

Neuroligins and Neurexins in Alzheimer's disease

Ikhlas Abdulaziz Sindi

B. Biochem., M. MolBio.

A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2014

School of Medicine

Abstract

Alzheimer's disease (AD) is a progressive neurodegenerative disorder and a main cause of dementia in the elderly. The main pathological hallmarks of AD are the accumulation of insoluble aggregates of amyloid- β -peptides (A β), which are proteolytic cleavage products of the amyloid- β precursor protein, and insoluble filaments composed of hyperphosphorylated tau protein. Familial forms of AD can raise the production of A β peptides.

Synaptic damage is a critical aspect of AD, and the best correlate with cognitive impairment ante mortem. Synapses, the loci of communication between neurons, are characterized by signature protein combinations arrayed at tightly apposed pre- and post-synaptic sites. The most widely studied trans-synaptic junctional complexes, which direct synaptogenesis and foster the maintenance and stability of the mature terminal, are conjunctions of presynaptic neurexins and postsynaptic neuroligins. The presynaptic neurexins bind with the neuroligins on the postsynaptic membrane. This pairing is implicated in synaptic signalling and the determination of whether a synapse will be excitatory or inhibitory. At the postsynaptic density, neuroligin-1 is specific for glutamatergic synapses, whereas neuroligin-2 is indicative of a GABAergic synapse. The neuroligins mediate connection with the presynaptic terminal mainly through β -neurexin, which occurs in different isoforms derived from alternatively spliced transcripts. Fluctuations in the levels of neuroligins and neurexins can sway the balance between excitatory and inhibitory neurotransmission in the brain, and could lead to damage of synapses and dendrites.

The main objective of the research set out below was to investigate possible disruptions of nerve-cell connections in AD through assay of the trans-synaptic neurexin and neuroligin proteins. The project explored differences in neuroligin and neurexin expression across different brain regions at various stages of the progression of the disease. I also investigated whether any differences occurred at the level of transcription or translation of the proteins. Additional work focused on a genetic study and the association between the *NRXN-3* gene and AD.

To identify the differences in the level of protein expression, a sensitive immunodetectionassay using recombinant protein standards was developed to measure concentrations of neuroligin-1, neuroligin-2 and β -Neurexin-1 in AD cases and matched controls. Two regions that are pathologically affected in the AD brain, the hippocampus and the inferior temporal cortex, and one relatively spared region, the occipital cortex, were studied. Quantification showed higher expression in AD cases than in controls of both post-synaptic neuroligin-1 and pre-synaptic β -neurexin-1. The expression of neuroligin-1 and β -neurexin-1 was higher in AD hippocampus than in this region in controls, but the difference only reached significance for neuroligin-1. In contrast, the expression of neuroligin-2 protein was lower overall in AD cases than in controls. Lower expression in AD cases was seen in all areas and reached statistical significance in inferior temporal cortex.

A mass spectrometry approach was employed to validate the quantification of these proteins using with two novel methods, multiple reaction monitoring (MRM) and sequential window acquisition of all theoretical fragment ion spectra (SWATH). Using these high-throughput techniques I identified several hundred synaptic proteins, including neuroligins and neurexins. However, an insufficient number of peptides was identified for each of these proteins, which precluded their quantification by these approaches.

Protein data from the immunodetection assay were correlated with mRNA transcript levels by using quantitative real-time PCR assays, which were established for neuroligin-1, neuroligin-2 and β -neurexin-1 transcripts in the same areas of AD cases and controls. Quantification revealed significantly lower expression of all three transcripts in AD hippocampus and inferior temporal cortex, but no difference in occipital cortex, compared with controls. Expression of the three transcripts was found to correlate with disease progression as indexed by the AD pathological markers A β , neurofibrillary tangles, and neuronal loss. However, APOE genotype had no effect on mRNA transcript levels.

To look for a genetic association between the β –*NRXN-3* gene and AD, I attempted to replicate a published report that the single nucleotide polymorphism rs17757879 was a tag for the

gene in a Spanish cohort. AD cases and controls were genotyped by a Taqman assay to explore the association between rs17757879 in β –*NRXN-3* and AD in an Australian Caucasian population. Overall, the data did not show a significant association between rs17757879 and AD. When the subjects were partitioned by gender, there was a trend toward a significant association between rs17757879 and the disease in males only. When alleles were divided according to the presence or absence of the T allele (CT plus TT compared with CC) association reached significance, and indicated that the T allele was protective against AD in males.

The data from this project provides further understanding of the molecular characteristics of the neurexin-neuroligin complex in AD. An understanding of the roles of these molecules will likely open new therapeutic avenues for the treatment of AD.

Declaration by author

This thesis is composed of my original work, and contains no material previously published or written by another person except where due reference has been made in the text. I have clearly stated the contribution by others to jointly-authored works that I have included in my thesis.

I have clearly stated the contribution of others to my thesis as a whole, including statistical assistance, survey design, data analysis, significant technical procedures, professional editorial advice, and any other original research work used or reported in my thesis. The content of my thesis is the result of work I have carried out since the commencement of my research higher degree candidature and does not include a substantial part of work that has been submitted to qualify for the award of any other degree or diploma in any university or other tertiary institution. I have clearly stated which parts of my thesis, if any, have been submitted to qualify for another award.

I acknowledge that an electronic copy of my thesis must be lodged with the University Library and, subject to the General Award Rules of The University of Queensland, immediately made available for research and study in accordance with the *Copyright Act 1968*.

I acknowledge that copyright of all material contained in my thesis resides with the copyright holder(s) of that material. Where appropriate I have obtained copyright permission from the copyright holder to reproduce material in this thesis.

Publications during candidature

- Sindi, I. A., Tannenberg, R. K. & Dodd, P. R. 2014. A role for the neurexin-neuroligin complex in Alzheimer's disease. *Neurobiol. Aging*, 35, 746–56.
- Sindi, I. A., Tannenberg, R. K. & Dodd, P. R. 2014. Higher expression of neuroligin-1 in Alzheimer's disease. *J. Alzheimers Dis.*, submitted.

Conference Abstracts: Oral Presentations

Sindi, I. A., Tannenberg, R. K., Byrne, G. & Dodd, P. R. 2013. A role for the neurexin-neuroligin complex in Alzheimer's disease. Presented at the 9th Annual Postgraduate Symposium, School of Chemistry and Molecular Bioscience, The University of Queensland, 21 November.

Conference Abstracts: Poster Presentations

- Sindi, I. A., Tannenberg, R. K., Byrne, G. & Dodd, P. R. 2012. A role for the neurexin-neuroligin complex in Alzheimer's disease. Presented at Australian Neuroscience Society (ANS)
 Annual Meeting, Gold Coast, Australia, 29 January to 1 February.
- Sindi, I. A., Tannenberg, R. K., Byrne, G. & Dodd, P. R. 2012. A role for the neurexin-neuroligin complex in Alzheimer's disease. Presented at the 4th Brain Plasticity Symposium at the Queensland Brain Institute, The University of Queensland, 3–5 September.
- Sindi, I. A., Tannenberg, R. K., Byrne, G. & Dodd, P. R. 2012. A role for the neurexin-neuroligin complex in Alzheimer's disease. Presented at International Postgraduate Symposium In Biomedical Sciences at University of Queensland, 24 September.
- Sindi, I. A., Tannenberg, R. K., Byrne, G. & Dodd, P. R. 2013. A role for the neurexin-neuroligin complex in Alzheimer's disease. Presented at Australasian Neuroscience Society (ANS) Annual Meeting, Melbourne, Australia, 3–6 February.
- Sindi, I. A., Tannenberg, R. K., Byrne, G. & Dodd, P. R. 2013. A role for the neurexin-neuroligin complex in Alzheimer's disease. Presented at the Society for Neuroscience Annual Meeting, San Diego, U.S.A., 8–12 November.

Publications included in this thesis

Sindi, I. A., Tannenberg, R. K. & Dodd, P. R. 2014. A role for the neurexin-neuroligin complex in Alzheimer's disease. *Neurobiol Aging*, 35, 746-56.

Incorporated in parts of Chapter 1.

Contributor	Statement of contribution
Author Sindi, I. A. (Candidate)	I was responsible for 100% of research material, planning and writing the text and preparing the figures for the paper.
Author Tannenberg, R. K.	Provided laboratory guidance and advice.
Dodd, P. R.	Offered critical advice and editing of the manuscript prior submission

Sindi, I. A., Tannenberg, R. K. & Dodd, P. R. 2014. Higher expression of neuroligin-1 in

Alzheimer's disease. J. Alzheimers Dis., submitted.

Partially incorporated in some paragraphs in chapter 3.

Contributor	Statement of contribution
Author Sindi, I. A. (Candidate)	I was responsible for 100% of research material, planning and writing the text and preparing the figures for the paper.
Author Tannenberg, R. K.	Provided laboratory guidance and advice.
Dodd, P. R.	Offered critical advice and editing of the manuscript prior submission

Contributions by others to the thesis

Dr. Rudi Tannenberg, Mentor, hands-on laboratory training and advice.

A/Prof. Peter Dodd, Lab chief and mentor, research and experimental design, statistical analysis training and advice.

Professor Gerard Byrne, Principal supervisor, clinical advice.

Research design advice and training:

Dr. Mathew Hynd

Dr. Michael Nefedov

Dr. Ada Ho

Laboratory experimental advice:

Dr. Rudi Tannenberg

Dr. Naomi Etheridge

Statement of parts of the thesis submitted to qualify for the award of another degree

None

Acknowledgments

My Ph.D. study has been a wonderful and often overwhelming experience. It is hard to say whether it has been grappling with the topic itself, which has been the real learning experience, or grappling with how to write papers, give talks, work in a group, stay up and stay focused. However, I am grateful to many people for making the time working on my Ph.D. an unforgettable experience. Firstly, I am deeply thankful to my supervisor A/Professor Peter Dodd. Working with you has been a real pleasure to me, with heaps of fun and excitement. You have been a steady influence throughout my Ph.D.; you have oriented and supported me with promptness and care, and have always been patient and encouraging in times of new ideas and difficulties; you have listened to my ideas and discussions with you frequently led to key insights. Your capability to select and to approach scientific problems, your high scientific standards, and your hard work set an example. Above all, you made me feel a friend and I am thankful from my heart. In addition, I am very grateful to my other supervisors Professor Gerard Byrne and Dr. Rudi Tannenberg for helpful comments during my Ph.D. lab work and in this thesis. In addition, I am very privileged to work with many other great lab members who became friends over the last several years: Dr. Naomi Etheridge, Dr. Ada Ho, Crystal Higgs, and Rachel Chang. I learned a lot from you in my research and how to tackle new problems and how to develop techniques to solve them. I have greatly enjoyed the opportunity to work with Dr. Amanda Nouwens, who supervised me for the mass spectrometer study and provided me technical with very useful technical advice.

To my family, Mom (Mrs. Nagat Alghamdy) and Dad (Mr. Abdulaziz Sindi) thank you for being so supportive over the past few years. Thank you for keeping yourselves healthy, and sparing me from family responsibilities, so that I could enjoy this adventure without worries. This will probably be the only page you will understand so I want you to know you mean the world to me.

This project could not be completed without the support and love from my lovely husband Dr. Emad Saig, words do not justice the appreciation I have for his love and support during my PhD work at SCMB building and home. Special thank for my little sons Ahmed Saig and Abdulaziz Saig for being in my life and encourage me to work hard and gain the degree for both of them. Last but not least special thanks for my lovely sisters and brothers for supporting me during my study.

Keywords

Alternative splicing, cell adhesion molecules, excitatory synapses, inhibitory synapses, neurodegeneration, acetylcholinesterase (AChE).

Australian and New Zealand Standard Research Classifications (ANZSRC)

ANZSRC code: 060105 Cell Neurochemistry, 20%

ANZSRC code: 060405 Gene Expression, 60%

ANZSRC code: 060109 Proteomics and Intermolecular Interactions, 20%

Fields of Research (FoR) Classification

FoR code: 0604 Genetics, 50%

FoR code: 1109 Neuroscinces, 50%

Tabl	e of ContentsAbstract	ii
Decla	ration by author	v
Publi	cations during candidature	vi
Contr	ributions by others to the thesis	viii
Ackn	owledgments	ix
Austr	alian and New Zealand Standard Research Classifications (ANZSRC)	xi
Fields	of Research (FoR) Classification	xi
Table	e of Figures	. XX
Table	e of Tablesx	xiv
List o	of Abbreviations	XXV
1	Introduction	1
1.1	Epidemiology and history	1
1.1.1	Diagnosis (Clinical and post mortem)	3
1.2	Genetics of AD	4
1.2.1	EOAD genetics	4
1.2.2	LOAD genetics	5
1.3	Pathological hallmarks of AD	7
1.3.1	Neurofibrillary tangles	7
1.3.2	β-Amyloid	8
1.3.3	Synaptic loss and synaptic proteins in AD	9
1.3.4	Synaptic disruption by β-amyloid	10
1.3.5	Oligomeric Aß and excitatory synapses	11
1.3.6	Oligomeric A _β and prion proteins	12
1.3.7	Other A	12
1.4	Cell adhesion molecules	13
1.4.1	Neurexin-neuroligin complex	15

1.4.2	Structures of neurexins and neuroligins	.15
1.4.2.1	Neurexins	.15
1.4.2.2	Neuroligins	.17
1.4.3	Neuroligin-neurexin interactions	.21
1.4.3.1	Oligomerization mechanisms	.21
1.4.3.2	Calcium-dependent mechanisms	.21
1.4.3.3	Alternative splicing mechanisms	.21
1.4.3.4	Neuroligin/neurexin interactions and synaptic localization	.23
1.4.4	A role for the neuroligin–neurexin complex in triggering amyloid deposition in AD?	.24
1.4.4.1	Proteolytic processing of neuroligins and neurexins in AD	.25
1.4.4.2	Neuroligins and neurexins in learning and memory	.27
1.5	Thesis outline	.29
1.5.1	Chapter 2	.29
1.5.2	Chapter 3	.29
1.5.3	Chapter 4	.29
1.5.4	Chapter 5	.30
1.5.5	Chapter 6	.30
1.5.6	Chapter 7	.30
2	Development of an immunoassay to quantify neuroligin-1 and neuroligin-2	31
2.1	Aim of the research	.31
2.2	Introduction	.31
2.3	Materials and Methods	.33
2.3.1	Recombinant neuroligin-1 and neuroligin-2 protein standards	.33
2.3.1.1	PCR clean-up	.36
2.3.2	Topo cloning reaction	.36
2.3.2.1	Transformation of E. coli	.36
2.3.2.2	PCR colony screening	.37

2.3.2.3	Plasmid purification	7
2.3.2.4	PCR screening	7
2.3.2.5	Restriction enzyme analysis	7
2.3.2.6	Sequencing	3
2.3.2.7	Expression	3
2.3.3	Analysing expression	9
2.3.3.1	Scaling up expression for purification	9
2.3.3.2	Purification)
2.3.3.3	Western blotting)
2.3.4	Quantification of neuroligin-1 and neuroligin-2 recombinant proteins	1
2.3.4.1	Quantification of neuroligin-1 and neuroligin-2 endogenous protein4	1
2.4	Results4	1
2.4.1	NLGN1 cloning	1
2.4.1.1	NLGN1 AGRF sequencing	3
2.4.1.2	Neuroligin-1 expression	4
2.4.2	NLGN2 cloning	4
2.4.2.1	Neuroligin-2 expression	5
2.4.2.2	Neuroligin-1 and neroligin-2 purification	5
2.5	Discussion4	8
3	Quantification of neuroligin-1, neuroligin-2 and β -neurexin-1 proteins	1
3.1	Aims of the research	1
3.2	Introduction5	1
3.2.1	Fluctuations of synaptic proteins in AD	2
3.2.2	Measurement of synapses and synaptic proteins	3
3.3	Materials and Methods	4
3.3.1	Tissue collection	4
3.3.2	Case selection and neuropathological severity score	4

3.3.3	Membrane preparations	.58
3.3.4	Quantification of neuroligin-1, neuroligin-2 and β -neurexin-1 proteins	.58
3.3.5	Data analysis	.59
3.4	Results	.59
3.4.1	Post-mortem delay and age at death	.64
3.4.2	Neuroligin-1 expression by case-group	.64
3.4.3	Neuroligin-1 level by gender	.67
3.4.4	Neuroligin-1 level and APOE genotype	.68
3.4.5	Neuroligin-1 expression and severity of disease	.71
3.4.6	Neuroligin-2 expression in AD cases and controls	.71
3.4.7	Neuroligin-2 level and gender	.73
3.4.8	Neuroligin-2 level and APOE genotype	.74
3.4.9	Neuroligin-2 expression and severity of disease	.77
3.4.10	β-neurexin-1 by case-group and brain region	.78
3.4.11	β-neurexin-1 level and gender	.79
3.4.12	β-Neurexin-1 level and APOE genotype	.79
3.4.13	β-neurexin-1 expression and severity of disease	.81
3.5	Discussion	.83
3.5.1	Neuroligin-1 expression in AD	.83
3.5.2	Neuroligin-2 expression in AD	.86
3.5.3	β-Neurexin-1 expression in AD	.87
3.5.4	APOE genotype and protein expression	.88
3.5.5	Limitations of the study	.89
4	Quantification of neuroligin and neurexin proteins by MRM and SWATH	91
4.1	Aims of the research	.91
4.2	Introduction	.91
4.2.1	Mass spectrometry based techniques	.92

4.2.1.1	Ionization techniques	93
4.2.1.1	.1 Electrospray ionization	93
4.2.1.1	.2 MALDI	93
4.2.1.2	2 Mass analyser	93
4.2.1.3	Sample preparation, fractionation, and tags	94
4.2.1.4	Proteomic bioinformatics	94
4.2.2	Multiple reaction monitoring (MRM)	95
4.2.2.1	Selection of a target protein in MRM	96
4.2.2.2	2 Selection of the peptide	97
4.2.2.3	3 Uniqueness	97
4.2.2.4	Post-translational modifications	98
4.2.2.5	5 Selection of MRM transitions	98
4.2.2.6	5 Validation of transitions	99
4.2.2.7	7 MRM software	101
4.2.3	MS/MS ^{ALL} with SWATH TM Acquisition assay	102
4.3	Materials and Methods	104
4.3.1	Reagents used	104
4.3.2	Autopsy brain tissue preparation	104
4.3.3	Trichloroacetic acid/deoxycholate/acetone precipitation	105
4.3.4	Quantification of samples using the 2-D Quant Kit	105
4.3.5	Reduction and alkylation	106
4.3.6	Trypsin digestion	106
4.3.7	ZipTip sample cleanup	106
4.3.8	Preparation of HPLC-QTRAP 5500 mass spectrometer for MRM analysis	106
4.3.8.1	Choosing the protein of interest, peptide and transitions	107
4.3.8.2	2 Verification of peptide selections and development of transitions	107
4.3.9	MS/MS ^{ALL} with SWATH TM Acquisition	107

4.3.9.1	Membrane sample preparation for SWATH	107
4.3.9.2	2 Protein extraction, quantification, digestion and ZipTip	108
4.3.9.3	3 Strong cation exchange (SCX) with the LC Agilent fractionator	108
4.3.9.4	In-gel digestion	108
4.3.9.5	5 Sample analysis by mass spectrometry and chromatography	109
4.3.9.6	5 Bioinformatics database search	109
4.4	Results	109
4.4.1	Identification of other synaptic proteins by these methods	116
4.5	Discussion	117
4.6	Supplementary material for Chapter 4 Appendix	120
5	Quantification of neuroligin-1, neuroligin-2 and β -neurexin-1 mRNA	121
5.1	Aim of the research	121
5.2	Introduction	121
5.3	Methods	124
5.3.1	Tissue collection and storage	124
5.3.2	Case selection and neuropathological classification	125
5.3.3	RNA extraction	125
5.3.4	RNA integrity	125
5.3.5	Reverse transcriptase	126
5.3.6	Standard preparation and dilution	126
5.3.7	Taqman PCR assay	127
5.3.8	Data Analysis	128
5.4	Results	128
5.4.1	Data distribution	129
5.4.2	RNA integrity	133
5.4.3	Reference gene (RPL13 expression)	135
5.4.4	Age at death and post-mortem delay with RPL13 transcript expression	136

5.4.5	Neuroligin-1 transcript expression between cases and controls	.138
5.4.6	Neuroligin-1 transcript expression and gender	.142
5.4.7	NLGN1 transcript expression and APOE genotype	.143
5.4.8	NLGN1 expression and disease severity	.145
5.4.9	Neuroligin-2 transcript expression by case-group	.146
5.4.10	Neuroligin-2 transcript expression and gender	.148
5.4.11	Neuroligin-2 transcript expression and APOE genotype	.148
5.4.12	Neuroligin-2 transcript expression and pathological score	.151
5.4.13	β-Neurexin-1 transcript expression by case-group	.151
5.4.14	β-Neurexin-1 transcript expression by gender	.153
5.4.15	β-Neurexin-1 transcript expression by APOE genotype	.154
5.4.16	β-Neurexin-1 transcript expression and pathological score	.154
5.5	Discussion	.157
5.5.1	Neuroligin-1 mRNA expression	.157
5.5.2	Neuroligin-2 mRNA expression	.158
5.5.3	β-Neurexin-1 transcript expression	.159
5.5.4	APOE genotype and transcript expression	.160
5.5.5	Limitations of the study	.160
6	Genetic association of neuroligins and neurexins with AD	164
6.1	Aim of the research	.164
6.2	Introduction	.164
6.3	Methods	.165
6.3.1	gDNA preparation from autopsy brain tissue	.165
6.3.2	DNA quantification and quality Control	.166
6.3.3	DNA genotyping	.166
6.3.4	Genotyping quality control and validation	.167
6.3.5	Data quality control	.167

6.3.6	Genetic association	167
6.3.7	Sample size and power	167
6.4	Results	167
6.4.1	Genotypic and allelic associations	168
6.5	Discussion	168
6.5.1	Limitation of the study	171
7	Final discussion, conclusions and future direction	172
7.1	General findings and implications of the project	172
7.2	The expression of neuroligin and neurexins proteins and transcripts in AD	172
7.3	Conclusion and Future directions	174
8	References	176
8 9	References	176 218
8 9 9.1	References Appendix Appendix for Chapter 2	176 218 218
8 9 9.1 9.1.1.1	References	176 218 218 218
8 9 9.1 9.1.1.1 9.1.1.2	References Appendix Appendix for Chapter 2 NLGN1 Compute pI/Mw	176 218 218 218 221
8 9 9.1 9.1.1.1 9.1.1.2 9.1.1.3	References Appendix Appendix for Chapter 2 NLGN1 2 Compute pI/Mw	176 218 218 218 221 221
8 9 9.1 9.1.1.1 9.1.1.2 9.1.1.3 9.1.1.4	References Appendix Appendix for Chapter 2. NLGN1 Compute pI/Mw NLGN2 Compute pI/Mw	218 218 218 218 221 221 221
8 9 9.1 9.1.1.1 9.1.1.2 9.1.1.3 9.1.1.4 9.1.2	References Appendix Appendix for Chapter 2. NLGN1 Compute pI/Mw NLGN2 Compute pI/Mw Forward primer	176 218 218 218 221 221 224 224
8 9 9.1 9.1.1.1 9.1.1.2 9.1.1.3 9.1.1.4 9.1.2 9.1.3	References Appendix Appendix for Chapter 2 NLGN1 2 Compute pI/Mw 3 NLGN2 4 Compute pI/Mw 5 NLGN1 6 NLGN1 7 NLGN1 8 NLGN2 9 NLGN1 9 NLGN2 9 NLGN2<	218 218 218 218 221 221 224 224 224 226

List of Figures

Fig. 1.1. Global prevalence of AD	1
Fig. 1.2. The function of cell adhesion molecules at the synapse	
Fig. 1.3. Structure of α - and β -neurexins	
Fig. 1.4. Neuroligin structure	
Fig. 1.5. The 3D structure of CLD models of CLAM family protein	
Fig. 1.6. Neurexin–neuroligin splice sites and the possible binding pairs	
Fig. 1.7. The role of alternative splicing of neurexin–neuroligin	
Fig. 2.1. Agarose ethidium bromide gel of <i>NLGN1</i> PCR products	
Fig. 2.2. Gel photo of quick screening for the successful insert of neuroligin-1 into TOPO	46
Fig. 2.3. SDS-PAGE of neuroligin-1 expression	
Fig. 2.4. PCR products of neuroligin-2	
Fig. 2.5. Quick screening for the successful insert of neuroligin-2 into TOPO	
Fig. 2.6. SDS-PAGE of neuroligin-2 expression	
Fig. 2.7. Neuroligin-1 protein purificationon Ni-NTA columns	
Fig. 2.8. Neuroligin-2 protein purification on Ni-NTA columns	
Fig. 2.9. Quantification of neuroligin-1 and neuroligin-2 recombinant proteins	
Fig. 2.10. Neuroligin-1 recombinant standard	
Fig. 2.11. Neuroligin-2 recombinant protein standard	
Fig. 3.1. Representative immunoblot of neuroligin-1	
Fig. 3.2. Representative immunoblot of neuroligin-2	
Fig. 3.3. Representative immunoblots of β-neurexin-1	
Fig. 3.4. Normal probability plots for unadjusted values	64
Fig. 3.5. Normal probability plots for Box Cox transformations	65
Fig. 3.6. Regression analyses of protein concentrations against age and PMD	
Fig. 3.7. Overall neuroligin-1 expression by case-group	
Fig. 3.8. Neuroligin-1 protein by case-group and area	

Fig. 3.10. Neuroligin-1 expression by group, gender, and and area71Fig. 3.11. APOE genotype and neuroligin-1expression in AD.71Fig. 3.12. Neuroligin-1 expression by APOE genotype, group, and area72Fig. 3.13. Overall expression of neuroligin-1 and pathological severity74Fig. 3.14. Pathological severity and regional neuroligin-1 protein expression74Fig. 3.15. Total neuroligin-2 protein concentrations averaged across the three areas studied75Fig. 3.16. Neuroligin-2 protein expression by area76Fig. 3.17. Neuroligin-2 expression by case-group and gender76Fig. 3.18. Gender effects on neuroligin-2 protein expression76Fig. 3.19. Expression of neuroligin-2 by APOE ε4 in AD cases77Fig. 3.20. APOe4 genotype effects on neuroligin-2 expression by group.77Fig. 3.21. Neuroligin-2 expression by group, APOE, and area78Fig. 3.22. Neuroligin-2 expression by group.79Fig. 3.23. Neuroligin-2 expression by case-group and gender80Fig. 3.24. Overall β-neurexin-1 expression by case-group and area80Fig. 3.25. Expression of β-neurexin-1 protein by case-group and area81Fig. 3.26. β-neurexin-1 expression by goup, sex and area81Fig. 3.27. β-neurexin-1 protein expression by goup, sex and area81Fig. 3.28. APOE genotype effects on regional β-neurexin-1 expression by case-group82Fig. 3.29. APOE4 genotype effects on regional β-neurexin-1 expression by case-group82Fig. 3.29. APOE4 genotype effects on regional β-neurexin-1 expression by case-group82Fig. 3.29. APOE4 genotype	Fig. 3.9. Overall neuroligin-1 expression by gender	70
Fig. 3.11. APOE genotype and neuroligin-1expression in AD.71Fig. 3.12. Neuroligin-1 expression by APOE genotype, group, and area.72Fig. 3.13. Overall expression of neuroligin-1 and pathological severity.74Fig. 3.14. Pathological severity and regional neuroligin-1 protein expression74Fig. 3.15. Total neuroligin-2 protein concentrations averaged across the three areas studied75Fig. 3.16. Neuroligin-2 protein expression by area75Fig. 3.17. Neuroligin-2 expression by case-group and gender76Fig. 3.18. Gender effects on neuroligin-2 protein expression76Fig. 3.19. Expression of neuroligin-2 by APOE zet in AD cases.77Fig. 3.20. APOc4 genotype effects on neuroligin-2 expression by group.77Fig. 3.21. Neuroligin-2 expression by group, APOE, and area78Fig. 3.22. Neuroligin-2 protein expression and pathological severity of disease79Fig. 3.23. Neuroligin-2 expression by area and pathological severity of disease79Fig. 3.24. Overall β-neurexin-1 expression by case-group and area80Fig. 3.25. Expression of β-neurexin-1 protein by case-group and area81Fig. 3.26. β-neurexin-1 expression by goup, sex and area81Fig. 3.29. APOE4 genotype effects on regional β-neurexin-1 expression by case-group82Fig. 3.29. APOE4 genotype and β-neurexin-1 by case-group82Fig. 3.29. β-neurexin-1 protein expression by goup, sex and area81Fig. 3.29. β-neurexin-1 protein expression by goup, sex and area81Fig. 3.29. β-neurexin-1 protein expression by goup sec-group82Fig. 3.30. β-neur	Fig. 3.10. Neuroligin-1 expression by group, gender, and and area	71
Fig. 3.12. Neuroligin-1 expression by APOE genotype, group, and area.72Fig. 3.13. Overall expression of neuroligin-1 and pathological severity.74Fig. 3.14. Pathological severity and regional neuroligin-1 protein expression74Fig. 3.15. Total neuroligin-2 protein concentrations averaged across the three areas studied75Fig. 3.16. Neuroligin-2 protein expression by area75Fig. 3.17. Neuroligin-2 expression by case-group and gender76Fig. 3.18. Gender effects on neuroligin-2 protein expression76Fig. 3.19. Expression of neuroligin-2 by APOE ε4 in AD cases77Fig. 3.20. APOs4 genotype effects on neuroligin-2 expression by group.77Fig. 3.21. Neuroligin-2 expression by group, APOE, and area78Fig. 3.22. Neuroligin-2 expression by group, APOE, and area79Fig. 3.23. Neuroligin-2 expression by area and pathological severity of disease.79Fig. 3.24. Overall β-neurexin-1 expression by case-group80Fig. 3.25. Expression of β-neurexin-1 protein by case-group and gender81Fig. 3.26. β-neurexin-1 expression by group, sex and area81Fig. 3.27. β-neurexin-1 protein expression by goup, sex and area81Fig. 3.28. APOE genotype effects on regional β-neurexin-1 expression by case-group82Fig. 3.29. APOE4 genotype effects on regional β-neurexin-1 expression by case-group82Fig. 3.29. APOE4 genotype effects on regional β-neurexin-1 expression by case-group83Fig. 3.30. β-neurexin-1 protein expression by pathological severity of disease84Fig. 3.31. Pathological severity and β-neurexin-1 protein expression	Fig. 3.11. APOE genotype and neuroligin-1expression in AD	71
Fig. 3.13. Overall expression of neuroligin-1 and pathological severity.74Fig. 3.14. Pathological severity and regional neuroligin-1 protein expression.74Fig. 3.15. Total neuroligin-2 protein concentrations averaged across the three areas studied.75Fig. 3.16. Neuroligin-2 protein expression by area.75Fig. 3.17. Neuroligin-2 expression by case-group and gender.76Fig. 3.18. Gender effects on neuroligin-2 protein expression.76Fig. 3.19. Expression of neuroligin-2 by APOE c4 in AD cases.77Fig. 3.20. APOc4 genotype effects on neuroligin-2 expression by group,.77Fig. 3.21. Neuroligin-2 expression by group, <i>APOE</i> , and area.78Fig. 3.22. Neuroligin-2 expression by area and pathological severity of disease.79Fig. 3.23. Neuroligin-2 expression by area and pathological severity of disease.79Fig. 3.24. Overall β-neurexin-1 expression by case-group.80Fig. 3.25. Expression of β-neurexin-1 protein by case-group and area.81Fig. 3.27. β-neurexin-1 protein expression by goup, sex and area.81Fig. 3.28. APOE genotype effects on regional β-neurexin-1 expression by case-group.82Fig. 3.29. APOE4 genotype effects on regional β-neurexin-1 expression by case-group.82Fig. 3.29. APOE4 genotype effects on regional β-neurexin-1 expression by case-group.82Fig. 3.29. APOE4 genotype effects on regional β-neurexin-1 expression by case-group.82Fig. 3.30. β-neurexin-1 protein expression by goup, sex and area.81Fig. 3.30. β-neurexin-1 protein expression by case-group.82Fig. 3.31. Pathological severit	Fig. 3.12. Neuroligin-1 expression by <i>APOE</i> genotype, group, and area	72
Fig. 3.14. Pathological severity and regional neuroligin-1 protein expression	Fig. 3.13. Overall expression of neuroligin-1 and pathological severity	74
Fig. 3.15. Total neuroligin-2 protein concentrations averaged across the three areas studied	Fig. 3.14. Pathological severity and regional neuroligin-1 protein expression	74
Fig. 3.16. Neuroligin-2 protein expression by area75Fig. 3.17. Neuroligin-2 expression by case-group and gender76Fig. 3.18. Gender effects on neuroligin-2 protein expression76Fig. 3.19. Expression of neuroligin-2 by APOE ε4 in AD cases77Fig. 3.20. APOε4 genotype effects on neuroligin-2 expression by group77Fig. 3.21. Neuroligin-2 expression by group, APOE, and area78Fig. 3.22. Neuroligin-2 protein expression and pathological severity of disease79Fig. 3.23. Neuroligin-2 expression by area and pathological severity79Fig. 3.24. Overall β-neurexin-1 expression by case-group80Fig. 3.25. Expression of β-neurexin-1 protein by case-group and area81Fig. 3.26. β-neurexin-1 expression by goup, sex and area81Fig. 3.27. β-neurexin-1 protein expression by goup, sex and area81Fig. 3.28. APOE genotype and β-neurexin-1 by case-group82Fig. 3.29. APOE4 genotype effects on regional β-neurexin-1 expression by case-group82Fig. 3.29. APOE4 genotype and β-neurexin-1 by case-group82Fig. 3.29. APOE4 genotype and β-neurexin-1 by case-group83Fig. 3.30. β-neurexin-1 protein expression by pathological severity of disease84Fig. 3.31. Pathological severity and β-neurexin-1 protein expression by region84Fig. 4.1 Example of basic mass spectrometer experiment92Fig. 4.2. IDA mass spectrometry and MRM mass spectrometry96Fig. 4.3. Validation of transitions for the peptide VFAQFSSFVDSVIAK101Fig. 4.4. MS/MS ALL with SWATH Acquisition103	Fig. 3.15. Total neuroligin-2 protein concentrations averaged across the three areas studied	75
Fig. 3.17. Neuroligin-2 expression by case-group and gender76Fig. 3.18. Gender effects on neuroligin-2 protein expression76Fig. 3.19. Expression of neuroligin-2 by APOE ε4 in AD cases77Fig. 3.20. APOε4 genotype effects on neuroligin-2 expression by group77Fig. 3.21. Neuroligin-2 expression by group, APOE, and area78Fig. 3.22. Neuroligin-2 protein expression and pathological severity of disease79Fig. 3.23. Neuroligin-2 expression by area and pathological severity79Fig. 3.24. Overall β-neurexin-1 expression by case-group80Fig. 3.25. Expression of β-neurexin-1 protein by case-group and area80Fig. 3.27. β-neurexin-1 expression by goup, sex and area81Fig. 3.28. APOE genotype and β-neurexin-1 by case-group82Fig. 3.29. APOE4 genotype effects on regional β-neurexin-1 expression by case-group82Fig. 3.30. β-neurexin-1 protein expression by pathological severity of disease84Fig. 3.31. Pathological severity and β-neurexin-1 protein expression by region84Fig. 4.1 Example of basic mass spectrometer experiment92Fig. 4.2. IDA mass spectrometry and MRM mass spectrometry96Fig. 4.3. Validation of transitions for the peptide VFAQFSSFVDSVIAK101Fig. 4.4. MS/MS ALL with SWATH Acquisition103	Fig. 3.16. Neuroligin-2 protein expression by area	75
Fig. 3.18. Gender effects on neuroligin-2 protein expression76Fig. 3.19. Expression of neuroligin-2 by APOE ε4 in AD cases.77Fig. 3.20. APOε4 genotype effects on neuroligin-2 expression by group.77Fig. 3.21. Neuroligin-2 expression by group, APOE, and area78Fig. 3.22. Neuroligin-2 protein expression and pathological severity of disease79Fig. 3.23. Neuroligin-2 expression by area and pathological severity79Fig. 3.24. Overall β-neurexin-1 expression by case-group80Fig. 3.25. Expression of β-neurexin-1 protein by case-group and area81Fig. 3.26. β-neurexin-1 expression by goup, sex and area81Fig. 3.27. β-neurexin-1 protein expression by goup, sex and area81Fig. 3.28. APOE genotype and β-neurexin-1 by case-group82Fig. 3.30. β-neurexin-1 protein expression by pathological severity of disease84Fig. 3.31. Pathological severity and β-neurexin-1 protein expression by region84Fig. 3.31. Pathological severity and β-neurexin-1 protein expression by region84Fig. 4.1 Example of basic mass spectrometer experiment92Fig. 4.2. IDA mass spectrometry and MRM mass spectrometry96Fig. 4.3. Validation of transitions for the peptide VFAQFSSFVDSVIAK101Fig. 4.4. MS/MS ALL with SWATH Acquisition103	Fig. 3.17. Neuroligin-2 expression by case-group and gender	76
Fig. 3.19. Expression of neuroligin-2 by APOE ε4 in AD cases77Fig. 3.20. APOε4 genotype effects on neuroligin-2 expression by group.77Fig. 3.21. Neuroligin-2 expression by group, <i>APOE</i> , and area78Fig. 3.22. Neuroligin-2 protein expression and pathological severity of disease.79Fig. 3.23. Neuroligin-2 expression by area and pathological severity79Fig. 3.24. Overall β-neurexin-1 expression by case-group80Fig. 3.25. Expression of β-neurexin-1 protein by case-group and area.80Fig. 3.26. β-neurexin-1 expression by goup, sex and area81Fig. 3.27. β-neurexin-1 protein expression by goup, sex and area81Fig. 3.28. <i>APOE</i> genotype and β-neurexin-1 by case-group82Fig. 3.29. <i>APOE4</i> genotype effects on regional β-neurexin-1 expression by case-group82Fig. 3.30. β-neurexin-1 protein expression by pathological severity of disease84Fig. 3.31. Pathological severity and β-neurexin-1 protein expression by region84Fig. 4.1 Example of basic mass spectrometer experiment.92Fig. 4.2. IDA mass spectrometry and MRM mass spectrometry.96Fig. 4.3. Validation of transitions for the peptide VFAQESSFVDSVIAK101Fig. 4.4. MS/MS ALL with SWATH Acquisition103	Fig. 3.18. Gender effects on neuroligin-2 protein expression	76
Fig. 3.20. APO64 genotype effects on neuroligin-2 expression by group.77Fig. 3.21. Neuroligin-2 expression by group, APOE, and area78Fig. 3.22. Neuroligin-2 protein expression and pathological severity of disease79Fig. 3.23. Neuroligin-2 expression by area and pathological severity79Fig. 3.24. Overall β-neurexin-1 expression by case-group80Fig. 3.25. Expression of β-neurexin-1 protein by case-group and area80Fig. 3.26. β-neurexin-1 expression by case-group and gender81Fig. 3.27. β-neurexin-1 protein expression by goup, sex and area81Fig. 3.28. APOE genotype and β-neurexin-1 by case-group82Fig. 3.29. APOE4 genotype effects on regional β-neurexin-1 expression by case-group83Fig. 3.30. β-neurexin-1 protein expression by pathological severity of disease84Fig. 3.31. Pathological severity and β-neurexin-1 protein expression by region84Fig. 4.1 Example of basic mass spectrometer experiment.92Fig. 4.2. IDA mass spectrometry and MRM mass spectrometry.96Fig. 4.3. Validation of transitions for the peptide VFAQFSSFVDSVIAK101Fig. 4.4. MS/MS ALL with SWATH Acquisition103	Fig. 3.19. Expression of neuroligin-2 by APOE ε4 in AD cases	77
Fig. 3.21. Neuroligin-2 expression by group, <i>APOE</i> , and area78Fig. 3.22. Neuroligin-2 protein expression and pathological severity of disease79Fig. 3.23. Neuroligin-2 expression by area and pathological severity79Fig. 3.24. Overall β-neurexin-1 expression by case-group80Fig. 3.25. Expression of β-neurexin-1 protein by case-group and area80Fig. 3.26. β-neurexin-1 expression by case-group and gender81Fig. 3.27. β-neurexin-1 protein expression by goup, sex and area81Fig. 3.28. <i>APOE</i> genotype and β-neurexin-1 by case-group82Fig. 3.29. <i>APOE4</i> genotype effects on regional β-neurexin-1 expression by case-group83Fig. 3.30. β-neurexin-1 protein expression by pathological severity of disease84Fig. 3.31. Pathological severity and β-neurexin-1 protein expression by region84Fig. 4.1 Example of basic mass spectrometer experiment.92Fig. 4.3. Validation of transitions for the peptide VFAQFSSFVDSVIAK101Fig. 4.4. MS/MS ALL with SWATH Acquisition103	Fig. 3.20. APOɛ4 genotype effects on neuroligin-2 expression by group	77
Fig. 3.22. Neuroligin-2 protein expression and pathological severity of disease79Fig. 3.23. Neuroligin-2 expression by area and pathological severity79Fig. 3.24. Overall β-neurexin-1 expression by case-group80Fig. 3.25. Expression of β-neurexin-1 protein by case-group and area80Fig. 3.26. β-neurexin-1 expression by case-group and gender81Fig. 3.27. β-neurexin-1 protein expression by goup, sex and area81Fig. 3.28. APOE genotype and β-neurexin-1 by case-group82Fig. 3.29. APOE4 genotype effects on regional β-neurexin-1 expression by case-group83Fig. 3.30. β-neurexin-1 protein expression by pathological severity of disease84Fig. 3.31. Pathological severity and β-neurexin-1 protein expression by region84Fig. 4.1 Example of basic mass spectrometer experiment92Fig. 4.2. IDA mass spectrometry and MRM mass spectrometry96Fig. 4.3. Validation of transitions for the peptide VFAQFSSFVDSVIAK101Fig. 4.4. MS/MS ALL with SWATH Acquisition103	Fig. 3.21. Neuroligin-2 expression by group, <i>APOE</i> , and area	78
Fig. 3.23. Neuroligin-2 expression by area and pathological severity79Fig. 3.24. Overall β-neurexin-1 expression by case-group80Fig. 3.25. Expression of β-neurexin-1 protein by case-group and area80Fig. 3.26. β-neurexin-1 expression by case-group and gender81Fig. 3.27. β-neurexin-1 protein expression by goup, sex and area81Fig. 3.28. APOE genotype and β-neurexin-1 by case-group82Fig. 3.29. APOE4 genotype effects on regional β-neurexin-1 expression by case-group83Fig. 3.30. β-neurexin-1 protein expression by pathological severity of disease84Fig. 3.31. Pathological severity and β-neurexin-1 protein expression by region84Fig. 4.1 Example of basic mass spectrometer experiment.92Fig. 4.2. IDA mass spectrometry and MRM mass spectrometry.96Fig. 4.3. Validation of transitions for the peptide VFAQFSSFVDSVIAK101Fig. 4.4. MS/MS ALL with SWATH Acquisition.103	Fig. 3.22. Neuroligin-2 protein expression and pathological severity of disease	79
Fig. 3.24. Overall β-neurexin-1 expression by case-group80Fig. 3.25. Expression of β-neurexin-1 protein by case-group and area80Fig. 3.26. β-neurexin-1 expression by case-group and gender81Fig. 3.27. β-neurexin-1 protein expression by goup, sex and area81Fig. 3.28. APOE genotype and β-neurexin-1 by case-group82Fig. 3.29. APOE4 genotype effects on regional β-neurexin-1 expression by case-group83Fig. 3.30. β-neurexin-1 protein expression by pathological severity of disease84Fig. 3.31. Pathological severity and β-neurexin-1 protein expression by region84Fig. 4.1 Example of basic mass spectrometer experiment92Fig. 4.2. IDA mass spectrometry and MRM mass spectrometry96Fig. 4.3. Validation of transitions for the peptide VFAQFSSFVDSVIAK101Fig. 4.4. MS/MS ALL with SWATH Acquisition103	Fig. 3.23. Neuroligin-2 expression by area and pathological severity	79
Fig. 3.25. Expression of β-neurexin-1 protein by case-group and area.80Fig. 3.26. β-neurexin-1 expression by case-group and gender81Fig. 3.27. β-neurexin-1 protein expression by goup, sex and area81Fig. 3.28. APOE genotype and β-neurexin-1 by case-group82Fig. 3.29. APOE4 genotype effects on regional β-neurexin-1 expression by case-group83Fig. 3.30. β-neurexin-1 protein expression by pathological severity of disease84Fig. 3.31. Pathological severity and β-neurexin-1 protein expression by region84Fig. 4.1 Example of basic mass spectrometer experiment92Fig. 4.2. IDA mass spectrometry and MRM mass spectrometry96Fig. 4.3. Validation of transitions for the peptide VFAQFSSFVDSVIAK101Fig. 4.4. MS/MS ALL with SWATH Acquisition103	Fig. 3.24. Overall β-neurexin-1 expression by case-group	80
Fig. 3.26. β-neurexin-1 expression by case-group and gender 81 Fig. 3.27. β-neurexin-1 protein expression by goup, sex and area 81 Fig. 3.28. APOE genotype and β-neurexin-1 by case-group 82 Fig. 3.29. APOE4 genotype effects on regional β-neurexin-1 expression by case-group 83 Fig. 3.30. β-neurexin-1 protein expression by pathological severity of disease 84 Fig. 3.31. Pathological severity and β-neurexin-1 protein expression by region 84 Fig. 4.1 Example of basic mass spectrometer experiment. 92 Fig. 4.2. IDA mass spectrometry and MRM mass spectrometry. 96 Fig. 4.3. Validation of transitions for the peptide VFAQFSSFVDSVIAK 101 Fig. 4.4. MS/MS ALL with SWATH Acquisition. 103	Fig. 3.25. Expression of β -neurexin-1 protein by case-group and area	80
Fig. 3.27. β-neurexin-1 protein expression by goup, sex and area 81 Fig. 3.28. APOE genotype and β-neurexin-1 by case-group 82 Fig. 3.29. APOE4 genotype effects on regional β-neurexin-1 expression by case-group 83 Fig. 3.30. β-neurexin-1 protein expression by pathological severity of disease 84 Fig. 3.31. Pathological severity and β-neurexin-1 protein expression by region 84 Fig. 4.1 Example of basic mass spectrometer experiment 92 Fig. 4.2. IDA mass spectrometry and MRM mass spectrometry 96 Fig. 4.3. Validation of transitions for the peptide VFAQFSSFVDSVIAK 101 Fig. 4.4. MS/MS ALL with SWATH Acquisition 103	Fig. 3.26. β-neurexin-1 expression by case-group and gender	81
Fig. 3.28. APOE genotype and β-neurexin-1 by case-group 82 Fig. 3.29. APOE4 genotype effects on regional β-neurexin-1 expression by case-group 83 Fig. 3.30. β-neurexin-1 protein expression by pathological severity of disease 84 Fig. 3.31. Pathological severity and β-neurexin-1 protein expression by region 84 Fig. 4.1 Example of basic mass spectrometer experiment 92 Fig. 4.2. IDA mass spectrometry and MRM mass spectrometry 96 Fig. 4.3. Validation of transitions for the peptide VFAQFSSFVDSVIAK 101 Fig. 4.4. MS/MS ALL with SWATH Acquisition 103	Fig. 3.27. β-neurexin-1 protein expression by goup, sex and area	81
Fig. 3.29. APOE4 genotype effects on regional β-neurexin-1 expression by case-group 83 Fig. 3.30. β-neurexin-1 protein expression by pathological severity of disease 84 Fig. 3.31. Pathological severity and β-neurexin-1 protein expression by region 84 Fig. 4.1 Example of basic mass spectrometer experiment 92 Fig. 4.2. IDA mass spectrometry and MRM mass spectrometry 96 Fig. 4.3. Validation of transitions for the peptide VFAQFSSFVDSVIAK 101 Fig. 4.4. MS/MS ALL with SWATH Acquisition 103	Fig. 3.28. <i>APOE</i> genotype and β -neurexin-1 by case-group	82
Fig. 3.30. β-neurexin-1 protein expression by pathological severity of disease 84 Fig. 3.31. Pathological severity and β-neurexin-1 protein expression by region 84 Fig. 4.1 Example of basic mass spectrometer experiment 92 Fig. 4.2. IDA mass spectrometry and MRM mass spectrometry 96 Fig. 4.3. Validation of transitions for the peptide VFAQFSSFVDSVIAK 101 Fig. 4.4. MS/MS ALL with SWATH Acquisition 103	Fig. 3.29. <i>APOE4</i> genotype effects on regional β -neurexin-1 expression by case-group	83
Fig. 3.31. Pathological severity and β-neurexin-1 protein expression by region 84 Fig. 4.1 Example of basic mass spectrometer experiment 92 Fig. 4.2. IDA mass spectrometry and MRM mass spectrometry 96 Fig. 4.3. Validation of transitions for the peptide VFAQFSSFVDSVIAK 101 Fig. 4.4. MS/MS ALL with SWATH Acquisition 103	Fig. 3.30. β -neurexin-1 protein expression by pathological severity of disease	84
Fig. 4.1 Example of basic mass spectrometer experiment	Fig. 3.31. Pathological severity and β -neurexin-1 protein expression by region	84
 Fig. 4.2. IDA mass spectrometry and MRM mass spectrometry	Fig. 4.1 Example of basic mass spectrometer experiment	92
Fig. 4.3. Validation of transitions for the peptide VFAQFSSFVDSVIAK	Fig. 4.2. IDA mass spectrometry and MRM mass spectrometry	96
Fig. 4.4. MS/MS ALL with SWATH Acquisition103	Fig. 4.3. Validation of transitions for the peptide VFAQFSSFVDSVIAK	101
	Fig. 4.4. MS/MS ALL with SWATH Acquisition	103

Fig. 4.5. MRM peptide selection view	110
Fig. 4.6. MRM Table view	111
Fig. 4.7. MRM validation of the transitions	111
Fig. 4.8. Validation of transitions by MS/MS spectrum during MRM set-up	114
Fig. 4.9. Validation of the transitions by MS/MS spectrum in the MRM set-up	115
Fig. 5.1. Standard curves for absolute quantification	129
Fig. 5.2. Normal probability plots of transcript expression	130
Fig. 5.3. Normal probability plots of Box-Cox transformed data	132
Fig. 5.4. Scatterplots of RIN against A, age, B, PMD	134
Fig. 5.5. Normal probability plot of RIN	135
Fig. 5.6. <i>RPL13</i> expression by case-group	136
Fig. 5.7. RPL13 by case-group across brain regions	136
Fig. 5.8. Regression of <i>RPL13</i> CT value on A , PMD and B , Age	137
Fig. 5.9. Regression of <i>NLGN1</i> , <i>NLGN2</i> and $\beta NRXN1$ transforms on age at death and PMD	141
Fig. 5.10. <i>NLGN1</i> transcript level by case-group	141
Fig. 5.11. NLGN1 mRNA copy numbers by case-group and area	142
Fig. 5.12. NLGN1 mRNA expression by case-group and sex	143
Fig. 5.13. <i>NLGN1</i> expression by case-group, sex, and area	143
Fig. 5.14. <i>NLGN1</i> transcript expression by <i>APOE</i> genotype	144
Fig. 5.15. <i>NLGN1</i> expression by case-group and N° of <i>APOE</i> ε4 alleles	145
Fig. 5.16. <i>NLGN1</i> expression by case-group, area, and N° of <i>APOE</i> ε4 alleles	145
Fig. 5.17. <i>NLGN1</i> transcript expression by disease severity	146
Fig. 5.18. <i>NLGN2</i> transcript expression by case-group	147
Fig. 5.19. <i>NLGN2</i> mRNA copy numbers by case-group and area	147
Fig. 5.20. <i>NLGN2</i> copy numbers by case-group and sex	148
Fig. 5.21. NLGN2 copy numbers by case-group, area, and sex	149
Fig. 5.22. <i>NLGN2</i> transcript expression by <i>APOE</i> genotype	149

Fig.	5.23. <i>NLGN2</i> transcript expression by case-group and the N° of <i>APOE</i> ε4 alleles	150
Fig.	5.24. <i>NLGN2</i> mRNA copy numbers by case-group, <i>APOE</i> genotype and area	150
Fig.	5.25. <i>NLGN2</i> copy number and pathological score	151
Fig.	5.26. <i>βNRXN1</i> transcript level by case-group	152
Fig.	5.27. <i>βNRXN1</i> mRNA copy numbers by case-group and area	152
Fig.	5.28. βNRXN1 copy numbers by case-group and sex	153
Fig.	5.29. βNRXN1 copy numbers by case-group, area, and sex	154
Fig.	5.30. βNRXN1 transcript expression by APOE genotype	155
Fig.	5.31. β <i>NRXN1</i> transcript expression by case-group and the N° of APOE ϵ 4 alleles	155
Fig.	5.32. βNRXN1 mRNA copy numbers by case-group, APOE genotype and area	156
Fig.	5.33. <i>βNRXN1</i> copy number and pathological score	156

List of Tables

Table 2.1. NLGN1 and NLGN2 PCR and cloning details. 34
Table 3.1. Details of AD cases and controls. 56
Table 3.2. Neuropathological score
Table 4.1. Online information resources relevant to the selection of a set of proteins of interest97
Table 4.2. MRM transitions and parameters for proteins of interest from MRMpilot software112
Table 4.5. Neuroligin peptides obtained from in-gel digestion
Table 5.1. Details of AD cases and controls. 124
Table 5.2. RNA integrity number
Table 6.1. Genotype and allele distributions of rs17757879
Table 6.2. Genotyping allele distribution of rs17757879 SNP between genders. 168
Table 6.3. Distribution of rs17757879 SNP between sexes for combined alleles, CT + TT vs CC .169
Table 4.3. Membrane proteins identified using in-solution detection
Table 4.4. Proteins identified by MASCOT search using SCX fractionation

List of Abbreviations

Αβ	Amyloid protein
AD	Alzheimer's disease
APP	Amyloid precursor protein
AMPA	α -amino-3-hydroxyl-5-methyl-4-isoxazole-propionate
ANCOVA	Analysis of covariance
α -NRXN-1	α-Neurexin-1
APOE	Apilopoprotein E gene
ApoE	Apilopoprotein E protein
β-NRXN-1	β-Neurexin-1
BSA	Bovine serum albumin
CAM	Cell adhesion molecules
CNS	Central nervous system
C _T	Cycle threshold
DOC	Deoxycholate
DNA	Deoxyribonucleic acid
E. coli	Escherichia coli
FAD	Familial Alzheimer's disease
gDNA	Genomic deoxyribonucleic acid
HPLC	High-performance liquid chromatography
IPTG	Isopropyl-1-thio-β-D-galactopyranoside
LB	Luria broth
LTP	Long-term potentiation
MCI	Mild cognitive impairment
mRNA	Messenger ribonucleic acid
MRM	Multiple reaction mentoring
NFT	Neurofibrillary tangles

NLGN-1	Neuroligin-1
NLGN-2	Neuroligin-2
NLGN-3	Neuroligin-3
NLGN-4	Neuroligin-4
NMDA	N-methyl-D-aspartate
NRXN-3	Neurexin-3
PBS	Phosphate buffered saline
PBST	Phosphate buffered saline plus Tween-20
PCR	Polymerase chain reaction
PDZ	PSD-95/Discs large/Zona occludens-1
PMD	Post-mortem delay
PS	Pathological severity
PSD	Post-synaptic density
PSD-95	Post-synaptic density protein of 95 kDa
PSEN1	Presenilin-1
PSEN2	Presenilin-2
PVDF	Polyvinylidenefluoride
qRT-PCR	Quantitative reverse-transcription polymerase chain reaction
RIN	RNA integrity number
RPL13	60S ribosomal protein L13
RT	Room temperature
RT-PCR	Reverse-transcription polymerase chain reaction
SP	Senile plaques
SWATH	Sequential Window Acquisition of all THeoretical mass spectra
TCA	Trichloroacetic acid

Chapter 1

1 Introduction

1.1 Epidemiology and history

Alzheimer's disease (AD) is the most common form of organic dementia. It affects more than 20% of people aged 65 years or older. It ultimately leads to the death of affected individuals on average 9 years after diagnosis (Reynolds, 2001). Worldwide, approximately 27 million individuals are affected by the disease (Ferri et al., 2005); and 4.6 million new cases arise every year. 8% of all medical costs in the United States of America are related to dementia. Between regional populations of 60 years old, people from North America and Western Europe are thought to show the highest prevalence and incident rate of AD, followed by people from Latin America and china (Fig. 1.1). Among western societies, prevalence and increase display with a cohort effect with individuals born later having a lower risk than individuals born earlier in the past century (Christensen et al., 2013, Matthews et al., 2013, Rocca et al., 2011, Schrijvers et al., 2012). The mortality from AD is predicted to increase dismatically over the next two to three decades as achievements in treating cancer and heart disease allow more individuals to reach the age of risk for dementias (Morgan, 2010).

Fig. 1.1. Global prevalence of AD

The story of Alzheimer's disease begins at the beginning of the 20th century, on November 25, 1901 when a 51-year-old woman, her name Auguste D, was admitted to the Frankfurt State Asylum where she was examined by young psychiatrist Alois Alzheimer. The patient had a striking

group of symptoms such as cognitive impairment, loss of social appropriateness, a progressive decline in memory, and loss of capacity to communicate. Doctor Alzheimer remained interested in Auguste D's case until her death in Frankfurt on April 8, 1906. Alzheimer requested the patient brain to be sent to Munich to study in his new neuropathology laboratory and he described the clinical and pathological findings at a conference in Tubingen on November 3, 1906. The title of his presentation was 'On a peculiar disease process of the cerebral cortex' and the reports of this conference were published the following year (Alzheimer et al., 1995). Alzheimer reported that on post-mortem examination of Auguste's autopsy brain he found plaques, tangles and atherosclerotic alterations. The novel aspect in the 1906 case was their occurrence in an unusually young patient; however, Alzheimer did not claim to have discovered a new disease. Alzheimer's case notes were missing for approximately a century but were revealed in the basement of the University of Munich by Konrad Maurer, which led to one of the basic publications of recent times about AD (Maurer et al., 1997) comprising a photograph of Auguste D and examples of Alzheimer's handwritten notes on Auguste's cognitive status. Two years later Professor Manuel Gräber and his team extracted and tested DNA and found that Auguste did not carry the ɛ4 allele of the apolipoprotein E gene (Gräber et al., 1998), however the team were not able to screen for genetic mutations associated with early onset disease.

The main feature of AD is memory loss. Memory is now considered to be a collection of mental abilities that use multiple systems and components within the brain. Memory researchers have characterised six major memory systems, which are: Episodic memory, Semantic memory, Short-term memory, Simple classical conditioning (which involves the pairing of two stimuli), Procedural memory, and Priming (which occurs when a prior encounter with a particular item changes the response to the current item). In AD, cognitive researcher found some of the six major memory systems to be highly impaired and others to be relatively preserved (Gold and Budson, 2008). Episodic memory, which is critical for remembering new events, is considered to be the most clinically relevant in patients; its impairment is one of the earliest symptoms of AD (Gold and Budson, 2008). Other studies have shown semantic memory to be impaired in AD, with patients exhibiting particular deficits in naming categorized items (Tippett et al., 2007). The impairment of

semantic memory has often been related to pathology in the anterior and inferolateral temporal lobes and the frontal lobes, which leads to a loss of the dendritic arbor on neurons in these cortical regions (Davies et al., 2004). Other features of AD such as cognitive decline appear after the development of memory impairment. Language function and visuospatial skills are affected relatively early. Language dysfunction includes reduced vocabulary in spontaneous speech. However, impairment of motor functions usually only appears at late disease stages.

1.1.1 Diagnosis (Clinical and post mortem)

The clinical criteria usually used for the diagnosis of AD are based on the Diagnostic Manual of Mental Disorders, Fourth Edition (DSM- IV) and follow the criteria of the National Institute of Neurological and Communicative Disorders and Stroke and the Alzheimer's Disease and Related Disorders Association (NINCDS-ADRDA; McKhann et al., 1984). Different screening tests have been established during the last years, however the Mini Mental State Examination (MMSE) is the most widely used. The Community Screening Instrument for Dementia (CSI-D) was developed to be used in cross-cultural studies. It is composed of language expression, attention and calculation, orientation to place and time, language comprehension, and memory recall. The CSI-D instrument correlates with the Mini Mental State Examination (MMSE) and 10-word-list–learning task (Liu et al., 2005).

A general neurologic examination is usually normal in the demented patient with AD. Continuing gait problems can occur in the severe stages of AD, with a noticeably increased risk for falls. At present no laboratory test is available to confirm the diagnosis of AD. The main neuropathologic criteria for AD are those propagated by the National Institute on Aging (NIA) and National Institute of Neurological and Communicative Disorders and Stroke (NINCDS; Mirra et al., 1993).

Both DSM-IV and NINCDS-ADRDA criteria are based on history and neurologic examination, and current indication proposes that both have fallen behind because of new advances in scientific knowledge. Different biomarkers have been identified based on structural Magnetic Resonance Imaging (MRI), molecular imaging and cerebrospinal fluid (CSF) analyses Structural MRI in patients with AD displays atrophy in the hippocampus that is predictive of future cognitive decline.

On the other hand, post-mortem diagnosis of AD needs proof of the existence of neurofibrillary tangles (NTF) and β -amyloid (A β) in the brain and cases of dementia without these alterations must be classified as non-Alzheimer dementias. Brain alterations found in cases clinical diagnosed with AD often include both A β and NFT (Braak et al., 2011). The main method used for staining A β uses thioflavine S, which is insensitive and can determine NFT changes as well. Specific antibodies for the pathologic proteins are commercially available; yet, practical considerations limit their application to small sections and well-equipped laboratories. The use of modern silver methods that take advantage of the physical development of the nucleation sites and avoid variable ammoniacal silver solutions known as Gallyas techniques is recommended (Braak et al., 1988, Braak and Braak, 1991b). These methods are simpler to use and much more reliable, and can be applied to routinely fixed autopsy material even if it has been stored for decades in formaldehyde.

1.2 Genetics of AD

The first study signifying a genetic factor for AD was published when early reports focused on the constant progress of AD-like disease in Down's syndrome patients after age 40, and the increased risk of disease in family members of AD patients (Harris, 1982). However, there are two different types of AD genetics, which are early onset AD (EOAD) and late onset AD (LOAD).

1.2.1 EOAD genetics

Genetic linkage studies and candidate gene analysis led to the identification of the three early onset familial AD (EOFAD) genes. The amyloid precursor protein (APP) gene on chromosome 21 was the first one found to have a mutation that causes EOFAD (Goate et al., 1991). The association between Trisomy 21 (Down's Syndrome) and AD allowed the researchers to focus on chromosome 21 as the possible locus for an AD gene. Linkage of one locus on chromosome 21 was found in extended AD families with the autosomal dominant form of EOAD (St George-Hyslop et al., 1987). A missense mutation in the APP gene at exon 17, which partially encoded the A β peptide and led to a valine to isoleucine change at amino acid 717, was identified in some of the families included in the study (Goate et al., 1991). Afterward, 26 other mutations have been identified within *APP* from 74 EOFAD families (Theuns et al., 2006). These studies delivered strong support for the amyloid hypothesis discussed in detail in the related section of this thesis.

Linkage analysis studies led to the characterization of the second EOFAD gene, Presenilin-1 *PSEN1* on chromosome 14. Genome-wide studies found a significant association of a locus on chromosome 14 with EOFAD (Mullan et al., 1992, Schellenberg et al., 1992, St George-Hyslop et al., 1992). *PSEN1* mutations are the most common known genetic mutations that lead to EOFAD, with 157 pathogenic *PSEN1* mutations identified among 347 EOFAD families. The *PSEN2* gene was found in a linkage study associated with EOFAD. A candidate gene study of *PSEN2* identified sequence homology to *PSEN1* that had a segregating mutation resulting in an asparagine to isoleucine substitution (Asn141Ile; Levy-Lahad et al., 1995). Simultaneously, a candidate gene study found different missense mutations in the same gene (Rogaev et al., 1995).

1.2.2 LOAD genetics

A genome search conducted among both EOAD and LOAD families found a novel locus on chromosome 19 that has a strong effect on LOAD (Pericak-Vance et al., 1991). Biochemical studies of lipids in AD brains using an antibody to Apolipoprotein E (APOE), a protein which has special relevance to nervous tissue, found that APOE immunoreactivity was associated with amyloid in both senile plaques and neurofibrillary tangles (Namba et al., 1991). Given that the *APOE* gene mapped to the locus recognized by the Pericak-Vance et al. (1991) linkage study, this allowed investigation of the genetic and biological associations of APOE with AD. *In vitro* studies showed that APOE binds A β and that *APOE* ε 4, a particular allelic form of *APOE*, is found at a higher frequency in LOAD cases than in controls. The *APOE* gene is polymorphic, including three alleles, ε 2, ε 3 and ε 4, which differ at the 112th and 158th residues. These genes encode the corresponding apolipoproteins APOE2, APOE3 and APOE4, and produce six possible genotypes (Zannis et al., 1981, Zuo et al., 2006). each isoform is associated with specific lipoprotein elements (Puglielli et al., 2003). The ε3 allele is the most common, found among 70–80% of the population. The corresponding APOE3 protein is involved in multiple functions in neuronal biology including neuronal remodelling and repair following injury (Boyles et al., 1989, Corder et al., 1993, Mahley, 1988). The ε4 allele found in 12% of individuals. It is related to memory deficit and significantly increases the risk of AD. The APOE4 protein inhibits dendrite outgrowth (Corder et al., 1993, Nathan et al., 1994). The ε2 allele, found in 5% of the population, could have a protective effect against the development of AD. The *APOE* ε2 allele has been shown to reduce cortical Aβ, senile plaques and NFTs (Corder et al., 1994, Nagy et al., 1995, West et al., 1994). A population based prospective study found that 55% of AD cases are in the *APOE* ε4/ε4 group (Myers et al., 1996), while 27% of people who carry *APOE* ε3/ε4 develop the disease and 9% of APOE ε3/ε3 carriers develop AD.

Genome-wide association studies on AD on 6,000 cases and 10,000 controls showed associations of two new genes, *CLU* and *PICALM*, with LOAD as well as *APOE* (Lambert et al., 2009, Harold et al., 2009). *CLU* encodes the protein clusterin, which has important roles in the clearance of cellular debris and mechanisms of apoptosis, lipid metabolism and cell proliferation (Rosenberg and Silkensen, 1995, Viard et al., 1999, Wong et al., 1994). *PICALM* encodes the protein phosphatidylinositol binding clathrin assembly protein, which has significant functions in the dynamics of endocytosis (Tebar et al., 1999). Nevertheless, different published findings have shown contradictory results between research groups and ethnic populations; and effect sizes are generally very modest. *APOE* is the gene with the most significant association with AD and the most studied gene in AD pathophysiology.

In addition, a recent study found that a rare functional variant (R47H) in the *TREM2* gene had a similar effect size to the ɛ4 risk allele of apolipoprotein E in AD. *TREM2* encodes a type I membrane protein that creates a receptor-signalling complex with the TYRO protein tyrosine kinasebinding protein (TYROBP), which activates the immune responses in macrophages and dendritic cells (Paloneva et al., 2002). *TREM2* is expressed throughout the central nervous system, and shows high concentrations in white matter, hippocampus and neocortex. An association was found between R47H and LOAD in North American and European populations (Niemitz, 2013). An additional study detected the R47H variant in GWAS on an Icelandic LOAD population (Guerreiro et al., 2013). Since the *TREM2* risk variant modifies TREM2 protein function, these results suggest that TREM2 impairment could reduce phagocytic clearance of amyloid proteins and thus impair a protective mechanism in the brain.

1.3 Pathological hallmarks of AD

1.3.1 Neurofibrillary tangles

Neurofibrillary tangles are a neuropathological hallmark of AD. They are composed of abnormally phosphorylated microtubule-associated protein τ (MAPT). The MAPT gene is located on chromosome 17. Alternative splicing of exons 2, 3, and 10 leads to the production of six MAPT isoforms that are differentially expressed during brain development (Sergeant et al., 2005). The phosphorylation of MAPT controls its binding to microtubules and enhances their assembly. A normal level of phosphorylation is needed for optimal MAPT activity, while hyperphosphorylation disrupts its biological function. This modifies various processes that are controlled by the appropriate organization of the microtubule network (Alonso et al., 1994, Li et al., 2007). The relationship between A β and MAPT in pathogenesis is not well understood. It has been suggested that changes in ion homeostasis and oxidative stress due to A β aggregation destabilize phosphatases and kinases that control MAPT phosphorylation. As a result, MAPT hyperphosphorylation leads to synaptic dysfunction and neuron loss (Butner and Kirschner, 1991, Goode and Feinstein, 1994).

Neurofibrillary tangles occur in other AD brain lesions, i.e., thickened neurites in senile plaques and neuropil threads. They are also found in other neurodegenerative diseases, such as progressive supranuclear palsy, dementia pugilistica, corticobasal degeneration, Pick's disease, Downs syndrome, and Parkinson's disease, which has led to the hypothesis that they are responsible, at least in part, for the neuronal damage (Joachim et al., 1987, Wood et al., 1986). This hypothesis is strengthened by the observation that mutations in the MAPT gene lead to the accumulation of paired helical filaments in frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17; Clark et al., 1998, Hong et al., 1998, Hutton et al., 1998).

There is older evidence that dementia correlates with intracellular NFT (Cummings et al., 1998). Clinicopathological research related tangle load in the frontal cortex with agitation and aberrant motor behaviour (Tekin et al., 2001). Semi-quantitative post-mortem measurements of NFT in the hippocampus from demented patients showed that increased tangle load was linked to increased severity of aggressive behaviours and the presence of chronic aggression. These results suggest a pathogenic link between neurofibrillary tangle load in hippocampus and aggressive behaviours in dementia patients (Lai et al., 2010). Nevertheless, as discussed further below, current opinion strongly endorses synaptic loss as the key pathogenic feature of AD (Selkoe, 2002).

In recent years several approaches have been made in animal models to therapeutically target tau pathology (Brunden et al., 2009). Different specific approaches aim to inhibit the creation of tau oligomers and fibrils, such as Targeting tau aggregation, Targeting microtubule stabilization, Targeting tau folding and Targeting tau phosphorylation. Blocking tau/tau aggregation with smallmolecule drugs is difficult because of the large surface areas that are involved in such interactions (Brunden et al., 2009). Targeting microtubule stabilization was performed by treating mice that had axonopathy and amyotrophy with the microtubule-stabilizing drug paclitaxel. These latter mice showed significant improvement of fast axonal transport (Ishihara et al., 1999). However, none of these approaches has yet been translated into clinical practice. In contrast, the clinically used drug Memantine, which is a non-competitive NMDA receptor antagonist, does sway the excitationinhibition balance away from over-excitation in AD cases.

1.3.2 β -Amyloid

The second component essential for AD diagnosis is the senile plaque. Glenner and Wong (1984a, 1984b) and Masters et al. (1985) reported that the 42-residue amyloid β -peptide, A β 42, is the main constituent of senile plaques. There are two main forms of β -amyloid, a 40- (A β 40) and a 42- (A β 42) amino acid peptide, although peptide length can range from 39 to 43 amino acids. There

is an additional N-terminally truncated species (Ingelsson et al., 2004). A β 42 builds up earlier in amyloid plaques and aggregates into fibrils more quickly than A β 40 *in vitro* (Jarrett et al., 1993, Roher et al., 1993). A β is derived from a large amyloid precursor protein (APP) that undergoes multiple proteolytic cleavages. APP is an integral membrane protein that moves to the endoplasmic reticulum *via* its signal peptide and is subject to post-translational modifications. Heterogeneous forms of APP result from alternative splicing and different post-translational modifications (Hung and Selkoe, 1994, Selkoe et al., 1988, Weidemann et al., 1989). Neurons express high levels of the 695-residue isoform (Haass et al., 1991). The enzyme α -secretase first works on APP to cleave off a large soluble ectodomain fragment, sAPP α , located in the lumen/extracellular space, and to leave an 83-residue C-terminal fragment (CTF83) within the membrane. APP molecules not cleaved by α secretase can be cleaved by β -secretase to generate sAPP β and C-terminal fragment 99 (CTF99), a 99-residue peptide in the membrane (Seubert et al., 1993). The latter is then cleaved by γ -secretase to produce A β and a 55-residue cytosolic peptide, the APP intracellular domain (AICD; Selkoe, 2001).

Amyloid deposits may be present in AD brain up to a decade before the emergence of cognitive symptoms (Ingelsson et al., 2004, Mintun et al., 2006). Since Amyloid was a key component of Alzheimer's own seminal paper some authorities require the presence of A β for a diagnosis of AD, but tissue loads of plaques do not correlate well with dementia. The dominance of A β in theories of AD pathogenesis derives from genetic studies on mutations of *APP* and presenilin (*PS*) genes in familial AD cases. Possession of the disease allele of any one of these genes leads to greater production of A β or to a predominance of the A β 42 form, which has a propensity for misfolding and aggregation (Chapman et al., 2001, Selkoe, 1998). Several AD transgenic mice have been produced that have the mutant forms of human *APP* and *PS1* or *PS2* genes. They develop amyloid aggregates in the brain and show cognitive impairment (Ashe, 2001), although neuronal loss requires additional transgenic influence.

1.3.3 Synaptic loss and synaptic proteins in AD

While there is a significant negative correlation of synapse numbers and synaptic markers with cognitive decline in AD, neither neurofibrillary tangles nor senile plaques show strong

statistical association with clinical AD severity (Terry et al., 1991). Assays of synapses and synaptic markers in the AD brain (Bancher et al., 1993) and in transgenic mouse models (Buttini et al., 2005) support the hypothesis that synaptic degeneration and damage take place early in the development of the disease. Light and electron microscopy were used to study the form and density of synapses in the dentate gyrus of double-transgenic APP/PS1 mice. Both the numbers of synapses per unit volume and the morphology of the remaining synapses are affected in plaque-free regions of these animals (Alonso-Nanclares et al., 2013). Disrupted synaptic connections would result in neural dysfunction, and lead to the dementia and cognitive impairment observed in AD and other neurodegenerative disorders (Terry et al., 1991). Loss of synaptic connectivity could follow changes in pre- or postsynaptic proteins. These proteins are located in synaptic vesicles, the cytoplasm, and the terminal membranes. Proteins may be altered differentially in different diseases. There is a link between changes in synaptic proteins and terminal loss in AD (Reddy et al., 2005, Tannenberg et al., 2006). Neuroimaging of autopsy brain supports a link between grey matter loss and synaptic protein reduction (Heindel et al., 1994). Nonetheless, synaptic proteins are dynamic, and their levels can be changed in animal models by memory and learning training, behavioural tasks, or administration of drugs (Sindi et al., 2014). Not all synaptic proteins are equally affected in specific brain regions in AD: these proteins are located in different compartments of synaptic terminals, play different roles, and can be enriched differentially in excitatory and inhibitory terminal classes.

