based on a single 

time-point in the subject’s life – i.e., death – and the abundance of transcripts and proteins measured 
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reflect the difference in the synthesis and degradation of each as well as possible differences in 

location, compartmentalization, and trafficking. 
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Chapter 6 

6 Genetic association of neuroligins and neurexins with AD 

6.1 Aim of the research 

The aim of this chapter was to use a case-control association approach in an Australian 

Caucasian population to confirm the association between AD and the single nucleotide 

polymorphism (SNP) rs17757879 in NRXN3, previously reported in a Spanish cohort. A meta-

analysis of genome-wide association studies (GWAS) had shown that this SNP had a consistent 

protective effect. 

6.2 Introduction 

AD genetics can be divided into two types. The first leads to early appearance of the disease, 

at around 50 to 65 years, and has a strong familial clustering and dominant Mendelian transmission 

linked to one of three genes, APP, PSEN1 and PSEN2. Mutations in any of these lead to 

modifications in the production of A (Tanzi and Bertram, 2005). However, only 5% of AD cases 

appear have these familial forms of the disease (Janssen et al., 2003). The second type is by far the 

more common; cases show later-onset, around 65 years of age, and there is no significant familial 

aggregation. The genetic underpinning of this form comprises a number of low-penetrance, common 

risk alleles at different genomic loci that may have impact on various pathways in the production and 

accumulation of A. Several lines of evidences suggest that combinations of these risk-factor genes 

have significant effects on disease susceptibility and age of onset (Bertram and Tanzi, 2008). Over 

the last three decades several very large candidate-gene association studies have been conducted on 

500 genes identified as a possible risk factors for late-onset AD (Bertram et al., 2007). Recently, new 

markers, which are found near or within the following genes: CLU, PICALM, CR1, BIN1, MS4A, 

CD2AP, ABCA7, EPHA1, and CD33, have been linked with AD in GWAS (Seshadri et al., 2010, 

Lambert et al., 2009). However, the 4 allele of APOE still shows the strongest association with late-

onset AD (Saunders et al., 1993). 
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AD is considered to be a polygenic disorder (Pedersen, 2010) and its complex genetic 

architecture makes genetic analysis difficult. A pathway-based method has been applied to the 

available GWAS datasets to explore biological mechanisms underlying AD susceptibility. 

Significant pathways related to the immune system have been identified using KEGG analysis (Hong 

et al., 2010, Jones et al., 2010, Lambert et al., 2010). (Lambert et al., 2009) performed a GenGen 

pathway-based analysis of a French AD GWAS dataset and found several significant pathways 

related to autophagy and the immune system. These pathway-based approaches complement standard 

single-marker analysis by extracting more biological information from the GWAS datasets. Another 

recent study consistently found an association between the CAM pathway and AD susceptibility in 

two GWAS datasets (Liu et al., 2012). 

The role of CAM in cognitive decline in AD and the involvement of genes such as PS1 in 

regulating the processing of neuroligins and neurexins, as set out in Section 1.4.4.1, have led to the 

suggestion that mutations in NLGN or NRXN genes might have roles in sporadic AD. Five GWAS 

included 1,256 SNPs in the NRXN1, NRXN2, NRXN3, and NLGN1 genes (3,009 AD cases and 3,006 

controls). Meta-analysis identified one SNP in the NRXN3 gene (rs17757879) that showed a 

consistent protective effect in all the GWAS, although the differences between AD cases and 

controls did not reach statistical significance (Martinez-Mir et al., 2013). Dividing the cases by 

gender showed that the protective effect was limited to males. A replication study conducted in a 

Spanish cohort of 1,785 AD cases and 1,634 controls confirmed the protective effect in males. These 

data suggest a possible role for NRXN in AD. I undertook to validate the results in this chapter by 

genotyping the NRXN3 marker in genomic DNA (gDNA) from Queensland Brian Bank. 

6.3 Methods 

6.3.1 gDNA preparation from autopsy brain tissue 

Autopsy brain tissue samples stored at –80°C in 0.32M sucrose according to the Dodd et al. 

(1986) protocol were obtained from Queensland Brain Bank. The phenol-chloroform method was 

used for gDNA extraction. Small pieces from each brain were thawed and incubated overnight in 
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1 ml lysis buffer (2% SDS, 200 mM NaCl, 50 mM EDTA, 50 mM Tris-HCl, pH 8) and 0.4 mg 

protease K at 37°C. Next day, 1 ml of phenol:chloroform:isoamyl alcohol (Sigma-Aldrich) was 

added and the mixture vortexed and centrifuged at 13,000  g for 15 min at room temperature. The 

top aqueous layer was transferred to a new tube, 1 ml of phenol:chloroform:isoamyl alcohol was 

again added, and mixture vortexed and centrifuged at 3,000  g for 10 min. The top layer was 

transferred to new tube, 100 µl of 3 M sodium acetate and 2 ml ethanol were added and the mixture 

centrifuged at 3,000  g for 10 min at 4°C. The supernatant was discarded, 1 ml of 70% cold ethanol 

was added to the pellet and the mixture centrifuged at 3,000  g for 10 min at 4°C. The pellet was 

dried and resuspended in 0.5 ml TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8.0). 

6.3.2 DNA quantification and quality Control 

DNA was quantified on a NanoDrop 1000 Spectrophotometer (Thermo Scientific, Scoresby, 

Vic, Australia). Samples with higher concentrations were diluted to 10 ng/µl and stored at –20°C 

until genotyped. 

6.3.3 DNA genotyping 

Genotypes for 162 AD cases and 119 controls for rs17757879 gene were obtained using 

Taqman SNP Genotyping Assay (Life Technologies; assay Nº C__34498830_10). This technique 

was performed in the ABI-ViiA7 RT-PCR facility located at the School of Chemistry and Molecular 

Biosciences. Assays were prepared by mixing 2.5 µl of 2 TaqMan® Genotyping Master Mix 

(Applied Biosystems; AmpliTaq Gold® DNA Polymerase ultrapure, buffer, dNTPs, ROX™ dye) 

with 0.25 µl of TaqMan® SNP Genotyping Assay containing sequence-specific forward and reverse 

primers and two TaqMan® MGB probes labelled with VIC and 6-carboxy-fluorescein (FAM; 

Applied Biosystems). 0.25 µl of MilliQ H20 was added and 2.5 µl of 10 ng/µl gDNA. Total reaction 

was 5 µl, performed in 384-well plates. PCR conditions were as follows: an initial denaturation step 

of 95°C for 10 min, followed by 40 cycles of 95°C for 15s and 60°C for 1 min and a final extension 

step of 60°C for 30s. 
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6.3.4 Genotyping quality control and validation 

 Chosen samples were sequenced as a positive control to validate genotyping methods. To 

confirm the reproducibility of the genotyping results, about 30% of samples were randomly chosen 

for re-genotyping. The consensus rate ranged from 97% to 100%. 

6.3.5 Data quality control 

 Before performing genetic association analysis, data quality control was applied to check 

samples and gene polymorphisms with high rates of missing data, which could be caused by poor 

DNA quality and assay inefficiency. A Hardy-Weinberg equilibrium (HWE) test was performed to 

detect bias in dominant/recessive models of tri-allelic genotype for both AD cases and controls. 

6.3.6 Genetic association 

Genetic association of tri-allelic polymorphisms were detected by the 
2
 test of association 

for allelic (D vs d), genotypic (DD vs Dd vs dd), dominant (DD+Dd vs dd) and recessive (DD vs 

Dd+dd) models. 

6.3.7 Sample size and power 

Statistical power estimated by the Genetic Power Calculator (Purcell et al., 2003) showed that 

96 cases and 115 controls were required to attain 80% power at  = 0.05 for allelic comparison 

(relative risk increases by 2 in the presence of one copy of the risk allele). The prevalence of AD is 

13% according to Thies and Bleiler (2013). 

6.4 Results 

Genotyping missing data rates were less than 3% for all polymorphisms. The sample size was 

162 AD cases and 119 controls. The genotype distribution did not deviate significantly from HWE in 

cases or controls (Table 6.1). Data were re-classified as a bi-allelic model before analysis. Genotype 

distributions were analysed separately in SPSS v.17. 
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6.4.1 Genotypic and allelic associations 

 No significant difference was observed between AD cases and controls in general (
2
 = 

2.069, df = 2, P = 0.36). To check if there is any significant association with gender SNP, a 
2
 test 

was performed between AD cases and control for each gender separately. No significant differences 

were observed in females, but males trended toward significance in CC allele frequency (Table 6.2). 

To maximize the statistical power and to make a valid summary, CT and TT alleles combined were 

against the CC allele. This gave near-significant association in males but not in females (Table 6.3). 

Table 6.1. Genotype and allele distributions of rs17757879. 

 Alleles AD Cases HWE 
2
 Controls HWE 

2
 P 

-NRXN-3 

rs17757879 

CC 116 1.14 77 0.45 0.355 

CT 40 38 

TT 6 3 

Table 6.2. Genotyping allele distribution of rs17757879 SNP between genders. 

 

Males 
 

Females 
 

AD Cases Controls 
2
 AD Cases Controls 

2
 

-NRXN-3 

rs17757879 

n = 83 n = 79 3.872; 

P = 0.144 

n = 79 n = 39 0.142; 

P = 0.931 

CC/CT/TT 63/17/3 50/27/2  53/23/3 27/11/1  

6.5 Discussion 

GWAS in AD was performed by Harold et al. (2009) and two SNPs in NRXN-3 were listed 

as possibly associated with AD. However, the same group perform larger follow-up work and the 

association with these two SNPs disappeared (Hollingworth et al., 2011). 

Considering the recent studies about the molecular interaction between -secretase and the 

neurexins and neuroligins (Suzuki et al., 2012, Saura et al., 2011, Martinez-Mir et al., 2013, Bot et 
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al., 2011) and the physical interaction of neurexin-neuroligin complex (Chih et al., 2006, Boucard et 

al., 2005), attention was given to these molecules and their genetic association with AD. A meta-

analysis utilizing five GWAS datasets was performed by including previous work conducted by the 

same group (Antunez et al., 2011). Antunez et al. (2011) found no association of NRXN or NLGN 

with sporadic AD; these data were similar to the result obtained from previous GWAS. By limiting 

the study to localized regions of the selected genes, an interesting and consistent association was 

observed — although not statistically significant — with the rs17757879 SNP within the NRXN3 

gene across the five GWAS analysed (Martinez-Mir et al., 2013). Remarkably, the effect observed 

with -NRXN-3 SNP was found only in males but not in females. 

Table 6.3. Distribution of rs17757879 SNP between sexes for combined alleles, CT + TT vs CC  

 Males 
 

Females 
 

AD Cases Controls 
2
 AD Cases Controls 

2
 

-NRXN-3 

rs17757879 

n = 83 n = 79 3.052; 

P = 0.057 

n = 79 n = 39 0.55; 

P = 0.49 

CC+CT/TT 63/20 50/29  53/26 27/12  

In this chapter I performed a genotyping study on the rs17757879 SNP with the available 

population from the Queensland Brain Bank. Tissue samples were taken from 162 AD cases and 119 

controls. The genotyping showed no significant association overall between the SNP and the disease. 

However, by divinding the subjects by gender, I found a trend toward significance between 

rs17757879 and AD. The most interesting finding was obtained by comparing subjects with at least 

one T allele (CT and TT) against CC homozygotes. This gave a near-significant result, which 

indicated that the T allele was protective against AD in males. Since the study was based on a 

prediction from earlier work, it may be justified to use 1-tailed statistics, in which case the P value 

would be significant, at 0.028. The data indicate that the effect size for the NRXN-3 SNP in AD is 

quite small, which would be consistent with it not being associated to AD in previous GWAS, 

although it should be noted that the sample was quite small for genetic work. A repetition with a 
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larger sample is clearly necessary. Considering the dimorphism observed in the current and previous 

studies will be important to elucidate the role of NRXN-3 in AD susceptibility. 

Various studies have shown differential expression of genes in the brain according to sex 

(Cahill, 2006). Previous evidence of morphological and functional brain dimorphisms have raised the 

awareness of the importance of sex in molecular neuroscience. Differences between males and 

females are ultimately controlled by the gonadal sex determination systems (Carruth et al., 2002). 

Due to factors controlled by the sex chromosomes, the impact of hormones is central, especially the 

gonadal hormones and their actions in the CNS (Flerko, 1971). The main male hormone testosterone 

is produced by the testes during late gestational and neonatal periods, where it mediates brain sexual 

dimorphism. Sexual dimorphism could mediate male-female differences in the ætiology, incidence, 

and development course of different neurological disorders, including AD. 

Several lines of evidences support the hypothesis of sexual dimorphism in AD, such as the 

higher incidence of AD in females than in males (Mielke et al., 2014). There are differences in the 

expression of synaptic proteins in between female and male AD cases (Proctor et al., 2010, Agarwal 

et al., 2008). Differential expression of protein and mRNA transcripts of the neuroligin–neurexin 

complex between male and females was also observed in the current study (Chapters 3 and 5). 

Sexual dimorphism for ESR1and APOE in AD was also observed in some studies (Monastero et al., 

2006). These data indicate that stratification by sex in GWAS analysis could be a strategy to detect 

novel genetic alterations linked to AD susceptibility. NRXN-3 has not previously been reported to 

show sexual dimorphism in human subjects. However, in -NRXN-1 heterozygous KO mice only 

male and show increased locomotor activity in a new environment and improved habituation upon 

subsequent exposures to this environment (Laarakker et al., 2012). 

The results from the current chapter indicate that the -NRXN-3 gene could mediate AD 

susceptibility in males, and that the differences between genders observed could explain the lack of 

association of -NRXN3 with AD in published GWAS. Additional replication studies in bigger 

samples are required to confirm these results. 
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6.5.1 Limitation of the study 

Some DNA samples for both cases and controls were obtained from different sources that 

produce characteristic that should be considered. The geographical origin, and as a result the 

ethnicity, of the subjects, was not 100% confirmed as Caucasian. As noted, the sample size was very 

small, and must it be considered to be a pilot. Increasing the number of subjects will provide more 

reliable results. 

The choice of the technique use for genotyping here was based on many factors, including 

accuracy of the assay, sensitivity, robustness, reproducibility, cost, and reliability. A SNP detection 

assay is capable of detecting mixed alleles and it is crucial to note that the TaqMan genotyping assay 

is a PCR-based protocol that discriminates the presence of either allele based on the affinity of one 

probe to the SNP sequences of the allele present as opposed to the one not present. Allele detection 

relies on the chemistry of each set of probes, which should provide accurate results so long as the 

samples are subjected to a low number of freeze-thaw cycles (ideally, none) and are stored at the 

right temperature. Care was taken here to only thaw samples once, at the time of homogenization; as 

noted, they had been stored at –80°C since autopsy. 
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Chapter 7 

7 Final discussion, conclusions and future direction 

7.1 General findings and implications of the project 

Alzheimer’s disease was first described in 1906, but no cure has been found nor any drug 

with significant impact developed. The characterization and sequencing of the main constituents of 

A and NFTs has helped established links between these pathological markers and AD. Although 

this was an important advance in knowledge of the basic roles of these proteins and their critical 

function in neurotoxic pathways in AD, it has not led to significant attenuation of the disease. Most 

researchers agree that A and NFTs have a significant function in the overall pathophysiology of 

AD; these deposits are pathological alterations that take place quite early in the disease timeline. 

Much evidence supports the idea that synaptic loss and dysfunction are better correlates with early 

cognitive decline in AD. A significant outcome of synaptic failure is the disruption of plasticity and 

LTP at early stages in AD animal models (Rowan et al., 2003). These functionalities are major 

mediators of memory and learning processes, so it is likely that such alterations play roles in the 

early in cognitive problems experienced by AD sufferers as the disease develops. The mechanisms 

that underlie synaptic dysfunction and neuronal loss are still unknown. Nevertheless, results from 

different studies have detected common changes in systems and pathways, which provide indications 

of the proteins or receptors that are most likely altered in the disease. The aim to detect these 

synaptic protein alterations was the basis of the studies in this thesis. 

7.2 The expression of neuroligin and neurexins proteins and transcripts in AD 

Presented here is the first study to quantify neurexins and neuroligins at both the transcript 

and protein level in AD. In Chapter 2, a quantitative immnodetection method was developed. First, 

recombinant truncate neuroligin-1 and neuroligin-2 proteins were cloned, expressed, and purified. 

These were used as standards to precisely quantify endogenous neuroligin-1 and neuroligin-2 in two 

of the most affected area in the brain, hippocampus and inferior temporal cortex, and the relatively 
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spared occipital cortex. -Neurexin-1 protein level was quantified in the same area by the same 

approach, using a commercial sample of neurexin recombinant protein. A major novel finding was 

the differing regional patterns of these proteins in AD cases and controls. Notably, the level of 

neuroligin-1 protein was significantly higher in AD cases than in controls. This difference was 

restricted to hippocampus and occipital cortex; the lack of difference in inferior temporal cortex was 

unexpected, since it is one of the most affected areas in the AD brain. In contrast, the opposite 

pattern was found for neuroligin-2 in the same AD cases and controls. Neuroligin-2 protein 

expression was lower in AD cases than control in all areas, but the most marked reduction was in 

inferior temporal cortex. The contrasting patterns of neuroligin-1 and neuroligin-2 expression in AD 

may reflect the complementary functions of these proteins at the synapse. Both molecules are 

localized to the post-synaptic density, but neuroligin-1 is specific for excitatory synapses while 

neuroligin-2 is specific for inhibitory synapses. It has been reported, in studies conducted in vitro 

using biochemical and physicochemical techniques, that neuroligin-1 binds to A oligomers and that 

this binding takes place via the extracellular domain of neuroligin-1. This signifies that neuroligin-1 

is a putative target for A oligomers at excitatory synapses. On the other hand, A reportedly does 

not bind to neuroligin-2, which is specific for inhibitory synapses. A binding may explain the 

higher level of neuroligin-1 in AD cases found here. A facilitates glutamate-mediated synaptic 

transmission in animal models, which could lead to alterations in the homeostasis of neuronal 

networks, a phenomenon that has been widely documented in AD (Palop et al., 2007, Cuevas et al., 

2011). Neuroligin-1 performs a significant function as an adhesion protein on the post- synaptic 

membrane, where it stabilizes and maintains synaptic transmission; the binding of A oligomers in 

AD would thus have a significant impact (Dinamarca et al., 2011). 

In the current study the level of -neurexin-1 was higher in AD cases than in controls, but 

this difference was not significant. This slight increase could reflect neurotoxicity arising from the 

binding of A to neuroligin-1, given that -neurexin-1 is located on pre-synaptic terminals. At these 

synapses it binds to neuroligin-1 and forms heterophilic adhesion complexes. Any disturbance of this 

binding could have an impact on the integrity of excitatory synaptic contacts in AD. 
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To further understand the roles of these molecules in AD, the levels of neuroligin-1, 

neuroligin-2 and -neurexin-1 transcripts in hippocampus, occipital cortex and inferior temporal 

cortex in AD cases and controls were measured using absolute quantification RT-PCR TaqMan 

assays (Chapter 5). The data obtained were in contradistinction to the protein data in Chapter 3. The 

expression of all three transcripts was significantly lower in AD cases than in controls. It was found 

that the mRNA copy number for all transcripts was negatively correlated with increasing the severity 

of disease. That is, the observed down-regulation of the transcripts could follow the progression of 

disease. The contrary results obtained for protein levels for neuroligin-1 and -neurexin-1 may 

suggest that the higher protein levels arise from the binding of these proteins to A which induce the 

neurotoxicity at the protein level. 

7.3 Conclusion and Future directions 

No specific, single molecule is essential for synaptic assembly or function. Nevertheless, the 

neuroligin–neurexin complex is a major organizer of synaptic connections and a stabilizer of the 

networks of pre- and post-synaptic proteins across the synaptic junction. The ability of neuroligins 

and neurexins to determine and maintain excitatory and inhibitory synapses provides a basis for their 

potential roles in neurological disorders such as AD. Changes in groups of synapses in a neural 

circuit, as opposed to a general impairment of all synapses in all circuits, makes it very difficult to 

compare single-protein complexes across brain disorders. Identical molecular changes could lead to 

varying neurological outcomes in different brain diseases. 

Data presented in this thesis indicate that neuroligins and neurexins are implicated, at least in 

part, in synaptic loss in AD. Further understanding of the association between fluctuations in the 

levels of neuroligin–neurexin complexes could open up a new understanding of synaptic 

pathogenesis in AD. 

The proteolytic regulation of neuroligins and neurexins may be a key pathophysiological 

mechanism in AD, as well as playing a general role in trans-synaptic signalling in diverse neural 

circuits. Therapeutic strategies for preventing or ameliorating synaptic dysfunction in AD might 
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fruitfully explore whether, and how, this process can be modified. The pathological disturbance of 

synapses through disruption of the metalloprotease and -secretase cleavage pathways may be 

critical to synaptic deficits in mild cognitive impairment and early-stage AD, which then lead to 

cognitive dysfunction and neurotoxicity in late-stage AD. Impairments in the processing of the 

neuroligin–neurexin complex due to a loss of PS1/-secretase activity could contribute to neuronal 

disruption. Neurexins have the LNS domain responsible for interaction with the CLD of neuroligin 

across the synaptic cleft. The transmembrane domain and C-terminal cytoplasmic tail of neuroligins 

comprise a PDZ II binding motif crucial for targeting presynaptic proteins such as CASK, VELI and 

MINT that play roles in vesicle clustering (Tabuchi and Südhof, 2002). The physical interactions of 

neurexins with neuroligins on the extracellular side of the membrane, and with scaffolding proteins 

on the cytoplasmic side, underpin the assembly of synapses. Impaired processing of full-length -

neurexin-3 by - and -secretases could alter the activity of synapses in AD. As discussed earlier in 

the thesis, mutations in the catalytic core of -secretase that lead to early-onset forms of AD also 

impair the processing of -neurexin-3. 

