

Controlling the Generation of Multiple Counterexamples

 in LTL Model Checking

Sentot Kromodimoeljo

Bachelor of Engineering

A thesis submitted for the degree of Doctor of Philosophy at

The University of Queensland in 2014

School of Information Technology and Electrical Engineering

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/43360704?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i

Abstract

The focus of traditional model checking has been on the verification problem where coun-

terexamples play a secondary role. In many potential uses of model checkers, however,

counterexamples play a primary role. For example, in safety analysis, achieving perfect

safety in the system being analysed is often impossible or too expensive. In such a case,

the analyst is interested in discovering all of the situations that can lead to unsafe con-

ditions in order to assess their likelihood. These situations appear as counterexamples

to a system safety property expressed as a temporal logic formula in model checking.

This thesis proposes an approach to model checking when counterexample generation is

the primary goal. Model checking is viewed as a search for counterexamples rather than

simply ensuring that a specification is satisfied by a model. The temporal logic used is

Linear Temporal Logic (LTL).

Most existing model checkers stop after the first counterexample is found. The few

that can generate multiple counterexample paths typically generate too many counterex-

ample paths that are slight variations of each other. For LTL, a counterexample path

is an infinite sequence of states, and the number of counterexample paths for a model

checking problem can be infinite. Typically, the analyst is interested in a finite number of

classes of counterexample, with each class represented by a single counterexample path.

However, the classes of interest are often specific to the problem domain. An approach

explored in this thesis is to control the generation of counterexample paths by allowing

the analyst to direct the search for a counterexample path to rule in or rule out certain

classes of counterexamples. The counterexample paths generated are of the so-called

lasso form, each consisting of a prefix part (a possibly empty finite sequence of states)

and a cycle part (a non-empty finite sequence of states that is repeated forever).

The main technique proposed for controlled generation of counterexamples within a

symbolic framework is called directed counterexample generation. The search for a coun-

terexample path is directed using two kinds of constraints: a global constraint which is a

state property that must be satisfied by all states in the counterexample path, and a cycle

constraint which is a state property that must be satisfied by at least one state in the cy-

cle part of a counterexample path. While global constraints can be easily integrated with

existing techniques for counterexample path generation, cycle constraints entail a search

technique different from the existing techniques. As well as controlling the generation of

multiple counterexample paths, the use of constraints can greatly reduce the search space

in generating individual counterexample paths. The framework together with directed

counterexample generation provide an infrastructure for exploring the counterexample

space in a model checking problem.

ii

Model checking, and thus counterexample generation, suffers from the state explosion

problem. Although many techniques have been developed to mitigate the state explosion

problem in model checking, including symbolic model checking, no best single combi-

nation of techniques for model checking and counterexample generation has been found

and it is unlikely that one will be found, since the state explosion problem cannot in

general be eliminated. The approach in this thesis is to develop a framework for LTL

model checking and counterexample generation where different techniques and strategies

can be mixed and matched, including fixpoint and on-the-fly techniques. The proposed

framework is intended to support the analysis of finite-state asynchronous systems with

interleaving semantics.

The framework is independent of the modelling notation, but the Behavior Tree (BT)

notation is used as a concrete example notation for modelling finite-state asynchronous

systems. A method for translating models in a substantial subset of the BT notation

into objects in the framework is provided. As a proof of concept, a prototype that

incorporates the proposed techniques within the framework has been developed. The

prototype includes a translator from the BT notation. Experiments with the prototype

were performed to demonstrate the advantages of the proposed approach and assess the

effects of model checking strategies on directed counterexample generation.

iii

Declaration by author

This thesis is composed of my original work, and contains no material previously published

or written by another person except where due reference has been made in the text. I have

clearly stated the contribution by others to jointly-authored works that I have included

in my thesis.

I have clearly stated the contribution of others to my thesis as a whole, including

statistical assistance, survey design, data analysis, significant technical procedures, pro-

fessional editorial advice, and any other original research work used or reported in my

thesis. The content of my thesis is the result of work I have carried out since the com-

mencement of my research higher degree candidature and does not include a substantial

part of work that has been submitted to qualify for the award of any other degree or

diploma in any university or other tertiary institution. I have clearly stated which parts

of my thesis, if any, have been submitted to qualify for another award.

I acknowledge that an electronic copy of my thesis must be lodged with the Univer-

sity Library and, subject to the General Award Rules of The University of Queensland,

immediately made available for research and study in accordance with the Copyright Act

1968.

I acknowledge that copyright of all material contained in my thesis resides with the

copyright holder(s) of that material. Where appropriate I have obtained copyright per-

mission from the copyright holder to reproduce material in this thesis.

iv

Publications during candidature

1. P.A. Lindsay, K. Winter, and S. Kromodimoeljo. Model-based Safety Risk Assess-

ment using Behavior Tress, In Proceedings of the 6th Asia Pacific Conference on

System Engineering. Systems Engineering Society of Australia, 2012.

2. S. Kromodimoeljo. A Framework for Symbolic LTL Model Checking. Technical

Report 2013-12-03, University of Queensland School of Information Technology

and Electrical Engineering, 2013.

Publications included in this thesis

[2] describes an early version of the framework proposed in this thesis. Parts of [2] are

incorporated into this thesis as follows:

• A substantially revised Chapter 2 of [2] is incorporated as Chapter 3 of this thesis.

• A substantially revised Chapter 3 of [2] is incorporated as Chapter 5 of this thesis.

• A substantially revised Chapter 5 of [2] is incorporated as Chapter 8 of this thesis.

Contributor Statement of contribution

Sentot Kromodimoeljo Researched and wrote the technical report (100%)

(Candidate)

Contributions by others to the thesis

No contributions by others.

Statement of parts of the thesis submitted to qualify for the

award of another degree

None.

v

Acknowledgements

I would like to express my gratitude to my supervisors Peter Lindsay and Ian Hayes for

their guidance. Peter Lindsay introduced me to model checking in safety analysis, which

became the motivation for this thesis. Ian Hayes taught me the importance of having

concepts be formalised as simply as possible.

My gratitude to Kirsten Winter for many fruitful discussions on model checking and

Behavior Trees, and for providing useful feedback on this thesis. Graeme Smith provided

useful feedback early in my study. Other researchers in model checking and Behavior

Trees at UQ and Griffith University with whom I have had the pleasure to interact

include, in alphabetical order, Kushal Ahmed, Robert Colvin, Irene Havsa, Toby Myers,

Abdul Sattar, Kaile Su and Larry Wen.

Abdul Sattar and Natalie Dunstan were very helpful in administering the linkage

project that funded my APAI scholarship.

I would also like to thank the non-academic staff at UQ, especially Karen Kinnear

and Steve Fick, for making me feel at home on campus.

This work was supported by the following scholarships:

• Australian Postgraduate Award Industry (2010-2014) under Linkage Project grant

LP0989363 from the Australian Research Council and Raytheon Australia.

• UQ International Scholarship (2010-2014).

Keywords

linear temporal logic, symbolic model checking, multiple counterexamples, behavior trees

Australian and New Zealand Standard Research Classifications

(ANZSRC)