Levels of synaptic proteins vary among brain regions. The hippocampus is affected earlier than other regions in AD progression, and is the most affected region in late stages of the disease (Honer et al., 1992, Perdahl et al., 1984, Sze et al., 1997). Frontal cortex synaptic protein levels are lower in AD brain than in control brain; reported differences between AD frontal cortex and other AD brain regions are inconsistent (Lassmann et al., 1992, Sze et al., 1997, Tannenberg et al., 2006).

1.3.4 Synaptic disruption by β -amyloid

Mechanisms underlying the failure of synaptic plasticity and the disruption of memory in AD are not clearly understood. Two opposing notions have been put forward to explicate this issue. Under normal physiological conditions, $A\beta$ may play a role in synaptic plasticity, and its deficiency,
through aggregation, could lead to abnormal functioning of the synapse. Alternatively, $A\beta$ could be responsible for synaptic disruption in AD. In the normal synapse, neuronal activity might regulate the production and secretion of $A\beta$ by controlling APP processing upstream of γ -secretase activity (Kamenetz et al., 2003). $A\beta$ levels in brain interstitial fluid are influenced by synaptic activity on a time scale of minutes to hours (Cirrito et al., 2005). In an acute brain slice model, the impact of synaptic activity on $A\beta$ levels is linked to synaptic vesicle exocytosis. Synaptic activity can alter $A\beta$ metabolism and area-specific $A\beta$ accumulation (Cirrito et al., 2005). Inhibiting β - and γ -secretase activity may result in reduced levels of $A\beta$ that would enhance toxicity and the death of neurons, should $A\beta$ promote neuronal survival (Plant et al., 2003).

Conversely, *in vitro* and *in vivo* studies have explored possible molecular and signalling mechanisms that promote synaptotoxic effects of A β (Dinamarca et al., 2008, Haass and Selkoe, 2007, Klyubin et al., 2005, Rowan et al., 2007, Selkoe, 2008). Koh et al. (1990) demonstrated that A β peptides and glutamate are together more neurotoxic to cultured neurons than either agent alone. The mechanism of A β synaptic toxicity is complex, because different multimeric forms of A β exhibit effects ranging from reversible alterations in synaptic form and function to neuronal loss. High levels of A β reduce glutamatergic synaptic transmission and lead to synaptic loss (Hsia et al., 1999, Kamenetz et al., 2003, Mucke et al., 2000). Intracerebroventricular injection of soluble synthetic A β 40 dimers rapidly reduces the plasticity of excitatory synaptic transmission at doses (10–42 pmol) comparable to natural A β concentrations (Hu et al., 2008).

1.3.5 Oligomeric A β and excitatory synapses

Koffie et al. (2009) used Array tomography to assess the impact of free A β on synaptic loss in double-transgenic *APP/PS1* mice. They showed that amyloid plaques in these mice are enclosed by a halo of oligomeric A β . Examination of more than 14,000 synapses revealed a 60% loss of excitatory synapses contiguous to the halo. Deposits of oligomeric A β were linked to a subset of excitatory synapses that were smaller than those that did not interact with oligomeric A β . In green fluorescent protein (GFP) Tg2576 *APP* mice, multiphoton live imaging revealed disruption of neurons and a lower dendritic spine density than in age-matched controls (Spires et al., 2005). Axonal immunostaining and colocalization studies of synaptophysin and PSD-95 proteins showed a similar loss of pre- and post-synaptic partners near plaques in human autopsy brain (Spires et al., 2005).

A β can affect the role of glutamate NMDA receptors (NMDARs) and eliminate induction of NMDAR-dependent LTP in the neuron (Shankar et al., 2007, Snyder et al., 2005). When NMDARs were quantified by biotinylation in cultured cortical neurons treated with A β , there was an 80% reduction in subunit protein. Application of a γ -secretase inhibitor reduced the A β concentration and returned NMDAR levels to normal. A β oligomers also induce the endocytosis of NMDARs by a mechanism involving α 7-nicotinic acetylcholine receptors (Snyder et al., 2005). Ronicke et al. (2011) showed that NMDAR-2B activation mediates A β -induced LTP disruption. Application of an NMDAR-2B antagonist to hippocampal slice treated with A β oligomer abolished the disruption.

1.3.6 Oligometric $A\beta$ and prion proteins

Lauren et al. (2009) showed that the cellular prion protein PrP^c is a receptor for A β oligomers with nanomolar affinity. The binding of PrP^c to A β oligomers leads to loss of LTP. In hippocampal slices, anti- PrP^c antibodies reduce the binding of oligomeric A β to PrP^c and prevent synaptic disruption. Deletion of PrP^c improves cognitive function in transgenic mice over-expressing mutant APP (APPswe and PS1 Δ E9), reduces premature neuronal death, and reverses the memory deficit (Gimbel et al., 2010). Antibody blockade prevents the PrP^c -enhanced neurotoxicity of A β oligomers (Kudo et al., 2012).

1.3.7 Other $A\beta$ synaptic targets

Excitatory synapses are formed and maintained by the homophilic trans-synaptic binding of N-cadherin (Fannon and Colman, 1996). A luciferase-complementation assay was used to show that N-cadherin enhances APP dimerization and the production of A β (Asada-Utsugi et al., 2011). Application of A β down-regulates N-cadherin expression, which weakens synapses and can further increase A β production *via* interaction with the PS1 complex (Ando et al., 2011, Andreyeva et al., 2012).

Other synaptic junction proteins play roles in A β production. Expression of α 4 and β 3 integrin is increased in neurons in the vicinity of plaques and tangles in AD autopsy brain tissue (Akiyama et al., 1991, Van Gool et al., 1994). Studies using integrin-blocking antibodies revealed that A β accumulation and neurotoxicity in human cortical primary neurons are mediated by α 2 β 1 and α 5 β 1 integrins. The α 2 β 1 and α 5 β 1 integrin signalling pathways may be critical to A β neurotoxicity in AD (Wright et al., 2007).

1.4 Cell adhesion molecules

Protein complexes that link pre- and post-synaptic membranes have significant functions in regulating neural networks. Neurotransmitters released from the presynaptic terminal acting on receptors located on the post-synaptic membrane convey information between neurons at synapses (Dalva et al., 2007). Signalling can be facilitated by adhesion molecules, which cooperate across the synaptic junction (Bamji et al., 2003, Dalva et al., 2000, Graf et al., 2004, Hall et al., 2000, Scheiffele et al., 2000, Umemori et al., 2004). Synaptically localized cell adhesion molecules (CAMs) modulate the function of synapses through protein–protein interactions and signalling cascades, and also direct the formation of new synapses. Various CAMs organize synapse formation, control dendritic spine morphology, amend synaptic plasticity, and alter synaptic receptor function. These molecules arbitrate function and physical interactions between neurons at several stages in the life of a synapse (Fig. 1.2).

Fig. 1.2. The function of cell adhesion molecules at the synapse. During synaptogenesis, synaptic CAMs help stabilize contacts between neurons and recruit synaptic proteins *via* specific cytoplasmic or extracellular motifs such as PDZ-binding domains. Contacts among adhesion molecules may guide the activation of intracellular signalling events that lead to synapse maturation. In the mature synapse, synaptic CAMs work together with channels and other synaptic proteins to modulate their function. VGLUT (Vesicular glutamate transporter), CASK (Calcium/calmodin-dependent serine protein kinase), AMPAR (α -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor), GRIP (Glutamate receptor-interacting protein) mGLUR (metabotropic Glutamate receptors).

Different classes of CAMs play differing roles in synapses. CAMs include neurexins and neuroligins, N-cadherin, synaptic cell adhesion molecule-1 (SynCAM-1), and the ephrinB-receptor–ephrinB system. The most widely described CAM pairing implicated in synaptogenesis and nerve-terminal stability is the interface between neurexins and neuroligins that are located at pre-synaptic and post-synaptic sites respectively.

1.4.1 Neurexin-neuroligin complex

The neurexin family was discovered in 1992 after the recognition that one member of the family is a receptor for α -latrotoxin, a component of black widow spider venom that causes massive neurotransmitter release from the presynaptic terminal (Ushkaryov et al., 1992). Further studies over two decades delineated neurexins and their binding ligands, the neuroligins (Ichtchenko et al., 1995, 1996). Scheiffele et al. (2000) showed that neuroligins occur on the surface of non-neuronal cells. In neurons they stimulate synaptic vesicle formation during functional pre-synaptic differentiation in contacting axons. Over-expression and knockdown studies *in vitro* have revealed that neurexinneuroligin complexes are key discriminants in GABAergic and glutamatergic synaptogenesis, and that patterns of differences in isoform binding affinities and localization determine this specificity and differentiation.

1.4.2 Structures of neurexins and neuroligins

1.4.2.1 Neurexins

Neurexins are a family of highly polymorphic brain-specific proteins that are products of the three neurexin genes *NRXNI*, *NRXNII*, and *NRXNIII*. Each gene encodes two transcripts, α -neurexin and β -neurexin, which are expressed from upstream and downstream promoters of the same gene respectively (Fig. 1.3).

Fig. 1.3. Structure of α- and β-neurexins. **A**, α-Neurexins consist of an N-terminal extracellular sequence containing the following: a signal peptide (SP); six laminin A, neurexin, and sex hormone binding protein (LNS) domains, three epidermal growth factor (EGF)–like sequences, and an O-glycosylation region (O-Glyc). There are five sites of alternative splicing in the extracellular sequence (S1–S5), which are indicated by arrowheads. The N-terminal extracellular region is followed by a carboxy-terminal sequence, which contains a transmembrane (TM) region as well as a short cytoplasmic region that comprises the PDZ II interaction site. **B**, The N-terminal extracellular sequence in β-neurexins consists of a signal peptide, one LNS domain, and an O-Glyc region. There are only two alternative splice sites in β-neurexins, as indicated.

Molecular studies of *NRXN* transcripts have identified two alternative splice sites in the β neurexins and five in the α -neurexins. In consequence, at least six neurexins isoforms can be generated from these different genes: three α -*NRXN*s, I α , II α and III α , and three β -*NRXN*s, I β , II β and III β (Jarrett et al., 1993, Ullrich et al., 1995, Ushkaryov et al., 1994). The five alternative splice sites in α -*NRXN* (S1-S5) are scattered among six laminin–neurexin–sex-hormone–binding protein (LNS) and three epidermal growth factor (EGF)–like domains (Fig. 1.3). β -*NRXNs* are usually truncated forms of α -*NRXNs* containing a single LNS domain (Fig. 1.3). Alternative splicing and *N*and *O*-glycosylation add additional diversity to produce up to 1000 isoforms (Missler et al., 1998). As will be discussed later, alternative splicing of neurexins controls their roles at synapses. The range of alternative splicing provides a potent cellular mechanism for constructing a huge number of different cell-surface proteins that could be expressed in sub-populations of cells, giving specificity and variety for processes such as adhesion and recognition between cells as well as ligand–receptor interactions. *In situ* hybridization studies have shown that mRNA encoding both α - and β -neurexins can be expressed in the same neuron. Conversely, different types of *NRXNs* are widely distributed among diverse types of neurons (Ichtchenko et al., 1995). Immunofluorescence analysis and the roles of neurexins as α -latrotoxin receptors show that the localization of neurexins is predominantly presynaptic (Sugita et al., 1999, Ushkaryov et al., 1992). Nevertheless, it has not been confirmed whether this localization is exclusive: some studies indicate that the deletion of genes encoding α neurexins also has post-synaptic effects (Kattenstroth et al., 2004, Taniguchi et al., 2007).

1.4.2.2 Neuroligins

There are three sets of neurexin-binding ligands in the mammalian brain: dystroglycan, neurexophilins, and neuroligins (NLGNs). The most intensively studied ligands are the neuroligins, which were discovered by affinity purification (Ichtchenko et al., 1995). Three genes coding neuroligins, *NLGN1*, *NLGN2*, and *NLGN3*, have been found in mice and rats; they are mostly expressed in the central nervous system (CNS; Ichtchenko et al., 1996). Five genes encoding neuroligin family members have been detected in human tissues, *NLGN1*, *NLGN2*, *NLGN3*, *NLGN4*, and *NLGN4Y*, with a sequence identity in their extracellular domains of more than 70% (Ylisaukkooja et al., 2005a). All neuroligin isoforms are post-synaptic transmembrane proteins. Neuroligin-1 is usually expressed in neurons at excitatory postsynaptic sites and found connected to NMDAR, postsynaptic densities (Hirao et al., 1998, Ichtchenko et al., 1995, Kurschner et al., 1998, Song et al., 1999). Neuroligin-2 is expressed mainly at inhibitory neuronal sites in CNS but is also expressed in pancreas, lung endothelia, and colon (Varoqueaux et al., 2004). Human neuroligin-

3 is expressed in glia and dorsal root ganglia cells (Gilbert et al., 2001, Philibert et al., 2000). Expression of *NLGN4* mRNA in human tissues is at its highest level in the heart; it is expressed only at low levels in the brain, pancreas, skeletal muscle, and liver (Bolliger et al., 2001, Nguyen and Südhof, 1997). Neuroligin-4Y, the gene for which is located in the Y chromosome, differs from neuroligin-4 by 19 amino acids and has also diverged in sequences within its introns (Bolliger et al., 2001, Jamain et al., 2003; Fig. 1.4).

Fig. 1.4. Neuroligin structure. The N-terminal extracellular sequence of neuroligins consists of a signal peptide (SP), cholinesterase-like domain (CLD) and a carbohydrate-attachment region for O-linked glycosylation (O-Glyc). The cholinesterase-like domain of neuroligin-1 contains two alternative splice sites (**A** and **B**) with insert sequence A1 and B, whereas neuroligin-2 contains one splice site (**A**) with insert sequence A2. Neuroligin-3 has one alternative splice site (**A**) with two insert sequences, one homologous to A1, the second homologous with A2 (**A**). The C-termini of all neuroligins are identical and consist of a single transmembrane region as well as a short cytoplasmic sequence containing a type I PDZ-recognition motif.

The extracellular domain of neuroligin-1 has two alternative splice sites (A and B), whereas neuroligin-2, neuroligin-3 and neuroligin-4 have one conserved alternative splice site (A). The variations among family members are due to differences in the insert sequences. In neuroligin-1, the insert at site A, called A1, has a calculated charge of+8 and an internal disulfide bond between

Page | 19

Cys172 and Cys181, whereas the insert at site B, which is unique to neuroligin-1, contains an *N*-glycosylation consensus sequence at Asn303 (Hoffman et al., 2004). Neuroligin-2 has one insert at site A called A2; it has a calculated charge of –5 and lacks an internal disulfide bond. Neuroligin-3 has two inserts at splice site A: one is homologous with the neuroligin-1 insert, and the second is homologous with neuroligin-2 insert (Ichtchenko et al., 1995, 1996; Fig. 3). Neuroligin-4 inserts have not yet been clearly delineated.

Neuroligins are members of a protein family that possess a cholinesterase-like domain (CLD), and are known as cholinesterase-like adhesion molecules (CLAMs). All family members (glutactin, neurotactin, and gliotactin, as well as the neuroligins) lack one or more of the residues that are essential for catalytic activity. The function of the N-terminal sequence in neuroligins is heterophilic adhesion. Hence, this domain mediates the interaction between receptor and ligand, rather than the interaction between enzyme and substrate. Neuroligins lack a serine residue that is essential for enzymatic function in cholinesterases; important nearby residues are histidine and glutamic acid, which are close to the third disulfide loop (Holmquist, 2000, Hoffman et al., 2004). Two of the three disulfide loops in all members of CLAM family are conserved in acetylcholinesterases (Zeev-Ben-Mordehai et al., 2003).

Members of the CLAM family form 3D structures that are very similar to that of acetylcholinesterase (AChE). Approximately 65% of the CLD is conserved between the cholinesterase superfamily and CLAM family members. The structure of AChE has three loops, which are stabilized by disulfide bonds that permit the right positioning of the enzyme active site. The first part of CLD is totally conserved between the families; it includes the first and second disulfide-bonded loops. The second part of the CLD is conserved only in the area of the cysteine residue. The majority of the conserved structures in CLAM proteins are those essential for shaping the α - and β -hydrolase folds and positioning the first component of the active site in the enzyme. The second part of the cuber two components at the catalytic site and forms the mouth of the catalytic gorge. CLAM proteins differ from AChE by either total or partial loss of the third disulfide-bonded loop, which appreciably changes the conformation of the

gorge mouth and hence abrogates catalytic site function (Fig. 1.5). The review by Gilbert and Auld (2005) gives more detail on the 3D structure of the CLD in AChE and CLAM family proteins.

Fig. 1.5. The 3D structure of CLD models of CLAM family protein in Drosophila acetylcholinesterase. **A**, the catalytic site; **B**, the first disulfide-bonded loop; **C**, the second disulfide-bonded loop; and **D**, the third disulfide-bonded loop. The domain in the third loop in the CLAM family is the most divergent in sequence. In vertebrates the neuroligin third loop is reduced in size, resulting in a considerably shorter loop, while this loop is not present at all in invertebrate neuroligins.

Comparisons of the structures of cholinesterase family members with neuroligins have significantly increased our understanding of the relationship between structure and function in the neuroligins (Hoffman et al., 2004). Consideration of 2- and 3-dimensional analyses indicates that the CLD is a possible target for ligands to associate with CLAM family members, particularly to mediate neuroligin–neurexin binding. Over-expression of AChE decreases β -neurexin levels *in vitro* and *in* *vivo*, as well as having a negative effect on glutamatergic synapses *in vitro*, which suggests there is crosstalk between the neuroligin–neurexin complex and AChE (Andres et al., 1997).

1.4.3 Neuroligin–neurexin interactions

The neuroligin–neurexin interaction is controlled by different molecular and cellular mechanisms, including oligomerization, calcium binding, and alternative splicing.

1.4.3.1 Oligomerization mechanisms

Neuroligin-1 has five *N*-glycosylation sites as well as a domain rich in serine and threonine residues next to the transmembrane sequence that contains a number of sites for *O*-linked glycosylation (Ichtchenko et al., 1995). Blocking *N*-glycosylation in neuroligin-1 enhances its binding to neurexin to form the neuroligin–neurexin oligomer (Comoletti et al., 2003). In contrast, deglycosylation of neurexins does not influence neuroligin binding affinity.

1.4.3.2 Calcium-dependent mechanisms

The extracellular domains of neuroligin and neurexin bind to each other in the presence of calcium ion (Ca²⁺; Ichtchenko et al., 1995). With recombinant neuroligin-1 and β -neurexins, binding occurs at differing concentrations of Ca²⁺ for different alternatively spliced isoforms (Nguyen and Südhof, 1997). Structural studies of the α -neurexin LNS2 domain show that a splice site generates highly variable surfaces surrounded by Ca²⁺ ions (Sheckler et al., 2006). Ca²⁺ binding has low affinity and is decreased below detectable levels by the addition of 8- to 15-residue splice inserts. In consequence, Ca²⁺-dependent interactions of neurexins may be affected by changes in Ca²⁺ concentration that are within the estimated variations within the synapse as a result of synaptic activity (Nguyen and Südhof, 1997).

1.4.3.3 Alternative splicing mechanisms

Neurexins exhibit a great deal of alternative splicing that produces more than 2,000 variants (Tabuchi and Südhof, 2002). The splice insert sequences and their locations are preserved between *NRXN* genes and between species, indicating that alternative splicing plays a significant role. Alternative splicing is not as extensive in neuroligin, but it takes place in the significant CLD

domain. The alternatively spliced regions in neuroligins and neurexins are the sites of interactions between them (Fig. 1.6). Alternative splicing changes binding affinity, and affects synapse development and neuronal functions *in vitro* (Boucard et al., 2005, Chih et al., 2006, Graf et al., 2006).

Fig. 1.6. Neurexin–neuroligin splice sites and the possible binding pairs. Splicing at site B in neuroligin and at site 4 in β-neurexin-1 controls binding affinity and synapse function. In β-neurexin, the presence of the 30-residue insert at site 4 decreases the affinity of binding, especially with neuroligin-1, which has an insert at site B (+B). This sequence can maintain high-affinity binding with neuroligin-1, which does not have an insert at site B (–B), or with neuroligin-2, which also does not have a B splice site. Similarly, α-neurexins that do or do not contain an insert at site 4 can attach to B+ neuroligins (with splice site B included). In this case, the regulation of the interaction between the two proteins does not occur due to the presence of the B insert (9 amino acids), but takes place as a result of its N-linked glycosylation. Additional studies are required to verify how alternative splicing of neuroligin-1 (at site B) and β-neurexins (at site 4) controls the binding of particular isoforms of these proteins as well as their adhesive properties.

1.4.3.4 Neuroligin/neurexin interactions and synaptic localization

The roles of neuroligins and neurexins in specifying synapse formation as either excitatory or inhibitory have been delineated by studies conducted *in vitro*. Over-expression of neuroligin proteins increases synapse numbers, whereas knockdown of the same proteins decreases synapse numbers (Chih et al., 2005). Scheiffele et al. (2000) showed that expressing neuroligins in normal cells can stimulate pre-synaptic differentiation in contacting axons. On the other hand, the expression of neuros can lead to clustering of proteins in post-synaptic dendrites (Graf et al., 2004).

Fig. 1.7. The role of alternative splicing of the neurexin–neuroligin complex in determining synaptic function as either excitatory or inhibitory. Neurexins and neuroligins possess extracellular domains that are modified at different locations by alternative splicing. Splice site 4 (S4) of β-neurexin and location B of neuroligin-1 change the proteins' binding specificity for their neuroligin or neurexin partners and change their capability to stimulate glutamatergic over GABA (γ-aminobutyric acid)– mediated synaptogenesis. Each neurexin isoform binds a specific neuroligin isoform that guides the creation of specialized synapses. β-neurexin that does not have the alternative splice site S4 (β-neurexin1 [–S4]) pairs neuroligin-1s that has the inclusion of splice site B (neuroligin-1+B). The addition of the S4 in β-neurexin prevents neuroligin-1 pairing and decreases accumulation of post-synaptic proteins that are specific to glutamatergic synapses. Conversely, β-neurexin with an S4 (+S4) has high

affinity for neuroligin-2 and guides the formation of GABA-signaling synapses. On the post-synaptic membrane, neuroligin-1+B isoforms interact with β -neurexin. On the other hand, –B isoforms can pair both neurexin types. neuroligin-1+B is confined to glutamatergic synapses. The majority of neuroligin-2 proteins that lack the B site have an alternative splice site at location A to guide their specific localization to the GABAergic synapse.

In consequence, neuroligin–neurexin binding *in vitro* can control both the pre- and postsynaptic sides of the synapse. The organization of synapse configuration as excitatory or inhibitory is controlled by the diverse neurexin and neuroligin types incorporated, as well as the splice variants that occur in the extracellular domain. Neuroligin-1 is located in excitatory synapses and supports the development of excitatory specializations, depending on alternative splicing (Fig. 1.6). Conversely, neuroligin-2 is located in inhibitory synapses and preferentially stimulates the formation of inhibitory contacts (Chih et al., 2005). Alternative splicing in the extracellular domain of neuroligins guides neuroligin–neurexin binding between neurons, and controls excitatory/inhibitory synapse formation (Boucard et al., 2005, Chih et al., 2006; Fig. 1.7).

1.4.4 A role for the neuroligin–neurexin complex in triggering amyloid deposition in AD?

Acetylcholinesterase interacts with senile plaques in AD brain. Both bovine AChE and human and murine recombinant AChE accelerate the accumulation of either wild-type or mutant A β peptide as amyloid. The interaction of AChE and A β does not depend on the subunit composition of the enzyme or on the presence of the AChE active site (Inestrosa et al., 1996). The neurotoxicity elicited by AChE–A β complexes is more than that induced by the A β alone (Inestrosa et al., 1996). Affinity-purified AChE increases the accumulation of APP in glial cells in selective brain regions in a concentration-dependent manner. The increased expression of APP in astrocytes and microglia induced by AChE is due to the activation of glial cells (von Bernhardi et al., 2003). Tg2576 mice, which express human APP and develop plaques at 9 months, crossed with transgenic mice expressing human AChE, produce F1 animals that express both transgenes in the brain. The F1 cerebral cortex displays plaques at 6 months that are stained by thioflavin S and antibodies against Aβ40 and Aβ42. Plaques accumulate in the hybrid mice 50% sooner than in the parental line and plaque quantity increases with age (Rees et al., 2003).

Given that neuroligins have an extracellular sequence containing a domain that is homologous with AChE, and given that the CLD site in neuroligin lacks important residues (Scholl and Scheiffele, 2003), neuroligin has been proposed as a synaptic protein candidate that may affect A β accumulation in AD. Fluorescence spectroscopy and surface plasmon resonance analysis show an interaction between oligomeric forms of A β and the extracellular domain of neuroligin-1 with a K_d in the nanomolar range (Dinamarca et al., 2011, 2012), whereas the interaction between A β and neuroligin-2 is very weak. Immunoprecipitation assays confirmed that A β oligomers react with neuroligin-1 but not with neuroligin-2. Studies of A β polymerization in a thioflavin-T assay showed that neuroligin-1 stabilized A β accumulation *in vitro*. Neuroligin-1 behaved as a nucleating factor for A β accumulation by inducing the formation of A β oligomers (Dinamarca et al., 2012). These data suggested that neuroligin-1 stabilizes oligomeric assemblies of A β in the glutamatergic synapse, where they may bind to neuroligin-1 in the post-synaptic membrane. This complex might then act as a local aggregation seed for more A β oligomers that affect the post-synaptic region and promote synaptic toxicity in AD.

1.4.4.1 Proteolytic processing of neuroligins and neurexins in AD

Several studies have demonstrated that AD-related proteolytic enzymes can regulate synaptic efficacy by processing synaptic CAMs (Cartier et al., 2009, Mabb and Ehlers, 2010, Malinverno et al., 2010). Metalloproteases and γ -secretase are intramembrane aspartyl proteases that cleave single-transmembrane proteins; both are implicated in AD. They cleave a range of substrates, the most extensively studied of which is APP. Other substrates include proteins involved in synapse maintenance such as EphRs, ephrins, cadherins, and nectin. PS1/ γ -secretase can cleave full-length E-cadherin and a transmembrane C-terminal fragment, which is a key regulator of the Wnt signaling pathway (Marambaud et al., 2002). PS1/ γ -secretase regulates the processing of nectins in PS1-/- and+/+ primary hippocampal neurons. Lack of PS1/ γ -secretase inhibits the processing of nectin-1 and nectin-3 to their C-terminal fragments and leads to the accumulation of the full-length proteins

(Kim et al., 2011). PS1-dependent intramembrane cleavage followed by nectin shedding takes place at synapses, and is regulated during synaptic plasticity. In mice and rats, metalloproteases and γ secretase reduce the levels of synaptic proteins on both sides of the synapse to weaken synaptic transmission (Restituito et al., 2011). Activity-dependent substrate cleavage by these enzymes is a novel mechanism of synaptic regulation to alter synaptic transmission.

A number of neuroligin-1 peptide fragments have been detected by immunoblotting in rat and mouse neuronal cultures (Suzuki et al., 2012), which indicates that neuroligin-1 undergoes proteolysis. The metalloproteinase ADAM10 cleaves the amino-terminus, extracellular domain of neuroligin-1, while the carboxy-terminus region is cleaved by γ -secretase. Addition of NMDA and soluble β -neurexin to the medium in cell culture experiments increases the quantity of neuroligin-1 N-terminal fragments (Suzuki et al., 2012), suggesting that neuroligin-1 cleavage can be stimulated by neuronal activity. The overstimulation of glutamate receptors that occurs in excitotoxic environments, such as AD-affected brain areas, could mediate synaptic damage.

Increased neuron activity *in vivo* decreases synaptic levels of neuroligin-1. Reducing the action of metalloproteases by inhibitors like MMP9 blocks this effect, probably by mitigating the activity-induced cleavage of neuroligin-1 (Peixoto et al., 2012). This finding may provide a treatment avenue for neuroligin-mediated synaptic damage in AD. Peixoto et al. (2012) showed that cleavage of neuroligin-1 occurs at single activated dendritic spines and involves NMDA receptors and Ca^{2+} -calmodulin-dependent kinase (CaMK) signaling leading to the destabilization of presynaptic β -neurexin1. The cleavage of neuroligin-1 weakens the synapse by rapidly decreasing presynaptic transmitter release (Suzuki et al., 2012). Together, these data suggest that the acute activity stimulated by cleavage of neuroligin-1 is a local homeostatic mechanism to control structural and functional synaptic plasticity.

The mechanism that controls neurexin function at synapses is not fully understood. The PS/ γ -secretase complex can process neurexins and inactivation of the complex stimulates the accumulation of neurexin at the pre-synaptic terminal *in vivo* and *in vitro*. Different familial AD

mutations in PS1 affect β-neurexin-1 processing differently: some stimulate the processing of βneurexin-1, whereas others have the opposite effect. Inhibition of PS and neurexin accumulation at sites controlled by neuroligin-1 suggests that PS organizes the processing of neurexins at glutamatergic synapses, and that impairment of neurexin processing by PS could involve at least part of a proposed familial AD pathogenesis pathway (Saura et al., 2011). Processing of neurexin-3β by α -secretase produces an ~80-kDa extracellular N-terminal domain designated soluble neurexin-3β and the transmembrane C-terminal fragment neurexin-3β-CTF. Further processing of the C-terminal fragment by γ -secretase produces a 12-kDa intracellular domain neurexin-3β-ICD (Bot et al., 2011). Mutated forms of PS1 that are associated with familial AD include PS1-L166P, PS1-P436Q, and PS1-9, which alter the catalytic core of γ -secretase and lead to a partial loss of enzyme function. The effect of these mutations on neurexin-3 processing has been elucidated by over-expressing them in Chinese hamster ovary cells stably expressing neurexin-3. The mutated proteins increase neurexin-3β-CTF levels and decrease neurexin-3β-ICD formation (Bot et al., 2011). These data suggest that mutated forms of PS1/ γ -secretase impair neurexin-3 processing and may cause the accumulation of the intracellular neurexin-3 C-terminal fragment.

1.4.4.2 Neuroligins and neurexins in learning and memory

Experiments on transgenic mice have revealed that overexpression of neuroligin-1 protein elicits learning and memory deficits, impairment of the induction of long-term potentiation (LTP), alterations in spine morphology, and reduced synaptic plasticity by altering the excitatory to inhibitory synapse ratio in hippocampus (Dahlhaus et al., 2010). Silencing of neuroligin-1 in the amygdala of mice showed that this protein plays an essential role in the storage of associative fear memory (Kim et al., 2008). Subsequent physiological experiments revealed that the lower neuroligin-1 levels weaken NMDA receptor-mediated currents and inhibit LTP (Jung et al., 2010). neuroligin-1 knockout mice show abnormalities in spatial learning and memory that are associated with impaired hippocampal LTP and a reduced NMDA/AMPA receptor ratio at corticostriatal synapses (Blundell et al., 2010). These data suggest that steady neuroligin-1 levels are essential for NMDA receptor-mediated synaptic transmission, which plays a central role in synaptic plasticity and long-term memory formation in the amygdala of adult animals (Kim et al., 2008). *NLGN3* R451C mutant mice exhibit impaired social interactions but improved spatial learning. Unexpectedly, these behavioural changes are induced by the stimulation of inhibitory synaptic transmission, with no effect at excitatory synapses. On the other hand, deletion of *NLGN3* did not cause much alteration, indicating that the R451C substitution is a gain-of-function mutation. These results suggest that increased inhibitory synaptic transmission could play an important role in autism spectrum disorders (Taniguchi et al., 2007). Hines et al. (2008) manipulated transgenic mice overexpressing neuroligin-1 and neuroligin-2 under the control of the Thy1 promoter, which leads to expression in various brain regions at early stages of development. Several abnormalities resulted from an increased expression of neuroligin-2, but not of neuroligin-1. A slight alteration in neuroligin-2 expression culminated in distended contacts at frontal cortex synapses and a general reduction in the excitatory to inhibitory synaptic ratio. These animals also showed impaired social behaviour and anxiety. A study using neuroligin-1 and neuroligin-3 knockdown showed that neuroligin-1 alternatively spliced at site B is required for LTP expression in young CA1 pyramidal cells, but that neuroligin-3 does not appear essential for LTP support (Shipman and Nicoll, 2012).

Neurexin and neuroligin proteins at sensory-to-motor neuron synapses play roles in the gillwithdrawal reflex in *Aplysia*, which exhibits sensitization (Shipman and Nicoll, 2012, Choi et al., 2011). Reducing neurexin in the presynaptic sensory neuron or neuroligin in the postsynaptic motor neuron eliminates long-term facilitation and enhances the associated presynaptic growth elicited by frequent pulses of serotonin. These data suggest that activity-dependent regulation of the neurexinneuroligin contact could govern trans-synaptic signalling that is essential for the storage of long-term memory. An altered function of synaptic cell-adhesion molecules that leads to reduced excitatory synaptic transmission is a potential treatment target for neurological disorders. Such alterations may provide the neural basis for an imbalance in excitatory and inhibitory transmission and the behavioural changes related to disorders such as AD. Neuroligin-1 expression can modulate synapse morphology and LTP; abnormal synapse morphology, reduced synaptic plasticity, and deficits in learning occur in several neurological disorders, including AD.

1.5 Thesis outline

1.5.1 Chapter 2

Fluctuations in the levels of the synaptic proteins neuroligin-1 or neuroligin-2 in relation to synaptic loss in AD. This chapter describes the development of an immunodetection assay to quantify neuroligin-1 and neuroligin-2 proteins in autopsy brain tissues. Truncated versions of neuroligin-1 and neuroligin-2 were constructed, cloned, expressed, and purified. Different concentrations of the engineered protein were mixed with constant amounts of native protein extracted from tissue. Recombinant truncated protein separated clearly from the target protein as a sharp band. A standard curve with multiple points was created to show band intensity against quantity of standard in the different lanes on the same gel. The chapter then shows the successful use of the immunodetection assay in achieving precise estimates of the quantities of neuroligin-1 and neuroligin-2 present in each sample.

1.5.2 Chapter 3

Using the immunodetection assay from Chapter 2, concentrations of neuroligin-1 and neuroligin-2 were accurately quantified in hippocampus, inferior temporal cortex and occipital cortex autopsy tissue from 15 AD cases and 15 controls. These concentrations were compared between the two groups. Further statistical analyses assessed the effects of sex and the pathological severity of the disease on neuroligin-1 and neuroligin-2 protein levels. In addition, a similar immunodetection assay was used to quantify β -neurexin in hippocampus, inferior temporal cortex and occipital cortex autopsy tissue from 15 AD cases and 15 controls.

1.5.3 Chapter 4

The aim of this chapter was to validate the data obtained from quantification of neuroligin-1, neuroligin-2 and β -neurexin by using multiple reaction monitoring MRM assays, which are based on mass spectrometry and SWATH techniques, in AD cases and controls. This included sample preparation, validation and optimization of the best transitions and the actual quantification of the neuroligin and neurexin isoforms.

1.5.4 Chapter 5

This chapter describes the development of a real time PCR assay to quantify neuroligin-1, neuroligin-2 and β -neurexin transcripts in human autopsy brain tissues. The concentrations of theses transcripts were measured in hippocampus, inferior temporal cortex and occipital cortex from 14 AD cases and 14 controls, and then compared.

1.5.5 Chapter 6

The aim of this chapter was to confirm the association between Alzheimer disease and the single nucleotide polymorphism (SNP) rs17757879 in *NRXN3* β in an Australian Caucasian population using a case-control association approach, by using genomic DNA from the Queensland Brain Bank.

1.5.6 Chapter 7

Conclusions and future directions.

Chapter 2

2 Development of an immunoassay to quantify neuroligin-1 and neuroligin-2

2.1 Aim of the research

- 1. To develop an immune-detection assay to quantify neuroligin-1 and neuroligin-2.
- To clone, express and purify recombinant truncated neuroligin-1 and neuroligin-2 protein standards.

2.2 Introduction

The use of brain autopsy tissues in neurobiological research has increased in recent years. Biochemical and proteomic experiments on human tissue are an essential component in establishing the roles that many proteins and pathways play in neurological disorders. Estimates of protein levels in autopsy brain tissue from cases and controls contribute to our understanding of the pathogenesis of disease. Recent developments in technology have been responsible for massive amounts of data on protein expression in different diseases, and have helped to delineate several drug targets. These approaches require that the molecular and biochemical state of the tissue is well maintained. Ideally, the target proteins should be undamaged and biologically active. Several studies have assessed the stability of transcripts and proteins isolated from human autopsy brain tissues (Johnson and Ferris, 2002, Johnston et al., 1997, Köpke et al., 1993, Yasojima et al., 2001). Various factors affect post mortem yields of DNA, mRNA and protein, such as the method of tissues preparation, tissue pH, storage conditions, time in storage, and post-mortem interval (PMI; Kingsbury et al., 1995, Leonard et al., 1993, Ludes et al., 1993, Lukiw et al., 1990, Palmer et al., 1988, Schramm et al., 1999). It has been shown that cells can be obtained from human autopsy brain tissues and maintained alive in culture (Verwer et al., 2002).

Proteomics uses several quantitative and qualitative techniques to detect the proteins in a tissue that differ in expression, for example in response to a disease. These include 2-dimensional differential gel electrophoresis (2D-DIGE), mass spectrometry (MS) and Western blotting. 2D-DIGE

has a limited capacity to detect alterations in expression or post-translational modification in lowabundance proteins. Mass spectrometry needs high expression levels for protein quantification and requires large amount of starting material, which is an issue for work on human tissue. It also involves various steps that could affect protein integrity or lead to degradation.

Western blotting (immunoblotting) is used to detect the presence of a particular protein in a complex biological extract. Although quantification can be problematic, immunoblotting can be effective in finding statistically significant alterations in the levels of protein linked to disease. As in gene expression, minor changes in protein expression in the brain might have major consequences in the tightly regulated CNS. More-complicated proteomic techniques may be unable to detect small significant differences in protein regulation, and simpler but more sensitive biochemical techniques needed to confirm any alterations found. Immunoblotting depends on three basic steps: (1) gel electrophoresis to separate a mixture of protein based on size; (2) effective transfer of separated proteins to a solid support; and (3) precise recognition of the protein of interest by selective primary and secondary antibodies. The band of the target protein is then visualized on the blotting membrane by using either X-ray film or an imaging system.

Immunoblotting is one of the most common laboratory techniques due to its advantages in time, simplicity, and cost. Data obtained from immunoblotting are simple to interpret, distinctive, and unmistakable. Often when a result does not match expectations, there can be indications of what must be investigated to find the reason. Nevertheless, there are several limitations of the method, such as incomplete protein transfer from the gel to the membrane, the availability of specific antibodies for protein recognition, and the small number of proteins that can be detected in one assay.

In this chapter I develop an immune-detection assay to specifically quantify neuroligin-1 and neuroligin-2 proteins in human autopsy brain tissue. β -NRXN protein was purchase from Life Technology Company, therefore was not included in this chapter. The strategy to sensitively and precisely quantify neuroligin-1 and neuroligin-2 concentrations used known amounts of recombinant

expressed truncated versions of neuroligin-1 and neuroligin-2 respectively to construct standard curves. I used this to identify small but significant differences between cases and controls, which might not have been detected by other techniques due to large variations in the levels of individual proteins. These measures of the exact molar concentrations of the proteins in my data set allowed me to assess and contrast alterations in levels of synaptic adhesion molecules at the synapse.

2.3 Materials and Methods

Truncated recombinant versions of the proteins that contained the relevant epitopes for the primary antibodies used, in the N-terminus of neuroligin-1 and the internal region of neuroligin-2, were constructed. This permitted me to accurately measure native protein levels in autopsy brain tissue by in-gel immunodetection. The truncated proteins were smaller than their target proteins to allow easy separation by electrophoresis. The engineered transcript proteins were expressed in a bacterial system and purified, and a known amount added to each AD case and control sample lane in the gel. Each truncated protein separated clearly from its target protein as a sharp band. A standard curve with multiple points was created derived from the band intensities produced by adding differing known quantities of standard to different lanes on the gel. This method was used to achieve very precise estimates of the quantities of neuroligin1 and neuroligin-2 present in each sample.

2.3.1 Recombinant neuroligin-1 and neuroligin-2 protein standards

A modified 5' end was integrated into the design of the forward primers to facilitate directional cloning into the vector from Invitrogen, which has a 4-nucleotide overhang sequence. The reverse primers were designed against the sequence upstream of the stop codon to permit expression of a downstream histidine tag. Using the Champion[™] pET Directional TOPO® Expression Kit system (Life Technologies Pty Ltd, Invitrogen, Mulgrave, Vic, Australia), PCR products can be directionally cloned by adding four bases to the forward primer (CACC). The overhang in the cloning vector (GTGG) invades the 5' end of the PCR product, anneals to the added nucleotides, and results in production of a PCR product at the right orientation. With this system the PCR amplicon can be cloned at very high efficiency. The forward and reverse primers sequences that were used to amplify a fragment of each protein are listed in Table 2.1.

The cDNA used to amplify the PCR product was prepared from frozen tissue that was stored at -80° C in 0.32 M sucrose. Pieces of frozen human autopsy tissue about 1 cm³ were weighed and homogenized on ice in 10× (w/v) of TRIzol® (Invitrogen) using a motor-driven homogenizer (Polytron®, Kinematica, Bohemia, NY, USA). The homogenate was incubated for 5 min at room temperature and $0.2 \times (v/v)$ of chloroform was added and the incubation continued at RT for 2–3 min with shaking. The homogenate was centrifuged for 20 min at 10 000 × g at 4°C and the top layer transferred to a new tube. $0.1 \times (v/v)$ of isopropanol was added and the mixture incubated for 10 min at RT, then centrifuged at 10 000 × g for 15 min at 4°C. The pellet was resuspended in 1 ml of 75% ethanol and centrifuged at 20 000 × g for 20 min at 4°C. The final pellet was dried and resuspended in 50 µl of pure water and incubated at 60°C for an additional 10 min.

	NLGN1	NLGN2
Forward Primer	5'-CAC CAT GGC ACT GCC	5'-CAC CTA CGT GCA GAA
	CAG AT-3'	CCA GAG C-3'
Reverse Primer	5'-ACC AGC TCG ATA CCA	5'-CCG ACT ACC AGT CTC
	CAT AGC CTA A-3'	CCG TCT AA-3'
Size of PCR amplimer	1069 bp between nucleotides 421	1035 bp between nucleotides 465
& recombinant protein	and 1491; 38 kDa	and 1510; 40 kDa
Location of epitope	Residues 33–61 near N-terminus	Internal region
Sizes of native form	4861bp	4621 bp

Table 2.1. NLGN1 and NLGN2 PCR and cloning details.

To reverse transcribe the RNA, DNase I was added to get rid of any contaminating genomic DNA. 1 μ l of 10× DNase I reaction buffer (Fermentas Inc, Hanover, MD, USA) was added to 3 μ g of RNA, then 40 U of RNase OUT (Fermentas) and 1 U of RNase-free DNase (Fermentas) were

added and the mixture incubated at 37°C for 30 min. EDTA was added to a final concentration of 2.27 mM and the mixture incubated at 75°C for 5 min. cDNA was formed by adding the following: 0.82 μ g of DNase, 300 μ M dNTPs (Promega Corp., Sydney, NSW Australia), 1 μ g of Oligo (dT)12–18 primers (Promega), and 0.5 μ g of random hexamers (Promega). Nuclease-free MilliQ H₂O was added to make the volume to 12 μ l and the mixture incubated for 5 min at 65°C. The following reagents were added to perform the reverse transcriptase step: 5× first-strand buffer, 4.8 mM dithiothreitol (DTT), 40 U of RNaseOUT and 400 U of Superscript III Reverse Transcriptase® (Invitrogen). The mixture was incubated at 25°C for 5 min, then 50°C for 60 min and 70°C for 15 min. To eliminate any residual contamination by RNA, 2U of DNase-free ribonuclease H (Invitrogen) was added and the incubation continued for 20 min at 37°C. The cDNA was stored at -20° C.

The PCR product of *NLGN1* was amplified from cortical cDNA by incubating 1 μ l of cDNA with 1 μ l of 10 mM dNTPs, 1 μ l of *NLGN1* 10 μ M forward and reverse primers (final concentration 0.2 μ M), 5 μ l of 10× *Pfu* buffer without MgSO₄ (200 mM Tris-HCl, pH 8.8 at 25°C), 100 mM (NH₄)₂SO₄, 100 mM KCl, 1% (v/v) Triton X-100, 1 mg/ml BSA), 4 μ l of 25 mM MgSO₄ (final concentration 2 mM) and 0.5 μ l (1.25 U) of *Pfu* DNA polymerase. The PCR was performed using the following conditions: initial denaturation at 95°C for 2 min, then 35 cycles with denaturation at 95°C for 30s. A gradient PCR cycler was used to get different annealing temperatures for different reactions at 58°C and 62°C for 30s and extension at 72°C for 2 min. Final extension was at 72°C for 10 min. The PCR products were loaded onto a 1% agarose/ethidium bromide gel and run for 1h at 100V.

The PCR product of *NLGN2* was amplified from cortical cDNA by incubating 1 μ l of cDNA with 10 mM dNTP mixture (final concentration of each dNTP 200 μ M), 10 μ l buffer B (60 mM Tris-SO₄, 18 mM (NH₄)₂SO₄, 2 mM MgSO₄, pH 9.1), 10 μ M *NLGN2* forward and reverse primers (final concentration 200 nM), 1 μ l of Elongase enzyme mix, finally topped up to 50 μ l with MilliQ H₂O. The following conditions were used to perform the amplifications: pre-amplification denaturation at 94°C for 30s, then 35 cycles with denaturation at 94°C for 30s. A PCR gradient cycler was used to

get different annealing temperatures for different reactions for optimizations: 58°C, 60°C, 62°C and 64°C, with gradient annealing for 30s. Extension was performed at 68°C for 1 min. After the 35 cycles were completed a final extension at 68°C for 10 min was performed. The PCR products were loaded onto a 1% agarose/ethidium bromide gel and run for 1h at 100V.

2.3.1.1 PCR clean-up

To purify *NLGN1* and *NLGN2* PCR products from primers, nucleotides, polymerase and salt, and to obtain concentrated cDNA, I used the QIAquick PCR purification kit (QIAGEN Pty Ltd, Doncaster, VIC, Australia) as per the manufacturer's specification.

2.3.2 Topo cloning reaction

The purified PCR products of *NLGN1* and *NLGN2* were ligated into Topo vector at a 0.5:1 molar ratio of PCR product to vector. The ligation reaction was carried out in 6 μ l total volume, which included 0.5 μ l of purified PCR product, 1 μ l salt solution, 1 μ l Topo vector and 3.5 μ l of MilliQ H₂O. The reaction was mixed gently and incubated for 5 min at room temperature. The mixture was placed on ice for the *E. coli* transformation (see next).

2.3.2.1 Transformation of E. coli

pET TOPO *NLGN1* and *NLGN2* constructs were transformed into competent *E. coli* (One Shot® TOP10 Chemically Competent *E. coli*; Invitrogen) by adding 3 µl of the TOPO® Cloning reaction product (previous section) into a vial of the *E. coli* preparation and the reaction mixed gently and incubated on ice for half an hour. Cells were heat-shocked for 30s at 42°C without shaking and the tubes immediately transferred to ice. 250 µl of Super Optimal broth with Catabolite repression (S.O.C.; 2% Tryptone, 0.5% Yeast Extract, 10 mM NaCl, 2.5 mM KCl, 10 mM MgCl₂, 10 mM MgSO₄, 20 mM glucose) was added to the vial at room temperature and the mixture shaken horizontally (200 rpm) at 37°C for 1h. 100 µl and 200 µl of each transformation reaction were spread on pre-warmed LB agar + carbenicillin plates and incubated overnight at 37°C.

2.3.2.2 PCR colony screening

Colonies obtained from the plates were streaked on new LB agar + carbenicillin plates and grown overnight at 37°C. Each growing colony was tip patched and incubated in a reaction containing 50 µl 2% Triton pH 12.4 (0.03 mM), 10 µl 6× loading dye (11 mM EDTA, 3.3 mM Tris-HCl, 0.017% SDS, 0.015% bromophenol blue, pH 8.0) and 50 µl of the bottom layer of a chloroform/phenol/isoamyl alcohol 25:24:1 saturated with 10 mM Tris and 1 mM EDTA, pH 8.0. Tubes were vortex and centrifuged for 10 min at $13,000 \times g$. The top layer of the mixture was loaded onto a 1% agarose/ethidium bromide gel with a 1 kbp ladder and run at 100V for 1h. Colonies with the right insert were identified from the banding pattern (Genomic DNA, Vector 5764 bp, insert *NLGN1* and *NLGN2* ~1000 bp).

2.3.2.3 Plasmid purification

A QIAprep Spin Miniprep Kit (QIAGEN) was used to purify high-copy plasmid DNA of *NLGN1* and *NLGN2* from 5 ml overnight cultures of *E. coli* in LB as per the manufacturer's specifications.

2.3.2.4 PCR screening

PCR screening was used to analyse positive transformants of *NLGN1* with the following reaction: 1 µl of 10 µM dNTPs, 1 µl of *NLGN1* 10 µM forward and reverse primers (final concentration 0.2 µM), 5 µl of $10 \times Pfu$ buffer without MgSO₄ (see above), 4 µl of 25 mM MgSO₄ (final concentration 2 mM) and 0.5 µl (1.25 U) of *Pfu* DNA polymerase. Colonies with inserts were resuspended into the reaction mixture and PCR performed using the following thermal cycling: initial denaturation step of 2 mins at 95°C, then 35 cycles of a 30s, 95°C denaturing step, 58 ± 4°C gradient annealing for 30s, and a 2 min, 72°C extension step which was followed by a final extension step of 72°C for 10 min.

2.3.2.5 Restriction enzyme analysis

Restriction analysis of purified *NLGN2* plasmid was conducted to confirm the presence and the correct orientation of the insert. The NEB cutter tool (New England BioLabs, Hitchin, UK) was

Page | 38

used to find non-overlapping open reading frames in DNA sequences of the *E. coli* genetic code and the sites for all Type II and commercially available Type III restriction enzymes that cut the sequence just once. Restriction enzyme APAI (New England Biolabs), which cut the insert at nucleotide 666 and cut the vector at nucleotide 5029, was used. The following reaction was conducted to perform *NLGN2* restriction analysis in 20 μ l: 2 μ l of 10× NEBuffer, 0.2 μ l of BSA 100×, 5 μ l of purified plasmid, 0.5 μ l of APAI enzyme and 12.3 μ l of sterile deionized water. The mixture was incubated for 3h at 37C in a water bath and then for additional 10 min at 70°C, then loaded into a 1% agaros/ethidium bromide gel and run for 1h at 100V.

2.3.2.6 Sequencing

NLGN1 and *NLGN2* constructs were sequenced using Illumina (San Diego, CA, USA) HiSeq2000 next generation sequencing at Australian Genome Research Centre to confirm that the *NLGN1* and *NLGN2* genes were in frame with the appropriate N-terminal or C-terminal fusion tags. The forward and reverse reaction mixtures of *NLGN1* and *NLGN2* were sent in 12 µl total volume (600 ng of plasmid and 0.6 µl of pET100/D-TOPO® T7 forward primer or 0.6 µl of reverse primer for pET100/D-TOPO® T7 reverse primer).

2.3.2.7 Expression

Successfully sequenced *NLGN1* and *NLGN2*-PET101/D-Topo clone (plasmid) were transformed into BL21 StarTM (DE3), which is included with each ChampionTM pET directional TOPO® Expression Kit. 0.5 µl of each plasmid DNA was loaded into thawed vial of BL21 StarTM (DE3) and mixed gently. Cells were incubated on ice for 30 min, then heat-shocked for 30s at 42°C without shaking. The tubes were immediately transferred to ice and 250 µl of room temperature SOC medium was added to each tube. The mixtures were incubated at 37°C for 60 minutes with shaking (200 rpm). Each entire transformation reaction was added to 10 ml of LB containing 10 µl Ampicillin antibiotic and grown overnight at 37°C with shaking.

Because different recombinant proteins have different characteristics, pilot expression was performed in which a time course for expression was studied to determine the best condition for protein expression. 500 µl of the overnight cultures were inoculated to 10 ml of LB containing 10 µl of Ampicillin and grown for 2h at 37°C with shaking (200 rpm) until the cells had reached mid-log phase (OD₆₀₀ 0.5–0.8). Each culture was split into two (5 ml each) and 0.5 mM IPTG final concentration (250 µl of 200 µM) added to one sample to induce expression. 500 µl aliquots were taken from each culture as a zero time point sample and centrifuged for 1 min at 13,000 rpm. Supernatants were aspirated and pellets were then frozen at -20° C. Cultures were kept in the incubator at 37°C with shaking and aliquots taken every hour up to 4h. At each time point, 500 µl from the induced and uninduced cultures were taken and centrifuged for 1 min at 13,000 rpm, the supernatants were discarded, and the pellets stored at -20° C for analysis.

2.3.3 Analysing expression

To analyse the pilot expression of *NLGN1* and *NLGN2*, 10% of SDS separating gels were prepared by mixing 3.54 ml of MilliQ H₂O, 3.75 ml of 1M Tris (pH = 8.8), 100 µl of 10% SDS, 2.5 ml 40% Acrylamide, 100 µl of 10% APS (Ammonium persulfate) and 10 µl of TEMED (NNNNtetramethylenediamine). 4% stacking gels were prepared by mixing 3.77 ml of MilliQ H₂O, 625 µl of 1M Tris (pH = 6.8), 50 µl of 10% SDS, 500 µl of 40% acrylamide, 50 µl of 10% APS and 5 µl of TEMED. Sample pellets from the pilot expression of *NLGN1* and *NLGN2* were thawed, suspended into 80 µl of 1× sample buffer, and boiled for 5 min at 100°C. 16 µl of each pellet and SDS-sample buffer mixture was loaded onto the gel and run for 45 min at 150V. Gels were stained with Coomassie Brilliant Blue (Sigma-Aldrich Pty Ltd, Castle Hill, NSW, Australia) in 50% methanol and 10% glacial acetic acid for 1h, then destained overnight with 45% methanol and 5% acetic acid. Gels were visualized on the Odyssey Infrared Imaging System (LI-COR Biotechnology, Cambridge, UK) at a scan intensity of 8 using the 700/800 nm fluorescence channel.

2.3.3.1 Scaling up expression for purification

To scale-up expression to 50 ml, 500 μ l of overnight culture (previous step) was inoculated into 10 ml of LB containing 10 μ l of ampicillin and grown overnight at 37°C with shaking (200 rpm) until the OD₆₀₀ reached 1.0. One ml of the overnight culture was inoculated into 50 ml LB with 50 μ l of Ampicillin and grown for 2h at 37°C with shaking (200rpm) until the cells reached mid-log phase $(OD_{600} = ~0.5)$. 1 mM IPTG was added to each culture to induce expression and the incubation continued at 37°C with shaking for 4h. Cells were harvested by centrifugation for 10,000 rpm for 10 minutes at +4°C.

2.3.3.2 Purification

Recombinant truncated neuroligin-1 and neuroligin-2 protein was purified under denaturating conditions using the Ni-NTA spin column kit (Qiagen) as per the manufacturer's instructions. Cells from 50 ml cultures of neuroligin-1 and neuroligin-2 were thawed for 15 min and pellets were resuspended and lysed in 1 ml of 1× PBS and 5 μ l of 20 mg/ml lysozyme, 10 μ l DNAase and 7 ml of buffer B, denaturing lysis/binding buffer (7 M urea, 100 mM NaH₂PO₄, 100 mM Tris-HCl, pH 8.0). The mixtures were agitated at room temperature for 1h until the solution become translucent. To pellet the cellular debris, 700 μ l of lysates were centrifuged at 12,000 × g for 30 min at room temperature (25°C). The supernatant was collected and 20 μ l of the cleared lysates saved for SDS-PAGE analysis.

2.3.3.3 Western blotting

To validate the expression and purification of neuroligin-1 and neuroligin-2 recombinant protein, western blotting was used. Proteins eluted from NI-NTA columns were mixed with 3× SDSsample buffer (1:3 SDS buffer: protein) and loaded into 10% polyacrylamide gels. Proteins were separated for 30 min at 200V, then transferred to polyvinylidene difluoride (PVDF) membranes for 90 min at 100V. Membranes were blocked with 1% skim milk in PBST for 1h with shaking, then incubated overnight at 4°C with blocking solution plus mouse monoclonal primary antibody against neuroligin-1 (1:20000 Neuroligin-1 (A-4): sc-365110, Santa Cruz Biotechnology Inc, Dallas, TX, USA) or goat polyclonal primary antibody against neuroligin-2 (1:20000 Neuroligin-2 (R-16): sc-14089, Santa Cruz). Membranes were washed 3 × 10 min each in PBST and incubated at RT in the dark for 1h in skim milk blocking solution and PBST plus 1:20000 rabbit anti-goat 680 secondary antibodies (Invitrogen), then washed 3 × 10 min in PBST followed by 3 × 10 min in PBS. Finally, the membranes were dried and washed with methanol and visualized by the Odyssey infrared imaging system at $\lambda = 700$ nm.

2.3.4 Quantification of neuroligin-1 and neuroligin-2 recombinant proteins

The concentrations of neuroligin-1 and neuroligin-2 proteins were determined against a standard curve of BSA based on band intensity from the Odyssey imaging system. *2.3.4.1 Quantification of neuroligin-1 and neuroligin-2 endogenous protein*

Variant amounts of purified neuroligin-1 and neuroligin-2 were loaded onto separate SDS-PAGE gels. Standard curves were created by plotting the intensity of each neuroligin-1 and neuroligin-2 band from the Odyssey imaging system against known amounts of recombinant truncated neuroligin-1 and neuroligin-2 proteins respectively. This method allowed me to accurately quantify the the endogenous proteins using the standard curve present on each gel. This reduced both gel to gel and well to well variation during quantification (Agarwal et al., 2008).

2.4 Results

2.4.1 NLGN1 cloning

Fig. 2.1. Agarose ethidium bromide gel of *NLGN1* PCR products. Bands in lanes 2–5 represent temperature gradients 56–64°C. These bands represent the *NLGN1* amplicon and were identified at 1069 bp, which is the correct size, under UV.

To accurately quantify neuroligin-1 protein expression in human brain membrane samples, neuroligin-1 truncated protein was used as standard with different known concentrations. The fragment of neuroligin-1 amplified from occipital cortex cDNA corresponded to amino acids 421 to 1491, which contains the antigenic epitope amino acids 33 to 61 near the N-terminus recognised by

the Santa Cruz antibodies. Bands of the correct size (1069 bp) of the *NLGN1* amplicon were detected under UV light on an agarose ethidium bromide gel (Fig. 2.1).

PCR products of *NLGN1* were purified using the QIAquick PCR purification kit (Qiagen) and cloned into pET100/D-TOPO vector. The PET101/D-TOPO vector contains N-terminal or C-terminal polyhistidine (6×His) tags that facilitate the purification on a nickel column such as Ni-NTA. The pET TOPO® vectors have a T7/lac promoter to induce the expression of the protein of interest in high levels of IPTG. The T7lac promoter contains a lac operon sequence that assists in binding to lac repressor and has a role to further repress T7 RNA polymerase-induced basal transcription of the gene of interest in BL21 StarTM(DE3) cells. The pET TOPO® vector has advantages for rapid directional cloning. Therefore, the vector was transformed into One Shot TOP10 *E. coli*. Quick screening for the successful insert of *NLGN1* into the TOPO vector was analysed by using phenol/chloroform/isoamyl alcohol (Fig. 2.2).

Fig. 2.2. Gel photo of quick screening for the successful insert (PCR product of neuroligin-1) into the TOPO vector. This technique gives rough confirmation of the successful ligation by the size of both insert and vector in the gel. Random selection of the colonies obtained from the transformation reaction in plates was done. These colonies were streaked on one plate and incubated overnight. Streaked patch colonies were treated with 2% Triton X-100 pH 12.4, then with phenol/chloroform/isoamyl alcohol (25:24:1) and loaded into the gel. The first lane in the gel represents the DNA

ladder standard, while lanes 2–19 show the treated colonies. Wells number 9 and 18 roughly show the successful ligation due to its size, which is slightly higher than the rest of the colonies in the gel.

To further analyse the successful transformation of *NLGN1*, analysis was conducted to confirm the presence and correct orientation of the insert by using a restriction enzyme with one specific site in the vector and one in the insert. NEB cutter from New England Biolabs was used to find the best restriction enzyme that cut the *NLGN1* insert. Plasmid digestion was performed as described in Section 2.3.2.5.

2.4.1.1 NLGN1 AGRF sequencing

AGRF sequencing was conducted to confirm the correct sequence and proper orientation of the insert for subsequent expression. See appendix for this chapter.

Fig. 2.3. SDS-PAGE of neuroligin-1 expression. Cultures were treated with or without IPTG to induce expression in (+) samples, and then run on SDS-PAGE for 45 minutes as described in Methods. Lane 1, protein marker; lanes 2, 4, 6 and 8, induced protein expression at 1, 2, 3, and 4h; lanes 1, 3, 5, and 7, no IPTG induction at 1–4h. The expected size of the recombinant truncated protein was 40 kDa.

2.4.1.2 Neuroligin-1 expression

The purified plasmid of pET100/D-TOPO constructs of neuroligin-1 were transformed into BL21 StarTM(DE3) One Shot *E. coli* for the expression studies. A time course of expression up to 4 hours was performed to determine the best conditions for the expression neuroligin-1. SDS-PAGE was used to analyse neuroligin-1 expression and the Odyssey system used to visualize the Coomassie-stained gel (Fig. 2.3).

2.4.2 NLGN2 cloning

Neuroligin-2 recombinant truncated protein was used as a standard to accurately quantify neuroligin-2 native protein in human brain. PCR was used with human brain cDNA and primers (outlined in Table 1) to amplify a fragment of human neuroligin-2. The amplimer corresponds to amino acids 465 to 1510 and contains antigenic epitope. PCR optimization was done to generate the best conditions for amplifying *NLGN2* with the *Pfu* enzyme. Figure 2.4 shows the PCR products.

Fig. 2.4. PCR products of neuroligin-2. First lane is the 1 Kb ladder standard, lanes 2-4 are the PCR product of neuroligin-2 with annealing temperatures of 56, 58, 60, 62, and 64°C respectively.

Neuroligin-2 restriction analysis was conducted to confirm the presence and correct orientation of the insert by using a restriction enzyme with one specific site in the vector and one in the insert.

NLGN2 PCR products were purified and cloned as described in Methods. Quick screening for the successful insertion into the vector is shown in Fig. 2.5.

Fig. 2.5. Quick screening for the successful insert (PCR product of neuroligin-2) into the TOPO vector. Lane 1, DNA ladder, lanes 2–16, treated colonies. Wells #8 and 12 show successful ligation at slightly higher size than the rest of the extracts.

2.4.2.1 Neuroligin-2 expression

pET100/D-TOPO NLGN2 plasmid was transformed to BL21 StarTM(DE3) One Shot *E. coli*. Pilot expression from 1–4 hours was conducted to determine the best expression conditions for neuroligin-2. Expression of neuroligin-2 protein was analysed by SDS-PAGE and Odyssey system was used to visualize the Coomassie-stained gel.

Fig. 2.6. SDS-PAGE of neuroligin-2 expression. Cultures were treated with (+) IPTG to induce expression, run on SDS-PAGE and stained as described in Methods. Lane 1, MW marker; lanes 2, 4, 5, 8, and 9, induced protein expression at 0, 1, 2, 3, and 4h; lanes 3, 6, 7, and 10, without IPTG induction at 1–4h. The expected size of the recombinant protein is 40 kDa.

2.4.2.2 Neuroligin-1 and neroligin-2 purification

Maximum levels of recombinant neuroligin-1 and neuroligin-2 expression were attained at 4h after IPTG induction. Both proteins were purified on Ni-NTA columns from an upscale expression

of 50 ml following 4h of IPTG addition (Figs 2.7 and 2.8).

Fig. 2.7. Neuroligin-1 protein purificationon Ni-NTA columns. The second lane shows the whole lysate, the third lane the supernatant followed by flowthrough of the
supernatant, lanes 5 and 6 wash #1 and wash #2 respectively. The last two lanes that show the final eluates have the correct size of the recombinant truncated protein, 38KDa.

Fig. 2.8. Neuroligin-2 protein purification on Ni-NTA columns. Details as for Fig.

2.7; the last two lanes represent the final elutes and have the correct size of truncated recombinant protein, 40KDa.

Fig. 2.9. Quantification of neuroligin-1 and neuroligin-2 recombinant proteins. The concentrations of neuroligin-1 and neuroligin-2 proteins were determined against a standard curve of known quantities of BSA based on band intensity in the Odyssey imaging system. The final concentration of neuroligin-1 was 21.39 ng/ μ l while the final concentration of neuroligin-2 was 24.27 ng/ μ l.

Fig. 2.10. Neuroligin-1 recombinant standard. Different concentrations of truncated

recombinant neuroligin-1 were loaded onto the gel (10-100 ng). Details as Fig. 2.11.

Fig. 2.11. Neuroligin-2 recombinant protein standard. Different concentrations of truncated recombinant neuroligin-2 were loaded onto the gel (10–100 ng). Details as for Fig. 2.11.

2.5 Discussion

Human post-mortem brain tissues have been used widely to find novel biomarkers in neurodegenerative disease, including AD. Different proteomic approaches can be used to find biomarkers and protein differences in AD, such as 2-dimensional gel electrophoresis, 2D-DIGE, and liquid chromatography based high-resolution tandem mass spectrometry, LCMS. The separation of a protein in 2-DIGE is based on the charge (isoelectric point) and the molecular weight. This separation leads to different pattern of protein spots that can then be recognized using MS methods to identify and quantify the proteins. 2-DIGE separation has good resolving power; utilization of

Page | 49

different dyes permits quantitative analysis, and allows increased sensitivity, reproducibility, and throughput in proteome analysis (Friedman et al., 2004, 2007). 2D-DIGE has a significant function in detecting proteins with posttranslational modifications (PTMs), because phosphorylation and glycosylation can have impacts on the isoelectric point and molecular weight of proteins. Hence, 2DIGE can be used to compare different samples, because the size (area) and intensity of spots alter according to variations in the expression of proteins. For these reasons, 2D-DIGE has been used to find biomarkers in CSF and plasma in neurodegenerative diseases such as AD (Castano et al., 2006, Davidsson et al., 2001, Hu et al., 2007).

An essential and informative phase in protein biomarker discovery is to identify quantitative differences in protein expression between diseased cases and controls. Utilizing 2-DIGE to quantify expression has limitations: it can't be used to quantify hydrophobic proteins such as membrane-bound proteins, and it is not applicable to proteins/peptides smaller than 15 kDa. It cannot detect differences when protein alterations are modest. This is a significant concern for studies of the human brain, where small changes in expression might have a marked impact over time.

There are simple and accurate proteomic techniques that can be used for validation, such as enzyme-linked immunosorbent assay (ELISA) and Western blotting. Western blotting is one of the less-expensive proteomic techniques, is quick to perform, sensitive, and needs less starting material, which are key considerations for work with human autopsy tissue. It can be used to identify and quantify a protein in a mixture by separating the protein in a gel based on its molecular weight. The protein is then transferred from the gel to a membrane, which is incubated with labelled antibodies specific to the protein of interest. Unbound antibody is washed off and the bands then visualized by an imaging system such as the Odyssey. If the primary antibodies are selective for the protein of interest, the visible band(s) represent that protein. The intensity of the band parallels to quantity of protein present. The use of a protein standard improves the quantification of the protein present.

Western blotting can give inaccurate results across gels. An internal control for protein quantification is essential for reliable, precise comparison of protein levels. Using a truncated

recombinant protein as standard in each gel minimizes errors due to the gel to gel variations. In this chapter, truncated recombinant human neuroligin-1 and neuroligin-2 proteins were successfully prepared to aid expression studies in human autopsy brain tissues. They allow accurate measurement of the native protein levels by in-gel immunodetection. The recombinant proteins are smaller than the native proteins; a known amount is added to each lane in the gel for use as a standard. The recombinant truncated protein separated clearly from their target proteins as sharp bands. A standard curve was created from the band intensities of standard in the different lanes on the gel; the use of the technique will be elucidated in the next chapter. It gives precise estimates of the quantities of neuroligin-1 and neuroligin-2 present in each sample, and can detect the proteins in the pmol per µg concentration range that is necessary to quantify proteins within the synapse. A comparison of the levels of neuroligin-1 and neuroligin-2 with other synaptic proteins is also possible with this method. The Odyssey infrared imaging system has a wide and linear dynamic range to quantify high and low signals on the same Western blot. It provides images with low background, high signal to noise detection, and clear, sharp, and reproducible bands.

Some limitations are associated with the quantification of proteins by immunodetection. These include incomplete protein transfer from the gel to membrane, and nonspecific binding of some antibodies. Staining of the polyacrylamide gel after transformation resolves this problem.

Chapter 3

3 Quantification of neuroligin-1, neuroligin-2 and β-neurexin-1 proteins

3.1 Aims of the research

- To quantify the expression of the synaptic proteins neuroligin-1, neuroligin-2 and β-neurexin-1 in human post-mortem brain tissues from AD cases and controls.
- 2. To evaluate differences in expression in three different regions of the brain (hippocampus, occipital cortex and inferior temporal cortex) in AD cases and controls.
- 3. To assess the impact of age and gender on expression.
- 4. To investigate expression according to the pathological severity of the disease.

3.2 Introduction

Synaptic transmission is crucial for nervous system function, and its disruption is considered an important cause for many neurobiological diseases, including AD. The progressive loss of synaptic proteins and hence neurological function in dementia has been a topic of interest since the relationship between synaptic loss and AD was first reported (Davies et al., 1987). Further studies have shown that synapse and synaptic protein loss have substantial effects on function in AD (DeKosky and Scheff, 1990, Scheff et al., 1990, Terry et al., 1991). Synapse loss is the major correlate of cognitive impairment. Synaptic weakening is considered to be a general component in the pathological alterations linked to dementia, and is the best correlate with dementia ante mortem (DeKosky and Scheff, 1990). An approximate 30% decrease in synapse number per cortical neuron has been observed in AD brain (Walch-Solimena et al., 1993). Synaptic pathology occurs early in AD progression and it is more strongly correlated with dementia than are senile plaques and NFT (Terry et al., 1991). Synaptic alterations in AD have been verified by electron microscopy as well as by proteomic approaches (Zhou et al., 2013, Masliah et al., 2001, Davies et al., 1987, Chang et al., 2013). Gene expression assays using brain autopsy tissues from AD cases and controls have shown lower levels of different gene transcripts involved in synaptic vesicle trafficking (Liang et al., 2008). The mechanisms of synaptic pathology in AD are not totally clear, although several synaptic proteins such as synaptophysin and gephyrin have been related to synaptic disruption in the disease (Agarwal et al., 2008, Tannenberg et al., 2006). It is not clear whether other synaptic proteins are involved in synaptic dysfunction in AD. Moreover, it remains unclear how synaptic organization, involving presynaptic, postsynaptic, and synaptic membrane proteins, is changed in AD.

3.2.1 Fluctuations of synaptic proteins in AD

Different studies have been conducted to quantify synaptic protein levels in human autopsy brain tissues from AD cases. For example, synaptophysin concentrations are lower in specific brain areas (Reddy et al., 2005, Lassmann et al., 1992, Honer et al., 1992, Hamos et al., 1989). However, different studies have shown contradictory results. Reduced synaptophysin levels were only detected at advanced stages of AD by Davidsson and Blennow (1998). The discrepancies between different studies may be due to differences in the region of brain tissue tested.

Dynamin I is a presynaptic terminal protein and functions in synaptic vesicle recycling (Liu et al., 1996). Quantification studies have revealed lower dynamin I mRNA and protein levels in the superior frontal gyrus of AD cases than in controls (Yao et al., 2003). A major component of the postsynaptic density (PSD) is the α -subunit of calcium/calmodulin-dependent protein kinase II (α CaMKII), which comprises 2% of total protein in rodent hippocampus and 1% of total protein in the forebrain (Ziff, 1997). No difference in α CaMKII level was observed in the hippocampi of AD cases and controls (Simonian et al., 1994). N-cadherin is a member of the cell-adhesion molecules that has important functions in neurite outgrowth, synaptic junctional complex formation, and synaptic stability (Shapiro and Colman, 1999, Tang et al., 1998). It is located with synaptophysin, synapsin I, PSD95, and GluR1 at the synapse both in the pre-synaptic membrane and on the PSD (Benson and Tanaka, 1998, Tanaka et al., 2000, Tang et al., 1998). Tannenberg et al. (2006) found that the level of N-cadherin protein was higher in all brain areas of 15 AD cases than in 15 controls. This might be explained by the increase in synaptic apposition length that occurs in AD (Scheff et al., 1990).

Complexin I is synaptic protein that controls inhibitory neurotransmitter release, while complexin II regulates excitatory neurotransmitter release. Both are membrane proteins that have roles in synaptic vesicle docking to the presynaptic membrane, which in turn mediates neurotransmitter release (Ono et al., 1998, Yamada et al., 1999). The expression of both complexins was significantly lower in all AD brain areas than in controls, but the ratio of complexin II to complexin I was not altered. These data show a loss of regulation of neurotransmitter release in AD in preserved presynaptic terminals. Quantitative immunohistochemistry in the entorhinal cortex from AD brain cf age-matched controls showed significantly higher levels of PSD-95 that positively correlated with \Box -amyloid and phosphorylated tau proteins (Leuba et al., 2008b). Quantifying these different types of synaptic proteins has proved fruitful in measuring the degree of synapse loss in AD. Further study of the roles of these and related molecules could illuminate mechanisms behind the synaptic loss and dysfunction that are characteristics of the disease.

3.2.2 Measurement of synapses and synaptic proteins

Electron microscopy was the first method used to quantify synapses, which were detected by thickening of the synaptic membrane, in a brain with cognitive decline, (Davies et al., 1987). One limitation of this approach is the ability to quantify only small areas of tissue. It also requires the use of preserved and rapidly fixed material, which limits its use with much autopsy tissue.

Antigen-specific immunochemical methods detect synapse loss in AD through the quantification of different synaptic proteins involved in the synaptic cycle. The immunochemical techniques utilized in the research of AD brain autopsies have linked synaptic loss with A β oligomer proteins as well as recognized synapse loss as the best correlate to AD.

Reliable and accurate techniques are able to precisely quantify proteins specific to different phases of the synaptic cycle. They can be correlated to disease stage as well as the region where the protein is expressed by using immunohistochemistry, enzyme-linked immunosorbent assay (ELISA) and immunoblotting methods. Immunohistochemistry measures synaptic protein levels by labelling synaptic proteins linked to presynaptic terminals or synaptic vesicles (Hamos et al., 1989). The relative quantification of synaptic proteins can be measured via optical density of immunoreactive regions of the cortex. Utilizing immunoblotting to quantify synaptic density and synaptic proteins in neurological disease gives reproducible and specific results (Masliah et al., 1991). Acurate quantifications for neuroligin-1, neuroligin-2 and β -neurexin were performed by using internal standard higher and lower than the unknown protein concentration in each gel in this chapter.