Studies on the relationship between this complex and AD should attempt to answer the 

following questions: 1. Do neurexins and neuroligins function only by binding to each other, or 

through binding with other molecules? 2. Do different isoforms or splice variants of neurexins and 

neuroligins perform different functions? 3. Do these complexes have an effect on A accumulation? 

4. Does the impairment of neuroligin and neurexin processing and production play a role in the 

neuronal defects associated with a loss of PS/-secretase function in familial AD? 

The answers to these questions will provide insight into the mechanisms of synaptic adhesion 

in AD and other cognitive diseases. If the involvement of this complex in AD is confirmed, new 

diagnostic and therapeutic approaches might emerge, such as manipulating the neuroligin–neurexin 

interaction to prevent A accumulation in the brain, or perhaps preventing A from disrupting 

neuroligin–neurexin complexes. 
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9 Appendix 

9.1 Appendix for Chapter 2 

Human NLGN1 and NLGN2 wild-type sequences were gained from the NCBI database 

(Accession No: NP_055747 and NP_065846 respectively). 

9.1.1.1 NLGN1 

 1 ccaccgactc ctgcccgcct caacacaatg ccttacctgt gaagcttgag gccactcaag 

 61 ttccaaattt gtgacaaatc ccccagggct cactggagtg gcagatatag acctgcagct 

 121 aactggattt gatttataag agagaaatct gcagtcaatg cccactcttg ccacactgct 

 181 aatatggaaa acagaatgtt caataggata tggtctgata aatagtgatg attgaagatg 

 241 ctgctccaat acatgtgaaa tcaatgggag atatctgctg tctgaagatc tttcagagct 

 301 tttctcgaca agctcccctg taagaaatcg gaggtatatt ctaccattat acagtctttc 

 361 tcaagtggat ataaatacgt ttgcctcact gtaaccagac aactagacaa ctaatgtggg 

 421 accatggcac tgcccagatg cacgtggcca aattatgttt ggagagcagt gatggcatgc 

 481 ttggtacacc ggggattggg tgccccattg actctctgta tgttgggatg tttgcttcag 

 541 gctggccatg tgctatcaca aaaattggat gatgtggacc cactggtggc taccaacttt 

 601 ggaaagataa gagggattaa gaaggaactc aataatgaaa ttttggggcc tgttattcaa 

 661 tttcttgggg ttccatatgc agccccacca acaggggaac gtcgttttca gcctccagaa 

 721 ccaccatctc cctggtcaga tatcagaaat gccactcaat ttgctcctgt gtgtccccag 

 781 aatatcattg atggcagatt gccagaagtc atgcttcctg tgtggtttac taataacttg 

 841 gatgtggttt catcatatgt gcaagaccag agcgaagact gcctatattt aaatatatat 

 901 gtcccgactg aggatgatat tcgggacagt gggggtccca aaccagtgat ggtgtatatc 

 961 catggtggct catatatgga aggtactgga aatttatatg atggaagtgt cttggcaagt 

 1021 tatggcaatg tgatcgtcat cacagtcaac tatcgacttg gagtactcgg tttcttgagt 

 1081 acaggcgatc aggctgcaaa ggggaactat ggactccttg atctcataca agctttaaga 

 1141 tggactagtg aaaacattgg attctttggt ggtgacccct taagaatcac tgtttttgga 

 1201 tctggtgctg ggggttcatg tgtcaacctg ctgactttat cccattattc tgaaggtaac 
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 1261 cgttggagca attcaaccaa aggacttttt caacgagcaa tagctcaaag tggaacagcc 

 1321 ctttccagct gggctgttag ttttcaacct gcaaaatatg ctagaatgtt ggccacaaaa 

 1381 gttggttgca atgtttcaga tacagtagag ttagtggaat gcctacagaa gaagccttac 

 1441 aaagaacttg ttgaccaaga tattcaacca gctcgatacc acatagcctt tggacctgtg 

 1501 attgatggtg atgtaatacc agacgacccc cagatattga tggagcaagg agagtttctc 

 1561 aactatgata taatgttagg agtgaaccaa ggggaagggt taaaatttgt tgaaaatata 

 1621 gtagatagcg atgatggtat atcagctagt gattttgact ttgctgtttc aaattttgtt 

 1681 gataatttat atggatatcc tgaaggcaaa gatgttttga gagaaaccat taagttcatg 

 1741 tatactgact gggctgaccg tcataaccct gaaaccagaa gaaagacatt actggctttg 

 1801 tttacggacc atcagtgggt ggcaccagct gtagccacag cggatcttca ctcaaacttt 

 1861 ggttcaccta cgtacttcta tgccttttac catcattgcc aaacagatca ggttccagct 

 1921 tgggctgatg cagcccacgg agacgaggtt ccctatgtac tgggaatccc catgattggc 

 1981 cctacagagt tatttccttg caatttctcc aaaaatgatg tgatgctgag tgcagttgta 

 2041 atgacatact ggacaaattt tgctaaaact ggtgacccaa atcaaccagt ccctcaagac 

 2101 acgaaattca ttcataccaa acccaaccgt tttgaagaag tagcatggac cagatattcc 

 2161 cagaaagacc aactttatct ccatattgga ttaaaaccaa gagttaaaga acattacaga 

 2221 gccaataagg tgaacctctg gttggagttg gtacctcatc tgcataatct caatgacatt 

 2281 tctcagtata cctctacaac aactaaagtg ccatcaactg acatcacttt cagacctacg 

 2341 agaaaaaatt ctgtacctgt cacgtcagcc tttcccactg ccaagcagga tgatcccaaa 

 2401 caacaaccaa gtccattttc agtggatcaa agggactact caacagagct gagtgtcact 

 2461 attgcagttg gagcatcact gctgtttctg aacatcttgg cctttgcagc cctgtactac 

 2521 aaaaaggata agaggagaca tgatgttcac aggagatgca gccctcagcg cactactacc 

 2581 aatgatctaa cccatgcaca agaagaggaa atcatgtccc tccaaatgaa gcacactgat 

 2641 ttggatcatg aatgtgagtc cattcatcca catgaggtgg ttcttcggac cgcctgtccc 

 2701 ccagattaca cactagctat gaggaggtca cctgatgatg ttcccttaat gacacccaac 

 2761 accattacaa tgattcccaa cactatacca gggattcagc ccttacacac attcaataca 

 2821 tttactggag gacagaacaa tactctgccc catccccatc cccaccccca ttcacattca 
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 2881 acaaccaggg tatagccaga taagagaaac aaactatttt ttttgatgga ttgcagtaaa 

 2941 cgatcactga agattccttg gctttcaacc tacaagactt actatttaaa taaggaggaa 

 3001 tattatgtga atatacatat caagaacttt gggggttttg aaaaaaatga attgtatata 

 3061 tacaaatcaa ctttaaaaac aaatttcaat tgcttgaagc aattgttctg aatgatactt 

 3121 tttcattcac attcaagaat taattttttg aagatttaag ttacataatg gaattaggca 

 3181 tgtggaacac caaacaggaa agaactatgt ctgaaatata aaaaataaaa ataaaaaaac 

 3241 aactatgaat atgcacaagg gacacaccag tggaatgtca gataattttc accagttttt 

 3301 atttggagcc gttttattgt gtagaccata tttacatatt tggataagta cacaaagcgt 

 3361 caatgctgtt aatggcctta gcaaaggctc atgctgaaat ttgccagtaa aacaaagaag 

 3421 tttaaagact ggcaggtaca ccattatcac ataagtgctg tcagtataaa gttgtgggga 

 3481 taaaggaaac tggatatttt tagcacgatg tgcatgataa tttatatgct tggtggctgt 

 3541 gctgctgatt aagccgtaat taaaattctt ctcatcccat tggagttttt aatagaagct 

 3601 tcctccatca attggcagaa cctaaagaag attttaaggg gcaaaagtaa ttacaataaa 

 3661 ataattcaca gtagtttcaa tatagaagga attagctatt aaaggtattt gaagaaacta 

 3721 taggtatagt ggtgaatact cgctgatatg aatcccagaa aaaaatttcc tgtttttaat 

 3781 gttcttttca atcccatcta gataatttat agaaatataa ccctaattgg acatgtggta 

 3841 caggatctat aagttgctgt gtttttttgt tactctgtat tttgttcctt ttggtaaggt 

 3901 gaagtgtgtc caaagagtta cttgcaacag tctttcatga tatgaggatg cccccgtatt 

 3961 accactctga ttatagttct gagttctttg atttactcat gctgcatgac aaaatgttta 

 4021 ctaataacaa ttcattataa agttatatcc ctctttacat cacttatctt tctcactgag 

 4081 gttcattcac tggaatttac tcacgcaatc tcagtagagt acaacgtaga tacagaacct 

 4141 aggagagtca acatctggag gattttagtc tttcttacac atatgtgtga ttttaaacga 

 4201 atattctcag accacaggaa actcttcatc cccctgttgt ttaccagtaa cagtatatca 

 4261 cagacctttc caaatgtttg tatatgtaat cagatgtaca tttatattga aaaacaaatg 

 4321 agatggactt aaagagcaca tcctgataaa tactttctct ctcacctgta ctatatttct 

 4381 attagactaa agttatgtga tttttttttt acattttttc agatgactag caattttgat 

 4441 agtttataag ataatgcaaa gaactttctc tgacaaacta actgcagtaa cagaaacctt 
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 4501 tcttttcagt tactcttttt caagaatgaa agattattat acaaaaaatt gtatactact 

 4561 tgatggaacc aactttgtac atcttggcca tgtcactggt cattgtgtga aataaagata 

 4621 atctggataa tgactattag tccaatgcta agaaacatga tctttgctca ttaaagagct 

 4681 aaaatgttta ttgctgtttt gtctttcttt tttctaaaaa aagaaaaaaa agaaaaaaag 

 4741 gaaaagaaga acaaagaaac atgactgtct caaagagtaa tttttctaga ttagaccagt 

 4801 caggtttttg aagacatata ggtaacttcc acagaaaaca caaacatgta tttaaaggca 

 4861 agtctcatct aagatgaaac tcataaaaat tatttaatgt ttgttatgaa tttaaaag 

9.1.1.2 Compute pI/Mw 

Theoretical pI/Mw (average) for the user-entered sequence 

 10 20 30 40 50 60 

TMALPRCTWP NYVWRAVMAC LVHRGLGAPL TLCMLGCLLQ AGHVLSQKLD DVDPLVATNF 

 70 80 90 100 110 120 

GKIRGIKKEL NNEILGPVIQ FLGVPYAAPP TGERRFQPPE PPSPWSDIRN ATQFAPVCPQ 

 130 140 150 160 170 180 

NIIDGRLPEV MLPVWFTNNL DVVSSYVQDQ SEDCLYLNIY VPTEDDIRDS GGPKPVMVYI 

 190 200 210 220 230 240 

HGGSYMEGTG NLYDGSVLAS YGNVIVITVN YRLGVLGFLS TGDQAAKGNY GLLDLIQALR 

 250 260 270 280 290 300 

WTSENIGFFG GDPLRITVFG SGAGGSCVNL LTLSHYSEGN RWSNSTKGLF QRAIAQSGTA 

 310 320 330 340 350 356 

LSSWAVSFQP AKYARMLATK VGCNVSDTVE LVECLQKKPY KELVDQDIQP ARYHIA 

Theoretical pI/Mw: 5.97 / 38921.59 

9.1.1.3 NLGN2 

 1 tccctctccc ccccttctct ctctctccga gggggggggg tcccagggag ggaggggggg 

 61 tcccccgatc agcatgtggc tcctggcgct gtgtctggtg gggctggcgg gggctcaacg 

 121 cgggggaggg ggtcccggcg gcggcgcccc gggcggcccc ggcctgggcc tcggcagcct 

 181 cggcgaggag cgcttcccgg tggtgaacac ggcctacggg cgagtgcgcg gtgtgcggcg 

 241 cgagctcaac aacgagatcc tgggccccgt cgtgcagttc ttgggcgtgc cctacgccac 

 301 gccgcccctg ggcgcccgcc gcttccagcc gcctgaggcg cccgcctcgt ggcccggcgt 

 361 gcgcaacgcc accaccctgc cgcccgcctg cccgcagaac ctgcacgggg cgctgcccgc 

 421 catcatgctg cctgtgtggt tcaccgacaa cttggaggcg gccgccacct acgtgcagaa 

 481 ccagagcgag gactgcctgt acctcaacct ctacgtgccc accgaggacg gtccgctcac 

 541 aaaaaaacgt gacgaggcga cgctcaatcc gccagacaca gatatccgtg accctgggaa 
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 601 gaagcctgtg atgctgtttc tccatggcgg ctcctacatg gaggggaccg gaaacatgtt 

 661 cgatggctca gtcctggctg cctatggcaa cgtcattgta gccacgctca actaccgtct 

 721 tggggtgctc ggttttctca gcaccgggga ccaggctgca aaaggcaact atgggctcct 

 781 ggaccagatc caggccctgc gctggctcag tgaaaacatc gcccactttg ggggcgaccc 

 841 cgagcgtatc accatctttg gttccggggc aggggcctcc tgcgtcaacc ttctgatcct 

 901 ctcccaccat tcagaagggc tgttccagaa ggccatcgcc cagagtggca ccgccatttc 

 961 cagctggtct gtcaactacc agccgctcaa gtacacgcgg ctgctggcag ccaaggtggg 

 1021 ctgtgaccga gaggacagcg ctgaagctgt ggagtgtctg cgccggaagc cctcccggga 

 1081 gctggtggac caggacgtgc agcctgcccg ctaccacatc gcctttgggc ccgtggtgga 

 1141 tggcgacgtg gtccccgatg accctgagat cctcatgcag cagggagaat tcctcaacta 

 1201 cgacatgctc atcggcgtca accagggaga gggcctcaag ttcgtggagg actctgcaga 

 1261 gagcgaggac ggtgtgtctg ccagcgcctt tgacttcact gtctccaact ttgtggacaa 

 1321 cctgtatggc tacccggaag gcaaggatgt gcttcgggag accatcaagt ttatgtacac 

 1381 agactgggcc gaccgggaca atggcgaaat gcgccgcaaa accctgctgg cgctctttac 

 1441 tgaccaccaa tgggtggcac cagctgtggc cactgccaag ctgcacgccg actaccagtc 

 1501 tcccgtctac ttttacacct tctaccacca ctgccaggcg gagggccggc ctgagtgggc 

 1561 agatgcggcg cacggggatg aactgcccta tgtctttggc gtgcccatgg tgggtgccac 

 1621 cgacctcttc ccctgtaact tctccaagaa tgacgtcatg ctcagtgccg tggtcatgac 

 1681 ctactggacc aacttcgcca agactgggga ccccaaccag ccggtgccgc aggataccaa 

 1741 gttcatccac accaagccca atcgcttcga ggaggtggtg tggagcaaat tcaacagcaa 

 1801 ggagaagcag tatctgcaca taggcctgaa gccacgcgtg cgtgacaact accgcgccaa 

 1861 caaggtggcc ttctggctgg agctcgtgcc ccacctgcac aacctgcaca cggagctctt 

 1921 caccaccacc acgcgcctgc ctccctacgc cacgcgctgg ccgcctcgtc cccccgctgg 

 1981 cgccccgggc acacgccggc ccccgccgcc tgccaccctg cctcccgagc ccgagcccga 

 2041 gcccggccca agggcctatg accgcttccc cggggactca cgggactact ccacggagct 

 2101 gagcgtcacc gtggccgtgg gtgcctccct cctcttcctc aacatcctgg cctttgctgc 

 2161 cctctactac aagcgggacc ggcggcagga gctgcggtgc aggcggctta gcccacctgg 
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 2221 cggctcaggc tctggcgtgc ctggtggggg ccccctgctc cccgccgcgg gccgtgagct 

 2281 gccaccagag gaggagctgg tgtcactgca gctgaagcgg ggtggtggcg tcggggcgga 

 2341 ccctgccgag gctctgcgcc ctgcctgccc gcccgactac accctggccc tgcgccgggc 

 2401 accggacgat gtgcctctct tggcccccgg ggccctgacc ctgctgccca gtggcctggg 

 2461 gccaccgcca cccccaccgc ccccctccct tcatcccttc gggcccttcc ccccgccccc 

 2521 tcccaccgcc accagccaca acaacacgct accccacccc cactccacca ctcgggtata 

 2581 gggggtgggt ggggaggccc tcctccccgg ccctccctgg cccggccact ccgaaggcag 

 2641 ggaggaggac ttggcaactg gcttttctcc tgtggagtcg tcacacgcca tccagcagcg 

 2701 ctaaggtgga catgggattc ctccctgcga tgcgtgtctt tcccacgcag agaagcccag 

 2761 tctcttctct ggatctgggc ctttgaacaa ctggggggcg ttttctcccc cccattggga 

 2821 caccagtctt cggtgtgtgg aatgtggtat tttcccgcgt ggaggtgtgc tttctcacaa 

 2881 cggggtgtgt tttcccatgt gcagggtgag gttttttttt gccaccctgg acacatgttg 

 2941 gccccctcaa agaatttctg tggggatttg taccccagaa tcctgttccc ccatcccttc 

 3001 tcccacctcc tcccctctcc ctccccctgg agaccctgga agtggtgtgt tcacatacag 

 3061 tgacccttgg ccaccagacc acagaggatg gagcctggga agcagcgagg aaatcacagc 

 3121 cccctcgccc ctgcctccct tgcccctacc ccggcgaagc atgttccccc cgacgccccc 

 3181 cttggcacaa gtcagatgaa gcacgttctg ccggggaggc cctcaccttc cagagaggac 

 3241 agacacagat ttcctgctgg gggagggagg agtccacgca tcctgatgct gcctggaagc 

 3301 ttattttccc gtggccagga cgcatttctc tgagtggaaa caggttcttg catgtggatg 

 3361 tgtgtttccc caggcagacg gcccctctct tcccagcact tccctgcctc ccccaggcct 

 3421 caggcccagc acccagttcc tcctcacatg gcaggtgagc acagacttct agttggcagg 

 3481 agctgaggag ggtgaacaaa ccccgaggga ggcccggccc ttgctcccga gttgggggga 

 3541 gggggtgtgg caacgtgccc cccgcagagg ccacgcatgt ttgaccaaag ccctcattgt 

 3601 ggtccgagga cagccttttc cccaggcctc agagcattgc tcatccgtgc caaactgggt 

 3661 aggtggattt gagcggaaag actcccaaaa tgtgccaaga atttcccagt cccaggcagg 

 3721 gcaggggaaa ctaagggcaa gcaggataca gggcgaggga tgtggcaggt gagggggctc 

 3781 ccgcctgtgc cccttctcct caccatgtct cccccaccct gcctcagttc tccgttcccc 
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 3841 ttcatctccg tccccctctt tgaagctgtc cccatctcag tgtcagacca gccttctcct 

 3901 cagctgacca ccctcctctg acccacgccc cctccttgtc tgaaagaaag gagccttgaa 

 3961 tggtggaggg aggcagtggg gagaaaggtc tcaccggaca ggttgggaga atgaggtcag 

 4021 cggtgctggg gaacagatgg agggggcagt ggggacaggg cttgggcaga caccagcagg 

 4081 aataatttga aatgtgtgag gtgactcccc ggagggcctt gggcttgggc atttgggaaa 

 4141 agaatgatgt ctggaagggc ttaagggaca cagtggacga ggggagagtc ctcatctgct 

 4201 ggcattttgt ggggtgttag tgccaaactt gaataggggc tggggtgctg tcttccactg 

 4261 acacccaaat ccagaatccc tggtcttgag tccccagaac tttgcctctt gactgtccct 

 4321 tctcttccta cctccatcca tggaaaatta gttattttct gatcctttcc cctgcctggt 

 4381 ctagctcctc tccaaacagc catgccctcc aaatgctaga gacctgggcc ctgaaccctg 

 4441 tagacagatg ccctcagaat tggggcatgg gaggggggct gggggacccc atgattcagc 

 4501 cacggactcc aatgcccagc tcctctcccc aaaacaatcc cgacaatccc ttatccctac 

 4561 cccaaccctt tgcggctctg tacacatttt taaacctggc aaaagatgaa gagaatattg 

 4621 taaatataaa agtttaactg tt 

9.1.1.4 Compute pI/Mw 

Theoretical pI/Mw (average) for the user-entered sequence 

 10 20 30 40 50 60 

TYVQNQSEDC LYLNLYVPTE DGPLTKKRDE ATLNPPDTDI RDPGKKPVML FLHGGSYMEG 

 70 80 90 100 110 120 

TGNMFDGSVL AAYGNVIVAT LNYRLGVLGF LSTGDQAAKG NYGLLDQIQA LRWLSENIAH 

 130 140 150 160 170 180 

FGGDPERITI FGSGAGASCV NLLILSHHSE GLFQKAIAQS GTAISSWSVN YQPLKYTRLL 

 190 200 210 220 230 240 

AAKVGCDRED SAEAVECLRR KPSRELVDQD VQPARYHIAF GPVVDGDVVP DDPEILMQQG 

 250 260 270 280 290 300 

EFLNYDMLIG VNQGEGLKFV EDSAESEDGV SASAFDFTVS NFVDNLYGYP EGKDVLRETI 

 310 320 330 340 350 

KFMYTDWADR DNGEMRRKTL LALFTDHQWV APAVATAKLH ADYQSPV 

Theoretical pI/Mw: 4.66 / 38192.81 

9.1.2 Forward primer 

BLASTN 1.8.4-Paracel [2010-10-31], (Altschul et al., 1997) 