ANZSRC code: 080203, Computational Logic and Formal Languages, 50%

ANZSRC code: 080204, Mathematical Software, 50%

Fields of Research (FoR) Classification

FoR code: 0802, Computation Theory and Mathematics 100%

vi

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Research Questions . 3

1.3 Approach . 3

1.4 Thesis Contributions . 4

1.5 Thesis Structure . 5

2 Background and Literature Review 9

2.1 Temporal Logic . 9

2.2 Model Checking . 11

2.2.1 CTL Model Checking . 12

2.2.2 Fairness Constraints . 12

2.2.3 LTL Model Checking . 13

2.2.4 Symbolic Model Checking . 14

2.2.5 State Space Reduction Techniques 15

2.3 Counterexample Generation . 16

2.3.1 Basic LTL Counterexample Path Generation 16

2.3.2 Generating Multiple Counterexamples 17

2.4 Behavior Trees . 18

2.5 Summary . 21

3 The State Machine Framework 23

3.1 States and Guarded Updates . 24

3.2 Elementary Blocks . 26

3.3 Symbolic Approach to Model Checking 28

3.4 Summary . 34

4 Translating Behavior Trees 35

4.1 Overview . 35

vii

viii CONTENTS

4.2 Expansion of References . 37

4.3 Assigning PCs . 38

4.4 BT Node Level Mapping . 41

4.4.1 Default Guarded Updates . 41

4.4.2 Branching . 42

4.4.3 Control Flow Directives . 43

4.5 Creating Elementary Blocks . 44

4.6 Elementary Block Level Mapping . 46

4.6.1 Synchronisation . 46

4.6.2 Internal I/O . 47

4.6.3 Selection . 48

4.6.4 Prioritisation . 49

4.7 Collecting Guarded Update Parts . 49

4.8 Summary and Possible Future Work . 50

5 Reachability 51

5.1 Precomputing Reachable States . 52

5.2 Reachable by Construction . 55

5.3 Inferring the Existence of Reachable States 56

5.4 Summary . 57

6 Foundation for LTL Model Checking 59

6.1 The Augmented Model . 61

6.2 Eventual Conditions . 68

6.3 Proof Plans . 71

6.3.1 Proof Plan for Theorem 6.2 . 71

6.3.2 Proof Plan for Theorem 6.3 . 73

6.3.3 Summary . 74

6.4 Summary and Discussion . 75

7 LTL Model Checking within the Framework 77

7.1 The LTL Model Checking Framework . 78

7.1.1 Normalisation of ϕ . 78

7.1.2 Tableau Generation . 79

7.1.3 Symbolic Counterexample Paths 81

7.2 Analyses within the Framework . 83

7.2.1 Strategies for Model Checking . 83

7.2.2 The Fixpoint Approach . 84

CONTENTS ix

7.2.3 On-the-fly Symbolic LTL Model Checking 86

7.3 Summary . 90

8 Directed Counterexample Path Generation 91

8.1 A Motivating Example . 91

8.2 Method Outline . 94

8.3 Cycle Search . 95

8.4 Prefix Search . 98

8.5 Using Directed Counterexample Generation 101

8.6 Summary . 102

9 Experiments with a Prototype 103

9.1 The Prototype . 104

9.2 An Example from a Case Study . 105

9.2.1 The Original Approach . 106

9.2.2 Incremental Approach using Directed Counterexample Path Gen-

eration . 108

9.3 Example Without Prioritisation . 114

9.4 Combination with On-the-fly Approach 115

9.5 Automated Multiple Counterexample Generation 116

9.6 Summary and Discussion . 120

10 Conclusion 121

10.1 Answers to Research Questions . 121

10.2 Contribution . 122

10.3 Possible Future Work . 124

A Soundness Proofs 125

A.1 Soundness of the Classic Encoding Scheme 125

A.1.1 Proof of Theorem 6.2 . 125

A.1.2 Proof of Theorem 6.3 . 127

A.2 Soundness of the TGBA Encoding Scheme 129

A.2.1 Proof of Theorem 6.2 . 130

A.2.2 Proof of Theorem 6.3 . 133

x CONTENTS

List of Figures

2.1 Simple Vending Machine BT . 19

3.1 A BT Example . 28

4.1 Expansion of a reference . 38

4.2 Assigned PC Values . 41

4.3 Reassigned PC Values . 46

6.1 A cycle without eventual condition G¬(Light = red) fulfilled. 68

8.1 A Motivating Example . 92

9.1 Fragments of the BT Model . 106

xi

xii LIST OF FIGURES

List of Tables

3.1 Encoding equalities and assignments using OBDD variables 29

4.1 Default Guarded Update Parts . 42

9.1 Results for SAL on Case Study Example 108

9.2 Timing Results for the Incremental Approach 111

9.3 Timing Results for the Traditional Approach 112

9.4 Incremental Approach vs Traditional Approach 113

9.5 Timing Results for Non-prioritised Model 114

9.6 Results for SAL on Non-prioritised Model 114

9.7 Incremental Approach vs Traditional Approach for Non-prioritised Model 114

9.8 Results for Symbolic On-the-fly LTL Model Checking 115

9.9 Combined On-the-fly and Directed Counterexample Generation 116

xiii

xiv LIST OF TABLES

List of Symbols and Abbreviations

List of Symbols

ϕ - LTL formula whose satisfiability is being checked

Cϕ - set of fairness constraints used in checking the satisfiability of ϕ

FCϕ - proposition characterising the set of counterexample states

Fϕ - proposition characterising the set of fair states

List of Abbreviations

BA - Büchi Automaton

BT - Behavior Tree

CTL - Computation Tree Logic

DFS - Depth-First Search

ECS - Eager Counterexample Strategy

ERS - Eager Reachability Strategy

GBA - Generalised Büchi Automaton

LCS - Lazy Counterexample Strategy

LRS - Lazy Reachability Strategy

LTL - Linear Temporal Logic

NNF - Negation Normal Form

OBDD - Ordered Binary Decision Diagram

SCC - Strongly-Connected Component

TGBA - Transition-based Generalised Büchi Automaton

xv

xvi LIST OF TABLES

Chapter 1

Introduction

1.1 Motivation

In real life, there may be several different ways for something to go wrong. As an example,

the failure of an ATM to dispense 500 dollars requested by a person A may be caused by

one of the following:

• An automatic payment was made from A’s account to a utility company the day

before, causing insufficient funds for the requested withdrawal.

• The ATM’s keypad malfunctioned, causing the PIN number entered by A to be

garbled and not recognised.

• A withdrawal was made by A earlier that day, and withdrawing 500 dollars would

exceed A’s daily withdrawal limit.

In general, an undesired outcome in real life is caused by a sequence of events (i.e., a

behaviour). Suppose we have a model that includes the ATM and A, and allows the

above behaviours. The behaviours that lead to an undesired outcome may be viewed

as a counterexample to the conjecture that a desired outcome is always achieved in the

model. The different causes of an undesired outcome are represented by multiple coun-

terexamples. Often, one would like to know the different behaviours — each represented

by a counterexample — that can lead to an undesired outcome.

Similar to the above real life situation where one wants to know the different possible

behaviours that can lead to an undesired outcome, in many applications of Linear Tempo-

ral Logic (LTL) [Pnu77] model checking [CE81,QS82], the analyst may want to generate

multiple counterexamples. For example, in safety analysis, achieving complete safety in

the system being analysed is impossible or too expensive [Per84], but one would like to

know all of the cases that can lead to unsafe situations, where the sequence of events

1

2 CHAPTER 1. INTRODUCTION

that leads to an unsafe situation is represented by a counterexample to a safety property

expressed in LTL. Another example application is in the area of coverage-based test case

generation [GH99,RH01] where test sequences are derived from counterexamples to trap

properties: each trap property is an LTL formula asserting that the negation of some

condition of interest holds forever (in this case, a counterexample path leads to a desired

outcome whereby the condition of interest is reached). In these and many other types

of applications, the interest is in counterexamples that are linear paths (representing

sequences of events), thus the focus on LTL.

Most existing model checkers, including NuSMV [CCGR99] and SAL [dMOR+04],

stop after finding the first counterexample. The few that can generate multiple coun-

terexamples (e.g., SPIN [Hol04]) often generate too many counterexamples that are slight

variations of each other [JD03].

With a model checker that stops after finding the first counterexample, to make the

model checker find other counterexamples, one must modify either the temporal logic

formula or the model so that the counterexample found is eliminated from the set of

behaviours analysed, and then rerun the model checker. This is a time-consuming and

error-prone process, and in the case where an LTL formula is modified, the required model

checking time can grow exponentially with the size of the modified formula. Having the

model checker find other counterexamples without needing to modify the temporal logic

formula or the model is preferable.

This thesis proposes a capability to direct the search for a counterexample away

from certain parts of the model or towards certain parts of the model. Counterexample

paths can then be classified based on parts of the model that are excluded and parts

of the model that are included. This provides some control over generation of multiple

counterexample paths, with the granularity of the control as coarse or as fine as the

parts excluded and/or the parts included. The proposed capability is not to be tied to a

specific modelling notation to enable it to be used with various modelling notations for

finite-state asynchronous systems.

In addition to being independent of the modelling notation, the proposed capability is

to be compatible with as many model checking approaches as possible. This is important

because many techniques and strategies have been developed to mitigate the state explo-

sion problem in model checking, but no single combination of techniques and strategies

has been found to be best for all model checking problems. Still, symbolic techniques

operating on sets of states have been found to be more efficient than techniques that

operate on explicit states (see for example, [RV07], in the context of LTL satisfiability

checking). Thus the proposed capability is to be symbolic-oriented.

1.2. RESEARCH QUESTIONS 3

1.2 Research Questions

This thesis addresses the following research questions:

1. Can the search for an LTL counterexample path be directed away from certain parts

of a model or towards certain parts of a model?

2. Can a method for such a directed counterexample path generation be made inde-

pendent of the modelling notation?

3. Can a method for directed counterexample path generation be incorporated into a

symbolic framework?

4. How do model checking strategies, such as when reachability is determined, affect

directed counterexample path generation?

5. Can directed counterexample path generation be mixed and matched with existing

techniques?

1.3 Approach

To answer the research questions, a general symbolic framework for LTL model checking

and counterexample generation is first developed. Within the framework, a method for

directed counterexample path generation is proposed.

The proposed symbolic framework is intended to support the analysis of asynchronous

finite state systems with interleaving semantics. The framework proposed consists of two

levels:

• a state machine modelling level that is not specific to any modelling notation, and

• an LTL level that can accommodate various LTL encoding schemes.

The Behavior Tree (BT) notation [Dro03,Dro06] is used as an example modelling notation

for asynchronous systems, and examples involving Behavior Trees are used throughout

this thesis. Two example LTL encoding schemes are used in this thesis: the classic LTL

encoding scheme developed by Lichtenstein and Pnueli [LP85] and the Transition-based

Generalised Büchi Automaton (TGBA) encoding scheme of Rozier and Vardi [RV11].

A state machine model in the proposed framework is essentially a Kripke structure

plus “elementary blocks,” which are intended to represent structures inherited from the

modelling notation. By maintaining structures from the modelling notation in elementary

blocks, analyses can take advantage of the extra structures and counterexample paths

4 CHAPTER 1. INTRODUCTION

can be easily mapped back to the modelling notation. Elementary blocks and the use of

transfer functions to compute images and pre-images under transition relations for the

elementary blocks are concepts borrowed from the field of program analysis.

The LTL level provides a unified framework for encoding an LTL formula ϕ into a

tableau for checking the satisfiability of ϕ, using any of the well-known LTL encoding

schemes (including the classic and TGBA encoding schemes). The framework does not

confine symbolic model checking to the traditional fixpoint approach [McM92]. It is

intended to allow approaches, techniques and strategies for LTL model checking and

counterexample generation to be mixed and matched.

Several novel techniques are developed within the framework, including

• An algorithm for computing reachable states that mimics Kildall’s algorithm for

program flow analysis [Kil73].

• A novel adaptation into the symbolic framework, of on-the-fly LTL model checking

[GPVW95] that is usually associated with an explicit approach.

However, the main technique developed for the controlled generation of multiple coun-

terexamples is:

• A novel technique called directed counterexample path generation, in which the cycle

part of a counterexample path is searched before the prefix part (the counterexample

paths considered are of the so-called lasso type consisting of a prefix followed by a

cycle that is repeated forever). Direction for the search for a counterexample path

is provided through a global constraint (a constraint that must be satisfied by all

states in the path) and a cycle constraint (a constraint that must be satisfied by at

least one of the states in the cycle part of the path).