3.3 Materials and Methods

3.3.1 Tissue collection

All brain tissues were obtained from the Queensland Brain Bank, which is located at the School of Chemistry and Molecular Bioscience at The University of Queensland. It is a part of the Australian Brain Bank Network, and offers services for Australian and international clinicians and researchers to study neurological diseases. Autopsies for this study were obtained with informed written consent from the next of kin. Diagnosis of AD was validated by examination of the tissue by qualified neuropathologists (Halliday et al., 2002). Tissues were dissected from specific areas of AD and control brains and stored in 0.32 M sucrose at –80°C (Dodd et al., 1986).

3.3.2 Case selection and neuropathological severity score

Fifteen cases and 15 controls were selected with an average age of 77 years for the AD cases and 76 years for the controls (Table 3.1). The average post mortem delay for the AD cases was approximately 27 hours while for the controls it was 25 hours. Tissue from three different areas hippocampus (Hipp), occipital cortex (OC) and inferior temporal cortex (ITC) — was obtained from each brain.

These cases were all collected between 1993 and 2003. During this time, Alzheimer's disease was classified using the CERAD neuropathologic assessment based on Mirra et al. (1993). The Braak & Braak system was not used by the neuropathologists who did the Brain Bank examinations during that time. The CERAD assessment is a combination of 1. A gross examination to determine if cerebrovascular disease was present. 2. Semi-quantitative analysis of the degree of cortical atrophy and ventricle enlargement. 3. Visual examination of the hippocampus and entorhinal cortex for

atrophy. 4. Examination of the pallor of the substantia nigra and locus ceruleus. 5. Examination of the blood vessels for atherosclerosis or obstruction, ischemic events or other anomalies. 6. Semiquantitative assessment of the presence and number of neocortical senile plaques (silver-positive neurites). 7. Evaluation of the substantia nigra for Lewy bodies, neuronal loss, gliosis and NFTs to rule out Parkinson's disease. 8. Evaluation of clinical presence of dementia. The combination of these assessments result in a level of certainty of the diagnosis of AD: Definite (A), Probable (B), Possible (C). To determine the Braak & Braak level of these cases we used The National Institute for Aging and Ronald and Nancy Reagan Institute of the Alzheimer's Association (NIA-Reagan Institute) combined criteria, which suggests that the two effectively correlate to one another in broad categories. Since further examination of these pathological samples is not possible due to the time that has elapsed since their collection, the exact Braak & Braak staging level cannot be determined. However, each area of each brain was given a neuropathological severity score from 0 to 3 according to the abundance of AD hallmarks NFT and $A\beta$, and the extent of neuronal loss (Tannenberg et al., 2006; Table 3.2). This allowed us to rate disease severity in each of three areas from each case, effectively tripling the number of samples available for determining the influence of pathology on expression, and also eliminating the averaging of pathology across tissue regions that is inherent in the Braak staging approach (Tannenberg et al., 2006; Table 3.2). Pathological score is a composite of three measures; in occipital cortex, AB plaques are generally quite common, whereas neither tangles nor cell loss usually occur in this area except at very late disease stages. The pH of samples was not measured as it has no effect on the protein quality. Trabzuni et al. (2011) found that pH has no great effect on RNA or protein levels, and so is not a factor. That study assessed the influence of postmortem delay and tissue pH as predictors of gene expression measured on 1266 Affymetrix Exon Arrays. The study found that post-mortem delay and brain pH had negligible effects on array performance.

		Pag
and control	ls.	
Gender	APOE	-
М	ε3,ε4	-
М	ε3,ε4	
М	£3,£3	
Μ	ε4,ε4	
F	£3,£3	
F	£3,£3	
Μ	ε3,ε4	
F	ε3,ε4	
F	ε3,ε3	

Table 3.1. Details of AD cases and controls.

PMD(h)

Age, y

Subject#

AD1	65	34.83	Μ	ε3,ε4
AD2	82	54.92	М	ε3,ε4
AD3	72	25.00	М	ε3,ε3
AD4	79	26.33	Μ	ε4,ε4
AD5	92	48.00	F	ε3,ε3
AD6	61	12.00	F	ε3,ε3
AD7	84	18.42	М	ε3,ε4
AD8	70	16.00	F	ε3,ε4
AD9	87	35.50	F	ε3,ε3
AD10	81	1.67	F	ε3,ε3
AD11	82	41.25	F	ε3,ε4
AD12	75	4.00	Μ	ε4,ε4
AD13	73	48.00	Μ	ε4,ε4
AD14	82	15.38	F	ε3,ε3
AD15	66	18.83	Μ	ε3,ε4
Average	77 ± 8.4	26.7 ± 15.9	8M, 7F	
NC1	78	4.00	F	ε3,ε4
NC2	87	21.50	F	ε2,ε3
NC3	57	9.75	F	ε3,ε3
NC4	82	46.83	Μ	ε3,ε3
NC5	85	24.50	Μ	ε2,ε3
NC6	81	21.43	F	ε3,ε3
NC7	74	85.25	Μ	ε3,ε3
NC8	68	43.67	F	ε3,ε4
NC9	72	15.42	F	ε3,ε3
NC10	74	24.00	F	ε3,ε3
NC11	71	7.75	F	ε3,ε4
NC12	78	16.25	Μ	ε3,ε3
NC13	68	28.17	Μ	ε2,ε2
NC14	84	16.53	Μ	ε3,ε4
NC15	76	24.00	F	ε3,ε3
Average	76 ± 7.6	25.9 ± 11.3	6M, 9F	

AD, Alzheimer's disease case; NC, normal control; M, male; F, female

Each area of each brain was given a neuropathological severity score from 0 to 3 according to the abundance of AD hallmarks NFT and A β , and the extent of neuronal loss (Tannenberg et al., 2006; Table 3.2).

Subject#	Hipp	ITC	Occ
AD1	3	3	1
AD2	3	3	1
AD3	2	2	1
AD4	3	3	1
AD5	3	3	1
AD6	3	3	2
AD7	3	3	3
AD8	2	3	2
AD9	2	2	1
AD10	1	2	1
AD11	3	3	3
AD12	3	3	1
AD13	1	3	3
AD14	2	1	1
AD15	3	3	1
NC1	0	0	0
NC2	1	0	0
NC3	0	0	0
NC4	0	0	0
NC5	0	0	0
NC6	0	0	0
NC7	0	0	0
NC8	0	0	0
NC9	1	0	0
NC10	0	0	0
NC11	0	0	0
NC12	0	0	0
NC13	0	0	0
NC14	0	1	0
NC15	0	0	0

 Table 3.2.
 Neuropathological score

3.3.3 Membrane preparations

Tissues were homogenized in $10 \times (w/v)$ of 0.32 M sucrose at 4°C, and centrifuged for 10 min at $500 \times g$ in a Beckman JA20 at 4°C. The supernatant of the homogenate was centrifuged again for about 20 min at 12 000 × g at 4°C. The final pellet was resuspended in 10 ml of 50 mM Tris-HCL, pH 7.4. Total protein concentrations were estimated by the Lowry et al. (1951) method. Samples were frozen at -80° C for long-term storage.

3.3.4 Quantification of neuroligin-1, neuroligin-2 and β-neurexin-1 proteins

Different amounts of neuroligin-1, neuroligin-2 and β -neurexin-1 recombinant protein ranging from 10 ng to 100 ng were mixed with each of the membrane protein samples (~30 µg). Only one replicate was performed for each sample due to tissue limitations for some of the cases used in the current study. All samples were diluted 2:3 with SDS buffer (1.7% SDS, 5% glycerol, 1.55% DTT, 58 mM Tris-HCl, pH 6.8, with 0.002% bromophenol blue). The samples were heated for 5 min to 95°C, loaded onto 8% SDS-PAGE, and run for 35 min at 200V in running buffer (150 mM glycine, 20 mM Tris, 0.1% SDS). Recombinant β -neurexin-1 protein was purchased from Abnova (Walnut, CA, U.S.A). The truncated proteins neuroligin-1 (38kDa), neuroligin-2 (40Kda) and β -neurexin-1 (36kDa) separated clearly from the target protein (110 kDa, 95 KDa and 46 kDa, respectively) as sharp bands. A standard curve was created by plotting the intensity of the truncated band against its concentration using Odyssey software.

Proteins were then transferred from the gel to the PVDF membrane (Immobilon®-FL, Millipore, Billerica, MA, USA) in transfer buffer (10 mM NaHCO₃, 3 mM Na₂CO₃, pH 9.9, with 20% methanol). After transfer, the membrane was blocked in 1% skim milk in phosphate-buffered saline (PBST; 137 mM NaCl, 2.7 mM KCl, 10 mM Na₂HPO₄, 2 mM KH₂PO₄, 0.1% Tween-20, pH 7.4) with agitation for 1h at room temperature. A 1:10,000 dilution (2 μ l/20,000 μ l of blocking solution) of neuroligin-1, neuroligin-2 and β -neurexin-1 primary antibodies was added to the corresponding membrane and all membranes were incubated overnight at 4°C with agitation. The membranes were washed with PBST three times for 10 min each. A 1:2, 0000 dilution of secondary

Page | 59

antibody (Alexa Fluor 680, goat anti-mouse IgG, Molecular Probes, Invitrogen) in 1% skim milk/PBST was added to neuroligin-1 membrane. A 1:2, 0000 dilution of secondary antibody (Alexa Fluor 680 of rabbit anti-goat IgG, Molecular Probes, Invitrogen) in 1% skim milk/PBST was added to both neuroligin-2 and β -neurexin-1. All membranes were agitated for 1h at room temperature in the dark. Membranes were then washed with PBST three times for 10 min each followed by phosphate-buffered saline (PBS) twice for 10 min each. The intensities of the recombinant and target proteins bands were assessed using the LI-COR Odyssey scanner at 700 nm.

3.3.5 Data analysis

The intensities of the unknown bands fell within the intensity values of the lowest and highest concentrations of the recombinant proteins standards. Normal probability plots of each set of protein concentrations indicated that the data distribution was positively skewed. Box-Cox transformations performed with the Statistica software package (Tulsa, OK, USA) stabilized the variances and gave linear normal probability plots. Multiple comparisons were evaluated by ANOVA with appropriate post-hoc tests. Differences were considered statistically significant at P < 0.05. Mean and S.E.M. values were converted back to the original scale of measurement for presentation in text and figures.

3.4 Results

To quantify neuroligin-1, neuroligin-2 and β -neurexin-1 in autopsy tissues, the immunodetection protocol with recombinant truncated neuroligin-1, neuroligin-2 and β -neurexin-1 proteins as standards was optimized as outlined in Chapter 2. This minimized error from gel to gel variations and allowed precise quantification. Membrane preparations from all samples gave sharp bands with the anti-neuroligin-1 antibody at ~110 kDa, anti-neuroligin-2 antibody at 95 kDa and anti- β -neurexin-1 antibody at 46 kDa (Figs 3.1, 3.2 and 3.3). The molecular masses of the bands were confirmed by measuring their migrations against those of the markers. Normal probability plots of the levels of each protein in each brain areas indicated that the data distributions were positively skewed (Fig. 3.4). Box-Cox transformations stabilized the variances and gave linear normal probability plots for neuroligin-1 (Fig. 3.5A), neuroligin-2 (Fig. 3.5B) and β -neurexin-1 (Fig. 3.5C).

Fig. 3.1. Representative immunoblot of neuroligin-1 in hippocampus and inferior temporal and occipital cortices from two controls and one AD case selected at random. Neuroligin-1 recombinant truncated protein was detected at 38 kDa MW. Endogenous neuroligin-1 ran at 110 kDa and was quantified as described in the text.

Fig. 3.2. Representative immunoblot of neuroligin-2 in the three brain areas from two controls and two AD cases selected at random. Neuroligin-2 recombinant truncated protein was detected at 40 kDa MW. Endogenous neuroligin-2 protein ran at 95 kDa and was quantified as described in the text.

Fig. 3.3. Representative immunoblots of β -neurexin-1 in the three brain areas from

two controls and two AD cases selected at random. β -Neurexin-1 recombinant truncated protein was detected at 36 kDa MW. Endogenous β -neurexin-1 protein was detected at 46 kDa and was quantified as described in the text.

(A) Neuroligin-1

Fig. 3.4. Normal probability plots for A, neuroligin-1, B, neuroligin-2 and C, β neurexin-1 concentrations in unadjusted values. Shapiro-Wilks testing showed that most untransformed data distributions deviated significantly (P < 0.01) from normal as shown in the in-graph boxes.

Fig. 3.5. Normal probability plots for Box Cox transformations of A, neuroligin-1, B, neuroligin-2 and C, β -neurexin-1 concentrations. Shapiro-Wilks testing showed the transformed data distributions did not deviate significantly (P > 0.25) from normal as shown in the in-graph boxes.

3.4.1 Post-mortem delay and age at death

In order to obtain accurate results in the current study, post-mortem delay (PMD) and age at death were matched as closely as possible between the two groups. Some neurochemical research has shown that the quality of some proteins is not affected by PMD, while others have found that PMD and age can impact protein degradation. Furthermore, the levels of some proteins vary with age due to processes such as neuronal homeostasis, protein regulatory mechanisms, degradation pathways and increased oxidative stress. In the current study, regression analyses were performed to assess the effect of PMD and age on the expression of the three proteins; these were non-significant. To ensure there were no subtle influences of these potential confounds, a series analyses of covariance on neuroligin-1 and neuroligin-2 proteins showed there was no significant effect of either factor, alone or in combination, on expression values in combined subjects and areas, and that ANCOVA did not significantly reduce error variances. There was no significant effect of PMD or age on neuroligin-1 concentration ($F_{1,88} = 0.356$, P = 0.85 and $F_{1,88} = 1.457$, P = 0.23; Figs 3.6A and 3.6B), nor was there a significant effect of either PMD or age on neuroligin-2 concentration $(F_{1,88} = 0.651, P = 0.42 \text{ and } F_{1,88} = 1.036, P = 0.31 \text{ respectively; Figs 3.6C and 3.6D})$. This allowed the expression values to be assessed by analyses of variance without further normalization. For β neurexin-1, significant associations were observed between protein expression and both age and PMD ($F_{1,88}$ =13.619, P < 0.001 and $F_{1,88}$ = 5.480, P = 0.021 respectively; Figs 3.6E and 3.6F). To maintain consistency with the analyses of the other two proteins, and because AD cases and controls were reasonably well matched, ANOVA was also used for statistical testing of β -neurexin-1, but this issue needs to be revisited with a larger data set.

3.4.2 Neuroligin-1 expression by case-group

ANOVA showed that the overall neuroligin-1 protein concentration was significantly higher in AD cases than in controls ($F_{1,26} = 4.646$, P = 0.041; Fig. 3.7). Expression differed significantly according to brain region ($F_{2,52} = 14.100$, P < 0.001; Fig. 3.8), being highest in hippocampus and lowest in inferior temporal cortex across all subjects, and each area differing significantly from both others (P < 0.05 in all instances, Newman-Keuls).

Fig. 3.6. Regression analyses of protein concentrations against age and PMD. A, neuroligin-1 expression on age and B, PMD; C, neuroligin-2 expression on age and D, PMD; E, β-neurexin-1 expression on age and F, PMD.

Although the Group × Area interaction was not significant, *post-hoc* testing showed that expression in AD hippocampus was significantly higher than in both AD occipital cortex (P = 0.027) and AD inferior temporal cortex (P < 0.001), and also higher than in normal control hippocampus (P= 0.021; Fig. 3.8). *Post-hoc* analysis showed that the neuroligin-1 level was significantly higher in AD cases than in controls in both hippocampus (P = 0.036) and occipital cortex (P = 0.04). Values in inferior temporal cortex did not differ significantly (P = 0.09, Fig. 3.8).

Fig. 3.7. Overall neuroligin-1 expression by case-group. Protein levels were averaged across the three areas studied (hippocampus, inferior temporal cortex and occipital cortex) in each group; *, significantly higher than in controls (n = 15, both groups). Error bars represent S.E.M.

3.4.3 Neuroligin-1 level by gender

No significant differences were observed in males between AD cases and controls. The level of neuroligin-1 in AD females was higher than in control females, but this was not statistically significant (Fig. 3.9). Regionally, *post-hoc* testing showed that the level of neuroligin-1 in the hippocampus was significantly higher in AD females than in AD males and significantly higher in AD females than in control females. There were no gender differences in either the occipital cortex or the inferior temporal cortex between cases and controls (Fig. 3.10).

Fig. 3.8. Neuroligin-1 protein by case-group and area. HP, hippocampus; OC, occipital cortex; ITC, inferior temporal cortex; *, significantly different from the level in the corresponding control sample, P < 0.05 by *post-hoc* Newman-Keuls test.

Fig. 3.9. Overall neuroligin-1 expression by gender. Neuroligin-1 protein concentrations were averaged across the three brain regions in AD cases and controls partitioned by gender.

3.4.4 Neuroligin-1 level and APOE genotype

The most common genotype among the population is *APOE* ε 3; seven of the 15 normal controls in this study were ε 3, ε 3 homozygotes and all but two had at least one ε 3 allele; the latter were ε 2, ε 4 and ε 2, ε 2, at no increased risk of AD. The AD cases included six ε 3, ε 3 homozygotes; six

had one ε 3 allele, and non had an ε 2 allele. About 50% of AD cases carry at least one copy of the risk-factor ε 4 allele: this was true of 9/15 AD cases here, three of whom were ε 4, ε 4 homozygotes; four normal controls had one ε 4 (three with one ε 3) allele, none was an ε 4, ε 4 homozygote. The lowest frequency *APOE* allele is ε 2, found in 2–8% of the population (Schellenberg, 1995). This allele was only found in normal controls here, two of whom were ε 2, ε 3, another ε 2, ε 2: all three of these subjects would have been at reduced risk of AD.

Fig. 3.10. Neuroligin-1 expression by group, gender, and and area. Details as Fig. 3.9; *, significantly higher than in female controls and [†], significantly higher than in AD males, P < 0.05 by Newman-Keuls test.

Fig. 3.11. *APOE* genotype and neuroligin-1expression in AD. AD cases were divided by whether they did (APOE2) or did not (APOE1) carry an *APOE* ε4 allele.

Fig. 3.12. Neuroligin-1 expression by *APOE* genotype, group, and area. Key as for Fig. 3.11; *, significantly different from matched controls, P < 0.05, Newman-Keuls.

As the full range of six *APOE* genotypes was not represented in both groups we classified the subjects according to the number of $\varepsilon 4$ alleles they possessed to study genotype–phenotype interactions. Although the Group × N° of $\varepsilon 4$ alleles interaction was significant ($F_{1,25} = 5.608$; P = 0.026), in essence because AD cases with no $\varepsilon 4$ alleles differed from all other subjects ($P \le 0.01$, Newman-Keuls), this result must be treated with caution because these few AD cases were confounded by gender: all were female (Fig. 3.11). Similarly, the Area × Group × N° of $\varepsilon 4$ alleles interaction was significant ($F_{2,52} = 3.281$, P = 0.045), and a significantly higher neuroligin-1 level was found in AD cases with no $\varepsilon 4$ than in comparable controls in both hippocampus and occipital cortex (Fig. 3.12), but again, these effects are not statistically reliable. No significant differences were found in neuroligin-1 level between cases and controls in inferior temporal cortex (Fig. 3.12).

3.4.5 Neuroligin-1 expression and severity of disease

The impact of the severity of the disease on neuroligin-1 protein was studied. Tissue samples were divided according to the extent of A β and *tau* deposition and the degree of neuronal loss, and given a score from 0 to 3 by an experienced neuropathologist blinded to diagnosis (Tannenberg et al., 2006). In the AD cases, no sample had a score of zero; and because almost all control tissue samples gave scores of zero it was not possible to make an across-group comparison: so the analysis was confined solely to samples from AD cases. A slightly higher level of neuroligin-1 was found at pathological score 2 in all three areas, but this was not significant. The concentration of neuroligin-1 was lower at pathological score 3 in all areas, but post-hoc testing showed no significant difference in neuroligin-1 level between tissue samples with differing pathological scores (Fig. 3.13). Regional expression did not vary significantly with pathological score ($F_{2,42} = 1.142$, P = 0.33; Fig. 3.14).

3.4.6 Neuroligin-2 expression in AD cases and controls

Overall expression of neuroligin-2 protein was significantly lower in AD cases than in controls ($F_{1,28} = 4.690$, P = 0.039; Fig. 3.15). Newman-Keuls *post-hoc* testing showed a significantly lower neuroligin-2 level in inferior temporal cortex in AD cases than in controls (P = 0.021). Levels in the other two areas were also lower in AD cases than in controls, but not statistically significant

Fig. 3.13. Overall expression of neuroligin-1 and pathological severity. AD tissue samples undifferentiated by region were divided according to pathological severity (PS) score between 1 and 3. No difference was statistically significant.

Fig. 3.14. Pathological severity and regional neuroligin-1 protein expression. There were no differences in expression with pathological severity in any area by Newman-Keuls *post-hoc* testing.

(Fig. 3.16). When AD cases and controls were combined, the inferior temporal cortex showed the highest expression level of neroligin-2 compared to the occipital cortex and the hippocampus (see Fig. 3.16; graph not explicitly shown).

Fig. 3.15. Total neuroligin-2 protein concentrations averaged across the three areas studied; *, significantly lower than in controls, P < 0.05.

Fig. 3.16. Neuroligin-2 protein expression by area. Key as for Fig. 3.8; *, significantly lower than in the same area in controls, P < 0.05 by Newman-Keuls *post-hoc* test.

3.4.7 Neuroligin-2 level and gender

The influence of gender on neurolign-2 protein expression was significant by ANOVA ($F_{1,86}$ = 13.461, P < 0.001; Fig. 3.17). No significant differences were found between AD cases and controls in hippocampus or occipital cortex in either sex. Neuroligin-2 protein level was lower in AD males than in control males in inferior temporal cortex, whereas the reverse was true for females in this area (Fig. 3.18).

Fig. 3.17. Neuroligin-2 expression by case-group and gender. Neuroligin-2 concentrations were averaged across all areas studied in AD cases and controls. Newman-Keuls *post hoc* test showed that expression was significantly lower in male

Fig. 3.18. Gender effects on neuroligin-2 protein expression. In inferior temporal cortex: *, significantly lower than in male controls; [†], significantly lower than in AD females; both P < 0.001, Newman-Keuls *post-hoc* tests.

3.4.8 Neuroligin-2 level and APOE genotype

Neuroligin-2 protein expression was significantly lower in AD *APOE* ε 4 carriers than in AD non-cariers ($F_{1,88}$ =10.574, P = 0.002; Fig. 3.19). The Group × APOE interaction was not significant

($F_{1,86}$ =0.212, P = 0.64; Fig. 3.20). Although the Group × Area × *APOE* interaction was not significant ($F_{2,52}$ =1.316, P = 0.27), some differences were detected by *post-hoc* testing (Fig. 3.21).

Fig. 3.19. Expression of neuroligin-2 by N° of *APOE* ϵ 4 alleles in AD cases. Key as for Fig. 3.10; *, significantly different from cases without at least one e4 allele, see text for details.

Fig. 3.20. *APOE* ε4 genotype, neuroligin-2 expression and group. Key as for Fig.

3.10. No comparison was significant by Newman-Keuls post-hoc test.

Fig. 3.21. Neuroligin-2 expression by group, *APOE*, and area. Key as for Fig. 3.10. Newman-Keuls *post hoc* test showed significantly lower neuroligin-2 expression in

AD *APOE* ε 4 carriers than in matched controls in hippocampus (*P* = 0.046). A trend was seen in AD *APOE* ε 4 non-carriers *cf* controls in occipital cortex (*P* = 0.071).

3.4.9 Neuroligin-2 expression and severity of disease

Overall neuroligin-2 protein expression was highest at the moderate stage, and lowest at the severe stage, but not statistically significant ($F_{2,42} = 0.389$, P = 0.68; Fig.3.20); neither was the PS × Area interaction ($F_{4,36} = 0.696$, P = 0.59; Fig 3.21), although some *post-hoc* tests were.

Fig. 3.22. Neuroligin-2 protein expression and disease severity. Key as for Fig. 3.12.

Fig. 3.23. Neuroligin-2 expression by area and disease severity. Key as for Fig. 3.12. There was no variation in expression with pathological severity in either hippocampus or occipital cortex. Newman-Keuls *post-hoc* testing in inferior temporal cortex

showed that neuroligin-2 level at the moderate stage of AD was significantly higher than at the mild and severe stages, P < 0.05.

3.4.10 β -neurexin-1 by case-group and brain region

Even though the level of β -neurexin-1 was slightly higher in AD cases than in controls, the case-groups did not differ significantly ($F_{1,86} = 0.157$, P = 0.91; Fig. 3.24). Expression did not differ significantly by brain region between case-groups ($F_{2,52} = 0.125 P = 0.88$; Fig. 3.25).

Fig. 3.24. Overall β -neurexin-1 expression by case-group. Values were averaged

across areas as described under Fig. 3.7.

Fig. 3.25. Expression of β -neurexin-1 protein by case-group and area. No difference between or within areas was significant, see text.

3.4.11 β-neurexin-1 level and gender

The effect of gender on β -neurexin-1 expression was analysed. The Group × Gender interaction was not significant ($F_{1,86} = 0.662$, P = 0.42; Fig. 3.26), nor was the Group × Gender × Area interaction ($F_{2,52} = 0.059$, P = 0.942; Fig. 3.27).

3.4.12 β-Neurexin-1 level and APOE genotype

The Group × N° of *APOE* ε 4 alleles was significant ($F_{1,26} = 6.431$, P = 0.017), due to higher β -neurexin-1 expression in AD *APOE* ε 4 carriers than in control ε 4 carriers (Fig. 3.28).

Fig. 3.28. *APOE* genotype and β-neurexin-1 by case-group. Key as for Fig. 3.10. Newman-Keuls *post*-hoc testing showed that expression was significantly higher in AD *APOE* ε4 carriers than in control ε4 carriers (APOE2), P < 0.001.

The brain region by group and $\varepsilon 4$ interaction was also significant ($F_{2,52} = 5.376$, P = 0.0075), most notably in inferior temporal cortex (Fig. 3.29). However, these and the statistics on overall expression by *APOE* genotype are not reliable, for the reasons outlined in Sections 3.4.4 and 3.4.8.

Fig. 3.29. *APOE4* genotype effects on regional β -neurexin-1 expression by casegroup. Key as for Fig. 3.10. Newman-Keuls *post hoc* test showed significantly higher expression in AD cases carrying at least one *APOE* ϵ 4 allele (APOE2) than in the equivalent controls in inferior temporal cortex, *P* = 0.004. Expression in AD cases carrying at least one *APOE* ϵ 4 allele (APOE2) was significantly higher (*P* = 0.006) than in AD cases without an *APOE* ϵ 4 allele (APOE1) in inferior temporal cortex.

3.4.13 β-neurexin-1 expression and severity of disease

When AD tissue samples were divided by pathological score without regard to brain region there was no significant variation in β -neurexin-1 expression ($F_{2,40} = 2.481$, P = 0.10; Fig. 3.30). Further examination showed that this was in part due to a regional confound; although the Group × Pathological × Score Area interaction was not significant ($F_{4,36} = 0.528$, P = 0.71), *post-hoc* testing revealed some regional differences (Fig. 3.31).

Fig. 3.30. β -neurexin-1 protein expression by pathological severity of disease. Key as for Fig. 3.12.

3.5 Discussion

3.5.1 Neuroligin-1 expression in AD

There is much evidence that alterations in synaptic protein expression could have an impact on synaptic loss (Masliah et al., 2001, Arendt, 2009). Various brain autopsy studies have found synaptic protein differences between AD cases and controls (Agarwal et al., 2008, Proctor et al., 2010, Tannenberg et al., 2006). Data from this chapter showed that the overall level of neuroligin-1 was significantly higher in AD tissue samples than in age- and sex-matched controls, which suggests there might be post-synaptic excitatory dysfunction. The level of neuroligin-1 in AD cases was significantly higher than in the relevant controls in both hippocampus and occipital cortex, which might indicate synaptic toxicity in these two areas. It was surprising not to see significantly higher levels in AD inferior temporal cortex, because it is one of the most affected areas in AD.

Neuroligin-1 levels did not vary with pathological score significantly in any of the three areas. However, levels were slightly higher in PS2 samples than in PS1 samples in all three areas, and lower in PS3 samples that exhibit the final stage of the disease. The low level in PS3 samples could be due to the marked loss of synapses at this stage. Taken together, these results show that neuroligin-1 differences in AD vary with both brain region and disease progression, which is consistent with documented asynchronous changes in synaptic protein levels in AD (Agarwal et al., 2008, Kirvell et al., 2006).

We found that neuroligin-1 level varied regionally. The highest concentration was found in control inferior temporal cortex, which is consistent with previous reports of the levels of other synaptic proteins such as synaptophysin, dynamin I, N-cadherin, and α CaMKII in this area (Tannenberg et al., 2006). A higher neuroligin-1 level was observed in female cases than in female controls, and levels in AD females were higher than those in AD males. This result suggests that the higher expression level of neuroligin-1 could be gender specific. It is noteworthy that the age-adjusted incidence of AD is higher in females (Schmidt et al., 2008).

The overall higher level of neuroligin-1 in AD cases compared with age- and sex-matched controls could indicate a role for this protein in excitotoxicity. The β -neurexin-1–neuroligin-1 complex is a powerful inducer of post-synaptic differentiation of glutamatergic synapses *in vitro*. It induces accumulation of, and can bind to, two crucial components of the PSD — PSD-95 and NMDAR — at mature synapses. The NMDAR has a critical function in neural circuit development and synaptic plasticity (Barria and Malinow, 2002), and selective neuronal death in AD may depend primarily on NMDAR activation (Greenamyre and Young, 1989). The function of neuroligin-1 in maintaining NMDAR-mediated excitatory post-synaptic currents (EPSCs) could be due to the modification of post-synaptic NMDARs rather than alterations in pre-synaptic transmitter release, because neuroligin-1 is located at post-synaptic sites (Song et al., 1999). The higher neuroligin-1 levels in AD cases shown in this study could lead to increased numbers of NMDARs at post-synaptic sites, which has been reported recently (Leuba et al., 2014). The higher PSD-95 concentrations in AD cases (Leuba et al., 2008a, 2008b, Rubenstein and Merzenich, 2003).

The higher neuroligin-1 level in AD cases might reflect a reduced rate of proteolytic cleavage in the synapse. Most γ -secretase substrates such as amyloid precursor protein (APP), Notch, ErbB4, E-cadherin and ephrinB2 shed their extracellular domains to yield a membrane-tethered C-terminal fragment (CTF) and a soluble ectodomain (Beel and Sanders, 2008, De Strooper et al., 1999, Wolfe, 2008). In addition, ADAM10 cleaves a number of γ -secretase substrates such as APP, cadherin, and Notch (Jorissen et al., 2010, Kuhn et al., 2010, Reiss et al., 2005). Both γ -secretase and ADAM10 metalloproteinase regulate neural stem cell numbers by changing Notch signalling in the mature synapse (Jorissen et al., 2010). They also mediate the cleavage of several substrates in neurons to control synaptic function (Restituito et al., 2011, Rivera et al., 2010). Neuroligin-1 undergoes proteolytic processing in rat brain and mouse primary cortical neuronal cultures (Suzuki et al., 2012). ADAM10 removes the extracellular domain of neuroligin-1 and γ -secretase removes the intracellular domain from the remaining membrane-tethered fragment of the protein. Incubating cultures with NMDA or β -neurexin-1 increases N-terminal fragment (NTF)-neuroligin-1 levels. Thus, neuroligin1 cleavage can be controlled by neuronal activity or by binding with β -neurexin-1, which offers a mechanism for the regulation of neuroligin-1 levels on the neuronal membrane (Peixoto et al., 2012, Suzuki et al., 2012).

Acute neuroligin-1 cleavage destabilizes β -neurexin-1 and depresses excitatory neurotransmission by reducing the probability of neurotransmitter release. Consequently, inhibiting neuroligin-1 cleavage may increase the probability of pre-synaptic release. Neuroligin-1 cleavage can alter glutamate transmission and have an impact on post-synaptic dendritic spines (Sindi et al., 2014). Changes in proteolytic processing of neuroligin-1 might enhance pathophysiology and provide a link between neuroligin-1 levels and the PSD in AD cases (Welberg, 2012). In conclusion, this study suggests a possible role of neuroligin-1 in the pathogenesis of AD. Its increased level could contribute to the dysfunction of excitatory synapses in AD.

Treatment of cultured cortical neuron with neuroligin-1 increases the number of excitatory synapses on GABAergic interneurons. These data suggest that neuroligin-1 enhances the formation of new synapse in developing neurons only (Ting et al., 2011). Neuroligin-1 also increases the size of excitatory synapse on GABAergic interneurons, which suggest it can strengthen existing synapses. Neuronal excitability depends on the balance of excitatory and inhibitory input signals, which is regulated by excitatory and inhibitory synaptic contacts. As a result, promoting the effect of neuroligin-1 on excitatory synapses can be essential to the role of GABAergic interneurons. The overall increase of neuroligin-1 protein observed in the current study could lead to increasing the number of excitatory synapses on GABAergic interneurons.

Synaptophysin was measured in an earlier study from the lab (Tannenberg et al., 2006) and we have now compared neuroligin-1 and synaptophysin in the cases that are in common between the two studies. We aim to publish this new data soon. We found no difference in synaptophysin between AD cases and normal controls in any of the three brain areas studied. The concentration of neuroligin and synaptophysin is expressed in $ng/\mu g$ of total synaptosomal protein in the nerveendings that remain in the preparation. That is, it is a measure of the concentration of each protein *per synaptosome*, and thus should not be affected by atrophy or synapse loss.

3.5.2 Neuroligin-2 expression in AD

Neuroligin-2 is a synaptic cell adhesion protein specific for inhibitory synapses. In the current study, neuroligin-2 levels were significantly lower in AD cases than in matched controls, signifying either a decrease in the number of inhibitory synapses in total or in the density of neuroligin-2 clusters within such synapses. Neuroligin-2 levels varied with brain region. The highest concentration was found in control inferior temporal cortex samples, which is consistent with previous reports that higher levels of synaptic proteins such as synaptophysin, dynamin I, N-cadherin, and α CaMKII are found in this region than in other brain regions (Tannenberg et al., 2006). The level of neuroligin-2 in both the hippocampus and occipital cortex did not differ significantly between AD cases and controls. One the other hand, neuroligin-2 in the inferior temporal cortex, which is one of the most-affected areas in the AD brain, was significantly lower in AD cases than in controls. In occipital cortex and inferior temporal cortex, neuroligin-2 was higher at a moderate pathological severity, which indicates it is prone to AD damage. At the severe disease stage the level of neuroligin-2 protein in these areas was again lower, which is consistent with the marked synaptic loss seen at the final stage of the disease.

It was very surprising to find no significant differences in neuroligin-2 protein expression in the highly affected hippocampus when a significant reduction in neuroligin-2 proteins was observed in the AD inferior temporal cortex. Neurodegeneration in AD progresses through the brain in a predictable, region-specific manner (Braak and Braak, 1991a). Given that the hippocampus is one of the first areas affected in AD and one of the most degenerated, and that the inferior temporal cortex is affected after the hippocampus, it would be expected that the inferior temporal cortex would not be as degenerated as the hippocampus. The finding reported here could be explained by a specific decline of neuroligin-2 protein in the inferior temporal cortex that does not occur in hippocampus. More study on the associations between excitatory and inhibitory synaptic proteins in AD may provide an explanation of this conundrum with respect to excitotoxicity in AD. The AD-specific paucity of neuroligin-2 was more noticeable in male than in female cases, and this underpinned the overall lower neuroligin-2 level in AD cases. Because AD has a higher incidence in females than males, the greater lack of neuroligin-2 in male cases appears contradictory. It could be explained by the younger average age at death in males than in females in this study, and hence the earlier age of disease onset, which would suggest a greater disease severity. Females died at a higher mean age, and may have had less-severe disease on average. However, the case numbers were limited in this study and it will be better to study more cases to obtain a more conclusive result.

Neuroligin-2 is crucial for post-synaptic inhibitory function. Data from the current study is consistent with a report that deletion of neuroligin-2 impairs inhibitory synapse function as measured by evoked synaptic transmission (Chubykin et al., 2007). The paucity of neuroligin-2 in AD cases may portray a dysfunction in GABAergic transmission, and is in conformity to a previous report that *NLGN2* knockout mice have decreased GABAergic transmission (Blundell et al., 2009). The role of neuroligin-2 in regulating GABAergic function is further illustrated by a loss-of-function mutation of this protein in patients with schizophrenia (Sun et al., 2011).

3.5.3 β-Neurexin-1 expression in AD

 β -Neurexin-1 has not been previously quantified in AD cases and controls, and it was surprising to find that the level of β -neurexin-1 was higher, although not significantly, in AD cases than in controls in all three brain regions. This higher level of β -neurexin-1 is compatible with a previous study that quantified another pre-synaptic cell adhesion molecule, N-Cadherin, in AD cases and controls (Tannenberg et al., 2006). The higher levels of β -neurexin-1 in AD cases derive from the increase in synaptic apposition length that occurs in AD (Scheff et al., 1990). Further work with a larger number of cases and controls is required to confirm this.

The highest level of β -neurexin-1 was observed in the inferior temporal cortex, which is compatible with previous findings of high synaptic protein abundance in this area. The lowest level of β -neurexin-1 was observed in the occipital cortex. β -Neurexin-1 protein level was found to be modulated by the pathology severity of disease. It was lower in all three regions at the moderate severity stage and higher again at the severe stage. This increase in the final stage of AD may be triggered by a compensatory mechanism to offset some of the excitotoxic damage.

This study was the first to examine neuroligin-1, neuroligin-2 and β -neurexin-1 in subjects with AD. Overall, the data presented suggest a selective synaptic dysfunction in AD. The quantities of these synaptic proteins differed in AD in a regionally selective manner.

The neuropathology of the AD cases used showed a contrasting result in the levels of neuroligin-1 and neuroligin-2 proteins, which are specific for glutamatergic and GABAergic synapses respectively. Both neuroligin-1 and β -neurexin-1 levels were higher in AD cases than in controls. Variations in the levels of neuroligins and neurexins could sway the balance between excitatory and inhibitory neurotransmissions in the brain, and could lead to damage of synapses and dendrites and ultimately to the neuronal death seen in AD.

3.5.4 APOE genotype and protein expression

It was surprising to find a significant enhancement of neuroligin-1 levels in cases without an *APOE* ε 4 allele in the current study. The level of neuroligin-2 did not significantly differ between in AD *APOE* ε 4 carriers and AD cases without an *APOE* ε 4 allele. On the other hand, β -neurexin-1 was higher in *APOE* ε 4 carriers than in AD ε 4 non-carriers. It must be emphasized that this analysis was badly underpowered because there were so few AD cases without an *APOE* ε 4 allele and because of the overall lack of representation of sufficient numbers of subjects in each allelic category; further work on this issue will require a much larger data set. *APOE* has an important function in synaptogenesis, and both *APOE* ε 2 and *APOE* ε 3 alleles, particularly the former, are protective against AD (Rebeck et al., 2002), while *APOE* ε 4 increases the risk of AD (Liu et al., 2013). Hemizygous and homozygous *APOE* ε 4 littermates (Buttini et al., 2000). As a consequence, AD cases with at least one ε 4 allele are likely to be more vulnerable to neurodegeneration than AD cases with at least one ε 4 allele are likely to be more vulnerable to neurodegeneration than AD cases with ε 2 or ε 3 alleles. There were no AD cases with an ε 2 allele in this study, and very few in the Queensland Brain Bank.

3.5.5 Limitations of the study

Neuroligin-1, neuroligin-2 and β -neurexin-1 proteins were quantified in AD cases and controls matched as closely as possible for age, gender, and post-mortem delay. Nevertheless, some data, such as medical history, environmental context, and family history, were missing for some AD cases and controls. Environmental factors such as smoking and alcohol dependence can have an impact on protein expression in the central nervous system. A meta-analysis of 43 studies showed that cigarette smoking significantly increases the risks dementia and cognitive decline (Anstey et al., 2007). Another study showed a significant association of the *NRXN1* gene with nicotine dependence in European- and African-American smokers, and indicated that smoking has an impact on neurexin levels (Nussbaum et al., 2008). Alcohol use reportedly increases the risk of AD (Piazza-Gardner et al., 2013) and influences synaptic protein expression in human subjects (Matsuda-Matsumoto et al., 2007). Neurexin-3 polymorphisms are reportedly associated with alcohol dependence and altered expression of specific isoforms of the protein (Hishimoto et al., 2007).

A limitation of the current study was the small number of samples with varying degrees of pathological severity in the three brain regions. Increasing the number of cases and controls can strengthen the study and enhance statistical power. Additional time and effort to extend the study would help in replicating the work for validation purposes.

Some limitations are associated with the quantification of proteins by immunodetection. These include incomplete protein transfer from the gel to the membrane; different post-translational modifications might alter the efficiency of transfer. Non-specific binding of some antibodies can vary between the standard and the endogenous protein. Quantification of proteins by mass spectrometer-based assays will aid validation and help determine whether different post-translational modifications occur in the neuroligins and neurexins. Therefore, more time and effort should be put into the quantification of these molecules by the multiple reaction monitoring and SWATH techniques described in chapter 4. Advanced imaging techniques such as FDG-PET can hopefully give new insights into disease progression in living subjects, based on the current study. However, at present, PET ligands are not available for the neuroligins and neurexins, and it is hard to get resolution down to the level of the nerve ending with current clinical scanner technology, but the data presented in this thesis may suggest that higher numbers of excitatory synapses will be found in pathologically affected areas of the AD brain when the new 7T instruments become available for clinical use.

The approach to quantification used here is expensive, low-throughput, and time-consuming, and required the generation of critical recombinant reagents. The three proteins were identified in human brain membrane preparations at ~110 kDa for neuroligin-1, ~95 kDa for neuroligin-2 and ~46 kDa for β -neurexin-1. These predicted molecular weights were obtained from UniProt and it was assumed that each antibody used was specific only for the protein of interest and did not cross-react with any other protein. This should be verified independently, for example by the techniques set out in Chapter 4. The need for high-throughput techniques to explore several of the interesting preliminary results outlined in this Chapter was another motivation that led to the Chapter 4 study.

Chapter 4

4 Quantification of neuroligin and neurexin proteins by MRM and SWATH

4.1 Aims of the research

- 1. To identify synaptic proteins in human autopsy brain tissues by mass spectrometry.
- 2. To search for neuroligin-1, neuroligin-2, neuroligin-3, neuroligin-4 and neuroligin-4Y proteins in human autopsy brain tissue by mass spectrometry.
- 3. To search for neurexin-1 α and neurexin-1 β in human autopsy brain tissue by mass spectrometry.
- To quantify neuroligins and neurexins with multiple reaction monitoring (MRM) and SWATH techniques.

4.2 Introduction

A range of experimental approaches is required to assess synaptic processes and their adaptive alterations, which are highly ordered and complex (Bard and Groc, 2011, Coba et al., 2009). Neuropathological diseases show characteristic molecular changes, with diverse ætiologies, that are mainly located at the synapse (Dosemeci et al., 2007, Fernandez et al., 2009, Husi et al., 2000). Studying the protein configuration of the synapse in autopsy brain tissues may provide useful insights into various diseases (Keller et al., 2007). Molecular and cellular studies of these processes have until recently been restricted to techniques that can study one molecule at a time within a network. Research into proteins in autopsy tissue is limited by the lack of good paradigms; it is essential to develop methods to quantify proteins and their post-translational modifications at the synapse as well as to develop strategies to validate the quantification of these entities.

During the last decade, mass spectrometry (MS)-based proteomic techniques, and biochemical fractionation techniques, has allowed researchers to begin investigating the proteomes underlying synaptic signalling (Bayes et al., 2011, Cheng et al., 2006, Hahn, 2010, Peng et al., 2004). Many proteins and post-translational modifications can be studied simultaneously, which allows investigation of signalling pathways in the context of various other intracellular molecular events.

4.2.1 Mass spectrometry based techniques

Protein analysis using MS first requires separating the proteins into fractions using methods such as electrophoresis and chromatography (Woods et al., 2012). After fractionation, each protein is analysed by MS. The initial fractionation before analysis is important to enhance sensitivity and to identify and characterise low-abundance proteins that may be masked in complex mixtures. However, some samples can be run in MS without fractionation.

There are three main parts in a mass spectrometer: the ionization source, the mass analyser, and the detector. An ionization source ionizes the peptides in the sample, which then travel through the analyser according to their mass:charge (m/z) ratios. The ionized sample then hits the detector and spectra are recorded: the spectra are used to identify the proteins (Fig. 4.1)

Fig. 4.1 Example of basic mass spectrometer experiment. The sample is fractionated by electrophoresis or HPLC and then digested by an enzyme such as trypsin. The digest is ionized in a MALDI-MS or ESI-MS. The ions fly and are sorted through different types of mass analysers. The ions are detected and then recorded and a mass spectrum is produced.

4.2.1.1 Ionization techniques

Ionization techniques convert uncharged molecules into ions that can then be manipulated in electric or magnetic fields. The most important issue with biological molecules like peptides and proteins is to convert polar, zwitterionic molecules into gas-phase ions without degradation. The most common ionization methods for biological samples are electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI).

4.2.1.1.1 Electrospray ionization

ESI generates ions by spraying an electrically generated fine mist of ions into the inlet of a mass spectrometer at atmospheric pressure (Fenn et al., 1989). Ionization is generated from the potential difference between the capillary inlets to the mass spectrometer in which the liquid flows and small droplets of liquid are formed. The liquid is translocated to a heating device that causes evaporation of the solvent. When the droplets reach the point at which charge repulsion exceeds the surface tension, ions are desorbed from the droplet to create bare ions, which are then transferred to the ion optics of the mass spectrometer. ESI transforms solution-phase molecules into gas-phase ions; the ions are created with different charges, which complicates the calculation of molecular weight due to a one-to-one association between the m/z value and molecular weight. Multiple charging has the advantage of lowering the m/z value detected in the spectrometer, which allows the use of less-sophisticated mass analysers.

4.2.1.1.2 MALDI

The second ionisation technique, MALDI, uses laser energy to alter molecules into gasphase ions. A matrix is mixed with the sample that absorbs the energy of the laser and is used to support thermal desorption.

4.2.1.2 Mass analyser

The different types of analysers include quadruple (Q), time-of-flight (TOF), and ion trap (IT), which have different applications. They differ in their physical principles and analytical

performance. MALDI sources are generally coupled with TOF or TOF/TOF mass analysers because of their pulse mode of action. Shotgun proteomics liquid chromatography (LC) is associated with mass spectrometry for the identification of proteins. The main advantage of LC-MALDI-MS over LC-ESI-MS is the robustness of the former in resisting very harsh LC conditions and the high m/zrange of the TOF mass analyser (Ngounou Wetie et al., 2013, Sokolowska et al., 2013). The limitations of LC-MALDI-MS include the difficulty in spotting directly from the LC apparatus. In MS, proteins can be recognized by measuring the m/z of gas-phase ions. In general, LC-MS methods are valued for their capability to examine complex samples and difficult proteins, such as those embedded in membranes, and as a result offer better proteome coverage in comparison to other proteomic techniques.

4.2.1.3 Sample preparation, fractionation, and tags

Protein quantification is ideally carried out with internal standards that are added to the sample before preparation to eliminate differences resulting from the preparation itself. Both label-based and label-free methods can be used (Gant-Branum et al., 2009). Label-based methods tag peptides or proteins before LC separation utilizing one of the three following techniques: 1, *isobaric tags* for *r*elative or *a*bsolute *q*uantification, iTRAQ (Applied Biosystems, AB Sciex, Foster City, CA, USA; Ross et al., 2004); 2, *is*otope-*c*oded *a*ffinity *t*ags, ICAT (Gygi et al., 1999); and 3, *s*table *is*otope *l*abelling of *a*mino acids in *c*ell culture, SILAC (Darie et al., 2011, Mann, 2006, Spellman et al., 2008). The isotopic labelling approach has some disadvantages due to their elaborate chemistry. However, there are several label-free methods, such as *m*ultiple *r*eaction *m*onitoring, MRM, and *s*equential *w*indow *a*cquisition of all *th*eoretical fragment-ion spectra, SWATH, which have various advantages and will be discussed in detail in this chapter.

4.2.1.4 Proteomic bioinformatics

Computer processing of MS data allows large-scale and high-throughput analysis that has enabled proteomic studies. Different strategies have been established to find unique tandem mass spectra of amino acid sequences in publically available databases. All database methods are based on matching the theoretical fragmentation pattern of the target peptide with the fragmentation pattern in the tandem mass spectrum. Each match peptide is given a score based on fragment ion frequencies, and cross-correlation (Eng et al., 1994, Perkins et al., 1999). Intensity models are used in correlation analyses to increase the matches between sequence and spectra, while probability-based methods offer a statistical measure for the fit between sequence and spectra (MacCoss et al., 2002, Perkins et al., 1999, Sadygov and Yates, 2003). Most of these programs are also appropriate for the study of protein modifications. There are various software packages for the analysis of LC/LC/MS/MS data, such as Mascot, PEAKS DP, ProteinPilot, and others. Proteomic studies can produce huge amounts of data; hence, a high level of automation of data analysis is required.

4.2.2 Multiple reaction monitoring (MRM)

MRM is an MS-based quantification method that is commonly used in triple-quadruple MS instruments. It is a robust multiplexed assay for the precise and sensitive detection of protein expression levels and post-translational protein modifications (Lange et al., 2008). It is used to identify and quantify from ten to a few hundred peptides, but can in principle be used for multiple peptides in a single assay. MRM assays can detect and quantify proteins present at low ng per ml concentrations, such as has been shown for serum (Keshishian et al., 2007, 2009). MRM also has the advantage of high reproducibility (Addona et al., 2009), which makes it a first choice for biomarker validation. It exploits the unique capabilities of triple-quadrupole (QQQ) MS for quantitative analysis. It is a selective workflow for mass spectrometry that can only identify a predefined combination of precursor and fragment ions. In MRM, the first and the third quadruples act as filters to specifically select predefined m/z values corresponding to the target peptide ion and a specific fragment ion of the precursor peptide (Fig. 4.2). In the second quadruple, which serves as a collision cell, the pre-defined peptides in Q1 are selected and fragmented. In quadruple three, transitions (precursor/fragment ion pairs) are monitored over time to produce a set of chromatographic traces with the retention time and signal intensity for each specific transition. Two types of mass selection with narrow mass windows lead to high selectivity and the successful filtering out of co-eluting background ions. Compared to other MS-based proteomic techniques, no full mass spectra are recorded in QQQ-based MRM analysis. The non-scanning property of this mode of operation

translates into an enlarged sensitivity by one or two orders of magnitude compared with-full scan techniques. Furthermore, it gives a linear response over a wide dynamic range of up to five orders of magnitude, which allows the detection of scarce proteins in highly complex mixtures: this is vital for systematic quantitative studies.

Fig. 4.2. Diagram of information-dependent analysis (IDA) mass spectrometry and MRM mass spectrometry. In IDA, quadruple 1 (Q1) is used to select the most abundant precursor ion, which is then fragmented in Q2. Subsequent analysis of all fragment ions takes place in Q3. The resulting MS/MS spectrum is used to identify the fragmented precursor ions. In MRM, only pre-defined peptides in Q1 are chosen for fragmentation in Q2. Pre-selected fragment ions are selectively passed through Q3 and identified.

4.2.2.1 Selection of a target protein in MRM

The first step in an MRM assay involves choosing the proteins of interest. MRM can target different proteins in one LC-MS analysis after the transitions have been optimized. Choosing the protein of interest may depend on previous experiments or relevant information from the literature. Different information resources on the Web can be used for this purpose, such as gene expression and protein expression data, protein–protein interaction data or the Kyoto Encyclopædia of Genes

and Genomes (KEGG) database. Network expansion can be used to enhance an initial set of proteins that have been revealed in quantitative screens (Table.4.1). Ideally, internal standards are chosen as an invariant reference set to minimize experimental error, such as variable protein amounts per sample.

Gene Expression	GEO	http://www.ncbi.nlm.nih.gov/geo/	(Barrett et al., 2007)
Protein expression	ProteinAtlas	http://www.proteinatlas.org/	(Uhlén and Pontén, 2005)
Gene ontology group	GO	http://www.geneontology.org/	(Karp, 2000)
Functional group	KEGG	http://www.genome.jp/kegg/	(Kanehisa and Goto, 2000)
Protein-protein interactions	IntAct	http://www.ebi.ac.uk/intact/	(Kerrien et al., 2007)
Protein-protein interactions	MINT	http://mint.bio.uniroma2.it/	(Ferrari et al., 2011)

Table 4.1. Online information resources relevant to the selection of a set of proteins of interest.

4.2.2.2 Selection of the peptide

After tryptic digestion, each protein produces tens to hundreds of peptides (Picotti et al., 2007). However, only a few representative peptides for each protein are targeted to identify and quantify it in a sample. The right choice of peptides is crucial for the success of MRM. Different factors have an impact in choosing the right peptide, such as uniqueness and post-translational modification.

4.2.2.3 Uniqueness

Choosing peptides for targeted MS analysis is crucial. It is important to select unique peptides that are specific for the targeted protein or one of its isoforms. Thus, it is critical to choose peptides that differentiate between different splice isoforms. Information about splice variants can be obtained from Ensembl (www.ensembl.org/), NCBI (www.ncbi.nlm.nih.gov/sites/entrez, www.ncbi.nlm.nih.gov/projects/SNP/), and UniProt (http://www.uniprot.org/) databases. Peptide Atlas (www.Peptide Atlas.org/) can differentiate between several splice isoforms and different genes by reporting the number of genome locations for observed peptides and visualizing the peptide–

protein relationship by cytoscape, an open source bioinformatics software platform for visualizing molecular interaction networks and integrating them with gene expression profiles (Shannon et al., 2003).

4.2.2.4 Post-translational modifications

In the MRM assay, modified peptides cannot be identified without being specifically targeted due to mass differences caused by post-translation modifications (PTMs). Observed differences in the quantity of a peptide may portray alterations in the abundance of the protein across samples, or modification of the target peptide. For accurate quantification, at least two peptides should be monitored for each protein. It is essential to first consult sites such as Uniprot (http://www.uniprot.org/) to check that the targeted peptides are not known to be modified, and to avoid peptides with cysteine or methionine residues. Post-translation modification may lead to two peptides from the same protein displaying different relative abundances across samples. However, MRM can be used to quantify peptides with post-translational modifications if the PTM is known and transitions for those peptides can be established. Examples of different types of PTM that have been targeted by MRM in other studies include phosphorylation (Unwin et al., 2005, Williamson et al., 2006), ubiquitination (Mollah et al., 2007) and acetylation (Griffiths et al., 2007).

4.2.2.5 Selection of MRM transitions

In MRM, quantification of a peptide needs specific choices of m/z settings for the first and third quadruple to provide highly sensitive and selective detection of the peptide. The mass and predominant charge state of the peptide determines the m/z value used in the first quadrupole, while a specific fragment ion of the peptide is selected in the third quadrupole. The intensities of individual fragment ions resulting from one precursor ion can differ significantly. To attain very sensitive results it is best to choose transitions specific for the most intense fragments. Usually the best 2–4 transitions for each peptide are chosen for quantitative assays. These choices may be based on data from shotgun experiments, which can be obtained from SRMAtlas or Peptide Atlas, or experimentally detected on the QQQ instrument. The condition of ionization can have an impact on the charge state distribution as well as the intensity of the ion, which is dependent on the type of instrument used and the operating parameters.

The fragment ion masses of the peptide of interest can be calculated and experimentally verified by MRM assay on a QQQ instrument that produces high-performing transitions. If two precursor charge states and multiple ions are considered, more than 30 transitions for each peptide could be measured. As a result, the number of peptides that can be examined in one LC-MS analysis is restricted due to the time required to acquire the data representing each transition. The number of transitions monitored can be increased by using scheduled MRM (Stahl-Zeng et al., 2007). The principle of this approach is to acquire the transitions of a specific peptide during a narrow time window around its expected elution time, rather than monitoring it across the entire LC-MS run. During this time more transitions can be examined so as to obtain the best-performing ones. To conduct this type of experiment, the instrument must have a scheduling functionality and the retention times of the peptides of interest must be known. The retention times of specific transitions can be obtained from previous experiments or predicted by tools such as SSRCalc (http://hs2.proteome.ca/SSRCalc/SSRCalc.html; Krokhin et al., 2004), although in most cases RT are empirically determined. Another approach is to first study a small number of transitions that are chosen based on available MS/MS data. Choosing 2-4 fragment ions from both doubly and triply charged precursor ions will produce at least one transition with reasonable performance from which to derive retention-time data for subsequent experiments. Restricting the final assay to 2-4 transitions for each peptide allows the study of many hundred peptides in one LC-MS analysis.

4.2.2.6 Validation of transitions

The QQQ MRM assay is a very specific approach using two consecutive mass filtering steps. However, an individual precursor/fragment ion combination may not be specific for a peptide targeted in a complex sample. An example of this problem is explained in Fig. 4.3. Incorrect signals can develop from other peptides with precursor/fragment ion pairs of identical masses. Peptides with the same precursor mass and fragment ion could have closely related sequences and as a result part of the transitions may be identical. Distinct sequences could by chance produce mass pairs that are very hard to filter out in the quadrupoles; this nonspecific signal may be of lower intensity than the optimized transitions. When MRM is used to study peptides that are an order of magnitude of less abundant than the most abundant peptides, non-specific signals can be higher than the detection limit and sometimes more intense than the signal for the peptide of interest. Because there are no fullrange mass spectra in MRM, signals could be easily mistaken; these would give rise to misquantification errors. In consequence, it is essential to validate the primary set of transitions to confirm that the quantified signals produced are from the peptide of interest. Two ways to validate the transition are 1, scanning the full MS/MS of the precursor ion to sequence the peptide: the scan can be manually checked to confirm that the fragment ions that were selected are the most abundant following collision-induced dissociation, CID; 2, parallel acquisition of multiple transitions for a targeted peptide. The latter is based on the elution time of peptide: The transitions produce a perfect set of 'co-eluting' intensity peaks if they are produced from the same peptide. By producing more transitions, the capability for a random match is markedly reduced if perfect co-elution is observed. Many non-target peptides with similar precursor m/z could produce a plethora of low-intensity noncanonical fragment ions, which might generate transitions and lead to false quantification. It is strongly recommended that parallel acquisition of multiple transitions be checked by another kind of validation. The best approach to validate transitions is to acquire MS/MS spectra and sequence it from database searching to assure that the derived signals produced are from the peptide of interest. This process uses the QQQ tool for the MRM experiment under a protocol known as MRM-triggered MS/MS scanning (Unwin et al., 2005). In this procedure, the QQQ instrument is programmed to obtain a full fragmentation spectrum whenever a signal for a particular transition is identified. The MS/MS spectra produced can be compared with the predicted peptide fragments to confirm that the major MS/MS peaks are matched (Figure 4.3). This method provides assurance that the MRM signals are derived from the target peptide.

Page | 101

Fig. 4.3. Validation of transitions for the peptide VFAQFSSFVDSVIAK, which belongs to a protein of interest. **A**, MRM traces of five transitions. Two peaks with coeluting transitions are apparent at 37.5 and 43.3 min. **B**, MS/MS spectra of peaks 1, top panel and 2, lower panel. Peaks corresponding to the y ions are in red. Although MRM transition intensities are higher at 43.3 min, the MS/MS spectrum that corresponds to the targeted peptide elutes at 37.5min. If transition intensities at 43.3 min were used without validation the quantification of the peptide would be in error.

4.2.2.7 MRM software

There are differences between MRM assays and shotgun proteomic experiments. In shotgun experiments, proteins are identified in samples without targeting, based on matching MS/MS spectra to databases, while in MRM experiments a software system allows MRM assays to be set up and supports the following: 1, choosing the target protein; 2, choosing the peptide signifying the protein of interest; 3, choosing the best transitions; and (4) validating the transitions by MS/MS spectra.

An example of MRM software is Targeted Identification for Quantitative Analysis of MRM (TIQAM; Lange et al., 2008), which can integrate proteomic data from local experiments and the Peptide Atlas database to produce peptides in the best order. It can also generate MRM transition lists and detect the best performing transitions from previous MRM experiments. All the peptide and transition data is kept in a database to permit recovery of the validated transitions for quantitative purpose. There are several other software programs that can help set up MRM experiments, such as MRMPilot (Applied Biosystems), SRM Workflow Software (Thermo Scientific), Verify E (Waters), Optimizer (Agilent Technologies) and Skyline (MacCoss lab software).

4.2.3 MS/MS^{ALL} with SWATHTM Acquisition assay

MS/MS^{ALL} with SWATHTM is a novel MS-based proteomics technique to quantify peptides and proteins in a sample by a single analysis. It utilizes a data-independent MS/MS acquisition to produce complete, high-specificity fragment ion maps that can be queried for the existence and quantity of any protein of interest using a targeted data analysis strategy. It utilizes an advanced hybrid quadrupole-time of flight mass spectrometer, the TripleTOF 5600® (AB SCIEX, Framingham, MA, USA).

SWATH produces fragment ion information for all precursors in the monitored range. It differs from the traditional acquisition assay, which does not depend on precursor ion mass detection to trigger MS/MS acquisition. Rather, SWATH systematically fragments all components of a sample *via* a rapidly moving selection window (Fig. 4.4).

SWATH can produce high-resolution fragment ion chromatograms for each target peptide that can be interrogated to detect the peptide of interest, similar to MRM. Using public libraries for ion data such as MRMAtlas, or database search software such as ProteinPilotTM, the ouput can be searched for quantitative data on the target peptides or proteins. SWATH delivers a complete qualitative and quantitative archive of the sample that can be interrogated *in silico* and postacquisition as new hypotheses are established.

MRM and SWATH have become important techniques to study synaptic trafficking events in autopsy brain tissue and thereby to explore the ætiology of neural diseases (Craft et al., 2013). Neuropsychiatric diseases may result from aberrant synaptic signalling involving different proteins that are arrayed in a microdomain-specific manner. Studying the proteomes of synapses in autopsy brain will provide an understanding of disorders such as autism, depression, schizophrenia, and AD. It will help define targets for novel therapeutics for these disorders. It will allow the assessment of protein expression and trafficking with high precision using accurate techniques such as MRM and SWATH. Previous studies have successfully utilized MRM to quantify synaptic proteins in subcellular fractions prepared from autopsy human brain (Chang et al., 2014a, 2014b). A bioinformatics search showed that these assays can quantify thousands of additional synaptic proteins in different model systems.

Fig. 4.4. MS/MS ALL with SWATH Acquisition. The method depends on passing a wider window of analytes to the collision cell. More-complex MS/MS spectra are produced, which comprise all the analytes within the Q1 m/z window selected. As the fragment ions are high resolution, high quality XICs are produce post-acquisition to generate data similar to MRM. The Q1 window can be stepped across the mass range, collecting full-scan composite MS/MS spectra at each step, with an LC-compatible cycle time. This approach allows a data-independent LC workflow.

In this chapter, the development of a LC-MRM/MS-based methodology for validation of neuroligin-1, neuroligin-2 and β -neurexin-1 protein quantification in human autopsy brain tissues from AD cases and controls is described. Various optimizations were performed for SWATH to obtain the most accurate quantification protocols.

4.3 Materials and Methods

4.3.1 Reagents used

Deoxycholate, trichloroacetic acid, sucrose, acetonitrile, acetone, urea, thiourea, ammonium bicarbonate, dithiothreitol, iodoacetamide, trypsin, and formic acid were obtained from standard suppliers and were of the highest grades available. The 2-D Quant kit was purchased from GE Healthcare Life Sciences, Rydalmere, NSW, Australia.

4.3.2 Autopsy brain tissue preparation

The Queensland Brain Bank at the School of Chemistry and Molecular Biosciences, The University of Queensland, a node of the Australian Brain Bank Network, provided autopsy brain tissue. Donors and the next of kin provided informed written consent for the research. Tissues were stored in ice-cold 0.32M sucrose at –80°C. The Medical Research Ethics Committee of The University of Queensland approved the project (Certificate #2010000105).

Sectioning of the tissue was done on dry ice and preparation of the synaptosomes was performed as per Etheridge et al. (2009). To prepare the synaptosomes, 0.5 g tissue samples were homogenized with ice-cold 0.32 M sucrose ($10 \times w/v$) in a motor-driven Teflon-glass homogenizer using 8–10 pestle strokes. The mixture was transferred to a 15 ml polypropylene tube and centrifuged at 750 × g for 10 min at 4°C in a Beckman JA 20 centrifuge (Beckman Coulter P/L, Lane Cove, NSW, Australia). The pellet was resuspended in the original volume of 0.32 M sucrose and centrifuged at 19,000 × g for 20 min at 4°C. The pellet, which contained the crude synaptosomal fraction, was resuspended in a 5 ml 0.32 M sucrose, layered onto a gradient of 5 ml of 0.8 M sucrose overlying 5 ml of 1.2 M sucrose, and centrifuged at 82,500 × g in a swinging bucket rotor (SW41 Ti, Beckman L8-60M ultracentrifuge) for 120 min at 4°C. Both myelin (at the 0.32/0.8 M interface) and synaptosome (at the 0.8/1.2M interface) fractions were obtained by aspiration with a Pasteur pipette in minimal volumes. Mitochondria formed a pellet that was also retained for future studies.

4.3.3 Trichloroacetic acid/deoxycholate/acetone precipitation

Deoxycholate (DOC; $0.4 \ \mu g/\mu l$, $20 \ \mu l$) was added to each synaptosomal fraction (200 μl) to give a final concentration of ~0.04 $\mu g/\mu l$. The sample was incubated on ice for 30 min, then 25 μl of 6.4 M trichloroacetic acid (TCA; 0.65 M final) was added and the sample incubated on ice for 60 min. Samples were centrifuged at 10,000 × *g* at room temperature for 10 min. The supernatants were removed and 1 ml of 90% ice-cold acetone was added to each tube. Samples were vortexed for 3–4s, left at –20°C overnight, then centrifuged at 10,000 × *g* at 4°C for 20 min and supernatants removed. A second 1 ml of 90% ice-cold acetone was added to each tube, the procedure repeated, and the supernatants discarded. The pellets were dried for 5 min and 30 μ l of rehydration buffer (8M urea and 2M thiourea in 50 mM NH₄HCO₃) was added. The tubes were incubated for 3h at room temperature, then stored overnight at –20°C. Samples were sonicated 3× briefly in an ice bath for 20s and frozen overnight at –20°C. This step was repeated three times to allow ice crystals to break up the pellets.

4.3.4 Quantification of samples using the 2-D Quant Kit

To determine the protein concentration of the samples, a 2-D Quant Kit (GE Healthcare Life Science) was used. Colour reagent A (5.15 ml) was mixed with colour reagent B (51.5 μ l). A BSA standard was prepared between 0 and 4 μ g. Each protein sample (2 μ l) was placed in a separate tube and 100 μ l of precipitant was added, including to the BSA standard samples. Tubes were vortexed and incubated for 2–3 min at room temperature. Co-precipitant (100 μ l) was added and the samples mixed by inversion, then centrifuged at 10,000 × *g* for 5 min and the supernatant discarded. Copper solution (20 μ l) and of Milli QH₂O (80 μ l) were added and the tube vortexed briefly. Samples were aliquoted into a 96-well plate and 200 μ l of assay mix (colour reagents A+B) added to each well. The plate was incubated for 20 min at room temperature. The absorbance of each sample and standard was read at 480 nm and a standard curve created to determine the sample protein concentrations.

4.3.5 Reduction and alkylation

d,*l*-Dithiothreitol (30 μ l of 10 mM; 5 mM final) was added to each sample (30 μ l) and the mixture incubated at room temperature for 2h. Iodoacetamide (3 μ l of 0.5 M; 25 mM final) was added and the incubation continued in the dark for 30 min. Finally, an additional 30 μ l of 10 mM *d*,*l*-dithiothreitol was added to each sample.

4.3.6 Trypsin digestion

Samples were diluted to 2 M in urea with 50 mM NH₄HCO₃ (26.8 μ l). Each sample (76 μ g; 0.63 μ g/ μ l) was then digested with trypsin (15 μ l, 20 ng/ μ l) by incubation for 6h at room temperature. The same amount of trypsin was added and the incubation continued overnight at 37°C.

4.3.7 ZipTip sample cleanup

Samples (10 μ l) were aliquoted into Eppendorf tubes and subjected to ZipTip purification (Merck Millipore, Kilsyth, VIC, Australia) for sample binding. The ZipTip was washed with 100% acetonitrile twice, then equilibrated with 1% trifluoroacetic acid (TFA) twice. Samples (10 μ g) of peptide digests were bound to the tip by fully depressing the pipette, then aspirated and dispensed through 10 cycles for maximum binding of the mixture. The Zip Tips samples were washed with 1% TFA twice, then 4 μ l of 0.1% TFA in 80% acetonitrile was used to elute the peptides from the tips. Buffer B (0.1% formic acid in acetonitrile; 96 μ l) was added and the samples placed in mass spectrometer tubes.

4.3.8 Preparation of HPLC-QTRAP 5500 mass spectrometer for MRM analysis

Chromatography was performed using an 1100/1200 capillary LC (Agilent Technologies, Mulgrave, Vic, Australia) with the following buffers: Buffer A (5% acetonitrile, 0.1 % formic acid) and Buffer B (0.1% formic acid in acetonitrile). Samples (20 μ l) were loaded onto the column trap (ZORBAX 300SB-C₁₈, 5 × 0.3 mm, 5 μ m; Agilent Technologies) and washed for 5 min with Buffer A delivered at a flow rate of 20 μ l/min. A QTRAP 5500 mass spectrometer (AB SCIEX) with a TurboSpray ion source in positive ion mode was used to detect the peptides. The settings for the ion source were: declustering potential 80V, entrance potential 10V, collision cell exit potential 35V,

curtain gas 20 psi, collision gas 'high', ionspray voltage 4kV, temperature 150°C, with first and second ion source gases set at 20 psi.

4.3.8.1 Choosing the protein of interest, peptide and transitions

Targeted protein accession numbers were input to the MRMPilot software, which were: neuroligin-1, NP_055747, neuroligin-2, AAM46111) and β -neurexin-1, BAA87821.1. Multiple tryptic peptides were obtained and the best peptide sequences that had lengths of 4–22 amino acids and were free of any known chemical and/or post-translational modifications were chosen. Peptides with methionine or cysteine residues were deselected because they are prone to modification (oxidation and alkylation, respectively). The best peptides were utilized for automated MRM selection and method building. For each peptide at least four MRM transitions were selected. *4.3.8.2 Verification of peptide selections and development of transitions*

The digested peptides were subjected to analysis with the QTRAP 5500 mass spectrometer in MRM-initiated detection and sequencing (MIDAS) mode to produce MS/MS spectra of targeted transitions. MIDAS involves MRM-based high-sensitivity product-ion scans and triggers a full MS/MS scan for sequence confirmation. All transitions that had peak intensities below 800 cps, as well as nonspecific multiple peaks, were excluded. IDA files were exported to MASCOT (generic format) for a database search against the UniProt database (MASCOT:

http://www.matrixscience.com) for human entries with carbamidomethylation as fixed and methionine oxidation as variable modifications. The following setting was used for the search: Peptide tolerance 0.4Da, MS/MS tolerance 0.4Da, peptide charge 2+, 3+ and 4+. Because none of the peptides were matched to the target protein MASCOT search, manual sequencing of the MS/MS spectra using PeakView software (AB SCIEX) was performed.

4.3.9 MS/MS^{ALL} with SWATHTM Acquisition

4.3.9.1 Membrane sample preparation for SWATH

Brain tissues were slowly frozen and stored in 0.32 M sucrose at -80° C (Dodd et al., 1986). Thawed tissues were homogenized in $10 \times (w/v)$ of 0.32M sucrose at 4° C in a motor-driven Teflonglass homogenizer at 500 rpm and the suspension centrifuged for 10 min at $756 \times g$. The supernatant was centrifuged at $13,700 \times g$ at 4°C for 20 min. The supernatant was discarded and the pellet resuspended in 50 mM Tris-HCl, pH 7. 4.3.9.2 Protein extraction, quantification, digestion and ZipTip

Refer to methods section 4.2.3, 4.2.4, 4.2.5, 4.2.6 and 4.2.7.

4.3.9.3 Strong cation exchange (SCX) with the LC Agilent fractionator

The system was equipped with a 4.6×50 mm SCX column (ZORBAX Bio-SCX Series II). The following buffers were used for washing and column preparation: Buffer A (0.5% acetic acid, 2% acetonitrile), Buffer B (0.5% acetic acid, 2% acetonitrile 250 mM ammonium acetate). A sample (50 µg) of the reduced and alkylated protein was loaded into the injector port at 0.4 ml/min.

Proteins were eluted with buffers A and B in 96-well plates according to charge and salt gradient. Flow-through fractions (47 in total) were collected in a 96-well plate over 45 min. Adjacent fractions were combined to obtain 6 pooled fractions that were subjected to ZipTip clean-up (Section 4.3.7) for desalting before MS analysis.

4.3.9.4 In-gel digestion

Protein concentration was measured with the 2-D Quant protein assay kit (Section 4.3.4). Samples (40 μ g of protein) were loaded onto a 1 mm 10-well 8% SDS-PAGE gel and separated for 1h at 120V. The gel was stained with Coomassie Brilliant Blue (Sigma) in 50% methanol and 10% glacial acetic acid for 1h then destained overnight with 45% methanol, 5% acetic acid at room temperature. Neuroligin-1 and neuroligin-2 proteins bands, which separated at 110 and 95 kDa respectively, were manually excised from the gel, destained and dehydrated with acetonitrile, reduced and alkylated with 10 mM dithiothreitol at 60°C for 30 min and 50 mM iodoacetamide at room temperature for 30 min in the dark. Prior to enzymatic digestion, excess reagents were removed and the gel pieces washed twice with 50 mM NH₄HCO₃ and dehydrated with 100% acetonitrile. For protein digestion, gel samples were incubated with 10 μ l of trypsin (10 ng/µl in 50 mM NH₄HCO₃) for 15 min at 4°C. An additional 15 μ l of 50 mM NH₄HCO buffer was added and the incubation overnight at 37°C. Peptides were extracted from the gel by sonication twice for 10 min with 50 μ l of 50% acetonitrile/0.1% trifluoracetic acid. Samples were vacuum centrifuged to remove acetonitrile and ZipTipped before MS was performed.