Query= 5F_H06 (1039 letters) 



P a g e  | 225 

Database: genbank 

9,537,552 sequences; 28,719,530,764 total letters 

Sequences producing significant alignments: (bits) Value Score E 

gi|123980671|gb|DQ891239.2| Synthetic construct clone IMAGE:1000... 1750 0.0 

gi|157928141|gb|EU176566.1| Synthetic construct H. sapiens clo... 1750 0.0 

gi|21595790|gb|BC032555.1| H. sapiens Neuroligin-1, mRNA (cDNA... 1748 0.0 

gi|5689476|dbj|AB028993.1| H. sapiens mRNA for KIAA1070 protei... 1748 0.0 

gi|31317253|ref|NM_014932.2| H. sapiens Neuroligin-1 (NLGN1)... 1748 0.0 

gi|168278798|dbj|AB385423.1| Synthetic construct DNA, clone: pF1... 1746 0.0 

gi|114590433|ref|XM_001166397.1| PREDICTED: Pan troglodytes simi... 1725 0.0 

gi|114590431|ref|XM_001166321.1| PREDICTED: Pan troglodytes simi... 1725 0.0 

gi|114590435|ref|XM_001166442.1| PREDICTED: Pan troglodytes simi... 1629 0.0 

gi|109044231|ref|XM_001082898.1| PREDICTED: Macaca mulatta Neuro...1606 0.0 

gi|109044228|ref|XM_001082770.1| PREDICTED: Macaca mulatta Neuro...1606 0.0 

gi|109044234|ref|XM_001083506.1| PREDICTED: Macaca mulatta Neuro...1511 0.0 

gi|149731113|ref|XM_001494392.1| PREDICTED: Equus caballus Neuro...1376 0.0 

gi|194222596|ref|XM_001494331.2| PREDICTED: Equus caballus Neuro...1376 0.0 

gi|74003762|ref|XM_545297.2| PREDICTED: Canis familiaris similar... 1344 0.0 

gi|113912208|gb|BC122827.1| Bos taurus Neuroligin-1, mRNA (cDNA... 1225 0.0 

gi|194664213|ref|XM_608505.4| PREDICTED: Bos taurus Neuroligin-1... 1225 0.0 

gi|17105267|gb|AC092967.5| H. sapiens 3 BAC RP11-521A24 (Roswe... 983 0.0 

gi|114590437|ref|XM_001166231.1| PREDICTED: Pan troglodytes simi... 975 0.0 

gi|114590429|ref|XM_001166258.1| PREDICTED: Pan troglodytes simi... 975 0.0 

gi|114590427|ref|XM_001166019.1| PREDICTED: Pan troglodytes simi... 975 0.0 

gi|114590425|ref|XM_001166092.1| PREDICTED: Pan troglodytes simi... 975 0.0 

gi|114590423|ref|XM_001166352.1| PREDICTED: Pan troglodytes simi... 975 0.0 

gi|114590421|ref|XM_526383.2| PREDICTED: Pan troglodytes similar... 975 0.0 
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gi|114590419|ref|XM_001166291.1| PREDICTED: Pan troglodytes simi... 975 0.0 

gi|164693376|dbj|AK307813.1| H. sapiens cDNA, FLJ97761 975 0.0 

gi|254281190|ref|NM_001163387.1| Mus musculus Neuroligin-1 (Nlgn... 924 0.0 

gi|68533534|gb|BC098461.1| Mus musculus Neuroligin-1, mRNA (cDNA... 916 0.0 

gi|109044244|ref|XM_001083140.1| PREDICTED: Macaca mulatta Neuro... 864 0.0 

gi|109044240|ref|XM_001082256.1| PREDICTED: Macaca mulatta Neuro... 864 0.0 

>5F_H06 

AATAATTTTGTTTACTTTAAGAAGGAGATATACATATGCGGGGTTCTCATCATCATCATCAT

CATGGTATGGCTAGCATGACTGGTGGACAGCAAATGGGTCGGGATCTGTACGACGATGAC

GATAAGGATCATCCCTTCACCATGGCACTGCCCAGATGCACGTGGCCAAATTATGTTTGGA

GAGCAGTGATGGCATGCTTGGTACACCGGGGATTGGGTGCCCCATTGACTCTCTGTATGT

TGGGATGTTTGCTTCAGGCTGGCCATGTGCTATCACAAAAATTGGATGATGTGGACCCAC

TGGTGGCTACCAACTTTGGAAAGATAAGAGGGATTAAGAAGGAACTCAATAATGAAATTT

TGGGGCCTGTTATTCAATTTCTTGGGGTTCCATATGCAGCCCCACCAACAGGGGAACGTC

GTTTTCAGCCTCCAGAACCACCATCTCCCTGGTCAGATATCAGAAATGCCACTCAATTTGC

TCCTGTGTGTCCCCAGAATATCATTGATGGCAGATTGCCAGAAGTCATGCTTCCTGTGTGG

TTTACTAATAACTTGGATGTGGTTTCATCATATGTGCAAGACCAGAGCGAAGACTGCCTAT

ATTTAAATATATATGTCCCGACTGAGGATGATATTCGGGACAGTGGGGGTCCCAAACCAGT

GATGGTGTATATCCATGGTGGCTCATATATGGAAGGTACTGGAAATTTATATGATGGAAGTG

TCTTGGCAAGTTATGGCAATGTGATCGTCATCACAGTCAACTATCGACTTGGAGTACTCGG

TTTCTTGAGTACAGGCGATCAGGCTGCAAAGGGGAACTATGGACTCCTTGATCTCATACA

AGCTTTAAGATGGACTAGTGAAAACATTGGATTCTTTGGTGGTGACCCCTTAAGAATCAC

TGTTTTTGGATCTGGTGCTGGGGGTTCATGTGTCAACCTGCTGACTTTATCCCATTATTCTG

AAAGTAACCCGTTGGAGCAATTCACCCAAAGGACTTTTTCAACGAGCAATAGCTCAAAG

TGGAACAA 

9.1.3 NLGN1 reverse primer 

BLASTN 1.8.4-Paracel [2010-10-31], (Altschul et al., 1997). 



P a g e  | 227 

Query= 6R_H07 (1106 letters) 

Database: genbank 

9,537,552 sequences; 28,719,530,764 total letter 

Sequences producing significant alignments: (bits) Value Score E 

gi|21595790|gb|BC032555.1| H. sapiens Neuroligin-1, mRNA (cDNA... 2089 0.0 

gi|5689476|dbj|AB028993.1| H. sapiens mRNA for KIAA1070 protei... 2089 0.0 

gi|31317253|ref|NM_014932.2| H. sapiens Neuroligin-1 (NLGN1)... 2089 0.0 

gi|123980671|gb|DQ891239.2| Synthetic construct clone IMAGE:1000... 2089 0.0 

gi|157928141|gb|EU176566.1| Synthetic construct H. sapiens clo... 2089 0.0 

gi|168278798|dbj|AB385423.1| Synthetic construct DNA, clone: pF1... 2089 0.0 

gi|114590433|ref|XM_001166397.1| PREDICTED: Pan troglodytes simi... 2058 0.0 

gi|114590431|ref|XM_001166321.1| PREDICTED: Pan troglodytes simi... 2058 0.0 

gi|109044231|ref|XM_001082898.1| PREDICTED: Macaca mulatta Neuro...1939 0.0 

gi|109044228|ref|XM_001082770.1| PREDICTED: Macaca mulatta Neuro...1939 0.0 

gi|149731113|ref|XM_001494392.1| PREDICTED: Equus caballus Neuro...1685 0.0 

gi|194222596|ref|XM_001494331.2| PREDICTED: Equus caballus Neuro...1685 0.0 

gi|74003762|ref|XM_545297.2| PREDICTED: Canis familiaris similar... 1661 0.0 

gi|114590435|ref|XM_001166442.1| PREDICTED: Pan troglodytes simi... 1604 0.0 

gi|113912208|gb|BC122827.1| Bos taurus Neuroligin-1, mRNA (cDNA... 1542 0.0 

gi|194664213|ref|XM_608505.4| PREDICTED: Bos taurus Neuroligin-1... 1542 0.0 

gi|109044234|ref|XM_001083506.1| PREDICTED: Macaca mulatta Neuro...1485 0.0 

gi|114590427|ref|XM_001166019.1| PREDICTED: Pan troglodytes simi... 1114 0.0 

gi|114590425|ref|XM_001166092.1| PREDICTED: Pan troglodytes simi... 1114 0.0 

gi|114590421|ref|XM_526383.2| PREDICTED: Pan troglodytes similar... 1114 0.0 

gi|109044240|ref|XM_001082256.1| PREDICTED: Macaca mulatta Neuro...1106 0.0 

gi|109044225|ref|XM_001082382.1| PREDICTED: Macaca mulatta Neuro...1106 0.0 

gi|164693376|dbj|AK307813.1| H. sapiens cDNA, FLJ97761 955 0.0 
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gi|17105267|gb|AC092967.5| H. sapiens 3 BAC RP11-521A24 (Roswe... 954 0.0 

gi|114590437|ref|XM_001166231.1| PREDICTED: Pan troglodytes simi... 946 0.0 

gi|114590429|ref|XM_001166258.1| PREDICTED: Pan troglodytes simi... 946 0.0 

gi|114590423|ref|XM_001166352.1| PREDICTED: Pan troglodytes simi... 946 0.0 

gi|114590419|ref|XM_001166291.1| PREDICTED: Pan troglodytes simi... 946 0.0 

gi|254281190|ref|NM_001163387.1| Mus musculus Neuroligin-1 (Nlgn... 898 0.0 

gi|224060830|ref|XM_002197701.1| PREDICTED: Taeniopygia guttata... 894 0.0 

>6R_H07 

GCAGCCGGATCGTTGAGCTCGCCCTTTTAGGCTATGTGGTATCGAGCTGGTTGAATATCTT

GGTCAACAAGTTCTTTGTAAGGCTTCTTCTGTAGGCATTCCACTAACTCTACTGTATCTGA

AACATTGCAACCAACTTTTGTGGCCAACATTCTAGCATATTTTGCAGGTTGAAAACTAAC

AGCCCAGCTGGAAAGGGCTGTTCCACTTTGAGCTATTGCTCGTTGAAAAAGTCCTTTGGT

TGAATTGCTCCAACGGTTACCTTCAGAATAATGGGATAAAGTCAGCAGGTTGACACATGA

ACCCCCAGCACCAGATCCAAAAACAGTGATTCTTAAGGGGTCACCACCAAAGAATCCAA

TGTTTTCACTAGTCCATCTTAAAGCTTGTATGAGATCAAGGAGTCCATAGTTCCCCTTTGC

AGCCTGATCGCCTGTACTCAAGAAACCGAGTACTCCAAGTCGATAGTTGACTGTGATGAC

GATCACATTGCCATAACTTGCCAAGACACTTCCATCATATAAATTTCCAGTACCTTCCATAT

ATGAGCCACCATGGATATACACCATCACTGGTTTGGGACCCCCACTGTCCCGAATATCATC

CTCAGTCGGGACATATATATTTAAATATAGGCAGTCTTCGCTCTGGTCTTGCACATATGATG

AAACCACATCCAAGTTATTAGTAAACCACACAGGAAGCATGACTTCTGGCAATCTGCCAT

CAATGATATTCTGGGGACACACAGGAGCAAATTGAGTGGCATTTCTGATATCTGACCAGG

GAGATGGTGGTTCTGGAGGCTGAAAACGACGTTCCCCTGTTGGTGGGGCTGCATATGGA

ACCCCAAGAAATTGAATAACAGGCCCCAAAATTTCATTATTGAGTTCCTTCTTAATCCCTC

TTATCTTTCCAAAGTTGGTAGCCACCAGTGGGTCCACATCATCCAATTTTTGTGATAGCAC

ATGGCCAGCCTGAAGCAAACATCCCAACATACAGAGAGTCAATGGGGCACCCAATCCCC

GGTGTACCAAGCATGCCATCACTGCTCTCCAAACATAATTTGGGCCACGTGCATCTGGGG

CAGTGCCATGGGTGAAGGG 
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9.2 Appendix for Chapter 4 

Table 4.3. Membrane proteins identified using in-solution detection. 

Abbrev
1 

Description
2 

Score
3 Mol 

Mass
4 

Mc 
5 

Ms 
6 

Sq 
7 

Ss 
8 

Cov 
9 

Lngt 
10 

TBB4B
1 

Tubulin -4B chain; TUBB4B 14852 50255 493 423 49 46 87.9 445 

TBB4A
1 

Tubulin -4A chain; TUBB4A 14487 50010 491 411 48 44 88.1 444 

TBB2A
1
 Tubulin -2A chain; TUBB2A 13826 50274 448 393 47 46 87.9 445 

TBB5
1
 Tubulin  chain; TUBB 13058 50095 445 386 49 47 88.1 444 

TBB3
1
 Tubulin -3 chain; TUBB3 9705 50856 304 259 34 29 69.3 450 

TBB6
1
 Tubulin -6 chain; TUBB6 4914 50281 161 128 23 19 46.2 446 

TBB8
1
 Tubulin -8 chain; TUBB8 3176 50257 166 120 18 14 32.9 444 

TBB1
1
 Tubulin -1 chain; TUBB1 782 50865 35 28 6 5 11.1 451 

TBB2B
1
 Tubulin -2B chain; TUBB2B 12629 50377 429 373 46 45 84.3 445 

TBB8L
1
 Tubulin -8 chain-like protein LOC260334 2672 50168 133 108 15 12 31.3 444 

YI016
5 Putative tubulin  chain-like protein 

ENSP00000290377 
1623 42204 69 59 10 8 14.6 

 

TBA1A
1
 Tubulin -1A chain; TUBA1A 10156 50788 266 244 42 39 74.5 451 

TBA4A
1
 Tubulin -4A chain; TUBA4A  9298 50634 249 232 40 39 75 448 

TBA8
1
 Tubulin -8 chain; TUBA8 5698 50746 143 124 19 19 37.9 449 

TBA1B
1
 Tubulin -1B chain; TUBA1B 10684 50804 285 260 44 41 74.5 451 

TBA3C
1
 Tubulin -3C/D chain; TUBA3C 8278 50612 194 186 28 27 55.6 450 

TBA1C
1
 Tubulin -1C chain; TUBA1C 8097 50548 238 216 38 35 65.7 449 

TBA3E
1
 Tubulin -3E chain; TUBA3E 5962 50568 146 133 22 20 46 450 

TBAL3
1
 Tubulin  chain-like 3; TUBAL3 1001 50675 46 40 6 4 13.5 446 

TBA4B
5 

Putative tubulin-like protein -4B; TUBA4B 571 27819 13 12 2 2 10.8 241 

ATPB
1
 ATP synthase subunit , mitochondrial; ATP5B 8652 56525 242 216 40 37 80.7 529 

DPYL2
1
 Dihydropyrimidinase-related protein 2; DPYSL2 6512 62711 184 156 38 34 80.4 572 

DPYL1
1
 Dihydropyrimidinase-related protein 1; CRMP1 931 62487 27 25 10 9 25.5 572 

DPYL3
1
 Dihydropyrimidinase-related protein 3; DPYSL3 491 62323 16 11 7 4 16.3 570 

DPYS
1
 Dihydropyrimidinase; DPYS 71 57107 5 4 2 1 6.6 519 

AT1A3
1
 Na

+
/K

+
-transporting ATPase subunit 3; ATP1A3 6442 113102 199 173 46 39 51.3 1013 

AT1A1
1
 Na

+
/K

+
-transporting ATPase subunit -1; ATP1A1 6387 114135 167 152 38 33 37.8 1023 

AT1A2
1
 Na

+
/K

+
-transporting ATPase subunit -2; ATP1A2  4269 113505 126 105 29 26 36.5 1020 

AT1A4
1
 Na

+
/K

+
-transporting ATPase subunit -4; ATP1A4 1569 115119 69 53 13 10 14.4 1029 

AT12A
1 

K
+
-transporting ATPase  chain 2; ATP12A 547 116292 33 24 7 4 5.3 1039 

ATP4A
2
 K

+
-transporting ATPase  chain 1; ATP4A 135 115756 8 7 2 2 2.7 1035 

ACTB
1
 Actin, cytoplasmic 1; ACTB 5799 42052 189 176 28 25 78.9 375 

ACTC
1 

Actin,  cardiac muscle 1; ACTC1 4116 42334 150 138 20 18 42.2 377 
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ACTA
1
 Actin, aortic smooth muscle; ACTA2 3877 42381 138 126 17 15 39.3 377 

POTEE
1
 POTE ankyrin domain family member E; POTEE 1726 122882 72 58 11 7 11.7 1075 

POTEF
1 

POTE ankyrin domain family member F; POTEF  1714 123020 74 56 8 5 8 1075 

POTEI
3
 POTE ankyrin domain family member I; POTEI 1142 122858 54 47 8 4 9 1075 

ACTBM
5
 Putative -actin-like protein 3; POTEKP 768 42331 16 16 2 2 7.2 375 

ACTBL
1
 -actin-like protein 2; ACTBL2 708 42318 36 19 7 5 19.7 376 

POTEJ
3
 POTE ankyrin domain family member J; POTEJ 289 118740 28 11 8 2 11.8 1038 

G3P
1
 Glyceraldehyde-3-phosphate dehydrogenase; GAPDH 5506 36201 156 140 26 24 67.2 335 

MDHM
1
 Malate dehydrogenase, mitochondrial; MDH2 5231 35937 112 101 26 22 78.1 338 

HBB
1
 Hemoglobin subunit ; HBB 4991 16102 147 139 18 18 96.6 147 

HBD
1
 Hemoglobin subunit ; HBD 1426 16159 54 50 9 9 80.3 147 

HBE
1
 Hemoglobin subunit ; HBE1 307 16249 18 14 3 1 25.2 147 

SPTN1
1
 Spectrin  chain, non-erythrocytic 1; SPTAN1 4837 285163 163 122 62 45 33.7 2472 

AP1G2
1
 AP-1 complex subunit g-like 2; AP1G2 23 87917 3 1 2 1 2.3 785 

SPTB2
1
 Spectrin  chain, non-erythrocytic 1; SPTBN1 4742 275237 133 122 48 43 25.2 2364 

SPTN2
1
 Spectrin  chain, non-erythrocytic 2; SPTBN2 64 272526 12 2 9 2 4.8 2390 

SPTB1
1
 Spectrin  chain, erythrocytic; SPTB 39 247171 14 1 10 1 5.9 2137 

KCRB
1
 Creatine kinase B-type; CKB 4638 42902 132 119 26 25 80.3 381 

KPYM
1
 Pyruvate kinase isozymes M1/M2; PKM 3904 58470 140 121 30 27 62.5 531 

KPYR
1
 Pyruvate kinase isozymes R/L; PKLR 260 62191 15 12 4 2 6.4 574 

GNAO
1
 Guanine nucleotide-binding protein Go subunit ; GNAO1 3882 40595 86 79 16 14 43.8 354 

GNAI2
1
 Guanine nucleotide-binding protein Gi subunit -2; GNAI2  1294 40995 35 32 8 6 23.4 355 

GNAI1
1
 Guanine nucleotide-binding protein Gi subunit -1; GNAI1 1130 40905 34 31 6 5 14.1 354 

GNAI3
1
 Guanine nucleotide-binding protein Gk subunit ; GNAI3 1026 41076 35 27 6 3 13.6 354 

GNAL
1
 Guanine nucleotide-binding protein Golf subunit ; GNAL 910 44794 25 23 3 2 5.2 381 

GNA12
1 

Guanine nucleotide-binding protein subunit -12; GNA12 726 44422 18 17 2 1 7.6 381 

ENOA
1
 -enolase; ENO1 3730 47481 107 95 26 23 81.1 434 

ENOG
1
 -enolase; ENO2 2874 47581 86 73 21 20 63.8 434 

ENOB
1
 -enolase; ENO3 1036 47299 32 22 11 7 33.9 434 

ATPA
1
 ATP synthase subunit , mitochondrial; ATP5A1 3653 59828 134 111 28 22 45.6 553 

STXB1
1
 Syntaxin-binding protein 1; STXBP1 pe 1  3118 67925 120 103 30 26 56.1 594 

CH60
1
 60 kDa heat shock protein, mitochondrial; HSPD1 2996 61187 78 63 21 16 54.1 573 

PPIA
1
 Peptidyl-prolyl cis-trans isomerase A; PPIA 2753 18229 84 77 13 12 93.9 165 

PAL4A
1
 

Peptidyl-prolyl cis-trans isomerase A-like 

4A/B/C; PPIAL4A 
344 18398 7 7 1 1 8.5 164 

ALDOA
1
 Fructose-bisphosphate aldolase A; ALDOA 2753 39851 80 69 20 15 79.1 364 

ALDOC
1 

Fructose-bisphosphate aldolase C; ALDOC 1963 39830 58 45 15 11 40.7 364 

NSF
1
 Vesicle-fusing ATPase; NSF 2485 83055 83 72 22 20 41.1 744 

GBB1
1
 

Guanine nucleotide-binding protein Gi/Gs/Gt 

subunit -1; GNB1 
2435 38151 60 51 17 15 61.5 340 
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GBB2
1
 

Guanine nucleotide-binding protein Gi/Gs/Gt 

subunit -2; GNB2 
1118 38048 38 29 15 11 47.6 340 

GBB4
1
 Guanine nucleotide-binding protein subunit -4; GNB4 96 38284 7 4 5 2 24.7 340 