A prototype symbolic LTL model checker that incorporates the proposed techniques

has been developed. The prototype includes a translator from a significant subset the

BT notation into elementary blocks. Experiments with the prototype were conducted to

assess the effectiveness of the techniques proposed in this thesis and to investigate the

effects of different model checking strategies on the proposed directed counterexample

path generation.

1.4 Thesis Contributions

The main contributions of this thesis are as follows:

1.5. THESIS STRUCTURE 5

• The symbolic framework for LTL model checking and counterexample generation.

The unified framework captures essential concepts common to many existing ap-

proaches to LTL model checking, allowing different approaches, strategies and tech-

niques to be mixed and matched.

• Generic proof plans for showing the soundness of an LTL encoding scheme within

the framework. The proof plans are instantiated for the classic LTL encoding

scheme and the TGBA encoding scheme.

• The formulation of transitions as collections of guarded updates, allowing images

and pre-images under transition relations to be computed without performing re-

lational products using transition relations represented as entire propositions. In-

stead, images and pre-images are computed using updates, existential quantification

in the logic of quantified boolean formulas [AHU74] and propositional operations.

• An algorithm for computing reachable states that mimics Kildall’s algorithm for

program flow analysis [Kil73]. The algorithm can be used in cases where comput-

ing reachability of states and using the reachability information in model checking

is a good strategy. The algorithm provides an alternative to a naive fixpoint com-

putation and in some cases is significantly more efficient than the naive fixpoint

computation.

• A novel adaptation of the on-the-fly explicit automata approach to LTL model

checking into a symbolic framework. This provides an alternative to the fixpoint

approach for symbolic LTL model checking.

• A novel approach for generating symbolic LTL counterexample paths called di-

rected counterexample generation whereby the cycle part of a counterexample path

is searched before the prefix part (the counterexample paths considered are of the

lasso type consisting of a possibly empty finite sequence of states called the pre-

fix part, followed by a non-empty finite sequence of states that is repeated forever

called the cycle part). The resulting mechanism facilitates the controlled generation

of multiple counterexamples.

1.5 Thesis Structure

• Chapter 2 Background and Literature Review — This chapter provides

essential background material on temporal logic and Behavior Trees and provides

a literature review on model checking and LTL counterexample generation.

6 CHAPTER 1. INTRODUCTION

• Chapter 3 The State Machine Framework — This chapter describes the

state machine level of the proposed framework. A state machine in the framework

is essentially a Kripke structure with additional structure in the form of elementary

blocks.

• Chapter 4 Translating Behavior Trees — This chapter describes a method to

translate Behavior Trees to objects in the framework. It is intended to illustrate

how objects of a source notation can be translated into elementary blocks.

• Chapter 5 Reachability — This chapter discusses the concept of reachability in

symbolic LTL model checking within the framework. An algorithm for computing

reachable states is proposed in this chapter.

• Chapter 6 Foundation for LTL Model Checking — This chapter identifies

essential concepts in LTL model checking that are common to many LTL model

checking approaches and are independent of the LTL encoding scheme. Theorems

that need to be proved to demonstrate the soundness of an encoding scheme are

presented in a manner independent of the encoding scheme. Proof plans for the the-

orems are presented (their applications to the classic LTL encoding scheme and the

Transition-based Generalised Büchi Automaton (TGBA) encoding scheme appear

in Appendix A).

• Chapter 7 LTL Model Checking within the Framework — This chapter

describes the application of the concepts in Chapter 6 to the state machine frame-

work of Chapter 3, resulting in a symbolic framework for LTL model checking and

counterexample generation. The chapter also discusses how various approaches

and strategies for LTL model checking and counterexample generation might be

implemented within the symbolic framework.

• Chapter 8 Directed Counterexample Path Generation — This chapter pro-

poses a novel approach to LTL counterexample path generation. The search for a

counterexample path is directed by a cycle constraint — a state formula that must

be satisfied by a state in the cycle — and the search can be constrained using a

global constraint — a state formula that must be satisfied by all states in the coun-

terexample path. The cycle part of a counterexample path is searched first, based

on the cycle constraint, and a prefix to the cycle is searched after a cycle is found.

• Chapter 9 Experiments with a Prototype — This chapter presents results

of experiments with a prototype LTL model checker that incorporates the tech-

niques for directed counterexample path generation proposed. The purpose of the

1.5. THESIS STRUCTURE 7

experiments is twofold: to demonstrate the need for multiple strategies and to

demonstrate the advantages of directed counterexample path generation when gen-

erating multiple counterexample paths. The prototype is a proof of concept rather

than a production model checker, and the timing comparisons are mostly between

different strategies for model checking and counterexample path generation in the

prototype. Nevertheless, some timing comparisons with SAL (Symbolic Analysis

Laboratory) [dMOS03] are provided to demonstrate the practicality of the proposed

approach.

• Chapter 10 Conclusion — This chapter explains how the research questions

in Section 1.2 are answered, summarises the main contributions of the thesis, and

discusses possible future work.

8 CHAPTER 1. INTRODUCTION

Chapter 2

Background and Literature Review

This chapter provides background material on temporal logic and Behavior Trees and

provides a literature review on model checking and LTL counterexample generation. The

Behavior Tree notation is a notation for asynchronous multi-threaded systems used in

this thesis to illustrate the concepts that are used in the proposed approach.

2.1 Temporal Logic

The full propositional temporal logic, called CTL* [EH86], adds path quantifiers and

temporal operators to propositional logic. A path in temporal logic is an infinite sequence

of states and a temporal operation describes a property on a path. The path quantifiers

are A (for all paths) and E (for some path). The temporal operators are X (“next time”),

F (“eventually”), G (“always”), U (“strong until”) and R (“release”).

There are two types of formulas in CTL*: state formulas (to be interpreted as propo-

sitions about states) and path formulas (to be interpreted as propositions about paths).

Definition 2.1. Given a set AP of atomic propositions, the syntax of CTL* is inductively

defined as follows:

• If p ∈ AP then p is a state formula.

• If f and g are state formulas, then ¬f , f ∨ g and f ∧ g are state formulas.

• If f is a path formula, then E f and A f are state formulas.

• If f is a state formula, then f is also a path formula.

• If f and g are path formulas, then ¬f , f ∨ g , f ∧ g, X f , F f , G f , f U g and f R g

are path formulas.

9

10 CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

The propositional operators ¬, ∨ and ∧ are inherited from standard propositional logic.

Since a state formula is also a path formula, all CTL* formulas can be interpreted

as path formulas. But some CTL* formulas cannot be interpreted as state formulas. A

temporal operation or a propositional operation with a temporal operation appearing as

a factor (e.g., f ∨ (g ∧ Fh)) can only be interpreted as a path formula.

The semantics of temporal logic is described in terms of a Kripke structure M =

(S,R, L).

Definition 2.2. A Kripke structure M is a triple (S,R, L) where S is a finite set of

states, R is a relation on S × S called the transition relation, L is a labelling on S

(L : S → P(AP)) and L determines the atomic propositions that hold in each state

(p ∈ L(s) means the atomic proposition p holds in state s). S together with R determine

the set of paths in M . To ensure that all paths are infinite, it is often required that

the transition relation R be total on the left argument (there is a transition from every

state). Without loss of generality, to simplify the proposed framework, L is required to

be injective so that a state is completely determined by its label.

A path π is an infinite sequence of states. The notation πi is used to denote the

(i+ 1)th state in path π (i starts at 0). The notation πi is used to denote the suffix of π

starting from the ith state, e.g., π2 = 〈π2, π3, ...〉. For each path π in a Kripke structure

M = (S,R, L), the following holds:

∀n ≥ 0 : (πn, πn+1) ∈ R.

The notation M, s |= f is used to indicate that the state formula f holds in state s in

Kripke structure M . The notation M,π |= f is used to indicate that the path formula f

holds for path π in Kripke structure M .

Definition 2.3. The semantics of CTL* is determined by the |= relation, inductively

2.2. MODEL CHECKING 11

defined as follows:

M, s |= p ⇔ p ∈ L(s), if p is an atomic proposition,

M, s |= ¬p ⇔ M, s 6|= p,

M, s |= p ∨ q ⇔ (M, s |= p) ∨ (M, s |= q),

M, s |= p ∧ q ⇔ (M, s |= p) ∧ (M, s |= q),

M, s |= E p ⇔ ∃π : π0 = s ∧ (M,π |= p),

M, s |= A p ⇔ ∀π : π0 = s⇒ (M,π |= p),

M, π |= p ⇔ M,π0 |= p, if p is an atomic proposition,

M, π |= ¬p ⇔ M,π 6|= p,

M, π |= p ∨ q ⇔ (M,π |= p) ∨ (M,π |= q),

M, π |= p ∧ q ⇔ (M,π |= p) ∧ (M,π |= q),

M, π |= X p ⇔ M,π1 |= p,

M, π |= F p ⇔ ∃i ≥ 0 : (M,πi |= p),

M, π |= G p ⇔ ∀i ≥ 0 : (M,πi |= p),

M, π |= pU q ⇔ ∃i ≥ 0 : (M,πi |= q) ∧ ∀0 ≤ j < i : (M,πj |= p),

M, π |= pR q ⇔ ∀j ≥ 0 : (∀i < j : (M,πi 6|= p))⇒ (M,πj |= q).

Computation tree logic (CTL) [Eme81] is a fragment of CTL* in which all temporal

operations must be immediately quantified thus producing state formulas. As a result,

one can work entirely with state formulas in CTL model checking. However, strong

fairness assumptions cannot be expressed in CTL (the GFp in (¬GFp) ∨ q is a strong

fairness assumption asserting that p is satisfied infinitely often in an infinite path).

Linear temporal logic (LTL) [Pnu77] is the path quantifier free fragment of CTL*.

Strong fairness assumptions can be expressed in LTL, but the CTL formula AG EFp

(always able to go from any state to a state satisfying p) cannot be expressed in LTL.