4.3.9.5 Sample analysis by mass spectrometry and chromatography

Samples were analysed using an HPLC system connected to a TripleTof 5600 mass spectrometer (AB SCIEX). Samples were acquired in data dependent mode to obtain MS/MS spectra for the most abundant ions.

4.3.9.6 Bioinformatics database search

Mass spectrometer data were searched using the MASCOT server v2.3.02. Peak lists for MASCOT searches were produced by AB SCIEX MGF converter. MS/MS datasets were also analysed using ProteinPilotTM software v4.5 (AB SCIEX), which uses the Paragon algorithm (Shilov et al., 2007) to search the SwissProt database. The settings for the search were as follows: cysteine alkylation, iodoacetamide; digestion, trypsin; fixed modification, carbamidomethylation; variable modification, methionine oxidation; detected protein *P*-value threshold 0.05.

4.4 Results

Three proteins were targeted for this study: neuroligin-1, neuroligin-2 and β -neurexin-1. Proteotypic peptides (that uniquely represent these proteins) were chosen using MRM Pilot software (Fig. 4.5) and the best peptides with the highest mean intensity and best CV value were added from the peptide selection view (Fig. 4.6). Lists of all possible trypsin-digested peptides were produced for the three target proteins. To determine the true total protein abundance in the samples, peptides with methionine, cysteine, or amino acids with known chemical and/or post-translational modifications were excluded. Due to the susceptibility of methionine to oxidation and cysteine to alkylation, quantitative data attained from target peptides with these amino acids could produce errors. To produce a reliable MRM and to evaluate which is the most sensitive and reproducible, replicate samples are required. Fig. 4.7 is an example of results from running several replicates. Different transitions were produced for these proteins. Several transitions were produced for each peptide (Table 4.2), and after MIDAS analysis on the QTRAP 5500, transitions that gave peak intensities below 700 cps, or different indistinct peaks, were removed from the list. To prevent false characterizations, MS/MS data produced from MIDAS analysis were searched against MASCOT to confirm protein identity. The MASCOT search failed to identify any peptides from neuroligin-1, neuroligin-2 or β -neurexin-1. As none of the peptides matched the MASCOT search, manual sequencing of the MS/MS spectra from the MIDAS analysis were conducted to confirm their sequence using the fragment ion table for each peptide. B-, y- and a-ions between 100 and 999 *m/z* were searched within the spectra for all peptides. None of the peptides from the three proteins could be sequenced correctly (Figs 4.8, 4.9). The incorrect matching might result from highly abundant peptide/s with similar *m/z* values co-eluting with the peptides of interest and producing an error to

the targeted transitions signal.

QTRAP 5500 MRM: 68 to verify	47 to CE Opt 56 optimized V	lew: Peptide	Selection M	RM Evaluat	ion	Perto · Q	Search Option	s -						
Proteins of Interest	Pepide	I Starl	Sepl	н1	Best Confidence	Retention Tane	Best lon Internity	Selected MRM [
1	HISVING	60		1191.7	0.00	12.22	1.50	2						
Actin, cytoplasm Beta-actin,	E SPASLR	29	80	629.3	0.00	12.43	1.10	0						
	CGHAGTTYPSX		- 30	1237.6	0.00	13.20	1.50	0						
Building without SM and	M WENDERSTR	154	113	122816	0.00	12:00	1.50	20						
Tynante okoste, netwe	C LASPSTVGK	117	126	1052.6	0.00	11.50	8.50							
	EAVLYR .	127	130	625.4	0:00	12.83	1.50	0						
Giutation S-transfer GST	VDSSSSLEDVLELHHHDDR	120	155	2054.0	0.00	13.56	1.50	0						
	12 x7x8.	352	155	475.3	0.00	0.00	0.00	0						
	PRVGTEDMAEESAAANDGK	156	178	2254.1	0.00	35.54	2.50	2.						
Programmed cell protein;	S ANNAN	177	343	872.4	8:00	5.77	7.50	6						
	SOGNATU/NOSWINIER	105	221	1022.8	0.00	18.50	1.00	- U.						
	VINGRI	202	201	562.1	0.00	12.41	9.50	0.2						
Septin-4, Apoplical in	QUTINISQATINGOK.	207	222	1701.0	0.00	17.00	1.50	0.						
	COCOMODILISIUMICUS	223	241	2138.0	0.00	1E-08	1.00	0.						
Manager	C LAPPER	201	206	6,25.4	0.00	15.78	1.50	82						
NANCEL	AGEPT	100	- 30	258.2	0.00	200	0.00							
		200		1200.0	0.00	12.07	1.50	0						
Surveylourne cautain Dhush-DAAP.25	A second statement and	4.00	42.5	1000.0	0.00	10.00	1.50	20						
a destance of the second s	C cookar	417	472	616.3	0.00	15.54	0.50							
	R -ttnx	1.31	475	414.2	0.00	6.00	0.00	0						
The guarant Attiant:	R CON	429	442	6722	0.00	5.05	5.43	- i -						
Ranvelate protein Rab-3A														
Neuroligin Flags: Precursor.														
Neurologin Flags: Precursor														
Neuroin 1 Neuroin Loeta.														
Neuroin 1 Neuroin Lubha:	Contraction and the second second												and the second second	and strengthered
	HHSVPIAIYR												C.C. Balling	Interest Programmer &
Vision for the formula (The state Vision)	and the second second second												ALC: NOT THE OWNER, NOT	
reaction potential protocologies.		1		1.1		14. 11.11			Larr	1.1				-
	15 -			14		1		- P	and .	1000		Y		
Veseular ph/anate Shot-VGIuT2				1		10.00			- C	5 T 2	- C			2 (596.8)
Version and a second	8 10													3+ (298.2)
	4									yr.	100			- 20 Mailan
Vescula ehibroy AlNane:								100 00 1		831 51	200	1055.60		
			112 275.1	3 12		10.000	150.20		242.43	105.40		and the second sec		
- descent of the second	130.07	A1	1	106.10	36.72 428 25	193 420.11 yr	05 20.00	30101	B/ read	Dill aco es	in an ann	618		
Synaptophy Major vesicle	500 15	0 20	250 30	0 250	400 4	50 500	950 800	850 200	\$ 750	800 9 850 1	00 950	1000 1050 1100	1150 1200 12	50
							100				100		10000 10000	Const.

Fig. 4.5. MRM peptide selection view. After importing proteins into MRM Pilot Software, MRM transitions are created. The best transitions for the best peptides for each protein were selected. The peptide fragment data is shown in the bottom pane for the selected peptide from neuroligin-1protein.

Page | 111

Fig. 4.6. MRM Table view. The table displays panes of data related to MRM for the selected protein. A table of all peptide MRM transitions is shown in the top pane for the selected protein. The top right pane displays a graph of MRM intensity *vs* variation (% CV) used to study the quality of the MRM transitions. This graph allows easy visualization of peptides with the highest intensity and reproducibility for quantitative purpose. The bottom pane has overlays of all extracted ion chromatograms (XIC) for the chosen MRM, spectra for the selected MRM, and full-scan MS/MS data acquired using the MIDAS[™] Workflow for confirmatory purposes.

Fig. 4.7. MRM validation of the transitions. The summary graph in the top right of the MRM Table view shows the best MRM selected for optimization highlighted in blue and the remaining poor/failed MRM transitions highlighted in orange.

Accession Nº	Precursor	Fragment			Fragment		Mean	CV
Protein name	mass, Da	mass, Da	\mathbf{RT}^1	CE^2	type	Sequence	height	%
NP_055747	644.82	848.43	17.45	33	2+ / y7	QQPSPFSVDQR	5432	16.6
Neuroligin-1	642.33	827.44	14.03	33	2+ / y7	ELVDQDIQPAR	5263	13.3
	723.41	1111.68	15.61	37	2+ / y10	GNYGLLDLIQALR	3925	5.4
	817.45	946.5	20.3	44	4+ / y8	DYSTELSVTIAVGASL LFLNILAFAALYYK	3420	2.2
	698.84	784.42	16.59	36	2+ / y7	TGDPNQPVPQDTK	2260	14.8
	642.33	942.46	14.03	33	2+ / y8	ELVDQDIQPAR	2223	1.4
	699.37	1058.53	17.59	38	4+ / y10	ELNNEILGPVIQFLGV PYAAPPTGER	1466	2.1
	726.92	933.6	16.96	37	2+ / y8	DQLYLHIGLKPR	1147	19.6
	848.41	1192.61	20.21	42	2+/y11	WTSENIGFFGGDPLR	1027	4.3
	826.91	957.48	16.27	41	2+ / y8	FQPPEPPSPWSDIR	960	10.9
	817.45	1059.59	20.3	44	4+ / y9	DYSTELSVTIAVGASL LFLNILAFAALYYK	908	13.6
	377.19	616.3	13.21	22	2+ / y5	HNPETR	769	17
AAM46111 Neuroligin-2	981.98	1087.57	18.65	48	2+/y11	GGGGPGGGAPGGPGL GLGSLGEER	30807	1.9
	707.7	1134.59	13.99	39	3+ / y9	AIAQSGTAISSWSVNY QPLK	2390	6.6
	718.4	1141.64	14.29	40	3+ / y11	TLLALFTDHQWVAPA VATAK	1061	12.2
	707.7	948.51	13.99	39	3+ / y8	AIAQSGTAISSWSVNY QPLK	1020	12.1
	769.89	1166.6	17.03	39	2+/y11	FQPPEAPASWPGVR	729	8.4
	654.99	1184.63	18.65	37	3+ / y12	GGGGPGGGAPGGPGL GLGSLGEER	248	24.3
NP_620072.1 β-Neurexin-1	745.7	931.48	14.72	41	3+ / y9	FNVGTDDIAIEESNAII NDGK	996	2.6
	532.31	766.41	12.69	28	2+ / y7	LAIGFSTVQK	905	5.1
	532.31	709.39	12.69	28	2+ / y6	LAIGFSTVQK	762	23.9
	776.39	873.48	21.3	39	2+ / y9	NYISNSAQSNGAVVK	725	15.8
	914.96	1228.63	19.51	45	2+ / y10	SGGNATLQVDSWPVI ER	675	30.5
	596.83	831.51	13.32	31	2+ / y7	HHSVPIAIYR	637	9.5
	745.7	1189.57	14.72	41	3+ / y11	FNVGTDDIAIEESNAII NDGK	583	0.6
	596.83	732.44	13.32	31	2+ / y6	HHSVPIAIYR	488	4.6

Table 4.2. MRM transitions and parameters for proteins of interest from MRMpilot software.

Ρ	a	g	е	113
		\sim		-

	532.31	879.49	12.69	28	2+/y8	LAIGFSTVQK	456	6.4
						FNVGTDDIAIEESNAII		
	745.7	1060.53	14.72	41	3+ / y10	NDGK	411	7.2
	613.31	845.42	16.37	32	2+ / y7	WPPNDRPSTR	342	1.4
	609.31	991.52	15.09	32	2+ / y9	EPYPGSAEVIR	313	6.6
	776.39	1074.55	21.3	39	2+/y11	NYISNSAQSNGAVVK	227	29.9
	647.27	1049.46	17.37	33	2+ / y9	DEGSYHVDESR	203	39
	412.22	766.41	11.68	23	2+ / y7	GGGQITYK	195	60.9
	343.71	557.38	11.89	20	2+ / y5	EAVLVR	98	17.3
	282.15	332.16	9.82	17	2+/b3	YPAGR	52	32.6
	309.17	471.22	17.94	19	2+/b5	QPSSAK	35	30.7
	412.22	652.37	11.68	23	2+ / y5	GGGQITYK	34	87.3
	314.19	570.36	18.08	19	2+/y5	GKPPTK	27	100
	315.68	456.25	10	19	2+/b5	SPASLR	27	100
	282.15	400.23	9.82	17	2+ / y4	YPAGR	27	100
	287.13	444.21	4.91	18	2+/y3	EYYV	20	49.5
	315.68	543.32	10	19	2+ / y5	SPASLR	20	49.5
BAA87821.1	515.25	784.4	12.72	28	2+/y6	TGSISFDFR	5168	14.5
α -Neurexin-1	516.3	918.5	15.67	28	2+ / y9	ITTQITAGAR	4064	10.1
	559.32	777.41	18.44	30	2+ / y7	NIIADPVTFK	2396	6.7
	380.24	545.34	12.36	22	2+ / y5	LTLASVR	1647	10.7
	623.29	869.43	15.58	32	2+ / y7	FNDNAWHDVK	1137	2.7
	500.75	742.41	17.76	27	2+/y6	EEYIATFK	1062	20.1
	547.3	820.49	15.3	29	2+ / y7	SADYVNLALK	976	2.6
	547.3	935.52	15.3	29	2+/y8	SADYVNLALK	777	15.4
	435.76	563.36	14.11	24	2+/y5	IHGVVAFK	679	2.8
	559.32	706.38	18.44	30	2+/y6	NIIADPVTFK	662	17.9
	516.3	716.4	15.67	28	2+ / y7	ITTQITAGAR	611	15.2
	507.76	899.49	14.75	27	2+/y8	DTSNLHTVK	585	1.9
	511.76	794.4	13.18	28	2+ / y7	DLFIDGQSK	550	15.8
	387.21	660.33	12.58	22	2+ / y6	LELDAGR	516	1.5
	524.29	689.39	16.29	28	2+/y6	SGTISVNTLR	457	12.4
	511.78	707.41	13.06	28	2+ / y7	SDLYIGGVAK	440	55
						GPETLFAGYNLNDNE		
	778.37	1056.49	16.5	43	3+ / y8	WHTVR	438	5.7
	524.29	802.48	16.29	28	2+ / y7	SGTISVNTLR	431	0.8
	689.86	949.5	16.98	35	2+ / y8	NTTLFIDQVEAK	401	5.5
	387.21	599.3	12.58	22	2+/b6	LELDAGR	344	1
	524.29	903.53	16.29	28	2+ / y8	SGTISVNTLR	294	11.8

Р	а	g	е	114
	u	\sim	~	

500.75	871.46	17.76	27	2+ / y7	EEYIATFK	280	6.6
263.64	379.21	20.13	17	2+/y3	FGFR	273	32.6
					GYLHYVFDLGNGAN		
632	1161.63	17.82	36	3+ / y11	LIK	204	1.4
260.64	391.23	17.38	16	2+/y3	EPFK	123	48.3
272.64	416.21	17.73	17	2+ / y4	QGDPK	80	100
260.64	374.17	17.38	16	2+/b3	EPFK	55	97.7
263.64	352.17	20.13	17	2+/b3	FGFR	40	100
309.18	504.28	9.87	19	2+ / y4	LELSR	40	100
259.16	343.2	7.23	16	2+/b3	TLQR	40	100
324.15	532.26	8.19	19	2+ / y4	DGWNR	27	100
270.64	310.18	10.1	17	2+ / y2	ЕТҮК	27	100
266.16	474.28	7.46	17	2+/y3	GWIR	13	100
	500.75 263.64 632 260.64 272.64 260.64 263.64 309.18 259.16 324.15 270.64 266.16	500.75871.46263.64379.216321161.63260.64391.23272.64416.21260.64374.17263.64352.17309.18504.28259.16343.2324.15532.26270.64310.18266.16474.28	500.75871.4617.76263.64379.2120.136321161.6317.82260.64391.2317.38272.64416.2117.73260.64374.1717.38263.64352.1720.13309.18504.289.87259.16343.27.23324.15532.268.19270.64310.1810.1266.16474.287.46	500.75871.4617.7627263.64379.2120.13176321161.6317.8236260.64391.2317.3816272.64416.2117.7317260.64374.1717.3816263.64352.1720.1317309.18504.289.8719259.16343.27.2316324.15532.268.1919270.64310.1810.117266.16474.287.4617	500.75871.4617.76272+/y7263.64379.2120.13172+/y36321161.6317.82363+/y11260.64391.2317.38162+/y3272.64416.2117.73172+/y4260.64374.1717.38162+/b3263.64352.1720.13172+/b3309.18504.289.87192+/y4259.16343.27.23162+/b3324.15532.268.19192+/y4270.64310.1810.1172+/y2266.16474.287.46172+/y3	500.75 871.46 17.76 27 2+/y7 EEYIATFK 263.64 379.21 20.13 17 2+/y3 FGFR 632 1161.63 17.82 36 3+/y11 LIK 260.64 391.23 17.38 16 2+/y3 EPFK 272.64 416.21 17.73 17 2+/y4 QGDPK 260.64 374.17 17.38 16 2+/y3 EPFK 260.64 374.17 17.38 16 2+/y4 QGDPK 263.64 352.17 20.13 17 2+/b3 EPFK 309.18 504.28 9.87 19 2+/y4 LELSR 309.18 504.28 9.87 19 2+/y4 DGWNR 259.16 343.2 7.23 16 2+/y4 DGWNR 324.15 532.26 8.19 19 2+/y4 DGWNR 270.64 310.18 10.1 17 2+/y3 GWIR	500.75 871.46 17.76 27 2+/y7 EEYIATFK 280 263.64 379.21 20.13 17 2+/y3 FGFR 273 632 1161.63 17.82 36 3+/y11 LIK 204 260.64 391.23 17.38 16 2+/y3 EPFK 123 272.64 416.21 17.73 17 2+/y4 QGDPK 80 260.64 374.17 17.38 16 2+/b3 EPFK 55 263.64 352.17 20.13 17 2+/b3 FGFR 40 309.18 504.28 9.87 19 2+/b3 FGFR 40 259.16 343.2 7.23 16 2+/b3 TLQR 40 324.15 532.26 8.19 19 2+/b3 TLQR 40 324.15 532.26 8.19 19 2+/y4 DGWNR 27 270.64 310.18 10.1 17 2+/y3 GWIR 31

Notes: ¹, RT, retention time detected for a peak matching the transitions listed that subsequently was found to not match the specific protein of interest; ², CE, collision energy, V.

Fig. 4.8. Validation of transitions by examination of the full MS/MS spectrum during MRM set-up. Example of manual sequencing for a peptide (ELVDQDIQPAR) that

could not be identified by MASCOT search. The fragment ion for the peptide was determined using the web-base fragment ion calculator

http://db.systemsbiology.net:8080/proteomicsToolkit/FragIonServlet.html. The table at the top right shows the b/y ions obtained from the fragment ion calculator for the peptide. A peak that matched the calculated b- and y-ion masses was searched on a

MS/MS spectrum.

Spectrum from 20120116-10L-NLGN12 v2 1.wilf (sample 1) - 20120716-10L-NLGN12 v2 1, Experiment 2, +EPI (100 - 1000) from 18.542 min Precursor: 644.8 Da, CE 33.4

The IDA results from in-solution samples were searched using both MASCOT and Protein Pilot software. This approach detected several hundred proteins that are listed in Supplementary Table 4.3 in the Appendix for this chapter. However, none of the proteins of interest (neuroligin-1, neuroligin-2 or β -neurexin) was found in the search lists. This could be due to the complexity of the sample or to the low abundance of these proteins. Hence, SCX fractionation was used prior to mass spectrometry. Data obtained were searched using both MASCOT and Protein Pilot. Again, more than 200 proteins were identified that did not include the proteins of interest (Supplementary Table 4.4 in the Appendix for this chapter).

A final approach used to find these proteins was SDS-PAGE separation and in-gel digestion. Sections of gel representing proteins around 100 kDa in size was excised and the protein extracted. MASCOT search identified all five neuroligin proteins (neuroligin-1, -2, -3, -4 and -4Y). However, each protein identification was based on only one or two peptides, with one peptide in common to all five proteins. This meant that no unique peptide was detected for any individual protein. Some of the scores of peptides matching to neuroligin proteins were very low, such as 6, 1 and 2 for neuroligin-1, neuroligin-2 and neuroligin-3 respectively, which is not reliable data for quantification (Table 4.5).

Query	Observed	Mr(expt)	Mr(calc)	ppm	Miss	Score	Expect	Rank	Unique	Peptide	
NLGN	1_HUMA										
6676	723.4040	1444.7934	1444.8038	-7.16	0	6	19	1	U	K.GNYGLLDLIQALR.W	
6934	738.9209	1475.8272	1475.7984	19.5	0	49	0.00064	1	_	R.LGVLGFLSTGDQAAK.G	
NLGN	NLGN2_HUMAN: Mass: 91333 Score: 218 Matches: 7(5) Sequences: 3(2) emPAI: 0.07										
2802	562.3078	1122.6010	1122.5822	16.8	0	1	96	8	U	R.FPVVNTAYGR.V	
6790	730.9128	1459.8110	1459.7783	22.4	0	90	5.1×10^{-8}	1	_	K.GNYGLLDQIQALR	
6934	738.9209	1475.8272	1475.7984	19.5	0	49	0.00064	1	_	R.LGVLGFLSTGDQAAK	
NLGN	3_HUMA	N: Mass: 944	463 Score: 16	58 Matel	hes: 5	(3) Sec	quences: 3	(1) em	PAI: 0.03	3	
6790	730.9128	1459.8110	1459.7783	22.4	0	90	5.1×10^{-8}	1	_	K.GNYGLLDQIQALR	
7434	766.9205	1531.8264	1531.8722	-29.87	1	20	0.59	2	U	R.LTALPDYTLTLRR	
8480	846.9831	1691.9516	1691.9433	4.95	0	2	23	8	U	R.SLCLTLWFLSLALR	
NLGN	NLGN4_HUMAN Mass: 92427 Score: 213 Matches: 6(5) Sequences: 2(2) emPAI: 0.07										
6790	730.9128	1459.8110	1459.7783	22.4	0	90	5.1×10^{-8}	1	_	K.GNYGLLDQIQALR.W	
7090	745.9289	1489.8432	1489.8140	19.6	0	54	0.00016	1	U	R.LGILGFLSTGDQAAK.G	

Table 4.5. Neuroligin peptides obtained from in-gel digestion.

4.4.1 Identification of other synaptic proteins by these methods

Several hundred membrane proteins as well as synaptic proteins were identified using quadrupole Triple TOF 5600 mass spectrometry and MASCOT search with the different approaches

utilized. Examples of these were synapsin-1, Vesicle-associated membrane protein 2, excitatory amino acid transporter 1 and 2, synapsin-2, synaptosomal-associated protein 25, septin-5 and -9, synaptic vesicle membrane protein, synaptic vesicle glycoprotein, synaptophysin, neural cell adhesion molecule, cadherin and vesicular glutamate transporter 3. These proteins were detected with sufficient number of unique peptides and a high score of identity. An example is shown below:

Protein View: EAA2_HUMAN; Excitatory amino acid transporter 2 OS=Homo sapiens GN=SLC1A2 PE=1 SV=2; Database: SwissProt; Score: 58; Nominal mass (Mr): 62577; Calculated pI: 6.09; Taxonomy: *Homo sapiens*; Protein sequence coverage: 6%

Matched peptides are shown in bold.

1 MASTEGANNM PKQVEVRMHD SHLGSEEPKH RHLGLRLCDK LGKNLLLTLT **51** VFGVILGAVC **GGLLRLASPI** HPDVVMLIAF PGDILMRMLK MLILPLIISS AAVLGVILVL AIHPGNPKLK **101** LITGLSGLDA KASGRLGTRA MVYYMSTTII LIRNLFPENL VQACFQQIQT VTKKVLVAPP **151** KQLGPGKKND EVSSLDAFLD VVSLLNETVT EVPEETKMVI **201** PDEEANATSA KKGLEFKDGM NVLGLIGFFI **251** AFGIAMGKMG DQAKLMVDFF NILNEIVMKL VIMIMWYSPL GIACLICGKI **301** IAIKDLEVVA RQLGMYMVTV IIGLIIHGGI FLPLIYFVVT **RKNPFSFFAG** TASSAGTLPV **351** IFQAWITALG TFRCLEENLG IDKRVTRFVL PVGATINMDG **401** TALYEAVAAI DGGQIVTVSL TATLASVGAA SIPSAGLVTM FIAQMNGVVL 451 LLILTAVGLP TEDISLLVAV DWLLDRMRTS VNVVGDSFGA GIVYHLSKSE **501 LDTIDSQHRV** HEDIEMTKTQ SIYDDMKNHR ESNSNQCVYA AHNSVIVDEC **551** KVTLAANGKS ADCSVEEEPW KREK

4.5 Discussion

The purpose of the study in this chapter was to validate the quantifications of neuroligin, and neurexin proteins in human autopsy brain tissues from AD cases and controls performed in chapter 3. It is essential to use more accurate and sensitive techniques to validate the immunoblotting approach, due to the possibility of off-target antibody binding. The study aimed to demonstrate the feasibility of isolating the neurexin-neuroligin complex from autopsy specimens for quantitative mass spectrometric proteomic analysis. MRM was chosen for its advantages of capacity for high throughput in quantification and ability to detect up to 100 proteins in complex mixtures (Picotti et al., 2009), and its good reproducibility across laboratories (Addona et al., 2009).

Autopsy brain whole-membrane samples from hippocampus, occipital cortex and inferior temporal cortex were and trypsin-digested for mass spectrometry for MRM quantification of the proteins. Samples were run on the QTRAP 5600 for MIDAS analysis and various transitions from each protein were obtained. Due to the possibility of incorrect signals derived from other peptides with precursor/fragment ion pairs of similar m/z values for the specific transitions, validation of the transitions obtained were performed both by the parallel acquisition of multiple transitions approach and by scanning the full MS/MS spectra manually. Unfortunately, neither approach matched the transitions to the proteins of interest, which may suggest that these proteins are of very low abundance in brain samples. In consequence I could not use MRM for quantification.

Although MRM is very powerful for proteomics and can detect scarce proteins, it has some limitations. For each protein, at least two peptides are required to confirm the identity of the protein of interest and determine its quantity. It is necessary to differentiate between correctly identified peptides and false positives: digested peptides can share considerable homology. MRM results can be degenerate if there are sequence similarities between the target peptide and any other peptide in the sample. In the current study, I could not obtain any transitions matching the protein of interests due to variations in the elution time of the same transitions. This was confirmed by full MS/MS spectra manual sequencing. As a result the technique could not be used.

Alternatively, I attempted to use SWATH, which is a new technique introduced for targeted protein quantification to provide MRM-like reproducibility but with higher multiplexing. Samples of hippocampus, occipital cortex and inferior cortex from AD cases and controls were prepared in solution form (The preparation of these samples resemble that for MRM). To perform SWATH to quantify proteins of interest, samples should be run on an HPLC system connected to a quadrupole triple TOF mass spectrometer to obtain data using an information dependent acquisition mode to generate MS/MS spectra based on the precursor ions detected in the sample. These data were
subsequently analysed using Protein Pilot software and the MASCOT search algorithm to identify the proteins. Unfortunately, none of the proteins of interest was found in any of the samples run on the mass spectrometer. Nevertheless, several hundred proteins were identified in the sample mixture.

Proteomics based on mass spectrometry can to detect and identify very small amounts of proteins in the femtomole to attomole range, but sample complexity can result in difficulties in detecting and quantifying proteins present at two to three orders of magnitude lower than the most abundant ones. Hence, extensive fractionation is crucial to reduce the concentration range and improve the coverage of the proteins in the sample mixture. SCX fractionation was used in the current study to overcome this problem. After fractionation the peptides were run on an HPLC system connected to a Triple TOF mass spectrometer. Data were analysed using both MASCOT search and Protein Pilot software. Many proteins were identified using this approach, but none of them was a protein of interest.

Finally, an alternative approach was used to fractionate the sample mixture, in-gel digestion. This is a popular sample preparation method that offers a simple way of protein pre-fractionation based on size. Subsequent gel excision of the approximate range of the protein of interest means the removal of low- and high-molecular weight proteins irrelevant to the project. In-gel digestion was combined with a gel-staining protocol that does not interfere with protein digestion (Vasilj et al., 2012, Piersma et al., 2013). After the extraction of proteins at the expected molecular weight from the gel, samples were run on an HPLC system connected to a Triple TOF mass spectrometer. Data were analysed using both MASCOT search and Protein Pilot software. This approach gave fewer proteins, but all neuroligin isoforms were found in Mascot search but not in ProteinPilot software. On closer inspection, only two peptides were obtained for neuroligin-1 and neuroligin-4 and three peptides for neuroligin-2 and neuroligin-3. As mentioned above, uniqueness of the peptides to the protein of interest is crucial to the assay. I found one peptide in common to all four proteins (GNYGLLDLIQALR), which left neuroligin-1 and neuroligin-4 with only one peptide and neuroligin-2 and neuroligin-3 with 2 peptides in total. The confidence in the identification scores for the remaining peptides was very low, and did not allow me to confirm that these peptides belong to

the proteins of interest. In consequence, I could not use SWATH to quantify neuroligins and neurexins in AD cases and controls.

The inability to detect a sufficient number of peptides in neuroligin-1, neuroligin-2 and β neurexin-1 could reflect their relatively low abundance in the synaptic membrane. It is also possible that some of these proteins migrate with more-abundant proteins and are thus difficult to detect by mass spectrometry. It is noteworthy that the low abundance of a protein in a membrane preparation does not necessarily indicate that it is absent from the synaptic terminal in vivo. It is more likely that the association of some proteins with other synaptic proteins is disrupted by extraction with the reagents used in the methodology. The inability to detect neurexins and neuroligins in the current study conforms to a previous report on the identification of proteins in the postsynaptic density fraction by mass spectrometry (Walikonis et al., 2000). Multiple synaptic proteins located at the post synaptic density could not be identified, such as SHANK, GKAP, PSD-95 and SAP102 (Müller et al., 1996), even though they have been reported to be enriched in PSD. This is interesting because neuroligin binds to PSD-95 via its PDZ domains, and PSD-95 in turn, interacts with GKAP and SHANK, which lie deep in the PSD. GKAP and SHANK also bind through their PDZ domain to the C terminus of PSD-95. All these proteins are located in the PSD and attached to each other, and their strong association to the synaptic membrane could prevent their extraction by the protocols used here. Additional methods, such as high-resolution immunolocalization, will be needed to ascertain the full protein composition of the synaptic proteome. Increasing the amount of starting material or modifying the fractionation strategy, such as immunoprecipitation followed by mass spectrometry, might be worth pursuing in the future.

4.6 Supplementary material for Chapter 4 Appendix

Table 4.3. Membrane proteins identified using in-solution detection.

Table 4.4. Proteins identified by MASCOT search using SCX fractionation.

Chapter 5

5 Quantification of neuroligin-1, neuroligin-2 and β-neurexin-1 mRNA

5.1 Aim of the research

1. To assay *NLGN-1*, *NLGN-2* and β -*NRXN-1* messenger RNA (mRNA) transcript expression in human autopsy brain tissue in AD cases and matched controls.

2. To compare transcript expression across the three brain regions studied.

- 3. To evaluate the impact of age, gender, and post-mortem delay on transcript expression
- 4. To assess transcript expression according to severity of AD pathology and *APOE* genotype.

5.2 Introduction

To understand the biological machinery involved in neuronal survival and death, it is important to study gene expression to gain information about cellular pathways. Neuronal functions and behavioural alterations in an organism are modified by gene expression and the resulting functional consequences. The death of a neuron can be mediated by disorders in processes that are derived from altered gene expression, which can lead to functional changes. Cellular pathways in the brain are highly regulated, and minor alterations in mRNA expression can have strong effects. To understand AD ætiology and disease progression, and to aid the development of new therapeutics, the characterization of changes in cellular and molecular pathways responsible for neuronal survival will provide relevant information. Small changes in gene expression can have large impacts on cellular pathways. Alterations of many synaptic proteins involved in mechanisms of plasticity, memory, and learning have been studied at the level of gene transcription. These changes could play roles in synaptic damage. Nerve-endings require mRNA to express the proteins required for synaptic activity. Impairment of LTP occurs prior to neuronal loss in hippocampal neurons harvested from transgenic AD animal models; by analogy, altered gene expression could be implicated in cognitive impairment in AD. Comparisons of confirmed AD cases and controls using autopsy brain tissue have shown differences in the expression of genes involved in memory processing and learning. Most of these studies report down-regulation of these genes in the AD cases.

The structure of the human brain is complicated and heterogeneous. Advanced technologies can be used to quantify transcript expression, including high-throughput gene expression assays (microarrays). Microarray techniques allow researchers to analyse thousands of mRNA transcripts and portray patterns of differentially regulated genes in the disease state. The techniques produce a huge amount of information that highlights pathogenic pathways. A limitation of the microarray approach is the inability to distinguish between gene variants that arise by alternate RNA splicing. Techniques that can be used to validate high-throughput assays include Northern blot, quantitative real time reverse-transcription (RT)-PCR (Gutala and Reddy, 2004, Reddy et al., 2004, Therianos et al., 2004) and *in situ* hybridization (Mirnics et al., 2000, Yang et al., 1999). Each technique has advantages and limitations. Northern blotting, for example, uses electrophoresis to separate RNA transcripts by size, and the transcripts of interest are detected by probe hybridization. This technique can determine minor changes that RNA microarrays cannot, and can yield data about the size of the transcript, but has low sensitivity, is time consuming, and needs large amounts of RNA. The lastmentioned is an issue with the limited amounts of starting material available from autopsy tissues. In situ hybridization can be used to determine the location and distribution of mRNA transcripts across tissues, but its facility for quantifying the transcript is low. End-point relative RT-PCR quantifies the transcript at the final stage of a PCR reaction on a DNA acrylamide gel. This technique has some limitations such as limited dynamic range and resolution, poor precision, and it requires post-PCR processing.

Real time RT-PCR is considered the most sensitive quantitative gene transcription assay. It has a broad (10⁷) dynamic range and allows the measurement of both abundant and scarce transcripts (Higuchi et al., 1992). There are two RT-PCR chemistry strategies available: fluorescent probes such as TaqMan®, Molecular Beacons, or Scorpions®, and the SYBR® Green method. The SYBR® Green I method utilizes a DNA binding dye that intercalates into the minor groove of double-stranded DNA as the fluorescent reporter. During amplification of the target sequence by PCR, SYBR® Green I attaches to the amplified sequence and then fluoresces, so that as the amplicon concentration increases following each PCR cycle, the fluorescence increases proportionally and can

be quantified. Although this method is cost effective it has the disadvantage that the probe binds to all double-stranded DNA, including primer-dimers and any non-specific products present, some of which cannot be effectively removed from the assay.

RT-PCR quantification by the gene-specific TaqMan® probe and primer method has advantages for quantitative gene expression studies. The assay comprises an 6-carboxyfluorescein (FAM[™]) dye-labelled TaqMan® minor groove binder (MGB) probe and two PCR primers combined in one tube. As the specific target is amplified the probe gets cleaved, decoupling the fluorescent and quencher moiety and preventing fluorescence resonant energy transfer, so the total reaction fluorescence increases with each amplification cycle. The fluorescence increase takes place in proportion to the original concentration of target mRNA present, which can be accurately quantified. The assay is optimized to run under universal thermal cycling conditions with a final reaction concentration of 250 nM for the probe and 900 nM for each primer. The technique has several advantages over the SYBR Green method in that it is customized, fast, and easy to set up. It is specific and sensitive as well as cost effective compared with microarrays. The TaqMan® probe and primer RT-PCR assay was chosen for the study.

RT-PCR quantification can be either relative or absolute. In relative qRT-PCR the level of the target gene is normalized to a housekeeper reference gene that is uniformly expressed across all samples. Unfortunately, the levels of many commonly used housekeeper genes, which are involved in energy metabolism, cell cycling, communication, and cytoarchitecture, differ between AD cases and controls (Gebhardt et al., 2010). Absolute qRT-PCR is more accurate because it utilizes a standard curve of known concentrations of either RNA or DNA to quantify the target gene. Most absolute quantification methods use known concentrations of recombinant plasmids that contain the transcript of interest to calculate the copy number of the transcript in each unknown sample. In the current study I chose this approach. An absolute TaqMan qRT-PCR assay was developed to quantify the levels of neuroligin-1, neuroligin-2 and β -neurexin mRNA transcript in autopsy brain tissue from AD cases and controls.

5.3 Methods

5.3.1 Tissue collection and storage

See Chapter 3, Section 3.2.1.

#	Age, y	PMD, h	Gender	ApoE	Pathological score			
					Hipp	ITC	OCC	
AD cases								
AD1	65	34.83	М	ε3,ε4	3	3	1	
AD2	82	54.92	М	ε3,ε4	3	3	1	
AD3	79	26.33	Μ	ε4,ε4	3	3	1	
AD4	91	48.00	F	ε3,ε3	3	3	1	
AD5	86	35.50	F	ε3,ε3	2	2	1	
AD6	81	1.67	F	ε3,ε3	1	2	1	
AD7	82	41.25	F	ε3,ε4	3	3	3	
AD8	75	4.00	М	ε4,ε4	3	3	1	
AD9	82	15.38	F	ε3,ε3	2	1	1	
AD10	66	18.83	М	ε3,ε4	3	3	1	
AD11	78	7.50	F	ε2,ε3	3	3	0	
AD12	77	19.50	М	ε2,ε3	3	3	2	
AD13	84	25.40	М	ε4,ε4	3	2	3	
AD14	72	80.00	М	ε4,ε4	3	3	2	
Average	78.7 ± 7.1	29.67 ±21	8M, 6F					
Normal controls								
NC1	78	4.00	F	ε3,ε4	0	0	0	
NC2	87	21.50	F	ε2,ε3	1	0	0	
NC3	82	46.83	Μ	ε3,ε3	0	0	0	
NC4	85	24.50	Μ	ε2,ε3	0	0	0	
NC5	75	24.43	F	ε3,ε3	0	0	0	
NC6	68	43.66	F	ε3,ε4	0	0	0	
NC7	72	15.41	F	ε3,ε3	1	0	0	
NC8	71	7.75	F	ε3,ε4	0	0	0	
NC9	78	16.25	Μ	ε3,ε3	0	0	0	
NC10	68	28.16	Μ	ε2,ε2	0	0	0	
NC11	76	24.00	F	ε3,ε3	0	0	0	
NC12	73	85.15	Μ	ε2,ε3	1	0	0	
NC13	77	18.00	F	ε3,ε4	0	0	0	
NC14	80	47.15	Μ	ε3,ε3	0	0	0	
Average	76.6 ± 5.5	24.8 ± 12.8	6M, 8F					

 Table 5.1. Details of AD cases and controls.

5.3.2 Case selection and neuropathological classification

Fourteen AD cases and 14 controls were selected and matched as closely as possible for age, PMD and gender. The average age at death for AD cases was 78.7 years, for controls 76.6 years. The average post-mortem delay for the AD cases was 29.7h, for controls 24.8h. Tissue from the three different areas used in other Chapters was obtained from each brain, although some AD cases were replaced because of a lack of available tissue. Each area of each brain was given a neuropathological severity score from 0-3 based on AD hallmarks, which are the severity of neuronal loss and the abundance NFTs and A β (Table 5.1).

5.3.3 RNA extraction

RNA was extracted from frozen tissue that had been stored in 0.32 M sucrose at -80° C. The TRIzol® (Invitrogen) extraction protocol was used according to the manufacturer's instructions. Tissue pieces were rapidly thawed and homogenized on ice in $10 \times (w/v)$ of TRIzol® using a Polytron® homogenizer (Kinematica). The homogenate was incubated for 5 min at room temp., $0.2 \times (v/v)$ of chloroform was added, the mixture incubated at room temp. for 2–3 min with shaking, then centrifuged for 20 min at $10\ 000 \times g$ at 4°C and the aqueous phase transferred to a new tube. A one-tenth volume of isopropanol was added and the mixture incubated at room temp. for 10 min. To deposit the RNA, samples were centrifuged at $10\ 000 \times g$ for 15 min at 4°C. The pellet was resuspended in 1 ml of 75% ethanol and the mixture centrifuged at $10\ 000 \times g$ for 20 min at 4°C. The pellet was dried, resuspended in 50 µl of nuclease-free MilliQ H₂O, and incubated for 10 min at 60°C.

5.3.4 RNA integrity

The quality of the RNA was tested by electrophoresis on a 1.5% agarose/2.2 M formaldehyde gel. The integrity of the RNA was checked using an Agilent RNA 6000 Nano kit as per the manufacturer's instructions. The Agilent software gives an RNA integrity number (RIN) between 1 and 10, where 1 is the poorest quality and 10 is the best (Imbeaud et al., 2005). RNA samples with a

RIN below 2 were discarded. The quantity of RNA was measured by UV spectrometry at the absorbance wavelengths (λ) 240, 280 and 320 nm.

5.3.5 Reverse transcriptase

To remove contaminating genomic DNA, DNase was added (1 μ l of 10× DNase I reaction buffer, Fermentas) was added to each 3 μ g of RNA and the mixture incubated with 40 U of RNase OUT (Fermentas) and 1 U of RNase-free DNase (Fermentas) for 30 min at –37°C. EDTA was added to a final concentration of 2.27 mM and the incubation continued for 5 min at 75°C.

The synthesis of cDNA was conducted by adding 0.82 μ g of DNase and 300 μ M dNTPs (Promega), 1 μ g of Oligo (dT) 12–18 primers (Promega) and 0.5 μ g of random hexamers (Promega) to the RNA. The volume adjusted to 12 μ l with nuclease-free MilliQ H₂O and the mixture incubated for 5 min at 65°C. 5× first-strand buffer, 4.8 mM DTT, 40 U of RNaseOUT and 400 U of Superscript III Reverse Transcriptase® (Invitrogen) were added and the mixture incubated for 5 min at 25°C, then for 60 min at 50°C, then for 15 min at 70°C. To remove contamination 2 U of DNase-free ribonuclease H (Invitrogen) was added and the incubation continued for 20 min at 37°C. The cDNA was stored in –80°C.

5.3.6 Standard preparation and dilution

NLGN-1 and *NLGN-2* standards were prepared by the method outlined in Chapter 2, Section 2.2.1. QIAprep Spin Miniprep kits (QIAGEN) were used to purify high-copy plasmid DNA. The concentrations of the plasmids were measured by nanodrop and aliquots of the dilutions were kept at –80°C to prevent degradation and avoid experimental variation between RT-PCR assays (Dhanasekaran et al., 2010). A fresh aliquot of each standard was used for each RT-PCR assay.

 β -NRXN-1 plasmid was obtained from GeneArt® Gene Synthesis (Life Technologies). The following is the sequence of the β -NRXN-1 standard used:

1 CCCCGCCATG TACCAGAGGA TGCTCCGGTG CGGCGCCGAG CTGGGCTCGC CCGGGGGGGGG
 61 CGGCGGCGGC GGCGGCGGCG GCGGCGCAGG GGGGGCGCTG GCCTGCTTT GGATAGTCCC
 121 GCTCACCCTC AGCGGCCTCC TAGGAGTGGC GTGGGGGGGCA TCCAGTTTGG GAGCGCACCA

181 CATCCACCAT TTCCATGGCA GCAGCAAGCA TCATTCAGTG CCTATTGCAA TCTACAGGTC 241 ACCGGCATCC TTGCGAGGCG GACACGCTGG GACGACATAT ATCTTTAGCA AAGGTGGTGG 301 ACAAATCACG TATAAGTGGC CTCCTAATGA CCGACCCAGT ACACGAGCAG ACAGACTGGC 361 CATAGGTTTT AGCACTGTTC AGAAAGAAGC CGTATTGGTG CGAGTGGACA GTTCTTCAGG 421 CTTGGGTGAC TACCTAGAAC TGCATATACA CCAGGGAAAA ATTGGAGTTA AGTTTAATGT 481 TGGGACAGAT GACATCGCCA TTGAAGAATC CAATGCAATC ATTAATGATG GGAAATACCA 541 TGTAGTTCGT TTCACGAGGA GTGGTGGCAA TGCCACGTTG CAGGTGGACA GCTGGCCAGT 601 GATCGAGCGC TACCCTGCAG GGCGTCAGCT CACAATCTTC AATAGCCAAG CAACCATAAT 661 AATTGGCGGG AAAGAGCAGG GCCAGCCCTT CCAGGGCCAG CTCTCTGGGC TGTACTACAA 721 TGGCTTGAAA GTTCTGAATA TGGCAGCCGA AAACGATGCC AACATCGCCA TAGTGGGAAA 781 TGTGAGACTG GTTGGTGAAG TGCCTTCCTC TATGACAACT GAGTCAACAG CCACTGCCAT 841 GCAATCAGAG ATGTCCACAT CAATTATGGA GACTACCACG ACCCTGGCTA CTAGCACAGC 901 CAGAAGAGGA AAGCCCCCGA CAAAAGAACC CATTAGCCAG ACCACAGATG ACATCCTTGT 961 GGCCTCAGCA GAGTGTCCCA GCGATGATGA GGACATTGAC CCCTGTGAGC CGAGCTCAGG 1021TGGGTTAGCC AACCCAACCC GAGCAGGCGG CAGAGAGCCG TATCCAGGCT CAGCAGAAGT 1081 GATCCGGGAG TCCAGCAGCA CCACGGGTAT GGTCGTTGGG ATAGTAGCCG CTGCCGCCCT 1141 GTGC

5.3.7 Taqman PCR assay

Assays were carried out in duplicate on MicroAmp® optical 384-well reaction plates (Applied Biosystems) on an ABI Prism® 7900HT Sequence Detection System. cDNA was diluted 1:8; 2 μ l was added to each 10 μ l reaction mix containing 5 μ l PCR universal master mix (Applied Biosystems), 0.5 μ l of primer probes (*NLGN1:* Hs00208784_m1; *NLGN2:* Hs00395803_ml; *βNRXN1:* Hs00373346_m1; and *RPL13*; Life Technologies). An EpMotion 5075 robotics system (Eppendorf South Pacific P/L, North Ryde, NSW, Australia) was used to ensure accurate pipetting.

5.3.8 Data Analysis

Multiple comparisons were evaluated by ANCOVA and ANOVA using the SPSS (Chicago, IL, USA) and Statistica (Tulsa, OK, USA) software packages with appropriate *post-hoc* tests. Differences were considered statistically significant at P < 0.05.

5.4 Results

RT-PCR assays were utilized to measure the absolute expression of *NLGN1*, *NLGN1* and β *NRXN1* transcxripts in RNA extracted from samples of hippocampus, inferior temporal cortex and occipital cortex from AD and control subjects. The absolute quantities of the three trancripts were calculated by interpolation from their respective known plasmid copy-number standard curves based on their observed Ct value (Fig. 5.1).

Fig. 5.1. Standard curves for absolute quantification. Standards, black squares, unknowns, red crosses; **A**, *neuroligin-1*, **B**, *neuroligin-2*, **C**, *β-neurexin-1*.

5.4.1 Data distribution

Normal probability plots of non-adjusted levels of *NLGN1*, *NLGN2* and β *NRXN1* showed positively skewed distributions that deviated significantly from normal (Fig. 5.2).

Fig. 5.2. Normal probability plots of transcript expression. A, NLGN1, B, NLGN2, C,

 $\beta NRXN1$ across the three areas. Shapiro-Wilks testing showed that all traces deviated significantly from the normal distribution, as shown in the in-graph boxes.

Transforming the values using the Box-Cox algorithm, available in the Statistica package, stabilized the variances and corrected the distributions (Fig. 5.3). This permitted parametric statistics to be used for the rest of the analyses, which was critical because the aim of the study was to undertake a quantitative assessment of expression in AD cases and controls.

(A) Neuroligin-1

Fig. 5.3. Normal probability plots of Box-Cox transformed data. A, NLGN1, B,

NLGN2, C, BNRXN1. Details as for Fig. 5.1. Shapiro-Wilks tests showed that no trace

deviated significantly from the normal distribution, as shown in the in-graph boxes.

		AD Cases			Controls		
	HP	OC	ITC		HP	OC	ITC
AD1	3.3	4.8	4.5	NC1	6.3	6.4	7
AD2	4.7	5	4.8	NC2	4.8	2.3	4.8
AD3	4.7	5.3	4.6	NC3	6	5.9	6.6
AD4	4.9	5	5.3	NC4	3.4	5.1	4.1
AD5	5	5.9	5	NC5	6.1	6.8	7
AD6	5.3	4.8	5	NC6	3.9	3.4	4.5
AD7	5	5	3.2	NC7	6.2	7	5.8
AD8	4.7	3.6	4.8	NC8	2.2	3.8	3.2
AD9	5.1	5.5	5.7	NC9	5.1	4.6	5.4
AD10	3.2	2.5	2.7	NC10	4.4	3	4.3
AD11	2.9	2.6	3.4	NC11	5.9	6.8	6.2
AD12	2.6	3.8	2.7	NC12	4.9	3	4
AD13	3.5	3.3	2.9	NC13	5.3	4.6	5.3
AD14	4.3	4.2	3.5	NC14	5.5	4.8	4.5

 Table 5.2. RNA integrity number

5.4.2 RNA integrity

RNA integrity was estimated in each sample to check whether the quality of the RNA would impact the concentration of transcripts measured (Table 5.2). A number of studies have reported on the impact of age at death and PMD on the quality of the mRNA, and shown that neither has a marked effect (Chevyreva et al., 2008, Harrison et al., 1991). RNA in autopsy tissue is stable for up to 120h post-mortem (Hynd et al., 2003). In this study regression analyses showed that post-mortem delay had no effect on the integrity of RNA ($F_{1,82} = 0.146$, P = 0.70), while age showed a justsignificant effect on RIN ($F_{1,82} = 3.757$, P = 0.056; Fig. 5.4). RIN was normally distributed (Fig. 5.5)

Fig. 5.4. Scatterplots of RIN against A, age, B, PMD.

Fig. 5.5. Normal probability plot of RIN. Data did not deviate significantly from the normal distribution by Shapiro-Wilks testing as shown in the in-graph box.

5.4.3 Reference gene (RPL13 expression)

There are several housekeeper genes that are uniformly expressed across many tissue and cell types, such as glyceraldehyde-3-phosphate dehydrogenase (*GAPDH*), *HSP90*, *CYC1*, *EIF4A2* and β-actin. However, the expression of these genes may vary depending on experimental and pathological conditions. In the RT-PCR assay, there is no universal reference gene suitable for all experimental conditions. Careful validation of housekeepers should be performed to choose the most appropriate. Differences in the expression of the reference gene between study samples and controls can profoundly compromise interpretation. Most RT-PCR studies in the literature use *GAPDH* (NM_002046.3) as the reference gene for normalization. In AD, reduced synthesis of *GAPDH* mRNA, abnormal aggregation of GAPDH protein in the nucleus of, and increased activity of the enzyme cells have been observed in diseased tissues, suggesting a direct or indirect relationship of GAPDH with the neurodegenerative process. This makes *GAPDH* unsuitable as a reference gene in

this study. The housekeeping gene that showed the most constant expression in AD cases and controls in autopsy tissues was RPL13, which is a component of the 60S ribosomal subunit (Gebhardt et al., 2010). In this study RPL13 was used as a housekeeper. Its expression across samples showed no overall difference between AD cases and controls ($F_{1,80} = 0.078$, P = 0.78; Fig. 5.6). No variation in *RPL13* expression was observed between cases and controls in any brain area $(F_{2.50} = 0.092, P = 0.91;$ Fig. 5.7).

Fig. 5.6. RPL13 expression by case-group.

Fig. 5.7. RPL13 by case-group across brain regions.

5.4.4 Age at death and post-mortem delay with RPL13 transcript expression

Regression analyses showed no relationship between either PMD or age and RPL13 CT value

 $(F_{1,82} = 0.010, P = 0.92; F_{1,82} = 3.921, P = 0.051$ respectively; Fig. 5.8). (A)

Fig. 5.8. Regression of *RPL13* CT value on A, PMD and B, Age.

No significant association was observed between PMD and the expression of *NLGN1* ($F_{1,82} = 0.004$, P = 0.94), *NLGN2* ($F_{1,82} = 0.261$, P = 0.61) or $\beta NRXN1$ ($F_{1,82} = 0.011$, P = 0.91). *NLGN1* showed a near-significant relation with age ($F_{1,82} = 3.836$, P = 0.053), although *NLGN2* ($F_{1,82} = 0.042$, P = 0.83) and $\beta NRXN1$ ($F_{1,82} = 1.375$, P = 0.24) did not (Fig. 5.9). As a result age was used as a covariant in subsequent analyses for all transcripts.

5.4.5 Neuroligin-1 transcript expression between cases and controls

The copy number of *NLGN1* transcript was quantified by RT-PCR assay using a standard curve with known copy numbers of recombinant plasmid and adjusted for RIN. There was significant difference in expression levels averaged across all areas between AD cases and controls ($F_{1,82} = 8.978$, P = 0.004). The transcript copy number of neuroligin-1 mRNA was lower in AD cases and controls (Fig. 5.10). The Group × Area interaction was significant ($F_{2,52} = 4.780$, P = 0.012), and was probed further by *post-hoc* testing (Fig. 5.11). The level of neuroligin-1 transcripts measured was lowest in the occipital cortex and highest in inferior temporal cortex.

Page | 139

Page | **140**

Fig. 5.9. Regression of *NLGN1*, *NLGN2* and *βNRXN1* transforms on age at death and PMD. See text for details.

Fig. 5.10. *NLGN1* transcript level by case-group averaged across the three areas. *, Significantly different from controls, see text. Bars show mean copy number $\times 10^3$ per µg of total RNA ± S.E.M.

Fig. 5.11. *NLGN1* mRNA copy numbers by case-group and area. Details as for Fig. 5.10; *, significantly different from controls in the same area, P < 0.05 by Newman-Keuls *post-hoc* test.

5.4.6 Neuroligin-1 transcript expression and gender

Gender is a significant factor in disease progression, and medications targeting proteins that are differentially expressed between males and females may significantly impact treatment (Vina and Lloret, 2010). Some genes that shown similar expression levels in both sexes in normal healthy controls could be differentially expressed between genders in disease (Vawter et al., 2004). Gender may be important in disease progression (Hynd et al., 2003). In this study the main effect for Gender was significant ($F_{1,82} = 8.909$, P = 0.003) because *NLGN1* expression was expression was lower overall in males than in females. This pattern was similar in both case-groups: the Group × Sex interaction on *NLGN1* was not significant ($F_{1,80} = 0.024$, P = 0.87), in essence because expression was higher in females in both groups, as revealed by *post-hoc* testing (Fig. 5.12). When samples were further divided by area, the *NLGN1* copy number was higher in females than in males in all three areas and in both groups. This resulted in a non-significant Group × Gender × Area interaction ($F_{2,48} = 0.692$, P = 0.50), but *post-hoc* testing showed that regional differences reached significance in both hippocampus and inferior temporal cortex (Fig. 5.13).

Fig. 5.12. *NLGN1* mRNA expression by case-group and sex. Details as for Fig. 5.11; *, significantly higher than expression in males in the same case-group, P < 0.05 by Newman-Keuls *post-hoc* test.

Fig. 5.13. *NLGN1* expression by case-group, sex, and area. Details as for Fig. 5.11; *, significantly different from same-sex controls, and [†], opposite-sex AD cases, in the same area, P < 0.01 by Newman-Keuls *post-hoc* testing.

5.4.7 NLGN1 transcript expression and APOE genotype

As noted in Chapter 3, not all *APOE* genotypes were present in the dataset. For statistical analysis subjects were divided into two groups: ϵ 4 allele carriers and ϵ 4 non-carriers. These two groups were obtained by dividing cases into three groups: cases with ϵ 4 allele, cases with one copy

of the ε 4 allele and finally cases with two copies of the ε 4 allele. Because ε 2 allele is known to be neuroprotective, it was decided that ε 2, ε 4 carriers resembled ε 3, ε 3 cases, and as a result these two genotypes were combined in the same class.

NLGN1 expression was significantly lower overall in *APOE* ε 4 carriers than in those without an ε 4 allele ($F_{1,82} = 6.203$, P = 0.014; Fig. 5.14). The patterns were parallel in AD cases and controls, hence the Group × N° of ε 4 alleles interaction was not significant ($F_{1,80} = 0.767$, P = 0.384) but the differences remained significant in AD cases under *post-hoc* testing (Fig. 5.15). There was no significant regional variation in *NLGN1* expression pattern ($F_{2,52} = 0.149$, P = 0.86; Fig. 5.16), and the statistics had insufficient power to find differences between the genotypes within case-groups at this level by *post-hoc* testing. However, there were differences in *NLGN1* expression between AD cases and matched controls in both hippocampus and inferior temporal cortex in subjects that did not carry any ε 4 allele.

Fig. 5.14. *NLGN1* transcript expression by *APOE* genotype. Display details as for Fig. 5.10. Subjects were combined across case-groups and divided into those who had no (APOE1) or at least one (APOE2) *APOE* ε 4 allele; *, significantly different from subjects with no ε 4 allele, *P* < 0.02, see text.

Fig. 5.15. *NLGN1* expression by case-group and N° of *APOE* ε 4 alleles. Details as for Fig. 5.14; *, significantly different from AD cases with no ε 4 allele, *P* < 0.05 by Newman-Keuls *post-hoc* test.

P < 0.02 by Newman-Keuls *post-hoc* tests.

5.4.8 NLGN1 expression and disease severity

AS explained in Chapter 3, only AD cases were analysed by pathological score. Overall, the effect of disease severity on *NLGN1* expression only trended toward significance ($F_{2,39}$ =2.973, P = 0.062), in part because the generally spared occipital cortex showed a different pattern from the

other two areas (Fig. 5.17). In conformity with this regional difference in patter, the PS × Area interaction was significant ($F_{4,33} = 3.016$, P = 0.031). The level of *NLGN1* transcript in inferior temporal cortex samples from AD cases at a moderate stage of disease were significantly lower than from those with mild disease, and significantly lower again in cases that showed severe disease features. Only the latter comparison reached significance in hippocampus (Fig. 5.17).

Fig. 5.17. *NLGN1* transcript expression by disease severity. Tissue samples from AD cases were divided according to the index of pathological severity as described in the text. Newman-Keuls *post-hoc* testing showed that expression in hippocampus at the severe stage was significantly lower than at the moderate stage (P = 0.006). In inferior temporal cortex expression was significantly lower at the moderate stage than at the mild stage (P = 0.001) and significantly lower again at the severe stage (P = 0.013). Expression did not vary significantly with disease severity in AD occipital cortex.

5.4.9 Neuroligin-2 transcript expression by case-group

The copy number of neuroligin-2 transcript was quantified by RT-PCR assay as described in Methods. Statistical tests were performed on Box-Cox transforms of the values as outlined in Section 5.4.1 and the means converted to the original scale for presentation. The transcript copy number of neuroligin-2 was averaged and quantified across all three areas. Overall, *NLGN2* expression was significantly lower in AD cases than in controls ($F_{1.82}$ =23.515, P < 0.001; Fig. 5.18). The Group × Area interaction also reached significance ($F_{2,52}$ =4.345, P =017); although expression was lower in AD cases than controls in all areas, it was more marked, and significant, in the two areas most affected by disease pathology (Fig. 5.19).

Fig. 5.18. *NLGN2* transcript expression by case-group averaged across the three areas. Details as for Fig. 5.10; *, significantly different from controls, see text.

5.4.10 Neuroligin-2 transcript expression and gender

The influence of gender on the expression of *NLGN2* transcripts was studied no significant difference was found ($F_{1,80} = 0.175$, P = 0.67). *Post-hoc* testing showed there were significantly lower *NLGN2* mRNA levels in in both male and female AD cases than in same-sex controls (Fig. 5.20). The Group × Gender × Area interaction was not significant ($F_{2,48} = 0.015$, P = 0.98) because patterns were similar in the three regions, as portrayed by *post-hoc* testing (Fig. 5.21).

Fig. 5.20. *NLGN2* copy numbers by case-group and sex. Details as for Fig. 5.11; *, significantly lower than expression in same-sex controls, P < 0.05 by Newman-Keuls *post-hoc* test.

5.4.11 Neuroligin-2 transcript expression and APOE genotype

Expression trended lower in AD cases carrying the *APOE* ε 4 allele than in non-carrier AD cases, but did not reach significance ($F_{1,82} = 3.028$, P = 0.08; Fig. 5.22). The Group × N° of *APOE* alleles interaction was not significant ($F_{1,80} = 0.160$, P = 0.68), in essence because the same pattern was seen in subjects with the same genotype (Fig. 5.23). The further interaction with area was also not significant, for a similar reason (Fig. 5.24).

Fig. 5.21. *NLGN2* copy numbers by case-group, area, and sex. Details as for Fig. 5.11; *, significantly lower in AD cases than in same-sex controls by Newman-Keuls *post-hoc* testing, P < 0.001. No other comparison was statistically significant.

Fig. 5.22. NLGN2 transcript expression by APOE genotype. Details as for Fig. 5.14.

Fig. 5.23. *NLGN2* transcript expression by case-group and the N° of *APOE* ε 4 alleles. AD cases and controls were separated by APOE genotype as set out in Fig. 5.14 legend; *, there was significantly lower expression in AD cases than controls both in subjects without an ε 4 allele (*P* = 0.014) and those with at least one (*P* = 0.002) by Newman-Keuls *post-hoc* test.

Fig. 5.24. *NLGN2* mRNA copy numbers by case-group, *APOE* genotype and area. Details as for Fig. 5.14; *, in hippocampus, expression was significantly lower in AD cases with no ε 4 alleles than in matched controls, while in inferior temporal cortex AD cases with at least one ε 4 allele showed lower expression than the corresponding controls, *P* < 0.001 by Newman-Keuls *post-hoc* testing.

5.4.12 Neuroligin-2 transcript expression and pathological score

The PS main effect on *NLGN2* expression was not significant ($F_{2,39} = 1.858$, P = 0.16), but the PS × Area interaction was ($F_{4,33} = 3.097$, P = 0.02). There was a graded reduction in *NLGN2* copy number with disease stage in hippocampus. In occipital cortex the copy number did not vary. In inferior temporal cortex, there was no significant difference between mild and moderate stages but expression was markedly attenuated at the severe stage of the disease (Fig. 5.25).

Fig. 5.25. *NLGN2* copy number and pathological score. Details as for Fig. 5.17. Expression was significantly lower in hippocampus at the moderate stage than the mild stage (P < 0.001) and lower again at the severe stage (P < 0.001). Inferior temporal cortex showed significantly lower expression at the severe stage than at either earlier stage (P < 0.001). Newman-Keuls *post-hoc* tests.

5.4.13 β -Neurexin-1 transcript expression by case-group

The copy number of $\beta NRXN1$ transcripts was quantified as described in Methods, Section 5.3. $\beta NRXN1$ mRNA expression was significantly lower overall in AD cases than in controls $(F_{1,82} = 5.303, P = 0.02; Fig. 5.26)$. The Group × Area interaction was not significant $(F_{2,52} = 0.777, P = 0.46)$, in essence because the same general pattern was seen in all three areas (Fig. 5.27). None of the within-area differences between cases and controls reached significance on *post-hoc* testing, but

within AD cases the expression in hippocampus was significantly lower than in the other two areas (Fig. 5.27).

Fig. 5.26. β *NRXN1* transcript level by case-group averaged across the three areas. Details as for Fig. 5.10; *, significantly different from controls, see text.

5.4.14 β-Neurexin-1 transcript expression by gender

Overall $\beta NRXN1$ expression was significantly lower in males than in females ($F_{1, 40} = 6.192$, P = 0.017, and because the same pattern was seen in both case-groups the Group × Sex interaction was not significant ($F_{1,80} = 1.457$, P = 0.23). Post-hoc testing confirmed the differences between cases and controls in each sex/between sexes in each case-group (Fig. 5.28).

The Group × Sex × Area interaction was not significant ($F_{2,48} = 0.839$, P = 0.43), in part because the pattern seen in Fig. 5.28 was repeated across the three areas (Fig. 5.29), and in part because the statistics for such a deep-level interaction were underpowered. *Post-hoc* testing revealed that the between-group difference only reached significance in occipital cortex in females, though there was a trend in inferior temporal cortex (Fig. 5.29). Within-subject expression was significantly lower in occipital cortex, a pathologically spared area, than in inferior temporal cortex, a strongly affected area, in female AD cases (Fig. 5.29).

Fig. 5.29. $\beta NRXN1$ copy numbers by case-group, area, and sex. Details as for Fig. 5.11; *, significantly lower in female AD cases than in female controls, P < 0.001, and [†], significantly higher than in occipital cortex in AD males, P = 0.013, by Newman-Keuls *post-hoc* testing. No other comparison was statistically significant.

5.4.15 β-Neurexin-1 transcript expression by APOE genotype

When not divided by diagnosis, the overall level of $\beta NRXN1$ transcript was lower in subjects with at least one ϵ 4 allele ($F_{1,82}$ =6.612, P = 0.01; Fig. 5.30). The level of $\beta NRXN1$ transcript trended lower for both genotypes in AD cases than in matched controls, but the Group × N° of ϵ 4 alleles was not significant ($F_{1,80}$ =0.430, P =0.51; Fig. 5.31). There was a trend toward significance in the Group × Area × N° of ϵ 4 alleles interaction but it was not significant ($F_{1,80}$ = 1.770, P = 0.181). *Post-hoc* testing showed no significant difference in expression between AD cases and controls matched for *APOE* genotype in any area of the brain (Fig. 5.32).

5.4.16 β-Neurexin-1 transcript expression and pathological score

There was a graded reduction in β -neurexin-1 copy number with pathological score in all three areas of the AD cases, and the Area × Disease severity interaction was significant ($F_{2,39}$ =8.255, P = 0.001). The pattern varied from region to region, and was most pronounced in inferior temporal cortex (Fig. 5.33), but all area showed markedly lower $\beta NLGNI$ mRNA levels by the severe stage of the disease.

Fig. 5.30. *βNRXN1* transcript expression by *APOE* genotype. Details as for Fig. 5.14;

*, significantly lower in subjects with at least one APOE ɛ4 allele, see text.

Fig. 5.31. $\beta NRXNI$ transcript expression by case-group and the N° of *APOE* $\epsilon 4$ alleles. Subjects were separated by *APOE* genotype as set out in Fig. 5.14 legend; there was a trend toward significantly lower expression in AD cases with at least one $\epsilon 4$ allele than in matched controls, *P* = 0.09 by Newman-Keuls *post-hoc* test.

Fig. 5.32. β *NRXN1* mRNA copy numbers by case-group, *APOE* genotype and area. Details as for Fig. 5.14; *, in hippocampus, expression was significantly lower in AD cases with no ε 4 alleles than in matched controls, while in inferior temporal cortex AD cases with at least one ε 4 allele showed lower expression than the corresponding controls, *P* = 0.001 by Newman-Keuls *post-hoc* testing.

mild stage, (P = 0.063) and was significantly lower at the severe stage than at the mild stage (P < 0.001). Newman-Keuls *post-hoc* tests.

5.5 Discussion

Loss of memory and cognitive dysfunction are associated with the regional impairment of specific synapses, which precedes neuron loss, in the AD brain. Synaptic impairment occurs at early in AD stages and may result from a loss in the amounts and activities of key synaptic proteins, enzymes and receptors. Alterations in the quantities of synaptic proteins that mediate memory, learning, synaptic strength, and plasticity have been reported in the early stages of AD, and underpin the changes in LTP and LTD in animal cell culture models of AD and other diseases. Most changes in synaptic protein expression in many neurological diseases take place at the level of transcription. In the current study, methods were developed to quantify the mRNA levels of the post-synaptic proteins neuroligin-1 and -2 and the pre-synaptic protein β -neurexin-1 by absolute qRT-PCR assays. Expression of the three transcripts was assessed using human autopsy brain tissue from AD cases and gender- and age-matched controls. Two of the areas studied are the most affected areas in AD: hippocampus and inferior temporal cortex, while the relatively spread occipital cortex was used as a regional control. Expression of the three transcripts was also evaluated with respect to gender, *APOE* genotype and pathological severity.

5.5.1 Neuroligin-1 mRNA expression

Neuroligin-1 is a post-synaptic protein located in the excitatory synapse that has been primarily implicated in autism spectrum disorders (ASD) as mutations in gene encoding neuroligin-1 has been linked with some rare cases of inherited ASD (Jamain et al., 2003, 2008, Hines et al., 2008, Lawson-Yuen et al., 2008, Talebizadeh et al., 2005, Yan et al., 2005, Ylisaukko-Oja et al., 2005b). The involvement of neuroligins in synapse formation has been addressed in several studies (Lisé and El-Husseini, 2006, Craig and Kang, 2007). The role of neuroligin-1 in LTP in the amygdala and the development of associative fear memory in adult animals has been established (Kim et al., 2008). Neuroinflammation activated by amyloid deposition results in epigenetic suppression of neuroligin-1 expression and consequent damage of synaptic function and memory (Malkki, 2014). These data help to explain the pathogenic effects of amyloid deposition at the molecular level. The reduction of neuroligin-1 expression lowers synaptic efficacy, impairs synaptic plasticity, and disrupts memory. In line with these findings, the data presented here showed that *NLGN1* mRNA copy numbers were lower in AD cases than in controls. This finding was surprising because it conflicts with data on neuroligin-1 protein level presented in Chapter 3, which were high in AD cases than in controls. Significant differences were observed in *NLGN1* transcript level between AD cases and controls in both hippocampus and inferior temporal cortex.

The highest level of *NLGN1* transcript expression was found in occipital cortex, which is relatively spared in AD. Both hippocampus and inferior temporal cortex showed lower transcript levels. Also noteworthy was the significant, graded decrease in *NLGN1* transcript levels with increasing severity of disease in both hippocampus and inferior temporal cortex. In occipital cortex, *NLGN1* transcript copy number was lower at the moderate stage of disease than at the mild stage, but higher again at the severe stage. The latter could portray attempts by neurons to form new contacts in this region that is resistant to AD pathology, as neuroligin is critical in this process. *NLGN1* transcript copy number was significantly lower in AD males than in AD females, especially in hippocampus and inferior temporal cortex, and lower in AD males than in male controls.

5.5.2 Neuroligin-2 mRNA expression

Neuroligin-2 and its presynaptic binding partner, neurexin, form a complex in the synapse that has an important role in synaptogenesis (Huang and Scheiffele, 2008, Südhof, 2008). *NLGN2* gene knockout *in vivo* and acute *NLGN2* transcript knockdown by shRNAs *in vitro* both generate significant deficits in synaptic transmission (Varoqueaux et al., 2006, Chih et al., 2005). Overexpression of *NLGN2* with GABA_A receptors in HEK cells can induce functional GABAergic innervation from surrounding neurons (Dong et al., 2007), whereas knockdown of *NLGN2* markedly reduces GABAergic synaptogenesis (Sun et al., 2013, Poulopoulos et al., 2009). Transgenic mice overexpressing *NLGN2* display improved GABAergic transmission (Hines et al., 2008), which is impaired in *NLGN2* knockout mice (Blundell et al., 2009). In the current study, the expression of *NLGN2* transcripts was significantly lower in AD cases than in age- and gender-matched controls. Regionally, *NLGN2* expression in both AD cases and controls was lowest in occipital cortex and highest in inferior temporal cortex and hippocampus. The high level in hippocampus could relate to the critical function of this molecule in regulating contextually appropriate emotional behaviour (Jackson et al., 2012, Belichenko et al., 2009).

The level of *NLGN2* transcript varied with pathological score in AD cases. In hippocampus, *NLGN2* expression decreased with increasing severity of disease. For occipital cortex and inferior temporal cortex, the transcript level was higher at moderate stages but lower again at late stages of the disease. However, dividing the data by transcript, area and pathological score gave a limited number of data points with some of the pathological scores in this higher-order analysis, and adding more cases to the study would help detect trends. *NLGN2* transcript expression was lower in male AD cases than in male controls. The variations in *NLGN2* transcript levels in AD cases and controls were compatible with neuroligin-2 protein expression, which showed the same trends.

5.5.3 β-Neurexin-1 transcript expression

In the current study, $\beta NRXNI$ mRNA copy number was significantly lower in AD cases than in age- and gender-matched controls. The highest transcript expression was found the occipital cortex area, which is the area least affected by AD of the three studied, while the lowest expression was observed in the hippocampus, which is the most-affected area in the AD brain. $\beta NRXNI$ expression was lower in male AD cases than in male controls. The variations in $\beta NRXNI$ level in males were compatible with *NLGN1* and *NLGN2* transcript levels in AD cases and controls. This may indicate that the male cases included in the current study had more-severe Alzheimer's disease than the females. From Table 5.1 it may be seen that the males were on average younger (75 ± 2.5y) than the females (83 ± 2y), and this was statistically significant ($t_{12} = 2.367$, P = 0.036); earlier age at death can been argued to be an inverse index of severity (Hynd et al., 2001).

 $\beta NRXN1$ mRNA copy number was lower in AD cases carrying APOE ϵ 4 alleles than in noncarriers. Note, however, that most AD cases in the current study carried at least on APOE ϵ 4 allele (9/14), so this finding must be treated with caution. $\beta NRXNI$ transcript expression decreased with increasing pathological severity of disease, both overall and in all three areas, which may stem from the reduction in total synaptic number. However, additional cases are needed to validate this.

5.5.4 APOE genotype and transcript expression

APOE genotype adds more complexity to the pathophysiology of AD. The APOE ε 4 allele influences the prevalence of AD and lowers the age of onset in sporadic cases (Ashford, 2004). It is noteworthy that in this study, two of the AD cases possessed a copy of the "protective" ε 2 allele, and, as in the Chapter 3 study, several of the controls had the "deleterious" ε 4 allele, clearly demonstrating that these factors influence *risk* rather than exhibiting classical Mendelian genetics.

It was predicted that the ε 4 allele might impact the pathological severity of brain samples from AD cases. In this study, the quality of RNA was poorer in AD cases than in controls, as assessed by RIN. Nevertheless, no differences were observed in the expression of any of the three transcripts with respect to *APOE* ε 4 genotype by group. The current study used AD cases and controls in whom both diagnoses were pathologically confirmed by detailed examination at autopsy. The brain tissue was mostly from late-onset patients, and the transcripts detected reflect the impact of end-stage AD. The conclusions from these mRNA studies give a range of insights and add new data to assist in understanding AD progression and pathology.

5.5.5 Limitations of the study

Overall, the data presented here on *NLGN1*, *NLGN2* and *βNRXN1* transcript expression by qRT-PCR in AD cases and controls show complex variations in gene expression patterns that suggest the involvement of multiple cellular pathways in AD progression. Studies of expression in human autopsy brain are restricted by various factors such as mRNA variability between patient–patient and control–control groups, which can occur due to differences in genetic makeup and lifestyle. These may make gene expression patterns complex in ways are not faced in animal studies (Mirnics and Pevsner, 2004). The most important lifestyle factors to be considered include smoking, alcohol consumption, physical exercise, and diet, which have significant effect on gene expression in the

brain (Dodd et al., 2006, Cotman and Berchtold, 2002). Additional factors like education and exposure to environmental contaminants could also have impacts (Thiriet et al., 2008, Miller et al., 2009, Andin et al., 2007).

The medical history of the subjects is an important potential confound for consideration, because medication can change mRNA expression, but in the current study medical histories were not available. To fully explore AD pathogenesis, it would be ideal to examine brain tissues from unmedicated subjects, but this is unlikely for both AD cases and controls in this age-group. The results from this study might be aided by comparisons with mRNA expression in AD *post-mortem* brains by conventional methods such as Northern blots and microarrays, but the methodology used is currently considered to be the gold standard for quantification. An important consideration is th the in AD that neuropathology of AD does not affect all brain regions to the same extent; this was exploited here by comparing several regions from each brain, such the subjects acted as their own controls. This is particularly important to help reduce the impacts of some of the factors discussed above.