SYN1
1
 Synapsin-1; SYN1 2364 74237 90 76 30 27 52.2 705 

SYN2
1
 Synapsin-2; SYN2 903 63093 27 25 7 7 13.6 582 

SRGP3
1
 SLIT-ROBO  GTPase-activating protein 3; SRGAP3 33 125395 8 2 2 1 1 1099 

KCC2A
1
 
Ca

2+
/calmodulin-dependent protein kinase II 

subunit ; CAMK2A 
2354 54624 84 77 21 20 46 478 

KCC2B
1
 
Ca

2+
/calmodulin-dependent protein kinase II 

subunit ; CAMK2B 
1106 73544 44 33 15 12 32.1 666 

KCC2G
1
 
Ca

2+
/calmodulin-dependent protein kinase II 

subunit ; CAMK2G 
949 63311 34 28 11 8 28.5 558 

KCC2D
1
 
Ca

2+
/calmodulin-dependent protein kinase II 

subunit ; CAMK2D 
825 56961 37 26 14 10 40.3 499 

VATB2
1
 
V-type proton ATPase subunit B, brain isoform; 

ATP6V1B2 
2248 56807 54 49 13 11 48.1 511 

VATB1
1
 
V-type proton ATPase subunit B, kidney 

isoform; ATP6V1B1 
642 57196 18 15 4 3 12.7 513 

DYN1
1
 Dynamin-1; DNM1 2225 97746 89 76 26 20 38.2 864 

DYN3
1
 Dynamin-3; DNM3 988 98084 43 36 9 7 14 869 

DYN2
1
 Dynamin-2; DNM2 235 98345 19 15 6 4 9.9 870 

HXK1
1
 Hexokinase-1; HK1 2116 103561 66 57 18 18 23.2 917 

HKDC1
1
 Putative hexokinase HKDC1; HKDC1 77 103790 12 4 6 2 10.1 917 

HXK2
1
 Hexokinase-2; HK2 55 103739 16 3 5 1 6.1 917 

HSP7C
1
 Heat shock cognate 71 kDa protein; HSPA8 2103 71082 71 63 21 19 37.2 646 

HSP71
1
 Heat shock 70 kDa protein 1A/1B; HSPA1A 466 70294 19 13 9 8 18.3 641 

HSP72
1
 Heat shock-related 70 kDa protein 2; HSPA2 713 70263 29 22 9 6 16.3 639 

HS71L
1
 Heat shock 70 kDa protein 1-like; HSPA1L 323 70730 15 9 6 5 9.4 641 

HSP76
1 

Heat shock 70 kDa protein 6; HSPA6 292 71440 10 10 4 4 8.4 643 

HSP77
5
 Putative heat shock 70 kDa protein 7; HSPA7 58 40448 3 3 2 2 6.8 367 

MBP
1
 Myelin basic protein; MBP 2072 33097 130 103 19 14 37.2 304 

CN37
1
 2',3'-cyclic-nucleotide 3'-phosphodiesterase; CNP 2034 47948 102 75 22 18 68.4 421 

PP2BA
1
 

Serine/threonine-protein phosphatase 2B 

catalytic subunit  isoform; PPP3CA 
109 59335 18 14 5 2 18.8 521 

PP2BC
1
 

Serine/threonine-protein phosphatase 2B 

catalytic subunit  isoform; PPP3CC 
80 58777 14 12 2 1 4.5 512 

CLH1
1
 Clathrin heavy chain 1; CLTC pe 1  1963 193260 81 64 30 23 21.7 1675 

CLH2
1
 Clathrin heavy chain 2; CLTCL1 92 189020 8 5 6 3 4 1640 

VATA
1
 V-type proton ATPase catalytic subunit A; ATP6V1A 1785 68660 54 46 16 13 36.8 617 

SHPS1
1
 

Tyrosine-protein phosphatase non-receptor type 

substrate 1; SIRPA 
1744 55446 61 49 14 12 36.5 504 
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SIRBL
1
 Signal-regulatory protein -1 isoform 3; SIRPB1 731 43674 39 28 8 6 23.9 398 

SIRB1
1
 Signal-regulatory protein -1; SIRPB1 250 43640 11 9 3 3 10.3 398 

SIRPG
1
 Signal-regulatory protein ; SIRPG  102 42870 10 7 4 3 10.1 387 

VATE1
1
 V-type proton ATPase subunit E 1; ATP6V1E1 1728 26186 52 46 11 9 48.2 226 

TPPP
1
 Tubulin polymerization-promoting protein; TPPP 1725 23850 40 38 9 8 50.7 219 

ACON
1
 Aconitate hydratase, mitochondrial; ACO2 1722 86113 60 47 16 15 29.4 780 

1433Z
1
 14-3-3 protein /; YWHAZ 1549 27899 46 44 11 10 45.3 245 

1433G
1
 14-3-3 protein g; YWHAG 1167 28456 55 41 16 13 62.3 247 

1433B
1
 14-3-3 protein /; YWHAB 738 28179 41 28 9 6 45.1 246 

1433E
1
 14-3-3 protein ; YWHAE 590 29326 15 11 5 4 32.5 255 

1433F
1
 14-3-3 protein ; YWHAH 460 28372 31 21 10 7 42.3 246 

1433T
1
 14-3-3 protein ; YWHAQ 80 28032 10 6 5 3 26.5 245 

1433S
1
 14-3-3 protein sigma; SFN 50 27871 4 2 2 1 6.5 248 

NCAM1
1
 Neural cell adhesion molecule 1; NCAM1 1540 95370 63 49 15 11 23 858 

IGSF8
1
 Immunoglobulin superfamily member 8; IGSF8 1382 65621 37 32 13 11 36.4 613 

KCRU
1
 Creatine kinase U-type, mitochondrial; CKMT1A 1345 47406 52 39 18 14 57.8 417 

HBA
1
 Hemoglobin subunit ; HBA1 1339 15305 58 46 10 10 69.7 142 

ANK2
1
 Ankyrin-2; ANK2 1326 435957 58 40 28 18 10.3 3957 

ANK3
1
 Ankyrin-3; ANK3 28 482394 16 1 13 1 4.7 4377 

CNTN1
1 

Contactin-1; CNTN1  1276 114104 62 49 19 16 22.1 1018 

PGK1
1
 Phosphoglycerate kinase 1; PGK1 1250 44985 46 38 18 14 64.3 417 

PGK2
1
 Phosphoglycerate kinase 2; PGK2 128 45166 6 4 4 2 24.7 417 

GFAP
1
 Glial fibrillary acidic protein; GFAP 1206 49907 48 39 18 16 55.1 432 

K2C1
1
 Keratin, type II cytoskeletal 1; KRT1 44 66170 3 1 3 1 5.9 644 

HS90A
1
 Heat shock protein HSP 90-; HSP90AA1 1183 85006 24 21 9 8 13 732 

HS90B
1
 Heat shock protein HSP 90-; HSP90AB1 1090 83554 23 19 10 8 14.2 724 

ENPL
1
 Endoplasmin; HSP90B1 87 92696 2 2 2 2 3.1 803 

TRAP1
1 

Heat shock protein 75 kDa, mitochondrial; TRAP1 220 80345 10 3 2 1 3.7 704 

H90B3
5 

Putative heat shock protein HSP 90--3; HSP90AB3P 162 68624 4 3 3 2 4.5 597 

H90B4
5
 Putative heat shock protein HSP 90- 4; HSP90AB4P 149 58855 3 2 2 1 6.7 505 

HS904
5
 Putative heat shock protein HSP 90- A4; HSP90AA4P 129 47796 3 2 2 1 5.3 418 

H90B2
1
 Putative heat shock protein HSP 90- 2; HSP90AB2P 101 44492 2 2 1 1 3.1 381 

G6PI
1
 Glucose-6-phosphate isomerase; GPI 1175 63335 38 30 12 9 37.3 558 

CSPG2
1
 Versican core protein; VCAN 1163 374585 42 32 15 8 8.5 3396 

PRDX2
1
 Peroxiredoxin-2; PRDX2 1159 22049 51 41 12 9 40.9 198 

PRDX1
1
 Peroxiredoxin-1; PRDX1 1139 22324 37 36 6 5 34.2 199 

PRDX4
1
 Peroxiredoxin-4; PRDX4 270 30749 7 7 1 1 4.4 271 

STX1B
1
 Syntaxin-1B; STX1B 1139 33452 40 32 12 10 36.8 288 

STX1A
1
 Syntaxin-1A; STX1A 450 33174 20 16 8 6 35.8 288 
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STX2
1
 Syntaxin-2; STX2 40 33377 5 2 2 1 5.9 288 

UCHL1
1
 Ubiquitin carboxyl-terminal hydrolase isozyme L1; UCHL1 1115 25151 40 32 12 8 78.5 223 

AT1B1
1
 Na

+
/K

+
-transporting ATPase subunit -1; ATP1B1 1094 35438 37 32 8 6 32.3 303 

GLNA
1
 Glutamine synthetase; GLUL 1094 42665 22 22 5 5 23.3 373 

PHB
1
 Prohibitin; PHB  1089 29843 30 26 11 10 68.4 272 

NFASC
1
 Neurofascin; NFASC 1042 150789 44 36 16 13 15.5 1347 

THY1
1
 Thy-1 membrane glycoprotein; THY1 1036 18151 31 30 4 4 18 161 

NFL
1
 Neurofilament light polypeptide; NEFL 1023 61536 39 32 15 13 37.8 543 

AINX
1
 -internexin; INA 309 55528 26 15 12 8 29.5 499 

NFM
1
 Neurofilament medium polypeptide; NEFM 247 102468 22 12 11 4 18.7 916 

NFH
1
 Neurofilament heavy polypeptide; NEFH 209 112639 12 8 5 2 4 1026 

DESM
1 

Desmin; DES 23 53560 3 1 2 1 5.7 470 

GRP75
1
 Stress-70 protein, mitochondrial; HSPA9 1006 73920 29 23 9 7 18 679 

VAMP2
1
 Vesicle-associated membrane protein 2; VAMP2 996 12712 19 19 5 5 43.1 116 

VAMP3
1
 Vesicle-associated membrane protein 3; VAMP3 226 11359 7 7 2 2 33 100 

VAMP1
1
 Vesicle-associated membrane protein 1; VAMP1 113 13008 5 5 1 1 7.6 118 

MIF
1
 Macrophage migration inhibitory factor; MIF 988 12639 39 32 6 5 46.1 115 

MDHC
1
 Malate dehydrogenase, cytoplasmic; MDH1 984 36631 21 20 6 5 20.4 334 

MYPR
1
 Myelin proteolipid protein; PLP1 962 30855 27 24 5 4 18.1 277 

COX5A
1
 Cytochrome c oxidase subunit 5A, mitochondrial; COX5A 940 16923 37 28 10 8 58 150 

CX6B1
1
 Cytochrome c oxidase subunit 6B1; COX6B1 931 10414 32 29 6 5 84.9 86 

ATPO
1
 ATP synthase subunit O, mitochondrial; ATP5O 920 23377 33 30 10 7 52.1 213 

EAA1
1
 Excitatory amino acid transporter 1; SLC1A3 919 59705 20 17 4 3 9.4 542 

TENR
1
 Tenascin-R; TNR 914 151805 31 26 10 9 13.6 1358 

AATM
1
 Aspartate aminotransferase, mitochondrial; GOT2 898 47886 36 33 13 11 37.2 430 

TKT
1
 Transketolase; TKT 890 68519 33 26 9 9 23.1 623 

ATP5H
1
 ATP synthase subunit , mitochondrial; ATP5H 851 18537 34 26 9 7 62.7 161 

PGAM1
1
 Phosphoglycerate mutase 1; PGAM1 847 28900 33 27 11 7 46.9 254 

PGAM4
1
 Probable phosphoglycerate mutase 4; PGAM4 649 28930 27 21 9 5 34.3 254 

PGAM2
1
 Phosphoglycerate mutase 2; PGAM2 pe 1  295 28919 12 8 4 2 17.8 253 

COF1
1
 Cofilin-1; CFL1 844 18719 25 24 6 6 56.6 166 

COF2
1
 Cofilin-2; CFL2 237 18839 10 10 3 3 19.9 166 

SNP25
1
 Synaptosomal-associated protein 25; SNAP25 824 23528 27 21 11 8 61.7 206 

EAA2
1
 Excitatory amino acid transporter 2; SLC1A2 822 62577 28 25 9 8 21.3 574 

TPIS
1
 Triosephosphate isomerase; TPI1 795 31057 46 31 17 13 70.6 286 

VDAC1
1
 
Voltage-dependent anion-selective channel 

protein 1; VDAC1 
789 30868 34 25 12 7 50.2 283 

VPP1
1
 

V-type proton ATPase 116 kDa subunit  

isoform 1; ATP6V0A1 
788 97148 36 28 15 12 20.1 837 

PRDX5
1
 Peroxiredoxin-5, mitochondrial; PRDX5 777 22301 32 27 10 6 72.9 214 
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MOG
1
 Myelin-oligodendrocyte glycoprotein; MOG 766 28574 13 13 3 3 16.2 247 

VDAC2
1 Voltage-dependent anion-selective channel 

protein 2; VDAC2 
761 32060 35 30 6 6 25.9 294 

ATP5I
1
 ATP synthase subunit e, mitochondrial; ATP5I 742 7928 24 20 7 4 71 69 

SEPT7
1
 Septin-7; SEPT7 740 50933 27 24 8 7 24.3 437 

SEPT8
1
 Septin-8; SEPT8 321 56234 15 14 4 4 11.8 483 

SEPT6
1
 Septin-6; SEPT6 288 50084 18 14 6 5 18.2 434 

SEP11
1
 Septin-11; SEPT11 338 49652 17 14 5 4 14.2 429 

SEP14
1
 Septin-14; SEPT14 173 50449 12 8 2 1 4.2 432 

SEP10
1
 Septin-10; SEPT10 105 53016 2 2 1 1 5.1 454 

ODPB
1
 

Pyruvate dehydrogenase E1 component subunit 

, mitochondrial; PDHB 
739 39550 26 26 6 6 32.6 359 

ICAM5
1
 Intercellular adhesion molecule 5; ICAM5 pe 1  731 98766 18 16 7 5 10.8 924 

PCSK1
1
 ProSAAS; PCSK1N 700 27413 16 16 3 3 20 260 

PIN1
1
 

Peptidyl-prolyl cis-trans isomerase NIMA-

interacting 1; PIN1 
691 18346 15 15 4 4 43.6 163 

ADT3
1
 ADP/ATP translocase 3; SLC25A6 674 33073 31 24 10 10 38.6 298 

ADT2
1
 ADP/ATP translocase 2; SLC25A5 499 33059 26 22 7 7 24.2 298 

ADT1
1
 ADP/ATP translocase 1; SLC25A4 478 33271 29 18 11 9 38.9 298 

ADT4
1
 ADP/ATP translocase 4; SLC25A31 58 35285 3 1 2 1 6 315 

PACN1
1
 
Protein kinase C and casein kinase substrate in 

neurons protein 1; PACSIN1 pe 1  
648 51276 22 21 10 9 32.2 444 

CATD
1
 Cathepsin D; CTSD 634 45037 21 18 7 6 22.6 412 

L1CAM
1
 Neural cell adhesion molecule L1; L1CAM 631 140885 19 17 9 7 10.7 1257 

DHE3
1
 Glutamate dehydrogenase 1, mitochondrial; GLUD1 622 61701 30 23 15 10 30.6 558 

DHE4
1
 Glutamate dehydrogenase 2, mitochondrial; GLUD2 361 61738 13 11 6 4 14 558 

DHPR
1
 Dihydropteridine reductase; QDPR 614 26001 18 17 7 6 38.1 244 

KAP3
1
 

cAMP-dependent protein kinase type II- 

regulatory subunit; PRKAR2B 
599 46672 20 15 8 4 22.2 418 

KAP2
1
 

cAMP-dependent protein kinase type II- 

regulatory subunit; PRKAR2A 
102 45832 6 3 4 2 13.9 404 

STMN1
1
 Stathmin; STMN1 586 17292 9 8 2 1 18.1 149 

AT2B4
1
 Plasma membrane Ca

2+
-transporting ATPase 4; ATP2B4 582 139030 39 26 15 12 17.2 1241 

AT2B2
1
 Plasma membrane Ca

2+
-transporting ATPase 2; ATP2B2 389 137987 20 14 8 7 8.6 1243 

AT2B1
1
 Plasma membrane Ca

2+
-transporting ATPase 1; ATP2B1 297 139637 26 15 9 8 10.4 1258 

AT2B3
1
 Plasma membrane Ca

2+
-transporting ATPase 3; ATP2B3 162 135253 26 9 8 6 8.5 1220 

PIMT
1
 

Protein-L-isoaspartate(D-aspartate) O-

methyltransferase; PCMT1 
581 24792 13 10 5 3 41.4 227 

MAP1B
1
 Microtubule-associated protein 1B; MAP1B 573 271665 52 19 19 9 13.4 2468 

MAP1A
1
 Microtubule-associated protein 1A; MAP1A 196 306781 15 8 9 4 5.2 2803 
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DHSA
1
 

Succinate dehydrogenase [ubiquinone] 

flavoprotein subunit, mitochondrial; SDHA 
572 73672 8 8 2 2 4.6 

 

QCR1
1
 

Cytochrome b-c1 complex subunit 1, 

mitochondrial; UQCRC1 
564 53297 23 21 10 9 36 480 

MAP2
1 

Microtubule-associated protein 2; MAP2 560 199860 23 15 12 6 34.1 478 

COX5B
1
 
Cytochrome c oxidase subunit 5B, 

mitochondrial; COX5B 
539 13915 32 23 6 5 54.3 129 

ACTN1
1
 -actinin-1; ACTN1 507 103563 25 15 10 8 20.1 892 

ACTN4 -actinin-4; ACTN4 403 105245 9 9 3 3 4.1 911 

ACTN2 -actinin-2; ACTN2 44 104358 3 1 2 1 2.6 894 

SFXN1
1
 Sideroflexin-1; SFXN1 494 35881 18 13 8 5 46.9 322 

SFXN3
2 

Sideroflexin-3; SFXN3 338 36298 10 9 4 4 17.2 325 

GRP78
1 

78 kDa glucose-regulated protein; HSPA5 483 72402 16 14 9 7 22.2 654 

CADM2
2
 Cell adhesion molecule 2; CADM2 480 47980 14 13 4 3 17.5 435 

QCR2
1
 

Cytochrome b-c1 complex subunit 2, 

mitochondrial; UQCRC2 
475 48584 13 12 5 4 22.7 453 

BASP1
1
 Brain acid soluble protein 1; BASP1 474 22680 13 8 4 2 44.5 227 

EHD3
1
 EH domain-containing protein 3; EHD3 472 60906 12 11 5 4 15.3 535 

PEBP1
1
 Phosphatidylethanolamine-binding protein 1; PEBP1 472 21158 19 14 8 4 71.7 187 

VATL
1
 

V-type proton ATPase 16 kDa proteolipid 

subunit; ATP6V0C 
469 15725 4 4 1 1 20 155 

LSAMP
1
 Limbic system-associated membrane protein; LSAMP 466 37883 18 13 6 4 26.9 338 

E41L3
1
 Band 4.1-like protein 3; EPB41L3 459 121458 14 12 9 7 11.8 1087 

DYHC1
1
 Cytoplasmic dynein 1 heavy chain 1; DYNC1H1 456 534809 40 19 25 11 9.6 4646 

AP2M1
1
 AP-2 complex subunit µ; AP2M1 424 49965 15 12 4 4 12 435 

CAP2
1
 Adenylyl cyclase-associated protein 2; CAP2 420 53076 12 7 4 3 11.7 477 

GDIA
1
 Rab GDP dissociation inhibitor ; GDI1 417 51177 16 14 4 4 10.7 447 

GDIB
1
 Rab GDP dissociation inhibitor ; GDI2 247 51087 9 8 2 2 4.9 445 

SCOT1
1 Succinyl-CoA:3-ketoacid coenzyme A 

transferase 1, mitochondrial; OXCT1 
414 56578 17 12 9 6 23.1 520 

SCOT2
2
 

Succinyl-CoA:3-ketoacid coenzyme A 

transferase 2, mitochondrial; OXCT2 
95 56731 2 2 1 1 2.3 517 

THIL
1
 Acetyl-CoA acetyltransferase, mitochondrial; ACAT1 412 45456 13 12 5 5 30.9 427 

OPA1
1
 Dynamin-like 120 kDa protein, mitochondrial; OPA1 407 112131 14 9 7 4 12.6 960 

RAB3A
1
 Ras-related protein Rab-3A; RAB3A 407 25196 8 7 3 3 10.9 220 

RAB3D
1
 Ras-related protein Rab-3D; RAB3D 33 24480 2 1 1 1 3.7 219 

RAC1
1
 Ras-related C3 botulinum toxin substrate 1; RAC1 402 21835 19 16 7 5 28.1 192 

RAC2
1
 Ras-related C3 botulinum toxin substrate 2; RAC2 100 21814 6 4 3 2 17.2 192 

OPCM
1 

Opioid-binding protein/cell adhesion molecule; OPCML 391 38496 25 14 8 4 29.6 345 

TMOD2
1
 Tropomodulin-2; TMOD2  389 39571 9 9 3 3 16 351 

PARK7
1
 Protein DJ-1; PARK7 388 20050 12 11 4 4 19 189 
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TCPE
1
 T-complex protein 1 subunit ; CCT5 378 60089 22 9 9 5 31.2 541 