Because LTL is a fragment of the full propositional temporal logic, the semantics of LTL

can be inferred from the semantics of the full propositional temporal logic. An LTL

specification is implicitly quantified over all paths.

2.2 Model Checking

This section provides a quick survey on model checking. For an in-depth treatment of

model checking, the reader can consult a textbook on model checking such as [CGP99]

or [BK08].

12 CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

Model checking is a process whereby the satisfiability of a specification expressed in

a modal logic is checked against a model that can be translated into a Kripke structure.

Although parts of the specification may be interpreted over infinite paths, model checking

does not operate on infinite paths directly. Instead, model checking operates on states

and transitions.

2.2.1 CTL Model Checking

The field of model checking started in the early 1980s with pioneering work by Clarke and

Emerson [CE81] on CTL model checking. At around the same time, and independently,

Queille and Sifakis [QS82] developed a CTL model checking algorithm operating on Petri

nets. CTL is simple to model check because one can work entirely with state formulas and

a bottom up processing of subformulas of the formula being checked can be performed.

CTL model checking is based on computing states that satisfy each of the state

subformulas of the formula being checked. The states that satisfy a state subformula p

are completely determined by states that satisfy each of p’s immediate state subformulas

and the transition relation R of the model. For example, if p ≡ EGq, then the states that

satisfy p are completely determined by states that satisfy q and the transition relation R.

States that satisfy a subformula that is an atomic proposition can be determined from

the labelling function L of the Kripke structure. In an explicit CTL model checker such

as [CE81], the computation of states satisfying p may involve the construction of strongly

connected components (SCCs). For example, if p ≡ EGq and S ′ = {s ∈ S | M, s |= q},
then one can form M ′ = (S ′, R′, L′) where R′ = R|S′×S′ and L′ = L|S′ and construct the

SCCs in the graph of states and transition in M ′. The states that satisfy EGq are those

that belong to a non-trivial SCC plus states in S ′, each of which has a path (via R′) to

a non-trivial SCC.

2.2.2 Fairness Constraints

A fairness constraint is a state formula that must be satisfied infinitely often in an infinite

path. To enable the checking of properties under strong fairness assumptions, many CTL

model checkers allow the addition of a set C of fairness constraints to the model. A path

π is fair with respect to C if each fairness constraint in C is satisfied infinitely often in π.

In CTL model checking with fairness constraints C, only paths that are fair with respect

to C are considered.

In the explicit CTL model checker of [CE81], determining fairness involves the con-

struction of strongly connected components (SCCs) in the graph of states (nodes) and

transitions (edges), where each fairness constraint is fulfilled by a state in each of the

2.2. MODEL CHECKING 13

SCCs. In the symbolic CTL model checker of [McM92], in the presence of fairness con-

straints, computations of states satisfying certain temporal operations involve nested

fixpoint operations, e.g.,

EGp , νZ.p ∧
∧
c∈C

EX(µY.(Z ∧ c) ∨ (p ∧ EXY))

where the outer greatest fixpoint operation (νZ) interacts with the inner least fixpoint

operations (µY), and C is the set of fairness constraints.

Fairness constraints add complexity to CTL model checking. Whereas the complexity

of pure CTL model checking isO(|f |·(|S|+|R|)) where |f | is the size of the formula f being

checked (the number of symbols in f), |S| is the number of states in the model and |R| is
the size of the transition relation in the model (as a set of ordered pairs), the complexity

of CTL model checking with a set of fairness constraints C is O(|f | · (|S|+ |R|) · |C|) (see,

e.g., [CGP99]).

2.2.3 LTL Model Checking

Unlike CTL which is state oriented, LTL is very much path oriented. An LTL specification

f is implicitly quantified over all paths, and thus is taken to be the CTL* formula Af .

Model checking is performed by checking the satisfiability of ϕ where ϕ ≡ ¬f . Since ϕ is

a path formula, satisfiability checking amounts to finding a path π such that M,π |= ϕ.

Usually it is understood that π0 ∈ S0 where S0 ⊆ S is a designated set of initial states.

To check path formulas in a states-and-transitions setting, the states are augmented with

path commitments, and transition constraints are added based on the path commitments,

producing an augmented model M ′. A path commitment to a path formula p in an

augmented state s′ may be viewed as a commitment for s′ to start only suffix paths that

satisfy p. We will denote the commitment to satisfy p, Sϕ(p). Thus an augmented state

in which Sϕ(p) holds is commited to start suffix paths that satisfy p.

Path commitments and transition constraints determine a tableau, which is a decision

graph for checking the satisfiability of ϕ (the use of tableaux to decide satisfiability of

formulas was first proposed by Beth [Bet55]). The tableau guarantees that the paths in

M ′, when projected to M , cover all the paths that need to be considered. However, it

does not guarantee that a considered path that starts at an augmented state committed

to ϕ satisfies ϕ. A subformula may require that some condition eventually holds. As an

example, if Fg holds in a suffix πi where i ≥ 0, then g needs to hold in some suffix πj

where j ≥ i. The formula g is called an eventual condition. To guarantee that a path

that starts at a state committed to ϕ does in fact satisfy ϕ, eventual conditions in the

14 CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

path must be checked. An LTL encoding scheme determines how the tableau for ϕ is

generated and how eventual conditions can be checked.

The first LTL model checking algorithm was developed by Lichtenstein and Pnueli

[LP85]. Their algorithm operates on explicit states and they call their augmented states

atoms. Their check for eventual conditions involves constructing strongly connected com-

ponents (SCCs) which are self-fulfilling in terms of the eventual conditions: if a node (an

atom) in an SCC is committed to a suffix path in which an eventual condition q is re-

quired, e.g., if Sϕ(p U q) holds in the atom, then there is an atom in the SCC in which

Sϕ(q) holds. The SCCs are constructed in a reachability graph involving atoms (instead

of unaugmented states) where the transitions are constrained by the tableau for ϕ as well

as the transition relation R. However, instead of keeping track of when Sϕ(p U q) holds

and when Sϕ(q) is fulfilled, Lichtenstein and Pnueli introduced

¬Sϕ(p U q) ∨ Sϕ(q) (2.1)

as a fairness constraint. For each subformula of ϕ of the form p U q, a fairness constraint

as in 2.1 is constructed. Lichtenstein and Pnueli showed that an SCC is self-fulfilling if

and only if each fairness constraint holds in at least one atom in the SCC. ϕ is satisfiable

if and only if there is a prefix path starting at an initial atom in which Sϕ(ϕ) holds

to a self-fulfilling SCC. The complexity of the algorithm of Lichtenstein and Pnueli is

O((|S|+ |R|) · 2O(|ϕ|)), i.e., it is exponential in the size of ϕ.

An alternative approach for LTL model checking is the automata approach, typically

performed on-the-fly [CVWY92,GPVW95]. As with the original approach for LTL model

checking, the on-the-fly explicit automata approach uses fairness constraints to track the

fulfillment of eventual conditions. Each fairness constraint must be fulfilled infinitely

often in a path that satisfies ϕ. The tableau for ϕ (equivalent to ¬f) imposed on the

model together with the fairness constraints for ϕ may be viewed as forming a generalised

Büchi automaton (GBA) which can be transformed into a Büchi automaton (BA). To

avoid the exponential complexity of precise tracking of fairness constraints, in many

implementations, the BA essentially uses imprecise tracking of fairness constraints, thus

some paths that are accepted by the GBA are not accepted by the BA. However, if there

is a path that is accepted by the GBA, then there is a path that is accepted by the BA.

A depth first search is performed to find a path that is accepted by the BA. If a path

is found, then it satisfies ϕ and represents a counterexample for f in the model. If the

search properly terminates without finding a path, then f holds in the model.

2.2.4 Symbolic Model Checking

Symbolic model checking was first advocated by McMillan [McM92]. Symbolic model

2.2. MODEL CHECKING 15

checking operates on sets of states rather than individual states. Typically, a set is

constructed for states that satisfy a state subformula. A set of states is characterised

using a proposition, and ordered binary decision diagrams (OBDDs) [Bry86] are used

to represent propositions. Set operations are performed using OBDD operations. In

symbolic model checking as advocated by [McM92], computation of strongly connected

components in explicit model checking is replaced by fixpoint computation based on the

approach of Emerson and Lei [EL86], using the fixpoint operations of µ-calculus [Koz83].

As an example,

EGq , νZ.q ∧ EXZ.

As with explicit CTL model checking, symbolic CTL model checking proceeds bottom

up on the state subformulas of the formula being checked.

Symbolic model checking was the first breakthrough in mitigating the state explosion

problem. Burch et al [BCM+92] were able to apply symbolic model checking on a system

with 1020 states. However, the performance of OBDDs can be highly sensitive to the vari-

able ordering, where an OBDD variable represents an uninterpreted atomic proposition

(not necessarily an atomic proposition of the Kripke structure) and in a direct traversal

from an OBDD “root” to any leaf, the variable nodes in the traversal must be ordered

according to the variable ordering. In some cases there is no variable ordering that can

prevent an explosion in the size of the OBDD.

The first symbolic LTL model checking algorithm was proposed in [BCM+92]. It is

based on encoding atomic path commitments as extra state variables, adding transition

constraints based on the atomic path commitments, and using fairness constraints to track

the fulfillment of eventual conditions, in a CTL model checker with fairness constraints.

Although in practice the algorithm is often much faster than the explicit algorithm of

[LP85], the complexity of the algorithm is the same as [LP85].