Correlating synaptic protein transcript levels at autopsy with clinical changes observed antemortem an important goal for future work, to obtain a more complete picture of the cases included in the study. Clinical data such as the Mini-Mental State Examination (MMSE) and ADAScog for each subject was not available for most cases used here, which come mainly from community donors. Thus, clinical correlates could not be studied. For autopsies that have been in the brain bank for a long time, there are legal aspects of privacy and ethics which made it difficult to recover data, if permission was not explicitly gained from the next of kin at the time of autopsy. Many subjects now being collected have a much higher level of clinical and other data available.

The method used to determine the pathological score of disease severity is not the same as Braak staging, which is based on measuring the spread of NFTs and A β across all areas in a brain and gives an accurate representation of actual AD severity. The method used to check the severity of the disease in separate tissue samples here was based on the A β plaque and NFT load, neuronal loss and gliosis. This gave a score from 0 to 3 corresponding to the stages of none, mild, moderate and severe AD in the particular tissues from different brain areas. Both methods have the disadvantage of being semi-quantitative observations of histology markers, and require experienced pathologists who are blinded to diagnosis.

Giving a pathological severity score for each area used can overcome problems related to determining the significance of more-complex, localized interactions, but in the current study it was difficult to obtain sufficiently large numbers of samples with some scores. For instance, there were relatively few samples with pathology scores of 1 or 2 available for hippocampus and inferior temporal cortex, while the opposite was true for occipital cortex. Therefore, it was difficult to obtain statistically significant differences with the number of AD cases available. This problem impacts the transcript level by area, *APOE*, and pathological score interactions.

It has been widely noted that transcript expression often does not relate to protein expression for the products of the same gene, but it can predict overall protein expression. That can be due to different post-translational factors that might impact overall protein isoforms, trafficking, recycling and degradation. These processes may be badly disrupted in neurodegenerative disease. As a result, some differences were not detected in the expression of neuroligin and neurexin transcripts between AD cases and controls, even though marked differences were found at the level of protein expression of these synaptic adhesion molecules.

It's hard to correlate the RNA and protein data because the scales are so different. We applied different Box-Cox transforms to the protein and RNA data, which makes regression analysis very problematic. In preparing the protein-RNA comparison data for publication we will seek the advice of a professional statistician on this point. It is noteworthy that all possible variations can be found in the literature: RNA concentrations can show differences between disease cases and controls that are not reflected in protein levels; or the two moieties can be congruent; or protein levels can differ where no differences in RNA concentrations can be found. The present work is based on a single time-point in the subject's life – i.e., death – and the abundance of transcripts and proteins measured

reflect the difference in the synthesis and degradation of each as well as possible differences in location, compartmentalization, and trafficking.

Chapter 6

6 Genetic association of neuroligins and neurexins with AD

6.1 Aim of the research

The aim of this chapter was to use a case-control association approach in an Australian Caucasian population to confirm the association between AD and the single nucleotide polymorphism (SNP) rs17757879 in $\beta NRXN3$, previously reported in a Spanish cohort. A meta-analysis of genome-wide association studies (GWAS) had shown that this SNP had a consistent protective effect.

6.2 Introduction

AD genetics can be divided into two types. The first leads to early appearance of the disease, at around 50 to 65 years, and has a strong familial clustering and dominant Mendelian transmission linked to one of three genes, APP, PSEN1 and PSEN2. Mutations in any of these lead to modifications in the production of A_β (Tanzi and Bertram, 2005). However, only 5% of AD cases appear have these familial forms of the disease (Janssen et al., 2003). The second type is by far the more common; cases show later-onset, around 65 years of age, and there is no significant familial aggregation. The genetic underpinning of this form comprises a number of low-penetrance, common risk alleles at different genomic loci that may have impact on various pathways in the production and accumulation of A_β. Several lines of evidences suggest that combinations of these risk-factor genes have significant effects on disease susceptibility and age of onset (Bertram and Tanzi, 2008). Over the last three decades several very large candidate-gene association studies have been conducted on 500 genes identified as a possible risk factors for late-onset AD (Bertram et al., 2007). Recently, new markers, which are found near or within the following genes: CLU, PICALM, CR1, BIN1, MS4A, CD2AP, ABCA7, EPHA1, and CD33, have been linked with AD in GWAS (Seshadri et al., 2010, Lambert et al., 2009). However, the ɛ4 allele of APOE still shows the strongest association with lateonset AD (Saunders et al., 1993).

AD is considered to be a polygenic disorder (Pedersen, 2010) and its complex genetic architecture makes genetic analysis difficult. A pathway-based method has been applied to the available GWAS datasets to explore biological mechanisms underlying AD susceptibility. Significant pathways related to the immune system have been identified using KEGG analysis (Hong et al., 2010, Jones et al., 2010, Lambert et al., 2010). (Lambert et al., 2009) performed a GenGen pathway-based analysis of a French AD GWAS dataset and found several significant pathways related to autophagy and the immune system. These pathway-based approaches complement standard single-marker analysis by extracting more biological information from the GWAS datasets. Another recent study consistently found an association between the CAM pathway and AD susceptibility in two GWAS datasets (Liu et al., 2012).

The role of CAM in cognitive decline in AD and the involvement of genes such as *PS1* in regulating the processing of neuroligins and neurexins, as set out in Section 1.4.4.1, have led to the suggestion that mutations in *NLGN* or *NRXN* genes might have roles in sporadic AD. Five GWAS included 1,256 SNPs in the *NRXN1, NRXN2, NRXN3*, and *NLGN1* genes (3,009 AD cases and 3,006 controls). Meta-analysis identified one SNP in the *NRXN3* gene (rs17757879) that showed a consistent protective effect in all the GWAS, although the differences between AD cases and controls did not reach statistical significance (Martinez-Mir et al., 2013). Dividing the cases by gender showed that the protective effect was limited to males. A replication study conducted in a Spanish cohort of 1,785 AD cases and 1,634 controls confirmed the protective effect in males. These data suggest a possible role for *NRXN* in AD. I undertook to validate the results in this chapter by genotyping the *NRXN3* marker in genomic DNA (gDNA) from Queensland Brian Bank.

6.3 Methods

6.3.1 gDNA preparation from autopsy brain tissue

Autopsy brain tissue samples stored at –80°C in 0.32M sucrose according to the Dodd et al. (1986) protocol were obtained from Queensland Brain Bank. The phenol-chloroform method was used for gDNA extraction. Small pieces from each brain were thawed and incubated overnight in

1 ml lysis buffer (2% SDS, 200 mM NaCl, 50 mM EDTA, 50 mM Tris-HCl, pH 8) and 0.4 mg protease K at 37°C. Next day, 1 ml of phenol:chloroform:isoamyl alcohol (Sigma-Aldrich) was added and the mixture vortexed and centrifuged at $13,000 \times g$ for 15 min at room temperature. The top aqueous layer was transferred to a new tube, 1 ml of phenol:chloroform:isoamyl alcohol was again added, and mixture vortexed and centrifuged at $3,000 \times g$ for 10 min. The top layer was transferred to new tube, 100 µl of 3 M sodium acetate and 2 ml ethanol were added and the mixture centrifuged at $3,000 \times g$ for 10 min at 4°C. The supernatant was discarded, 1 ml of 70% cold ethanol was added to the pellet and the mixture centrifuged at $3,000 \times g$ for 10 min at 4°C. The pellet was dried and resuspended in 0.5 ml TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8.0).

6.3.2 DNA quantification and quality Control

DNA was quantified on a NanoDrop 1000 Spectrophotometer (Thermo Scientific, Scoresby, Vic, Australia). Samples with higher concentrations were diluted to 10 ng/ μ l and stored at -20° C until genotyped.

6.3.3 DNA genotyping

Genotypes for 162 AD cases and 119 controls for rs17757879 gene were obtained using Taqman SNP Genotyping Assay (Life Technologies; assay N° C_34498830_10). This technique was performed in the ABI-ViiA7 RT-PCR facility located at the School of Chemistry and Molecular Biosciences. Assays were prepared by mixing 2.5 μ l of 2× TaqMan® Genotyping Master Mix (Applied Biosystems; AmpliTaq Gold® DNA Polymerase ultrapure, buffer, dNTPs, ROXTM dye) with 0.25 μ l of TaqMan® SNP Genotyping Assay containing sequence-specific forward and reverse primers and two TaqMan® MGB probes labelled with VIC and 6-carboxy-fluorescein (FAM; Applied Biosystems). 0.25 μ l of MilliQ H₂0 was added and 2.5 μ l of 10 ng/ μ l gDNA. Total reaction was 5 μ l, performed in 384-well plates. PCR conditions were as follows: an initial denaturation step of 95°C for 10 min, followed by 40 cycles of 95°C for 15s and 60°C for 1 min and a final extension step of 60°C for 30s.

6.3.4 Genotyping quality control and validation

Chosen samples were sequenced as a positive control to validate genotyping methods. To confirm the reproducibility of the genotyping results, about 30% of samples were randomly chosen for re-genotyping. The consensus rate ranged from 97% to 100%.

6.3.5 Data quality control

Before performing genetic association analysis, data quality control was applied to check samples and gene polymorphisms with high rates of missing data, which could be caused by poor DNA quality and assay inefficiency. A Hardy-Weinberg equilibrium (HWE) test was performed to detect bias in dominant/recessive models of tri-allelic genotype for both AD cases and controls.

6.3.6 Genetic association

Genetic association of tri-allelic polymorphisms were detected by the χ^2 test of association for allelic (D vs d), genotypic (DD vs Dd vs dd), dominant (DD+Dd vs dd) and recessive (DD vs Dd+dd) models.

6.3.7 Sample size and power

Statistical power estimated by the Genetic Power Calculator (Purcell et al., 2003) showed that 96 cases and 115 controls were required to attain 80% power at $\alpha = 0.05$ for allelic comparison (relative risk increases by 2 in the presence of one copy of the risk allele). The prevalence of AD is 13% according to Thies and Bleiler (2013).

6.4 Results

Genotyping missing data rates were less than 3% for all polymorphisms. The sample size was 162 AD cases and 119 controls. The genotype distribution did not deviate significantly from HWE in cases or controls (Table 6.1). Data were re-classified as a bi-allelic model before analysis. Genotype distributions were analysed separately in SPSS v.17.

6.4.1 Genotypic and allelic associations

No significant difference was observed between AD cases and controls in general ($\chi^2 = 2.069$, df = 2, *P* = 0.36). To check if there is any significant association with gender SNP, a χ^2 test was performed between AD cases and control for each gender separately. No significant differences were observed in females, but males trended toward significance in CC allele frequency (Table 6.2). To maximize the statistical power and to make a valid summary, CT and TT alleles combined were against the CC allele. This gave near-significant association in males but not in females (Table 6.3).

	Alleles	AD Cases	HWE χ^2	Controls	HWE χ^2	Р
β-NRXN-3	CC	116	1.14	77	0.45	0.355
rs17757879	СТ	40		38		
	TT	6		3		

Table 6.1. Genotype and allele distributions of rs17757879.

	Males			Females			
	AD Cases	Controls	χ^2	AD Cases	Controls	χ^2	
β-NRXN-3	n = 83	n = 79	3.872;	n = 79	n = 39	0.142;	
rs17757879	P = 0.144					P = 0.931	

53/23/3

27/11/1

50/27/2

63/17/3

 Table 6.2. Genotyping allele distribution of rs17757879 SNP between genders.

6.5 Discussion

CC/CT/TT

GWAS in AD was performed by Harold et al. (2009) and two SNPs in NRXN-3 were listed as possibly associated with AD. However, the same group perform larger follow-up work and the association with these two SNPs disappeared (Hollingworth et al., 2011).

Considering the recent studies about the molecular interaction between γ -secretase and the neurexins and neuroligins (Suzuki et al., 2012, Saura et al., 2011, Martinez-Mir et al., 2013, Bot et

al., 2011) and the physical interaction of neurexin-neuroligin complex (Chih et al., 2006, Boucard et al., 2005), attention was given to these molecules and their genetic association with AD. A metaanalysis utilizing five GWAS datasets was performed by including previous work conducted by the same group (Antunez et al., 2011). Antunez et al. (2011) found no association of *NRXN* or *NLGN* with sporadic AD; these data were similar to the result obtained from previous GWAS. By limiting the study to localized regions of the selected genes, an interesting and consistent association was observed — although not statistically significant — with the rs17757879 SNP within the *NRXN3* gene across the five GWAS analysed (Martinez-Mir et al., 2013). Remarkably, the effect observed with β -*NRXN-3* SNP was found only in males but not in females.

Table 6.3. Distribution of rs17757879 SNP between sexes for combined alleles, CT + TT vs CC

	Males			Females			
	AD Cases	Controls	χ^2	AD Cases	Controls	χ^2	
β-NRXN-3	n = 83	n = 79	3.052;	n = 79	n = 39	0.55;	
rs17757879			P = 0.057			<i>P</i> = 0.49	
CC+CT/TT	63/20	50/29		53/26	27/12		

In this chapter I performed a genotyping study on the rs17757879 SNP with the available population from the Queensland Brain Bank. Tissue samples were taken from 162 AD cases and 119 controls. The genotyping showed no significant association overall between the SNP and the disease. However, by divinding the subjects by gender, I found a trend toward significance between rs17757879 and AD. The most interesting finding was obtained by comparing subjects with at least one T allele (CT and TT) against CC homozygotes. This gave a near-significant result, which indicated that the T allele was protective against AD in males. Since the study was based on a prediction from earlier work, it may be justified to use 1-tailed statistics, in which case the *P* value would be significant, at 0.028. The data indicate that the effect size for the *NRXN*-3 SNP in AD is quite small, which would be consistent with it not being associated to AD in previous GWAS, although it should be noted that the sample was quite small for genetic work. A repetition with a

larger sample is clearly necessary. Considering the dimorphism observed in the current and previous studies will be important to elucidate the role of *NRXN*-3 in AD susceptibility.

Various studies have shown differential expression of genes in the brain according to sex (Cahill, 2006). Previous evidence of morphological and functional brain dimorphisms have raised the awareness of the importance of sex in molecular neuroscience. Differences between males and females are ultimately controlled by the gonadal sex determination systems (Carruth et al., 2002). Due to factors controlled by the sex chromosomes, the impact of hormones is central, especially the gonadal hormones and their actions in the CNS (Flerko, 1971). The main male hormone testosterone is produced by the testes during late gestational and neonatal periods, where it mediates brain sexual dimorphism. Sexual dimorphism could mediate male-female differences in the ætiology, incidence, and development course of different neurological disorders, including AD.

Several lines of evidences support the hypothesis of sexual dimorphism in AD, such as the higher incidence of AD in females than in males (Mielke et al., 2014). There are differences in the expression of synaptic proteins in between female and male AD cases (Proctor et al., 2010, Agarwal et al., 2008). Differential expression of protein and mRNA transcripts of the neuroligin–neurexin complex between male and females was also observed in the current study (Chapters 3 and 5). Sexual dimorphism for ESR1 and APOE in AD was also observed in some studies (Monastero et al., 2006). These data indicate that stratification by sex in GWAS analysis could be a strategy to detect novel genetic alterations linked to AD susceptibility. *NRXN-3* has not previously been reported to show sexual dimorphism in human subjects. However, in α -*NRXN-1* heterozygous KO mice only male and show increased locomotor activity in a new environment and improved habituation upon subsequent exposures to this environment (Laarakker et al., 2012).

The results from the current chapter indicate that the β -NRXN-3 gene could mediate AD susceptibility in males, and that the differences between genders observed could explain the lack of association of β -NRXN3 with AD in published GWAS. Additional replication studies in bigger samples are required to confirm these results.

6.5.1 Limitation of the study

Some DNA samples for both cases and controls were obtained from different sources that produce characteristic that should be considered. The geographical origin, and as a result the ethnicity, of the subjects, was not 100% confirmed as Caucasian. As noted, the sample size was very small, and must it be considered to be a pilot. Increasing the number of subjects will provide more reliable results.

The choice of the technique use for genotyping here was based on many factors, including accuracy of the assay, sensitivity, robustness, reproducibility, cost, and reliability. A SNP detection assay is capable of detecting mixed alleles and it is crucial to note that the TaqMan genotyping assay is a PCR-based protocol that discriminates the presence of either allele based on the affinity of one probe to the SNP sequences of the allele present as opposed to the one not present. Allele detection relies on the chemistry of each set of probes, which should provide accurate results so long as the samples are subjected to a low number of freeze-thaw cycles (ideally, none) and are stored at the right temperature. Care was taken here to only thaw samples once, at the time of homogenization; as noted, they had been stored at –80°C since autopsy.

Chapter 7

7 Final discussion, conclusions and future direction

7.1 General findings and implications of the project

Alzheimer's disease was first described in 1906, but no cure has been found nor any drug with significant impact developed. The characterization and sequencing of the main constituents of A β and NFTs has helped established links between these pathological markers and AD. Although this was an important advance in knowledge of the basic roles of these proteins and their critical function in neurotoxic pathways in AD, it has not led to significant attenuation of the disease. Most researchers agree that AB and NFTs have a significant function in the overall pathophysiology of AD; these deposits are pathological alterations that take place quite early in the disease timeline. Much evidence supports the idea that synaptic loss and dysfunction are better correlates with early cognitive decline in AD. A significant outcome of synaptic failure is the disruption of plasticity and LTP at early stages in AD animal models (Rowan et al., 2003). These functionalities are major mediators of memory and learning processes, so it is likely that such alterations play roles in the early in cognitive problems experienced by AD sufferers as the disease develops. The mechanisms that underlie synaptic dysfunction and neuronal loss are still unknown. Nevertheless, results from different studies have detected common changes in systems and pathways, which provide indications of the proteins or receptors that are most likely altered in the disease. The aim to detect these synaptic protein alterations was the basis of the studies in this thesis.

7.2 The expression of neuroligin and neurexins proteins and transcripts in AD

Presented here is the first study to quantify neurexins and neuroligins at both the transcript and protein level in AD. In Chapter 2, a quantitative immnodetection method was developed. First, recombinant truncate neuroligin-1 and neuroligin-2 proteins were cloned, expressed, and purified. These were used as standards to precisely quantify endogenous neuroligin-1 and neuroligin-2 in two of the most affected area in the brain, hippocampus and inferior temporal cortex, and the relatively spared occipital cortex. β-Neurexin-1 protein level was quantified in the same area by the same approach, using a commercial sample of neurexin recombinant protein. A major novel finding was the differing regional patterns of these proteins in AD cases and controls. Notably, the level of neuroligin-1 protein was significantly higher in AD cases than in controls. This difference was restricted to hippocampus and occipital cortex; the lack of difference in inferior temporal cortex was unexpected, since it is one of the most affected areas in the AD brain. In contrast, the opposite pattern was found for neuroligin-2 in the same AD cases and controls. Neuroligin-2 protein expression was lower in AD cases than control in all areas, but the most marked reduction was in inferior temporal cortex. The contrasting patterns of neuroligin-1 and neuroligin-2 expression in AD may reflect the complementary functions of these proteins at the synapse. Both molecules are localized to the post-synaptic density, but neuroligin-1 is specific for excitatory synapses while neuroligin-2 is specific for inhibitory synapses. It has been reported, in studies conducted in vitro using biochemical and physicochemical techniques, that neuroligin-1 binds to A^β oligomers and that this binding takes place via the extracellular domain of neuroligin-1. This signifies that neuroligin-1 is a putative target for AB oligomers at excitatory synapses. On the other hand, AB reportedly does not bind to neuroligin-2, which is specific for inhibitory synapses. Aβ binding may explain the higher level of neuroligin-1 in AD cases found here. AB facilitates glutamate-mediated synaptic transmission in animal models, which could lead to alterations in the homeostasis of neuronal networks, a phenomenon that has been widely documented in AD (Palop et al., 2007, Cuevas et al., 2011). Neuroligin-1 performs a significant function as an adhesion protein on the post-synaptic membrane, where it stabilizes and maintains synaptic transmission; the binding of A β oligomers in AD would thus have a significant impact (Dinamarca et al., 2011).

In the current study the level of β -neurexin-1 was higher in AD cases than in controls, but this difference was not significant. This slight increase could reflect neurotoxicity arising from the binding of A β to neuroligin-1, given that β -neurexin-1 is located on pre-synaptic terminals. At these synapses it binds to neuroligin-1 and forms heterophilic adhesion complexes. Any disturbance of this binding could have an impact on the integrity of excitatory synaptic contacts in AD. To further understand the roles of these molecules in AD, the levels of neuroligin-1, neuroligin-2 and β -neurexin-1 transcripts in hippocampus, occipital cortex and inferior temporal cortex in AD cases and controls were measured using absolute quantification RT-PCR TaqMan assays (Chapter 5). The data obtained were in contradistinction to the protein data in Chapter 3. The expression of all three transcripts was significantly lower in AD cases than in controls. It was found that the mRNA copy number for all transcripts was negatively correlated with increasing the severity of disease. That is, the observed down-regulation of the transcripts could follow the progression of disease. The contrary results obtained for protein levels for neuroligin-1 and β -neurexin-1 may suggest that the higher protein levels arise from the binding of these proteins to A β which induce the neurotoxicity at the protein level.

7.3 Conclusion and Future directions

No specific, single molecule is essential for synaptic assembly or function. Nevertheless, the neuroligin–neurexin complex is a major organizer of synaptic connections and a stabilizer of the networks of pre- and post-synaptic proteins across the synaptic junction. The ability of neuroligins and neurexins to determine and maintain excitatory and inhibitory synapses provides a basis for their potential roles in neurological disorders such as AD. Changes in groups of synapses in a neural circuit, as opposed to a general impairment of all synapses in all circuits, makes it very difficult to compare single-protein complexes across brain disorders. Identical molecular changes could lead to varying neurological outcomes in different brain diseases.

Data presented in this thesis indicate that neuroligins and neurexins are implicated, at least in part, in synaptic loss in AD. Further understanding of the association between fluctuations in the levels of neuroligin–neurexin complexes could open up a new understanding of synaptic pathogenesis in AD.

The proteolytic regulation of neuroligins and neurexins may be a key pathophysiological mechanism in AD, as well as playing a general role in trans-synaptic signalling in diverse neural circuits. Therapeutic strategies for preventing or ameliorating synaptic dysfunction in AD might

fruitfully explore whether, and how, this process can be modified. The pathological disturbance of synapses through disruption of the metalloprotease and γ -secretase cleavage pathways may be critical to synaptic deficits in mild cognitive impairment and early-stage AD, which then lead to cognitive dysfunction and neurotoxicity in late-stage AD. Impairments in the processing of the neuroligin–neurexin complex due to a loss of PS1/ γ -secretase activity could contribute to neuronal disruption. Neurexins have the LNS domain responsible for interaction with the CLD of neuroligin across the synaptic cleft. The transmembrane domain and C-terminal cytoplasmic tail of neuroligins comprise a PDZ II binding motif crucial for targeting presynaptic proteins such as CASK, VELI and MINT that play roles in vesicle clustering (Tabuchi and Südhof, 2002). The physical interactions of neurexins with neuroligins on the extracellular side of the membrane, and with scaffolding proteins on the cytoplasmic side, underpin the assembly of synapses. Impaired processing of full-length β -neurexin-3 by α - and γ -secretases could alter the activity of synapses in AD. As discussed earlier in the thesis, mutations in the catalytic core of γ -secretase that lead to early-onset forms of AD also impair the processing of β -neurexin-3.

Studies on the relationship between this complex and AD should attempt to answer the following questions: 1. Do neurexins and neuroligins function only by binding to each other, or through binding with other molecules? 2. Do different isoforms or splice variants of neurexins and neuroligins perform different functions? 3. Do these complexes have an effect on A β accumulation? 4. Does the impairment of neuroligin and neurexin processing and production play a role in the neuronal defects associated with a loss of PS/ γ -secretase function in familial AD?

The answers to these questions will provide insight into the mechanisms of synaptic adhesion in AD and other cognitive diseases. If the involvement of this complex in AD is confirmed, new diagnostic and therapeutic approaches might emerge, such as manipulating the neuroligin–neurexin interaction to prevent A β accumulation in the brain, or perhaps preventing A β from disrupting neuroligin–neurexin complexes.

8 References

- Addona, T. A., Abbatiello, S. E., Schilling, B., Skates, S. J., Mani, D. R., Bunk, D. M., Spiegelman, C. H., Zimmerman, L. J., Ham, A. J., Keshishian, H., Hall, S. C., Allen, S., Blackman, R. K., Borchers, C. H., Buck, C., Cardasis, H. L., Cusack, M. P., Dodder, N. G., Gibson, B. W., Held, J. M., Hiltke, T., Jackson, A., Johansen, E. B., Kinsinger, C. R., Li, J., Mesri, M., Neubert, T. A., Niles, R. K., Pulsipher, T. C., Ransohoff, D., Rodriguez, H., Rudnick, P. A., Smith, D., Tabb, D. L., Tegeler, T. J., Variyath, A. M., Vega-Montoto, L. J., Wahlander, A., Waldemarson, S., Wang, M., Whiteaker, J. R., Zhao, L., Anderson, N. L., Fisher, S. J., Liebler, D. C., Paulovich, A. G., Regnier, F. E., Tempst, P. & Carr, S. A. 2009. Multi-site assessment of the precision and reproducibility of multiple reaction monitoring-based measurements of proteins in plasma. *Nat. Biotechnol.*, 27, 633–41.
- Agarwal, S., Tannenberg, R. K. & Dodd, P. R. 2008. Reduced expression of the inhibitory synapse scaffolding protein gephyrin in Alzheimer's disease. *J. Alzheimers Dis.*, 14, 313–21.
- Akiyama, H., Kawamata, T., Dedhar, S. & Mcgeer, P. L. 1991. Immunohistochemical localization of vitronectin, its receptor and β-3 integrin in Alzheimer brain tissue. J. Neuroimmunol., 32, 19– 28.
- Alonso, A. C., Zaidi, T., Grundke-Iqbal, I. & Iqbal, K. 1994. Role of abnormally phosphorylated tau in the breakdown of microtubules in Alzheimer disease. *Proc. Natl. Acad. Sci. U.S.A.*, 91, 5562–6.
- Alonso-Nanclares, L., Merino-Serrais, P., Gonzalez, S. & Defelipe, J. 2013. Synaptic changes in the dentate gyrus of APP/PS1 transgenic mice revealed by electron microscopy. *J. Neuropathol. Exp. Neurol.*, 72, 386–95.
- Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. *Nucleic Acids Res.*, 25, 3389–402.
- Alzheimer, A., Stelzmann, R. A., Schnitzlein, H. N. & Murtagh, F. R. 1995. An English translation of Alzheimer's 1907 paper, "Uber eine eigenartige Erkankung der Hirnrinde". *Clin. Anat.*, 8, 429–31.

- Andin, J., Hallbeck, M., Mohammed, A. H. & Marcusson, J. 2007. Influence of environmental enrichment on steady-state mRNA levels for EAAC1, AMPA1 and NMDA2A receptor subunits in rat hippocampus. *Brain Res.*, 1174, 18–27.
- Ando, K., Uemura, K., Kuzuya, A., Maesako, M., Asada-Utsugi, M., Kubota, M., Aoyagi, N.,
 Yoshioka, K., Okawa, K., Inoue, H., Kawamata, J., Shimohama, S., Arai, T., Takahashi, R. &
 Kinoshita, A. 2011. N-cadherin regulates p38 MAPK signaling *via* association with JNK-associated leucine zipper protein: implications for neurodegeneration in Alzheimer disease. *J. Biol. Chem.*, 286, 7619–28.
- Andres, C., Beeri, R., Friedman, A., Lev-Lehman, E., Henis, S., Timberg, R., Shani, M. & Soreq, H. 1997. Acetylcholinesterase-transgenic mice display embryonic modulations in spinal cord choline acetyltransferase and neurexin Iβ gene expression followed by late-onset neuromotor deterioration. *Proc. Natl. Acad. Sci. U.S.A.*, 94, 8173–8.
- Andreyeva, A., Nieweg, K., Horstmann, K., Klapper, S., Müller-Schiffmann, A., Korth, C. & Gottmann, K. 2012. C-terminal fragment of N-cadherin accelerates synapse destabilization by amyloid-β. *Brain*, 135, 2140–54.
- Anstey, K. J., Von Sanden, C., Salim, A. & O'Kearney, R. 2007. Smoking as a risk factor for dementia and cognitive decline: a meta-analysis of prospective studies. *Am. J. Epidemiol.*, 166, 367–78.
- Antunez, C., Boada, M., Gonzalez-Perez, A., Gayan, J., Ramirez-Lorca, R., Marin, J., Hernandez, I., Moreno-Rey, C., Moron, F. J., Lopez-Arrieta, J., Mauleon, A., Rosende-Roca, M., Noguera-Perea, F., Legaz-Garcia, A., Vivancos-Moreau, L., Velasco, J., Carrasco, J. M., Alegret, M., Antequera-Torres, M., Manzanares, S., Romo, A., Blanca, I., Ruiz, S., Espinosa, A., Castano, S., Garcia, B., Martinez-Herrada, B., Vinyes, G., Lafuente, A., Becker, J. T., Galan, J. J., Serrano-Rios, M., Vazquez, E., Tarraga, L., Saez, M. E., Lopez, O. L., Real, L. M. & Ruiz, A. 2011. The membrane-spanning 4-domains, subfamily A (MS4A) gene cluster contains a common variant associated with Alzheimer's disease. *Genome Med.*, 3, 33.

Arendt, T. 2009. Synaptic degeneration in Alzheimer's disease. Acta Neuropathol., 118, 167–79.

- Asada-Utsugi, M., Uemura, K., Noda, Y., Kuzuya, A., Maesako, M., Ando, K., Kubota, M.,
 Watanabe, K., Takahashi, M., Kihara, T., Shimohama, S., Takahashi, R., Berezovska, O. &
 Kinoshita, A. 2011. N-cadherin enhances APP dimerization at the extracellular domain and
 modulates Aβ production. *J. Neurochem.*, 119, 354–63.
- Ashe, K. H. 2001. Learning and memory in transgenic mice modeling Alzheimer's disease. *Learn. Mem.*, 8, 301–8.
- Ashford, J. W. 2004. APOE genotype effects on Alzheimer's disease onset and epidemiology. J. Mol. Neurosci., 23, 157–65.
- Bamji, S. X., Shimazu, K., Kimes, N., Huelsken, J., Birchmeier, W., Lu, B. & Reichardt, L. F. 2003.
 Role of β-catenin in synaptic vesicle localization and presynaptic assembly. *Neuron*, 40, 719–31.
- Bancher, C., Braak, H., Fischer, P. & Jellinger, K. A. 1993. Neuropathological staging of Alzheimer lesions and intellectual status in Alzheimer's and Parkinson's disease patients. *Neurosci. Lett.*, 162, 179–82.
- Bard, L. & Groc, L. 2011. Glutamate receptor dynamics and protein interaction: lessons from the NMDA receptor. *Mol. Cell. Neurosci.*, 48, 298–307.
- Barrett, T., Troup, D. B., Wilhite, S. E., Ledoux, P., Rudnev, D., Evangelista, C., Kim, I. F., Soboleva, A., Tomashevsky, M. & Edgar, R. 2007. NCBI GEO: mining tens of millions of expression profiles — database and tools update. *Nucleic Acids Res.*, 35, D760–5.
- Barria, A. & Malinow, R. 2002. Subunit-specific NMDA receptor trafficking to synapses. *Neuron*, 35, 345–53.
- Bayes, A., Van De Lagemaat, L. N., Collins, M. O., Croning, M. D., Whittle, I. R., Choudhary, J. S. & Grant, S. G. 2011. Characterization of the proteome, diseases and evolution of the human postsynaptic density. *Nat. Neurosci.*, 14, 19–21.
- Beel, A. J. & Sanders, C. R. 2008. Substrate specificity of γ-secretase and other intramembrane proteases. *Cell. Mol. Life Sci.*, 65, 1311–34.

- Belichenko, P. V., Kleschevnikov, A. M., Masliah, E., Wu, C., Takimoto-Kimura, R., Salehi, A. & Mobley, W. C. 2009. Excitatory-inhibitory relationship in the fascia dentata in the Ts65Dn mouse model of Down syndrome. J. Comp. Neurol., 512, 453–66.
- Benson, D. L. & Tanaka, H. 1998. N-cadherin redistribution during synaptogenesis in hippocampal neurons. J. Neurosci., 18, 6892–904.
- Bertram, L., Mcqueen, M. B., Mullin, K., Blacker, D. & Tanzi, R. E. 2007. Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. *Nat. Genet.*, 39, 17– 23.
- Bertram, L. & Tanzi, R. E. 2008. Thirty years of Alzheimer's disease genetics: the implications of systematic meta-analyses. *Nat. Rev. Neurosci.*, 9, 768–78.
- Blundell, J., Tabuchi, K., Bolliger, M. F., Blaiss, C. A., Brose, N., Liu, X., Südhof, T. C. & Powell, C. M. 2009. Increased anxiety-like behavior in mice lacking the inhibitory synapse cell adhesion molecule neuroligin 2. *Genes Brain Behav.*, 8, 114–26.
- Blundell, J., Blaiss, C. A., Etherton, M. R., Espinosa, F., Tabuchi, K., Walz, C., Bolliger, M. F., Südhof, T. C. & Powell, C. M. 2010. Neuroligin-1 deletion results in impaired spatial memory and increased repetitive behavior. *J. Neurosci.*, 30, 2115–29.
- Bolliger, M. F., Frei, K., Winterhalter, K. H. & Gloor, S. M. 2001. Identification of a novel neuroligin in humans which binds to PSD-95 and has a widespread expression. *Biochem. J.*, 356, 581–8.
- Bot, N., Schweizer, C., Ben Halima, S. & Fraering, P. C. 2011. Processing of the synaptic cell adhesion molecule neurexin-3β by Alzheimer disease α and γ-secretases. J. Biol. Chem., 286, 2762–73.
- Boucard, A. A., Chubykin, A. A., Comoletti, D., Taylor, P. & Südhof, T. C. 2005. A splice code for trans-synaptic cell adhesion mediated by binding of neuroligin 1 to α and β-neurexins. *Neuron*, 48, 229–36.
- Boyles, J. K., Zoellner, C. D., Anderson, L. J., Kosik, L. M., Pitas, R. E., Weisgraber, K. H., Hui, D.Y., Mahley, R. W., Gebicke-Haerter, P. J., Ignatius, M. J. & Shooter, E. M. 1989. A role for

apolipoprotein E, apolipoprotein A-I, and low density lipoprotein receptors in cholesterol transport during regeneration and remyelination of the rat sciatic nerve. *J. Clin. Invest.*, 83, 1015–31.

- Braak, H., Braak, E., Ohm, T. & Bohl, J. 1988. Silver impregnation of Alzheimer's neurofibrillary changes counterstained for basophilic material and lipofuscin pigment. *Stain Technol.*, 63, 197–200.
- Braak, H. & Braak, E. 1991a. Neuropathological stageing of Alzheimer-related changes. *Acta Neuropathol.*, 82, 239–59.
- Braak, H. & Braak, E. 1991b. Demonstration of amyloid deposits and neurofibrillary changes in whole brain sections. *Brain Pathol.*, 1, 213–6.
- Braak, H., Thal, D. R., Ghebremedhin, E. & Del Tredici, K. 2011. Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years. *J. Neuropathol. Exp. Neurol.*, 70, 960–9.
- Brunden, K. R., Trojanowski, J. Q. & Lee, V. M. 2009. Advances in tau-focused drug discovery for Alzheimer's disease and related tauopathies. *Nat. Rev. Drug Discov.*, 8, 783–93.
- Butner, K. A. & Kirschner, M. W. 1991. Tau protein binds to microtubules through a flexible array of distributed weak sites. *J. Cell. Biol.*, 115, 717–30.
- Buttini, M., Akeefe, H., Lin, C., Mahley, R. W., Pitas, R. E., Wyss-Coray, T. & Mucke, L. 2000.
 Dominant negative effects of apolipoprotein E4 revealed in transgenic models of neurodegenerative disease. *Neuroscience*, 97, 207–10.
- Buttini, M., Masliah, E., Barbour, R., Grajeda, H., Motter, R., Johnson-Wood, K., Khan, K., Seubert,
 P., Freedman, S., Schenk, D. & Games, D. 2005. β-amyloid immunotherapy prevents
 synaptic degeneration in a mouse model of Alzheimer's disease. *J. Neurosci.*, 25, 9096–101.

Cahill, L. 2006. Why sex matters for neuroscience. Nat. Rev. Neurosci., 7, 477-84.

Carruth, L. L., Reisert, I. & Arnold, A. P. 2002. Sex chromosome genes directly affect brain sexual differentiation. *Nat. Neurosci.*, 5, 933–4.

- Cartier, A. E., Djakovic, S. N., Salehi, A., Wilson, S. M., Masliah, E. & Patrick, G. N. 2009. Regulation of synaptic structure by ubiquitin C-terminal hydrolase L1. *J. Neurosci.*, 29, 7857–68.
- Castano, E. M., Roher, A. E., Esh, C. L., Kokjohn, T. A. & Beach, T. 2006. Comparative proteomics of cerebrospinal fluid in neuropathologically-confirmed Alzheimer's disease and nondemented elderly subjects. *Neurol. Res.*, 28, 155–63.
- Chang, R. Y., Nouwens, A. S., Dodd, P. R. & Etheridge, N. 2013. The synaptic proteome in Alzheimer's disease. *Alzheimers Dement.*, 9, 499–511.
- Chang, R. Y., Etheridge, N., Dodd, P. & Nouwens, A. 2014a. Quantitative multiple reaction monitoring analysis of synaptic proteins from human brain. *J. Neurosci. Methods*, 227, 189–210.
- Chang, R. Y., Etheridge, N., Dodd, P. R. & Nouwens, A. S. 2014b. Targeted quantitative analysis of synaptic proteins in Alzheimer's disease brain. *Neurochem. Int.*, 75, 66–75.
- Chapman, P. F., Falinska, A. M., Knevett, S. G. & Ramsay, M. F. 2001. Genes, models and Alzheimer's disease. *Trends Genet.*, 17, 254–61.
- Cheng, D., Hoogenraad, C. C., Rush, J., Ramm, E., Schlager, M. A., Duong, D. M., Xu, P., Wijayawardana, S. R., Hanfelt, J., Nakagawa, T., Sheng, M. & Peng, J. 2006. Relative and absolute quantification of postsynaptic density proteome isolated from rat forebrain and cerebellum. *Mol. Cell. Proteomics*, 5, 1158–70.
- Chevyreva, I., Faull, R. L., Green, C. R. & Nicholson, L. F. 2008. Assessing RNA quality in postmortem human brain tissue. *Exp. Mol. Pathol.*, 84, 71–7.
- Chih, B., Engelman, H. & Scheiffele, P. 2005. Control of excitatory and inhibitory synapse formation by neuroligins. *Science*, 307, 1324–8.
- Chih, B., Gollan, L. & Scheiffele, P. 2006. Alternative splicing controls selective trans-synaptic interactions of the neuroligin–neurexin complex. *Neuron*, 51, 171–8.
- Choi, Y. B., Li, H. L., Kassabov, S. R., Jin, I., Puthanveettil, S. V., Karl, K. A., Lu, Y., Kim, J. H., Bailey, C. H. & Kandel, E. R. 2011. Neurexin-neuroligin transsynaptic interaction mediates

learning-related synaptic remodeling and long-term facilitation in aplysia. *Neuron*, 70, 468–81.

- Christensen, K., Thinggaard, M., Oksuzyan, A., Steenstrup, T., Andersen-Ranberg, K., Jeune, B., Mcgue, M. & Vaupel, J. W. 2013. Physical and cognitive functioning of people older than 90 years: a comparison of two Danish cohorts born 10 years apart. *Lancet*, 382, 1507–13.
- Chubykin, A. A., Atasoy, D., Etherton, M. R., Brose, N., Kavalali, E. T., Gibson, J. R. & Südhof, T. C. 2007. Activity-dependent validation of excitatory versus inhibitory synapses by neuroligin-1 versus neuroligin-2. *Neuron*, 54, 919–31.
- Cirrito, J. R., Yamada, K. A., Finn, M. B., Sloviter, R. S., Bales, K. R., May, P. C., Schoepp, D. D., Paul, S. M., Mennerick, S. & Holtzman, D. M. 2005. Synaptic activity regulates interstitial fluid amyloid-β levels *in vivo*. *Neuron*, 48, 913–22.
- Clark, L. N., Poorkaj, P., Wszolek, Z., Geschwind, D. H., Nasreddine, Z. S., Miller, B., Li, D., Payami, H., Awert, F., Markopoulou, K., Andreadis, A., D'Souza, I., Lee, V. M., Reed, L., Trojanowski, J. Q., Zhukareva, V., Bird, T., Schellenberg, G. & Wilhelmsen, K. C. 1998.
 Pathogenic implications of mutations in the tau gene in pallido-ponto-nigral degeneration and related neurodegenerative disorders linked to chromosome 17. *Proc. Natl. Acad. Sci. U.S.A.*, 95, 13103–7.
- Coba, M. P., Pocklington, A. J., Collins, M. O., Kopanitsa, M. V., Uren, R. T., Swamy, S., Croning,
 M. D., Choudhary, J. S. & Grant, S. G. 2009. Neurotransmitters drive combinatorial
 multistate postsynaptic density networks. *Sci. Signal.*, 2, ra19.
- Comoletti, D., Flynn, R., Jennings, L. L., Chubykin, A., Matsumura, T., Hasegawa, H., Südhof, T. C. & Taylor, P. 2003. Characterization of the interaction of a recombinant soluble neuroligin-1 with neurexin-1β. *J. Biol. Chem.*, 278, 50497–505.
- Corder, E. H., Saunders, A. M., Strittmatter, W. J., Schmechel, D. E., Gaskell, P. C., Small, G. W.,
 Roses, A. D., Haines, J. L. & Pericak-Vance, M. A. 1993. Gene dose of apolipoprotein E type
 4 allele and the risk of Alzheimer's disease in late onset families. *Science*, 261, 921–3.

- Corder, E. H., Saunders, A. M., Risch, N. J., Strittmatter, W. J., Schmechel, D. E., Gaskell, P. C., Jr., Rimmler, J. B., Locke, P. A., Conneally, P. M., Schmader, K. E., Small, G. W., Roses, A. D., Haines, J. L. & Pericak-Vance, M. A. 1994. Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer disease. *Nat. Genet.*, 7, 180–4.
- Cotman, C. W. & Berchtold, N. C. 2002. Exercise: a behavioral intervention to enhance brain health and plasticity. *Trends Neurosci.*, 25, 295–301.
- Craft, G. E., Chen, A. & Nairn, A. C. 2013. Recent advances in quantitative neuroproteomics. *Methods*, 61, 186–218.
- Craig, A. M. & Kang, Y. 2007. Neurexin-neuroligin signaling in synapse development. *Curr. Opin. Neurobiol.*, 17, 43–52.
- Cuevas, M. E., Haensgen, H., Sepulveda, F. J., Zegers, G., Roa, J., Opazo, C. & Aguayo, L. G. 2011. Soluble Aβ₁₋₄₀ peptide increases excitatory neurotransmission and induces epileptiform activity in hippocampal neurons. *J. Alzheimers Dis.*, 23, 673–87.
- Cummings, J. L., Vinters, H. V., Cole, G. M. & Khachaturian, Z. S. 1998. Alzheimer's disease: etiologies, pathophysiology, cognitive reserve, and treatment opportunities. *Neurology*, 51, S2–17; discussion S65–7.
- Dahlhaus, R., Hines, R. M., Eadie, B. D., Kannangara, T. S., Hines, D. J., Brown, C. E., Christie, B.
 R. & El-Husseini, A. 2010. Overexpression of the cell adhesion protein neuroligin-1 induces learning deficits and impairs synaptic plasticity by altering the ratio of excitation to inhibition in the hippocampus. *Hippocampus*, 20, 305–22.
- Dalva, M. B., Takasu, M. A., Lin, M. Z., Shamah, S. M., Hu, L., Gale, N. W. & Greenberg, M. E. 2000. EphB receptors interact with NMDA receptors and regulate excitatory synapse formation. *Cell*, 103, 945–56.
- Dalva, M. B., M^cClelland, A. C. & Kayser, M. S. 2007. Cell adhesion molecules: signalling functions at the synapse. *Nat. Rev. Neurosci.*, 8, 206–20.

- Darie, C. C., Deinhardt, K., Zhang, G., Cardasis, H. S., Chao, M. V. & Neubert, T. A. 2011. Identifying transient protein-protein interactions in EphB2 signaling by blue native PAGE and mass spectrometry. *Proteomics*, 11, 4514–28.
- Davidsson, P. & Blennow, K. 1998. Neurochemical dissection of synaptic pathology in Alzheimer's disease. *Int. Psychogeriatr.*, 10, 11–23.
- Davidsson, P., Paulson, L., Hesse, C., Blennow, K. & Nilsson, C. 2001. Proteome studies of human cerebrospinal fluid and brain tissue using a preparative two-dimensional electrophoresis approach prior to mass spectrometry. *Proteomics*, 1, 444–52.
- Davies, C. A., Mann, D. M., Sumpter, P. Q. & Yates, P. O. 1987. A quantitative morphometric analysis of the neuronal and synaptic content of the frontal and temporal cortex in patients with Alzheimer's disease. J. Neurol. Sci., 78, 151–64.
- Davies, R. R., Graham, K. S., Xuereb, J. H., Williams, G. B. & Hodges, J. R. 2004. The human perirhinal cortex and semantic memory. *Eur. J. Neurosci.*, 20, 2441–6.
- De Strooper, B., Annaert, W., Cupers, P., Saftig, P., Craessaerts, K., Mumm, J. S., Schroeter, E. H., Schrijvers, V., Wolfe, M. S., Ray, W. J., Goate, A. & Kopan, R. 1999. A presenilin-1dependent γ-secretase-like protease mediates release of Notch intracellular domain. *Nature*, 398, 518–22.
- Dekosky, S. T. & Scheff, S. W. 1990. Synapse loss in frontal cortex biopsies in Alzheimer's disease: Correlation with cognitive severity. *Ann. Neurol.*, 27, 457–64.
- Dhanasekaran, S., Doherty, T. M. & Kenneth, J. 2010. Comparison of different standards for realtime PCR-based absolute quantification. *J. Immunol. Methods*, 354, 34–9.
- Dinamarca, M. C., Colombres, M., Cerpa, W., Bonansco, C. & Inestrosa, N. C. 2008. β-Amyloid oligomers affect the structure and function of the postsynaptic region: role of the Wnt signaling pathway. *Neurodegener. Dis.*, 5, 149–52.
- Dinamarca, M. C., Weinstein, D., Monasterio, O. & Inestrosa, N. C. 2011. The synaptic protein neuroligin-1 interacts with the amyloid β-peptide. Is there a role in Alzheimer's disease? *Biochemistry*, 50, 8127–37.

- Dinamarca, M. C., Rios, J. A. & Inestrosa, N. C. 2012. Postsynaptic receptors for amyloid-β oligomers as mediators of neuronal damage in Alzheimer's disease. *Front. Physiol.*, 3, 464.
- Dodd, P. R., Hardy, J. A., Baig, E. B., Kidd, A. M., Bird, E. D., Watson, W. E. & Johnston, G. A. 1986. Optimization of freezing, storage, and thawing conditions for the preparation of metabolically active synaptosomes from frozen rat and human brain. *Neurochem. Pathol.*, 4, 177–98.
- Dodd, P. R., Buckley, S. T., Eckert, A. L., Foley, P. F. & Innes, D. J. 2006. Genes and gene expression in the brains of human alcoholics. *Ann. NY Acad. Sci.*, 1074, 104–15.
- Dong, N., Qi, J. & Chen, G. 2007. Molecular reconstitution of functional GABAergic synapses with expression of neuroligin-2 and GABA_A receptors. *Mol. Cell. Neurosci.*, 35, 14–23.
- Dosemeci, A., Makusky, A. J., Jankowska-Stephens, E., Yang, X., Slotta, D. J. & Markey, S. P. 2007. Composition of the synaptic PSD-95 complex. *Mol. Cell. Proteomics*, 6, 1749–60.
- Eng, J. K., Mccormack, A. L. & Yates, J. R. 1994. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom., 5, 976–89.
- Etheridge, N., Lewohl, J. M., Mayfield, R. D., Harris, R. A. & Dodd, P. R. 2009. Synaptic proteome changes in the superior frontal gyrus and occipital cortex of the alcoholic brain. *Proteomics Clin. Appl.*, 3, 730–42.
- Fannon, A. M. & Colman, D. R. 1996. A model for central synaptic junctional complex formation based on the differential adhesive specificities of the cadherins. *Neuron*, 17, 423–34.
- Fenn, J. B., Mann, M., Meng, C. K., Wong, S. F. & Whitehouse, C. M. 1989. Electrospray ionization for mass spectrometry of large biomolecules. *Science*, 246, 64–71.
- Fernandez, E., Collins, M. O., Uren, R. T., Kopanitsa, M. V., Komiyama, N. H., Croning, M. D., Zografos, L., Armstrong, J. D., Choudhary, J. S. & Grant, S. G. 2009. Targeted tandem affinity purification of PSD-95 recovers core postsynaptic complexes and schizophrenia susceptibility proteins. *Mol. Syst. Biol.*, 5, 269.

- Ferrari, E., Tinti, M., Costa, S., Corallino, S., Nardozza, A. P., Chatraryamontri, A., Ceol, A., Cesareni, G. & Castagnoli, L. 2011. Identification of new substrates of the protein-tyrosine phosphatase PTP1B by Bayesian integration of proteome evidence. *J. Biol. Chem.*, 286, 4173–85.
- Ferri, C. P., Prince, M., Brayne, C., Brodaty, H., Fratiglioni, L., Ganguli, M., Hall, K., Hasegawa, K., Hendrie, H., Huang, Y., Jorm, A., Mathers, C., Menezes, P. R., Rimmer, E. & Scazufca, M. 2005. Global prevalence of dementia: a Delphi consensus study. *Lancet*, 366, 2112–7.
- Flerko, B. 1971. Steroid hormones and the differentiation of the central nervous system. *Curr. Top. Exp. Endocrinol.*, 1, 41–80.
- Friedman, D. B., Hill, S., Keller, J. W., Merchant, N. B., Levy, S. E., Coffey, R. J. & Caprioli, R. M. 2004. Proteome analysis of human colon cancer by two-dimensional difference gel electrophoresis and mass spectrometry. *Proteomics*, 4, 793–811.
- Friedman, D. B., Wang, S. E., Whitwell, C. W., Caprioli, R. M. & Arteaga, C. L. 2007. Multivariable difference gel electrophoresis and mass spectrometry: a case study on transforming growth factor-β and ERBB2 signaling. *Mol. Cell. Proteomics*, 6, 150–69.
- Gant-Branum, R. L., Kerr, T. J. & Mclean, J. A. 2009. Labeling strategies in mass spectrometrybased protein quantitation. *Analyst*, 134, 1525–30.
- Gebhardt, F. M., Scott, H. A. & Dodd, P. R. 2010. Housekeepers for accurate transcript expression analysis in Alzheimer's disease autopsy brain tissue. *Alzheimers Dement.*, 6, 465–74.
- Gilbert, M., Smith, J., Roskams, A.-J. & Auld, V. J. 2001. Neuroligin 3 is a vertebrate gliotactin expressed in the olfactory ensheathing glia, a growth-promoting class of macroglia. *Glia*, 34, 151–64.
- Gilbert, M. M. & Auld, V. J. 2005. Evolution of CLAMS (cholinesterase-like adhesion molecules): structure and function during development. *Front. Biosci.*, 10, 2177–92.
- Gimbel, D. A., Nygaard, H. B., Coffey, E. E., Gunther, E. C., Lauren, J., Gimbel, Z. A. & Strittmatter, S. M. 2010. Memory impairment in transgenic Alzheimer mice requires cellular prion protein. *J. Neurosci.*, 30, 6367–74.

- Glenner, G. G. & Wong, C. W. 1984a. Alzheimer's disease and Down's syndrome: sharing of a unique cerebrovascular amyloid fibril protein. *Biochem. Biophys. Res. Commun.*, 122, 1131–5.
- Glenner, G. G. & Wong, C. W. 1984b. Alzheimer's disease: Initial report of the purification and characterization of a novel cerebrovascular amyloid protein. *Biochem. Biophys. Res. Commun.*, 120, 885–90.
- Goate, A., Chartier-Harlin, M. C., Mullan, M., Brown, J., Crawford, F., Fidani, L., Giuffra, L.,
 Haynes, A., Irving, N., James, L., Mant, R., Newton, P., Rooke, K., Roques, P., Talbot, C.,
 Pericak-Vance, M., Roses, A., Williamson, R., Rossor, M., Owen, M. & Hardy, J. A. 1991.
 Segregation of a missense mutation in the amyloid precursor protein gene with familial
 Alzheimer's disease. *Nature*, 349, 704–6.
- Gold, C. A. & Budson, A. E. 2008. Memory loss in Alzheimer's disease: implications for development of therapeutics. *Expert Rev. Neurother.*, 8, 1879–91.
- Goode, B. L. & Feinstein, S. C. 1994. Identification of a novel microtubule binding and assembly domain in the developmentally regulated inter-repeat region of tau. *J. Cell. Biol.*, 124, 769–82.
- Gräber, M. B., Kosel, S., Grasbon-Frodl, E., Moller, H. J. & Mehraein, P. 1998. Histopathology and APOE genotype of the first Alzheimer disease patient, Auguste D. *Neurogenetics*, 1, 223–8.
- Graf, E. R., Zhang, X., Jin, S. X., Linhoff, M. W. & Craig, A. M. 2004. Neurexins induce differentiation of GABA and glutamate postsynaptic specializations *via* neuroligins. *Cell*, 119, 1013–26.
- Graf, E. R., Kang, Y., Hauner, A. M. & Craig, A. M. 2006. Structure function and splice site analysis of the synaptogenic activity of the neurexin-1β LNS domain. *J. Neurosci.*, 26, 4256–65.
- Greenamyre, J. T. & Young, A. B. 1989. Excitatory amino acids and Alzheimer's disease. *Neurobiol. Aging*, 10, 593–602.

- Griffiths, J. R., Unwin, R. D., Evans, C. A., Leech, S. H., Corfe, B. M. & Whetton, A. D. 2007. The application of a hypothesis-driven strategy to the sensitive detection and location of acetylated lysine residues. J. Am. Soc. Mass Spectrom., 18, 1423–8.
- Guerreiro, R., Wojtas, A., Bras, J., Carrasquillo, M., Rogaeva, E., Majounie, E., Cruchaga, C., Sassi,
 C., Kauwe, J. S., Younkin, S., Hazrati, L., Collinge, J., Pocock, J., Lashley, T., Williams, J.,
 Lambert, J. C., Amouyel, P., Goate, A., Rademakers, R., Morgan, K., Powell, J., St GeorgeHyslop, P., Singleton, A., Hardy, J. & Alzheimer Genetic Analysis Group 2013. TREM2
 variants in Alzheimer's disease. *N. Engl. J. Med.*, 368, 117–27.
- Gutala, R. V. & Reddy, P. H. 2004. The use of real-time PCR analysis in a gene expression study of Alzheimer's disease post-mortem brains. *J. Neurosci. Methods*, 132, 101–7.
- Gygi, S. P., Rist, B., Gerber, S. A., Turecek, F., Gelb, M. H. & Aebersold, R. 1999. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. *Nat. Biotechnol.*, 17, 994–9.
- Haass, C., Hung, A. & Selkoe, D. 1991. Processing of β-amyloid precursor protein in microglia and astrocytes favors a localization in internal vesicles over constitutive secretion. *J. Neurosci.*, 11, 3783–93.
- Haass, C. & Selkoe, D. J. 2007. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid β-peptide. *Nat. Rev. Mol. Cell Biol.*, 8, 101–12.
- Hahn, C. G. 2010. A road less travelled: unpacking the complex traits of schizophrenia. *Brain Res. Bull.*, 83, 85.
- Hall, A. C., Lucas, F. R. & Salinas, P. C. 2000. Axonal remodeling and synaptic differentiation in the cerebellum is regulated by WNT-7a signaling. *Cell*, 100, 525–35.
- Halliday, G., Ng, T., Rodriguez, M., Harding, A., Blumbergs, P., Evans, W., Fabian, V., Fryer, J.,
 Gonzales, M., Harper, C., Kalnins, R., Masters, C. L., Mclean, C., Milder, D. G., Pamphlett,
 R., Scott, G., Tannenberg, A. & Kril, J. 2002. Consensus neuropathological diagnosis of
 common dementia syndromes: testing and standardising the use of multiple diagnostic
 criteria. *Acta Neuropathol.*, 104, 72–8.

- Hamos, J. E., Degennaro, L. J. & Drachman, D. A. 1989. Synaptic loss in Alzheimer's disease and other dementias. *Neurology*, 39, 355–61.
- Harold, D., Abraham, R., Hollingworth, P., Sims, R., Gerrish, A., Hamshere, M. L., Pahwa, J. S., Moskvina, V., Dowzell, K., Williams, A., Jones, N., Thomas, C., Stretton, A., Morgan, A. R., Lovestone, S., Powell, J., Proitsi, P., Lupton, M. K., Brayne, C., Rubinsztein, D. C., Gill, M., Lawlor, B., Lynch, A., Morgan, K., Brown, K. S., Passmore, P. A., Craig, D., Mcguinness, B., Todd, S., Holmes, C., Mann, D., Smith, A. D., Love, S., Kehoe, P. G., Hardy, J., Mead, S., Fox, N., Rossor, M., Collinge, J., Maier, W., Jessen, F., Schurmann, B., Heun, R., Van Den Bussche, H., Heuser, I., Kornhuber, J., Wiltfang, J., Dichgans, M., Frolich, L., Hampel, H., Hull, M., Rujescu, D., Goate, A. M., Kauwe, J. S., Cruchaga, C., Nowotny, P., Morris, J. C., Mayo, K., Sleegers, K., Bettens, K., Engelborghs, S., De Deyn, P. P., Van Broeckhoven, C., Livingston, G., Bass, N. J., Gurling, H., Mcquillin, A., Gwilliam, R., Deloukas, P., Al-Chalabi, A., Shaw, C. E., Tsolaki, M., Singleton, A. B., Guerreiro, R., Muhleisen, T. W., Nothen, M. M., Moebus, S., Jockel, K. H., Klopp, N., Wichmann, H. E., Carrasquillo, M. M., Pankratz, V. S., Younkin, S. G., Holmans, P. A., O'donovan, M., Owen, M. J. & Williams, J. 2009. Genome-wide association study identifies variants at *CLU* and *PICALM* associated with Alzheimer's disease. *Nat. Genet.*, 41, 1088–93.
- Harris, R. 1982. Genetics of Alzheimer's disease. Br. Med. J., 284, 1065-6.
- Harrison, P. J., Procter, A. W., Barton, A. J., Lowe, S. L., Najlerahim, A., Bertolucci, P. H., Bowen,
 D. M. & Pearson, R. C. 1991. Terminal coma affects messenger RNA detection in post mortem human temporal cortex. *Brain Res. Mol. Brain Res.*, 9, 161–4.
- Heindel, W., Jernigan Tl, Archibald Sl, Achim Cl, M. & E, W. C. 1994. The relationship of quantitative brain magnetic resonance imaging measures to neuropathologic indices of human immunodeficiency virus infection. *Arch. Neurol.*, 51, 1129–35.
- Higuchi, R., Dollinger, G., Walsh, P. S. & Griffith, R. 1992. Simultaneous amplification and detection of specific DNA sequences. *Biotechnology (NY)*, 10, 413–7.
- Hines, R. M., Wu, L., Hines, D. J., Steenland, H., Mansour, S., Dahlhaus, R., Singaraja, R. R., Cao,X., Sammler, E., Hormuzdi, S. G., Zhuo, M. & El-Husseini, A. 2008. Synaptic imbalance,

stereotypies, and impaired social interactions in mice with altered neuroligin 2 expression. *J. Neurosci.*, 28, 6055–67.

- Hirao, K., Hata, Y., Ide, N., Takeuchi, M., Irie, M., Yao, I., Deguchi, M., Toyoda, A., Südhof, T. C. & Takai, Y. 1998. A novel multiple PDZ domain-containing molecule interacting with *N*-methyl-*D*-aspartate receptors and neuronal cell adhesion proteins. *J. Biol. Chem.*, 273, 21105–10.
- Hishimoto, A., Liu, Q.-R., Drgon, T., Pletnikova, O., Walther, D., Zhu, X.-G., Troncoso, J. C. & Uhl, G. R. 2007. Neurexin 3 polymorphisms are associated with alcohol dependence and altered expression of specific isoforms. *Hum. Mol. Genet.*, 16, 2880–91.
- Hoffman, R. C., Jennings, L. L., Tsigelny, I., Comoletti, D., Flynn, R. E., Südhof, T. C. & Taylor, P.
 2004. Structural characterization of recombinant soluble rat neuroligin 1: mapping of secondary structure and glycosylation by mass spectrometry. *Biochemistry*, 43, 1496–506.
- Hollingworth, P., Harold, D., Sims, R., Gerrish, A., Lambert, J. C., Carrasquillo, M. M., Abraham, R., Hamshere, M. L., Pahwa, J. S., Moskvina, V., Dowzell, K., Jones, N., Stretton, A., Thomas, C., Richards, A., Ivanov, D., Widdowson, C., Chapman, J., Lovestone, S., Powell, J., Proitsi, P., Lupton, M. K., Brayne, C., Rubinsztein, D. C., Gill, M., Lawlor, B., Lynch, A., Brown, K. S., Passmore, P. A., Craig, D., Mcguinness, B., Todd, S., Holmes, C., Mann, D., Smith, A. D., Beaumont, H., Warden, D., Wilcock, G., Love, S., Kehoe, P. G., Hooper, N. M., Vardy, E. R., Hardy, J., Mead, S., Fox, N. C., Rossor, M., Collinge, J., Maier, W., Jessen, F., Ruther, E., Schurmann, B., Heun, R., Kolsch, H., Van Den Bussche, H., Heuser, I., Kornhuber, J., Wiltfang, J., Dichgans, M., Frolich, L., Hampel, H., Gallacher, J., Hull, M., Rujescu, D., Giegling, I., Goate, A. M., Kauwe, J. S., Cruchaga, C., Nowotny, P., Morris, J. C., Mayo, K., Sleegers, K., Bettens, K., Engelborghs, S., De Deyn, P. P., Van Broeckhoven, C., Livingston, G., Bass, N. J., Gurling, H., Mcquillin, A., Gwilliam, R., Deloukas, P., Al-Chalabi, A., Shaw, C. E., Tsolaki, M., Singleton, A. B., Guerreiro, R., Muhleisen, T. W., Nothen, M. M., Moebus, S., Jockel, K. H., Klopp, N., Wichmann, H. E., Pankratz, V. S., Sando, S. B., Aasly, J. O., Barcikowska, M., Wszolek, Z. K., Dickson, D. W., Graff-Radford, N. R., Petersen, R. C., et al. 2011. Common variants at ABCA7, MS4A6A/MS4A4E,
EPHA1, CD33 and CD2AP are associated with Alzheimer's disease. *Nat. Genet.*, 43, 429–35.

- Holmquist, M. 2000. α/β-hydrolase fold enzymes: structures, functions and mechanisms. *Curr*. *Protein Pept. Sci.*, 1, 209–35.
- Honer, W. G., Dickson, D. W., Gleeson, J. & Davies, P. 1992. Regional synaptic pathology in Alzheimer's disease. *Neurobiol. Aging*, 13, 375–82.
- Hong, M., Zhukareva, V., Vogelsberg-Ragaglia, V., Wszolek, Z., Reed, L., Miller, B. I., Geschwind, D. H., Bird, T. D., Mckeel, D., Goate, A., Morris, J. C., Wilhelmsen, K. C., Schellenberg, G. D., Trojanowski, J. Q. & Lee, V. M. 1998. Mutation-specific functional impairments in distinct tau isoforms of hereditary FTDP-17. *Science*, 282, 1914–7.
- Hong, M. G., Alexeyenko, A., Lambert, J. C., Amouyel, P. & Prince, J. A. 2010. Genome-wide pathway analysis implicates intracellular transmembrane protein transport in Alzheimer disease. J. Hum. Genet., 55, 707–9.
- Hsia, A. Y., Masliah, E., Mcconlogue, L., Yu, G.-Q., Tatsuno, G., Hu, K., Kholodenko, D., Malenka,
 R. C., Nicoll, R. A. & Mucke, L. 1999. Plaque-independent disruption of neural circuits in
 Alzheimer's disease mouse models. *Proc. Natl. Acad. Sci. U.S.A.*, 96, 3228–33.
- Hu, N.-W., Smith, I. M., Walsh, D. M. & Rowan, M. J. 2008. Soluble amyloid-β peptides potently disrupt hippocampal synaptic plasticity in the absence of cerebrovascular dysfunction *in vivo*. *Brain*, 131, 2414–24.
- Hu, Y., Hosseini, A., Kauwe, J. S., Gross, J., Cairns, N. J., Goate, A. M., Fagan, A. M., Townsend,
 R. R. & Holtzman, D. M. 2007. Identification and validation of novel CSF biomarkers for early stages of Alzheimer's disease. *Proteomics Clin. Appl.*, 1, 1373–84.
- Huang, Z. J. & Scheiffele, P. 2008. GABA and neuroligin signaling: linking synaptic activity and adhesion in inhibitory synapse development. *Curr. Opin. Neurobiol.*, 18, 77–83.
- Hung, A. Y. & Selkoe, D. J. 1994. Selective ectodomain phosphorylation and regulated cleavage of β-amyloid precursor protein. *EMBO J.*, 13, 534–42.

- Husi, H., Ward, M. A., Choudhary, J. S., Blackstock, W. P. & Grant, S. G. 2000. Proteomic analysis of NMDA receptor-adhesion protein signaling complexes. *Nat. Neurosci.*, 3, 661–9.
- Hutton, M., Lendon, C. L., Rizzu, P., Baker, M., Froelich, S., Houlden, H., Pickering-Brown, S., Chakraverty, S., Isaacs, A., Grover, A., Hackett, J., Adamson, J., Lincoln, S., Dickson, D., Davies, P., Petersen, R. C., Stevens, M., De Graaff, E., Wauters, E., Van Baren, J., Hillebrand, M., Joosse, M., Kwon, J. M., Nowotny, P., Che, L. K., Norton, J., Morris, J. C., Reed, L. A., Trojanowski, J., Basun, H., Lannfelt, L., Neystat, M., Fahn, S., Dark, F., Tannenberg, T., Dodd, P. R., Hayward, N., Kwok, J. B. J., Schofield, P. R., Andreadis, A., Snowden, J., Craufurd, D., Neary, D., Owen, F., Oostra, B. A., Hardy, J., Goate, A., Van Swieten, J., Mann, D., Lynch, T. & Heutink, P. 1998. Association of missense and 5'-splicesite mutations in tau with the inherited dementia FTDP-17. *Nature*, 393, 702–5.
- Hynd, M. R., Scott, H. L. & Dodd, P. R. 2001. Glutamate_{NMDA} receptor NR1 subunit mRNA expression in Alzheimer's disease. *J. Neurochem.*, 78, 175–82.
- Hynd, M. R., Lewohl, J. M., Scott, H. L. & Dodd, P. R. 2003. Biochemical and molecular studies using human autopsy brain tissue. *J. Neurochem.*, 85, 543–62.
- Ichtchenko, K., Hata, Y., Nguyen, T., Ullrich, B., Missler, M., Moomaw, C. & Südhof, T. C. 1995. Neuroligin 1: A splice site-specific ligand for β-neurexins. *Cell*, 81, 435–43.
- Ichtchenko, K., Nguyen, T. & Südhof, T. C. 1996. Structures, alternative splicing, and neurexin binding of multiple neuroligins. *J. Biol. Chem.*, 271, 2676–82.
- Imbeaud, S., Graudens, E., Boulanger, V., Barlet, X., Zaborski, P., Eveno, E., Mueller, O., Schroeder, A. & Auffray, C. 2005. Towards standardization of RNA quality assessment using user-independent classifiers of microcapillary electrophoresis traces. *Nucleic Acids Res.*, 33, e56.
- Inestrosa, N. C., Alvarez, A., Perez, C. A., Moreno, R. D., Vicente, M., Linker, C., Casanueva, O. I., Soto, C. & Garrido, J. 1996. Acetylcholinesterase accelerates assembly of amyloid-βpeptides into Alzheimer's fibrils: possible role of the peripheral site of the enzyme. *Neuron*, 16, 881–91.

- Ingelsson, M., Fukumoto, H., Newell, K. L., Growdon, J. H., Hedley-Whyte, E. T., Frosch, M. P., Albert, M. S., Hyman, B. T. & Irizarry, M. C. 2004. Early β-amyloid accumulation and progressive synaptic loss, gliosis, and tangle formation in AD brain. *Neurology*, 62, 925–31.
- Ishihara, T., Hong, M., Zhang, B., Nakagawa, Y., Lee, M. K., Trojanowski, J. Q. & Lee, V. M. 1999. Age-dependent emergence and progression of a tauopathy in transgenic mice overexpressing the shortest human tau isoform. *Neuron*, 24, 751–62.
- Jackson, J., Chugh, D., Nilsson, P., Wood, J., Carlstrom, K., Lindvall, O. & Ekdahl, C. T. 2012. Altered synaptic properties during integration of adult-born hippocampal neurons following a seizure insult. *PLoS One*, 7, e35557.
- Jamain, S., Quach, H., Betancur, C., Rastam, M., Colineaux, C., Gillberg, I. C., Soderstrom, H., Giros, B., Leboyer, M., Gillberg, C. & Bourgeron, T. 2003. Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. *Nat. Genet.*, 34, 27–9.
- Jamain, S., Radyushkin, K., Hammerschmidt, K., Granon, S., Boretius, S., Varoqueaux, F.,
 Ramanantsoa, N., Gallego, J., Ronnenberg, A., Winter, D., Frahm, J., Fischer, J., Bourgeron,
 T., Ehrenreich, H. & Brose, N. 2008. Reduced social interaction and ultrasonic
 communication in a mouse model of monogenic heritable autism. *Proc. Natl. Acad. Sci.*U.S.A., 105, 1710–5.
- Janssen, J. C., Beck, J. A., Campbell, T. A., Dickinson, A., Fox, N. C., Harvey, R. J., Houlden, H., Rossor, M. N. & Collinge, J. 2003. Early onset familial Alzheimer's disease: Mutation frequency in 31 families. *Neurology*, 60, 235–9.
- Jarrett, J. T., Berger, E. P. & Lansbury, P. T. 1993. The carboxy terminus of the β amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer's disease. *Biochemistry*, 32, 4693–7.
- Joachim, C. L., Morris, J. H., Kosik, K. S. & Selkoe, D. J. 1987. Tau antisera recognize neurofibrillary tangles in a range of neurodegenerative disorders. *Ann. Neurol.*, 22, 514–20.
- Johnson, L. A. & Ferris, J. a. J. 2002. Analysis of postmortem DNA degradation by single-cell gel electrophoresis. *Forensic Sci. Int.*, 126, 43–7.

- Johnston, N. L., Cerevnak, J., Shore, A. D., Fuller Torrey, E. & Yolken, R. H. 1997. Multivariate analysis of RNA levels from postmortem human brains as measured by three different methods of RT-PCR. J. Neurosci. Methods, 77, 83–92.
- Jones, L., Holmans, P. A., Hamshere, M. L., Harold, D., Moskvina, V., Ivanov, D., Pocklington, A., Abraham, R., Hollingworth, P., Sims, R., Gerrish, A., Pahwa, J. S., Jones, N., Stretton, A., Morgan, A. R., Lovestone, S., Powell, J., Proitsi, P., Lupton, M. K., Brayne, C., Rubinsztein, D. C., Gill, M., Lawlor, B., Lynch, A., Morgan, K., Brown, K. S., Passmore, P. A., Craig, D., M^cGuinness, B., Todd, S., Holmes, C., Mann, D., Smith, A. D., Love, S., Kehoe, P. G., Mead, S., Fox, N., Rossor, M., Collinge, J., Maier, W., Jessen, F., Schurmann, B., Heun, R., Kolsch, H., Van Den Bussche, H., Heuser, I., Peters, O., Kornhuber, J., Wiltfang, J., Dichgans, M., Frolich, L., Hampel, H., Hull, M., Rujescu, D., Goate, A. M., Kauwe, J. S., Cruchaga, C., Nowotny, P., Morris, J. C., Mayo, K., Livingston, G., Bass, N. J., Gurling, H., Mcquillin, A., Gwilliam, R., Deloukas, P., Al-Chalabi, A., Shaw, C. E., Singleton, A. B., Guerreiro, R., Muhleisen, T. W., Nothen, M. M., Moebus, S., Jockel, K. H., Klopp, N., Wichmann, H. E., Ruther, E., Carrasquillo, M. M., Pankratz, V. S., Younkin, S. G., Hardy, J., O'Donovan, M. C., Owen, M. J. & Williams, J. 2010. Genetic evidence implicates the immune system and cholesterol metabolism in the aetiology of Alzheimer's disease. *PLoS One*, 5, e13950.
- Jorissen, E., Prox, J., Bernreuther, C., Weber, S., Schwanbeck, R., Serneels, L., Snellinx, A., Craessaerts, K., Thathiah, A., Tesseur, I., Bartsch, U., Weskamp, G., Blobel, C. P., Glatzel, M., De Strooper, B. & Saftig, P. 2010. The disintegrin/metalloproteinase ADAM10 is essential for the establishment of the brain cortex. *J. Neurosci.*, 30, 4833–44.
- Jung, S. Y., Kim, J., Kwon, O. B., Jung, J. H., An, K., Jeong, A. Y., Lee, C. J., Choi, Y. B., Bailey, C. H., Kandel, E. R. & Kim, J. H. 2010. Input-specific synaptic plasticity in the amygdala is regulated by neuroligin-1 *via* postsynaptic NMDA receptors. *Proc. Natl. Acad. Sci. U.S.A.*, 107, 4710–5.
- Kamenetz, F., Tomita, T., Hsieh, H., Seabrook, G., Borchelt, D., Iwatsubo, T., Sisodia, S. & Malinow, R. 2003. APP processing and synaptic function. *Neuron*, 37, 925–37.