UCRI
1
 

Cytochrome b-c1 complex subunit Rieske, 

mitochondrial; UQCRFS1 
373 29934 18 16 3 3 21.2 274 

UCRIL
5
 

Putative cytochrome b-c1 complex subunit 

Rieske-like protein 1; UQCRFS1P1 
368 31081 17 15 2 2 12 283 

RAP2A
1
 Ras-related protein Rap-2a; RAP2A 368 20830 7 7 2 2 15.3 183 

CADM3
1
 Cell adhesion molecule 3; CADM3 364 43729 14 12 4 4 21.4 398 

RAP1A
1
 Ras-related protein Rap-1A; RAP1A 363 21316 9 9 2 2 7.6 184 

HSPB1
1
 Heat shock protein -1; HSPB1 358 22826 9 9 3 3 21 205 

SEPT5
1
 Septin-5; SEPT5 350 43206 17 14 7 6 30.9 369 

DCTN2
1
 Dynactin subunit 2; DCTN2 348 44318 9 8 4 3 14.5 401 

NDUA5
1
 
NADH dehydrogenase [ubiquinone] 1  

subcomplex subunit 5; NDUFA5 
345 13507 20 17 8 7 82.8 116 

MMSA
1
 

Methylmalonate-semialdehyde dehydrogenase 

[acylating], mitochondrial; ALDH6A1 
342 58259 13 12 6 6 23 535 

NCAM2
1
 Neural cell adhesion molecule 2; NCAM2 341 93786 9 8 3 2 5.1 837 

SYT1
1
 Synaptotagmin-1; SYT1 336 47885 13 10 5 4 17.5 422 

EF1A2
1
 Elongation factor 1- 2; EEF1A2 336 50780 19 10 8 4 35 463 

EF1A1
1
 Elongation factor 1- 1; EEF1A1 334 50451 17 10 7 3 31 462 

AT1B2
1
 Na

+
/K

+
-transporting ATPase subunit -2; ATP1B2 335 33745 15 15 4 4 25.5 290 

SSBP
1
 

Single-stranded DNA-binding protein, 

mitochondrial; SSBP1 
331 17249 13 10 5 3 44.6 148 

AP2A1
1
 AP-2 complex subunit -1; AP2A1 324 108561 16 13 8 6 10.8 977 

AP2A2
1
 AP-2 complex subunit -2; AP2A2 261 104807 16 12 8 5 14 939 

4F2
1
 4F2 cell-surface antigen heavy chain; SLC3A2 318 68180 12 10 3 3 6.8 630 

DDAH1
1 N(G),N(G)-dimethylarginine 

dimethylaminohydrolase 1; DDAH1 
315 31444 15 14 4 3 35.1 285 

K6PP
1
 6-phosphofructokinase type C; PFKP 310 86454 18 11 9 5 13.1 784 

FUMH
1
 Fumarate hydratase, mitochondrial; FH 308 54773 12 9 6 3 24.7 510 

HECAM
1
 Hepatocyte cell adhesion molecule; HEPACAM 308 46226 11 7 5 3 22.8 416 

LEG1
1
 Galectin-1; LGALS1 304 15048 7 7 2 2 33.3 135 

GBG2
1
 

Guanine nucleotide-binding protein Gi/Gs/Go 

subunit -2; GNG2 
295 7959 6 6 1 1 19.7 71 

NDUA8
1
 
NADH dehydrogenase [ubiquinone] 1  

subcomplex subunit 8; NDUFA8 
291 20548 12 10 4 3 27.9 172 

SEPT2
1
 Septin-2; SEPT2 289 41689 14 8 7 4 33.2 361 

SNAG
1
 -soluble NSF attachment protein; NAPG 288 35066 11 7 5 3 25.6 312 

ATP5L
1
 ATP synthase subunit , mitochondrial; ATP5L 285 11421 8 8 3 3 40.8 103 

ATPG
1
 ATP synthase subunit , mitochondrial; ATP5C1 281 33032 11 9 4 3 25.5 298 

SEPT3
1
 Neuronal-specific septin-3; SEPT3 280 40963 13 11 4 3 17.9 358 
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NDUAD
1
 
NADH dehydrogenase [ubiquinone] 1  

subcomplex subunit 13; NDUFA13 
280 16688 18 16 4 3 51.4 144 

PRDX6
1
 Peroxiredoxin-6; PRDX6 280 25133 6 5 2 1 15.2 224 

TCPB
1
 T-complex protein 1 subunit ; CCT2 278 57794 15 8 6 3 20.4 535 

NNTM
1
 NAD(P) transhydrogenase, mitochondrial; NNT 277 114564 10 9 5 4 8.7 1086 

PRIO
1
 Major prion protein; PRNP 274 27871 5 5 1 1 4.7 253 

PRDX3
1
 
Thioredoxin-dependent peroxide reductase, 

mitochondrial; PRDX3 
272 28017 10 9 4 3 21.1 256 

PDXK
1
 Pyridoxal kinase; PDXK 271 35308 11 9 3 2 13.8 312 

AP2B1
1
 AP-2 complex subunit ; AP2B1 269 105398 20 12 10 6 15.5 937 

AP1B1
1
 AP-1 complex subunit -1; AP1B1 79 105482 12 2 5 1 7.9 949 

SH3G2
1
 Endophilin-A1; SH3GL2 269 40108 13 13 5 5 13.1 352 

SH3G1
1
 Endophilin-A2; SH3GL1 105 41692 5 5 1 1 3.3 368 

SSDH
1
 

Succinate-semialdehyde dehydrogenase, 

mitochondrial; ALDH5A1 
269 58034 12 7 7 3 22.6 535 

TAU
1
 Microtubule-associated protein tau; MAPT 268 79108 21 13 7 6 12.5 758 

NDUA2
1
 
NADH dehydrogenase [ubiquinone] 1  

subcomplex subunit 2; NDUFA2 
266 11029 10 8 3 3 45.5 99 

LDHB
1
 L-lactate dehydrogenase B chain; LDHB 264 36900 19 15 6 4 37.7 334 

K6PF
1
 6-phosphofructokinase, muscle type; PFKM 260 85984 8 3 3 1 5.8 780 

2AAA
1
 

Serine/threonine-protein phosphatase 2A 65 kDa 

regulatory subunit A  isoform; PPP2R1A 
259 66065 9 6 5 4 15.6 589 

2AAB
1
 

Serine/threonine-protein phosphatase 2A 65 kDa 

regulatory subunit A  isoform; PPP2R1B 
90 66799 3 1 3 1 8.3 601 

NDUS7
1
 
NADH dehydrogenase [ubiquinone] Fe-S 

protein 7, mitochondrial; NDUFS7 
258 23833 4 3 2 1 17.8 213 

GPM6A
1
 Neuronal membrane glycoprotein M6A; GPM6A 258 31930 11 8 5 3 14.7 278 

CH10
1
 10 kDa heat shock protein, mitochondrial; HSPE1 257 10925 17 15 5 4 45.1 102 

NEGR1
1
 Neuronal growth regulator 1; NEGR1 255 39379 11 7 5 4 15.8 354 

CISD1
1
 CDGSH Fe-S domain-containing protein 1; CISD1 255 12362 5 5 1 1 16.7 108 

BRK1
1
 Protein BRICK1; BRK1 254 8796 5 4 2 1 29.3 75 

CNTP1
1 

Contactin-associated protein 1; CNTNAP1 254 158220 8 4 5 2 5.3 1384 

IMMT
1
 Mitochondrial inner membrane protein; IMMT 253 84026 17 9 7 5 16.5 758 

TERA
1
 Transitional endoplasmic reticulum ATPase; VCP 252 89950 19 11 9 6 18.1 806 

S12A5
2
 Solute carrier family 12 member 5; SLC12A5 249 127470 10 6 5 2 4.3 1139 

S12A4
1
 Solute carrier family 12 member 4; SLC12A4 180 121712 5 4 2 1 2.1 1085 

NIPS1
1 

Protein NipSnap homolog 1; NIPSNAP1 248 33460 8 7 4 3 15.1 284 

EFTU
1
 Elongation factor Tu, mitochondrial; TUFM 244 49852 14 9 8 6 19.9 452 

AATC
1
 Aspartate aminotransferase, cytoplasmic; GOT1 243 46447 12 8 6 4 20.1 413 

COX7C
1
 Cytochrome c oxidase subunit 7C, mitochondrial; COX7C 239 7298 8 7 3 3 65.1 63 

CISY
1
 Citrate synthase, mitochondrial; CS 239 51908 11 8 4 3 19.1 466 
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SATT
1
 Neutral amino acid transporter A; SLC1A4 238 56087 8 7 3 2 11.3 532 

GBG3
2
 

Guanine nucleotide-binding protein Gi/Gs/Go 

subunit -3; GNG3 
235 8527 7 7 2 2 41.3 75 

COX41
1
 

Cytochrome c oxidase subunit 4 isoform 1, 

mitochondrial; COX4I1 
231 19621 15 14 5 4 40.8 169 

RALB
1
 Ras-related protein Ral-B; RALB 231 23508 6 5 2 1 9.7 206 

FA49B
1
 Protein FAM49B; FAM49B 230 37010 5 4 2 1 8 324 

PGCB
1
 Brevican core protein; BCAN 230 100539 13 9 3 2 4.3 911 

E41L1
1
 Band 4.1-like protein 1; EPB41L1 230 99012 10 8 5 3 9.6 881 

AOFB
1
 Amine oxidase [flavin-containing] B; MAOB 227 59238 11 8 5 4 14.4 520 

C1QBP
1
 

Complement component 1 Q subcomponent-

binding protein, mitochondrial; C1QBP 
225 31742 5 4 2 1 6.4 282 

CMC1
1
 

Ca
2+

-binding mitochondrial carrier protein 

Aralar1; SLC25A12 
221 75114 11 8 5 3 12.8 678 

RAB10
1
 Ras-related protein Rab-10; RAB10 221 22755 9 9 2 2 9 200 

CY1
1
 Cytochrome c1, heme protein, mitochondrial; CYC1 220 35741 12 11 3 3 13.8 325 

SYPH
1
 Synaptophysin; SYP 220 34109 7 7 4 4 22.7 313 

ATP5J
1
 ATP synthase-coupling factor 6, mitochondrial; ATP5J 215 12580 12 7 7 5 69.4 108 

HCDH
1
 

Hydroxyacyl-coenzyme A dehydrogenase, 

mitochondrial; HADH 
214 34329 8 6 2 2 9.6 314 

HS12A
1
 Heat shock 70 kDa protein 12A; HSPA12A 211 75217 12 8 6 3 14.5 675 

FLOT1
1
 Flotillin-1; FLOT1 211 47554 9 5 5 2 16.2 427 

UBA1
1
 

Ubiquitin-like modifier-activating enzyme 1; 

UBA1 
211 118858 6 5 5 4 8.9 1058 

FLOT2
1 

Flotillin-2; FLOT2 208 47434 7 6 2 1 9.1 428 

AT2A2
1
 

Sarcoplasmic/endoplasmic reticulum Ca
2+

 

ATPase 2; ATP2A2 
206 116336 15 11 7 4 11 1042 

AT2A1
1
 

Sarcoplasmic/endoplasmic reticulum Ca
2+ 

ATPase 1; ATP2A1 
159 111550 10 7 3 1 3.3 1001 

ARP5L
1
 

Actin-related protein 2/3 complex subunit 5-like 

protein; ARPC5L 
203 16931 6 6 3 3 25.5 153 

SYFA
1
 Phenylalanine—tRNA ligase  subunit; FARSA  203 57585 4 4 1 1 2.8 508 

GNAQ
1
 Guanine nucleotide-binding protein Gq subunit ; GNAQ 203 42400 15 6 4 2 17.3 359 

GNA11
1
 Guanine nucleotide-binding protein subunit -11; GNA11 70 42382 12 3 3 2 13.1 359 

MAP6
1
 Microtubule-associated protein 6; MAP6 pe 1  199 86680 6 4 4 2 7.1 813 

MGST3
1
 Microsomal glutathione S-transferase 3; MGST3 197 16734 7 4 3 2 35.5 152 

MPCP
1
 Phosphate carrier protein, mitochondrial; SLC25A3 197 40525 12 11 4 3 13.5 362 

PEA15
1
 Astrocytic phosphoprotein PEA-15; PEA15 pe 1  196 15088 6 6 2 2 21.5 130 

RAB7A
1
 Ras-related protein Rab-7a; RAB7A 190 23760 4 3 3 2 16.9 207 

PURA
1
 Transcriptional activator protein Pur-; PURA 190 35003 6 5 2 2 8.4 322 

NB5R3
1
 NADH-cytochrome b5 reductase 3; CYB5R3 190 34441 5 4 2 1 10.3 301 
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ECHA
1
 

Trifunctional enzyme subunit , mitochondrial; 

HADHA 
187 83688 16 10 8 4 15.2 763 

NDUS8
1
 
NADH dehydrogenase [ubiquinone] Fe-S 

protein 8, mitochondrial; NDUFS8 
187 24203 10 10 3 3 17.6 210 

VISL1
1
 Visinin-like protein 1; VSNL1 187 22299 10 9 3 3 23 191 

NDKB
1
 Nucleoside diphosphate kinase B; NME2 186 17401 11 9 3 3 31.6 152 

NDKA
1
 Nucleoside diphosphate kinase A; NME1 175 17309 8 8 2 2 19.1 152 

NDK8
1
 Putative nucleoside diphosphate kinase; NME2P1 109 15690 9 5 3 2 34.3 137 

CAZA2
1
 F-actin-capping protein subunit -2; CAPZA2  186 33157 6 6 2 2 9.8 286 

CAZA1
1
 F-actin-capping protein subunit -1; CAPZA1 135 33073 5 4 2 1 9.1 286 

IDHP
1
 Isocitrate dehydrogenase [NADP], mitochondrial; IDH2 185 51333 13 10 6 4 18.4 452 

NDRG2
1
 Protein NDRG2; NDRG2 184 41114 14 12 4 3 28.8 371 

BIN1
1
 Myc box-dependent-interacting protein 1; BIN1 181 64887 11 7 4 2 8.1 593 

RAB5B
1 

Ras-related protein Rab-5B; RAB5B 177 23920 4 4 1 1 6.5 215 

DCLK1
1
 Serine/threonine-protein kinase DCLK1; DCLK1 175 82743 6 4 3 2 5 740 

VATG2
1
 V-type proton ATPase subunit G 2; ATP6V1G2 175 13653 6 5 2 1 35.6 118 

RLA1
1
 60S acidic ribosomal protein P1; RPLP1 175 11621 4 4 1 1 14 114 

ETFA 
Electron transfer flavoprotein subunit , 

mitochondrial; ETFA 
174 35400 6 4 3 1 18.9 333 

PHB2
1
 Prohibitin-2; PHB2 173 33276 11 9 6 4 29.8 299 

CLCB
1
 Clathrin light chain B; CLTB 169 25289 5 5 3 3 13.5 229 

COX6C
1
 Cytochrome c oxidase subunit 6C; COX6C 169 8776 8 7 3 3 28 75 

SHLB2
1
 Endophilin-B2; SH3GLB2 169 44175 5 5 5 5 20.3 395 

VA0D1
1
 V-type proton ATPase subunit d 1; ATP6V0D1 167 40759 11 9 3 2 11.1 351 

IMB1
1
 Importin subunit -1; KPNB1 167 98420 4 4 2 2 3.4 876 

ECHM
1
 Enoyl-CoA hydratase, mitochondrial; ECHS1 167 31823 11 9 4 3 21.7 290 

PPT1
1
 Palmitoyl-protein thioesterase 1; PPT1 167 34627 4 4 2 2 13.7 306 

CAPZB
1
 F-actin-capping protein subunit ; CAPZB 166 31616 6 6 2 2 17.3 277 

CSRP1
1
 Cysteine and glycine-rich protein 1; CSRP1 165 21409 4 3 1 1 7.8 193 

PROF1
1
 Profilin-1; PFN1 164 15216 3 3 2 2 22.9 140 

CBR1
1
 Carbonyl reductase [NADPH] 1; CBR1 162 30641 17 8 5 3 24.9 277 

CBR3
1
 Carbonyl reductase [NADPH] 3; CBR3 76 31230 4 3 2 1 10.1 277 

MK01
1
 Mitogen-activated protein kinase 1; MAPK1 162 41762 6 4 2 2 10.3 360 

SNAB
1
 -soluble NSF attachment protein; NAPB 160 33878 9 5 5 2 24.8 298 

SNAA
1
 -soluble NSF attachment protein; NAPA 153 33667 5 4 2 1 14.2 295 

VATH
1
 V-type proton ATPase subunit H; ATP6V1H 159 56417 8 7 3 2 12.6 483 

PALM
1
 Paralemmin-1; PALM 157 42221 8 4 4 2 18.3 387 

ATPK
1
 ATP synthase subunit f, mitochondrial; ATP5J2 157 11025 5 4 1 1 11.7 94 

IDH3A
1
 

Isocitrate dehydrogenase [NAD] subunit , 

mitochondrial; IDH3A  
156 40022 6 4 3 1 10.1 366 
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NDUA6
1
 
NADH dehydrogenase [ubiquinone] 1  

subcomplex subunit 6; NDUFA6 
155 17973 3 3 1 1 10.4 154 

GTR3
1
 

Solute carrier family 2, facilitated glucose 

transporter member 3; SLC2A3 
151 54345 3 3 1 1 4 496 

RTN4
1
 Reticulon-4; RTN4 148 130250 13 6 3 1 4.9 1192 

PTGDS
1
 Prostaglandin-H2 D-isomerase; PTGDS 148 21243 3 2 1 1 8.4 190 

NPTN
1
 Neuroplastin; NPTN 146 44702 10 8 3 1 9.5 398 

FSCN1
1
 Fascin; FSCN1 145 55123 5 3 3 1 13.4 493 

NDE1
1
 Nuclear distribution protein nudE homolog 1; NDE1 144 38842 4 2 2 1 8.1 346 

TCPQ
1 

T-complex protein 1 subunit ; CCT8 144 60153 6 4 4 3 11.7 548 

M2OM
1 Mitochondrial 2-oxoglutarate/malate carrier 

protein; SLC25A11 
143 34211 11 8 4 2 14.3 314 

ALBU
1
 Serum albumin; ALB 140 71317 10 6 7 4 15.8 609 

DLG2
1
 Disks large homolog 2; DLG2 139 97948 6 4 4 2 6.8 870 

DLG4
1
 Disks large homolog 4; DLG4 pe 1  105 80788 5 4 3 2 8 724 

DLG1
1
 Disks large homolog 1; DLG1 106 100678 3 3 1 1 2.8 904 

NDUS6
1
 
NADH dehydrogenase [ubiquinone] Fe-S 

protein 6, mitochondrial; NDUFS6 
138 14045 2 2 1 1 19.4 124 

TAGL3
1
 Transgelin-3; TAGLN3 137 22629 13 6 4 4 25.1 199 

NDUA9
1
 
NADH dehydrogenase [ubiquinone] 1  

subcomplex subunit 9, mitochondrial; NDUFA9 
136 42654 9 3 3 1 11.1 377 

COX2
1
 Cytochrome c oxidase subunit 2; MT-CO2 134 25719 5 5 3 3 19.4 227 

NRCAM
1
 Neuronal cell adhesion molecule; NRCAM 133 144655 8 6 5 3 5.7 1304 

CRYAB
1
 -crystallin B chain; CRYAB 132 20146 7 4 5 4 48 175 

ACO13
1
 Acyl-coenzyme A thioesterase 13; ACOT13 131 15065 7 3 4 1 22.9 140 

CD81
1
 CD81 antigen; CD81 131 26476 6 4 2 1 16.5 236 

AP180
1
 Clathrin coat assembly protein AP180; SNAP91 128 92672 6 5 2 1 4.1 907 

NIPS2
1
 Protein NipSnap homolog 2; GBAS 127 33949 6 3 4 1 21.7 286 

NDUB1
1
 
NADH dehydrogenase [ubiquinone] 1  

subcomplex subunit 1; NDUFB1 
125 7014 4 4 2 2 32.8 58 

CRYM
1
 Thiomorpholine-carboxylate dehydrogenase; CRYM 125 33925 6 5 2 2 13.4 314 

ADDB
1
 -adducin; ADD2 124 81260 8 7 4 3 5.9 726 

ADDA
1
 -adducin; ADD1 53 81304 8 5 4 2 7.6 737 

CNRP1
1
 

CB1 cannabinoid receptor-interacting protein 1; 

CNRIP1 
123 18751 8 6 4 2 45.1 164 

PTPRZ
1
 

Receptor-type tyrosine-protein phosphatase ; 

PTPRZ1 
122 255683 4 3 2 1 1.9 2315 

ARPC3
1
 Actin-related protein 2/3 complex subunit 3; ARPC3 121 20761 2 2 1 1 13.5 178 

TPM3L
5
 Putative tropomyosin -3 chain-like protein 121 26595 6 4 3 1 15.7 

 
PSD3

1
 PH and SEC7 domain-containing protein 3; PSD3 120 116646 8 3 7 2 8.8 1048 

AMPH
1
 Amphiphysin; AMPH 119 76381 6 4 5 3 12.4 695 
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TPM4
1
 Tropomyosin -4 chain; TPM4 118 28619 11 7 5 2 30.6 248 

TPM1
1
 Tropomyosin -1 chain; TPM1 100 32746 8 5 4 1 21.8 284 

TOM70
1
 
Mitochondrial import receptor subunit TOM70; 