2.2.5 State Space Reduction Techniques

In addition to symbolic model checking, state space reduction techniques have been de-

veloped to mitigate the state explosion problem. These techniques include partial order

reduction, compositional reasoning and abstraction. Partial order reduction is used in

the case of parallel programs with an interleaving model where some interleavings are

eliminated from the model because they are already represented by other interleavings

that have the same effects [PWW96]. In compositional reasoning, a system is decomposed

into smaller parts and the assume-guarantee paradigm is used [MC81]. Abstraction tech-

niques include those that do not change the meaning of the analysis such as removing

variables that do not affect the properties being checked (often called variables outside the

16 CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

cone of influence [CGP99]), and those that potentially change the meaning of the anal-

ysis such as data abstraction [CGL94] and predicate abstraction [GS97]. An approach

called counterexample-guided abstraction refinement [CGJ+00] performs refinements to

an abstracted model to remove “spurious” counterexamples (a “spurious” counterexam-

ple is a counterexample found for an abstracted model that is not a counterexample

for the original unabstracted model), to automatically arrive at an appropriate level of

abstraction.

Most of the state space reduction techniques are orthogonal to “core model checking,”

and can be applied in conjunction with the techniques and strategies proposed in this

thesis. A notable exception is partial order reduction. To be effective, partial order

reduction must be applied in an on-the-fly approach to model checking.

2.3 Counterexample Generation

Although there has been much work on state space reduction and efficient LTL model

checking, there has been little work on LTL counterexample generation. Traditionally,

the focus of model checking has been on the verification problem with counterexamples

playing a secondary role.

2.3.1 Basic LTL Counterexample Path Generation

The two main techniques for LTL counterexample path generation in use are:

• The technique of Clarke et al [CGMZ95] for symbolic CTL model checking with

fairness constraints. The technique searches for a counterexample path guided by

states that satisfy fairness constraints. The technique is efficient and tends to

generate counterexample paths with relatively short prefixes and cycles.

• On-the-fly LTL model checking using explicit automata [GPVW95]. Because the

technique used to generate a Büchi automaton from a generalised Büchi automaton

uses imprecise tracking of fairness constraints (thus the BA accepts a subset of

the counterexamples paths accepted by the GBA) and the search is a depth-first

search, on-the-fly LTL model checking as proposed by [GPVW95] tends to produce

counterexample paths with unnecessarily long prefixes and cycles.

Additionally, there is the technique of [SB05] that generates the shortest counterexample

paths for LTL with past operators. None of the cited techniques for generating LTL

counterexample paths address the issue of controlling the generation of multiple coun-

terexamples.

2.3. COUNTEREXAMPLE GENERATION 17

2.3.2 Generating Multiple Counterexamples

Most model checkers stop after finding the first counterexample. SPIN [Hol04] can gen-

erate multiple counterexamples, but the multiple counterexamples tend to contain too

many that are slight variations of each other. In fact, the difficult part of generating

multiple counterexamples is how to generate “meaningful” variations. In general, what

constitutes a meaningful variation is domain-specific. Nevertheless, a model checker ought

to support the generation of meaningful variations by providing appropriate mechanisms.

Without the appropriate mechanisms, the generation of meaningful multiple coun-

terexamples requires multiple runs of the model checker. After each run, if the run

produced a counterexample, the counterexample is examined and either the model or

the temporal logic formula is modified for the next run, based on the examination. For

some applications, the process can be automated (see e.g., [JD03]). Rerunning the model

checker is expensive, and in the case of LTL, the modification to the temporal formula can

increase the running time significantly. The problem is compounded if the modification

is manual, since it is error-prone.

In contrast, with the appropriate mechanisms, only the counterexample path genera-

tor is rerun, and no modification to the temporal formula nor the model is required. This

can significantly reduce the running time compared to rerunning the model checker, and

it avoids potential errors associated with modifying the temporal formula or the model.

Chechik and Gurfinkel [CG05] developed a framework for counterexample generation

and exploration, but only for pure CTL without fairness constraints. There are other

frameworks for counterexamples/witnesses1 but most of them are for certifying the results

of model checking. They include a proof system for certifying counterexamples/witnesses

for CTL* developed by Namjoshi [Nam01], and a framework for generating certifiable

symbolic counterexamples/witnesses for pure CTL (without fairness constraints) devel-

oped by Shankar and Sorea [SS04]. Except for the framework of Chechik and Gurfinkel,

which does not apply to LTL, none of the frameworks address the issue of generating

multiple counterexamples.

Techniques that may provide some control when generating multiple counterexamples

are those for counterexample generation in probabilistic model checking for discrete-time

Markov chains [HKD09, SVV09]. Some measure of control is provided by the proba-

bilistic techniques, e.g., by generating only counterexamples that exceed some threshold

probability. However, the techniques only apply in a probabilistic model, specifically a

discrete-time Markov chain model. Applications in safety analysis often treat likelihood

more qualitatively than probabilities in a discrete-time Markov chain model. In addition,

1in CTL/CTL* model checking, a witness proves the validity of an existential specification.

18 CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

the control (filtering effect) obtained by using a probabilistic technique does not address

coverage issues in safety analysis and test case generation.

2.4 Behavior Trees

The Behavior Tree (BT) notation is a graphical notation for specifying system behaviours,

originally developed by Dromey to support the process of capturing requirements and

transforming them into designs [Dro03, Dro06]. Dromey adopted the tree structure no-

tation to help cope with complexity because humans have more difficulty coping with

an arbitrary graph structure. Other issues that strongly influenced the design of the

Behavior Tree notation include:

• traceability to requirements, and

• integrating several trees (from several requirements) into a single tree.

Figure 2.1 shows an example BT that specifies the operation of a simple, perhaps

unrealistic, vending machine. The system starts with the vending machine in a ready

state, and waits for a customer to insert a coin. After a customer inserts a coin, the

system waits for the customer to select either candy or chips. Once the customer selects

either candy or chips, the vending machine dispenses the appropriate selection, and the

cycle is repeated.

A BT consists of nodes (drawn as boxes) representing actions and arrows between

nodes representing control flow. The tree structure of a BT represents the basic con-

trol flow structure, which consists of sequencing and branching. In the example, there

is an alternative branching after a customer inserts a coin. The branch taken depends

on whether the customer selects candy or chips. In the BT notation, the selection of

alternatives is based on guards. There is another kind of branching in the BT notation

called parallel branching. Unlike alternative branching, all branches in a parallel branch-

ing are taken and each branch starts a new subthread. Sequential nodes may be merged

to form an atomic composition whereby the execution of the sequence of nodes becomes

indivisible and uninterruptible.

In addition to the basic control flow structure, there are other control flows in the

BT notation, specified using control flow directives. In the example, there are nodes

with the reversion (∧) directive. The reversion directive is the most important of all BT

directives, as it is the directive for constructing a loop. It kills and restarts the execution

of a subtree rooted at its “matching” node. Killing the execution of a subtree causes all

threads activated in the subtree to be killed as well. Since the kill and restart are intended

2.4. BEHAVIOR TREES 19

R1
VM

[Ready]

?

R1
CUST

>>Coin<<

[]������9
XXXXXXz

R1
CUST

>>Candy<<
R1

CUST

>>Chips<<

? ?

R1
VM

[Candy]
R1

VM

[Chips]

? ?

R1
VM ∧

[Ready]
R1

VM ∧

[Ready]

Figure 2.1: Simple Vending Machine BT

to produce a loop, the subtree must include the node with the reversion directive, thus

the matching node must be an ancestor of the node with the reversion directive. In the

example, the matching node for both reversions is the root of the entire BT. Other BT

directives include the reference (=>) directive (similar to “go to”), the kill (−−) directive

for killing the execution of a subtree, and the synchronise (=) directive for synchronising

threads.

The BT notation allows a sequence of nodes to be composed into an atomic compo-

sition, drawn as a contiguous sequence of boxes without arrows. The nodes in an atomic

composition is executed atomically with the effect of the execution the same as though

the nodes are executed in sequence.

Each BT node refers to a component (VM or CUST in the example), and has a be-

haviour that is either a state realisation (e.g., [Ready]), a guard (e.g., ???Ready???), a

selection (e.g., ?Ready?), an event (e.g., ??Coin??), an internal output (e.g., <Coin>),

an internal input (e.g., >Coin<), an external output (<<Coin>>), or an external input

(e.g., >>Coin<<). A state realisation node indicates that a component enters a particu-

lar state or that an attribute of a component gets a particular value. In the example, we

have state realisation nodes where VM enters the “ready,” “candy” and “chips” states,

modelling the corresponding behaviours abstractly. A guard node waits until its guard

expression holds before proceeding. A selection node is like a guard node except it does

not wait until its guard holds, instead its thread is killed if the guard does not hold. An

20 CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

event node is also like a guard node, except it waits for an event. Inputs and outputs are

similar to events, however, an internal input can only occur simultaneously with the cor-

responding internal output (e.g., >Coin< waits for <Coin> and proceeds simultaneously

with <Coin>), but internal output does not have to wait for the corresponding input to

be ready. The example BT has three external input events modelling the cases where

the system waits for a customer (CUST) to insert a coin, select candy and select chips

respectively.

Each BT node can have a requirement tag, which provides traceability to require-

ments. The example BT has all of the nodes tagged R1 since it is assumed that there

is only a single requirement named R1. For a large BT that models a large set of re-

quirements, each node can be tagged according to which requirements are relevant. Since

requirements traceability is not relevant for this thesis, we will instead use the tags as

node identifiers by tagging each node differently.

A BT node may be viewed as a guarded command [Dij75] that is executed atomically.

For an atomic composition of nodes, guards of all the nodes in the composition must

be enabled for the atomic composition to be executed. The execution of BT nodes

from parallel threads are interleaved, unless they are synchronised. BT nodes that are

synchronised with each other are executed simultaneously. The BT notation allows for

non-deterministic choice between internal behaviours in an alternative branching. In

addition, when a BT is not coupled with an environment, events and external I/O may

be viewed as occurring non-deterministically.

The graphical nature of the BT notation makes it natural to have tools for BTs

with visual effects. An execution path of a BT (e.g., a counterexample path) may be

animated by highlighting the BT nodes as the “execution” steps through the nodes. The

status of active threads may also be shown in the animation, e.g., by highlighting (in a

different fashion) “active” nodes. Some of the structural constraints of BTs may ease

the comprehension of animations, e.g., we need not worry about a node and its ancestor

being active at the same time.