- Kanehisa, M. & Goto, S. 2000. KEGG: Kyoto encyclopedia of genes and genomes. *Nucleic Acids Res.*, 28, 27–30.
- Karp, P. D. 2000. An ontology for biological function based on molecular interactions. *Bioinformatics*, 16, 269–85.
- Kattenstroth, G., Tantalaki, E., Südhof, T. C., Gottmann, K. & Missler, M. 2004. Postsynaptic *N*methyl-*D*-aspartate receptor function requires α-neurexins. *Proc. Natl. Acad. Sci. U.S.A.*, 101, 2607–12.
- Keller, M. A., Gwinn, K., Nash, J., Horsford, J., Zhang, R., Rich, S. S. & Corriveau, R. A. 2007.
 Whole genome association studies of neuropsychiatric disease: An emerging era of collaborative genetic discovery. *Neuropsychiatr. Dis. Treat.*, 3, 613–8.
- Kerrien, S., Alam-Faruque, Y., Aranda, B., Bancarz, I., Bridge, A., Derow, C., Dimmer, E.,
 Feuermann, M., Friedrichsen, A., Huntley, R., Kohler, C., Khadake, J., Leroy, C., Liban, A.,
 Lieftink, C., Montecchi-Palazzi, L., Orchard, S., Risse, J., Robbe, K., Roechert, B.,
 Thorneycroft, D., Zhang, Y., Apweiler, R. & Hermjakob, H. 2007. IntAct open source
 resource for molecular interaction data. *Nucleic Acids Res.*, 35, D561–5.
- Keshishian, H., Addona, T., Burgess, M., Kuhn, E. & Carr, S. A. 2007. Quantitative, multiplexed assays for low abundance proteins in plasma by targeted mass spectrometry and stable isotope dilution. *Mol. Cell. Proteomics*, 6, 2212–29.
- Keshishian, H., Addona, T., Burgess, M., Mani, D. R., Shi, X., Kuhn, E., Sabatine, M. S., Gerszten,
 R. E. & Carr, S. A. 2009. Quantification of cardiovascular biomarkers in patient plasma by
 targeted mass spectrometry and stable isotope dilution. *Mol. Cell. Proteomics*, 8, 2339–49.
- Kim, J., Jung, S. Y., Lee, Y. K., Park, S., Choi, J. S., Lee, C. J., Kim, H. S., Choi, Y. B., Scheiffele,
 P., Bailey, C. H., Kandel, E. R. & Kim, J. H. 2008. Neuroligin-1 is required for normal expression of LTP and associative fear memory in the amygdala of adult animals. *Proc. Natl. Acad. Sci. U.S.A.*, 105, 9087–92.
- Kim, J., Chang, A., Dudak, A., Federoff, H. J. & Lim, S. T. 2011. Characterization of nectin processing mediated by presenilin-dependent γ-secretase. J. Neurochem., 119, 945–56.

- Kingsbury, A. E., Foster, O. J., Nisbet, A. P., Cairns, N., Bray, L., Eve, D. J., Lees, A. J. & Marsden,
 C. D. 1995. Tissue pH as an indicator of mRNA preservation in human post-mortem brain. *Brain Res. Mol. Brain Res.*, 28, 311–8.
- Kirvell, S. L., Esiri, M. & Francis, P. T. 2006. Down-regulation of vesicular glutamate transporters precedes cell loss and pathology in Alzheimer's disease. J. Neurochem., 98, 939–50.
- Klyubin, I., Walsh, D. M., Lemere, C. A., Cullen, W. K., Shankar, G. M., Betts, V., Spooner, E. T., Jiang, L., Anwyl, R., Selkoe, D. J. & Rowan, M. J. 2005. Amyloid β protein immunotherapy neutralizes amyloid β oligomers that disrupt synaptic plasticity *in vivo*. *Nat. Med.*, 11, 556– 61.
- Koffie, R. M., Meyer-Luehmann, M., Hashimoto, T., Adams, K. W., Mielke, M. L., Garcia-Alloza, M., Micheva, K. D., Smith, S. J., Kim, M. L., Lee, V. M., Hyman, B. T. & Spires-Jones, T. L. 2009. Oligomeric amyloid β associates with postsynaptic densities and correlates with excitatory synapse loss near senile plaques. *Proc. Natl. Acad. Sci. U.S.A.*, 106, 4012–7.
- Koh, J. Y., Yang, L. L. & Cotman, C. W. 1990. β-Amyloid protein increases the vulnerability of cultured cortical neurons to excitotoxic damage. *Brain Res.*, 533, 315–20.
- Köpke, E., Tung, Y. C., Shaikh, S., Alonso, A. C., Iqbal, K. & Grundke-Iqbal, I. 1993. Microtubuleassociated protein tau. Abnormal phosphorylation of a non-paired helical filament pool in Alzheimer disease. J. Biol. Chem., 268, 24374–84.
- Krokhin, O. V., Craig, R., Spicer, V., Ens, W., Standing, K. G., Beavis, R. C. & Wilkins, J. A. 2004. An improved model for prediction of retention times of tryptic peptides in ion pair reversedphase HPLC: its application to protein peptide mapping by off-line HPLC-MALDI MS. *Mol. Cell. Proteomics*, 3, 908–19.
- Kudo, W., Lee, H. P., Zou, W. Q., Wang, X., Perry, G., Zhu, X., Smith, M. A., Petersen, R. B. & Lee, H. G. 2012. Cellular prion protein is essential for oligomeric amyloid-β induced neuronal cell death. *Hum. Mol. Genet.*, 21, 1138–44.
- Kuhn, P. H., Wang, H., Dislich, B., Colombo, A., Zeitschel, U., Ellwart, J. W., Kremmer, E.,Rossner, S. & Lichtenthaler, S. F. 2010. ADAM10 is the physiologically relevant,

constitutive α -secretase of the amyloid precursor protein in primary neurons. *EMBO J.*, 29, 3020–32.

- Kurschner, C., Mermelstein, P. G., Holden, W. T. & Surmeier, D. J. 1998. CIPP, a novel multivalent PDZ domain protein, selectively interacts with Kir4.0 family members, NMDA receptor subunits, neurexins, and neuroligins. *Mol. Cell. Neurosci.*, 11, 161–72.
- Laarakker, M. C., Reinders, N. R., Bruining, H., Ophoff, R. A. & Kas, M. J. 2012. Sex-dependent novelty response in neurexin-1α mutant mice. *PLoS One*, 7, e31503.
- Lai, M. K., Chen, C. P., Hope, T. & Esiri, M. M. 2010. Hippocampal neurofibrillary tangle changes and aggressive behaviour in dementia. *Neuroreport*, 21, 1111–5.
- Lambert, J. C., Heath, S., Even, G., Campion, D., Sleegers, K., Hiltunen, M., Combarros, O.,
 Zelenika, D., Bullido, M. J., Tavernier, B., Letenneur, L., Bettens, K., Berr, C., Pasquier, F.,
 Fievet, N., Barberger-Gateau, P., Engelborghs, S., De Deyn, P., Mateo, I., Franck, A.,
 Helisalmi, S., Porcellini, E., Hanon, O., De Pancorbo, M. M., Lendon, C., Dufouil, C.,
 Jaillard, C., Leveillard, T., Alvarez, V., Bosco, P., Mancuso, M., Panza, F., Nacmias, B.,
 Bossu, P., Piccardi, P., Annoni, G., Seripa, D., Galimberti, D., Hannequin, D., Licastro, F.,
 Soininen, H., Ritchie, K., Blanche, H., Dartigues, J. F., Tzourio, C., Gut, I., Van
 Broeckhoven, C., Alperovitch, A., Lathrop, M. & Amouyel, P. 2009. Genome-wide
 association study identifies variants at *CLU* and *CR1* associated with Alzheimer's disease. *Nat. Genet.*, 41, 1094–9.
- Lambert, J. C., Grenier-Boley, B., Chouraki, V., Heath, S., Zelenika, D., Fievet, N., Hannequin, D., Pasquier, F., Hanon, O., Brice, A., Epelbaum, J., Berr, C., Dartigues, J. F., Tzourio, C., Campion, D., Lathrop, M. & Amouyel, P. 2010. Implication of the immune system in Alzheimer's disease: evidence from genome-wide pathway analysis. *J. Alzheimers Dis.*, 20, 1107–18.
- Lange, V., Picotti, P., Domon, B. & Aebersold, R. 2008. Selected reaction monitoring for quantitative proteomics: a tutorial. *Mol. Syst. Biol.*, 4, 222.
- Lassmann, H., Weiler, R., Fischer, P., Bancher, C., Jellinger, K., Floor, E., Danielczyk, W., Seitelberger, F. & Winkler, H. 1992. Synaptic pathology in Alzheimer's disease:

immunological data for markers of synaptic and large dense-core vesicles. *Neuroscience*, 46, 1–8.

- Lauren, J., Gimbel, D. A., Nygaard, H. B., Gilbert, J. W. & Strittmatter, S. M. 2009. Cellular prion protein mediates impairment of synaptic plasticity by amyloid-β oligomers. *Nature*, 457, 1128–32.
- Lawson-Yuen, A., Saldivar, J. S., Sommer, S. & Picker, J. 2008. Familial deletion within *NLGN4* associated with autism and Tourette syndrome. *Eur. J. Hum. Genet.*, 16, 614–8.
- Leonard, S., Logel, J., Luthman, D., Casanova, M., Kirch, D. & Freedman, R. 1993. Biological stability of mRNA isolated from human postmortem brain collections. *Biol. Psychiatry*, 33, 456–66.
- Leuba, G., Savioz, A., Vernay, A., Carnal, B., Kraftsik, R., Tardif, E., Riederer, I. & Riederer, B. M. 2008a. Differential changes in synaptic proteins in the Alzheimer frontal cortex with marked increase in PSD-95 postsynaptic protein. J. Alzheimers Dis., 15, 139–51.
- Leuba, G., Walzer, C., Vernay, A., Carnal, B., Kraftsik, R., Piotton, F., Marin, P., Bouras, C. & Savioz, A. 2008b. Postsynaptic density protein PSD-95 expression in Alzheimer's disease and okadaic acid induced neuritic retraction. *Neurobiol. Dis.*, 30, 408–19.
- Leuba, G., Vernay, A., Kraftsik, R., Tardif, E., Riederer, B. M. & Savioz, A. 2014. Pathological reorganization of NMDA receptors subunits and postsynaptic protein PSD-95 distribution in Alzheimer's disease. *Curr. Alzheimer Res.*, 11, 86–96.
- Levy-Lahad, E., Wasco, W., Poorkaj, P., Romano, D. M., Oshima, J., Pettingell, W. H., Yu, C. E., Jondro, P. D., Schmidt, S. D., Wang, K. & Et Al. 1995. Candidate gene for the chromosome 1 familial Alzheimer's disease locus. *Science*, 269, 973–7.
- Li, B., Chohan, M. O., Grundke-Iqbal, I. & Iqbal, K. 2007. Disruption of microtubule network by Alzheimer abnormally hyperphosphorylated tau. *Acta Neuropathol.*, 113, 501–11.
- Liang, W. S., Dunckley, T., Beach, T. G., Grover, A., Mastroeni, D., Ramsey, K., Caselli, R. J., Kukull, W. A., Mckeel, D., Morris, J. C., Hulette, C. M., Schmechel, D., Reiman, E. M., Rogers, J. & Stephan, D. A. 2008. Altered neuronal gene expression in brain regions

differentially affected by Alzheimer's disease: a reference data set. *Physiol. Genomics*, 33, 240–56.

- Lisé, M. F. & El-Husseini, A. 2006. The neuroligin and neurexin families: from structure to function at the synapse. *Cell. Mol. Life Sci.*, 63, 1833–49.
- Liu, C. C., Kanekiyo, T., Xu, H. & Bu, G. 2013. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. *Nat. Rev. Neurol.*, 9, 106–18.
- Liu, G., Jiang, Y., Wang, P., Feng, R., Jiang, N., Chen, X., Song, H. & Chen, Z. 2012. Cell adhesion molecules contribute to Alzheimer's disease: multiple pathway analyses of two genome-wide association studies. *J. Neurochem.*, 120, 190–8.
- Liu, J. P., Zhang, Q. X., Baldwin, G. & Robinson, P. J. 1996. Calcium binds dynamin I and inhibits its GTPase activity. J. Neurochem., 66, 2074–81.
- Liu, S. I., Prince, M., Chiu, M. J., Chen, T. F., Sun, Y. W. & Yip, P. K. 2005. Validity and reliability of a Taiwan Chinese version of the community screening instrument for dementia. *Am. J. Geriatr. Psychiatry*, 13, 581–8.
- Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. *J. Biol. Chem.*, 193, 265–75.
- Ludes, B., Pfitzinger, H. & Mangin, P. 1993. DNA fingerprinting from tissues after variable postmortem periods. *J. Forensic Sci.*, 38, 686–90.
- Lukiw, W. J., Wong, L. & Mclachlan, D. R. 1990. Cytoskeletal messenger RNA stability in human neocortex: studies in normal aging and in Alzheimer's disease. *Int. J. Neurosci.*, 55, 81–8.
- Mabb, A. M. & Ehlers, M. D. 2010. Ubiquitination in postsynaptic function and plasticity. Annu. Rev. Cell Dev. Biol., 26, 179–210.
- Maccoss, M. J., Wu, C. C. & Yates, J. R., 3rd 2002. Probability-based validation of protein identifications using a modified SEQUEST algorithm. *Anal. Chem.*, 74, 5593–9.
- Mahley, R. W. 1988. Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. *Science*, 240, 622–30.

- Malinverno, M., Carta, M., Epis, R., Marcello, E., Verpelli, C., Cattabeni, F., Sala, C., Mulle, C., Di Luca, M. & Gardoni, F. 2010. Synaptic localization and activity of ADAM10 regulate excitatory synapses through N-cadherin cleavage. J. Neurosci., 30, 16343–55.
- Malkki, H. 2014. Neurodegenerative disease: Synaptic scaffolding protein neuroligin 1 links amyloid deposition, neuroinflammation and impaired memory. *Nat. Rev. Neurol.*, 10, 122.
- Mann, M. 2006. Functional and quantitative proteomics using SILAC. *Nat. Rev. Mol. Cell Biol.*, 7, 952–8.
- Marambaud, P., Shioi, J., Serban, G., Georgakopoulos, A., Sarner, S., Nagy, V., Baki, L., Wen, P., Efthimiopoulos, S., Shao, Z., Wisniewski, T. & Robakis, N. K. 2002. A presenilin-1/γsecretase cleavage releases the E-cadherin intracellular domain and regulates disassembly of adherens junctions. *EMBO J.*, 21, 1948–56.
- Martinez-Mir, A., González-Pérez, A., Gayán, J., Antúnez, C., Marín, J., Boada, M., Lopez-Arrieta, J. M., Fernández, E., Ramírez-Lorca, R., Sáez, M. E., Ruiz, A., Scholl, F. G. & Real, L. M. 2013. Genetic study of neurexin and neuroligin genes in Alzheimer's disease. *J. Alzheimers Dis.*, 35, 403–12.
- Masliah, E., Terry, R. D., Alford, M., Deteresa, R. & Hansen, L. A. 1991. Cortical and subcortical patterns of synaptophysinlike immunoreactivity in Alzheimer's disease. *Am. J. Pathol.*, 138, 235–46.
- Masliah, E., Mallory, M., Alford, M., Deteresa, R., Hansen, L. A., Mckeel, D. W., Jr. & Morris, J. C. 2001. Altered expression of synaptic proteins occurs early during progression of Alzheimer's disease. *Neurology*, 56, 127–9.
- Masters, C. L., Simms, G., Weinman, N. A., Multhaup, G., Mcdonald, B. L. & Beyreuther, K. 1985. Amyloid plaque core protein in Alzheimer disease and Down syndrome. *Proc. Natl. Acad. Sci. U.S.A.*, 82, 4245–9.
- Matsuda-Matsumoto, H., Iwazaki, T., Kashem, M. A., Harper, C. & Matsumoto, I. 2007. Differential protein expression profiles in the hippocampus of human alcoholics. *Neurochem. Int.*, 51, 370–6.

- Matthews, F. E., Arthur, A., Barnes, L. E., Bond, J., Jagger, C., Robinson, L. & Brayne, C. 2013. A two-decade comparison of prevalence of dementia in individuals aged 65 years and older from three geographical areas of England: results of the Cognitive Function and Ageing Study I and II. *Lancet*, 382, 1405–12.
- Maurer, K., Volk, S. & Gerbaldo, H. 1997. Auguste D and Alzheimer's disease. *Lancet*, 349, 1546– 9.
- Mckhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D. & Stadlan, E. M. 1984. Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. *Neurology*, 34, 939–44.
- Mielke, M. M., Vemuri, P. & Rocca, W. A. 2014. Clinical epidemiology of Alzheimer's disease: assessing sex and gender differences. *Clin. Epidemiol.*, 6, 37–48.
- Miller, G. E., Chen, E., Fok, A. K., Walker, H., Lim, A., Nicholls, E. F., Cole, S. & Kobor, M. S. 2009. Low early-life social class leaves a biological residue manifested by decreased glucocorticoid and increased proinflammatory signaling. *Proc. Natl. Acad. Sci. U.S.A.*, 106, 14716–21.
- Mintun, M. A., Larossa, G. N., Sheline, Y. I., Dence, C. S., Lee, S. Y., Mach, R. H., Klunk, W. E., Mathis, C. A., Dekosky, S. T. & Morris, J. C. 2006. [¹¹C]PIB in a nondemented population: potential antecedent marker of Alzheimer disease. *Neurology*, 67, 446–52.
- Mirnics, K., Middleton, F. A., Marquez, A., Lewis, D. A. & Levitt, P. 2000. Molecular characterization of schizophrenia viewed by microarray analysis of gene expression in prefrontal cortex. *Neuron*, 28, 53–67.
- Mirnics, K. & Pevsner, J. 2004. Progress in the use of microarray technology to study the neurobiology of disease. *Nat. Neurosci.*, 7, 434–9.
- Mirra, S. S., Hart, M. N. & Terry, R. D. 1993. Making the diagnosis of Alzheimer's disease. A primer for practicing pathologists. *Arch. Pathol. Lab. Med.*, 117, 132–44.

- Missler, M., Fernandez-Chacon, R. & Südhof, T. C. 1998. The making of neurexins. *J. Neurochem.*, 71, 1339–47.
- Mollah, S., Wertz, I. E., Phung, Q., Arnott, D., Dixit, V. M. & Lill, J. R. 2007. Targeted mass spectrometric strategy for global mapping of ubiquitination on proteins. *Rapid Commun. Mass Spectrom.*, 21, 3357–64.
- Monastero, R., Cefalu, A. B., Camarda, C., Noto, D., Camarda, L. K., Caldarella, R., Imbornone, E., Averna, M. R. & Camarda, R. 2006. Association of estrogen receptor a gene with Alzheimer's disease: a case-control study. J. Alzheimers Dis., 9, 273–8.
- Morgan, D. 2010. Immunotherapy for Alzheimer's disease. J. Intern. Med., 269, 54-63.
- Mucke, L., Masliah, E., Yu, G. Q., Mallory, M., Rockenstein, E. M., Tatsuno, G., Hu, K., Kholodenko, D., Johnson-Wood, K. & Mcconlogue, L. 2000. High-level neuronal expression of Aβ1-42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. *J. Neurosci.*, 20, 4050–8.
- Mullan, M., Houlden, H., Windelspecht, M., Fidani, L., Lombardi, C., Diaz, P., Rossor, M., Crook, R., Hardy, J. A., Duff, K. & Crawford, F. 1992. A locus for familial early-onset Alzheimer's disease on the long arm of chromosome 14, proximal to the α1-antichymotrypsin gene. *Nat. Genet.*, 2, 340–2.
- Müller, B. M., Kistner, U., Kindler, S., Chung, W. J., Kuhlendahl, S., Fenster, S. D., Lau, L. F., Veh, R. W., Huganir, R. L., Gundelfinger, E. D. & Garner, C. C. 1996. SAP102, a novel postsynaptic protein that interacts with NMDA receptor complexes in vivo. *Neuron*, 17, 255– 65.
- Myers, R. H., Schaefer, E. J., Wilson, P. W., D'agostino, R., Ordovas, J. M., Espino, A., Au, R.,
 White, R. F., Knoefel, J. E., Cobb, J. L., Mcnulty, K. A., Beiser, A. & Wolf, P. A. 1996.
 Apolipoprotein E ε4 association with dementia in a population-based study: The Framingham study. *Neurology*, 46, 673–7.

- Nagy, Z., Esiri, M. M., Jobst, K. A., Johnston, C., Litchfield, S., Sim, E. & Smith, A. D. 1995. Influence of the apolipoprotein E genotype on amyloid deposition and neurofibrillary tangle formation in Alzheimer's disease. *Neuroscience*, 69, 757–61.
- Namba, Y., Tomonaga, M., Kawasaki, H., Otomo, E. & Ikeda, K. 1991. Apolipoprotein E immunoreactivity in cerebral amyloid deposits and neurofibrillary tangles in Alzheimer's disease and kuru plaque amyloid in Creutzfeldt-Jakob disease. *Brain Res.*, 541, 163–6.
- Nathan, B. P., Bellosta, S., Sanan, D. A., Weisgraber, K. H., Mahley, R. W. & Pitas, R. E. 1994.
 Differential effects of apolipoproteins E3 and E4 on neuronal growth *in vitro*. *Science*, 264, 850–2.
- Ngounou Wetie, A. G., Sokolowska, I., Wormwood, K., Beglinger, K., Michel, T. M., Thome, J., Darie, C. C. & Woods, A. G. 2013. Mass spectrometry for the detection of potential psychiatric biomarkers. *J. Mol. Psychiatry*, 1, 8–16.
- Nguyen, T. & Südhof, T. C. 1997. Binding properties of neuroligin 1 and neurexin 1β a reveal function as heterophilic cell adhesion molecules. *J. Biol. Chem.*, 272, 26032–9.
- Niemitz, E. 2013. TREM2 and Alzheimer's disease. Nat. Genet., 45, 11.
- Nussbaum, J., Xu, Q., Payne, T. J., Ma, J. Z., Huang, W., Gelernter, J. & Li, M. D. 2008. Significant association of the neurexin-1 gene (*NRXN1*) with nicotine dependence in European- and African-American smokers. *Hum. Mol. Genet.*, 17, 1569–77.
- Ono, S., Baux, G., Sekiguchi, M., Fossier, P., Morel, N. F., Nihonmatsu, I., Hirata, K., Awaji, T., Takahashi, S. & Takahashi, M. 1998. Regulatory roles of complexins in neurotransmitter release from mature presynaptic nerve terminals. *Eur. J. Neurosci.*, 10, 2143–52.
- Palmer, A. M., Lowe, S. L., Francis, P. T. & Bowen, D. M. 1988. Are post-mortem biochemical studies of human brain worthwhile? *Biochem. Soc. Trans.*, 16, 472–5.
- Paloneva, J., Manninen, T., Christman, G., Hovanes, K., Mandelin, J., Adolfsson, R., Bianchin, M., Bird, T., Miranda, R., Salmaggi, A., Tranebjaerg, L., Konttinen, Y. & Peltonen, L. 2002.
 Mutations in two genes encoding different subunits of a receptor signaling complex result in an identical disease phenotype. *Am. J. Hum. Genet.*, 71, 656–62.

- Palop, J. J., Chin, J., Roberson, E. D., Wang, J., Thwin, M. T., Bien-Ly, N., Yoo, J., Ho, K. O., Yu, G. Q., Kreitzer, A., Finkbeiner, S., Noebels, J. L. & Mucke, L. 2007. Aberrant excitatory neuronal activity and compensatory remodeling of inhibitory hippocampal circuits in mouse models of Alzheimer's disease. *Neuron*, 55, 697–711.
- Pedersen, N. L. 2010. Reaching the limits of genome-wide significance in Alzheimer disease: back to the environment. *JAMA*, 303, 1864–5.
- Peixoto, R. T., Kunz, P. A., Kwon, H., Mabb, A. M., Sabatini, B. L., Philpot, B. D. & Ehlers, M. D. 2012. Transsynaptic signaling by activity-dependent cleavage of neuroligin-1. *Neuron*, 76, 396–409.
- Peng, J., Kim, M. J., Cheng, D., Duong, D. M., Gygi, S. P. & Sheng, M. 2004. Semiquantitative proteomic analysis of rat forebrain postsynaptic density fractions by mass spectrometry. J. *Biol. Chem.*, 279, 21003–11.
- Perdahl, E., Adolfsson, R., Alafuzoff, I., Albert, K. & Nestler, E. 1984. Synapsin I (protein I) in different brain regions in senile dementia of Alzheimer type and in multi-infarct dementia. J. Neural Transm., 60, 133–41.
- Pericak-Vance, M. A., Bebout, J. L., Gaskell, P. C., Jr., Yamaoka, L. H., Hung, W. Y., Alberts, M. J., Walker, A. P., Bartlett, R. J., Haynes, C. A., Welsh, K. A., Earl, N. L., Heyman, A., Clark, C. M. & Roses, A. D. 1991. Linkage studies in familial Alzheimer disease: evidence for chromosome 19 linkage. *Am. J. Hum. Genet.*, 48, 1034–50.
- Perkins, D. N., Pappin, D. J., Creasy, D. M. & Cottrell, J. S. 1999. Probability-based protein identification by searching sequence databases using mass spectrometry data. *Electrophoresis*, 20, 3551–67.
- Philibert, R. A., Winfield, S. L., Sandhu, H. K., Martin, B. M. & Ginns, E. I. 2000. The structure and expression of the human neuroligin-3 gene. *Gene*, 246, 303–10.
- Piazza-Gardner, A. K., Gaffud, T. J. & Barry, A. E. 2013. The impact of alcohol on Alzheimer's disease: a systematic review. *Aging Ment. Health*, 17, 133–46.

- Picotti, P., Aebersold, R. & Domon, B. 2007. The implications of proteolytic background for shotgun proteomics. *Mol. Cell. Proteomics*, 6, 1589–98.
- Picotti, P., Bodenmiller, B., Mueller, L. N., Domon, B. & Aebersold, R. 2009. Full dynamic range proteome analysis of *S. cerevisiæ* by targeted proteomics. *Cell*, 138, 795–806.
- Piersma, S. R., Warmoes, M. O., De Wit, M., De Reus, I., Knol, J. C. & Jimenez, C. R. 2013. Whole gel processing procedure for GeLC-MS/MS based proteomics. *Proteome Sci*, 11, 17.
- Plant, L. D., Boyle, J. P., Smith, I. F., Peers, C. & Pearson, H. A. 2003. The production of amyloid β peptide is a critical requirement for the viability of central neurons. *J. Neurosci.*, 23, 5531–5.
- Poulopoulos, A., Aramuni, G., Meyer, G., Soykan, T., Hoon, M., Papadopoulos, T., Zhang, M.,
 Paarmann, I., Fuchs, C., Harvey, K., Jedlicka, P., Schwarzacher, S. W., Betz, H., Harvey, R.
 J., Brose, N., Zhang, W. & Varoqueaux, F. 2009. Neuroligin 2 drives postsynaptic assembly at perisomatic inhibitory synapses through gephyrin and collybistin. *Neuron*, 63, 628–42.
- Proctor, D. T., Coulson, E. J. & Dodd, P. R. 2010. Reduction in post-synaptic scaffolding PSD-95 and SAP-102 protein levels in the Alzheimer inferior temporal cortex is correlated with disease pathology. J. Alzheimers Dis., 21, 795–811.
- Puglielli, L., Tanzi, R. E. & Kovacs, D. M. 2003. Alzheimer's disease: the cholesterol connection. *Nat. Neurosci.*, 6, 345–51.
- Purcell, S., Cherny, S. S. & Sham, P. C. 2003. Genetic Power Calculator: design of linkage and association genetic mapping studies of complex traits. *Bioinformatics*, 19, 149–50.
- Rebeck, G. W., Kindy, M. & Ladu, M. J. 2002. Apolipoprotein E and Alzheimer's disease: the protective effects of ApoE2 and E3. *J. Alzheimers Dis.*, 4, 145–54.
- Reddy, P. H., Mcweeney, S., Park, B. S., Manczak, M., Gutala, R. V., Partovi, D., Jung, Y., Yau, V., Searles, R., Mori, M. & Quinn, J. 2004. Gene expression profiles of transcripts in amyloid precursor protein transgenic mice: up-regulation of mitochondrial metabolism and apoptotic genes is an early cellular change in Alzheimer's disease. *Hum. Mol. Genet.*, 13, 1225–40.

- Reddy, P. H., Mani, G., Park, B. S., Jacques, J., Murdoch, G., Whetsell Jr, W., Kaye, J. & Manczak,
 M. 2005. Differential loss of synaptic proteins in Alzheimer's disease: implications for synaptic dysfunction. J. Alzheimers Dis., 7, 103–17.
- Rees, T., Hammond, P. I., Soreq, H., Younkin, S. & Brimijoin, S. 2003. Acetylcholinesterase promotes β-amyloid plaques in cerebral cortex. *Neurobiol. Aging*, 24, 777–87.
- Reiss, K., Maretzky, T., Ludwig, A., Tousseyn, T., De Strooper, B., Hartmann, D. & Saftig, P. 2005. ADAM10 cleavage of N-cadherin and regulation of cell-cell adhesion and β-catenin nuclear signalling. *EMBO J.*, 24, 742–52.
- Restituito, S., Khatri, L., Ninan, I., Mathews, P. M., Liu, X., Weinberg, R. J. & Ziff, E. B. 2011. Synaptic autoregulation by metalloproteases and γ-secretase. *J. Neurosci.*, 31, 12083–93.
- Reynolds, G. P. 2001. Pharmacological management of neurological and psychiatric disorders. Am. J. Psychiatry, 158, 1539–40.
- Rivera, S., Khrestchatisky, M., Kaczmarek, L., Rosenberg, G. A. & Jaworski, D. M. 2010. Metzincin proteases and their inhibitors: foes or friends in nervous system physiology? *J. Neurosci.*, 30, 15337–57.
- Rocca, W. A., Petersen, R. C., Knopman, D. S., Hebert, L. E., Evans, D. A., Hall, K. S., Gao, S., Unverzagt, F. W., Langa, K. M., Larson, E. B. & White, L. R. 2011. Trends in the incidence and prevalence of Alzheimer's disease, dementia, and cognitive impairment in the United States. *Alzheimers Dement.*, 7, 80–93.
- Rogaev, E. I., Sherrington, R., Rogaeva, E. A., Levesque, G., Ikeda, M., Liang, Y., Chi, H., Lin, C., Holman, K., Tsuda, T., Mar, L., Sorbi, S., Nacmias, B., Piacentini, S., Amaducci, L., Chumakov, I., Cohen, D., Lannfelt, L., Fraser, P. E., Rommens, J. M. & St George-Hyslop, P. H. 1995. Familial Alzheimer's disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer's disease type 3 gene. *Nature*, 376, 775–8.
- Roher, A. E., Lowenson, J. D., Clarke, S., Wolkow, C., Wang, R., Cotter, R. J., Reardon, I. M., Zürcher-Neely, H. A., Heinrikson, R. L. & Ball, M. J. 1993. Structural alterations in the

peptide backbone of β -amyloid core protein may account for its deposition and stability in Alzheimer's disease. *J. Biol. Chem.*, 268, 3072–83.

- Ronicke, R., Mikhaylova, M., Ronicke, S., Meinhardt, J., Schroder, U. H., Fandrich, M., Reiser, G., Kreutz, M. R. & Reymann, K. G. 2011. Early neuronal dysfunction by amyloid β oligomers depends on activation of NR2B-containing NMDA receptors. *Neurobiol. Aging*, 32, 2219–28.
- Rosenberg, M. E. & Silkensen, J. 1995. Clusterin: physiologic and pathophysiologic considerations. *Int. J. Biochem. Cell Biol.*, 27, 633–45.
- Ross, P. L., Huang, Y. N., Marchese, J. N., Williamson, B., Parker, K., Hattan, S., Khainovski, N.,
 Pillai, S., Dey, S., Daniels, S., Purkayastha, S., Juhasz, P., Martin, S., Bartlet-Jones, M., He,
 F., Jacobson, A. & Pappin, D. J. 2004. Multiplexed protein quantitation in *Saccharomyces cerevisiæ* using amine-reactive isobaric tagging reagents. *Mol. Cell. Proteomics*, 3, 1154–69.
- Rowan, M. J., Klyubin, I., Cullen, W. K. & Anwyl, R. 2003. Synaptic plasticity in animal models of early Alzheimer's disease. *Philos. Trans. R. Soc. Lond.*, *B, Biol. Sci.*, 358, 821–8.
- Rowan, M. J., Klyubin, I., Wang, Q., Hu, N. W. & Anwyl, R. 2007. Synaptic memory mechanisms: Alzheimer's disease amyloid β-peptide-induced dysfunction. *Biochem. Soc. Trans.*, 35, 1219–23.
- Rubenstein, J. L. & Merzenich, M. M. 2003. Model of autism: increased ratio of excitation/inhibition in key neural systems. *Genes Brain Behav.*, 2, 255–67.
- Sadygov, R. G. & Yates, J. R. 2003. A hypergeometric probability model for protein identification and validation using tandem mass spectral data and protein sequence databases. *Anal. Chem.*, 75, 3792–8.
- Saunders, A. M., Strittmatter, W. J., Schmechel, D., St. George-Hyslop, P. H., Pericak-Vance, M. A., Joo, S. H., Rosi, B. L., Gusella, J. F., Crapper-Maclachlan, D. R., Alberts, M. J., Hulette, C., Crain, B., Goldgaber, D. & Roses, A. D. 1993. Association of apolipoprotein E allele ɛ4 with late- onset familial and sporadic Alzheimer's disease. *Neurology*, 43, 1467.
- Saura, C. A., Servián-Morilla, E. & Scholl, F. G. 2011. Presenilin/γ-secretase regulates neurexin processing at synapses. *PLoS One*, 6, e19430.

- Scheff, S. W., Dekosky, S. T. & Price, D. A. 1990. Quantitative assessment of cortical synaptic density in Alzheimer's disease. *Neurobiol. Aging*, 11, 29–37.
- Scheiffele, P., Fan, J., Choih, J., Fetter, R. & Serafini, T. 2000. Neuroligin expressed in nonneuronal cells triggers presynaptic development in contacting axons. *Cell*, 101, 657–69.
- Schellenberg, G. D., Bird, T. D., Wijsman, E. M., Orr, H. T., Anderson, L., Nemens, E., White, J. A., Bonnycastle, L., Weber, J. L., Alonso, M. E. & Et Al. 1992. Genetic linkage evidence for a familial Alzheimer's disease locus on chromosome 14. *Science*, 258, 668–71.
- Schellenberg, G. D. 1995. Genetic dissection of Alzheimer disease, a heterogeneous disorder. *Proc. Natl. Acad. Sci. U.S.A.*, 92, 8552–9.
- Schmidt, R., Kienbacher, E., Benke, T., Dal-Bianco, P., Delazer, M., Ladurner, G., Jellinger, K.,
 Marksteiner, J., Ransmayr, G., Schmidt, H., Stogmann, E., Friedrich, J. & Wehringer, C.
 2008. [Sex differences in Alzheimer's disease]. *Neuropsychiatr.*, 22, 1–15.
- Scholl, F. G. & Scheiffele, P. 2003. Making connections: cholinesterase-domain proteins in the CNS. *Trends Neurosci.*, 26, 618–24.
- Schramm, M., Falkai, P., Tepest, R., Schneider-Axmann, T., Przkora, R., Waha, A., Pietsch, T., Bonte, W. & Bayer, T. A. 1999. Stability of RNA transcripts in post-mortem psychiatric brains. *J. Neural Transm.*, 106, 329–35.
- Schrijvers, E. M., Verhaaren, B. F., Koudstaal, P. J., Hofman, A., Ikram, M. A. & Breteler, M. M. 2012. Is dementia incidence declining?: Trends in dementia incidence since 1990 in the Rotterdam Study. *Neurology*, 78, 1456–63.
- Selkoe, D. J., Podlisny, M. B., Joachim, C. L., Vickers, E. A., Lee, G., Fritz, L. C. & Oltersdorf, T. 1988. β-Amyloid precursor protein of Alzheimer disease occurs as 110- to 135-kilodalton membrane-associated proteins in neural and nonneural tissues. *Proc. Natl. Acad. Sci. U.S.A.*, 85.
- Selkoe, D. J. 1998. The cell biology of β amyloid precursor protein and presenilin in Alzheimer's disease. *Trends Cell Biol.*, 8, 447–53.

Selkoe, D. J. 2001. Alzheimer's disease: genes, proteins, and therapy. Physiol. Rev., 81, 741-66.

- Selkoe, D. J. 2002. Alzheimer's disease is a synaptic failure. Science, 298, 789-91.
- Selkoe, D. J. 2008. Soluble oligomers of the amyloid β-protein impair synaptic plasticity and behavior. *Behav. Brain Res.*, 192, 106–13.
- Sergeant, N., Delacourte, A. & Buee, L. 2005. Tau protein as a differential biomarker of tauopathies. *Biochim. Biophys. Acta*, 1739, 179–97.
- Seshadri, S., Fitzpatrick, A. L., Ikram, M. A., Destefano, A. L., Gudnason, V., Boada, M., Bis, J. C., Smith, A. V., Carassquillo, M. M., Lambert, J. C., Harold, D., Schrijvers, E. M., Ramirez-Lorca, R., Debette, S., Longstreth, W. T., Jr., Janssens, A. C., Pankratz, V. S., Dartigues, J. F., Hollingworth, P., Aspelund, T., Hernandez, I., Beiser, A., Kuller, L. H., Koudstaal, P. J., Dickson, D. W., Tzourio, C., Abraham, R., Antunez, C., Du, Y., Rotter, J. I., Aulchenko, Y. S., Harris, T. B., Petersen, R. C., Berr, C., Owen, M. J., Lopez-Arrieta, J., Varadarajan, B. N., Becker, J. T., Rivadeneira, F., Nalls, M. A., Graff-Radford, N. R., Campion, D., Auerbach, S., Rice, K., Hofman, A., Jonsson, P. V., Schmidt, H., Lathrop, M., Mosley, T. H., Au, R., Psaty, B. M., Uitterlinden, A. G., Farrer, L. A., Lumley, T., Ruiz, A., Williams, J., Amouyel, P., Younkin, S. G., Wolf, P. A., Launer, L. J., Lopez, O. L., Van Duijn, C. M. & Breteler, M. M. 2010. Genome-wide analysis of genetic loci associated with Alzheimer disease. *JAMA*, 303, 1832–40.
- Seubert, P., Oltersdorf, T., Lee, M. G., Barbour, R., Blomquist, C., Davis, D. L., Bryant, K., Fritz, L. C., Galasko, D., Thal, L. J., Lieberburg, I. & Schenk, D. B. 1993. Secretion of β-amyloid precursor protein cleaved at the amino terminus of the β-amyloid peptide. *Nature*, 361, 260–3.
- Shankar, G. M., Bloodgood, B. L., Townsend, M., Walsh, D. M., Selkoe, D. J. & Sabatini, B. L. 2007. Natural oligomers of the Alzheimer amyloid-β protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. J. *Neurosci.*, 27, 2866–75.
- Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski,
 B. & Ideker, T. 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. *Genome Res.*, 13, 2498–504.

- Shapiro, L. & Colman, D. R. 1999. The diversity of cadherins and implications for a synaptic adhesive code in the CNS. *Neuron*, 23, 427–30.
- Sheckler, L. R., Henry, L., Sugita, S., Südhof, T. C. & Rudenko, G. 2006. Crystal structure of the second LNS/LG domain from neurexin 1a: Ca²⁺ binding and the effects of alternative splicing. *J. Biol. Chem.*, 281, 22896–905.
- Shilov, I. V., Seymour, S. L., Patel, A. A., Loboda, A., Tang, W. H., Keating, S. P., Hunter, C. L., Nuwaysir, L. M. & Schaeffer, D. A. 2007. The Paragon Algorithm, a next generation search engine that uses sequence temperature values and feature probabilities to identify peptides from tandem mass spectra. *Mol. Cell. Proteomics*, 6, 1638–55.
- Shipman, S. L. & Nicoll, R. A. 2012. A subtype-specific function for the extracellular domain of neuroligin 1 in hippocampal LTP. *Neuron*, 76, 309–16.
- Simonian, N. A., Elvhage, T., Czernik, A. J., Greengard, P. & Hyman, B. T. 1994. Calcium/calmodulin-dependent protein kinase II immunostaining is preserved in Alzheimer's disease hippocampal neurons. *Brain Res.*, 657, 294–9.
- Sindi, I. A., Tannenberg, R. K. & Dodd, P. R. 2014. A role for the neurexin-neuroligin complex in Alzheimer's disease. *Neurobiol. Aging*, 35, 746–56.
- Snyder, E. M., Nong, Y., Almeida, C. G., Paul, S., Moran, T., Choi, E. Y., Nairn, A. C., Salter, M. W., Lombroso, P. J., Gouras, G. K. & Greengard, P. 2005. Regulation of NMDA receptor trafficking by amyloid-β. *Nat. Neurosci.*, 8, 1051–8.
- Sokolowska, I., Ngounou Wetie, A. G., Wormwood, K., Thome, J., Darie, C. C. & Woods, A. G. 2013. The potential of biomarkers in psychiatry: focus on proteomics. *J. Neural Transm.*
- Song, J.-Y., Ichtchenko, K., Südhof, T. C. & Brose, N. 1999. Neuroligin 1 is a postsynaptic celladhesion molecule of excitatory synapses. *Proc. Natl. Acad. Sci. U.S.A.*, 96, 1100–5.
- Spellman, D. S., Deinhardt, K., Darie, C. C., Chao, M. V. & Neubert, T. A. 2008. Stable isotopic labeling by amino acids in cultured primary neurons: application to brain-derived neurotrophic factor-dependent phosphotyrosine-associated signaling. *Mol. Cell. Proteomics*, 7, 1067–76.

- Spires, T. L., Meyer-Luehmann, M., Stern, E. A., Mclean, P. J., Skoch, J., Nguyen, P. T., Bacskai, B. J. & Hyman, B. T. 2005. Dendritic spine abnormalities in amyloid precursor protein transgenic mice demonstrated by gene transfer and intravital multiphoton microscopy. *J. Neurosci.*, 25, 7278–87.
- St George-Hyslop, P., Haines, J., Rogaev, E., Mortilla, M., Vaula, G., Pericak-Vance, M., Foncin, J.
 F., Montesi, M., Bruni, A., Sorbi, S., Rainero, I., Pinessi, L., Pollen, D., Polinsky, R., Nee, L.,
 Kennedy, J., Macciardi, F., Rogaeva, E., Liang, Y., Alexandrova, N., Lukiw, W., Schlumpf,
 K., Tanzi, R., Tsuda, T., Farrer, L., Cantu, J. M., Duara, R., Amaducci, L., Bergamini, L.,
 Gusella, J., Roses, A. & Crapper Mclachlan, D. 1992. Genetic evidence for a novel familial
 Alzheimer's disease locus on chromosome 14. *Nat. Genet.*, 2, 330–4.
- St George-Hyslop, P. H., Tanzi, R. E., Polinsky, R. J., Haines, J. L., Nee, L., Watkins, P. C., Myers,
 R. H., Feldman, R. G., Pollen, D., Drachman, D. & Et Al. 1987. The genetic defect causing familial Alzheimer's disease maps on chromosome 21. *Science*, 235, 885–90.
- Stahl-Zeng, J., Lange, V., Ossola, R., Eckhardt, K., Krek, W., Aebersold, R. & Domon, B. 2007.
 High sensitivity detection of plasma proteins by multiple reaction monitoring of N-glycosites. *Mol. Cell. Proteomics*, 6, 1809–17.
- Südhof, T. C. 2008. Neuroligins and neurexins link synaptic function to cognitive disease. *Nature*, 455, 903–11.
- Sugita, S., Khvochtev, M. & Südhof, T. C. 1999. Neurexins are functional α-latrotoxin receptors. *Neuron*, 22, 489–96.
- Sun, C., Cheng, M. C., Qin, R., Liao, D. L., Chen, T. T., Koong, F. J., Chen, G. & Chen, C. H. 2011. Identification and functional characterization of rare mutations of the neuroligin-2 gene (*NLGN2*) associated with schizophrenia. *Hum. Mol. Genet.*, 20, 3042–51.
- Sun, C., Zhang, L. & Chen, G. 2013. An unexpected role of neuroligin-2 in regulating KCC2 and GABA functional switch. *Mol. Brain*, 6, 23.
- Suzuki, K., Hayashi, Y., Nakahara, S., Kumazaki, H., Prox, J., Horiuchi, K., Zeng, M., Tanimura, S., Nishiyama, Y., Osawa, S., Sehara-Fujisawa, A., Saftig, P., Yokoshima, S., Fukuyama, T.,

Matsuki, N., Koyama, R., Tomita, T. & Iwatsubo, T. 2012. Activity-dependent proteolytic cleavage of neuroligin-1. *Neuron*, 76, 410–22.

- Sze, C., Troncoso, J., Kawas, C., Mouton, P., Price, D. & Martin, L. 1997. Loss of the presynaptic vesicle protein synaptophysin in hippocampus correlates with cognitive decline in Alzheimer disease. J. Neuropathol. Exp. Neurol., 56, 944–.
- Tabuchi, K. & Südhof, T. C. 2002. Structure and evolution of neurexin genes: insight into the mechanism of alternative splicing. *Genomics*, 79, 849–59.
- Talebizadeh, Z., Bittel, D. C., Veatch, O. J., Kibiryeva, N. & Butler, M. G. 2005. Brief report: nonrandom X chromosome inactivation in females with autism. J. Autism Dev. Disord., 35, 675– 81.
- Tanaka, H., Shan, W., Phillips, G. R., Arndt, K., Bozdagi, O., Shapiro, L., Huntley, G. W., Benson, D. L. & Colman, D. R. 2000. Molecular modification of N-cadherin in response to synaptic activity. *Neuron*, 25, 93–107.
- Tang, L., Hung, C. P. & Schuman, E. M. 1998. A role for the cadherin family of cell adhesion molecules in hippocampal long-term potentiation. *Neuron*, 20, 1165–75.
- Taniguchi, H., Gollan, L., Scholl, F. G., Mahadomrongkul, V., Dobler, E., Limthong, N., Peck, M., Aoki, C. & Scheiffele, P. 2007. Silencing of neuroligin function by postsynaptic neurexins. J. *Neurosci.*, 27, 2815–24.
- Tannenberg, R. K., Scott, H. L., Tannenberg, A. E. & Dodd, P. R. 2006. Selective loss of synaptic proteins in Alzheimer's disease: evidence for an increased severity with APOE ε4. *Neurochem. Int.*, 49, 631–9.
- Tanzi, R. E. & Bertram, L. 2005. Twenty years of the Alzheimer's disease amyloid hypothesis: a genetic perspective. *Cell*, 120, 545–55.
- Tebar, F., Bohlander, S. K. & Sorkin, A. 1999. Clathrin assembly lymphoid myeloid leukemia (CALM) protein: localization in endocytic-coated pits, interactions with clathrin, and the impact of overexpression on clathrin-mediated traffic. *Mol. Biol. Cell*, 10, 2687–702.

- Tekin, S., Mega, M. S., Masterman, D. M., Chow, T., Garakian, J., Vinters, H. V. & Cummings, J. L. 2001. Orbitofrontal and anterior cingulate cortex neurofibrillary tangle burden is associated with agitation in Alzheimer disease. *Ann. Neurol.*, 49, 355–61.
- Terry, R. D., Masliah, E., Salmon, D. P., Butters, N., Deteresa, R., Hill, R., Hansen, L. A. & Katzman, R. 1991. Physical basis of cognitive alterations in Alzheimer's disease: synapse loss is the major correlate of cognitive impairment. *Ann. Neurol.*, 30, 572–80.
- Therianos, S., Zhu, M., Pyun, E. & Coleman, P. D. 2004. Single-channel quantitative multiplex reverse transcriptase-polymerase chain reaction for large numbers of gene products differentiates nondemented from neuropathological Alzheimer's disease. *Am. J. Pathol.*, 164, 795–806.
- Theuns, J., Marjaux, E., Vandenbulcke, M., Van Laere, K., Kumar-Singh, S., Bormans, G.,
 Brouwers, N., Van Den Broeck, M., Vennekens, K., Corsmit, E., Cruts, M., De Strooper, B.,
 Van Broeckhoven, C. & Vandenberghe, R. 2006. Alzheimer dementia caused by a novel
 mutation located in the APP C-terminal intracytosolic fragment. *Hum. Mutat.*, 27, 888–96.
- Thies, W. & Bleiler, L. 2013. 2013 Alzheimer's disease facts and figures. *Alzheimers Dement.*, 9, 208–45.
- Thiriet, N., Amar, L., Toussay, X., Lardeux, V., Ladenheim, B., Becker, K. G., Cadet, J. L., Solinas, M. & Jaber, M. 2008. Environmental enrichment during adolescence regulates gene expression in the striatum of mice. *Brain Res.*, 1222, 31–41.
- Ting, A. K., Chen, Y., Wen, L., Yin, D. M., Shen, C., Tao, Y., Liu, X., Xiong, W. C. & Mei, L. 2011. Neuregulin 1 promotes excitatory synapse development and function in GABAergic interneurons. J. Neurosci., 31, 15–25.
- Tippett, L. J., Meier, S. L., Blackwood, K. & Diaz-Asper, C. 2007. Category specific deficits in Alzheimer's disease: fact or artefact? *Cortex*, 43, 907–20.
- Trabzuni, D., Ryten, M., Walker, R., Smith, C., Imran, S., Ramasamy, A., Weale, M. E. & Hardy, J. 2011. Quality control parameters on a large dataset of regionally dissected human control brains for whole genome expression studies. *J. Neurochem.*, 119, 275–82.

- Uhlén, M. & Pontén, F. 2005. Antibody-based proteomics for human tissue profiling. *Mol. Cell. Proteomics*, 4, 384–93.
- Ullrich, B., Ushkaryov, Y. A. & Südhof, T. C. 1995. Cartography of neurexins: more than 1000 isoforms generated by alternative splicing and expressed in distinct subsets of neurons. *Neuron*, 14, 497–507.
- Umemori, H., Linhoff, M. W., Ornitz, D. M. & Sanes, J. R. 2004. FGF22 and its close relatives are presynaptic organizing molecules in the mammalian brain. *Cell*, 118, 257–70.
- Unwin, R. D., Griffiths, J. R., Leverentz, M. K., Grallert, A., Hagan, I. M. & Whetton, A. D. 2005.
 Multiple reaction monitoring to identify sites of protein phosphorylation with high sensitivity.
 Mol. Cell. Proteomics, 4, 1134–44.
- Ushkaryov, Y. A., Petrenko, A. G., Geppert, M. & Südhof, T. C. 1992. Neurexins: synaptic cell surface proteins related to the α-latrotoxin receptor and laminin. *Science*, 257, 50–6.
- Ushkaryov, Y. A., Hata, Y., Ichtchenko, K., Moomaw, C., Afendis, S., Slaughter, C. A. & Südhof, T.
 C. 1994. Conserved domain structure of β-neurexins. Unusual cleaved signal sequences in receptor-like neuronal cell-surface proteins. *J. Biol. Chem.*, 269, 11987–92.
- Van Gool, D., Carmeliet, G., Triau, E., Cassiman, J.-J. & Dom, R. 1994. Appearance of localized immunoreactivity for the α4 integrin subunit and for fibronectin in brains from Alzheimer's, Lewy body dementia patients and aged controls. *Neurosci. Lett.*, 170, 71–3.
- Varoqueaux, F., Jamain, S. & Brose, N. 2004. Neuroligin 2 is exclusively localized to inhibitory synapses. *Eur. J. Cell Biol.*, 83, 449–56.
- Varoqueaux, F., Aramuni, G., Rawson, R. L., Mohrmann, R., Missler, M., Gottmann, K., Zhang, W., Südhof, T. C. & Brose, N. 2006. Neuroligins determine synapse maturation and function. *Neuron*, 51, 741–54.
- Vasilj, A., Gentzel, M., Ueberham, E., Gebhardt, R. & Shevchenko, A. 2012. Tissue proteomics by one-dimensional gel electrophoresis combined with label-free protein quantification. J. *Proteome Res.*, 11, 3680–9.

- Vawter, M. P., Evans, S., Choudary, P., Tomita, H., Meador-Woodruff, J., Molnar, M., Li, J., Lopez, J. F., Myers, R., Cox, D., Watson, S. J., Akil, H., Jones, E. G. & Bunney, W. E. 2004.
 Gender-specific gene expression in post-mortem human brain: localization to sex chromosomes. *Neuropsychopharmacology*, 29, 373–84.
- Verwer, R. W., Hermens, W. T., Dijkhuizen, P., Ter Brake, O., Baker, R. E., Salehi, A., Sluiter, A. A., Kok, M. J., Muller, L. J., Verhaagen, J. & Swaab, D. F. 2002. Cells in human postmortem brain tissue slices remain alive for several weeks in culture. *FASEB J.*, 16, 54–60.
- Viard, I., Wehrli, P., Jornot, L., Bullani, R., Vechietti, J. L., Schifferli, J. A., Tschopp, J. & French,
 L. E. 1999. Clusterin gene expression mediates resistance to apoptotic cell death induced by
 heat shock and oxidative stress. *J. Invest. Dermatol.*, 112, 290–6.
- Vina, J. & Lloret, A. 2010. Why women have more Alzheimer's disease than men: gender and mitochondrial toxicity of amyloid-β peptide. J. Alzheimers Dis., 20 Suppl 2, S527–33.
- Von Bernhardi, R., Ramirez, G., De Ferrari, G. V. & Inestrosa, N. C. 2003. Acetylcholinesterase induces the expression of the β-amyloid precursor protein in glia and activates glial cells in culture. *Neurobiol. Dis.*, 14, 447–57.
- Walch-Solimena, C., Takei, K., Marek, K. L., Midyett, K., Südhof, T. C., De Camilli, P. & Jahn, R. 1993. Synaptotagmin: a membrane constituent of neuropeptide-containing large dense-core vesicles. *J. Neurosci.*, 13, 3895–903.
- Walikonis, R. S., Jensen, O. N., Mann, M., Provance, D. W., Jr., Mercer, J. A. & Kennedy, M. B. 2000. Identification of proteins in the postsynaptic density fraction by mass spectrometry. J. *Neurosci.*, 20, 4069–80.
- Weidemann, A., König, G., Bunke, D., Fischer, P., Salbaum, J. M., Masters, C. L. & Beyreuther, K. 1989. Identification, biogenesis, and localization of precursors of Alzheimer's disease A4 amyloid protein. *Cell*, 57, 115–26.
- Welberg, L. 2012. Synaptic plasticity: neuroligin 1 does the splits. Nat. Rev. Neurosci., 13, 811.
- West, H. L., Rebeck, G. W. & Hyman, B. T. 1994. Frequency of the apolipoprotein E ε2 allele is diminished in sporadic Alzheimer disease. *Neurosci. Lett.*, 175, 46–8.

- Williamson, B. L., Marchese, J. & Morrice, N. A. 2006. Automated identification and quantification of protein phosphorylation sites by LC/MS on a hybrid triple quadrupole linear ion trap mass spectrometer. *Mol. Cell. Proteomics*, 5, 337–46.
- Wolfe, M. S. 2008. γ-Secretase inhibition and modulation for Alzheimer's disease. *Curr. Alzheimer Res.*, 5, 158–64.
- Wong, P., Taillefer, D., Lakins, J., Pineault, J., Chader, G. & Tenniswood, M. 1994. Molecular characterization of human TRPM-2/clusterin, a gene associated with sperm maturation, apoptosis and neurodegeneration. *Eur. J. Biochem.*, 221, 917–25.
- Wood, J. G., Mirra, S. S., Pollock, N. J. & Binder, L. I. 1986. Neurofibrillary tangles of Alzheimer disease share antigenic determinants with the axonal microtubule-associated protein tau (τ). *Proc. Natl. Acad. Sci. U.S.A.*, 83, 4040–3.
- Woods, A. G., Sokolowska, I., Taurines, R., Gerlach, M., Dudley, E., Thome, J. & Darie, C. C. 2012. Potential biomarkers in psychiatry: focus on the cholesterol system. J. Cell. Mol. Med., 16, 1184–95.
- Wright, S., Malinin, N. L., Powell, K. A., Yednock, T., Rydel, R. E. & Griswold-Prenner, I. 2007. α2β1 and αlVβ1 integrin signaling pathways mediate amyloid-β-induced neurotoxicity. *Neurobiol. Aging*, 28, 226–37.
- Yamada, M., Saisu, H., Ishizuka, T., Takahashi, H. & Abe, T. 1999. Immunohistochemical distribution of the two isoforms of synaphin/complexin involved in neurotransmitter release: localization at the distinct central nervous system regions and synaptic types. *Neuroscience*, 93, 7–18.
- Yan, J., Oliveira, G., Coutinho, A., Yang, C., Feng, J., Katz, C., Sram, J., Bockholt, A., Jones, I. R., Craddock, N., Cook, E. H., Jr., Vicente, A. & Sommer, S. S. 2005. Analysis of the neuroligin 3 and 4 genes in autism and other neuropsychiatric patients. *Mol. Psychiatry*, 10, 329–32.
- Yang, G. P., Ross, D. T., Kuang, W. W., Brown, P. O. & Weigel, R. J. 1999. Combining SSH and cDNA microarrays for rapid identification of differentially expressed genes. *Nucleic Acids Res.*, 27, 1517–23.

- Yao, P. J., Zhu, M., Pyun, E. I., Brooks, A. I., Therianos, S., Meyers, V. E. & Coleman, P. D. 2003. Defects in expression of genes related to synaptic vesicle trafficking in frontal cortex of Alzheimer's disease. *Neurobiol. Dis.*, 12, 97–109.
- Yasojima, K., Mcgeer, E. G. & Mcgeer, P. L. 2001. High stability of mRNAs postmortem and protocols for their assessment by RT-PCR. *Brain Res. Brain Res. Protoc.*, 8, 212–8.
- Ylisaukko-Oja, T., Rehnstrom, K., Auranen, M., Vanhala, R., Alen, R., Kempas, E., Ellonen, P., Turunen, J. A., Makkonen, I., Riikonen, R., Nieminen-Von Wendt, T., Von Wendt, L., Peltonen, L. & Jarvela, I. 2005a. Analysis of four neuroligin genes as candidates for autism. *Eur. J. Hum. Genet.*, 13, 1285–92.
- Ylisaukko-Oja, T., Rehnström, K., Auranen, M., Vanhala, R., Alen, R., Kempas, E., Ellonen, P., Turunen, J. A., Makkonen, I., Riikonen, R., Nieminen-Von Wendt, T., Von Wendt, L., Peltonen, L. & Järvelä, I. 2005b. Analysis of four neuroligin genes as candidates for autism. *Eur. J. Hum. Genet.*, 13, 1285–92.
- Zannis, V. I., Just, P. W. & Breslow, J. L. 1981. Human apolipoprotein E isoprotein subclasses are genetically determined. *Am. J. Hum. Genet.*, 33, 11–24.
- Zeev-Ben-Mordehai, T., Rydberg, E. H., Solomon, A., Toker, L., Auld, V. J., Silman, I., Botti, S. & Sussman, J. L. 2003. The intracellular domain of the drosophila cholinesterase-like neural adhesion protein, gliotactin, is natively unfolded. *Proteins*, 53, 758–67.
- Zhou, J., Jones, D. R., Duong, D. M., Levey, A. I., Lah, J. J. & Peng, J. 2013. Proteomic analysis of postsynaptic density in Alzheimer's disease. *Clin. Chim. Acta*, 420, 62–8.
- Ziff, E. B. 1997. Enlightening the postsynaptic density. Neuron, 19, 1163–74.
- Zuo, L., Van Dyck, C. H., Luo, X., Kranzler, H. R., Yang, B. Z. & Gelernter, J. 2006. Variation at *APOE* and *STH* loci and Alzheimer's disease. *Behav. Brain Funct.*, 2, 13.

9 Appendix

9.1 Appendix for Chapter 2

Human *NLGN1* and *NLGN2* wild-type sequences were gained from the NCBI database (Accession No: NP_055747 and NP_065846 respectively).

9.1.1.1 NLGN1

1	ccaccgactc	ctgcccgcct	caacacaatg	ccttacctgt gaagcttgag gccac	ctcaag
61	ttccaaattt	gtgacaaatc	ccccagggct	cactggagtg gcagatatag acctg	gcagct
121	aactggattt	gatttataag	agagaaatct	gcagtcaatg cccactcttg ccaca	actgct
181	aatatggaaa	acagaatgtt	caataggata	tggtctgata aatagtgatg attga	agatg
241	ctgctccaat	acatgtgaaa	tcaatgggag	atatctgctg tctgaagatc tttca	agagct
301	tttctcgaca	agctcccctg	taagaaatcg	gaggtatatt ctaccattat acagt	ctttc
361	tcaagtggat	ataaatacgt	ttgcctcact	gtaaccagac aactagacaa ctaat	gtggg
421	accatggcac	tgcccagatg	cacgtggcca	aattatgttt ggagagcagt gatgg	gcatgc
481	ttggtacacc	ggggattggg	tgccccattg	actctctgta tgttgggatg tttgc	cttcag
541	gctggccatg	tgctatcaca	aaaattggat	gatgtggacc cactggtggc tacca	acttt
601	ggaaagataa	gagggattaa	gaaggaactc	aataatgaaa ttttgggggcc tgtta	attcaa
661	tttcttgggg	ttccatatgc	agccccacca	acaggggaac gtcgttttca gcctc	ccagaa
721	ccaccatctc	cctggtcaga	tatcagaaat	gccactcaat ttgctcctgt gtgtc	cccag
781	aatatcattg	atggcagatt	gccagaagtc	atgcttcctg tgtggtttac taata	acttg
841	gatgtggttt	catcatatgt	gcaagaccag	agcgaagact gcctatattt aaata	atatat
901	gtcccgactg	aggatgatat	tcgggacagt	gggggtccca aaccagtgat ggtgt	atatc
961	catggtggct	catatatgga	aggtactgga	aatttatatg atggaagtgt cttgg	gcaagt
1021	tatggcaatg	tgatcgtcat	cacagtcaac	tatcgacttg gagtactcgg tttct	tgagt
1081	acaggcgatc	aggctgcaaa	ggggaactat	ggactccttg atctcataca agctt	taaga
1141	tggactagtg	aaaacattgg	attctttggt	ggtgacccct taagaatcac tgttt	ttgga
1201	tctggtgctg	ggggttcatg	tgtcaacctg	ctgactttat cccattattc tgaag	ggtaac

1261 cgttggagca attcaaccaa aggacttttt caacgagcaa tagctcaaag tggaacagcc 1321 ctttccagct gggctgttag ttttcaacct gcaaaatatg ctagaatgtt ggccacaaaa 1381 gttggttgca atgtttcaga tacagtagag ttagtggaat gcctacagaa gaagccttac 1441 aaagaacttg ttgaccaaga tattcaacca gctcgataccacatagcctt tggacctgtg 1501 attgatggtg atgtaatacc agacgacccc cagatattga tggagcaagg agagtttctc 1561 aactatgata taatgttagg agtgaaccaa ggggaagggt taaaatttgt tgaaaatata 1621 gtagatagcg atgatggtat atcagctagt gattttgact ttgctgtttc aaattttgtt 1681 gataatttat atggatatcc tgaaggcaaa gatgttttga gagaaaccat taagttcatg 1741 tatactgact gggctgaccg tcataaccct gaaaccagaa gaaagacatt actggctttg 1801 tttacggacc atcagtgggt ggcaccagct gtagccacag cggatcttca ctcaaacttt 1861 ggttcaccta cgtacttcta tgccttttac catcattgcc aaacagatca ggttccagct 1921 tgggctgatg cagcccacgg agacgaggtt ccctatgtac tgggaatccc catgattggc 1981 cctacagagt tatttccttg caatttctcc aaaaatgatg tgatgctgag tgcagttgta 2041 atgacatact ggacaaattt tgctaaaact ggtgacccaa atcaaccagt ccctcaagac 2101 acgaaattca ttcataccaa acccaaccgt tttgaagaag tagcatggac cagatattcc 2161 cagaaagacc aactttatct ccatattgga ttaaaaccaa gagttaaaga acattacaga 2221 gccaataagg tgaacctctg gttggagttg gtacctcatc tgcataatct caatgacatt 2281 teteagtata cetetacaac aactaaagtg ceateaactg acateaettt cagacetaeg 2341 agaaaaaatt ctgtacctgt cacgtcagcc tttcccactg ccaagcagga tgatcccaaa 2401 caacaaccaa gtccattttc agtggatcaa agggactact caacagagct gagtgtcact 2461 attgcagttg gagcatcact gctgtttctg aacatcttgg cctttgcagc cctgtactac 2521 aaaaaggata agaggagaca tgatgttcac aggagatgca gccctcagcg cactactacc 2581 aatgatctaa cccatgcaca agaagaggaa atcatgtccc tccaaatgaa gcacactgat 2641 ttqqatcatq aatqtqaqtc cattcatcca catqaqqtqq ttcttcqqac cqcctqtccc 2701 ccagattaca cactagctat gaggaggtca cctgatgatg ttcccttaat gacacccaac 2761 accattacaa tgattcccaa cactatacca gggattcagc ccttacacac attcaataca 2821 tttactggag gacagaacaa tactctgccc catccccatc cccaccccca ttcacattca

2881 acaaccaggg tatagccaga taagagaaac aaactatttt ttttgatgga ttgcagtaaa 2941 cgatcactga agatteettg gettteaace tacaagaettaetatttaaa taaggaggaa 3001 tattatgtga atatacatat caagaacttt gggggttttg aaaaaaatga attgtatata 3061 tacaaatcaa ctttaaaaac aaatttcaat tgcttgaagcaattgttctgaatgatactt 3121 tttcattcac attcaagaat taattttttg aagatttaag ttacataatg gaattaggca 3181 tgtggaacac caaacaggaa agaactatgt ctgaaatata aaaaataaaa ataaaaaaaa 3241 aactatgaat atgcacaagg gacacaccag tggaatgtca gataattttc accagttttt 3301 atttggagcc gttttattgt gtagaccata tttacatatt tggataagta cacaaagcgt 3361 caatgctgtt aatggcctta gcaaaggctc atgctgaaat ttgccagtaa aacaaagaag 3421 tttaaagact ggcaggtaca ccattatcac ataagtgctg tcagtataaa gttgtgggga 3481 taaaqgaaac tggatatttt tagcacgatg tgcatgataa tttatatgct tggtggctgt 3541 gctgctgatt aagccgtaat taaaattctt ctcatcccat tggagttttt aatagaagct 3601 tcctccatca attggcagaa cctaaagaag attttaaggg gcaaaagtaa ttacaataaa 3661 ataattcaca gtagtttcaa tatagaagga attagctatt aaaggtattt gaagaaacta 3721 taggtatagt ggtgaatact cgctgatatg aatcccagaa aaaaatttcc tgtttttaat 3781 gttcttttca atcccatcta gataatttat agaaatataa ccctaattgg acatgtggta 3841 caggatctat aagttgctgt gtttttttgt tactctgtat tttgttcctt ttggtaaggt 3901 gaagtgtgtc caaagagtta cttgcaacag tctttcatga tatgaggatg cccccgtatt 3961 accactctga ttatagttct gagttctttg atttactcat gctgcatgac aaaatgttta 4021 ctaataacaa ttcattataa agttatatcc ctctttacat cacttatctt tctcactgag 4081 gttcattcac tggaatttac tcacgcaatc tcagtagagt acaacgtaga tacagaacct 4141 aggagagtca acatctggag gattttagtc tttcttacacatatgtgtgattttaaacga 4201 atatteteag accaeaggaa actetteate ceeetgttgt ttaceagtaa eagtatatea 4261 cagacctttc caaatgtttg tatatgtaat cagatgtaca tttatattga aaaacaaatg 4321 agatggactt aaagagcaca tcctgataaa tactttctctctctcacctgtactatttct 4381 attagactaa agttatgtga ttttttttt acattttttc agatgactag caattttgat 4441 agtttataag ataatgcaaa gaactttctc tgacaaacta actgcagtaa cagaaacctt

4501	tcttttcagt	tactcttttt	caagaatgaa	agattattat	acaaaaaatt	gtatactact
4561	tgatggaacc	aactttgtac	atcttggcca	tgtcactggt	cattgtgtga	aataaagata
4621	atctggataa	tgactattag	tccaatgcta	agaaacatga	tctttgctca	ttaaagagct
4681	aaaatgttta	ttgctgtttt	gtctttcttt	tttctaaaaa	aagaaaaaaa	agaaaaaaag
4741	gaaaagaaga	acaaagaaac	atgactgtct	caaagagtaa	tttttctaga	ttagaccagt
4801	caggtttttg	aagacatata	ggtaacttcc	acagaaaaca	caaacatgta	tttaaaggca
4861	agtctcatct	aagatgaaac	tcataaaaat	tatttaatgt	ttgttatgaa	tttaaaag

9.1.1.2 Compute pI/Mw

Theoretical pI/Mw (average) for the user-entered sequence

1 <u>0</u>	2 <u>0</u>	3 <u>0</u>	4 <u>0</u>	5 <u>0</u>	6 <u>0</u>
TMALPRCTWP	NYVWRAVMAC	LVHRGLGAPL	TLCMLGCLLQ	AGHVLSQKLD	DVDPLVATNF
7 <u>0</u>	8 <u>0</u>	90	10 <u>0</u>	11 <u>0</u>	12 <u>0</u>
GKIRGIKKEL	NNEILGPVIQ	FLGVPYAAPP	TGERRFQPPE	PPSPWSDIRN	ATQFAPVCPQ
13 <u>0</u>	14 <u>0</u>	15 <u>0</u>	16 <u>0</u>	17 <u>0</u>	18 <u>0</u>
NIIDGRLPEV	MLPVWFTNNL	DVVSSYVQDQ	SEDCLYLNIY	VPTEDDIRDS	GGPKPVMVYI
19 <u>0</u>	20 <u>0</u>	21 <u>0</u>	22 <u>0</u>	23 <u>0</u>	24 <u>0</u>
HGGSYMEGTG	NLYDGSVLAS	YGNVIVITVN	YRLGVLGFLS	TGDQAAKGNY	GLLDLIQALR
25 <u>0</u>	26 <u>0</u>	27 <u>0</u>	28 <u>0</u>	29 <u>0</u>	30 <u>0</u>
WTSENIGFFG	GDPLRITVFG	SGAGGSCVNL	LTLSHYSEGN	RWSNSTKGLF	QRAIAQSGTA
31 <u>0</u>	32 <u>0</u>	33 <u>0</u>	34 <u>0</u>	35 <u>0</u>	35 <u>6</u>
LSSWAVSFQP	AKYARMLATK	VGCNVSDTVE	LVECLQKKPY	KELVDQDIQP	ARYHIA

Theoretical pI/Mw: 5.97 / 38921.59

9.1.1.3 NLGN2

1	tccctctccc	ccccttctct	ctctctccga	gggggggggg tcccagggag ggagggggg
61	tcccccgatc	agcatgtggc	tcctggcgct	gtgtctggtg gggctggcgg gggctcaacg
121	cgggggaggg	ggtcccggcg	gcggcgcccc	gggcggcccc ggcctgggcc tcggcagcct
181	cggcgaggag	cgcttcccgg	tggtgaacac	ggcctacggg cgagtgcgcg gtgtgcggcg
241	cgagctcaac	aacgagatcc	tgggccccgt	cgtgcagttc ttgggcgtgc cctacgccac
301	gccgcccctg	ggcgcccgcc	gcttccagcc	gcctgaggcg cccgcctcgt ggcccggcgt
361	gcgcaacgcc	accaccctgc	cgcccgcctg	cccgcagaac ctgcacgggg cgctgcccgc
421	catcatgctg	cctgtgtggt	tcaccgacaa	cttggaggcg gccgccacct acgtgcagaa
481	ccagagcgag	gactgcctgt	acctcaacct	ctacgtgccc accgaggacg gtccgctcac
541	aaaaaacgt	gacgaggcga	cgctcaatcc	gccagacaca gatatccgtg accctgggaa

601 gaageetgtg atgetgttte teeatggegg eteetaetg gaggggaeeg gaaacatgtt 661 cgatggetca gteetggetg eetatggeaa egteattgta geeaegetea actaeegtet 721 tggggtgctc ggttttctca gcaccgggga ccaggctgca aaaggcaact atgggctcct 781 ggaccagate caggeeetge getggeteag tgaaaacate geeeaetttg ggggegaeee 841 cgagcgtatc accatctttg gttccggggc aggggcctcc tgcgtcaacc ttctgatcct 901 ctcccaccat tcagaagggc tgttccagaa ggccatcgcc cagagtggca ccgccatttc 961 cagetggtet gteaactaee ageegeteaa gtaeaegegg etgetggeag eeaaggtggg 1021 ctgtgaccga gaggacagcg ctgaagctgt ggagtgtctg cgccggaagc cctcccggga 1081 gctggtggac caggacgtgc agcctgcccg ctaccacatc gcctttgggc ccgtggtgga 1141 tggcgacgtg gtccccgatg accctgagat cctcatgcag cagggagaat tcctcaacta 1201 cgacatgete ateggegtea aceagggaga gggeeteaag ttegtggagg actetgeaga 1261 gagcgaggac ggtgtgtctg ccagcgcctt tgacttcact gtctccaact ttgtggacaa 1321 cctgtatggc tacccggaag gcaaggatgt gcttcgggag accatcaagt ttatgtacac 1381 agactgggcc gaccgggaca atggcgaaat gcgccgcaaa accctgctgg cgctctttac 1441 tgaccaccaa tgggtggcac cagctgtggc cactgccaag ctgcacgccg actaccagtc 1501 teceqtetac ttttacacet tetaceacea etgecaggeg gagggeegge etgagtggge 1561 agatgcggcg cacggggatg aactgcccta tgtctttggcgtgcccatggtgggtgccac 1621 cgacctcttc ccctgtaact tctccaagaa tgacgtcatg ctcagtgccg tggtcatgac 1681 ctactggacc aacttcgcca agactgggga ccccaaccag ccggtgccgc aggataccaa 1741 gttcatccac accaagccca atcgcttcga ggaggtggtg tggagcaaat tcaacagcaa 1801 ggagaagcag tatctgcaca taggcctgaa gccacgcgtg cgtgacaact accgcgccaa 1861 caaggtggcc ttctggctgg agctcgtgcc ccacctgcac aacctgcaca cggagctctt 1921 caccaccacc acgegeetge etceetacge caegegetgg eegeetegte ecceegetgg 1981 cgccccgggc acacgccggc ccccgccgcc tgccaccctg cctcccgagc ccgagcccga 2041 gcccggccca agggcctatg accgcttccc cggggactca cgggactact ccacggagct 2101 gagegtcacc gtggccgtgg gtgcctccct cctcttcctc aacatcctgg cctttgctgc 2161 cctctactac aagegggace ggeggeagga getgeggtge aggeggetta geceacetgg 2221 cggctcaggc tctggcgtgc ctggtggggg ccccctgctc cccgccgcgg gccgtgagct 2281 gccaccagag gaggagctgg tgtcactgca gctgaagcgg ggtggtggcg tcggggcgga 2341 ccctgccgag gctctgcgcc ctgcctgccc gcccgactac accctggccc tgcgccgggc 2401 accggacgat gtgcctctct tggcccccgg ggccctgacc ctgctgccca gtggcctggg 2461 gccaccgcca cccccaccgc ccccctccct tcatcccttc gggcccttcc ccccgccccc 2521 teccacegee accageeaca acaacaeget acceeacee caeteeacea etegggtata 2581 gggggtgggt ggggaggccc tcctccccgg ccctccctgg cccggccact ccgaaggcag 2641 ggaggaggac ttggcaactg gcttttctcc tgtggagtcg tcacacgcca tccagcagcg 2701 ctaaggtgga catgggattc ctccctgcga tgcgtgtctt tcccacgcag agaagcccag 2761 tetettetet ggatetggge etttgaacaa etgggggggg tttteteece eccattggga 2821 caccagtett eggtgtgtgg aatgtggtat ttteeegegtggaggtgtgettteteacaa 2941 gccccctcaa agaatttctg tggggatttg taccccagaa tcctgttccc ccatcccttc 3001 teceacetee teceetetee eteceetgg agaceetgga agtggtgtgt teacatacag 3061 tgacccttgg ccaccagacc acagaggatg gagcctggga agcagcgagg aaatcacagc 3121 cccctcgccc ctgcctccct tgcccctacc ccggcgaagc atgttccccc cgacgccccc 3181 cttggcacaa gtcagatgaa gcacgttctg ccggggaggc cctcaccttc cagagaggac 3241 agacacagat ttcctgctgg gggagggagg agtccacgca tcctgatgct gcctggaagc 3301 ttattttccc gtggccagga cgcatttctc tgagtggaaa caggttcttg catgtggatg 3361 tgtgtttccc caggcagacg gcccctctct tcccagcact tccctgcctc ccccaggcct 3421 caggeecage acceagttee testeacatg geaggtgage acagaettet agttggeagg 3541 gggggtgtgg caacgtgccc cccgcagagg ccacgcatgt ttgaccaaag ccctcattgt 3601 gqtccqaqqa caqccttttc cccaqqcctc aqaqcattqc tcatccqtqc caaactqqqt 3661 aggtggattt gagcggaaag actcccaaaa tgtgccaaga atttcccagt cccaggcagg 3721 gcaggggaaa ctaagggcaa gcaggataca gggcgaggga tgtggcaggt gagggggctc 3781 ccgcctgtgc cccttctcct caccatgtct cccccaccct gcctcagttc tccgttcccc