TOMM70A 
118 68096 6 3 2 1 4.9 608 

NDUB4
1
 
NADH dehydrogenase [ubiquinone] 1  

subcomplex subunit 4; NDUFB4 
117 15256 5 4 2 1 17.8 129 

QCR7
1 

Cytochrome b-c1 complex subunit 7; UQCRB 117 13522 9 6 6 4 71.2 111 

OPALI
2
 Opalin; OPALIN 117 15787 5 4 1 1 5.7 141 

STX7
1
 Syntaxin-7; STX7 117 29911 3 2 2 1 12.6 261 

QCR6
1
 

Cytochrome b-c1 complex subunit 6, 

mitochondrial; UQCRH 
117 11017 4 4 2 2 34.1 91 

VGF
1
 Neurosecretory protein VGF; VGF 116 67275 5 4 3 2 10.9 615 

MOES
1
 Moesin; MSN 116 67892 6 3 4 1 8.8 577 

TOM22
1
 
Mitochondrial import receptor subunit TOM22 

homolog; TOMM22 
115 15512 5 5 1 1 17.6 142 

RS7
1
 40S ribosomal protein S7; RPS7 114 22113 10 4 3 2 22.2 194 

QCR8
1
 Cytochrome b-c1 complex subunit 8; UQCRQ 114 9900 3 2 2 1 29.3 82 

APOD
1
 Apolipoprotein D; APOD 112 21547 3 3 2 2 17.5 189 

AL4A1
1
 
-1-pyrroline-5-carboxylate dehydrogenase, 

mitochondrial; ALDH4A1 
111 62137 6 4 3 2 7.5 563 

RAB1B
1
 Ras-related protein Rab-1B; RAB1B 110 22328 5 2 3 1 19.9 201 

NEUM
1
 Neuromodulin; GAP43 108 24902 8 3 3 1 18.5 238 

TCPH
1
 T-complex protein 1 subunit ; CCT7 107 59842 6 3 5 2 12.2 543 

RAB14
1
 Ras-related protein Rab-14; RAB14 106 24110 2 2 1 1 7 215 

PA1B3
1
 

Platelet-activating factor acetylhydrolase IB 

subunit ; PAFAH1B3 
106 25832 3 2 2 1 14.3 231 

ACTY
1
 -centractin; ACTR1B 105 42381 4 4 2 2 9 376 

TLN1
1
 Talin-1; TLN1 103 271766 20 2 8 1 3.8 2541 

CPLX2
1
 Complexin-2; CPLX2 102 15499 7 5 2 2 9 134 

VATC1
1
 V-type proton ATPase subunit C 1; ATP6V1C1 102 44085 15 3 6 1 26.2 382 

EF2
1
 Elongation factor 2; EEF2 101 96246 4 3 3 2 8.9 858 

KGUA
1
 Guanylate kinase; GUK1 100 21769 2 1 2 1 12.7 197 

BSN
1 

Protein bassoon; BSN 99 418324 19 4 15 3 8.2 3926 

WDR37
2
 WD repeat-containing protein 37; WDR37 98 55316 4 4 2 2 5.7 494 

KAD1
1
 Adenylate kinase isoenzyme 1; AK1 96 21735 15 6 5 4 35.1 194 

MYH10
1 

Myosin-10; MYH10 95 229827 14 4 8 3 5.9 1976 

S6A17
2
 

Na
+
-dependent neutral amino acid transporter 

SLC6A17; SLC6A17 
95 81747 5 2 3 1 6.9 727 

GABT
1
 4-aminobutyrate aminotransferase, mitochondrial; ABAT 94 57087 7 2 5 2 16.2 500 

CAH2
1
 Carbonic anhydrase 2; CA2 91 29285 4 3 1 1 6.2 260 

SNG1
1
 Synaptogyrin-1; SYNGR1 91 25667 4 4 1 1 5.2 233 
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CYFP1
1
 Cytoplasmic FMR1-interacting protein 1; CYFIP1 91 146742 4 3 3 2 2.9 1253 

CYFP2
1
 Cytoplasmic FMR1-interacting protein 2; CYFIP2 73 150298 4 2 3 1 5.4 1278 

NPTX1
2 

Neuronal pentraxin-1; NPTX1 90 47606 4 3 2 1 7.4 432 

CLCA
1
 Clathrin light chain A; CLTA 90 27174 4 3 2 1 12.5 248 

LDHA
1
 L-lactate dehydrogenase A chain; LDHA 90 36950 8 5 4 2 21.1 332 

LDH6B
1
 L-lactate dehydrogenase A-like 6B; LDHAL6B 16 42372 5 1 3 1 11 381 

LRC47
1
 Leucine-rich repeat-containing protein 47; LRRC47 90 64004 6 2 4 1 10.6 583 

KPCG
1
 Protein kinase C g type; PRKCG 89 79652 4 3 3 2 6 697 

KPCA
1
 Protein kinase C  type; PRKCA 70 77841 5 4 3 2 5.7 672 

GLO2
1
 

Hydroxyacylglutathione hydrolase, 

mitochondrial; HAGH 
88 34240 2 1 2 1 8.8 308 

FKBP8
1
 Peptidyl-prolyl cis-trans isomerase FKBP8; FKBP8 88 44990 2 2 1 1 7 412 

PI42A
1
 

Phosphatidylinositol 5-phosphate 4-kinase type-

2 ; PIP4K2A 
88 46424 4 4 1 1 2.5 406 

NCEH1
1
 Neutral cholesterol ester hydrolase 1; NCEH1 87 46064 3 2 2 1 12 408 

TPPP3
1
 

Tubulin polymerization-promoting protein 

family member 3; TPPP3 
87 19145 3 2 3 2 30.7 176 

RASK
1
 GTPase KRas; KRAS 87 21927 8 6 3 1 21.7 189 

MYL6
1
 Myosin light polypeptide 6; MYL6 84 17090 8 3 2 1 19.2 151 

PCBP2
1
 Poly(rC)-binding protein 2; PCBP2 84 38955 5 4 3 2 16.4 365 

TPP1
1 

Tripeptidyl-peptidase 1; TPP1 83 61723 6 5 2 2 5 563 

RAB5C
1
 Ras-related protein Rab-5C; RAB5C 83 23696 3 2 2 2 16.2 216 

RAB5A
1
 Ras-related protein Rab-5A; RAB5A 51 23872 3 2 1 1 6.5 215 

PGRC1
1
 

Membrane-associated progesterone receptor 

component 1; PGRMC1 
83 21772 3 3 2 2 14.4 195 

SODM
1
 

Superoxide dismutase [Mn], mitochondrial; 

SOD2 
83 24878 3 2 2 1 10.4 222 

GSTT1
1
 Glutathione S-transferase -1; GSTT1 82 27489 4 4 1 1 4.2 240 

CX7A2
1
 

Cytochrome c oxidase subunit 7A2, 

mitochondrial; COX7A2 
82 9390 9 5 3 2 60.2 83 

SV2A
1
 Synaptic vesicle glycoprotein 2A; SV2A 81 83440 7 2 4 1 7 742 

MTCH2
1
 Mitochondrial carrier homolog 2; MTCH2 81 33936 3 3 2 2 10.2 303 

CTNB1
1
 Catenin -1; CTNNB1 79 86069 4 1 3 1 4.6 781 

RAN
1 

GTP-binding nuclear protein Ran; RAN 79 24579 3 2 2 1 13.9 216 

DHSB
1
 

Succinate dehydrogenase [ubiquinone] Fe-S 

subunit, mitochondrial; SDHB 
79 32407 5 5 2 2 11.5 

 

CYB5B
1
 Cytochrome b5 type B; CYB5B 78 16436 2 2 1 1 8.9 146 

MAON
2
 NADP-dependent malic enzyme, mitochondrial; ME3 78 67653 2 2 1 1 3.8 604 

PROF2
1
 Profilin-2; PFN2 78 15378 2 2 1 1 10 140 

ALDH2
1
 Aldehyde dehydrogenase, mitochondrial; ALDH2 77 56859 3 2 2 1 6.4 517 

VAT1
1
 Synaptic vesicle membrane protein VAT-1 homolog; VAT1 77 42122 2 1 1 1 3.1 393 
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NTRI
1
 Neurotrimin; NTM 77 38518 5 3 3 2 9.3 344 

FBX2
1
 F-box only protein 2; FBXO2 77 33706 4 2 2 2 9.8 296 

SCG2
1
 Secretogranin-2; SCG2 75 70897 5 2 3 1 9.2 617 

SNG3
2
 Synaptogyrin-3; SYNGR3 75 24768 2 2 1 1 5.2 229 

PRRT2
1
 Proline-rich transmembrane protein 2; PRRT2 74 35208 5 4 1 1 3.5 340 

MYO5A Unconventional myosin-Va; MYO5A pe 1  73 216979 9 4 6 3 4.3 1855 

MYO5C Unconventional myosin-Vc; MYO5C 24 203994 11 1 4 1 3.5 1742 

NDUS1 
NADH-ubiquinone oxidoreductase 75 kDa 

subunit, mitochondrial; NDUFS1 
73 80443 9 6 4 2 11.3 727 

PDIA3 Protein disulfide-isomerase A3; PDIA3 72 57146 5 2 4 1 7.1 505 

UBP5 Ubiquitin carboxyl-terminal hydrolase 5; USP5 71 96638 8 6 5 5 10.4 858 

UBP13
1
 Ubiquitin carboxyl-terminal hydrolase 13; USP13 23 98006 3 1 3 1 3.7 863 

COR1A
1
 Coronin-1A; CORO1A 71 51678 1 1 1 1 3.5 461 

GBG7
1
 

Guanine nucleotide-binding protein Gi/Gs/Go 

subunit -7; GNG7 
71 7631 2 2 1 1 20.6 68 

IF4A1
1
 Eukaryotic initiation factor 4A-I; EIF4A1 70 46353 6 2 3 1 8.4 406 

GDIR1
1
  GDP-dissociation inhibitor 1; ARHGDIA 69 23250 3 1 2 1 27.5 204 

PDCD5
1
 Programmed cell death protein 5; PDCD5 69 14276 2 2 1 1 10.4 125 

SYUB
1
 -synuclein; SNCB 69 14279 7 3 3 2 45.5 134 

AL7A1
1
 
-aminoadipic semialdehyde dehydrogenase; 

ALDH7A1 
68 59020 3 3 2 2 6.9 539 

RAB1A
1
 Ras-related protein Rab-1A; RAB1A 68 22891 7 4 5 4 31.7 205 

CADM4
1
 Cell adhesion molecule 4; CADM4 67 43215 5 2 3 1 10.1 388 

GELS
1 

Gelsolin; GSN 67 86043 3 2 2 1 9.6 782 

GNAZ
2
 Guanine nucleotide-binding protein Gz subunit ; GNAZ 66 41411 4 2 3 1 10.1 355 

IQEC1
1
 

IQ motif and SEC7 domain-containing protein 1; 

IQSEC1 
65 109103 8 2 4 1 4.9 963 

DLRB1
1 

Dynein light chain roadblock-type 1; DYNLRB1 65 10915 1 1 1 1 12.5 96 

PHIPL
2
 

Phytanoyl-CoA hydroxylase-interacting protein-

like; PHYHIPL 
64 43029 2 2 1 1 2.4 376 

TIM13
1
 

Mitochondrial import inner membrane 

translocase subunit Tim13; TIMM13 
64 10721 2 1 2 1 23.2 95 

NEBL
1
 Nebulette; NEBL 64 116609 11 2 5 1 6 1014 

MAG
1
 Myelin-associated glycoprotein; MAG 63 69880 4 3 2 1 3.7 626 

GDAP1
1
 
Ganglioside-induced differentiation-associated 

protein 1; GDAP1 
63 41548 2 2 1 1 3.4 358 

UK114
1
 Ribonuclease UK114; HRSP12 62 14542 5 4 3 2 34.3 137 

BACH
1 Cytosolic acyl coenzyme A thioester hydrolase; 

ACOT7 
61 42454 3 2 2 1 9.7 380 

K0513
2
 Uncharacterized protein KIAA0513; KIAA0513 60 47066 1 1 1 1 3.4 411 

GPM6B
1
 Neuronal membrane glycoprotein M6-b; GPM6B 60 29882 4 4 1 1 4.9 265 
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ES1
1
 ES1 protein homolog, mitochondrial; C21orf33 60 28495 3 2 2 1 10.1 268 

NFS1
1
 Cysteine desulfurase, mitochondrial; NFS1 pe 1  59 50563 4 2 2 1 7.2 457 

SEPT9
1
 Septin-9; SEPT9 59 65646 6 2 4 1 6.7 586 

NPM
1
 Nucleophosmin; NPM1 59 32726 3 3 1 1 7.1 294 

NPY
1
 Pro-neuropeptide Y; NPY 59 10902 2 2 1 1 13.4 97 

PPAC
1
 

Low molecular weight phosphotyrosine protein 

phosphatase; ACP1 
58 18487 1 1 1 1 7.6 158 

AT5EL
1
 

ATP synthase subunit -like protein, 

mitochondrial; ATP5EP2 
58 5860 2 1 1 1 15.7 51 

HNRPK
1 

Heterogeneous nuclear ribonucleoprotein K; HNRNPK 57 51230 4 3 1 1 3.7 463 

LY6H
2
 Lymphocyte antigen 6H; LY6H 57 15286 5 3 2 1 21.4 140 

KPCB
1
 Protein kinase C  type; PRKCB 56 77960 7 5 3 2 6 671 

HSP74
1
 Heat shock 70 kDa protein 4; HSPA4 56 95127 4 2 3 2 4.5 840 

HS105
1
 Heat shock protein 105 kDa; HSPH1 55 97716 6 1 4 1 6.4 858 

KCY
1
 UMP-CMP kinase; CMPK1 56 22436 1 1 1 1 6.6 196 

IF4H
1
 Eukaryotic translation initiation factor 4H; EIF4H 56 27425 7 4 3 2 26.6 248 

EPN1
1
 Epsin-1; EPN1 55 60370 9 1 4 1 8.2 576 

GLU2B
1
 Glucosidase 2 subunit ; PRKCSH 55 60357 1 1 1 1 1.9 528 

NDUS3
1
 
NADH dehydrogenase [ubiquinone] Fe-S 

protein 3, mitochondrial; NDUFS3 
54 30337 2 1 2 1 14 264 

AUXI
1 Putative tyrosine-protein phosphatase auxilin; 

DNAJC6 
54 100675 5 2 3 2 6.1 913 

SCRN1
1
 Secernin-1; SCRN1 53 46980 11 2 3 2 11.4 414 

NMDZ1
1
 Glutamate receptor ionotropic, NMDA 1; GRIN1 52 105990 2 1 2 1 2.2 938 

STRAP
1
 

Serine-threonine kinase receptor-associated 

protein; STRAP 
52 38756 1 1 1 1 6 350 

GLSK
1
 Glutaminase kidney isoform, mitochondrial; GLS 52 74269 5 3 4 2 10.3 669 

RTN3
1
 Reticulon-3; RTN3 51 113169 2 2 1 1 1.5 1032 

PCBP1
1
 Poly(rC)-binding protein 1; PCBP1 51 37987 6 4 3 2 21.9 356 

DLDH
1
 Dihydrolipoyl dehydrogenase, mitochondrial; DLD 51 54713 4 4 2 2 6.7 509 

DOPD
1 

D-dopachrome decarboxylase; DDT 51 12818 5 3 2 2 27.1 118 

DDTL
2
 D-dopachrome decarboxylase-like protein; DDTL 41 14414 2 2 1 1 15.7 134 

K1045
1
 Protein KIAA1045; KIAA1045 51 45905 4 1 4 1 15.5 400 

MTMR5
1
 Myotubularin-related protein 5; SBF1 50 210294 7 2 3 1 2.6 1867 

ARPC4
1
 Actin-related protein 2/3 complex subunit 4; ARPC4 50 19768 4 2 2 1 13.7 168 

NCKP1
1
 Nck-associated protein 1; NCKAP1 50 130018 4 1 3 1 5.2 1128 

NDUAA
1
 
NADH dehydrogenase [ubiquinone] 1  subcomplex 

subunit 10, mitochondrial; NDUFA10 
50 41067 3 1 2 1 9 355 

DEST
1
 Destrin; DSTN 50 18950 6 3 4 2 31.5 165 

SCG1
1
 Secretogranin-1; CHGB 49 78343 2 2 1 1 1.8 677 



P a g e  | 245 

ARP2
1
 Actin-related protein 2; ACTR2 49 45017 5 1 4 1 12.7 394 

NDUS2
1
 
NADH dehydrogenase [ubiquinone] Fe-S 

protein 2, mitochondrial; NDUFS2 
48 52911 5 3 3 2 13.2 463 

CX04A
1
 Protein CXorf40A; CXorf40A 47 18051 5 3 1 1 8.9 158 

AP2S1
1
 AP-2 complex subunit sigma; AP2S1 47 17178 2 2 1 1 8.5 142 

SH3L3
1
 

SH3 domain-binding glutamic acid-rich-like 

protein 3; SH3BGRL3 
47 10488 1 1 1 1 20.4 93 

ODPA
1
 

Pyruvate dehydrogenase E1 component subunit 

, somatic form, mitochondrial; PDHA1 
47 43952 2 2 1 1 3.1 390 

RHOB
1 

-related GTP-binding protein B; RHOB 46 22565 4 1 2 1 7.1 196 

NAC2
2
 Na

+
/Ca

2+
 exchanger 2; SLC8A2 46 101388 5 2 2 1 3 921 

MACF1
1
 
Microtubule-actin cross-linking factor 1, 

isoforms 1/2/3/5; MACF1 
46 843033 37 2 19 1 2.9 7388 

ST134
5
 Putative protein FAM10A4; ST13P4 45 27561 3 1 2 1 12.1 240 

NDRG1
1
 Protein NDRG1; NDRG1 45 43264 2 2 1 1 9.4 394 

PLEC
1
 Plectin; PLEC 45 533462 35 1 21 1 5 4684 

BAIP2
1
 

Brain-specific angiogenesis inhibitor 1-

associated protein 2; BAIAP2 
45 61115 5 2 4 2 10.7 552 

H2B1D
1
 Histone H2B type 1-D; HIST1H2BD 45 13928 3 1 2 1 22.2 126 

VGLU3
1
 Vesicular glutamate transporter 3; SLC17A8 44 65861 3 1 3 1 6.6 589 

GHC1
1
 Mitochondrial glutamate carrier 1; SLC25A22 44 34904 3 3 1 1 6.8 323 

SCPDL 
Saccharopine dehydrogenase-like 

oxidoreductase; SCCPDH 
43 47464 2 1 1 1 8.2 429 

OMGP
1
 Oligodendrocyte-myelin glycoprotein; OMG 43 50032 6 3 2 1 8.4 440 

SYAC
1 

Alanine–tRNA ligase, cytoplasmic; AARS 42 107484 6 1 6 1 7.4 968 

IGS21
2
 Immunoglobulin superfamily member 21; IGSF21 42 52202 3 1 3 1 16.5 467 

RL6
1
 60S ribosomal protein L6; RPL6 41 32765 2 2 2 2 9 288 

CALX
1
 Calnexin; CANX 41 67982 2 1 2 1 8.1 592 

EF1B
1
 Elongation factor 1-; EEF1B2 41 24919 1 1 1 1 5.8 225 

MPP2
1 

MAGUK p55 subfamily member 2; MPP2 41 64882 2 1 2 1 6.4 576 

TTYH1
2 

Protein tweety homolog 1; TTYH1 40 49704 3 1 2 1 6.4 450 

KCD16
2
 

BTB/POZ domain-containing protein KCTD16; 

KCTD16 
39 49962 1 1 1 1 2.8 428 

DREB
1
 Drebrin; DBN1 39 71842 2 1 2 1 4 649 

MARE3
1
 
Microtubule-associated protein RP/EB family 

member 3; MAPRE3 
39 32247 3 2 2 1 10 281 

CDC42
1
 Cell division control protein 42 homolog; CDC42 38 21587 2 2 1 1 12.6 191 

RLA2
1
 60S acidic ribosomal protein P2; RPLP2 38 11658 1 1 1 1 18.3 115 

SERA
1
 D-3-phosphoglycerate dehydrogenase; PHGDH 38 57356 3 1 2 1 4.5 533 

CUTA
1
 Protein CutA; CUTA 36 19218 4 3 3 2 41.9 179 

ERP29
1
 Endoplasmic reticulum resident protein 29; ERP29 36 29032 1 1 1 1 3.8 261 
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MARE2
1 Microtubule-associated protein RP/EB family 

member 2; MAPRE2 
36 37236 1 1 1 1 4 327 

UN45B
2
 Protein unc-45 homolog B; UNC45B 36 104979 2 1 2 1 2.7 931 

NDUBA
1
 
NADH dehydrogenase [ubiquinone] 1  

subcomplex subunit 10; NDUFB10 
36 21048 2 2 2 2 17.4 172 

CAD13
1
 Cadherin-13; CDH13 36 78694 1 1 1 1 3.1 713 

RTCB
1
 tRNA-splicing ligase RtcB homolog; C22orf28 35 55688 3 2 2 1 3.8 505 

TCPG
1
 T-complex protein 1 subunit g; CCT3 35 61066 5 2 4 1 13.8 545 

TIM8A
1
 

Mitochondrial import inner membrane 

translocase subunit Tim8 A; TIMM8A 
34 11219 1 1 1 1 17.5 97 

CD47
1 

Leukocyte surface antigen CD47; CD47 33 35590 9 1 3 1 10.2 323 

PYGB
1
 Glycogen phosphorylase, brain form; PYGB 33 97319 3 2 2 1 5.5 843 

CAP1
1
 Adenylyl cyclase-associated protein 1; CAP1 32 52325 5 2 2 1 8.8 475 

TTYH3 Protein tweety homolog 3; TTYH3 32 58477 12 1 2 1 4.2 523 

PP2AA
1
 

Serine/threonine-protein phosphatase 2A 

catalytic subunit  isoform; PPP2CA 
32 36142 2 1 2 1 12.6 309 

NDUS5
1
 
NADH dehydrogenase [ubiquinone] Fe-S 

protein 5; NDUFS5 
32 12737 1 1 1 1 11.3 106 

PVRL1
1
 Poliovirus receptor-related protein 1; PVRL1 31 57465 3 1 2 1 8.9 517 

DPYL5
1
 Dihydropyrimidinase-related protein 5; DPYSL5 31 61952 4 2 4 2 14.9 564 

IDH3B
1
 

Isocitrate dehydrogenase [NAD] subunit , 

mitochondrial; IDH3B 
31 42442 2 1 2 1 11.7 385 

CTRO
1
 Citron -interacting kinase; CIT 31 233339 15 4 9 1 6.4 2027 

SGTA
1
 

Small glutamine-rich tetratricopeptide re-peat-

containing protein ; SGTA  
31 34270 1 1 1 1 4.8 313 

UB2V1
1
 Ubiquitin-conjugating enzyme E2 variant 1; UBE2V1 31 16598 16 1 3 1 23.8 147 