The full syntax of the BT notation is described in [Beh07] and a formal semantics for

the BT notation is described in [CH11]. Although the BT notation is part of a larger

methodology called Behavior Engineering [BE], it is a useful in its own right as a notation

for modelling behaviour.

Several tools are available for BTs. They include BESE [PLTP08], Integrare [WLC+07]

and TextBE [tex]. However, none of the tools support model checking directly, instead,

the tools generate code for the Symbolic Analysis Laboratory (SAL) [dMOS03], where

model checking can be performed.

2.5. SUMMARY 21

BTs have been used by Raytheon Australia on large systems [Bos08]. In the applica-

tion area of failure modes and effects analysis, BTs have been used on several case studies

including analysis of the Airbus A320 hydraulic system [LWY10].

2.5 Summary

The necessary background material for the thesis has been presented in this chapter. Sec-

tion 2.1 described temporal logic, essentially as defined in [CGP99]. Section 2.2 provided

a brief literature survey on model checking. Section 2.3 on counterexample generation

provided context for the main contribution of the thesis: directed counterexample path

generation. Finally, Section 2.4 briefly introduced Behavior Trees: the modelling notation

used as an example in this thesis.

22 CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

Chapter 3

The State Machine Framework

This chapter describes the state machine level of the proposed framework. Although

in theory Kripke structures already provide a sufficient framework for model checking,

in practice it is convenient and beneficial to have additional structures in the frame-

work based on the structures in the modelling notation. Potential benefits of having the

additional structures include:

• The mapping of a model in some modelling notation into the framework and the

mapping back of the result of model checking into the modelling notation can both

be made straightforward.

• Model checking and other analyses can take advantage of the additional structures.

The proposed framework is intended to support symbolic analyses of asynchronous

finite-state systems with interleaving semantics, but is otherwise a general framework.

The framework includes basic concepts that are present in modelling notations for asyn-

chronous finite-state transition systems, without the excess baggage of a modelling nota-

tion. Elements of the framework include:

• guarded updates: restricted forms of Dijkstra’s guarded commands [Dij75],

• transfer functions: functions to compute images and pre-images under transition

relations,

• elementary blocks: components of a model, each of which is executed atomically

with the effect of its execution being deterministic, and

• program counters: state variables that represent execution states of threads.

Although transfer functions are derived from models, they are included in the framework

because of their important role in the proposed approach for symbolic analyses.

23

24 CHAPTER 3. THE STATE MACHINE FRAMEWORK

Section 3.1 on states and guarded updates and Section 3.2 on elementary blocks

describe the concepts in an explicit setting. Section 3.3 describes how the concepts map

to a symbolic domain where sets are characterised by propositions, and how transfer

functions in the symbolic domain can be implemented efficiently using ordered binary

decision diagrams (OBDDs) [Bry86].

3.1 States and Guarded Updates

Since the system being modelled is a finite state transition system, there is a finite set V

of state variables:

V = {v1, v2, ..., vn}, (3.1)

where type(vi) is a non-empty finite enumeration for 1 ≤ i ≤ n. A state assigns each

state variable with a value from its type (vi ← di with di ∈ type(vi) for each 1 ≤ i ≤ n):

i.e., a state is a set of assignments where each state variable is assigned exactly once.

Thus, a state can be viewed as a set of pairs {(v1, d1), (v2, d2), ..., (vn, dn)} (a relation and

a function) or simply an n-tuple (d1, d2, .., dn), with di ∈ type(vi) for each 1 ≤ i ≤ n, and

the set S of possible states is

S , type(v1)× type(v2)× ...× type(vn). (3.2)

The atomic propositions of the system being modelled are simple equalities of the

form l = r where l is vi and r ∈ type(vi) for some 1 ≤ i ≤ n. From a Kripke structure

point of view, if S is to become part of a Kripke structure (S,R, L), then the truth value

of an atomic proposition in a state must be able to be determined from the labelling

function L of the Kripke structure i.e., we have ∀s ∈ S : (l = r) ∈ L(s)⇔ (l← r) ∈ s.
In addition to states, a finite state transition system also has a finite set of transitions

between states. The set of transitions can be viewed as forming a single monolithic

transition relation. However, operationally, it is often convenient to view transitions as

updates to states. To that end, we add to the framework guarded updates which are

restricted forms of guarded commands [Dij75]. A guarded update is a pair (g, u) where

guard g is a propositional formula and u is a simple update. The idea is that a state s in

which guard g holds can transition to a state t that is the result of updating s with u.

Thus a guarded update may be viewed as representing a set of transitions.

A guard g holds in a state s (denoted s |= g) if, by replacing occurrences of state

variables in g with their assigned values in s, g evaluates to true. The evaluation is

performed using simple equality checks and propositional calculus. As an example, the

following is the evaluation of g ≡ v1 = a1 ∨ v2 = b3 in the state s = {v1 ← a2, v2 ←

3.1. STATES AND GUARDED UPDATES 25

b3, v3 ← c1} where type(v1) = {a1, a2}, type(v2) = {b1, b2, b3, b4}, and type(v3) = {c1, c2}:

g ≡ v1 = a1 ∨ v2 = b3

≡ a2 = a1 ∨ b3 = b3 (substituting variables with values assigned in s)

≡ false ∨ true (evaluating equalities)

≡ true (propositional calculus).

A simple update u assigns a subset of the state variables with values in their types,

i.e., each state variable is assigned at most once. Like a state, an update can be viewed

as a relation or a function. Unlike a state, however, not all state variables need to be

assigned, i.e., the relation or function need not be total. The state variables that are not

assigned retain their values from before the update (they are unchanged by the update).

The result of an update u on a state s is written s⊕ u and is defined as follows:

s⊕ u ,
{
v ← d

∣∣ (v ← d) ∈ u ∨ (v ← d) ∈ s ∧ ¬(∃e : (v ← e) ∈ u)
}

(3.3)

i.e., ⊕ is the override operator if we treat s and u as functions. As an example, if

s = {v1 ← a, v2 ← b, v3 ← c} and u = {v1 ← d, v3 ← e}, then s ⊕ u = {v1 ← d, v2 ←
b, v3 ← e}.

A guarded update represents a set of transitions, i.e., there is a transition relation

associated with a guarded update. For a guarded update (g, u), its transition relation,

denoted R(g,u), is defined as follows:

R(g,u) , {(s, t) | (s |= g) ∧ t = s⊕ u}. (3.4)

Because the framework is intended for symbolic analyses, operations in the framework

use transfer functions for computing images and pre-images under transition relations

rather than the transition relations themselves. For a guarded update (g, u), the transfer

functions for computing the image and pre-image under its transition relation are denoted

f(g,u) and r(g,u) respectively:

f(g,u)(I) , {t | (s, t) ∈ R(g,u) ∧ s ∈ I} = {s⊕ u | s ∈ I ∧ (s |= g)}. (3.5)

r(g,u)(O) , {s | (s, t) ∈ R(g,u) ∧ t ∈ O} = {s | (s⊕ u) ∈ O ∧ (s |= g)}. (3.6)

Although guarded updates seem overly restrictive, for a finite-state transition system,

an arbitrary atomic guarded command can always be encoded as a finite collection of

guarded updates. The use of guarded updates simply makes the cases of an atomic

guarded command more explicit. Arbitrary atomic guarded commands are to be modelled

as elementary blocks, described in the next section.

26 CHAPTER 3. THE STATE MACHINE FRAMEWORK

3.2 Elementary Blocks

The concept of elementary blocks — taken from the field of program flow analysis [NNH99]

— plays a central role in the framework. The use of elementary blocks in the framework

provides a way of maintaining structures from the source notation. In addition to pro-

viding a straightforward bidirectional mapping between objects in the source notation

and objects in the framework, elementary blocks allow analyses to take advantage of the

structures inherited from the source notation (some of which may have been lost had the

source notation been translated into a “flat” Kripke structure). The use of elementary

blocks and image and pre-image transfer functions reflects the view that model checking

is a special case of program analysis.

Elementary blocks provide a mechanism for “abstract transitions”: sets of transitions,

each of which is a grouping of transitions. The set of transitions for an elementary

block may be viewed as a partition of the transition relation for the system. In the

framework, elementary blocks are required to be deterministic (i.e., if (s1, s2) and (s1, s3)

are possible transitions through a particular elementary block, then s2 = s3). The reasons

for requiring elementary blocks to be deterministic are:

• It simplifies the concept of symbolic (abstract) counterexample path, defined in

Section 7.1.3.

• It allows partial order reduction [PWW96] — which uses the concept of an abstract

transition as a deterministic set of transitions — to use elementary blocks as the

abstract transitions.

Although each elementary block is deterministic, the overall system is in general non-

deterministic.

An elementary block is constructed from a finite collection of guarded updates. A

transition through an elementary block means one of the guarded updates is chosen. The

guards of the guarded updates must be mutually exclusive (their pairwise conjunctions

are false), which ensures that they give rise to a deterministic choice, and thus ensures

that the elementary block is deterministic.

Because each guarded update represents a choice, the image transfer function fb for

an elementary block b is defined as follows:

fb(I) ,
⋃

(g,u)∈GU(b)

f(g,u)(I) (3.7)

where GU(b) is the set of guarded updates for block b. Similarly, the pre-image transfer

3.2. ELEMENTARY BLOCKS 27

function rb is defined as follows:

rb(O) ,
⋃

(g,u)∈GU(b)

r(g,u)(O). (3.8)

A system is modelled as a finite collection of elementary blocks where each elementary

block represents a transition choice. Whereas the collection of guarded updates for an

elementary block gives rise to a deterministic choice, the collection of elementary blocks

for a system may give rise to a non-deterministic choice. In addition, multiple elementary

blocks may be synchronised to “execute” in parallel (i.e., multiple elementary blocks are

chosen), in which case the elementary blocks must update the system state identically.