3841	ttcatctccg	tcccctctt	tgaagctgtc	cccatctcag tgtcagacca gccttctcct
3901	cagctgacca	ccctcctctg	acccacgccc	cctccttgtc tgaaagaaag gagccttgaa
3961	tggtggaggg	aggcagtggg	gagaaaggtc	tcaccggaca ggttgggaga atgaggtcag
4021	cggtgctggg	gaacagatgg	agggggcagt	ggggacaggg cttgggcaga caccagcagg
4081	aataatttga	aatgtgtgag	gtgactcccc	ggagggcctt gggcttgggc atttgggaaa
4141	agaatgatgt	ctggaagggc	ttaagggaca	cagtggacga ggggagagtc ctcatctgct
4201	ggcattttgt	ggggtgttag	tgccaaactt	gaataggggc tggggtgctg tcttccactg
4261	acacccaaat	ccagaatccc	tggtcttgag	tccccagaac tttgcctctt gactgtccct
4321	tctcttccta	cctccatcca	tggaaaatta	gttattttct gatcctttcc cctgcctggt
4381	ctagctcctc	tccaaacagc	catgccctcc	aaatgctaga gacctgggcc ctgaaccctg
4441	tagacagatg	ccctcagaat	tggggcatgg	gagggggggct gggggacccc atgattcagc
4501	cacggactcc	aatgcccagc	tcctctcccc	aaaacaatcc cgacaatccc ttatccctac
4561	cccaaccctt	tgcggctctg	tacacatttt	taaacctggc aaaagatgaa gagaatattg
4621	taaatataaa	agtttaactg	tt	

9.1.1.4 Compute pI/Mw

Theoretical pI/Mw (average) for the user-entered sequence

6 <u>0</u>	5 <u>0</u>	4 <u>0</u>	3 <u>0</u>	2 <u>0</u>	10
FLHGGSYMEG	RDPGKKPVML	ATLNPPDTDI	DGPLTKKRDE	LYLNLYVPTE	TYVQNQSEDC
12 <u>0</u>	11 <u>0</u>	10 <u>0</u>	9 <u>0</u>	8 <u>0</u>	7 <u>0</u>
LRWLSENIAH	NYGLLDQIQA	LSTGDQAAKG	LNYRLGVLGF	AAYGNVIVAT	TGNMFDGSVL
18 <u>0</u>	17 <u>0</u>	16 <u>0</u>	15 <u>0</u>	140	13 <u>0</u>
YQPLKYTRLL	GTAISSWSVN	GLFQKAIAQS	NLLILSHHSE	FGSGAGASCV	FGGDPERITI
24 <u>0</u>	23 <u>0</u>	22 <u>0</u>	21 <u>0</u>	20 <u>0</u>	19 <u>0</u>
DDPEILMQQG	GPVVDGDVVP	VQPARYHIAF	KPSRELVDQD	SAEAVECLRR	AAKVGCDRED
30 <u>0</u>	29 <u>0</u>	28 <u>0</u>	27 <u>0</u>	26 <u>0</u>	25 <u>0</u>
EGKDVLRETI	NFVDNLYGYP	SASAFDFTVS	EDSAESEDGV	VNQGEGLKFV	EFLNYDMLIG
	35 <u>0</u>	340	33 <u>0</u>	32 <u>0</u>	31 <u>0</u>
	ADYQSPV	APAVATAKLH	LALFTDHQWV	DNGEMRRKTL	KFMYTDWADR

Theoretical pI/Mw: 4.66 / 38192.81

9.1.2 Forward primer

BLASTN 1.8.4-Paracel [2010-10-31], (Altschul et al., 1997)

Query= 5F_H06 (1039 letters)

Database: genbank

9,537,552 sequences; 28,719,530,764 total letters

Sequences producing significant alignments:	(bits) Value	Score E
gi 123980671 gb DQ891239.2 Synthetic construct clone IMAGE:10	00 1750	0.0
gi 157928141 gb EU176566.1 Synthetic construct H. sapiens clo	1750	0.0
gi 21595790 gb BC032555.1 H. sapiens Neuroligin-1, mRNA (cDN	A 1748	0.0
gi 5689476 dbj AB028993.1 H. sapiens mRNA for KIAA1070 prote	ei 1748	0.0
gi 31317253 ref NM_014932.2 H. sapiens Neuroligin-1 (NLGN1)	1748	0.0
gi 168278798 dbj AB385423.1 Synthetic construct DNA, clone: pF1	l 1746	0.0
gi 114590433 ref XM_001166397.1 PREDICTED: Pan troglodytes s	simi 1725	0.0
gi 114590431 ref XM_001166321.1 PREDICTED: Pan troglodytes s	simi 1725	0.0
gi 114590435 ref XM_001166442.1 PREDICTED: Pan troglodytes s	simi 1629	0.0
gi 109044231 ref XM_001082898.1 PREDICTED: Macaca mulatta	Neuro1606	6 0.0
gi 109044228 ref XM_001082770.1 PREDICTED: Macaca mulatta	Neuro1606	6 0.0
gi 109044234 ref XM_001083506.1 PREDICTED: Macaca mulatta	Neuro1511	0.0
gi 149731113 ref XM_001494392.1 PREDICTED: Equus caballus N	Neuro1376	0.0
gi 194222596 ref XM_001494331.2 PREDICTED: Equus caballus N	Neuro1376	0.0
gi 74003762 ref XM_545297.2 PREDICTED: Canis familiaris simil	ar 1344	0.0
gi 113912208 gb BC122827.1 Bos taurus Neuroligin-1, mRNA (cDN	NA 1225	0.0
gi 194664213 ref XM_608505.4 PREDICTED: Bos taurus Neurolig	in-1 1225	0.0
gi 17105267 gb AC092967.5 H. sapiens 3 BAC RP11-521A24 (Ros	we 983	0.0
gi 114590437 ref XM_001166231.1 PREDICTED: Pan troglodytes s	simi 975	0.0
gi 114590429 ref XM_001166258.1 PREDICTED: Pan troglodytes s	simi 975	0.0
gi 114590427 ref XM_001166019.1 PREDICTED: Pan troglodytes s	simi 975	0.0
gi 114590425 ref XM_001166092.1 PREDICTED: Pan troglodytes s	simi 975	0.0
gi 114590423 ref XM_001166352.1 PREDICTED: Pan troglodytes s	simi 975	0.0
gi 114590421 ref XM_526383.2 PREDICTED: Pan troglodytes simi	ilar 975	0.0

gi 114590419 ref XM_001166291.1 PREDICTED: Pan troglodytes simi	975	0.0
gi 164693376 dbj AK307813.1 H. sapiens cDNA, FLJ97761	975	0.0
gi 254281190 ref NM_001163387.1 Mus musculus Neuroligin-1 (Nlgn	924	0.0
gi 68533534 gb BC098461.1 Mus musculus Neuroligin-1, mRNA (cDNA	. 916	0.0
gi 109044244 ref XM_001083140.1 PREDICTED: Macaca mulatta Neuro.	864	0.0
gi 109044240 ref XM_001082256.1 PREDICTED: Macaca mulatta Neuro.	864	0.0

>5F H06

AATAATTTTGTTTACTTTAAGAAGGAGATATACATATGCGGGGGTTCTCATCATCATCATCAT CATGGTATGGCTAGCATGACTGGTGGACAGCAAATGGGTCGGGATCTGTACGACGATGAC GATAAGGATCATCCCTTCACCATGGCACTGCCCAGATGCACGTGGCCAAATTATGTTTGGA GAGCAGTGATGGCATGCTTGGTACACCGGGGGATTGGGTGCCCCATTGACTCTCTGTATGT TGGGATGTTTGCTTCAGGCTGGCCATGTGCTATCACAAAAATTGGATGATGTGGACCCAC TGGTGGCTACCAACTTTGGAAAGATAAGAGGGATTAAGAAGGAACTCAATAATGAAATTT TGGGGCCTGTTATTCAATTTCTTGGGGTTCCATATGCAGCCCCACCAACAGGGGAACGTC GTTTTCAGCCTCCAGAACCACCATCTCCCTGGTCAGATATCAGAAATGCCACTCAATTTGC TCCTGTGTGTCCCCAGAATATCATTGATGGCAGATTGCCAGAAGTCATGCTTCCTGTGTGG TTTACTAATAACTTGGATGTGGTTTCATCATATGTGCAAGACCAGAGCGAAGACTGCCTAT ATTTAAATATATGTCCCGACTGAGGATGATATTCGGGACAGTGGGGGTCCCAAACCAGT GATGGTGTATATCCATGGTGGCTCATATATGGAAGGTACTGGAAATTTATATGATGGAAGTG TCTTGGCAAGTTATGGCAATGTGATCGTCATCACAGTCAACTATCGACTTGGAGTACTCGG TTTCTTGAGTACAGGCGATCAGGCTGCAAAGGGGAACTATGGACTCCTTGATCTCATACA AGCTTTAAGATGGACTAGTGAAAAACATTGGATTCTTTGGTGGTGACCCCTTAAGAATCAC TGTTTTTGGATCTGGTGCTGGGGGGTTCATGTGTCAACCTGCTGACTTTATCCCATTATTCTG AAAGTAACCCGTTGGAGCAATTCACCCAAAGGACTTTTTCAACGAGCAATAGCTCAAAG TGGAACAA

9.1.3 NLGN1 reverse primer

BLASTN 1.8.4-Paracel [2010-10-31], (Altschul et al., 1997).
Query= 6R_H07 (1106 letters)

Database: genbank

9,537,552 sequences; 28,719,530,764 total letter

Sequences producing significant alignments:	(bits) Value	Score E
gi 21595790 gb BC032555.1 H. sapiens Neuroligin-1, mRNA (cDN	A 2089	0.0
gi 5689476 dbj AB028993.1 H. sapiens mRNA for KIAA1070 prote	ei 2089	0.0
gi 31317253 ref]NM_014932.2 H. sapiens Neuroligin-1 (NLGN1)	2089	0.0
gi 123980671 gb DQ891239.2 Synthetic construct clone IMAGE:10	00 2089	0.0
gi 157928141 gb EU176566.1 Synthetic construct H. sapiens clo	2089	0.0
gi 168278798 dbj AB385423.1 Synthetic construct DNA, clone: pF1	l 2089	0.0
gi 114590433 ref XM_001166397.1 PREDICTED: Pan troglodytes	simi 2058	0.0
gi 114590431 ref XM_001166321.1 PREDICTED: Pan troglodytes	simi 2058	0.0
gi 109044231 ref XM_001082898.1 PREDICTED: Macaca mulatta	Neuro1939) 0.0
gi 109044228 ref XM_001082770.1 PREDICTED: Macaca mulatta	Neuro1939) 0.0
gi 149731113 ref XM_001494392.1 PREDICTED: Equus caballus N	Neuro1685	0.0
gi 194222596 ref XM_001494331.2 PREDICTED: Equus caballus 1	Neuro1685	0.0
gi 74003762 ref XM_545297.2 PREDICTED: Canis familiaris simil	ar 1661	0.0
gi 114590435 ref XM_001166442.1 PREDICTED: Pan troglodytes	simi 1604	0.0
gi 113912208 gb BC122827.1 Bos taurus Neuroligin-1, mRNA (cDl	NA 1542	0.0
gi 194664213 ref XM_608505.4 PREDICTED: Bos taurus Neurolig	in-1 1542	0.0
gi 109044234 ref XM_001083506.1 PREDICTED: Macaca mulatta	Neuro1485	5 0.0
gi 114590427 ref XM_001166019.1 PREDICTED: Pan troglodytes	simi 1114	0.0
gi 114590425 ref XM_001166092.1 PREDICTED: Pan troglodytes	simi 1114	0.0
gi 114590421 ref XM_526383.2 PREDICTED: Pan troglodytes similar	ilar 1114	0.0
gi 109044240 ref XM_001082256.1 PREDICTED: Macaca mulatta	Neuro1106	0.0
gi 109044225 ref XM_001082382.1 PREDICTED: Macaca mulatta	Neuro1106	0.0
gi 164693376 dbj AK307813.1 H. sapiens cDNA, FLJ97761	955	0.0

gi 17105267 gb AC092967.5 H. sapiens 3 BAC RP11-521A24 (Roswe	954	0.0
gi 114590437 ref XM_001166231.1 PREDICTED: Pan troglodytes simi	946	0.0
gi 114590429 ref XM_001166258.1 PREDICTED: Pan troglodytes simi	946	0.0
gi 114590423 ref XM_001166352.1 PREDICTED: Pan troglodytes simi	946	0.0
gi 114590419 ref XM_001166291.1 PREDICTED: Pan troglodytes simi	946	0.0
gi 254281190 ref NM_001163387.1 Mus musculus Neuroligin-1 (Nlgn	898	0.0
gi 224060830 ref XM_002197701.1 PREDICTED: Taeniopygia guttata	894	0.0

>6R_H07

GCAGCCGGATCGTTGAGCTCGCCCTTTTAGGCTATGTGGTATCGAGCTGGTTGAATATCTT GGTCAACAAGTTCTTTGTAAGGCTTCTTCTGTAGGCATTCCACTAACTCTACTGTATCTGA AACATTGCAACCAACTTTTGTGGCCAACATTCTAGCATATTTTGCAGGTTGAAAACTAAC AGCCCAGCTGGAAAGGGCTGTTCCACTTTGAGCTATTGCTCGTTGAAAAAGTCCTTTGGT TGAATTGCTCCAACGGTTACCTTCAGAATAATGGGATAAAGTCAGCAGGTTGACACATGA ACCCCCAGCACCAGATCCAAAAACAGTGATTCTTAAGGGGGTCACCACCAAAGAATCCAA TGTTTTCACTAGTCCATCTTAAAGCTTGTATGAGATCAAGGAGTCCATAGTTCCCCTTTGC AGCCTGATCGCCTGTACTCAAGAAACCGAGTACTCCAAGTCGATAGTTGACTGTGATGAC GATCACATTGCCATAACTTGCCAAGACACTTCCATCATATAAATTTCCAGTACCTTCCATAT ATGAGCCACCATGGATATACACCATCACTGGTTTGGGACCCCCACTGTCCCGAATATCATC CTCAGTCGGGACATATATATATATAAATATAGGCAGTCTTCGCTCTGGTCTTGCACATATGATG AAACCACATCCAAGTTATTAGTAAACCACACAGGAAGCATGACTTCTGGCAATCTGCCAT CAATGATATTCTGGGGGACACACAGGAGCAAATTGAGTGGCATTTCTGATATCTGACCAGG GAGATGGTGGTTCTGGAGGCTGAAAACGACGTTCCCCTGTTGGTGGGGGCTGCATATGGA ACCCCAAGAAATTGAATAACAGGCCCCAAAATTTCATTATTGAGTTCCTTCTTAATCCCTC TTATCTTTCCAAAGTTGGTAGCCACCAGTGGGTCCACATCATCCAATTTTTGTGATAGCAC ATGGCCAGCCTGAAGCAAACATCCCAACATACAGAGAGTCAATGGGGCACCCAATCCCC GGTGTACCAAGCATGCCATCACTGCTCTCCAAACATAATTTGGGCCACGTGCATCTGGGG CAGTGCCATGGGTGAAGGG

9.2 Appendix for Chapter 4

•

Abbrev ¹	Description ²	Score ³	Mol Mass ⁴	Mc 5	Ms 6	Sq 7	S s 8	Cov	Lngt
TBB4B ¹	Tubulin β -4B chain; <i>TUBB4B</i>	14852	50255	493	423	49	46	87.9	445
TBB4A ¹	Tubulin β-4A chain; <i>TUBB4A</i>	14487	50010	491	411	48	44	88.1	444
TBB2A ¹	Tubulin β -2A chain; <i>TUBB2A</i>	13826	50274	448	393	47	46	87.9	445
TBB5 ¹	Tubulin β chain; <i>TUBB</i>	13058	50095	445	386	49	47	88.1	444
TBB3 ¹	Tubulin β -3 chain; <i>TUBB3</i>	9705	50856	304	259	34	29	69.3	450
TBB6 ¹	Tubulin β -6 chain; <i>TUBB6</i>	4914	50281	161	128	23	19	46.2	446
TBB8 ¹	Tubulin β -8 chain; <i>TUBB8</i>	3176	50257	166	120	18	14	32.9	444
TBB1 ¹	Tubulin β -1 chain; <i>TUBB1</i>	782	50865	35	28	6	5	11.1	451
TBB2B ¹	Tubulin β -2B chain; <i>TUBB2B</i>	12629	50377	429	373	46	45	84.3	445
$TBB8L^1$	Tubulin β -8 chain-like protein LOC260334	2672	50168	133	108	15	12	31.3	444
YI016 ⁵	Putative tubulin β chain-like protein ENSP00000290377	1623	42204	69	59	10	8	14.6	
TBA1A ¹	Tubulin α -1A chain; <i>TUBA1A</i>	10156	50788	266	244	42	39	74.5	451
TBA4A ¹	Tubulin α -4A chain; <i>TUBA4A</i>	9298	50634	249	232	40	39	75	448
TBA8 ¹	Tubulin α -8 chain; <i>TUBA8</i>	5698	50746	143	124	19	19	37.9	449
TBA1B ¹	Tubulin α -1B chain; <i>TUBA1B</i>	10684	50804	285	260	44	41	74.5	451
TBA3C ¹	Tubulin α -3C/D chain; <i>TUBA3C</i>	8278	50612	194	186	28	27	55.6	450
TBA1C ¹	Tubulin α -1C chain; <i>TUBA1C</i>	8097	50548	238	216	38	35	65.7	449
TBA3E ¹	Tubulin α -3E chain; <i>TUBA3E</i>	5962	50568	146	133	22	20	46	450
TBAL3 ¹	Tubulin α chain-like 3; <i>TUBAL3</i>	1001	50675	46	40	6	4	13.5	446
TBA4B ⁵	Putative tubulin-like protein α -4B; <i>TUBA4B</i>	571	27819	13	12	2	2	10.8	241
$ATPB^1$	ATP synthase subunit β , mitochondrial; <i>ATP5B</i>	8652	56525	242	216	40	37	80.7	529
DPYL2 ¹	Dihydropyrimidinase-related protein 2; DPYSL2	6512	62711	184	156	38	34	80.4	572
DPYL1 ¹	Dihydropyrimidinase-related protein 1; CRMP1	931	62487	27	25	10	9	25.5	572
DPYL3 ¹	Dihydropyrimidinase-related protein 3; DPYSL3	491	62323	16	11	7	4	16.3	570
DPYS ¹	Dihydropyrimidinase; DPYS	71	57107	5	4	2	1	6.6	519
AT1A3 ¹	Na^+/K^+ -transporting ATPase subunit α -3; ATP1A3	6442	113102	199	173	46	39	51.3	1013
AT1A1 ¹	Na^+/K^+ -transporting ATPase subunit α -1; ATP1A1	6387	114135	167	152	38	33	37.8	1023
AT1A2 ¹	Na^+/K^+ -transporting ATPase subunit α -2; ATP1A2	4269	113505	126	105	29	26	36.5	1020
AT1A4 ¹	Na^+/K^+ -transporting ATPase subunit α -4; ATP1A4	1569	115119	69	53	13	10	14.4	1029
AT12A ¹	K ⁺ -transporting ATPase α chain 2; <i>ATP12A</i>	547	116292	33	24	7	4	5.3	1039
ATP4A ²	K ⁺ -transporting ATPase α chain 1; <i>ATP4A</i>	135	115756	8	7	2	2	2.7	1035
$ACTB^1$	Actin, cytoplasmic 1; ACTB	5799	42052	189	176	28	25	78.9	375
ACTC ¹	Actin, α cardiac muscle 1; ACTC1	4116	42334	150	138	20	18	42.2	377

ACTA ¹	Actin, aortic smooth muscle; ACTA2	3877	42381	138	126	17	15	39.3	377
POTEE ¹	POTE ankyrin domain family member E; POTEE	1726	122882	72	58	11	7	11.7	1075
POTEF ¹	POTE ankyrin domain family member F; POTEF	1714	123020	74	56	8	5	8	1075
POTEI ³	POTE ankyrin domain family member I; POTEI	1142	122858	54	47	8	4	9	1075
ACTBM ⁵	Putative β -actin-like protein 3; <i>POTEKP</i>	768	42331	16	16	2	2	7.2	375
$ACTBL^1$	β -actin-like protein 2; <i>ACTBL2</i>	708	42318	36	19	7	5	19.7	376
POTEJ ³	POTE ankyrin domain family member J; POTEJ	289	118740	28	11	8	2	11.8	1038
$G3P^1$	Glyceraldehyde-3-phosphate dehydrogenase; GAPDH	5506	36201	156	140	26	24	67.2	335
$MDHM^1$	Malate dehydrogenase, mitochondrial; MDH2	5231	35937	112	101	26	22	78.1	338
HBB^1	Hemoglobin subunit β ; <i>HBB</i>	4991	16102	147	139	18	18	96.6	147
HBD^1	Hemoglobin subunit δ; <i>HBD</i>	1426	16159	54	50	9	9	80.3	147
HBE^1	Hemoglobin subunit ɛ; <i>HBE1</i>	307	16249	18	14	3	1	25.2	147
SPTN1 ¹	Spectrin α chain, non-erythrocytic 1; SPTAN1	4837	285163	163	122	62	45	33.7	2472
AP1G2 ¹	AP-1 complex subunit g-like 2; AP1G2	23	87917	3	1	2	1	2.3	785
SPTB2 ¹	Spectrin β chain, non-erythrocytic 1; <i>SPTBN1</i>	4742	275237	133	122	48	43	25.2	2364
SPTN2 ¹	Spectrin β chain, non-erythrocytic 2; <i>SPTBN2</i>	64	272526	12	2	9	2	4.8	2390
SPTB1 ¹	Spectrin β chain, erythrocytic; <i>SPTB</i>	39	247171	14	1	10	1	5.9	2137
KCRB ¹	Creatine kinase B-type; CKB	4638	42902	132	119	26	25	80.3	381
KPYM ¹	Pyruvate kinase isozymes M1/M2; PKM	3904	58470	140	121	30	27	62.5	531
KPYR ¹	Pyruvate kinase isozymes R/L; PKLR	260	62191	15	12	4	2	6.4	574
GNAO ¹	Guanine nucleotide-binding protein G_0 subunit α ; GNAO1	3882	40595	86	79	16	14	43.8	354
GNAI2 ¹	Guanine nucleotide-binding protein G_i subunit α -2; GNAI2	1294	40995	35	32	8	6	23.4	355
GNAI1 ¹	Guanine nucleotide-binding protein Gi subunit α-1; GNAI1	1130	40905	34	31	6	5	14.1	354
GNAI3 ¹	Guanine nucleotide-binding protein Gk subunit a; GNAI3	1026	41076	35	27	6	3	13.6	354
$GNAL^1$	Guanine nucleotide-binding protein Golf subunit a; GNAL	910	44794	25	23	3	2	5.2	381
$GNA12^1$	Guanine nucleotide-binding protein subunit α -12; GNA12	726	44422	18	17	2	1	7.6	381
ENOA ¹	α-enolase; ENO1	3730	47481	107	95	26	23	81.1	434
$ENOG^1$	γ-enolase; <i>ENO2</i>	2874	47581	86	73	21	20	63.8	434
$ENOB^1$	β-enolase; <i>ENO3</i>	1036	47299	32	22	11	7	33.9	434
ATPA ¹	ATP synthase subunit α , mitochondrial; <i>ATP5A1</i>	3653	59828	134	111	28	22	45.6	553
STXB1 ¹	Syntaxin-binding protein 1; STXBP1 pe 1	3118	67925	120	103	30	26	56.1	594
$CH60^1$	60 kDa heat shock protein, mitochondrial; HSPD1	2996	61187	78	63	21	16	54.1	573
$PPIA^1$	Peptidyl-prolyl cis-trans isomerase A; PPIA	2753	18229	84	77	13	12	93.9	165
PAL4A ¹	Peptidyl-prolyl cis-trans isomerase A-like 4A/B/C; <i>PPIAL4A</i>	344	18398	7	7	1	1	8.5	164
ALDOA ¹	Fructose-bisphosphate aldolase A; ALDOA	2753	39851	80	69	20	15	79.1	364
ALDOC ¹	Fructose-bisphosphate aldolase C; ALDOC	1963	39830	58	45	15	11	40.7	364
NSF^1	Vesicle-fusing ATPase; NSF	2485	83055	83	72	22	20	41.1	744
GBB1 ¹	Guanine nucleotide-binding protein $G_i/G_s/G_t$ subunit β -1; <i>GNB1</i>	2435	38151	60	51	17	15	61.5	340

GBB2 ¹	Guanine nucleotide-binding protein $G_i/G_s/G_t$ subunit β -2; <i>GNB2</i>	1118	38048	38	29	15	11	47.6	340
GBB4 ¹	Guanine nucleotide-binding protein subunit β -4; <i>GNB4</i>	96	38284	7	4	5	2	24.7	340
SYN1 ¹	Synapsin-1; SYN1	2364	74237	90	76	30	27	52.2	705
SYN2 ¹	Synapsin-2; SYN2	903	63093	27	25	7	7	13.6	582
SRGP3 ¹	SLIT-ROBO p GTPase-activating protein 3; SRGAP3	33	125395	8	2	2	1	1	1099
KCC2A ¹	$Ca^{2+}/calmodulin-dependent protein kinase II subunit \alpha; CAMK2A$	2354	54624	84	77	21	20	46	478
KCC2B ¹	$Ca^{2+}/calmodulin-dependent protein kinase II subunit \beta; CAMK2B$	1106	73544	44	33	15	12	32.1	666
KCC2G ¹	$Ca^{2+}/calmodulin-dependent protein kinase II subunit \gamma; CAMK2G$	949	63311	34	28	11	8	28.5	558
KCC2D ¹	Ca^{2+} /calmodulin-dependent protein kinase II subunit δ ; <i>CAMK2D</i>	825	56961	37	26	14	10	40.3	499
VATB2 ¹	V-type proton ATPase subunit B, brain isoform; ATP6V1B2	2248	56807	54	49	13	11	48.1	511
VATB1 ¹	V-type proton ATPase subunit B, kidney isoform; <i>ATP6V1B1</i>	642	57196	18	15	4	3	12.7	513
DYN1 ¹	Dynamin-1; DNM1	2225	97746	89	76	26	20	38.2	864
DYN3 ¹	Dynamin-3; DNM3	988	98084	43	36	9	7	14	869
DYN2 ¹	Dynamin-2; DNM2	235	98345	19	15	6	4	9.9	870
HXK1 ¹	Hexokinase-1; HK1	2116	103561	66	57	18	18	23.2	917
HKDC1 ¹	Putative hexokinase HKDC1; HKDC1	77	103790	12	4	6	2	10.1	917
HXK2 ¹	Hexokinase-2; HK2	55	103739	16	3	5	1	6.1	917
HSP7C ¹	Heat shock cognate 71 kDa protein; HSPA8	2103	71082	71	63	21	19	37.2	646
HSP71 ¹	Heat shock 70 kDa protein 1A/1B; HSPA1A	466	70294	19	13	9	8	18.3	641
HSP72 ¹	Heat shock-related 70 kDa protein 2; HSPA2	713	70263	29	22	9	6	16.3	639
$HS71L^1$	Heat shock 70 kDa protein 1-like; HSPA1L	323	70730	15	9	6	5	9.4	641
HSP76 ¹	Heat shock 70 kDa protein 6; HSPA6	292	71440	10	10	4	4	8.4	643
HSP77 ⁵	Putative heat shock 70 kDa protein 7; HSPA7	58	40448	3	3	2	2	6.8	367
MBP^1	Myelin basic protein; <i>MBP</i>	2072	33097	130	103	19	14	37.2	304
CN37 ¹	2',3'-cyclic-nucleotide 3'-phosphodiesterase; CNP	2034	47948	102	75	22	18	68.4	421
PP2BA ¹	Serine/threonine-protein phosphatase 2B catalytic subunit α isoform; <i>PPP3CA</i>	109	59335	18	14	5	2	18.8	521
PP2BC ¹	Serine/threonine-protein phosphatase 2B catalytic subunit γ isoform; <i>PPP3CC</i>	80	58777	14	12	2	1	4.5	512
CLH1 ¹	Clathrin heavy chain 1; CLTC pe 1	1963	193260	81	64	30	23	21.7	1675
CLH2 ¹	Clathrin heavy chain 2; CLTCL1	92	189020	8	5	6	3	4	1640
VATA ¹	V-type proton ATPase catalytic subunit A; ATP6V1A	1785	68660	54	46	16	13	36.8	617
SHPS1 ¹	Tyrosine-protein phosphatase non-receptor type substrate 1; <i>SIRPA</i>	1744	55446	61	49	14	12	36.5	504

SIRBL ¹	Signal-regulatory protein β -1 isoform 3; <i>SIRPB1</i>	731	43674	39	28 8 6 23.9 398
SIRB1 ¹	Signal-regulatory protein β-1; SIRPB1	250	43640	11	9 3 3 10.3 398
SIRPG ¹	Signal-regulatory protein γ; SIRPG	102	42870	10	7 4 3 10.1 387
VATE1 ¹	V-type proton ATPase subunit E 1; ATP6V1E1	1728	26186	52	46 11 9 48.2 226
$TPPP^1$	Tubulin polymerization-promoting protein; TPPP	1725	23850	40	38 9 8 50.7 219
ACON ¹	Aconitate hydratase, mitochondrial; ACO2	1722	86113	60	47 16 15 29.4 780
1433Z ¹	14-3-3 protein ζ/δ; YWHAZ	1549	27899	46	44 11 10 45.3 245
1433G ¹	14-3-3 protein g; YWHAG	1167	28456	55	41 16 13 62.3 247
1433B ¹	14-3-3 protein β/α ; <i>YWHAB</i>	738	28179	41	28 9 6 45.1 246
1433E ¹	14-3-3 protein ε; YWHAE	590	29326	15	11 5 4 32.5 255
1433F ¹	14-3-3 protein η; YWHAH	460	28372	31	21 10 7 42.3 246
1433T ¹	14-3-3 protein θ ; <i>YWHAQ</i>	80	28032	10	6 5 3 26.5 245
1433S ¹	14-3-3 protein sigma; SFN	50	27871	4	2 2 1 6.5 248
NCAM1 ¹	Neural cell adhesion molecule 1; NCAM1	1540	95370	63	49 15 11 23 858
IGSF8 ¹	Immunoglobulin superfamily member 8; IGSF8	1382	65621	37	32 13 11 36.4 613
$KCRU^1$	Creatine kinase U-type, mitochondrial; CKMT1A	1345	47406	52	39 18 14 57.8 417
HBA^1	Hemoglobin subunit α; <i>HBA1</i>	1339	15305	58	46 10 10 69.7 142
ANK2 ¹	Ankyrin-2; ANK2	1326	435957	58	40 28 18 10.3 3957
ANK3 ¹	Ankyrin-3; ANK3	28	482394	16	1 13 1 4.7 4377
CNTN1 ¹	Contactin-1; CNTN1	1276	114104	62	49 19 16 22.1 1018
PGK1 ¹	Phosphoglycerate kinase 1; PGK1	1250	44985	46	38 18 14 64.3 417
PGK2 ¹	Phosphoglycerate kinase 2; PGK2	128	45166	6	4 4 2 24.7 417
GFAP ¹	Glial fibrillary acidic protein; GFAP	1206	49907	48	39 18 16 55.1 432
$K2C1^1$	Keratin, type II cytoskeletal 1; KRT1	44	66170	3	1 3 1 5.9 644
HS90A ¹	Heat shock protein HSP 90-α; HSP90AA1	1183	85006	24	21 9 8 13 732
$HS90B^1$	Heat shock protein HSP 90-β; HSP90AB1	1090	83554	23	19 10 8 14.2 724
$ENPL^1$	Endoplasmin; HSP90B1	87	92696	2	2 2 2 3.1 803
TRAP1 ¹	Heat shock protein 75 kDa, mitochondrial; TRAP1	220	80345	10	3 2 1 3.7 704
H90B3 ⁵	Putative heat shock protein HSP 90-β-3; <i>HSP90AB3P</i>	162	68624	4	3 3 2 4.5 597
H90B4 ⁵	Putative heat shock protein HSP 90- β 4; <i>HSP90AB4P</i>	149	58855	3	2 2 1 6.7 505
HS904 ⁵	Putative heat shock protein HSP 90-a A4; HSP90AA4P	129	47796	3	2 2 1 5.3 418
H90B2 ¹	Putative heat shock protein HSP 90- β 2; <i>HSP90AB2P</i>	101	44492	2	2 1 1 3.1 381
G6PI ¹	Glucose-6-phosphate isomerase; GPI	1175	63335	38	30 12 9 37.3 558
CSPG2 ¹	Versican core protein; VCAN	1163	374585	42	32 15 8 8.5 3396
$PRDX2^1$	Peroxiredoxin-2; PRDX2	1159	22049	51	41 12 9 40.9 198
$PRDX1^1$	Peroxiredoxin-1; PRDX1	1139	22324	37	36 6 5 34.2 199
PRDX4 ¹	Peroxiredoxin-4; PRDX4	270	30749	7	7 1 1 4.4 271
STX1B ¹	Syntaxin-1B; STX1B	1139	33452	40	32 12 10 36.8 288
$STX1A^1$	Syntaxin-1A; STX1A	450	33174	20	16 8 6 35.8 288

STX2 ¹	Syntaxin-2; STX2	40	33377	5	2 2	1	5.9	288
UCHL1 ¹	Ubiquitin carboxyl-terminal hydrolase isozyme L1; UCHL1	1115	25151	40	32 12	8	78.5	223
AT1B1 ¹	Na^+/K^+ -transporting ATPase subunit β -1; <i>ATP1B1</i>	1094	35438	37	32 8	6	32.3	303
GLNA ¹	Glutamine synthetase; GLUL	1094	42665	22	22 5	5	23.3	373
\mathbf{PHB}^{1}	Prohibitin; PHB	1089	29843	30	26 11	10	68.4	272
$NFASC^1$	Neurofascin; NFASC	1042	150789	44	36 16	13	15.5	1347
$THY1^{1}$	Thy-1 membrane glycoprotein; THY1	1036	18151	31	30 4	. 4	18	161
NFL^1	Neurofilament light polypeptide; NEFL	1023	61536	39	32 15	13	37.8	543
AINX ¹	α -internexin; <i>INA</i>	309	55528	26	15 12	8	29.5	499
NFM^1	Neurofilament medium polypeptide; NEFM	247	102468	22	12 11	4	18.7	916
NFH^1	Neurofilament heavy polypeptide; NEFH	209	112639	12	8 5	2	4	1026
DESM ¹	Desmin; DES	23	53560	3	1 2	1	5.7	470
GRP75 ¹	Stress-70 protein, mitochondrial; HSPA9	1006	73920	29	23 9	7	18	679
VAMP2 ¹	Vesicle-associated membrane protein 2; VAMP2	996	12712	19	19 5	5	43.1	116
VAMP3 ¹	Vesicle-associated membrane protein 3; VAMP3	226	11359	7	7 2	2	33	100
VAMP1 ¹	Vesicle-associated membrane protein 1; VAMP1	113	13008	5	5 1	1	7.6	118
MIF^1	Macrophage migration inhibitory factor; MIF	988	12639	39	32 6	5	46.1	115
MDHC ¹	Malate dehydrogenase, cytoplasmic; MDH1	984	36631	21	20 6	5	20.4	334
$MYPR^1$	Myelin proteolipid protein; PLP1	962	30855	27	24 5	4	18.1	277
COX5A ¹	Cytochrome c oxidase subunit 5A, mitochondrial; COX5A	940	16923	37	28 10	8	58	150
CX6B1 ¹	Cytochrome c oxidase subunit 6B1; COX6B1	931	10414	32	29 6	5	84.9	86
ATPO ¹	ATP synthase subunit O, mitochondrial; ATP50	920	23377	33	30 10	7	52.1	213
EAA1 ¹	Excitatory amino acid transporter 1; SLC1A3	919	59705	20	17 4	. 3	9.4	542
TENR ¹	Tenascin-R; TNR	914	151805	31	26 10	9	13.6	1358
AATM ¹	Aspartate aminotransferase, mitochondrial; GOT2	898	47886	36	33 13	11	37.2	430
$\mathbf{T}\mathbf{K}\mathbf{T}^{1}$	Transketolase; TKT	890	68519	33	26 9	9	23.1	623
$ATP5H^1$	ATP synthase subunit δ , mitochondrial; <i>ATP5H</i>	851	18537	34	26 9	7	62.7	161
PGAM1 ¹	Phosphoglycerate mutase 1; PGAM1	847	28900	33	27 11	7	46.9	254
PGAM4 ¹	Probable phosphoglycerate mutase 4; PGAM4	649	28930	27	21 9	5	34.3	254
PGAM2 ¹	Phosphoglycerate mutase 2; PGAM2 pe 1	295	28919	12	8 4	· 2	17.8	253
COF1 ¹	Cofilin-1; CFL1	844	18719	25	24 6	6	56.6	166
$COF2^1$	Cofilin-2; CFL2	237	18839	10	10 3	3	19.9	166
SNP25 ¹	Synaptosomal-associated protein 25; SNAP25	824	23528	27	21 11	8	61.7	206
$EAA2^1$	Excitatory amino acid transporter 2; SLC1A2	822	62577	28	25 9	8	21.3	574
TPIS ¹	Triosephosphate isomerase; TPI1	795	31057	46	31 17	13	70.6	286
VDAC1 ¹	Voltage-dependent anion-selective channel protein 1; <i>VDAC1</i>	789	30868	34	25 12	, 7	50.2	283
VPP1 ¹	V-type proton ATPase 116 kDa subunit α isoform 1; <i>ATP6V0A1</i>	788	97148	36	28 15	12	20.1	837
PRDX5 ¹	Peroxiredoxin-5, mitochondrial; PRDX5	777	22301	32	27 10	6	72.9	214

MOG^1	Myelin-oligodendrocyte glycoprotein; MOG	766	28574	13	13	3	3 16.2	247
VDAC2 ¹	Voltage-dependent anion-selective channel protein 2; <i>VDAC2</i>	761	32060	35	30	6	6 25.9	294
ATP5I ¹	ATP synthase subunit e, mitochondrial; ATP5I	742	7928	24	20	7	4 71	69
SEPT7 ¹	Septin-7; SEPT7	740	50933	27	24	8	7 24.3	437
SEPT8 ¹	Septin-8; SEPT8	321	56234	15	14	4	4 11.8	483
SEPT6 ¹	Septin-6; SEPT6	288	50084	18	14	6	5 18.2	434
SEP11 ¹	Septin-11; SEPT11	338	49652	17	14	5	4 14.2	429
SEP14 ¹	Septin-14; SEPT14	173	50449	12	8	2	1 4.2	432
SEP10 ¹	Septin-10; SEPT10	105	53016	2	2	1	1 5.1	454
ODPB ¹	Pyruvate dehydrogenase E1 component subunit β , mitochondrial; <i>PDHB</i>	739	39550	26	26	6	6 32.6	359
ICAM5 ¹	Intercellular adhesion molecule 5; ICAM5 pe 1	731	98766	18	16	7	5 10.8	924
PCSK1 ¹	ProSAAS; PCSK1N	700	27413	16	16	3	3 20	260
PIN1 ¹	Peptidyl-prolyl cis-trans isomerase NIMA- interacting 1; <i>PIN1</i>	691	18346	15	15	4	4 43.6	163
ADT3 ¹	ADP/ATP translocase 3; SLC25A6	674	33073	31	24	10	10 38.6	298
ADT2 ¹	ADP/ATP translocase 2; SLC25A5	499	33059	26	22	7	7 24.2	298
ADT1 ¹	ADP/ATP translocase 1; SLC25A4	478	33271	29	18	11	9 38.9	298
ADT4 ¹	ADP/ATP translocase 4; SLC25A31	58	35285	3	1	2	1 6	315
PACN1 ¹	Protein kinase C and casein kinase substrate in neurons protein 1; <i>PACSIN1</i> pe 1	648	51276	22	21	10	9 32.2	444
$CATD^1$	Cathepsin D; CTSD	634	45037	21	18	7	6 22.6	412
L1CAM ¹	Neural cell adhesion molecule L1; <i>L1CAM</i>	631	140885	19	17	9	7 10.7	1257
DHE3 ¹	Glutamate dehydrogenase 1, mitochondrial; GLUD1	622	61701	30	23	15	10 30.6	558
DHE4 ¹	Glutamate dehydrogenase 2, mitochondrial; GLUD2	361	61738	13	11	6	4 14	558
DHPR ¹	Dihydropteridine reductase; QDPR	614	26001	18	17	7	6 38.1	244
KAP3 ¹	cAMP-dependent protein kinase type II-β regulatory subunit; <i>PRKAR2B</i>	599	46672	20	15	8	4 22.2	418
KAP2 ¹	cAMP-dependent protein kinase type II-α regulatory subunit; <i>PRKAR2A</i>	102	45832	6	3	4	2 13.9	404
STMN1 ¹	Stathmin; STMN1	586	17292	9	8	2	1 18.1	149
AT2B4 ¹	Plasma membrane Ca ²⁺ -transporting ATPase 4; <i>ATP2B4</i>	582	139030	39	26	15	12 17.2	1241
AT2B2 ¹	Plasma membrane Ca ²⁺ -transporting ATPase 2; <i>ATP2B2</i>	389	137987	20	14	8	7 8.6	1243
AT2B1 ¹	Plasma membrane Ca ²⁺ -transporting ATPase 1; <i>ATP2B1</i>	297	139637	26	15	9	8 10.4	1258
AT2B3 ¹	Plasma membrane Ca ²⁺ -transporting ATPase 3; <i>ATP2B3</i>	162	135253	26	9	8	6 8.5	1220
PIMT ¹	Protein-L-isoaspartate(D-aspartate) O- methyltransferase; <i>PCMT1</i>	581	24792	13	10	5	3 41.4	227
MAP1B ¹	Microtubule-associated protein 1B; MAP1B	573	271665	52	19	19	9 13.4	2468
MAP1A ¹	Microtubule-associated protein 1A; MAPIA	196	306781	15	8	9	4 5.2	2803

DHSA ¹	Succinate dehydrogenase [ubiquinone] flavoprotein subunit, mitochondrial; <i>SDHA</i>	572	73672	8	8	2	2	4.6	
QCR1 ¹	Cytochrome b-c1 complex subunit 1, mitochondrial; <i>UQCRC1</i>	564	53297	23	21	10	9	36	480
MAP2 ¹	Microtubule-associated protein 2; MAP2	560	199860	23	15	12	6	34.1	478
COX5B ¹	Cytochrome c oxidase subunit 5B, mitochondrial; <i>COX5B</i>	539	13915	32	23	6	5	54.3	129
ACTN1 ¹	α -actinin-1; ACTN1	507	103563	25	15	10	8	20.1	892
ACTN4	α -actinin-4; ACTN4	403	105245	9	9	3	3	4.1	911
ACTN2	α -actinin-2; ACTN2	44	104358	3	1	2	1	2.6	894
SFXN1 ¹	Sideroflexin-1; SFXN1	494	35881	18	13	8	5	46.9	322
SFXN3 ²	Sideroflexin-3; SFXN3	338	36298	10	9	4	4	17.2	325
GRP78 ¹	78 kDa glucose-regulated protein; HSPA5	483	72402	16	14	9	7	22.2	654
CADM2 ²	Cell adhesion molecule 2; CADM2	480	47980	14	13	4	3	17.5	435
QCR2 ¹	Cytochrome b-c1 complex subunit 2, mitochondrial; <i>UQCRC2</i>	475	48584	13	12	5	4	22.7	453
BASP1 ¹	Brain acid soluble protein 1; BASP1	474	22680	13	8	4	2	44.5	227
EHD3 ¹	EH domain-containing protein 3; EHD3	472	60906	12	11	5	4	15.3	535
PEBP1 ¹	Phosphatidylethanolamine-binding protein 1; PEBP1	472	21158	19	14	8	4	71.7	187
VATL ¹	V-type proton ATPase 16 kDa proteolipid subunit; <i>ATP6V0C</i>	469	15725	4	4	1	1	20	155
LSAMP ¹	Limbic system-associated membrane protein; LSAMP	466	37883	18	13	6	4	26.9	338
E41L3 ¹	Band 4.1-like protein 3; EPB41L3	459	121458	14	12	9	7	11.8	1087
1	Cytoplasmic dynein 1 heavy chain 1; DYNC1H1	456	534809	40	19	25	11	9.6	4646
DYHC1 ¹							4	12	135
DYHC1 ¹ AP2M1 ¹	AP-2 complex subunit μ ; <i>AP2M1</i>	424	49965	15	12	4	4	14	433
DYHC1 ¹ AP2M1 ¹ CAP2 ¹	AP-2 complex subunit μ; <i>AP2M1</i> Adenylyl cyclase-associated protein 2; <i>CAP2</i>	424 420	49965 53076	15 12	12 7	4 4	4 3	11.7	477
DYHC1 ¹ AP2M1 ¹ CAP2 ¹ GDIA ¹	AP-2 complex subunit μ; <i>AP2M1</i>Adenylyl cyclase-associated protein 2; <i>CAP2</i>Rab GDP dissociation inhibitor α; <i>GDI1</i>	424 420 417	49965 53076 51177	15 12 16	12 7 14	4 4 4	4 3 4	11.7 10.7	477 447
DYHC1 ¹ AP2M1 ¹ CAP2 ¹ GDIA ¹ GDIB ¹	 AP-2 complex subunit μ; <i>AP2M1</i> Adenylyl cyclase-associated protein 2; <i>CAP2</i> Rab GDP dissociation inhibitor α; <i>GDI1</i> Rab GDP dissociation inhibitor β; <i>GDI2</i> 	424 420 417 247	49965 53076 51177 51087	15 12 16 9	12 7 14 8	4 4 4 2	4 3 4 2	11.7 10.7 4.9	433 477 447 445
DYHC1 ¹ AP2M1 ¹ CAP2 ¹ GDIA ¹ GDIB ¹ SCOT1 ¹	AP-2 complex subunit μ ; <i>AP2M1</i> Adenylyl cyclase-associated protein 2; <i>CAP2</i> Rab GDP dissociation inhibitor α ; <i>GDI1</i> Rab GDP dissociation inhibitor β ; <i>GDI2</i> Succinyl-CoA:3-ketoacid coenzyme A transferase 1, mitochondrial; <i>OXCT1</i>	424 420 417 247 414	49965 53076 51177 51087 56578	15 12 16 9 17	12 7 14 8 12	4 4 2 9	4 3 4 2 6	11.7 10.7 4.9 23.1	433 477 447 445 520
DYHC1 ¹ AP2M1 ¹ CAP2 ¹ GDIA ¹ GDIB ¹ SCOT1 ¹ SCOT2 ²	AP-2 complex subunit μ ; <i>AP2M1</i> Adenylyl cyclase-associated protein 2; <i>CAP2</i> Rab GDP dissociation inhibitor α ; <i>GD11</i> Rab GDP dissociation inhibitor β ; <i>GD12</i> Succinyl-CoA:3-ketoacid coenzyme A transferase 1, mitochondrial; <i>OXCT1</i> Succinyl-CoA:3-ketoacid coenzyme A transferase 2, mitochondrial; <i>OXCT2</i>	424 420 417 247 414 95	49965 53076 51177 51087 56578 56731	15 12 16 9 17 2	12 7 14 8 12 2	4 4 2 9	4 3 4 2 6 1	12 11.7 10.7 4.9 23.1 2.3	433 477 447 445 520 517
DYHC1 ¹ AP2M1 ¹ CAP2 ¹ GDIA ¹ GDIB ¹ SCOT1 ¹ SCOT2 ² THIL ¹	AP-2 complex subunit μ ; <i>AP2M1</i> Adenylyl cyclase-associated protein 2; <i>CAP2</i> Rab GDP dissociation inhibitor α ; <i>GD11</i> Rab GDP dissociation inhibitor β ; <i>GD12</i> Succinyl-CoA:3-ketoacid coenzyme A transferase 1, mitochondrial; <i>OXCT1</i> Succinyl-CoA:3-ketoacid coenzyme A transferase 2, mitochondrial; <i>OXCT2</i> Acetyl-CoA acetyltransferase, mitochondrial; <i>ACAT1</i>	424 420 417 247 414 95 412	 49965 53076 51177 51087 56578 56731 45456 	 15 12 16 9 17 2 13 	12 7 14 8 12 2 12	4 4 2 9 1 5	4 3 4 2 6 1 5	12 11.7 10.7 4.9 23.1 2.3 30.9	 433 477 447 445 520 517 427
DYHC1 ¹ AP2M1 ¹ CAP2 ¹ GDIA ¹ GDIB ¹ SCOT1 ¹ SCOT2 ² THIL ¹ OPA1 ¹	AP-2 complex subunit μ ; <i>AP2M1</i> Adenylyl cyclase-associated protein 2; <i>CAP2</i> Rab GDP dissociation inhibitor α ; <i>GD11</i> Rab GDP dissociation inhibitor β ; <i>GD12</i> Succinyl-CoA:3-ketoacid coenzyme A transferase 1, mitochondrial; <i>OXCT1</i> Succinyl-CoA:3-ketoacid coenzyme A transferase 2, mitochondrial; <i>OXCT2</i> Acetyl-CoA acetyltransferase, mitochondrial; <i>ACAT1</i> Dynamin-like 120 kDa protein, mitochondrial; <i>OPA1</i>	424 420 417 247 414 95 412 407	49965 53076 51177 51087 56578 56731 45456 112131	 15 12 16 9 17 2 13 14 	12 7 14 8 12 2 12 9	4 4 2 9 1 5 7	4 3 4 2 6 2 1 5 4	12 11.7 10.7 4.9 23.1 2.3 30.9 12.6	 433 477 447 445 520 517 427 960
DYHC1 ¹ AP2M1 ¹ CAP2 ¹ GDIA ¹ GDIB ¹ SCOT1 ¹ SCOT2 ² THIL ¹ OPA1 ¹ RAB3A ¹	AP-2 complex subunit μ ; <i>AP2M1</i> Adenylyl cyclase-associated protein 2; <i>CAP2</i> Rab GDP dissociation inhibitor α ; <i>GD11</i> Rab GDP dissociation inhibitor β ; <i>GD12</i> Succinyl-CoA:3-ketoacid coenzyme A transferase 1, mitochondrial; <i>OXCT1</i> Succinyl-CoA:3-ketoacid coenzyme A transferase 2, mitochondrial; <i>OXCT2</i> Acetyl-CoA acetyltransferase, mitochondrial; <i>ACAT1</i> Dynamin-like 120 kDa protein, mitochondrial; <i>OPA1</i> Ras-related protein Rab-3A; <i>RAB3A</i>	424 420 417 247 414 95 412 407 407	49965 53076 51177 51087 56578 56578 56731 45456 112131 25196	 15 12 16 9 17 2 13 14 8 	12 7 14 8 12 2 12 9 7	4 4 2 9 1 5 7 3	4 3 4 2 6 2 1 5 4 3	12 11.7 10.7 4.9 23.1 2.3 30.9 12.6 10.9	 433 477 447 445 520 517 427 960 220
DYHC1 ¹ AP2M1 ¹ CAP2 ¹ GDIA ¹ GDIB ¹ SCOT1 ¹ SCOT2 ² THIL ¹ OPA1 ¹ RAB3A ¹ RAB3D ¹	AP-2 complex subunit μ ; <i>AP2M1</i> Adenylyl cyclase-associated protein 2; <i>CAP2</i> Rab GDP dissociation inhibitor α ; <i>GD11</i> Rab GDP dissociation inhibitor β ; <i>GD12</i> Succinyl-CoA:3-ketoacid coenzyme A transferase 1, mitochondrial; <i>OXCT1</i> Succinyl-CoA:3-ketoacid coenzyme A transferase 2, mitochondrial; <i>OXCT2</i> Acetyl-CoA acetyltransferase, mitochondrial; <i>ACAT1</i> Dynamin-like 120 kDa protein, mitochondrial; <i>OPA1</i> Ras-related protein Rab-3A; <i>RAB3A</i> Ras-related protein Rab-3D; <i>RAB3D</i>	424 420 417 247 414 95 412 407 407 33	49965 53076 51177 51087 56578 56731 45456 112131 25196 24480	 15 12 16 9 17 2 13 14 8 2 	12 7 14 8 12 2 12 9 7 1	4 4 2 9 1 5 7 3 1	4 3 4 2 6 2 1 5 2 4 3 1	12 11.7 10.7 4.9 23.1 2.3 30.9 12.6 10.9 3.7	 433 477 447 445 520 517 427 960 220 219
DYHC1 ¹ AP2M1 ¹ CAP2 ¹ GDIA ¹ GDIB ¹ SCOT1 ¹ SCOT2 ² THIL ¹ OPA1 ¹ RAB3A ¹ RAB3D ¹ RAC1 ¹	AP-2 complex subunit μ ; <i>AP2M1</i> Adenylyl cyclase-associated protein 2; <i>CAP2</i> Rab GDP dissociation inhibitor α ; <i>GDI1</i> Rab GDP dissociation inhibitor β ; <i>GDI2</i> Succinyl-CoA:3-ketoacid coenzyme A transferase 1, mitochondrial; <i>OXCT1</i> Succinyl-CoA:3-ketoacid coenzyme A transferase 2, mitochondrial; <i>OXCT2</i> Acetyl-CoA acetyltransferase, mitochondrial; <i>ACAT1</i> Dynamin-like 120 kDa protein, mitochondrial; <i>OPA1</i> Ras-related protein Rab-3A; <i>RAB3A</i> Ras-related protein Rab-3D; <i>RAB3D</i> Ras-related C3 botulinum toxin substrate 1; <i>RAC1</i>	424 420 417 247 414 95 412 407 407 33 402	49965 53076 51177 51087 56578 56578 56731 45456 112131 25196 24480 21835	 15 12 16 9 17 2 13 14 8 2 19 	12 7 14 8 12 2 12 9 7 1 16	4 4 2 9 1 5 7 3 1 7	4 3 4 2 6 2 1 5 2 4 3 1 5	12 11.7 10.7 4.9 23.1 2.3 30.9 12.6 10.9 3.7 28.1	 433 477 447 445 520 517 427 960 220 219 192
DYHC1 ¹ AP2M1 ¹ CAP2 ¹ GDIA ¹ GDIB ¹ SCOT1 ¹ SCOT2 ² THIL ¹ OPA1 ¹ RAB3A ¹ RAB3D ¹ RAC1 ¹ RAC2 ¹	AP-2 complex subunit μ ; <i>AP2M1</i> Adenylyl cyclase-associated protein 2; <i>CAP2</i> Rab GDP dissociation inhibitor α ; <i>GD11</i> Rab GDP dissociation inhibitor β ; <i>GD12</i> Succinyl-CoA:3-ketoacid coenzyme A transferase 1, mitochondrial; <i>OXCT1</i> Succinyl-CoA:3-ketoacid coenzyme A transferase 2, mitochondrial; <i>OXCT2</i> Acetyl-CoA acetyltransferase, mitochondrial; <i>ACAT1</i> Dynamin-like 120 kDa protein, mitochondrial; <i>OPA1</i> Ras-related protein Rab-3A; <i>RAB3A</i> Ras-related protein Rab-3D; <i>RAB3D</i> Ras-related C3 botulinum toxin substrate 1; <i>RAC1</i>	424 420 417 247 414 95 412 407 407 33 402 100	49965 53076 51177 51087 56578 56731 45456 112131 25196 24480 21835 21814	 15 12 16 9 17 2 13 14 8 2 19 6 	12 7 14 8 12 2 12 9 7 1 16 4	4 4 2 9 1 5 7 3 1 7 3	4 3 4 2 6 2 1 5 2	12 11.7 10.7 4.9 23.1 2.3 30.9 12.6 10.9 3.7 28.1 17.2	 433 477 447 445 520 517 427 960 220 219 192 192
DYHC1 ¹ AP2M1 ¹ CAP2 ¹ GDIA ¹ GDIB ¹ SCOT1 ¹ SCOT2 ² THIL ¹ OPA1 ¹ RAB3A ¹ RAB3D ¹ RAC1 ¹ RAC2 ¹ OPCM ¹	AP-2 complex subunit μ ; <i>AP2M1</i> Adenylyl cyclase-associated protein 2; <i>CAP2</i> Rab GDP dissociation inhibitor α ; <i>GD11</i> Rab GDP dissociation inhibitor β ; <i>GD12</i> Succinyl-CoA:3-ketoacid coenzyme A transferase 1, mitochondrial; <i>OXCT1</i> Succinyl-CoA:3-ketoacid coenzyme A transferase 2, mitochondrial; <i>OXCT2</i> Acetyl-CoA acetyltransferase, mitochondrial; <i>ACAT1</i> Dynamin-like 120 kDa protein, mitochondrial; <i>OPA1</i> Ras-related protein Rab-3A; <i>RAB3A</i> Ras-related protein Rab-3D; <i>RAB3D</i> Ras-related C3 botulinum toxin substrate 1; <i>RAC1</i> Ras-related C3 botulinum toxin substrate 2; <i>RAC2</i> Opioid-binding protein/cell adhesion molecule; <i>OPCML</i>	424 420 417 247 414 95 412 407 407 33 402 100 391	49965 53076 51177 51087 56578 56578 56731 45456 112131 25196 24480 21835 21814 38496	 15 12 16 9 17 2 13 14 8 2 19 6 25 	12 7 14 8 12 2 12 9 7 1 16 4 14	4 4 2 9 1 5 7 3 1 7 3 8	4 3 4 2 6 1 5 4 3 1 5 2 4	12 11.7 10.7 4.9 23.1 2.3 30.9 12.6 10.9 3.7 28.1 17.2 29.6	 433 477 447 445 520 517 427 960 220 219 192 192 345
DYHC1 ¹ AP2M1 ¹ CAP2 ¹ GDIA ¹ GDIB ¹ SCOT1 ¹ SCOT2 ² THIL ¹ OPA1 ¹ RAB3A ¹ RAB3D ¹ RAC1 ¹ RAC2 ¹ OPCM ¹ TMOD2 ¹	AP-2 complex subunit μ ; <i>AP2M1</i> Adenylyl cyclase-associated protein 2; <i>CAP2</i> Rab GDP dissociation inhibitor α ; <i>GDI1</i> Rab GDP dissociation inhibitor β ; <i>GDI2</i> Succinyl-CoA:3-ketoacid coenzyme A transferase 1, mitochondrial; <i>OXCT1</i> Succinyl-CoA:3-ketoacid coenzyme A transferase 2, mitochondrial; <i>OXCT2</i> Acetyl-CoA acetyltransferase, mitochondrial; <i>ACAT1</i> Dynamin-like 120 kDa protein, mitochondrial; <i>OPA1</i> Ras-related protein Rab-3A; <i>RAB3A</i> Ras-related protein Rab-3D; <i>RAB3D</i> Ras-related C3 botulinum toxin substrate 1; <i>RAC1</i> Ras-related C3 botulinum toxin substrate 2; <i>RAC2</i> Opioid-binding protein/cell adhesion molecule; <i>OPCML</i> Tropomodulin-2; <i>TMOD2</i>	424 420 417 247 414 95 412 407 407 33 402 100 391 389	49965 53076 51177 51087 56578 56731 45456 112131 25196 24480 21835 21814 38496 39571	 15 12 16 9 17 2 13 14 8 2 19 6 25 9 	12 7 14 8 12 2 12 9 7 1 16 4 14 9	4 4 2 9 1 5 7 3 1 7 3 8 3	4 3 4 2 6 1 5 4 3 1 5 2 4 3	12 11.7 10.7 4.9 23.1 2.3 30.9 12.6 10.9 3.7 28.1 17.2 29.6 16	 433 477 447 445 520 517 427 960 220 219 192 192 345 351

$TCPE^1$	T-complex protein 1 subunit ε; CCT5	378	60089	22	9	9	5 31.2	541
UCRI ¹	Cytochrome b-c1 complex subunit Rieske, mitochondrial; <i>UQCRFS1</i>	373	29934	18	16	3	3 21.2	274
UCRIL ⁵	Putative cytochrome b-c1 complex subunit Rieske-like protein 1; <i>UQCRFS1P1</i>	368	31081	17	15	2	2 12	283
$RAP2A^1$	Ras-related protein Rap-2a; RAP2A	368	20830	7	7	2	2 15.3	183
CADM3 ¹	Cell adhesion molecule 3; CADM3	364	43729	14	12	4	4 21.4	398
$RAP1A^1$	Ras-related protein Rap-1A; RAP1A	363	21316	9	9	2	2 7.6	184
HSPB1 ¹	Heat shock protein β -1; <i>HSPB1</i>	358	22826	9	9	3	3 21	205
SEPT5 ¹	Septin-5; SEPT5	350	43206	17	14	7	6 30.9	369
$DCTN2^1$	Dynactin subunit 2; DCTN2	348	44318	9	8	4	3 14.5	401
NDUA5 ¹	NADH dehydrogenase [ubiquinone] 1 α subcomplex subunit 5; <i>NDUFA5</i>	345	13507	20	17	8	7 82.8	116
\mathbf{MMSA}^1	Methylmalonate-semialdehyde dehydrogenase [acylating], mitochondrial; <i>ALDH6A1</i>	342	58259	13	12	6	6 23	535
NCAM2 ¹	Neural cell adhesion molecule 2; NCAM2	341	93786	9	8	3	2 5.1	837
SYT1 ¹	Synaptotagmin-1; SYT1	336	47885	13	10	5	4 17.5	422
EF1A2 ¹	Elongation factor 1-α 2; <i>EEF1A2</i>	336	50780	19	10	8	4 35	463
EF1A1 ¹	Elongation factor 1-α 1; <i>EEF1A1</i>	334	50451	17	10	7	3 31	462
AT1B2 ¹	Na^+/K^+ -transporting ATPase subunit β -2; <i>ATP1B2</i>	335	33745	15	15	4	4 25.5	290
$SSBP^1$	Single-stranded DNA-binding protein, mitochondrial; <i>SSBP1</i>	331	17249	13	10	5	3 44.6	148
AP2A1 ¹	AP-2 complex subunit α -1; AP2A1	324	108561	16	13	8	6 10.8	977
AP2A2 ¹	AP-2 complex subunit α -2; <i>AP2A2</i>	261	104807	16	12	8	5 14	939
$4F2^1$	4F2 cell-surface antigen heavy chain; SLC3A2	318	68180	12	10	3	3 6.8	630
DDAH1 ¹	N(G),N(G)-dimethylarginine dimethylaminohydrolase 1; <i>DDAH1</i>	315	31444	15	14	4	3 35.1	285
K6PP ¹	6-phosphofructokinase type C; PFKP	310	86454	18	11	9	5 13.1	784
FUMH ¹	Fumarate hydratase, mitochondrial; FH	308	54773	12	9	6	3 24.7	510
HECAM ¹	Hepatocyte cell adhesion molecule; HEPACAM	308	46226	11	7	5	3 22.8	416
LEG1 ¹	Galectin-1; LGALS1	304	15048	7	7	2	2 33.3	135
GBG2 ¹	Guanine nucleotide-binding protein $G_i/G_s/G_o$ subunit γ -2; <i>GNG2</i>	295	7959	6	6	1	1 19.7	71
NDUA8 ¹	NADH dehydrogenase [ubiquinone] 1 α subcomplex subunit 8; <i>NDUFA8</i>	291	20548	12	10	4	3 27.9	172
SEPT2 ¹	Septin-2; SEPT2	289	41689	14	8	7	4 33.2	361
SNAG ¹	γ -soluble NSF attachment protein; <i>NAPG</i>	288	35066	11	7	5	3 25.6	312
ATP5L ¹	ATP synthase subunit γ , mitochondrial; <i>ATP5L</i>	285	11421	8	8	3	3 40.8	103
$ATPG^1$	ATP synthase subunit γ , mitochondrial; <i>ATP5C1</i>	281	33032	11	9	4	3 25.5	298
SEPT3 ¹	Neuronal-specific septin-3; SEPT3	280	40963	13	11	4	3 17.9	358

NDUAD ¹	NADH dehydrogenase [ubiquinone] 1 α subcomplex subunit 13; <i>NDUFA13</i>	280	16688	18	16	4	3 51.4	144
PRDX6 ¹	Peroxiredoxin-6; PRDX6	280	25133	6	5	2	1 15.2	224
$TCPB^1$	T-complex protein 1 subunit β ; <i>CCT</i> 2	278	57794	15	8	6	3 20.4	535
NNTM ¹	NAD(P) transhydrogenase, mitochondrial; NNT	277	114564	10	9	5	4 8.7	1086
PRIO ¹	Major prion protein; PRNP	274	27871	5	5	1	1 4.7	253
PRDX3 ¹	Thioredoxin-dependent peroxide reductase, mitochondrial; <i>PRDX3</i>	272	28017	10	9	4	3 21.1	256
PDXK ¹	Pyridoxal kinase; PDXK	271	35308	11	9	3	2 13.8	312
AP2B1 ¹	AP-2 complex subunit β ; <i>AP2B1</i>	269	105398	20	12	10	6 15.5	937
AP1B1 ¹	AP-1 complex subunit β -1; <i>AP1B1</i>	79	105482	12	2	5	1 7.9	949
SH3G2 ¹	Endophilin-A1; SH3GL2	269	40108	13	13	5	5 13.1	352
SH3G1 ¹	Endophilin-A2; SH3GL1	105	41692	5	5	1	1 3.3	368
$SSDH^1$	Succinate-semialdehyde dehydrogenase, mitochondrial; <i>ALDH5A1</i>	269	58034	12	7	7	3 22.6	535
TAU^1	Microtubule-associated protein tau; MAPT	268	79108	21	13	7	6 12.5	758
NDUA2 ¹	NADH dehydrogenase [ubiquinone] 1 α subcomplex subunit 2; <i>NDUFA2</i>	266	11029	10	8	3	3 45.5	99
LDHB ¹	L-lactate dehydrogenase B chain; LDHB	264	36900	19	15	6	4 37.7	334
K6PF ¹	6-phosphofructokinase, muscle type; PFKM	260	85984	8	3	3	1 5.8	780
2AAA ¹	Serine/threonine-protein phosphatase 2A 65 kDa regulatory subunit A α isoform; <i>PPP2R1A</i>	259	66065	9	6	5	4 15.6	589
$2AAB^1$	Serine/threonine-protein phosphatase 2A 65 kDa regulatory subunit A β isoform; <i>PPP2R1B</i>	90	66799	3	1	3	1 8.3	601
NDUS7 ¹	NADH dehydrogenase [ubiquinone] Fe-S protein 7, mitochondrial; <i>NDUFS7</i>	258	23833	4	3	2	1 17.8	213
GPM6A ¹	Neuronal membrane glycoprotein M6A; GPM6A	258	31930	11	8	5	3 14.7	278
$CH10^1$	10 kDa heat shock protein, mitochondrial; HSPE1	257	10925	17	15	5	4 45.1	102
NEGR1 ¹	Neuronal growth regulator 1; NEGR1	255	39379	11	7	5	4 15.8	354
CISD1 ¹	CDGSH Fe-S domain-containing protein 1; CISD1	255	12362	5	5	1	1 16.7	108
BRK1 ¹	Protein BRICK1; BRK1	254	8796	5	4	2	1 29.3	75
CNTP1 ¹	Contactin-associated protein 1; CNTNAP1	254	158220	8	4	5	2 5.3	1384
IMMT ¹	Mitochondrial inner membrane protein; IMMT	253	84026	17	9	7	5 16.5	758
TERA ¹	Transitional endoplasmic reticulum ATPase; VCP	252	89950	19	11	9	6 18.1	806
S12A5 ²	Solute carrier family 12 member 5; <i>SLC12A5</i>	249	127470	10	6	5	2 4.3	1139
$S12A4^1$	Solute carrier family 12 member 4; <i>SLC12A4</i>	180	121712	5	4	2	1 2.1	1085
NIPS1 ¹	Protein NipSnap homolog 1; NIPSNAP1	248	33460	8	7	4	3 15.1	284
EFTU ¹	Elongation factor Tu, mitochondrial; TUFM	244	49852	14	9	8	6 19.9	452
$AATC^1$	Aspartate aminotransferase, cytoplasmic; GOT1	243	46447	12	8	6	4 20.1	413
$COX7C^1$	Cytochrome c oxidase subunit 7C, mitochondrial; COX7C	239	7298	8	7	3	3 65.1	63
$CISY^1$	Citrate synthase, mitochondrial; CS	239	51908	11	8	4	3 19.1	466

Р	a	g	е	238

SATT ¹	Neutral amino acid transporter A; SLC1A4	238	56087	8	7	3	2 11.	3 532
GBG3 ²	Guanine nucleotide-binding protein $G_i/G_s/G_o$ subunit γ -3; <i>GNG3</i>	235	8527	7	7	2	2 41.	3 75
COX41 ¹	Cytochrome c oxidase subunit 4 isoform 1, mitochondrial; <i>COX4I1</i>	231	19621	15	14	5	4 40.	8 169
RALB ¹	Ras-related protein Ral-B; RALB	231	23508	6	5	2	1 9.	7 206
$FA49B^1$	Protein FAM49B; FAM49B	230	37010	5	4	2	1	8 324
PGCB ¹	Brevican core protein; BCAN	230	100539	13	9	3	2 4.	3 911
E41L1 ¹	Band 4.1-like protein 1; EPB41L1	230	99012	10	8	5	3 9.	6 881
AOFB ¹	Amine oxidase [flavin-containing] B; MAOB	227	59238	11	8	5	4 14.	4 520
C1QBP ¹	Complement component 1 Q subcomponent- binding protein, mitochondrial; <i>C1QBP</i>	225	31742	5	4	2	1 6.4	4 282
CMC1 ¹	Ca ²⁺ -binding mitochondrial carrier protein Aralar1; <i>SLC25A12</i>	221	75114	11	8	5	3 12.	8 678
RAB10 ¹	Ras-related protein Rab-10; RAB10	221	22755	9	9	2	2	9 200
$CY1^1$	Cytochrome c1, heme protein, mitochondrial; CYC1	220	35741	12	11	3	3 13.	8 325
$SYPH^1$	Synaptophysin; SYP	220	34109	7	7	4	4 22.	7 313
ATP5J ¹	ATP synthase-coupling factor 6, mitochondrial; ATP5J	215	12580	12	7	7	5 69.4	4 108
HCDH ¹	Hydroxyacyl-coenzyme A dehydrogenase, mitochondrial; <i>HADH</i>	214	34329	8	6	2	2 9.	6 314
HS12A ¹	Heat shock 70 kDa protein 12A; HSPA12A	211	75217	12	8	6	3 14.	5 675
FLOT1 ¹	Flotillin-1; FLOT1	211	47554	9	5	5	2 16.	2 427
UBA1 ¹	Ubiquitin-like modifier-activating enzyme 1; <i>UBA1</i>	211	118858	6	5	5	4 8.	9 1058
FLOT2 ¹	Flotillin-2; FLOT2	208	47434	7	6	2	1 9.	1 428
AT2A2 ¹	Sarcoplasmic/endoplasmic reticulum Ca ²⁺ ATPase 2; <i>ATP2A2</i>	206	116336	15	11	7	4 1	1 1042
AT2A1 ¹	Sarcoplasmic/endoplasmic reticulum Ca ²⁺ ATPase 1; <i>ATP2A1</i>	159	111550	10	7	3	1 3.	3 1001
ARP5L ¹	Actin-related protein 2/3 complex subunit 5-like protein; <i>ARPC5L</i>	203	16931	6	6	3	3 25.	5 153
SYFA ¹	Phenylalanine—tRNA ligase α subunit; <i>FARSA</i>	203	57585	4	4	1	1 2.	8 508
$GNAQ^1$	Guanine nucleotide-binding protein G_q subunit α ; $GNAQ$	203	42400	15	6	4	2 17.	3 359
$GNA11^1$	Guanine nucleotide-binding protein subunit α -11; GNA11	70	42382	12	3	3	2 13.	1 359
MAP6 ¹	Microtubule-associated protein 6; MAP6 pe 1	199	86680	6	4	4	2 7.	1 813
MGST3 ¹	Microsomal glutathione S-transferase 3; MGST3	197	16734	7	4	3	2 35.	5 152
$MPCP^1$	Phosphate carrier protein, mitochondrial; SLC25A3	197	40525	12	11	4	3 13.	5 362
PEA15 ¹	Astrocytic phosphoprotein PEA-15; PEA15 pe 1	196	15088	6	6	2	2 21.	5 130
RAB7A ¹	Ras-related protein Rab-7a; RAB7A	190	23760	4	3	3	2 16.	9 207
PURA ¹	Transcriptional activator protein Pur-α; <i>PURA</i>	190	35003	6	5	2	2 8.	4 322
NB5R3 ¹	NADH-cytochrome b5 reductase 3; CYB5R3	190	34441	5	4	2	1 10.	3 301