LGUL
1
 Lactoylglutathione lyase; GLO1 31 20992 2 2 1 1 8.7 184 

LASP1
1
 LIM and SH3 domain protein 1; LASP1 31 30097 3 2 2 1 9.2 261 

PFD3
1
 Prefoldin subunit 3; VBP1 30 22815 1 1 1 1 5.1 197 

NDUB9
1
 
NADH dehydrogenase [ubiquinone] 1  

subcomplex subunit 9; NDUFB9 
30 22045 2 1 1 1 8.9 179 

NDUAC
1
 
NADH dehydrogenase [ubiquinone] 1 

subcomplex subunit 12; NDUFA12 
30 17104 1 1 1 1 12.4 145 

BDH2
1
 3-hydroxybutyrate dehydrogenase type 2; BDH2 30 27049 1 1 1 1 8.6 245 

KAD5
1
 Adenylate kinase isoenzyme 5; AK5 30 63863 7 1 3 1 7.1 562 

WDR1
1
 WD repeat-containing protein 1; WDR1 29 66836 2 1 2 1 9.1 606 

ARP3B
1
 Actin-related protein 3B; ACTR3B 29 48090 4 2 2 1 4.5 418 

CX6A1
1
 

Cytochrome c oxidase subunit 6A1, 

mitochondrial; COX6A1 
29 12147 3 1 3 1 53.2 109 

RBP2
1
 E3 SUMO-protein ligase RanBP2; RANBP2 29 362365 14 1 7 1 2.2 3224 

TOLIP
1
 Toll-interacting protein; TOLLIP 29 30490 4 1 2 1 9.1 274 



P a g e  | 247 

CHL1
1
 Neural cell adhesion molecule L1-like protein; CHL1 29 136070 4 2 3 1 3.6 1208 

DEMA
1
 Dematin; EPB49 29 45600 2 1 2 1 6.2 405 

NDUB6
1
 
NADH dehydrogenase [ubiquinone] 1  

subcomplex subunit 6; NDUFB6 
29 15479 2 1 1 1 19.5 128 

TF
1
 Tissue factor; F3 29 33332 1 1 1 1 5.1 295 

ODO1
1
 2-oxoglutarate dehydrogenase, mitochondrial; OGDH 28 117059 5 1 3 1 4.4 1023 

MPC2
1
 Mitochondrial pyruvate carrier 2; MPC2 28 14327 4 1 3 1 43.3 127 

OTUB1
1 

Ubiquitin thioesterase OTUB1; OTUB1 28 31492 1 1 1 1 7 271 

LRC8B
2
 

Leucine-rich repeat-containing protein 8B; 

LRRC8B 
28 93528 2 1 1 1 1.7 803 

GLP1R
1
 Glucagon-like peptide 1 receptor; GLP1R 28 53960 4 1 1 1 1.9 463 

SYNPO
1
 Synaptopodin; SYNPO 27 99915 10 1 6 1 9.6 929 

NDUA4
1
 
NADH dehydrogenase [ubiquinone] 1  

subcomplex subunit 4; NDUFA4 
27 9421 3 1 1 1 12.3 81 

DNM1L
1 

Dynamin-1-like protein; DNM1L 27 82339 11 2 5 2 9.1 736 

HUWE1
1 

E3 ubiquitin-protein ligase HUWE1; HUWE1  27 485523 4 1 3 1 0.9 4374 

MLP3B
1
 
Microtubule-associated proteins 1A/1B light 

chain 3B; MAP1LC3B 
27 14679 2 1 1 1 12.8 125 

CAMKV
2
 CaM kinase-like vesicle-associated protein; CAMKV 27 54662 1 1 1 1 5.2 501 

SIM2
1
 Single-minded homolog 2; SIM2 26 73914 8 1 4 1 9.9 667 

NP1L1
1
 Nucleosome assembly protein 1-like 1; NAP1L1 26 45631 2 1 1 1 2.8 391 

C1TC
1
 C-1-tetrahydrofolate synthase, cytoplasmic; MTHFD1 26 102180 3 1 3 1 5.3 935 

GIT1
1
 ARF GTPase-activating protein GIT1; GIT1 26 85030 2 1 1 1 1.8 761 

AT8A1
1
 

Probable phospholipid-transporting ATPase IA; 

ATP8A1 
26 132597 5 1 5 1 6.3 1164 

ODB2
1
 

Lipoamide acyltransferase component of 

branched-chain -keto acid dehydrogenase 

complex, mitochondrial; DBT 

26 53852 4 2 3 1 11 482 

WDR13
1
 WD repeat-containing protein 13; WDR13 26 54289 2 1 2 1 6.6 485 

ODO2
1 

Dihydrolipoyllysine-residue succinyltransferase 

component of 2-oxoglutarate dehydrogenase 

complex, mitochondrial; DLST 

26 49067 3 2 2 1 9.1 453 

HPLN2
1
 Hyaluronan and proteoglycan link protein 2; HAPLN2 26 38378 3 1 2 1 6.5 340 

FXYD7
2
 
FXYD domain-containing ion transport regulator 

7; FXYD7 
25 8689 2 1 1 1 20 80 

CADM1
1
 Cell adhesion molecule 1; CADM1 25 48935 1 1 1 1 5.2 442 

RUFY1
1
 RUN & FYVE domain-containing protein 1; RUFY1 25 80851 3 1 2 1 3.8 708 

AAK1
1
 AP2-associated protein kinase 1; AAK1 25 104562 6 1 5 1 8.8 961 

ACLY
1
 ATP-citrate synthase; ACLY 24 121674 7 1 4 1 5.5 1101 

RTN1
1
 Reticulon-1; RTN1 24 83851 2 2 1 1 3 776 

TBCA
1
 Tubulin-specific chaperone A; TBCA 24 12904 2 1 2 1 17.6 108 
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ITSN1
1
 Intersectin-1; ITSN1 23 196155 5 1 3 1 2.8 1721 

CD59
1
 CD59 glycoprotein; CD59 23 14795 2 1 1 1 10.2 128 

PUS7
1
 Pseudouridylate synthase 7 homolog; PUS7 23 75330 2 1 1 1 1.7 661 

HINT2
1
 

Histidine triad nucleotide-binding protein 2, 

mitochondrial; HINT2 
23 17208 2 1 2 1 20.9 163 

DPY30
1
 Protein dpy-30 homolog; DPY30 23 11243 1 1 1 1 20.2 99 

LHPP
1 Phospholysine phosphohistidine inorganic 

pyrophosphate phosphatase; LHPP 
23 29432 1 1 1 1 10.7 270 

CHCH3
1
 
Coiled-coil-helix-coiled-coil-helix domain-

containing protein 3, mitochondrial; CHCHD3 
23 26421 2 1 2 1 9.3 227 

TUSC2
1
 Tumor suppressor candidate 2; TUSC2 23 12066 3 1 2 1 40.9 110 

D39U1
1
 Epimerase family protein SDR39U1; SDR39U1 22 34840 4 2 2 1 9.1 319 

PAP1L
2 

Polyadenylate-binding protein 1-like; PABPC1L 22 68976 5 2 4 1 10.1 614 

MYL6B
1
 Myosin light chain 6B; MYL6B 22 22864 3 2 2 1 13.9 208 

ATP6
1
 ATP synthase subunit ; MT-ATP6 22 24801 1 1 1 1 4.4 226 

ABI1
1
 Abl interactor 1; ABI1 22 55161 3 1 1 1 3.7 508 

AT5F1
1
 ATP synthase subunit , mitochondrial; ATP5F1 22 28947 6 2 2 1 10.5 256 

RM12
1
 39S ribosomal protein L12, mitochondrial; MRPL12 22 21563 1 1 1 1 12.6 198 

PKHA8
1
 
Pleckstrin homology domain-containing family 

A member 8; PLEKHA8 
21 58908 5 1 5 1 12.1 519 

PRAF2
1
 PRA1 family protein 2; PRAF2 21 19588 2 2 2 2 16.3 178 

DECR
1
 2,4-dienoyl-CoA reductase, mitochondrial; DECR1 21 36330 2 1 2 1 11 335 

CXA1
1
 Gap junction -1 protein; GJA1 21 43494 2 1 1 1 5.2 382 

ADDG
1 

-adducin; ADD3 21 79447 2 1 2 1 4.7 706 

AFG32
1 

AFG3-like protein 2; AFG3L2 20 88984 6 1 5 1 11.4 797 

CRBG3
2 
/ crystallin domain-containing protein 3; CRYBG3 20 117378 6 1 3 1 2.7 1022 

RSSA
1 

40S ribosomal protein SA; RPSA 20 32947 4 2 3 1 17.3 295 

GLOD4
1
 Glyoxalase domain-containing protein 4; GLOD4 20 35170 4 1 4 1 16.6 313 

NDUV1
1 NADH dehydrogenase [ubiquinone] flavoprotein 

1, mitochondrial; NDUFV1 
20 51469 2 1 2 1 8.2 464 

HPLN4
2 Hyaluronan & proteoglycan link protein 4; 

HAPLN4 
19 43402 3 2 1 1 4.7 402 

PDC6I
1
 

Programmed cell death 6-interacting protein; 

PDCD6IP 
19 96590 2 1 1 1 3.9 868 

SLN11
1
 Schlafen family member 11; SLFN11 19 104309 1 1 1 1 1.3 901 

PK1L2
1
 Polycystic kidney disease protein 1-like 2; PKD1L2 19 275595 4 1 2 1 1.5 2459 

TCPZ
1
 T-complex protein 1 subunit ; CCT6A 18 58444 4 1 4 1 10.2 531 

RDH14
1 

Retinol dehydrogenase 14; RDH14 18 37184 2 1 2 1 6.5 336 

PKHH1
2
 
Pleckstrin homology domain-containing family 

H member 1; PLEKHH1 
18 152733 11 1 6 1 5.9 1364 
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NDUA7
1
 
NADH dehydrogenase [ubiquinone] 1  

subcomplex subunit 7; NDUFA7 
17 12601 1 1 1 1 20.4 113 

QOR
1
 Quinone oxidoreductase; CRYZ 17 35356 3 1 1 1 3.3 329 

CAND2
1 Cullin-associated NEDD8-dissociated protein 2; 

CAND2 
17 136653 3 1 2 1 2.1 1236 

ODP2
1
 

Dihydrolipoyllysine-residue acetyltransferase 

component of pyruvate dehydrogenase complex, 

mitochondrial; DLAT 

17 69466 13 1 4 1 9.6 647 

COTL1
1
 Coactosin-like protein; COTL1 17 16049 1 1 1 1 11.3 142 

AK1A1
1
 Alcohol dehydrogenase [NADP

+
]; AKR1A1 17 36892 2 1 2 1 6.5 325 

PCCB
1 

Propionyl-CoA carboxylase  chain, mitochondrial; PCCB 17 58806 1 1 1 1 2.4 539 

CG025
1 

UPF0415 protein C7orf25; C7orf25 16 46707 3 1 2 1 7.8 421 

HPRT
1
 

Hypoxanthine-guanine phosphoribosyl-

transferase; HPRT1 
16 24792 1 1 1 1 10.6 218 

DBNL
1
 Drebrin-like protein; DBNL 16 48463 4 1 3 1 13.3 430 

AK1BA
1
 Aldo-keto reductase family 1 member B10; AKR1B10 16 36225 1 1 1 1 5.4 316 

PI42C
1
 

Phosphatidylinositol 5-phosphate 4-kinase type-

2; PIP4K2C 
16 47441 3 1 2 1 9.3 421 

CLCN4
1
 H

+
/Cl

–
 exchange transporter 4; CLCN4 16 85774 19 2 2 1 2.9 760 

NDRG3
1
 Protein NDRG3; NDRG3 16 41896 1 1 1 1 9.9 375 

KCNG2
1
 
K

+
 voltage-gated channel subfamily G member 

2; KCNG2 
16 52176 6 1 1 1 4.7 466 

ANXA6
1
 Annexin A6; ANXA6 16 76168 3 1 3 1 5.8 673 

ITIH3
1
 Inter--trypsin inhibitor heavy chain H3; ITIH3 15 100072 2 1 2 1 4.3 890 

SYUA
1
 -synuclein; SNCA 15 14451 4 1 2 1 22.1 140 

GCSH
1
 Glycine cleavage system H protein, mitochondrial; GCSH 15 19101 1 1 1 1 13.3 173 

UBP20
1
 Ubiquitin carboxyl-terminal hydrolase 20; USP20 15 103763 4 1 2 1 2.8 914 

CCD19
1
 

Coiled-coil domain-containing protein 19, 

mitochondrial; CCDC19 
15 65803 19 1 3 1 7.3 551 

DMXL2
1
 DmX-like protein 2; DMXL2 15 342962 17 1 10 1 4.6 3036 

AQP8
2
 Aquaporin-8; AQP8 15 27706 1 1 1 1 6.1 261 

TIM9
1
 

Mitochondrial import inner membrane 

translocase subunit Tim9; TIMM9 
15 10599 2 1 1 1 16.9 89 

THIM
1
 3-ketoacyl-CoA thiolase, mitochondrial; ACAA2 15 42354 1 1 1 1 7.1 397 

PRAF3
1
 PRA1 family protein 3; ARL6IP5 15 21600 3 1 2 1 18.1 188 

SYNE1
1
 Nesprin-1; SYNE1 14 1017127 29 1 21 1 3.5 8797 

REC8
2
 Meiotic recombination protein REC8 homolog; REC8 14 62916 20 1 2 1 4.8 547 

F86C2
5
 Putative protein FAM86C2P; FAM86C2P 14 18865 3 1 3 1 26.7 165 

SORCN
1
 Sorcin; SRI 14 21947 3 1 2 1 17.2 198 

PAPS2
1
 

Bifunctional 3'-phosphoadenosine 5'-phospho-

sulfate synthase 2; PAPSS2 
14 70027 6 1 1 1 2.6 614 
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RL11
1 

60S ribosomal protein L11; RPL11 13 20468 1 1 1 1 7.9 178 

SV2B
2 

Synaptic vesicle glycoprotein 2B; SV2B 13 78248 2 1 2 1 4.4 683 

THIC
1 

Acetyl-CoA acetyltransferase, cytosolic; ACAT2 13 41838 3 1 3 1 18.9 397 

RIF1
1
 Telomere-associated protein RIF1; RIF1 13 276461 11 1 5 1 3.2 2472 

RPB1
1
 

DNA-directed RNA polymerase II subunit 

RPB1; POLR2A 
13 218408 5 1 4 1 1.9 1970 

FETA
1
 -fetoprotein; AFP 13 70458 1 1 1 1 2.6 609 

Notes: The MASCOT software arranges the proteins in order of their score, and then groups similar 

proteins in score order below each initial entry. 
1
, Abbreviated protein name; all names in this table 

had the suffix “_HUMAN”; the superscripted number after the name gives the protein existence (PE) 

score in the Uniprot database, for which 5 levels of evidence are provided: 1, evidence at the protein 

level, 2, evidence at the transcript level, 3, inferred from homology, 4, predicted, 5, uncertain; 
2
, All 

descriptions contained the entry OS=Homo sapiens; gene names in CAPITAL ITALICS; 
3
, Score; 

4
, 

Molecular Mass, Da; 
5
, Nº of Matches; 

6
, Nº of significant matches; 

7
, Nº of sequences found; 

8
, Nº of 

significant sequences found; 
9
, % Cover of the sequence; 

10
, Length in Nº of amino acid residues. 
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Table 4.4. Proteins identified by MASCOT search using SCX fractionation 

Abbrev
1
 Description

2
 

Score
3
 

Mol 

Mass
4 

Mc 
5
 

Ms 
6 

Sq 
7
 

Ss 
8
 

Cov 
9
 

Lngt 
10

 

HS90A
1
 Heat shock protein HSP 90-; HSP90AA1 2316 85006 109 86 25 20 32 732 

HS90B
1
 Heat shock protein HSP 90-; HSP90AB1 2117 83554 105 77 27 20 35.1 724 

ENPL
1
 Endoplasmin; HSP90B1 542 92696 36 24 13 9 19.7 803 

TRAP1
1 

Heat shock protein 75 kDa, mitochondrial; TRAP1 594 80345 14 12 1 1 2 704 

HS904
5 

Putative heat shock protein HSP 90- A4; HSP90AA4P 430 47796 17 17 2 2 5.7 418 

H90B3
5
 Putative heat shock protein HSP 90--3; HSP90AB3P 401 68624 39 21 12 8 14.4 597 

HS902
1
 Putative heat shock protein HSP 90- A2; HSP90AA2 331 39454 17 14 3 3 9.3 343 

H90B2
1 

Putative heat shock protein HSP 90- 2; HSP90AB2P 327 44492 23 15 7 4 16 381 

H90B4
5
 Putative heat shock protein HSP 90- 4; HSP90AB4P 217 58855 8 8 2 2 5.5 505 

HS905
1 

Putative heat shock protein HSP 90- A5; HSP90AA5P 53 38942 12 5 6 3 15.3 334 

ENPLL
5
 Putative endoplasmin-like protein; HSP90B2P 14 46343 2 1 2 1 5 399 

AT1A1
1
 Na

+
/K

+
-transporting ATPase subunit -1; ATP1A1 2165 114135 79 62 21 18 20.9 1023 

AT1A3
1
 Na

+
/K

+
-transporting ATPase subunit -3; ATP1A3 1798 113102 74 57 22 19 23.2 1013 

AT1A2
1
 Na

+
/K

+
-transporting ATPase subunit -2; ATP1A2 1381 113505 55 40 20 16 21.7 1020 

AT1A4
1
 Na

+
/K

+
-transporting ATPase subunit -4; ATP1A4 180 115119 18 10 5 5 4.4 1029 

ATP4A
1
 K

+
-transporting ATPase  chain 1; ATP4A 158 115756 7 3 5 2 6.5 1035 

AT12A
1
 K

+
-transporting ATPase  chain 2; ATP12A 133 116292 14 8 4 4 3.3 1039 

HXK1
1 

Hexokinase-1; HK1 2134 103561 129 90 40 33 39.1 917 

HKDC1
2
 Putative hexokinase HKDC1; HKDC1 53 103790 10 3 4 1 4.7 917 

HXK2
1
 Hexokinase-2; HK2 43 103739 8 2 5 2 6.2 917 

HXK3
1
 Hexokinase-3; HK3 38 100616 6 1 4 1 5.3 923 

CLH1
1
 Clathrin heavy chain 1; CLTC 1623 193260 76 55 29 23 21.5 1675 

CLH2
1
 Clathrin heavy chain 2; CLTCL1 482 189020 17 13 7 5 4.1 1640 

DYN1
1
 Dynamin-1; DNM1 1503 97746 104 67 28 24 35.1 864 

DYN3
1
 Dynamin-3; DNM3 341 98084 38 19 11 7 15.7 869 

DYN2
1
 Dynamin-2; DNM2 357 98345 31 19 6 5 7.2 870 

ACON
1
 Aconitate hydratase, mitochondrial; ACO2 1185 86113 54 38 16 13 27.4 780 

UBA1
1
 Ubiquitin-like modifier-activating enzyme 1; UBA1 914 118858 33 27 14 13 18.9 1058 

MYPR
1
 Myelin proteolipid protein; PLP1 876 30855 41 30 6 5 24.9 277 

SPTB2
1
 Spectrin  chain, non-erythrocytic 1; SPTBN1 777 275237 50 31 27 14 15.1 2364 

SPTN2
1
 Spectrin  chain, non-erythrocytic 2; SPTBN2 54 272526 13 3 6 2 3.1 2390 

ACTN1
1
 -actinin-1; ACTN1 703 103563 33 24 10 7 15.1 892 

ACTN4
1 
-actinin-4; ACTN4 684 105245 37 23 13 6 18.8 911 

ACTN2
1
 -actinin-2; ACTN2 194 104358 8 5 5 2 8.1 894 

ACTN3
1
 -actinin-3; ACTN3 149 103917 5 3 3 1 4.2 901 

NNTM
1
 NAD(P) transhydrogenase, mitochondrial; NNT 633 114564 47 29 15 11 18.8 1086 
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PYGB
1
 Glycogen phosphorylase, brain form; PYGB 633 97319 44 29 18 12 23 843 