The image transfer function for a system modelled as a set of elementary blocks B is

defined as follows:

fB(I) ,
⋃
b∈B

fb(I). (3.9)

Similarly, the pre-image transfer function for the system is defined as follows:

rB(O) ,
⋃
b∈B

rb(O). (3.10)

Although the framework adopts the concept of elementary blocks from program anal-

ysis, it does not also adopt the static control flow graph of program analysis, since a finer

concept of flows possibly involving multiple threads is needed. Instead, the framework

uses program counters (PCs) to represent states of thread executions, with each thread

having its own PC.

Each elementary block belongs to a specific thread, and thus has a specific PC-value

pair specifying the value of the thread’s PC at the entrance to the elementary block. For

each elementary block b, its PC is denoted PC(b) and its PC value is denoted PCval(b).

The PC-value pair must be satisfied by each guard:

∀b ∈ B : ∀(g, u) ∈ GU(b) : g ⇒ PC(b) = PCval(b). (3.11)

Figure 3.1 shows an example in the form of a Behavior Tree (BT) [Dro03,Dro06], that

is used to illustrate the concepts. Each BT node that is not in an atomic composition

becomes an individual elementary block. An atomic composition (e.g., that involving BT

nodes tagged N3 and N4) becomes a single elementary block.

There are 3 threads in the BT example, thus 3 PCs are used. The choice of PC names

(PC1, PC2 and PC3) and the assignment of PC values (e.g., PC1=1 at the entrance of

the elementary block for N1) are somewhat arbitrary. What is important is that different

points in a thread execution path are assigned different values. However, a PC value of

0 is reserved for indicating that a thread is inactive. The use of PCs in encoding parallel

processes is common and dates as far back as 1978 in a paper by Flon and Suzuki [FS78].

28 CHAPTER 3. THE STATE MACHINE FRAMEWORK

PC1=1

N1 Lock

[unset]

?PC1=2

N2 Light

[amber]
�����9
XXXXXzPC2=1

N3 Lock

???unset???

N4 Lock

[set]

PC1=3

PC3=1 spawns two subthreads

N8 Lock

???unset???

N9 Lock

[set]

? ?PC2=2

N5 Light

[green]

PC3=2

N10 Light

[red]

? ?PC2=3

N6 Lock

[unset]

PC3=3

N11 Lock

[unset]

? ?PC2=4

N7 Light ∧
[amber]

PC3=4

N12 Light ∧
[amber] revert to N2

Figure 3.1: A BT Example

In the rest of this thesis, M and M ′ refer to models in the framework or their corres-

ponding Kripke structures. A model in the framework easily maps to its Kripke structure

as follows:

• S of the model becomes S in the Kripke structure.

• RB ,
⋃
b∈B
⋃

(g,u)∈GU(b)R(g,u) becomes R in the Kripke structure.

• Since atomic propositions are simple equalities, the labelling L in the Kripke struc-

ture can be defined such that for each state s, each state variable v, and each

d ∈ type(v), (v = d) ∈ L(s)⇔ (v ← d) ∈ s.

Note that although temporal logic is defined only for non-terminating systems (i.e., R

in the Kripke structure is left-total), the framework is neutral with respect to how to

handle termination. Model checking as described in Chapter 7 will work in the presence

of termination in M , although some care must be taken in interpreting the result: a

terminating run which violates a safety property might not produce a counterexample

path.

3.3 Symbolic Approach to Model Checking

Instead of operating on individual states, symbolic model checking operates on sets of

states, characterised using propositions. Propositional operations are used to implement

3.3. SYMBOLIC APPROACH TO MODEL CHECKING 29

Equality Equality Encoding Assignment Assignment Encoding

v1 = a1 ¬v10 v1 ← a1 〈v10 ← false〉
v1 = a2 v10 v1 ← a2 〈v10 ← true〉
v2 = b1 ¬v20 ∧ ¬v21 v2 ← b1 〈v20 ← false, v21 ← false〉
v2 = b2 v20 ∧ ¬v21 v2 ← b2 〈v20 ← true, v21 ← false〉
v2 = b3 ¬v20 ∧ v21 v2 ← b3 〈v20 ← false, v21 ← true〉
v2 = b4 v20 ∧ v21 v2 ← b4 〈v20 ← true, v21 ← true〉
v3 = c1 ¬v30 v3 ← c1 〈v30 ← false〉
v3 = c2 v30 v3 ← c2 〈v30 ← true〉

Table 3.1: Encoding equalities and assignments using OBDD variables

set operations: logical disjunctions for set unions and logical conjunctions for set in-

tersections. Image and pre-image transfer functions become functions that operate on

propositions.

The main purpose of a symbolic approach is to delay the enumeration of cases until

necessary, to avoid, if possible, enumerating some of the cases. Thus, symbolic model

checking does not need to imply that a transition system must be represented as a single

proposition describing the transition relation for the system. Nor does it need to imply

that a fixpoint approach such as that of Emerson and Lei [EL86] is used. It simply means

operations are performed on propositions representing sets of states (sets of transitions

are not necessarily represented entirely using propositions). Using this generalised notion

of a symbolic approach allows strategies commonly associated with the explicit automata

approach to be used.

The use of ordered binary decision diagrams (OBDDs) [Bry86] to represent propo-

sitions and speed up propositional operations is common in symbolic model checking

(see, e.g., [BCM+92]). If no inference mechanism (e.g., equational reasoning) other than

propositional reasoning is used for non-temporal reasoning, then equalities and assign-

ments in guarded updates must be encoded using OBDD variables. The equalities and

assignments in the example in Section 3.1 might be encoded as in Table 3.1. The encoding

for g ≡ v1 = a1 ∨ v2 = b3 would be

g ≡ v1 = a1 ∨ v2 = b3 ≡ ¬v10 ∨ ¬v20 ∧ v21.

For convenience, an update is represented as a sequence (since in the context of OBDD

variable ordering, an update may be viewed as a totally ordered set). Since several

OBDD variables may be required to encode a single state variable, a single assignment

of a state variable is represented as a sequence of assignments of OBDD variables. To

get the encoding for an update, the sequences for the assignments must be merged. The

30 CHAPTER 3. THE STATE MACHINE FRAMEWORK

corresponding equality encodings represent post conditions that hold after the updates.

For example, if u = {v2 ← b2} then, assuming the OBDD variables are ordered as

v10, v20, v21, ..., u is represented as the sequence u = 〈v20 ← true, v21 ← false〉 and

v20 ∧ ¬v21 holds immediately after the update u is applied. The function post that

produces the post condition for an update is defined as follows:

post(〈v ← true〉_ u) ≡ v ∧ post(u),

post(〈v ← false〉_ u) ≡ ¬v ∧ post(u),

post(〈〉) ≡ true

where _ is the sequence append operation.

A cautionary implementation note: some combinations of values for OBDD variables

may correspond to undefined values for state variables. Depending on the intended

semantics of the model, uninitialised state variables may or may not be assumed to have

defined values. If they are assumed to have defined values, then undefined values can

be precluded by excluding them from the set of initial states. On the other hand, if

uninitialised state variables are not assumed to have defined values, the type of each

state variable must include an undefined value.

Transfer functions operate on propositions rather than sets. Thus, the definition of

the image transfer function for a guarded update (g, u) in (3.5) is replaced by:

f(g,u)(I) , (I ∧ g)⊕ u (3.12)

where I is a proposition that characterises a set of states and ⊕ is now a symbolic

override operation. The correctness of (3.12) is easy to see: (I ∧ g) characterises the set

{s | s ∈ I ∧ s |= g}.
The post condition holds after a transition through the guarded update, thus

f(g,u)(I)⇒ post(u)

for any I. The symbolic version of the override function ⊕ is defined as follows:

P ⊕ (〈v ← true〉_ u) ≡ v ∧ ((∃v : P)⊕ u),

P ⊕ (〈v ← false〉_ u) ≡ ¬v ∧ ((∃v : P)⊕ u),

P ⊕ (〈〉) ≡ P

where ∃v : P is existential quantification in the logic of quantified boolean formula

(QBF) [AHU74]:

∃v : P , P |v←true ∨ P |v←false

3.3. SYMBOLIC APPROACH TO MODEL CHECKING 31

where P |v←true is a restriction operation: restricting v to true in P (i.e., replacing v with

true in P). In effect, ∃v : P ignores v in the proposition P . The symbolic override

operation can have an efficient OBDD implementation with the assignments performed

in a single traversal (assuming u is ordered according to the OBDD ordering).

The symbolic version of the pre-image transfer function for a guarded update uses the

ignore function defined using following rules:

ignore(〈〉, P) ≡ P,

ignore(〈v〉_ V,P) ≡ ignore(V, (∃v : P))

where the first argument is a sequence of OBDD variables and the second argument is a

proposition. For an update u represented as a sequence of OBDD variable assignments,

the OBDD variables assigned in u, represented as a sequence (ordered according to the

OBDD variable ordering), is denoted variables(u), and can be constructed as follows:

variables(〈v ← d〉_ u) = 〈v〉_ variables(u),

variables(〈〉) = 〈〉.

The definition of the pre-image transfer function in (3.6) is replaced by:

r(g,u)(O) , ignore(variables(u), O ∧ post(u)) ∧ g. (3.13)

The correctness of (3.13) is slightly more difficult to see than that of (3.12). O ∧ post(u)

characterises the biggest subset of O such that each element of the subset is a state

that can be the result of applying the update u ({t ∈ O | ∃s : t = (s ⊕ u)}). The

set of states that can be updated by u to states in the subset is characterised by

ignore(variables(u), O ∧ post(u)). Finally, of the states that can be updated by u to

states in O, only those satisfying the guard g can transition, thus the conjunction with

g.