ECHA ¹	Trifunctional enzyme subunit α , mitochondrial; HADHA	187	83688	16	10	8	4 15.2	763
NDUS8 ¹	NADH dehydrogenase [ubiquinone] Fe-S protein 8, mitochondrial; <i>NDUFS8</i>	187	24203	10	10	3	3 17.6	210
VISL1 ¹	Visinin-like protein 1; VSNL1	187	22299	10	9	3	3 23	191
NDKB ¹	Nucleoside diphosphate kinase B; NME2	186	17401	11	9	3	3 31.6	152
NDKA ¹	Nucleoside diphosphate kinase A; NME1	175	17309	8	8	2	2 19.1	152
NDK8 ¹	Putative nucleoside diphosphate kinase; NME2P1	109	15690	9	5	3	2 34.3	137
$CAZA2^1$	F-actin-capping protein subunit α -2; <i>CAPZA2</i>	186	33157	6	6	2	2 9.8	286
$CAZA1^1$	F-actin-capping protein subunit α -1; <i>CAPZA1</i>	135	33073	5	4	2	1 9.1	286
$IDHP^1$	Isocitrate dehydrogenase [NADP], mitochondrial; IDH2	185	51333	13	10	6	4 18.4	452
NDRG2 ¹	Protein NDRG2; NDRG2	184	41114	14	12	4	3 28.8	371
BIN1 ¹	Myc box-dependent-interacting protein 1; BIN1	181	64887	11	7	4	2 8.1	593
$RAB5B^1$	Ras-related protein Rab-5B; RAB5B	177	23920	4	4	1	1 6.5	215
DCLK1 ¹	Serine/threonine-protein kinase DCLK1; DCLK1	175	82743	6	4	3	2 5	740
VATG2 ¹	V-type proton ATPase subunit G 2; ATP6V1G2	175	13653	6	5	2	1 35.6	118
RLA1 ¹	60S acidic ribosomal protein P1; RPLP1	175	11621	4	4	1	1 14	114
ETFA	Electron transfer flavoprotein subunit α , mitochondrial; <i>ETFA</i>	174	35400	6	4	3	1 18.9	333
PHB2 ¹	Prohibitin-2; PHB2	173	33276	11	9	6	4 29.8	299
$CLCB^1$	Clathrin light chain B; CLTB	169	25289	5	5	3	3 13.5	229
COX6C ¹	Cytochrome c oxidase subunit 6C; COX6C	169	8776	8	7	3	3 28	75
SHLB2 ¹	Endophilin-B2; SH3GLB2	169	44175	5	5	5	5 20.3	395
VA0D1 ¹	V-type proton ATPase subunit d 1; ATP6V0D1	167	40759	11	9	3	2 11.1	351
IMB1 ¹	Importin subunit β-1; <i>KPNB1</i>	167	98420	4	4	2	2 3.4	876
ECHM ¹	Enoyl-CoA hydratase, mitochondrial; ECHS1	167	31823	11	9	4	3 21.7	290
PPT1 ¹	Palmitoyl-protein thioesterase 1; PPT1	167	34627	4	4	2	2 13.7	306
$CAPZB^1$	F-actin-capping protein subunit β; <i>CAPZB</i>	166	31616	6	6	2	2 17.3	277
CSRP1 ¹	Cysteine and glycine-rich protein 1; CSRP1	165	21409	4	3	1	1 7.8	193
PROF1 ¹	Profilin-1; PFN1	164	15216	3	3	2	2 22.9	140
$CBR1^1$	Carbonyl reductase [NADPH] 1; CBR1	162	30641	17	8	5	3 24.9	277
CBR3 ¹	Carbonyl reductase [NADPH] 3; CBR3	76	31230	4	3	2	1 10.1	277
MK01 ¹	Mitogen-activated protein kinase 1; MAPK1	162	41762	6	4	2	2 10.3	360
SNAB ¹	β -soluble NSF attachment protein; <i>NAPB</i>	160	33878	9	5	5	2 24.8	298
SNAA ¹	α -soluble NSF attachment protein; <i>NAPA</i>	153	33667	5	4	2	1 14.2	295
VATH ¹	V-type proton ATPase subunit H; ATP6V1H	159	56417	8	7	3	2 12.6	483
PALM ¹	Paralemmin-1; PALM	157	42221	8	4	4	2 18.3	387
ATPK ¹	ATP synthase subunit f, mitochondrial; ATP5J2	157	11025	5	4	1	1 11.7	94
IDH3A ¹	Isocitrate dehydrogenase [NAD] subunit α , mitochondrial; <i>IDH3A</i>	156	40022	6	4	3	1 10.1	366

NDUA6 ¹	NADH dehydrogenase [ubiquinone] 1 α subcomplex subunit 6; <i>NDUFA6</i>	155	17973	3	3	1	11	10.4	154
GTR3 ¹	Solute carrier family 2, facilitated glucose transporter member 3; <i>SLC2A3</i>	151	54345	3	3	1	1	4	496
RTN4 ¹	Reticulon-4; RTN4	148	130250	13	6	3	1	4.9	1192
PTGDS ¹	Prostaglandin-H2 D-isomerase; PTGDS	148	21243	3	2	1	1	8.4	190
NPTN ¹	Neuroplastin; NPTN	146	44702	10	8	3	1	9.5	398
FSCN1 ¹	Fascin; FSCN1	145	55123	5	3	3	11	13.4	493
NDE1 ¹	Nuclear distribution protein nudE homolog 1; NDE1	144	38842	4	2	2	1	8.1	346
$TCPQ^1$	T-complex protein 1 subunit θ ; <i>CCT8</i>	144	60153	6	4	4	31	11.7	548
M2OM ¹	Mitochondrial 2-oxoglutarate/malate carrier protein; <i>SLC25A11</i>	143	34211	11	8	4	2 1	14.3	314
$ALBU^1$	Serum albumin; ALB	140	71317	10	6	7	41	15.8	609
DLG2 ¹	Disks large homolog 2; DLG2	139	97948	6	4	4	2	6.8	870
DLG4 ¹	Disks large homolog 4; <i>DLG4</i> pe 1	105	80788	5	4	3	2	8	724
DLG1 ¹	Disks large homolog 1; DLG1	106	100678	3	3	1	1	2.8	904
NDUS6 ¹	NADH dehydrogenase [ubiquinone] Fe-S protein 6, mitochondrial; <i>NDUFS6</i>	138	14045	2	2	1	11	19.4	124
TAGL3 ¹	Transgelin-3; TAGLN3	137	22629	13	6	4	42	25.1	199
NDUA9 ¹	NADH dehydrogenase [ubiquinone] 1 α subcomplex subunit 9, mitochondrial; <i>NDUFA9</i>	136	42654	9	3	3	11	11.1	377
COX2 ¹	Cytochrome c oxidase subunit 2; MT-CO2	134	25719	5	5	3	31	19.4	227
NRCAM ¹	Neuronal cell adhesion molecule; NRCAM	133	144655	8	6	5	3	5.7	1304
$CRYAB^1$	α-crystallin B chain; CRYAB	132	20146	7	4	5	4	48	175
ACO13 ¹	Acyl-coenzyme A thioesterase 13; ACOT13	131	15065	7	3	4	12	22.9	140
$CD81^1$	CD81 antigen; CD81	131	26476	6	4	2	11	16.5	236
AP180 ¹	Clathrin coat assembly protein AP180; SNAP91	128	92672	6	5	2	1	4.1	907
NIPS2 ¹	Protein NipSnap homolog 2; GBAS	127	33949	6	3	4	12	21.7	286
NDUB1 ¹	NADH dehydrogenase [ubiquinone] 1 β subcomplex subunit 1; <i>NDUFB1</i>	125	7014	4	4	2	23	32.8	58
$CRYM^1$	Thiomorpholine-carboxylate dehydrogenase; CRYM	125	33925	6	5	2	21	13.4	314
ADDB ¹	β-adducin; ADD2	124	81260	8	7	4	3	5.9	726
ADDA ¹	α -adducin; ADD1	53	81304	8	5	4	2	7.6	737
CNRP1 ¹	CB1 cannabinoid receptor-interacting protein 1; <i>CNRIP1</i>	123	18751	8	6	4	24	45.1	164
$PTPRZ^1$	Receptor-type tyrosine-protein phosphatase ζ ; <i>PTPRZ1</i>	122	255683	4	3	2	1	1.9	2315
ARPC3 ¹	Actin-related protein 2/3 complex subunit 3; ARPC3	121	20761	2	2	1	11	13.5	178
TPM3L ⁵	Putative tropomyosin α -3 chain-like protein	121	26595	6	4	3	11	15.7	
PSD3 ¹	PH and SEC7 domain-containing protein 3; PSD3	120	116646	8	3	7	2	8.8	1048
$AMPH^1$	Amphiphysin; AMPH	119	76381	6	4	5	31	12.4	695

TPM4 ¹	Tropomyosin α -4 chain; <i>TPM4</i>	118	28619	11	7	5	2 30.	5 248
TPM1 ¹	Tropomyosin α -1 chain; <i>TPM1</i>	100	32746	8	5	4	1 21.	8 284
TOM70 ¹	Mitochondrial import receptor subunit TOM70; <i>TOMM70A</i>	118	68096	6	3	2	1 4.9	9 608
NDUB4 ¹	NADH dehydrogenase [ubiquinone] 1 β subcomplex subunit 4; <i>NDUFB4</i>	117	15256	5	4	2	1 17.	8 129
QCR7 ¹	Cytochrome b-c1 complex subunit 7; UQCRB	117	13522	9	6	6	4 71.	2 111
OPALI ²	Opalin; OPALIN	117	15787	5	4	1	1 5.	7 141
STX7 ¹	Syntaxin-7; STX7	117	29911	3	2	2	1 12.	5 261
QCR6 ¹	Cytochrome b-c1 complex subunit 6, mitochondrial; <i>UQCRH</i>	117	11017	4	4	2	2 34.	1 91
VGF^1	Neurosecretory protein VGF; VGF	116	67275	5	4	3	2 10.	9 615
MOES ¹	Moesin; MSN	116	67892	6	3	4	1 8.3	8 577
TOM22 ¹	Mitochondrial import receptor subunit TOM22 homolog; <i>TOMM22</i>	115	15512	5	5	1	1 17.	5 142
$RS7^1$	40S ribosomal protein S7; RPS7	114	22113	10	4	3	2 22.2	2 194
QCR8 ¹	Cytochrome b-c1 complex subunit 8; UQCRQ	114	9900	3	2	2	1 29.	8 82
$APOD^1$	Apolipoprotein D; APOD	112	21547	3	3	2	2 17.	5 189
AL4A1 ¹	δ-1-pyrroline-5-carboxylate dehydrogenase, mitochondrial; <i>ALDH4A1</i>	111	62137	6	4	3	2 7.:	5 563
$RAB1B^1$	Ras-related protein Rab-1B; RAB1B	110	22328	5	2	3	1 19.	9 201
NEUM ¹	Neuromodulin; GAP43	108	24902	8	3	3	1 18.	5 238
$TCPH^1$	T-complex protein 1 subunit η; CCT7	107	59842	6	3	5	2 12.2	2 543
RAB14 ¹	Ras-related protein Rab-14; RAB14	106	24110	2	2	1	1 ′	7 215
PA1B3 ¹	Platelet-activating factor acetylhydrolase IB subunit γ; <i>PAFAH1B3</i>	106	25832	3	2	2	1 14.	3 231
$ACTY^1$	β-centractin; ACTR1B	105	42381	4	4	2	2	9 376
TLN1 ¹	Talin-1; <i>TLN1</i>	103	271766	20	2	8	1 3.	8 2541
CPLX2 ¹	Complexin-2; CPLX2	102	15499	7	5	2	2	9 134
VATC1 ¹	V-type proton ATPase subunit C 1; ATP6V1C1	102	44085	15	3	6	1 26.2	2 382
$EF2^1$	Elongation factor 2; <i>EEF2</i>	101	96246	4	3	3	2 8.	9 858
KGUA ¹	Guanylate kinase; GUK1	100	21769	2	1	2	1 12.	7 197
BSN^1	Protein bassoon; BSN	99	418324	19	4	15	3 8.2	2 3926
WDR37 ²	WD repeat-containing protein 37; WDR37	98	55316	4	4	2	2 5.	7 494
KAD1 ¹	Adenylate kinase isoenzyme 1; AK1	96	21735	15	6	5	4 35.	1 194
MYH10 ¹	Myosin-10; MYH10	95	229827	14	4	8	3 5.	9 1976
S6A17 ²	Na ⁺ -dependent neutral amino acid transporter SLC6A17; <i>SLC6A17</i>	95	81747	5	2	3	1 6.9	9 727
$GABT^1$	4-aminobutyrate aminotransferase, mitochondrial; ABAT	94	57087	7	2	5	2 16.2	2 500
$CAH2^1$	Carbonic anhydrase 2; CA2	91	29285	4	3	1	1 6.2	2 260
SNG1 ¹	Synaptogyrin-1; SYNGR1	91	25667	4	4	1	1 5.2	2 233

CYFP1 ¹	Cytoplasmic FMR1-interacting protein 1; CYFIP1	91	146742	4	3	3	2 2.9	1253
CYFP2 ¹	Cytoplasmic FMR1-interacting protein 2; CYFIP2	73	150298	4	2	3	1 5.4	1278
$NPTX1^2$	Neuronal pentraxin-1; NPTX1	90	47606	4	3	2	1 7.4	432
CLCA ¹	Clathrin light chain A; CLTA	90	27174	4	3	2	1 12.5	248
LDHA ¹	L-lactate dehydrogenase A chain; LDHA	90	36950	8	5	4	2 21.1	332
LDH6B ¹	L-lactate dehydrogenase A-like 6B; LDHAL6B	16	42372	5	1	3	1 11	381
LRC47 ¹	Leucine-rich repeat-containing protein 47; LRRC47	90	64004	6	2	4	1 10.6	583
KPCG ¹	Protein kinase C g type; PRKCG	89	79652	4	3	3	2 6	697
KPCA ¹	Protein kinase C α type; <i>PRKCA</i>	70	77841	5	4	3	2 5.7	672
GLO2 ¹	Hydroxyacylglutathione hydrolase, mitochondrial; <i>HAGH</i>	88	34240	2	1	2	1 8.8	308
FKBP8 ¹	Peptidyl-prolyl cis-trans isomerase FKBP8; FKBP8	88	44990	2	2	1	1 7	412
PI42A ¹	Phosphatidylinositol 5-phosphate 4-kinase type- 2 α; <i>PIP4K2A</i>	88	46424	4	4	1	1 2.5	406
NCEH1 ¹	Neutral cholesterol ester hydrolase 1; NCEH1	87	46064	3	2	2	1 12	408
TPPP3 ¹	Tubulin polymerization-promoting protein family member 3; <i>TPPP3</i>	87	19145	3	2	3	2 30.7	176
RASK ¹	GTPase KRas; KRAS	87	21927	8	6	3	1 21.7	189
MYL6 ¹	Myosin light polypeptide 6; MYL6	84	17090	8	3	2	1 19.2	151
PCBP2 ¹	Poly(rC)-binding protein 2; PCBP2	84	38955	5	4	3	2 16.4	365
TPP1 ¹	Tripeptidyl-peptidase 1; TPP1	83	61723	6	5	2	2 5	563
$RAB5C^1$	Ras-related protein Rab-5C; RAB5C	83	23696	3	2	2	2 16.2	216
RAB5A ¹	Ras-related protein Rab-5A; RAB5A	51	23872	3	2	1	1 6.5	215
PGRC1 ¹	Membrane-associated progesterone receptor component 1; <i>PGRMC1</i>	83	21772	3	3	2	2 14.4	195
SODM ¹	Superoxide dismutase [Mn], mitochondrial; <i>SOD2</i>	83	24878	3	2	2	1 10.4	222
GSTT1 ¹	Glutathione S-transferase θ -1; <i>GSTT1</i>	82	27489	4	4	1	1 4.2	240
CX7A2 ¹	Cytochrome c oxidase subunit 7A2, mitochondrial; <i>COX7A2</i>	82	9390	9	5	3	2 60.2	83
$SV2A^1$	Synaptic vesicle glycoprotein 2A; SV2A	81	83440	7	2	4	1 7	742
MTCH2 ¹	Mitochondrial carrier homolog 2; MTCH2	81	33936	3	3	2	2 10.2	303
$\operatorname{CTNB1}^1$	Catenin β-1; CTNNB1	79	86069	4	1	3	1 4.6	781
RAN^1	GTP-binding nuclear protein Ran; RAN	79	24579	3	2	2	1 13.9	216
DHSB ¹	Succinate dehydrogenase [ubiquinone] Fe-S subunit, mitochondrial; <i>SDHB</i>	79	32407	5	5	2	2 11.5	
$CYB5B^1$	Cytochrome b5 type B; CYB5B	78	16436	2	2	1	1 8.9	146
$MAON^2$	NADP-dependent malic enzyme, mitochondrial; ME3	78	67653	2	2	1	1 3.8	604
PROF2 ¹	Profilin-2; PFN2	78	15378	2	2	1	1 10	140
ALDH2 ¹	Aldehyde dehydrogenase, mitochondrial; ALDH2	77	56859	3	2	2	1 6.4	517
VAT1 ¹	Synaptic vesicle membrane protein VAT-1 homolog; VAT1	77	42122	2	1	1	1 3.1	393

NTRI ¹	Neurotrimin; NTM	77	38518	5	3	3	2	9.3	344
FBX2 ¹	F-box only protein 2; FBXO2	77	33706	4	2	2	2	9.8	296
SCG2 ¹	Secretogranin-2; SCG2	75	70897	5	2	3	1	9.2	617
SNG3 ²	Synaptogyrin-3; SYNGR3	75	24768	2	2	1	1	5.2	229
PRRT2 ¹	Proline-rich transmembrane protein 2; PRRT2	74	35208	5	4	1	1	3.5	340
MYO5A	Unconventional myosin-Va; MYO5A pe 1	73	216979	9	4	6	3	4.3	1855
MYO5C	Unconventional myosin-Vc; MYO5C	24	203994	11	1	4	1	3.5	1742
NDUS1	NADH-ubiquinone oxidoreductase 75 kDa subunit, mitochondrial; <i>NDUFS1</i>	73	80443	9	6	4	2	11.3	727
PDIA3	Protein disulfide-isomerase A3; PDIA3	72	57146	5	2	4	1	7.1	505
UBP5	Ubiquitin carboxyl-terminal hydrolase 5; USP5	71	96638	8	6	5	5	10.4	858
UBP13 ¹	Ubiquitin carboxyl-terminal hydrolase 13; USP13	23	98006	3	1	3	1	3.7	863
COR1A ¹	Coronin-1A; CORO1A	71	51678	1	1	1	1	3.5	461
GBG7 ¹	Guanine nucleotide-binding protein $G_i/G_s/G_o$ subunit γ -7; <i>GNG7</i>	71	7631	2	2	1	1	20.6	68
IF4A1 ¹	Eukaryotic initiation factor 4A-I; EIF4A1	70	46353	6	2	3	1	8.4	406
GDIR1 ¹	ρ GDP-dissociation inhibitor 1; ARHGDIA	69	23250	3	1	2	1	27.5	204
PDCD5 ¹	Programmed cell death protein 5; PDCD5	69	14276	2	2	1	1	10.4	125
SYUB ¹	β-synuclein; <i>SNCB</i>	69	14279	7	3	3	2	45.5	134
AL7A1 ¹	α-aminoadipic semialdehyde dehydrogenase; ALDH7A1	68	59020	3	3	2	2	6.9	539
RAB1A ¹	Ras-related protein Rab-1A; RAB1A	68	22891	7	4	5	4	31.7	205
CADM4 ¹	Cell adhesion molecule 4; CADM4	67	43215	5	2	3	1	10.1	388
GELS ¹	Gelsolin; GSN	67	86043	3	2	2	1	9.6	782
$GNAZ^2$	Guanine nucleotide-binding protein G_z subunit α ; GNAZ	66	41411	4	2	3	1	10.1	355
IQEC1 ¹	IQ motif and SEC7 domain-containing protein 1; <i>IQSEC1</i>	65	109103	8	2	4	1	4.9	963
DLRB1 ¹	Dynein light chain roadblock-type 1; DYNLRB1	65	10915	1	1	1	1	12.5	96
PHIPL ²	Phytanoyl-CoA hydroxylase-interacting protein- like; <i>PHYHIPL</i>	64	43029	2	2	1	1	2.4	376
TIM13 ¹	Mitochondrial import inner membrane translocase subunit Tim13; <i>TIMM13</i>	64	10721	2	1	2	1	23.2	95
NEBL ¹	Nebulette; NEBL	64	116609	11	2	5	1	6	1014
MAG^1	Myelin-associated glycoprotein; MAG	63	69880	4	3	2	1	3.7	626
GDAP1 ¹	Ganglioside-induced differentiation-associated protein 1; <i>GDAP1</i>	63	41548	2	2	1	1	3.4	358
UK114 ¹	Ribonuclease UK114; HRSP12	62	14542	5	4	3	2	34.3	137
BACH ¹	Cytosolic acyl coenzyme A thioester hydrolase; <i>ACOT7</i>	61	42454	3	2	2	1	9.7	380
K0513 ²	Uncharacterized protein KIAA0513; KIAA0513	60	47066	1	1	1	1	3.4	411
GPM6B ¹	Neuronal membrane glycoprotein M6-b; GPM6B	60	29882	4	4	1	1	4.9	265

							Ρa	ıge	244
ES1 ¹	ES1 protein homolog, mitochondrial; C21orf33	60	28495	3	2	2	1	10.1	268
NFS1 ¹	Cysteine desulfurase, mitochondrial; NFS1 pe 1	59	50563	4	2	2	1	7.2	457
SEPT9 ¹	Septin-9; SEPT9	59	65646	6	2	4	1	6.7	586
NPM^1	Nucleophosmin; NPM1	59	32726	3	3	1	1	7.1	294
NPY^1	Pro-neuropeptide Y; NPY	59	10902	2	2	1	1	13.4	97
PPAC ¹	Low molecular weight phosphotyrosine protein phosphatase; <i>ACP1</i>	58	18487	1	1	1	1	7.6	158
AT5EL ¹	ATP synthase subunit ε-like protein, mitochondrial; <i>ATP5EP2</i>	58	5860	2	1	1	1	15.7	51
HNRPK ¹	Heterogeneous nuclear ribonucleoprotein K; HNRNPK	57	51230	4	3	1	1	3.7	463
LY6H ²	Lymphocyte antigen 6H; LY6H	57	15286	5	3	2	1	21.4	140
KPCB ¹	Protein kinase C β type; <i>PRKCB</i>	56	77960	7	5	3	2	6	671
HSP74 ¹	Heat shock 70 kDa protein 4; HSPA4	56	95127	4	2	3	2	4.5	840
HS105 ¹	Heat shock protein 105 kDa; HSPH1	55	97716	6	1	4	1	6.4	858
KCY^1	UMP-CMP kinase; CMPK1	56	22436	1	1	1	1	6.6	196
$IF4H^1$	Eukaryotic translation initiation factor 4H; EIF4H	56	27425	7	4	3	2	26.6	248
EPN1 ¹	Epsin-1; EPN1	55	60370	9	1	4	1	8.2	576
$\mathrm{GLU2B}^1$	Glucosidase 2 subunit β ; <i>PRKCSH</i>	55	60357	1	1	1	1	1.9	528
NDUS3 ¹	NADH dehydrogenase [ubiquinone] Fe-S protein 3, mitochondrial; <i>NDUFS3</i>	54	30337	2	1	2	1	14	264
AUXI ¹	Putative tyrosine-protein phosphatase auxilin; <i>DNAJC6</i>	54	100675	5	2	3	2	6.1	913
$SCRN1^1$	Secernin-1; SCRN1	53	46980	11	2	3	2	11.4	414
NMDZ1 ¹	Glutamate receptor ionotropic, NMDA 1; GRIN1	52	105990	2	1	2	1	2.2	938
STRAP ¹	Serine-threonine kinase receptor-associated protein; <i>STRAP</i>	52	38756	1	1	1	1	6	350
GLSK ¹	Glutaminase kidney isoform, mitochondrial; GLS	52	74269	5	3	4	2	10.3	669
RTN3 ¹	Reticulon-3; <i>RTN3</i>	51	113169	2	2	1	1	1.5	1032
PCBP1 ¹	Poly(rC)-binding protein 1; PCBP1	51	37987	6	4	3	2	21.9	356
$DLDH^1$	Dihydrolipoyl dehydrogenase, mitochondrial; DLD	51	54713	4	4	2	2	6.7	509
$DOPD^1$	D-dopachrome decarboxylase; DDT	51	12818	5	3	2	2	27.1	118
$DDTL^2$	D-dopachrome decarboxylase-like protein; DDTL	41	14414	2	2	1	1	15.7	134
K1045 ¹	Protein KIAA1045; KIAA1045	51	45905	4	1	4	1	15.5	400
MTMR5 ¹	Myotubularin-related protein 5; SBF1	50	210294	7	2	3	1	2.6	1867
$ARPC4^1$	Actin-related protein 2/3 complex subunit 4; ARPC4	50	19768	4	2	2	1	13.7	168
$NCKP1^1$	Nck-associated protein 1; NCKAP1	50	130018	4	1	3	1	5.2	1128
NDUAA ¹	NADH dehydrogenase [ubiquinone] 1 α subcomplex subunit 10, mitochondrial; <i>NDUFA10</i>	50	41067	3	1	2	1	9	355
DEST ¹	Destrin; DSTN	50	18950	6	3	4	2	31.5	165
SCG1 ¹	Secretogranin-1; CHGB	49	78343	2	2	1	1	1.8	677

							Pa	a g e	245
ARP2 ¹	Actin-related protein 2; ACTR2	49	45017	5	1	4	1	12.7	394
NDUS2 ¹	NADH dehydrogenase [ubiquinone] Fe-S protein 2, mitochondrial; <i>NDUFS2</i>	48	52911	5	3	3	2	13.2	463
$CX04A^1$	Protein CXorf40A; CXorf40A	47	18051	5	3	1	1	8.9	158
AP2S1 ¹	AP-2 complex subunit sigma; AP2S1	47	17178	2	2	1	1	8.5	142
SH3L3 ¹	SH3 domain-binding glutamic acid-rich-like protein 3; <i>SH3BGRL3</i>	47	10488	1	1	1	1	20.4	93
ODPA ¹	Pyruvate dehydrogenase E1 component subunit α , somatic form, mitochondrial; <i>PDHA1</i>	47	43952	2	2	1	1	3.1	390
$RHOB^1$	ρ-related GTP-binding protein ρB; <i>RHOB</i>	46	22565	4	1	2	1	7.1	196
NAC2 ²	Na^+/Ca^{2+} exchanger 2; <i>SLC8A2</i>	46	101388	5	2	2	1	3	921
MACF1 ¹	Microtubule-actin cross-linking factor 1, isoforms 1/2/3/5; <i>MACF1</i>	46	843033	37	2	19	1	2.9	7388
ST134 ⁵	Putative protein FAM10A4; ST13P4	45	27561	3	1	2	1	12.1	240
NDRG1 ¹	Protein NDRG1; NDRG1	45	43264	2	2	1	1	9.4	394
PLEC ¹	Plectin; PLEC	45	533462	35	1	21	1	5	4684
BAIP2 ¹	Brain-specific angiogenesis inhibitor 1- associated protein 2; <i>BAIAP2</i>	45	61115	5	2	4	2	10.7	552
$H2B1D^1$	Histone H2B type 1-D; HIST1H2BD	45	13928	3	1	2	1	22.2	126
VGLU3 ¹	Vesicular glutamate transporter 3; SLC17A8	44	65861	3	1	3	1	6.6	589
GHC1 ¹	Mitochondrial glutamate carrier 1; SLC25A22	44	34904	3	3	1	1	6.8	323
SCPDL	Saccharopine dehydrogenase-like oxidoreductase; SCCPDH	43	47464	2	1	1	1	8.2	429
$OMGP^1$	Oligodendrocyte-myelin glycoprotein; OMG	43	50032	6	3	2	1	8.4	440
SYAC ¹	Alanine-tRNA ligase, cytoplasmic; AARS	42	107484	6	1	6	1	7.4	968
IGS21 ²	Immunoglobulin superfamily member 21; IGSF21	42	52202	3	1	3	1	16.5	467
$RL6^1$	60S ribosomal protein L6; RPL6	41	32765	2	2	2	2	9	288
CALX ¹	Calnexin; CANX	41	67982	2	1	2	1	8.1	592
$EF1B^1$	Elongation factor 1- β ; <i>EEF1B2</i>	41	24919	1	1	1	1	5.8	225
MPP2 ¹	MAGUK p55 subfamily member 2; MPP2	41	64882	2	1	2	1	6.4	576
TTYH1 ²	Protein tweety homolog 1; TTYH1	40	49704	3	1	2	1	6.4	450
KCD16 ²	BTB/POZ domain-containing protein KCTD16; <i>KCTD16</i>	39	49962	1	1	1	1	2.8	428
DREB ¹	Drebrin; DBN1	39	71842	2	1	2	1	4	649
MARE3 ¹	Microtubule-associated protein RP/EB family member 3; <i>MAPRE3</i>	39	32247	3	2	2	1	10	281
$CDC42^1$	Cell division control protein 42 homolog; CDC42	38	21587	2	2	1	1	12.6	191
RLA2 ¹	60S acidic ribosomal protein P2; <i>RPLP2</i>	38	11658	1	1	1	1	18.3	115
SERA ¹	D-3-phosphoglycerate dehydrogenase; <i>PHGDH</i>	38	57356	3	1	2	1	4.5	533
CUTA ¹	Protein CutA; CUTA	36	19218	4	3	3	2	41.9	179
ERP29 ¹	Endoplasmic reticulum resident protein 29; ERP29	36	29032	1	1	1	1	3.8	261

MARE2 ¹	Microtubule-associated protein RP/EB family member 2; <i>MAPRE2</i>	36	37236	1	1	1	1	4	327
$UN45B^2$	Protein unc-45 homolog B; UNC45B	36	104979	2	1	2	1	2.7	931
NDUBA ¹	NADH dehydrogenase [ubiquinone] 1 β subcomplex subunit 10; <i>NDUFB10</i>	36	21048	2	2	2	2	17.4	172
CAD13 ¹	Cadherin-13; CDH13	36	78694	1	1	1	1	3.1	713
RTCB ¹	tRNA-splicing ligase RtcB homolog; C22orf28	35	55688	3	2	2	1	3.8	505
$TCPG^1$	T-complex protein 1 subunit g; CCT3	35	61066	5	2	4	1	13.8	545
TIM8A ¹	Mitochondrial import inner membrane translocase subunit Tim8 A; <i>TIMM8A</i>	34	11219	1	1	1	1	17.5	97
$CD47^1$	Leukocyte surface antigen CD47; CD47	33	35590	9	1	3	1	10.2	323
PYGB ¹	Glycogen phosphorylase, brain form; PYGB	33	97319	3	2	2	1	5.5	843
CAP1 ¹	Adenylyl cyclase-associated protein 1; CAP1	32	52325	5	2	2	1	8.8	475
TTYH3	Protein tweety homolog 3; TTYH3	32	58477	12	1	2	1	4.2	523
PP2AA ¹	Serine/threonine-protein phosphatase 2A catalytic subunit α isoform; <i>PPP2CA</i>	32	36142	2	1	2	1	12.6	309
NDUS5 ¹	NADH dehydrogenase [ubiquinone] Fe-S protein 5; <i>NDUFS5</i>	32	12737	1	1	1	1	11.3	106
PVRL1 ¹	Poliovirus receptor-related protein 1; PVRL1	31	57465	3	1	2	1	8.9	517
DPYL5 ¹	Dihydropyrimidinase-related protein 5; DPYSL5	31	61952	4	2	4	2	14.9	564
IDH3B ¹	Isocitrate dehydrogenase [NAD] subunit β , mitochondrial; <i>IDH3B</i>	31	42442	2	1	2	1	11.7	385
CTRO ¹	Citron p-interacting kinase; CIT	31	233339	15	4	9	1	6.4	2027
SGTA ¹	Small glutamine-rich tetratricopeptide re-peat- containing protein α; <i>SGTA</i>	31	34270	1	1	1	1	4.8	313
UB2V1 ¹	Ubiquitin-conjugating enzyme E2 variant 1; UBE2V1	31	16598	16	1	3	1	23.8	147
LGUL ¹	Lactoylglutathione lyase; GLO1	31	20992	2	2	1	1	8.7	184
LASP1 ¹	LIM and SH3 domain protein 1; LASP1	31	30097	3	2	2	1	9.2	261
PFD3 ¹	Prefoldin subunit 3; VBP1	30	22815	1	1	1	1	5.1	197
NDUB9 ¹	NADH dehydrogenase [ubiquinone] 1 β subcomplex subunit 9; <i>NDUFB9</i>	30	22045	2	1	1	1	8.9	179
NDUAC ¹	NADH dehydrogenase [ubiquinone] 1α subcomplex subunit 12; <i>NDUFA12</i>	30	17104	1	1	1	1	12.4	145
BDH2 ¹	3-hydroxybutyrate dehydrogenase type 2; <i>BDH2</i>	30	27049	1	1	1	1	8.6	245
KAD5 ¹	Adenylate kinase isoenzyme 5; AK5	30	63863	7	1	3	1	7.1	562
$WDR1^1$	WD repeat-containing protein 1; WDR1	29	66836	2	1	2	1	9.1	606
ARP3B ¹	Actin-related protein 3B; ACTR3B	29	48090	4	2	2	1	4.5	418
CX6A1 ¹	Cytochrome c oxidase subunit 6A1, mitochondrial; <i>COX6A1</i>	29	12147	3	1	3	1	53.2	109
RBP2 ¹	E3 SUMO-protein ligase RanBP2; RANBP2	29	362365	14	1	7	1	2.2	3224
$TOLIP^1$	Toll-interacting protein; TOLLIP	29	30490	4	1	2	1	9.1	274

CHL1 ¹	Neural cell adhesion molecule L1-like protein; CHL1	29	136070	4	2	3	1	3.6	1208
DEMA ¹	Dematin; EPB49	29	45600	2	1	2	1	6.2	405
NDUB6 ¹	NADH dehydrogenase [ubiquinone] 1 β subcomplex subunit 6; <i>NDUFB6</i>	29	15479	2	1	1	1	19.5	128
TF^1	Tissue factor; F3	29	33332	1	1	1	1	5.1	295
ODO1 ¹	2-oxoglutarate dehydrogenase, mitochondrial; OGDH	28	117059	5	1	3	1	4.4	1023
MPC2 ¹	Mitochondrial pyruvate carrier 2; MPC2	28	14327	4	1	3	1	43.3	127
$OTUB1^1$	Ubiquitin thioesterase OTUB1; OTUB1	28	31492	1	1	1	1	7	271
LRC8B ²	Leucine-rich repeat-containing protein 8B; LRRC8B	28	93528	2	1	1	1	1.7	803
GLP1R ¹	Glucagon-like peptide 1 receptor; GLP1R	28	53960	4	1	1	1	1.9	463
SYNPO ¹	Synaptopodin; SYNPO	27	99915	10	1	6	1	9.6	929
NDUA4 ¹	NADH dehydrogenase [ubiquinone] 1 α subcomplex subunit 4; <i>NDUFA4</i>	27	9421	3	1	1	1	12.3	81
DNM1L ¹	Dynamin-1-like protein; DNM1L	27	82339	11	2	5	2	9.1	736
HUWE1 ¹	E3 ubiquitin-protein ligase HUWE1; HUWE1	27	485523	4	1	3	1	0.9	4374
MLP3B ¹	Microtubule-associated proteins 1A/1B light chain 3B; <i>MAP1LC3B</i>	27	14679	2	1	1	1	12.8	125
CAMKV ²	CaM kinase-like vesicle-associated protein; CAMKV	27	54662	1	1	1	1	5.2	501
SIM2 ¹	Single-minded homolog 2; SIM2	26	73914	8	1	4	1	9.9	667
NP1L1 ¹	Nucleosome assembly protein 1-like 1; NAP1L1	26	45631	2	1	1	1	2.8	391
C1TC ¹	C-1-tetrahydrofolate synthase, cytoplasmic; MTHFD1	26	102180	3	1	3	1	5.3	935
GIT1 ¹	ARF GTPase-activating protein GIT1; GIT1	26	85030	2	1	1	1	1.8	761
AT8A1 ¹	Probable phospholipid-transporting ATPase IA; <i>ATP8A1</i>	26	132597	5	1	5	1	6.3	1164
ODB2 ¹	Lipoamide acyltransferase component of branched-chain α -keto acid dehydrogenase complex, mitochondrial; <i>DBT</i>	26	53852	4	2	3	1	11	482
WDR13 ¹	WD repeat-containing protein 13; WDR13	26	54289	2	1	2	1	6.6	485
ODO2 ¹	Dihydrolipoyllysine-residue succinyltransferase component of 2-oxoglutarate dehydrogenase complex, mitochondrial; <i>DLST</i>	26	49067	3	2	2	1	9.1	453
HPLN2 ¹	Hyaluronan and proteoglycan link protein 2; <i>HAPLN</i> 2	26	38378	3	1	2	1	6.5	340
FXYD7 ²	FXYD domain-containing ion transport regulator 7; <i>FXYD</i> 7	25	8689	2	1	1	1	20	80
CADM1 ¹	Cell adhesion molecule 1; CADM1	25	48935	1	1	1	1	5.2	442
RUFY1 ¹	RUN & FYVE domain-containing protein 1; RUFY1	25	80851	3	1	2	1	3.8	708
AAK1 ¹	AP2-associated protein kinase 1; AAK1	25	104562	6	1	5	1	8.8	961
$ACLY^1$	ATP-citrate synthase; ACLY	24	121674	7	1	4	1	5.5	1101
RTN1 ¹	Reticulon-1; RTN1	24	83851	2	2	1	1	3	776
TBCA ¹	Tubulin-specific chaperone A; TBCA	24	12904	2	1	2	1	17.6	108

ITSN1 ¹	Intersectin-1; ITSN1	23	196155	5	1	3	1 2.8 1721
CD59 ¹	CD59 glycoprotein; CD59	23	14795	2	1	1	1 10.2 128
PUS7 ¹	Pseudouridylate synthase 7 homolog; PUS7	23	75330	2	1	1	1 1.7 661
HINT2 ¹	Histidine triad nucleotide-binding protein 2, mitochondrial; <i>HINT2</i>	23	17208	2	1	2	1 20.9 163
DPY30 ¹	Protein dpy-30 homolog; DPY30	23	11243	1	1	1	1 20.2 99
LHPP ¹	Phospholysine phosphohistidine inorganic pyrophosphate phosphatase; <i>LHPP</i>	23	29432	1	1	1	1 10.7 270
CHCH3 ¹	Coiled-coil-helix-coiled-coil-helix domain- containing protein 3, mitochondrial; <i>CHCHD3</i>	23	26421	2	1	2	1 9.3 227
TUSC2 ¹	Tumor suppressor candidate 2; TUSC2	23	12066	3	1	2	1 40.9 110
D39U1 ¹	Epimerase family protein SDR39U1; SDR39U1	22	34840	4	2	2	1 9.1 319
PAP1L ²	Polyadenylate-binding protein 1-like; PABPC1L	22	68976	5	2	4	1 10.1 614
MYL6B ¹	Myosin light chain 6B; MYL6B	22	22864	3	2	2	1 13.9 208
ATP6 ¹	ATP synthase subunit α ; <i>MT-ATP6</i>	22	24801	1	1	1	1 4.4 226
ABI1 ¹	Abl interactor 1; ABI1	22	55161	3	1	1	1 3.7 508
AT5F1 ¹	ATP synthase subunit β , mitochondrial; <i>ATP5F1</i>	22	28947	6	2	2	1 10.5 256
$RM12^1$	39S ribosomal protein L12, mitochondrial; MRPL12	22	21563	1	1	1	1 12.6 198
PKHA8 ¹	Pleckstrin homology domain-containing family A member 8; <i>PLEKHA8</i>	21	58908	5	1	5	1 12.1 519
PRAF2 ¹	PRA1 family protein 2; PRAF2	21	19588	2	2	2	2 16.3 178
DECR ¹	2,4-dienoyl-CoA reductase, mitochondrial; DECR1	21	36330	2	1	2	1 11 335
CXA1 ¹	Gap junction α -1 protein; GJA1	21	43494	2	1	1	1 5.2 382
ADDG ¹	γ-adducin; ADD3	21	79447	2	1	2	1 4.7 706
AFG32 ¹	AFG3-like protein 2; AFG3L2	20	88984	6	1	5	1 11.4 797
CRBG3 ²	β/γ crystallin domain-containing protein 3; <i>CRYBG3</i>	20	117378	6	1	3	1 2.7 1022
$RSSA^1$	40S ribosomal protein SA; RPSA	20	32947	4	2	3	1 17.3 295
GLOD4 ¹	Glyoxalase domain-containing protein 4; GLOD4	20	35170	4	1	4	1 16.6 313
NDUV1 ¹	NADH dehydrogenase [ubiquinone] flavoprotein 1, mitochondrial; <i>NDUFV1</i>	20	51469	2	1	2	1 8.2 464
HPLN4 ²	Hyaluronan & proteoglycan link protein 4; <i>HAPLN4</i>	19	43402	3	2	1	1 4.7 402
PDC6I ¹	Programmed cell death 6-interacting protein; <i>PDCD6IP</i>	19	96590	2	1	1	1 3.9 868
SLN11 ¹	Schlafen family member 11; SLFN11	19	104309	1	1	1	1 1.3 901
PK1L2 ¹	Polycystic kidney disease protein 1-like 2; <i>PKD1L2</i>	19	275595	4	1	2	1 1.5 2459
$TCPZ^1$	T-complex protein 1 subunit ζ; CCT6A	18	58444	4	1	4	1 10.2 531
RDH14 ¹	Retinol dehydrogenase 14; RDH14	18	37184	2	1	2	1 6.5 336
PKHH1 ²	Pleckstrin homology domain-containing family H member 1; <i>PLEKHH1</i>	18	152733	11	1	6	1 5.9 1364

NDUA7 ¹	NADH dehydrogenase [ubiquinone] 1 α subcomplex subunit 7; <i>NDUFA7</i>	17	12601	1	1	1	1	20.4	113
QOR^1	Quinone oxidoreductase; CRYZ	17	35356	3	1	1	1	3.3	329
CAND2 ¹	Cullin-associated NEDD8-dissociated protein 2; <i>CAND2</i>	17	136653	3	1	2	1	2.1	1236
ODP2 ¹	Dihydrolipoyllysine-residue acetyltransferase component of pyruvate dehydrogenase complex, mitochondrial; <i>DLAT</i>	17	69466	13	1	4	1	9.6	647
COTL1 ¹	Coactosin-like protein; COTL1	17	16049	1	1	1	1	11.3	142
AK1A1 ¹	Alcohol dehydrogenase [NADP ⁺]; AKR1A1	17	36892	2	1	2	1	6.5	325
$PCCB^1$	Propionyl-CoA carboxylase β chain, mitochondrial; <i>PCCB</i>	17	58806	1	1	1	1	2.4	539
CG025 ¹	UPF0415 protein C7orf25; C7orf25	16	46707	3	1	2	1	7.8	421
$HPRT^1$	Hypoxanthine-guanine phosphoribosyl- transferase; <i>HPRT1</i>	16	24792	1	1	1	1	10.6	218
$DBNL^1$	Drebrin-like protein; DBNL	16	48463	4	1	3	1	13.3	430
AK1BA ¹	Aldo-keto reductase family 1 member B10; AKR1B10	16	36225	1	1	1	1	5.4	316
PI42C ¹	Phosphatidylinositol 5-phosphate 4-kinase type- 2γ; <i>PIP4K2C</i>	16	47441	3	1	2	1	9.3	421
CLCN4 ¹	H ⁺ /Cl ⁻ exchange transporter 4; <i>CLCN4</i>	16	85774	19	2	2	1	2.9	760
NDRG3 ¹	Protein NDRG3; NDRG3	16	41896	1	1	1	1	9.9	375
KCNG2 ¹	K ⁺ voltage-gated channel subfamily G member 2; <i>KCNG2</i>	16	52176	6	1	1	1	4.7	466
ANXA6 ¹	Annexin A6; ANXA6	16	76168	3	1	3	1	5.8	673
ITIH3 ¹	Inter- α -trypsin inhibitor heavy chain H3; <i>ITIH3</i>	15	100072	2	1	2	1	4.3	890
SYUA ¹	α-synuclein; SNCA	15	14451	4	1	2	1	22.1	140
GCSH^1	Glycine cleavage system H protein, mitochondrial; GCSH	15	19101	1	1	1	1	13.3	173
UBP20 ¹	Ubiquitin carboxyl-terminal hydrolase 20; USP20	15	103763	4	1	2	1	2.8	914
CCD19 ¹	Coiled-coil domain-containing protein 19, mitochondrial; <i>CCDC19</i>	15	65803	19	1	3	1	7.3	551
DMXL2 ¹	DmX-like protein 2; DMXL2	15	342962	17	1	10	1	4.6	3036
AQP8 ²	Aquaporin-8; AQP8	15	27706	1	1	1	1	6.1	261
TIM9 ¹	Mitochondrial import inner membrane translocase subunit Tim9; <i>TIMM9</i>	15	10599	2	1	1	1	16.9	89
$THIM^1$	3-ketoacyl-CoA thiolase, mitochondrial; ACAA2	15	42354	1	1	1	1	7.1	397
PRAF3 ¹	PRA1 family protein 3; ARL6IP5	15	21600	3	1	2	1	18.1	188
SYNE1 ¹	Nesprin-1; SYNE1	14	1017127	29	1	21	1	3.5	8797
REC8 ²	Meiotic recombination protein REC8 homolog; REC8	14	62916	20	1	2	1	4.8	547
F86C2 ⁵	Putative protein FAM86C2P; FAM86C2P	14	18865	3	1	3	1	26.7	165
SORCN ¹	Sorcin; SRI	14	21947	3	1	2	1	17.2	198
PAPS2 ¹	Bifunctional 3'-phosphoadenosine 5'-phospho- sulfate synthase 2; <i>PAPSS2</i>	14	70027	6	1	1	1	2.6	614

							Pa	nge	250
RL11 ¹	60S ribosomal protein L11; RPL11	13	20468	1	1	1	1	7.9	178
$SV2B^2$	Synaptic vesicle glycoprotein 2B; SV2B	13	78248	2	1	2	1	4.4	683
THIC ¹	Acetyl-CoA acetyltransferase, cytosolic; ACAT2	13	41838	3	1	3	1	18.9	397
RIF1 ¹	Telomere-associated protein RIF1; RIF1	13	276461	11	1	5	1	3.2	2472
RPB1 ¹	DNA-directed RNA polymerase II subunit RPB1; <i>POLR2A</i>	13	218408	5	1	4	1	1.9	1970
\mathbf{FETA}^1	a-fetoprotein: AFP	13	70458	1	1	1	1	26	609

Notes: The MASCOT software arranges the proteins in order of their score, and then groups similar proteins in score order below each initial entry. ¹, Abbreviated protein name; all names in this table had the suffix "_HUMAN"; the superscripted number after the name gives the protein existence (PE) score in the Uniprot database, for which 5 levels of evidence are provided: 1, evidence at the protein level, 2, evidence at the transcript level, 3, inferred from homology, 4, predicted, 5, uncertain; ², All descriptions contained the entry OS=*Homo sapiens*; gene names in *CAPITAL ITALICS*; ³, Score; ⁴, Molecular Mass, Da; ⁵, N° of Matches; ⁶, N° of significant matches; ⁷, N° of sequences found; ⁸, N° of significant sequences found; ⁹, % Cover of the sequence; ¹⁰, Length in N° of amino acid residues.

Abbrev ¹	Description ²	Score 3	Mol Mass ⁴	Mc 5	Ms_{6}	Sq 7	S s 8	Cov	Lngt
HS90A ¹	Heat shock protein HSP 90-α; HSP90AA1	2316	85006	109	86	25	20	32	732
$HS90B^1$	Heat shock protein HSP 90-β; HSP90AB1	2117	83554	105	77	27	20	35.1	724
$ENPL^1$	Endoplasmin; HSP90B1	542	92696	36	24	13	9	19.7	803
TRAP1 ¹	Heat shock protein 75 kDa, mitochondrial; TRAP1	594	80345	14	12	1	1	2	704
HS904 ⁵	Putative heat shock protein HSP 90- α A4; <i>HSP90AA4P</i>	430	47796	17	17	2	2	5.7	418
H90B3 ⁵	Putative heat shock protein HSP 90-β-3; <i>HSP90AB3P</i>	401	68624	39	21	12	8	14.4	597
HS902 ¹	Putative heat shock protein HSP 90- α A2; <i>HSP90AA2</i>	331	39454	17	14	3	3	9.3	343
H90B2 ¹	Putative heat shock protein HSP 90- β 2; <i>HSP90AB2P</i>	327	44492	23	15	7	4	16	381
H90B4 ⁵	Putative heat shock protein HSP 90- β 4; <i>HSP90AB4P</i>	217	58855	8	8	2	2	5.5	505
HS905 ¹	Putative heat shock protein HSP 90- α A5; <i>HSP90AA5P</i>	53	38942	12	5	6	3	15.3	334
ENPLL ⁵	Putative endoplasmin-like protein; HSP90B2P	14	46343	2	1	2	1	5	399
AT1A1 ¹	Na ⁺ /K ⁺ -transporting ATPase subunit α -1; ATP1A1	2165	114135	79	62	21	18	20.9	1023
AT1A3 ¹	Na ⁺ /K ⁺ -transporting ATPase subunit α -3; <i>ATP1A3</i>	1798	113102	74	57	22	19	23.2	1013
$AT1A2^1$	Na ⁺ /K ⁺ -transporting ATPase subunit α -2; <i>ATP1A2</i>	1381	113505	55	40	20	16	21.7	1020
AT1A4 ¹	Na ⁺ /K ⁺ -transporting ATPase subunit α -4; ATP1A4	180	115119	18	10	5	5	4.4	1029
ATP4A ¹	K ⁺ -transporting ATPase α chain 1; <i>ATP4A</i>	158	115756	7	3	5	2	6.5	1035
$AT12A^1$	K ⁺ -transporting ATPase α chain 2; <i>ATP12A</i>	133	116292	14	8	4	4	3.3	1039
HXK1 ¹	Hexokinase-1; HK1	2134	103561	129	90	40	33	39.1	917
HKDC1 ²	Putative hexokinase HKDC1; HKDC1	53	103790	10	3	4	1	4.7	917
HXK2 ¹	Hexokinase-2; HK2	43	103739	8	2	5	2	6.2	917
HXK3 ¹	Hexokinase-3; HK3	38	100616	6	1	4	1	5.3	923
CLH1 ¹	Clathrin heavy chain 1; CLTC	1623	193260	76	55	29	23	21.5	1675
CLH2 ¹	Clathrin heavy chain 2; CLTCL1	482	189020	17	13	7	5	4.1	1640
DYN1 ¹	Dynamin-1; DNM1	1503	97746	104	67	28	24	35.1	864
DYN3 ¹	Dynamin-3; DNM3	341	98084	38	19	11	7	15.7	869
DYN2 ¹	Dynamin-2; DNM2	357	98345	31	19	6	5	7.2	870
ACON ¹	Aconitate hydratase, mitochondrial; ACO2	1185	86113	54	38	16	13	27.4	780
UBA1 ¹	Ubiquitin-like modifier-activating enzyme 1; UBA1	914	118858	33	27	14	13	18.9	1058
MYPR ¹	Myelin proteolipid protein; PLP1	876	30855	41	30	6	5	24.9	277
SPTB2 ¹	Spectrin β chain, non-erythrocytic 1; <i>SPTBN1</i>	777	275237	50	31	27	14	15.1	2364
SPTN2 ¹	Spectrin β chain, non-erythrocytic 2; <i>SPTBN2</i>	54	272526	13	3	6	2	3.1	2390
ACTN1 ¹	α-actinin-1; ACTN1	703	103563	33	24	10	7	15.1	892
ACTN4 ¹	α-actinin-4; ACTN4	684	105245	37	23	13	6	18.8	911
ACTN2 ¹	α-actinin-2; ACTN2	194	104358	8	5	5	2	8.1	894
ACTN3 ¹	α-actinin-3; ACTN3	149	103917	5	3	3	1	4.2	901
NNTM ¹	NAD(P) transhydrogenase, mitochondrial; NNT	633	114564	47	29	15	11	18.8	1086

Table 4.4. Proteins identified by MASCOT search using SCX fractionation

$PYGB^1$	Glycogen phosphorylase, brain form; PYGB	633 97319	44	29 18	12 23 843
PYGM ¹	Glycogen phosphorylase, muscle form; PYGM	267 97487	29	16 11	7 14.5 842
$PYGL^1$	Glycogen phosphorylase, liver form; PYGL	187 97486	13	10 3	3 2.7 847
SPTN1 ¹	Spectrin α chain, non-erythrocytic 1; SPTAN1	610 285163	65	34 36	16 17.4 2472
GELS ¹	Gelsolin; GSN	513 86043	20	14 5	5 9.2 782
CAND1 ¹	Cullin-associated NEDD8-dissociated protein 1; CAND1	504 137999	32	24 15	10 14.8 1230
UBP5 ¹	Ubiquitin carboxyl-terminal hydrolase 5; USP5	462 96638	29	20 12	9 18.3 858
TERA ¹	Transitional endoplasmic reticulum ATPase; VCP	436 89950	35	14 15	7 22.8 806
KATL2 ²	Katanin p60 ATPase-containing subunit A-like 2; <i>KATNAL2</i>	126 61557	7	4 2	1 4.8 538
AP2A1 ¹	AP-2 complex subunit α -1; <i>AP2A1</i>	432 108561	38	23 15	14 17.6 977
$AP2A2^1$	AP-2 complex subunit α -2; <i>AP2A2</i>	376 104807	27	18 14	10 18.6 939
E41L3 ¹	Band 4.1-like protein 3; EPB41L3	397 121458	24	13 14	8 17.8 1087
ICAM5 ¹	Intercellular adhesion molecule 5; ICAM5	375 98766	19	14 9	6 13.1 924
$HS74L^1$	Heat shock 70 kDa protein 4L; HSPA4L	373 95479	22	14 11	6 16.2 839
HS105 ¹	Heat shock protein 105 kDa; HSPH1	327 97716	25	15 15	8 22.8 858
$HSP74^1$	Heat shock 70 kDa protein 4; HSPA4	192 95127	20	8 12	6 19 840
VPP1 ¹	V-type proton ATPase 116 kDa subunit a isoform 1; <i>ATP6V0A1</i>	349 97148	36	18 12	8 16.1 837
$AMPH^1$	Amphiphysin; AMPH	329 76381	28	15 10	8 17.6 695
EAA1 ¹	Excitatory amino acid transporter 1; SLC1A3	313 59705	10	75	2 12.9 542
$EF2^1$	Elongation factor 2; <i>EEF2</i>	300 96246	17	12 9	5 12.8 858
NFASC ¹	Neurofascin; NFASC	292 150789	17	12 6	4 5.4 1347
CNTN1 ¹	Contactin-1; CNTN1	289 114104	37	21 13	9 16.7 1018
PSA^1	Puromycin-sensitive aminopeptidase; NPEPPS	277 103895	39	18 19	12 21.8 919
PSAL ²	Puromycin-sensitive aminopeptidase-like protein; <i>NPEPPSL1</i>	58 54226	11	49	3 20.9 478
$CSPG2^1$	Versican core protein; VCAN	274 374585	16	98	4 3 3 3 9 6
EAA2 ¹	Excitatory amino acid transporter 2; SLC1A2	272 62577	7	4 4	2 9.6 574
ODO1 ¹	2-oxoglutarate dehydrogenase, mitochondrial; OGDH	253 117059	29	13 12	9 13.1 1023
OGDHL ¹	2-oxoglutarate dehydrogenase-like, mitochondrial; OGDHL	89 115264	20	10 10	7 12.4 1010
DPP6 ¹	Dipeptidyl aminopeptidase-like protein 6; DPP6	246 98154	17	96	4 9.5 865
ANK2 ¹	Ankyrin-2; ANK2	227 435957	33	10 21	6 6.7 3957
ANK1 ¹	Ankyrin-1; ANK1	16 207334	4	1 3	1 2.6 1881
PYC^1	Pyruvate carboxylase, mitochondrial; PC	223 130293	19	10 8	4 9.2 1178
SYAC ¹	AlaninetRNA ligase, cytoplasmic; AARS	217 107484	8	74	3 5.6 968
ADDA ¹	α-adducin; ADD1	216 81304	9	65	3 9.5 737
$4F2^1$	4F2 cell-surface antigen heavy chain; SLC3A2	207 68180	16	10 9	5 17.3 630
AL1L1 ¹	Cytosolic 10-formyltetrahydrofolate dehydrogenase; <i>ALDH1L1</i>	205 99622	17	9 11	6 15.5 902

MAG^1	Myelin-associated glycoprotein; MAG	202 69880	12	8	6	4 14	.1 626
TBA1A ¹	Tubulin α -1A chain; <i>TUBA1A</i>	199 50788	14	8	5	4 17	.7 451
TBA3C ¹	Tubulin α -3C/D chain; <i>TUBA3C</i>	49 50612	9	4	4	3 14	.4 450
TBA4A ¹	Tubulin α -4A chain; <i>TUBA4A</i>	42 50634	8	3	4	2 15	.6 448
TBA8 ¹	Tubulin α -8 chain; <i>TUBA8</i>	27 50746	5	1	4	1 13	.1 449
\mathbf{UBB}^1	Polyubiquitin-B; UBB	199 25803	8	6	3	2 14	.4 229
LONM ¹	Lon protease homolog, mitochondrial; LONP1	197 106936	20	9	12	5 13	.2 959
KCRB ¹	Creatine kinase B-type; CKB	193 42902	6	4	3	2	10 381
NCAM1 ¹	Neural cell adhesion molecule 1; NCAM1	192 95370	14	9	8	6 13	.5 858
TENR ¹	Tenascin-R; TNR	179 151805	10	3	6	2 5	.4 1358
C1TC ¹	C-1-tetrahydrofolate synthase, cytoplasmic; MTHFD	176 102180	13	8	9	5 13	.7 935
SV2A ¹	Synaptic vesicle glycoprotein 2A; SV2A	162 83440	8	8	3	3 3	.6 742
$ADDB^1$	β-adducin; ADD2	159 81260	7	4	2	2 3	.6 726
NFM ¹	Neurofilament medium polypeptide; NEFM	158 102468	7	4	4	2 4	.9 916
NFH^1	Neurofilament heavy polypeptide; NEFH	158 112639	5	3	3	1 2	.8 1026
GANAB ¹	Neutral α -glucosidase AB; <i>GANAB</i>	150 107263	13	6	6	3 8	.2 944
IMB1 ¹	Importin subunit β-1; <i>KPNB1</i>	150 98420	4	3	2	1 3	.7 876
EPHA4 ¹	Ephrin type-A receptor 4; EPHA4	149 111443	10	7	4	3 5	.3 986
EPHA3 ¹	Ephrin type-A receptor 3; <i>EPHA3</i>	36 111714	2	2	1	1 1	.3 983
EPHA2 ¹	Ephrin type-A receptor 2; EPHA2	32 109679	4	1	3	1 4	.6 976
NCAM2 ¹	Neural cell adhesion molecule 2; NCAM2	147 93786	9	4	6	2 9	.8 837
NCKP1 ¹	Nck-associated protein 1; NCKAP1	138 130018	12	6	7	4 7	.9 1128
SYIM ¹	IsoleucinetRNA ligase, mitochondrial; IARS2	126 114688	8	3	6	2 8	.7 1012
$CYFP2^1$	Cytoplasmic FMR1-interacting protein 2; CYFIP2	123 150298	10	6	5	2 4	.4 1278
CYFP1 ¹	Cytoplasmic FMR1-interacting protein 1; CYFIP1	104 146742	9	3	3	1 3	.4 1253
IMMT ¹	Mitochondrial inner membrane protein; IMMT	117 84026	17	8	8	5 13	.5 758
E41L1 ¹	Band 4.1-like protein 1; EPB41L1	116 99012	20	11	9	8 13	.2 881
MAP1B ¹	Microtubule-associated protein 1B; MAP1B	115 271665	12	7	7	4 4	.3 2468
CALX ¹	Calnexin; CANX	115 67982	8	8	3	3 5	.2 592
MOG^1	Myelin-oligodendrocyte glycoprotein; MOG	114 28574	4	3	2	2 10	0.1 247
MYO1D ¹	Unconventional myosin-Id; MYO1D	114 116927	10	4	6	19	.7 1006
MAP2 ¹	Microtubule-associated protein 2; MAP2	113 199860	9	3	7	2 18	.4 478
NRCAM ¹	Neuronal cell adhesion molecule; NRCAM	110 144655	6	4	4	3 4	.4 1304
KIF5C ¹	Kinesin heavy chain isoform 5C; KIF5C	108 109997	17	8	11	4 15	.5 957
KIF5A ¹	Kinesin heavy chain isoform 5A; KIF5A	97 118161	10	5	5	2 5	.9 1032
CTNB1 ¹	Catenin β-1; <i>CTNNB1</i>	105 86069	11	6	7	4 12	.7 781
AP180 ¹	Clathrin coat assembly protein AP180; SNAP91	94 92672	7	2	4	1 5	.3 907
TBB2A ¹	Tubulin β-2A chain; <i>TUBB2A</i>	82 50274	5	4	3	2 7	.9 445
$TBB2B^1$	Tubulin β-2B chain; <i>TUBB2B</i>	64 50377	3	2	2	1 4	.3 445

DLG4 ¹	Disks large homolog 4; DLG4	81 80788	13	6	8	5	14.6	724
LPHN1 ¹	Latrophilin-1; LPHN1	80 164609	3	2	2	1	1.8	1474
AP2B1 ¹	AP-2 complex subunit β ; <i>AP2B1</i>	77 105398	11	5	8	3	10	937
ESYT1 ¹	Extended synaptotagmin-1; ESYT1	76 123293	2	2	1	1	1.2	1104
$ACTB^1$	Actin, cytoplasmic 1; ACTB	73 42052	6	2	3	1	15.2	375
CNTP1 ¹	Contactin-associated protein 1; CNTNAP1	70 158220	3	2	2	1	1.7	1384
$AT2A2^1$	Sarcoplasmic/endoplasmic reticulum Ca ²⁺ ATPase 2; <i>ATP2A2</i>	69 116336	9	3	5	2	6.3	1042
AT2A1 ¹	Sarcoplasmic/endoplasmic reticulum Ca ²⁺ ATPase 1; ATP2A1	40 111550	5	1	3	1	3.2	1001
EF1A2 ¹	Elongation factor 1- α 2; <i>EEF1A2</i>	66 50780	4	2	3	1	10.8	463
L2GL1 ¹	Lethal(2) giant larvæ protein homolog 1; LLGL1	62 116657	2	2	1	1	1.1	1064
HIP1R ¹	Huntingtin-interacting protein 1-related protein; HIP1R	61 119999	8	2	5	1	6.5	1068
PLEC ¹	Plectin; PLEC	61 533462	19	3	18	3	5	4684
$PGCB^1$	Brevican core protein; BCAN	60 100539	3	1	2	1	2.5	911
CTND2 ¹	Catenin δ-2; CTNND2	60 133658	7	2	5	1	5.9	1225
DYHC1 ¹	Cytoplasmic dynein 1 heavy chain 1; DYNC1H1	59 534809	13	4	9	1	2.5	4646
$OMGP^1$	Oligodendrocyte-myelin glycoprotein; OMG	59 50032	7	4	2	2	6.6	440
MAP1A ¹	Microtubule-associated protein 1A; MAP1A	58 306781	13	3	11	2	5.2	2803
ADA22 ¹	Disintegrin and metalloproteinase domain- containing protein 22; <i>ADAM22</i>	58 102991	1	1	1	1	1.5	906
$PREP^1$	Presequence protease, mitochondrial; PITRM1 pe 1	58 118407	2	2	1	1	1.2	1037
PDE2A ¹	cGMP-dependent 3',5'-cyclic phosphodiesterase; <i>PDE2A</i> pe 1	57 107360	5	4	3	2	4.5	941
$E41L2^1$	Band 4.1-like protein 2; EPB41L2	54 113032	7	3	3	2	3.5	1005
AT2B1 ¹	Plasma membrane Ca ²⁺ -transporting ATPase 1; ATP2B1	51 139637	6	1	6	1	6.2	1258
ATPA ¹	ATP synthase subunit α , mitochondrial; <i>ATP5A1</i>	50 59828	4	1	3	1	8.1	553
NLGN3 ¹	Neuroligin-3; NLGN3	50 94463	3	1	3	1	5.2	848
AT1B1 ¹	Na^+/K^+ -transporting ATPase subunit β -1; <i>ATP1B1</i>	48 35438	6	4	3	2	12.9	303
LIGO1 ¹	Leucine-rich repeat and immunoglobulin-like domain- containing nogo receptor-interacting protein 1; <i>LINGO1</i>	47 70687	5	2	3	1	4.7	620
$BRSK1^1$	Serine/threonine-protein kinase BRSK1; BRSK1	47 85604	7	1	5	1	8.1	778
WDR47 ¹	WD repeat-containing protein 47; WDR47	47 103424	6	1	5	1	7.8	919
EFR3B ²	Protein EFR3 homolog B; EFR3B	46 93397	2	1	2	1	3.1	817
SND1 ¹	Staphylococcal nuclease domain-containing protein 1; SND1	45 102618	9	2	5	1	6.5	910
SC6A1 ¹	Na ⁺ - and Cl ⁻ -dependent GABA transporter 1; SLC6A1	44 67827	4	2	2	1	5.5	599
CAD13 ¹	Cadherin-13; CDH13	44 78694	4	3	3	2	4.2	713
AUXI ¹	Putative tyrosine-protein phosphatase auxilin; DNAJC6	43 100675	5	2	5	2	8	913
BIN1 ¹	Myc box-dependent-interacting protein 1; BIN1	43 64887	8	2	4	1	10.1	593
$ACLY^1$	ATP-citrate synthase; ACLY	43 121674	5	3	4	2	5.4	1101
EXOC4 ¹	Exocyst complex component 4; EXOC4	42 111170	4	2	3	1	4.7	974
$SV2B^2$	Synaptic vesicle glycoprotein 2B; SV2B	40 78248	3	2	2	1	4.1	683

$NELL2^1$	Protein kinase C-binding protein NELL2; NELL2	39 96359	1	1	1	1	1.1	816
CTNA2 ¹	Catenin α -2; <i>CTNNA2</i>	37 106045	9	1	9	1	12.9	953
GRIA2 ¹	Glutamate receptor 2; GRIA2	37 99385	8	4	4	4	5.9	883
GRIA1 ¹	Glutamate receptor 1; GRIA1	34 102240	8	2	4	2	5.5	906
$EEA1^1$	Early endosome antigen 1; EEA1	37 163337	2	1	2	1	1.8	1411
BCAS3 ¹	Breast carcinoma-amplified sequence 3; BCAS3	36 102484	4	1	3	1	3.8	928
HGS^{1}	Hepatocyte growth factor-regulated tyrosine kinase substrate; <i>HGS</i>	35 86708	1	1	1	1	1.5	777
KIF2A ¹	Kinesin-like protein KIF2A; KIF2A	35 80589	5	2	4	1	5.7	706
GIT1 ¹	ARF GTPase-activating protein GIT1; GIT1	35 85030	4	2	2	2	3.9	761
SNG1 ¹	Synaptogyrin-1; SYNGR1	34 25667	1	1	1	1	5.2	233
$K2C1^1$	Keratin, type II cytoskeletal 1; KRT1	34 66170	5	2	3	2	5	644
\mathbf{GFAP}^1	Glial fibrillary acidic protein; GFAP	22 49907	5	2	4	2	11.1	432
$K2C4^1$	Keratin, type II cytoskeletal 4; KRT4	22 57649	4	1	2	1	3.7	534
FAK2 ¹	Protein-tyrosine kinase 2-β; <i>PTK2B</i>	33 117112	15	3	9	2	12.2	1009
ANFY1 ¹	Ankyrin repeat & FYVE domain-containing protein 1; ANKFY1	32 129915	4	1	4	1	5	1169
NMDZ1 ¹	Glutamate receptor ionotropic, NMDA 1; GRIN1	32 105990	7	1	4	1	5.9	938
$SYGP1^1$	Ras GTPase-activating protein SynGAP; SYNGAP1	32 149160	7	1	5	1	6.1	1343
USO1 ¹	General vesicular transport factor p115; USO1	31 108740	2	2	2	2	2.3	962
TPPC9 ¹	Trafficking protein particle complex subunit 9; TRAPPC9	31 129817	2	1	1	1	0.8	1148
$ITAV^1$	Integrin α -V; <i>ITGAV</i>	31 117048	3	1	3	1	4.5	1048
NMD3A ¹	Glutamate receptor ionotropic, NMDA 3A; GRIN3A	31 126525	34	1	1	1	0.6	1115
COPG2 ¹	Coatomer subunit γ-2; <i>COPG2</i>	30 98700	8	1	4	1	5.7	871
PLCA ²	1-acyl-sn-glycerol-3-phosphate acyltransferase α ; AGPAT1	30 32038	2	1	1	1	3.5	283
IPO5 ¹	Importin-5; IPO5	29 125032	3	2	2	2	2.3	1097
$TBCD^1$	Tubulin-specific chaperone D; TBCD	29 134283	5	1	3	1	3.8	1192
$ADDG^1$	γ-adducin; ADD3	28 79447	3	2	2	1	3.4	706
INP4A ¹	Type I inositol 3,4-bisphosphate 4-phosphatase; INPP4A	28 111539	3	1	3	1	4.6	977
NED4L ¹	E3 ubiquitin-protein ligase NEDD4-like; NEDD4L	28 112204	6	2	3	1	3.8	975
SGIP1 ¹	SH3-containing GRB2-like protein 3-interacting protein 1; <i>SGIP1</i>	27 89453	6	3	3	2	4	828
GRIA3 ¹	Glutamate receptor 3; GRIA3	26 101662	3	1	2	1	4	894
UTRO ¹	Utrophin; UTRN	26 396444	7	1	6	1	2.3	3433
BASP1 ¹	Brain acid soluble protein 1; BASP1	26 22680	1	1	1	1	12.3	227
IQEC1 ¹	IQ motif & SEC7 domain-containing protein 1; IQSEC1	26 109103	1	1	1	1	1.5	963
SRCN1 ¹	SRC kinase signaling inhibitor 1; SRCIN1	25 112670	9	1	6	1	10.2	1055
SORT ¹	Sortilin; SORT1	25 92979	4	1	3	1	4.5	831
MLL4 ¹	Histone-lysine N-methyltransferase MLL4; WBP7	25 297664	10	1	5	1	2.8	
XPO2 ¹	Exportin-2; CSE1L	25 111145	5	1	4	1	4.5	971
CRNS1 ¹	Carnosine synthase 1; CARNS1	24 89910	1	1	1	1	1.3	827

						Pa	age	256
KPCE ¹	Protein kinase C ε type; <i>PRKCE</i>	24 84989	2	2	1	1	2.4	737
AP3B2 ¹	AP-3 complex subunit β -2; <i>AP3B2</i>	24 119612	2	1	1	1	1.3 1	1082
DICER ¹	Endoribonuclease Dicer; DICER1	24 221279	3	1	1	1	0.4 1	1922
$LR10B^4$	Leucine-rich repeat-containing protein 10B; LRRC10B	24 32864	4	1	3	1	14.7	292
$SYNE3^1$	Nesprin-3; SYNE3	23 112774	4	1	4	1	6.4	975
MVP^1	Major vault protein; MVP	23 99551	4	1	3	1	4.1	893
$FOLH1^1$	Glutamate carboxypeptidase 2; FOLH1	22 84506	3	1	3	1	5.7	750
PTPRS ¹	Receptor-type tyrosine-protein phosphatase S; PTPRS	22 218159	7	2	5	1	4.1 1	948
$A4^1$	Amyloid βA4 protein; APP	22 87914	4	2	3	1	5.6	770
MBP^1	Myelin basic protein; MBP	22 33097	4	1	1	1	3.9	304
SYN1 ¹	Synapsin-1; SYN1	22 74237	2	1	2	1	5.8	705
IL25 ¹	Interleukin-25; IL25	21 20887	5	2	1	1	5.6	177
$EMC1^1$	ER membrane protein complex subunit 1; EMC1	21 112145	2	1	1	1	1.3	993
SPTN4 ¹	Spectrin β chain, non-erythrocytic 4; <i>SPTBN4</i>	21 290005	9	1	7	1	3.8 2	2564
DPP10 ¹	Inactive dipeptidyl peptidase 10; DPP10	21 91401	2	1	2	1	3.6	796
$APOB^1$	Apolipoprotein B-100; APOB	20 516651	4	1	4	1	1.24	4563
DDX58 ¹	Probable ATP-dependent RNA helicase DDX58; DDX58	19 108014	14	2	4	1	3.9	925
ZMYM3 ¹	Zinc finger MYM-type protein 3; ZMYM3	18 156101	4	1	4	1	2.7 1	1370
LPIN1 ²	Phosphatidate phosphatase LPIN1; LPIN1	18 99287	4	1	3	1	6.2	890
UBE4A ¹	Ubiquitin conjugation factor E4 A; UBE4A	17 123565	5	1	3	1	4.1 1	1066
$PLLP^1$	Plasmolipin; PLLP	17 20087	1	1	1	1	12.6	182
CCL28 ¹	C-C motif chemokine 28; CCL28	17 14670	3	1	3	1	18.9	127
TAU^1	Microtubule-associated protein tau; MAPT	17 79108	4	1	2	1	3.2	758
NXPE2 ²	NXPE family member 2; <i>NXPE2</i>	16 65601	5	1	1	1	3	559
DSCL1 ¹	Down syndrome cell adhesion molecule-like protein 1; <i>DSCAML1</i>	15 226147	2	1	2	1	1.1 2	2053
DYH9 ¹	Dynein heavy chain 9, axonemal; DNAH9	15 515599	17	1	16	1	4.4 4	1486
MK06 ¹	Mitogen-activated protein kinase 6; MAPK6	15 83256	4	1	3	1	6.4	721
LRC52 ¹	Leucine-rich repeat-containing protein 52; LRRC52	14 35731	2	1	2	1	12.5	313
FBX47 ²	F-box only protein 47; FBXO47	13 52846	20	1	2	1	8	452
$CO2A1^1$	Collagen α -1(II) chain; <i>COL2A1</i>	13 142782	3	1	2	1	2.4 1	1487

Notes as for Table 4.3