PYGM
1
 Glycogen phosphorylase, muscle form; PYGM 267 97487 29 16 11 7 14.5 842 

PYGL
1
 Glycogen phosphorylase, liver form; PYGL 187 97486 13 10 3 3 2.7 847 

SPTN1
1
 Spectrin  chain, non-erythrocytic 1; SPTAN1 610 285163 65 34 36 16 17.4 2472 

GELS
1
 Gelsolin; GSN 513 86043 20 14 5 5 9.2 782 

CAND1
1
 Cullin-associated NEDD8-dissociated protein 1; CAND1 504 137999 32 24 15 10 14.8 1230 

UBP5
1
 Ubiquitin carboxyl-terminal hydrolase 5; USP5 462 96638 29 20 12 9 18.3 858 

TERA
1
 Transitional endoplasmic reticulum ATPase; VCP 436 89950 35 14 15 7 22.8 806 

KATL2
2
 
Katanin p60 ATPase-containing subunit A-like 2; 

KATNAL2 
126 61557 7 4 2 1 4.8 538 

AP2A1
1
 AP-2 complex subunit -1; AP2A1 432 108561 38 23 15 14 17.6 977 

AP2A2
1
 AP-2 complex subunit -2; AP2A2 376 104807 27 18 14 10 18.6 939 

E41L3
1
 Band 4.1-like protein 3; EPB41L3 397 121458 24 13 14 8 17.8 1087 

ICAM5
1
 Intercellular adhesion molecule 5; ICAM5 375 98766 19 14 9 6 13.1 924 

HS74L
1
 Heat shock 70 kDa protein 4L; HSPA4L 373 95479 22 14 11 6 16.2 839 

HS105
1
 Heat shock protein 105 kDa; HSPH1 327 97716 25 15 15 8 22.8 858 

HSP74
1
 Heat shock 70 kDa protein 4; HSPA4 192 95127 20 8 12 6 19 840 

VPP1
1
 

V-type proton ATPase 116 kDa subunit a isoform 1; 

ATP6V0A1 
349 97148 36 18 12 8 16.1 837 

AMPH
1
 Amphiphysin; AMPH 329 76381 28 15 10 8 17.6 695 

EAA1
1
 Excitatory amino acid transporter 1; SLC1A3 313 59705 10 7 5 2 12.9 542 

EF2
1
 Elongation factor 2; EEF2 300 96246 17 12 9 5 12.8 858 

NFASC
1
 Neurofascin; NFASC 292 150789 17 12 6 4 5.4 1347 

CNTN1
1
 Contactin-1; CNTN1 289 114104 37 21 13 9 16.7 1018 

PSA
1 

Puromycin-sensitive aminopeptidase; NPEPPS 277 103895 39 18 19 12 21.8 919 

PSAL
2 Puromycin-sensitive aminopeptidase-like protein; 

NPEPPSL1 
58 54226 11 4 9 3 20.9 478 

CSPG2
1
 Versican core protein; VCAN 274 374585 16 9 8 4 3 3396 

EAA2
1
 Excitatory amino acid transporter 2; SLC1A2 272 62577 7 4 4 2 9.6 574 

ODO1
1
 2-oxoglutarate dehydrogenase, mitochondrial; OGDH 253 117059 29 13 12 9 13.1 1023 

OGDHL
1
 2-oxoglutarate dehydrogenase-like, mitochondrial; OGDHL 89 115264 20 10 10 7 12.4 1010 

DPP6
1
 Dipeptidyl aminopeptidase-like protein 6; DPP6 246 98154 17 9 6 4 9.5 865 

ANK2
1
 Ankyrin-2; ANK2 227 435957 33 10 21 6 6.7 3957 

ANK1
1
 Ankyrin-1; ANK1 16 207334 4 1 3 1 2.6 1881 

PYC
1
 Pyruvate carboxylase, mitochondrial; PC 223 130293 19 10 8 4 9.2 1178 

SYAC
1
 Alanine--tRNA ligase, cytoplasmic; AARS 217 107484 8 7 4 3 5.6 968 

ADDA
1
 -adducin; ADD1 216 81304 9 6 5 3 9.5 737 

4F2
1
 4F2 cell-surface antigen heavy chain; SLC3A2 207 68180 16 10 9 5 17.3 630 

AL1L1
1
 

Cytosolic 10-formyltetrahydrofolate dehydrogenase; 

ALDH1L1 
205 99622 17 9 11 6 15.5 902 
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MAG
1
 Myelin-associated glycoprotein; MAG 202 69880 12 8 6 4 14.1 626 

TBA1A
1
 Tubulin -1A chain; TUBA1A 199 50788 14 8 5 4 17.7 451 

TBA3C
1
 Tubulin -3C/D chain; TUBA3C 49 50612 9 4 4 3 14.4 450 

TBA4A
1
 Tubulin -4A chain; TUBA4A 42 50634 8 3 4 2 15.6 448 

TBA8
1
 Tubulin -8 chain; TUBA8 27 50746 5 1 4 1 13.1 449 

UBB
1
 Polyubiquitin-B; UBB 199 25803 8 6 3 2 14.4 229 

LONM
1
 Lon protease homolog, mitochondrial; LONP1 197 106936 20 9 12 5 13.2 959 

KCRB
1
 Creatine kinase B-type; CKB 193 42902 6 4 3 2 10 381 

NCAM1
1
 Neural cell adhesion molecule 1; NCAM1 192 95370 14 9 8 6 13.5 858 

TENR
1
 Tenascin-R; TNR 179 151805 10 3 6 2 5.4 1358 

C1TC
1
 C-1-tetrahydrofolate synthase, cytoplasmic; MTHFD 176 102180 13 8 9 5 13.7 935 

SV2A
1
 Synaptic vesicle glycoprotein 2A; SV2A 162 83440 8 8 3 3 3.6 742 

ADDB
1
 -adducin; ADD2 159 81260 7 4 2 2 3.6 726 

NFM
1
 Neurofilament medium polypeptide; NEFM 158 102468 7 4 4 2 4.9 916 

NFH
1
 Neurofilament heavy polypeptide; NEFH 158 112639 5 3 3 1 2.8 1026 

GANAB
1
 Neutral -glucosidase AB; GANAB 150 107263 13 6 6 3 8.2 944 

IMB1
1
 Importin subunit -1; KPNB1 150 98420 4 3 2 1 3.7 876 

EPHA4
1
 Ephrin type-A receptor 4; EPHA4 149 111443 10 7 4 3 5.3 986 

EPHA3
1
 Ephrin type-A receptor 3; EPHA3 36 111714 2 2 1 1 1.3 983 

EPHA2
1
 Ephrin type-A receptor 2; EPHA2 32 109679 4 1 3 1 4.6 976 

NCAM2
1
 Neural cell adhesion molecule 2; NCAM2 147 93786 9 4 6 2 9.8 837 

NCKP1
1 

Nck-associated protein 1; NCKAP1 138 130018 12 6 7 4 7.9 1128 

SYIM
1
 Isoleucine--tRNA ligase, mitochondrial; IARS2 126 114688 8 3 6 2 8.7 1012 

CYFP2
1
 Cytoplasmic FMR1-interacting protein 2; CYFIP2 123 150298 10 6 5 2 4.4 1278 

CYFP1
1
 Cytoplasmic FMR1-interacting protein 1; CYFIP1 104 146742 9 3 3 1 3.4 1253 

IMMT
1
 Mitochondrial inner membrane protein; IMMT 117 84026 17 8 8 5 13.5 758 

E41L1
1
 Band 4.1-like protein 1; EPB41L1 116 99012 20 11 9 8 13.2 881 

MAP1B
1
 Microtubule-associated protein 1B; MAP1B 115 271665 12 7 7 4 4.3 2468 

CALX
1
 Calnexin; CANX 115 67982 8 8 3 3 5.2 592 

MOG
1
 Myelin-oligodendrocyte glycoprotein; MOG 114 28574 4 3 2 2 10.1 247 

MYO1D
1
 Unconventional myosin-Id; MYO1D 114 116927 10 4 6 1 9.7 1006 

MAP2
1
 Microtubule-associated protein 2; MAP2 113 199860 9 3 7 2 18.4 478 

NRCAM
1
 Neuronal cell adhesion molecule; NRCAM 110 144655 6 4 4 3 4.4 1304 

KIF5C
1
 Kinesin heavy chain isoform 5C; KIF5C 108 109997 17 8 11 4 15.5 957 

KIF5A
1
 Kinesin heavy chain isoform 5A; KIF5A 97 118161 10 5 5 2 5.9 1032 

CTNB1
1
 Catenin -1; CTNNB1 105 86069 11 6 7 4 12.7 781 

AP180
1
 Clathrin coat assembly protein AP180; SNAP91 94 92672 7 2 4 1 5.3 907 

TBB2A
1
 Tubulin -2A chain; TUBB2A 82 50274 5 4 3 2 7.9 445 

TBB2B
1
 Tubulin -2B chain; TUBB2B 64 50377 3 2 2 1 4.3 445 
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DLG4
1
 Disks large homolog 4; DLG4 81 80788 13 6 8 5 14.6 724 

LPHN1
1
 Latrophilin-1; LPHN1 80 164609 3 2 2 1 1.8 1474 

AP2B1
1
 AP-2 complex subunit ; AP2B1 77 105398 11 5 8 3 10 937 

ESYT1
1
 Extended synaptotagmin-1; ESYT1 76 123293 2 2 1 1 1.2 1104 

ACTB
1
 Actin, cytoplasmic 1; ACTB 73 42052 6 2 3 1 15.2 375 

CNTP1
1
 Contactin-associated protein 1; CNTNAP1 70 158220 3 2 2 1 1.7 1384 

AT2A2
1
 Sarcoplasmic/endoplasmic reticulum Ca

2+
 ATPase 2; ATP2A2 69 116336 9 3 5 2 6.3 1042 

AT2A1
1
 Sarcoplasmic/endoplasmic reticulum Ca

2+
 ATPase 1; ATP2A1 40 111550 5 1 3 1 3.2 1001 

EF1A2
1
 Elongation factor 1- 2; EEF1A2 66 50780 4 2 3 1 10.8 463 

L2GL1
1
 Lethal(2) giant larvæ protein homolog 1; LLGL1 62 116657 2 2 1 1 1.1 1064 

HIP1R
1
 Huntingtin-interacting protein 1-related protein; HIP1R 61 119999 8 2 5 1 6.5 1068 

PLEC
1
 Plectin; PLEC 61 533462 19 3 18 3 5 4684 

PGCB
1
 Brevican core protein; BCAN 60 100539 3 1 2 1 2.5 911 

CTND2
1
 Catenin -2; CTNND2 60 133658 7 2 5 1 5.9 1225 

DYHC1
1
 Cytoplasmic dynein 1 heavy chain 1; DYNC1H1 59 534809 13 4 9 1 2.5 4646 

OMGP
1
 Oligodendrocyte-myelin glycoprotein; OMG 59 50032 7 4 2 2 6.6 440 

MAP1A
1
 Microtubule-associated protein 1A; MAP1A 58 306781 13 3 11 2 5.2 2803 

ADA22
1
 
Disintegrin and metalloproteinase domain-

containing protein 22; ADAM22 
58 102991 1 1 1 1 1.5 906 

PREP
1
 Presequence protease, mitochondrial; PITRM1 pe 1  58 118407 2 2 1 1 1.2 1037 

PDE2A
1 cGMP-dependent 3',5'-cyclic phosphodiesterase; 

PDE2A pe 1  
57 107360 5 4 3 2 4.5 941 

E41L2
1
 Band 4.1-like protein 2; EPB41L2 54 113032 7 3 3 2 3.5 1005 

AT2B1
1
 Plasma membrane Ca

2+
-transporting ATPase 1; ATP2B1 51 139637 6 1 6 1 6.2 1258 

ATPA
1
 ATP synthase subunit , mitochondrial; ATP5A1 50 59828 4 1 3 1 8.1 553 

NLGN3
1
 Neuroligin-3; NLGN3 50 94463 3 1 3 1 5.2 848 

AT1B1
1
 Na

+
/K

+
-transporting ATPase subunit -1; ATP1B1 48 35438 6 4 3 2 12.9 303 

LIGO1
1
 

Leucine-rich repeat and immunoglobulin-like domain-

containing nogo receptor-interacting protein 1; LINGO1 
47 70687 5 2 3 1 4.7 620 

BRSK1
1
 Serine/threonine-protein kinase BRSK1; BRSK1 47 85604 7 1 5 1 8.1 778 

WDR47
1 

WD repeat-containing protein 47; WDR47 47 103424 6 1 5 1 7.8 919 

EFR3B
2
 Protein EFR3 homolog B; EFR3B 46 93397 2 1 2 1 3.1 817 

SND1
1
 Staphylococcal nuclease domain-containing protein 1; SND1 45 102618 9 2 5 1 6.5 910 

SC6A1
1
 Na

+
- and Cl

–
-dependent GABA transporter 1; SLC6A1 44 67827 4 2 2 1 5.5 599 

CAD13
1
 Cadherin-13; CDH13 44 78694 4 3 3 2 4.2 713 

AUXI
1
 Putative tyrosine-protein phosphatase auxilin; DNAJC6 43 100675 5 2 5 2 8 913 

BIN1
1
 Myc box-dependent-interacting protein 1; BIN1 43 64887 8 2 4 1 10.1 593 

ACLY
1
 ATP-citrate synthase; ACLY 43 121674 5 3 4 2 5.4 1101 

EXOC4
1
 Exocyst complex component 4; EXOC4 42 111170 4 2 3 1 4.7 974 

SV2B
2
 Synaptic vesicle glycoprotein 2B; SV2B 40 78248 3 2 2 1 4.1 683 
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NELL2
1
 Protein kinase C-binding protein NELL2; NELL2 39 96359 1 1 1 1 1.1 816 

CTNA2
1
 Catenin -2; CTNNA2 37 106045 9 1 9 1 12.9 953 

GRIA2
1
 Glutamate receptor 2; GRIA2 37 99385 8 4 4 4 5.9 883 

GRIA1
1 

Glutamate receptor 1; GRIA1 34 102240 8 2 4 2 5.5 906 

EEA1
1
 Early endosome antigen 1; EEA1 37 163337 2 1 2 1 1.8 1411 

BCAS3
1
 Breast carcinoma-amplified sequence 3; BCAS3 36 102484 4 1 3 1 3.8 928 

HGS
1
 

Hepatocyte growth factor-regulated tyrosine kinase 

substrate; HGS 
35 86708 1 1 1 1 1.5 777 

KIF2A
1
 Kinesin-like protein KIF2A; KIF2A 35 80589 5 2 4 1 5.7 706 

GIT1
1
 ARF GTPase-activating protein GIT1; GIT1 35 85030 4 2 2 2 3.9 761 

SNG1
1
 Synaptogyrin-1; SYNGR1 34 25667 1 1 1 1 5.2 233 

K2C1
1
 Keratin, type II cytoskeletal 1; KRT1 34 66170 5 2 3 2 5 644 

GFAP
1
 Glial fibrillary acidic protein; GFAP 22 49907 5 2 4 2 11.1 432 

K2C4
1
 Keratin, type II cytoskeletal 4; KRT4 22 57649 4 1 2 1 3.7 534 

FAK2
1
 Protein-tyrosine kinase 2-; PTK2B 33 117112 15 3 9 2 12.2 1009 

ANFY1
1
 Ankyrin repeat & FYVE domain-containing protein 1; ANKFY1 32 129915 4 1 4 1 5 1169 

NMDZ1
1
 Glutamate receptor ionotropic, NMDA 1; GRIN1 32 105990 7 1 4 1 5.9 938 

SYGP1
1
 Ras GTPase-activating protein SynGAP; SYNGAP1 32 149160 7 1 5 1 6.1 1343 

USO1
1
 General vesicular transport factor p115; USO1 31 108740 2 2 2 2 2.3 962 

TPPC9
1
 Trafficking protein particle complex subunit 9; TRAPPC9 31 129817 2 1 1 1 0.8 1148 

ITAV
1 

Integrin -V; ITGAV 31 117048 3 1 3 1 4.5 1048 

NMD3A
1
 Glutamate receptor ionotropic, NMDA 3A; GRIN3A 31 126525 34 1 1 1 0.6 1115 

COPG2
1
 Coatomer subunit -2; COPG2 30 98700 8 1 4 1 5.7 871 

PLCA
2
 1-acyl-sn-glycerol-3-phosphate acyltransferase ; AGPAT1 30 32038 2 1 1 1 3.5 283 

IPO5
1
 Importin-5; IPO5 29 125032 3 2 2 2 2.3 1097 

TBCD
1
 Tubulin-specific chaperone D; TBCD 29 134283 5 1 3 1 3.8 1192 

ADDG
1
 -adducin; ADD3 28 79447 3 2 2 1 3.4 706 

INP4A
1
 Type I inositol 3,4-bisphosphate 4-phosphatase; INPP4A 28 111539 3 1 3 1 4.6 977 

NED4L
1
 E3 ubiquitin-protein ligase NEDD4-like; NEDD4L 28 112204 6 2 3 1 3.8 975 

SGIP1
1
 

SH3-containing GRB2-like protein 3-interacting 

protein 1; SGIP1 
27 89453 6 3 3 2 4 828 

GRIA3
1
 Glutamate receptor 3; GRIA3 26 101662 3 1 2 1 4 894 

UTRO
1
 Utrophin; UTRN 26 396444 7 1 6 1 2.3 3433 

BASP1
1
 Brain acid soluble protein 1; BASP1 26 22680 1 1 1 1 12.3 227 

IQEC1
1
 IQ motif & SEC7 domain-containing protein 1; IQSEC1 26 109103 1 1 1 1 1.5 963 

SRCN1
1
 SRC kinase signaling inhibitor 1; SRCIN1 25 112670 9 1 6 1 10.2 1055 

SORT
1
 Sortilin; SORT1 25 92979 4 1 3 1 4.5 831 

MLL4
1
 Histone-lysine N-methyltransferase MLL4; WBP7 25 297664 10 1 5 1 2.8 

 
XPO2

1
 Exportin-2; CSE1L 25 111145 5 1 4 1 4.5 971 

CRNS1
1
 Carnosine synthase 1; CARNS1 24 89910 1 1 1 1 1.3 827 
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KPCE
1
 Protein kinase C  type; PRKCE 24 84989 2 2 1 1 2.4 737 

AP3B2
1
 AP-3 complex subunit -2; AP3B2 24 119612 2 1 1 1 1.3 1082 

DICER
1
 Endoribonuclease Dicer; DICER1 24 221279 3 1 1 1 0.4 1922 

LR10B
4
 Leucine-rich repeat-containing protein 10B; LRRC10B 24 32864 4 1 3 1 14.7 292 

SYNE3
1
 Nesprin-3; SYNE3 23 112774 4 1 4 1 6.4 975 

MVP
1 

Major vault protein; MVP 23 99551 4 1 3 1 4.1 893 

FOLH1
1
 Glutamate carboxypeptidase 2; FOLH1 22 84506 3 1 3 1 5.7 750 

PTPRS
1
 Receptor-type tyrosine-protein phosphatase S; PTPRS 22 218159 7 2 5 1 4.1 1948 

A4
1
 Amyloid A4 protein; APP 22 87914 4 2 3 1 5.6 770 

MBP
1 

Myelin basic protein; MBP 22 33097 4 1 1 1 3.9 304 

SYN1
1
 Synapsin-1; SYN1 22 74237 2 1 2 1 5.8 705 

IL25
1
 Interleukin-25; IL25 21 20887 5 2 1 1 5.6 177 

EMC1
1
 ER membrane protein complex subunit 1; EMC1 21 112145 2 1 1 1 1.3 993 

SPTN4
1
 Spectrin  chain, non-erythrocytic 4; SPTBN4 21 290005 9 1 7 1 3.8 2564 

DPP10
1
 Inactive dipeptidyl peptidase 10; DPP10 21 91401 2 1 2 1 3.6 796 

APOB
1
 Apolipoprotein B-100; APOB 20 516651 4 1 4 1 1.2 4563 

DDX58
1
 Probable ATP-dependent RNA helicase DDX58; DDX58 19 108014 14 2 4 1 3.9 925 

ZMYM3
1
 Zinc finger MYM-type protein 3; ZMYM3 18 156101 4 1 4 1 2.7 1370 

LPIN1
2
 Phosphatidate phosphatase LPIN1; LPIN1 18 99287 4 1 3 1 6.2 890 

UBE4A
1
 Ubiquitin conjugation factor E4 A; UBE4A 17 123565 5 1 3 1 4.1 1066 

PLLP
1
 Plasmolipin; PLLP 17 20087 1 1 1 1 12.6 182 

CCL28
1
 C-C motif chemokine 28; CCL28 17 14670 3 1 3 1 18.9 127 

TAU
1 

Microtubule-associated protein tau; MAPT 17 79108 4 1 2 1 3.2 758 

NXPE2
2
 NXPE family member 2; NXPE2 16 65601 5 1 1 1 3 559 

DSCL1
1
 

Down syndrome cell adhesion molecule-like protein 

1; DSCAML1 
15 226147 2 1 2 1 1.1 2053 

DYH9
1
 Dynein heavy chain 9, axonemal; DNAH9 15 515599 17 1 16 1 4.4 4486 

MK06
1
 Mitogen-activated protein kinase 6; MAPK6 15 83256 4 1 3 1 6.4 721 

LRC52
1 

Leucine-rich repeat-containing protein 52; LRRC52 14 35731 2 1 2 1 12.5 313 

FBX47
2
 F-box only protein 47; FBXO47 13 52846 20 1 2 1 8 452 

CO2A1
1 

Collagen -1(II) chain; COL2A1 13 142782 3 1 2 1 2.4 1487 

Notes as for Table 4.3 