For an elementary block b, the symbolic version of the image transfer function is as

follows:

fb(I) ,
∨

(g,u)∈GU(b)

f(g,u)(I) (3.14)

where GU(b) is the set of guarded updates for block b. Similarly, the symbolic version of

the pre-image transfer function for b is as follows:

rb(O) ,
∨

(g,u)∈GU(b)

r(g,u)(O). (3.15)

Note that although the transfer functions for an elementary block are defined in terms of

transfer functions for guarded updates, they can be implemented directly using relational

32 CHAPTER 3. THE STATE MACHINE FRAMEWORK

products, where the transition relation for each elementary block is represented by a

proposition (see [McM92]).

For the overall system defined by a set of elementary blocks B, the symbolic version

of the image transfer function is defined as follows:

fB(I) ,
∨
b∈B

fb(I). (3.16)

Similarly, the symbolic version of the pre-image transfer function for the system is defined

as follows:

rB(O) ,
∨
b∈B

rb(O). (3.17)

All symbolic image and pre-image transfer functions are functions from propositions to

propositions (they are not functions from Boolean to Boolean). It is not difficult to show

that they distribute over disjunctions (∨) and conjunctions (∧).

Symbolic model checking was initially developed with a fixpoint approach, first pro-

posed by Emerson and Lei [EL86], and made practical by McMillan [McM92] using

an OBDD implementation. The fixpoint approach uses the fixpoint operations of µ-

calculus [Koz83]. The fixpoint operations may be viewed as operating on a finite com-

plete lattice that is the powerset of a set of states S where the ordering relation is the

subset relation (⊆), the join and meet operations are ∪ and ∩ respectively, the bottom

element is the empty set, and the top element is S. The least fixpoint operator is µ and

the greatest fixpoint operator is ν. In both

µZ.f(Z) and νZ.f(Z),

f(Z) is a proposition characterising a set of states, and the result of the operation is also a

proposition characterising a set of states. The function f is a function from propositions

to propositions that is monotonic with respect to the lattice. As an example, if S0

characterises the set of initial states, then

µZ.S0 ∨ fB(Z)

characterises the set of reachable states. Since fB distributes over ∨, the function f

defined as

f(Z) = S0 ∨ fB(Z)

is monotonic with respect to the appropriate lattice. Since the lattice is finite, fixpoints

can be computed based on Kleene’s fixpoint theorem.

The framework does not restrict symbolic analysis to a fixpoint approach. Elementary

blocks and their transfer functions support search strategies normally associated with

3.3. SYMBOLIC APPROACH TO MODEL CHECKING 33

explicit model checking. Paths can be searched symbolically without first computing

fixpoints. However, there are differences between a search for a path with explicit states

and a search with symbolic states.

In a search with explicit states, e.g., using a depth-first strategy, one starts at an

initial state and at each choice point chooses a transition that determines the next state.

The next state is then checked to see if it has been “visited” to determine if the search

has reached a dead end or a “fulfilling” cycle has been found. If a dead end is reached,

then the search backtracks to a previous choice point that still has an alternative and

the search continues from there. If a fulfilling cycle is found then the search terminates

successfully. Otherwise the search continues forward by choosing the next transition. The

sequence of states chosen that “terminates” in a fulfilling cycle corresponds to a path in

the sense of temporal logic (it is an infinite path when the cycle is repeated forever).

In a forward search with symbolic states, the search starts at an initial symbolic state,

say SS0. At each step i, an elementary block bi is chosen and the next symbolic state

SSi is computed using bi’s image transfer function:

SSi ≡ fbi(SSi−1).

One needs to ensure that SSi 6≡ false. Note that since a transition through an ele-

mentary block is deterministic, |SSi| ≤ |SSi−1|, where |SSi| is the cardinality of the set

characterised by SSi.

Checking if a symbolic state has been visited can be performed naively by checking

whether the exact symbolic state has been visited (using equality). However, dead-ends

can be detected sooner if subsumption testing is used instead. Using subsumption testing,

a symbolic state SSi is said to have been visited if there is a j such that 0 ≤ j < i and

(SSi ∧SSj) ≡ SSi. Subsumption testing can also be used to detect a fulfilling cycle, but

the cycle found needs to be verified.

In a search with explicit states, it is guaranteed that a state in the path found can

transition to the next state in the path. The corresponding guarantee in a symbolic

path is each explicit state in a symbolic state SSi−1 must be able to transition through

elementary block bi to an explicit state in SSi, and each state in SSi must be the result

of transitioning from a state in SSi−1 through bi. Thus we require that

∀j : 0 ≤ j < i⇒ (SSj+1 ≡ fbj+1
(SSj)) ∧ (SSj ≡ rbj+1

(SSj+1)). (3.18)

However, during a symbolic search, (3.18) can be violated, i.e.,

∃j : 0 ≤ j < i ∧ (SSj 6≡ rbj+1
(SSj+1)).

Such a violation occurs when some states in SSj cannot transition through elementary

block bj+1. To ensure that a symbolic path found satisfies (3.18) for all i ≥ 0, the symbolic

34 CHAPTER 3. THE STATE MACHINE FRAMEWORK

states may need to be narrowed. Suppose a cycle is found that starts at SSk and ends

at SSi. Then the following operation needs to be performed iteratively with j from i− 1

to k:

SSj ← SSj ∧ rbj+1
(SSj+1). (3.19)

The resulting cycle is verified by ensuring that SSk ≡ SSi. Once the cycle is verified,

the rest of the symbolic states are narrowed by iteratively performing (3.19) with j from

k − 1 to 0.

3.4 Summary

A state machine framework for symbolic model checking and counterexample generation

has been presented that adds additional structure to the standard Kripke structure. The

concept of guarded update was introduced to simplify the exposition and lead to simple

implementations. The main structuring mechanism beyond the Kripke structure is that

of elementary blocks. The purpose of elementary blocks is to enable analyses to take

advantage of the structures from the modelling notation and simplify the mapping of

analysis results back to the modelling notation. A salient feature of the framework is the

use of image and pre-image functions under transition relations rather than the transition

relations themselves, thus avoiding the use of relational products. Examples of how the

concepts can be implemented with the use of OBDDs were provided, but the framework

does not preclude the use of other techniques for propositional reasoning.

Chapter 4

Translating Behavior Trees

This chapter describes a method for translating BTs into objects in the proposed frame-

work. A substantial subset of the BT notation [Beh07] is handled by the translation,

based on the formal semantics defined in [CH11]. The purpose of this chapter is to show

how objects in a modelling notation can be translated into objects in the framework.

4.1 Overview

Some features of the BT notation result in BT models that cannot be model-checked

without abstraction or inductive reasoning. For example, the semantics of arithmetic

expressions in the BT notation requires Presburger arithmetic extended (with negation)

to integers. In addition, there are features of the BT notation in [Beh07] that do not

have formal semantics in [CH11]. As a result, the following features of the BT notation

are not handled by the translation:

• the use of operators in expressions (they may involve infinite domains),

• the may and start new directives (no formal semantics),

• condition operations on nodes (no formal semantics), and

• multiple component instances (no formal semantics).

The omission of the above features allows the translation to focus on behavioural aspects

of BTs. The translation assumes that each component or attribute is of an enumerated

type, whose values can be finitely enumerated.

A translator from the BT notation to the SAL notation [dMOS03] that uses translation

rules described in [GWY08] already exists. There are important differences, in addition

to having different targets, between the translation here and the translation used in the

BT-to-SAL translator. They are:

35

36 CHAPTER 4. TRANSLATING BEHAVIOR TREES

• The translation of reference BT nodes. The BT-to-SAL translator restricts a refer-

ence BT node to reference only a BT node in the same thread, and uses a “goto”

semantics for references. The translation here allows references to BT nodes in

other threads, and uses the “copy” semantics as specified in [CH11]. As an option

in the translation here, references to BT nodes in the same thread can use the goto

semantics. Note that in general the goto semantics produces a set of behaviours

that can be different from that produced by the copy semantics, even for a reference

to a BT node in the same thread (the latter was pointed out by Peter Lindsay in a

private communication).

• The translation of external input/output event BT nodes. The BT-to-SAL trans-

lator defines a Boolean SAL input variable for an external input event and requires

the variable to have the value true to enable a transition through a BT node with

the event, and defines a Boolean SAL output variable for an external output event

and sets the variable to true upon transition through a BT node with the event. The

translation here does not associate a state variable with an external input/output

event.

• The translation of internal input/output event BT nodes. The BT-to-SAL trans-

lator provides many options for the semantics of internal input/output, including

whether to buffer and whether output waits for a corresponding input to be ready.

The translation here simply uses the non-blocking semantics specified in [CH11].

The translation of BTs to elementary blocks with their collections of guarded updates

is performed in stages in the following order.

1. Expansion of references. This is needed because of the copy semantics of refer-

ences as specified in [CH11]. However there is an option to not expand references

to BT nodes in the same thread and treating them as gotos.

2. Assigning PCs. The main requirements are that each thread must have a unique

PC and the value of a thread’s PC must be different at different execution points

in the thread (see Section 3.2).

3. BT node level mapping. The guarded updates are constructed incrementally.

The “behaviour” part of a BT node determines a default guarded update for the

node. Because of branches, directives, atomic compositions, internal I/Os, syn-

chronisations and selections, the collections of guarded updates may need to be

modified. The modifications are performed incrementally. The effects of branching

4.2. EXPANSION OF REFERENCES 37

and directives (except the synchronisation directive) are processed at the BT node

level. The rest must be processed after the processing of atomic compositions.

4. Creating elementary blocks. The execution model for an atomic composition

is that it is really atomic: not only is it uninterruptible, but we can never see the

intermediate states. As a result, BT nodes in an atomic composition are merged

into a single elementary block. For optimisation purposes, PC values are reassigned

after the elementary blocks have been created, so that the range of values for each

PC is contiguous (since atomic compositions may cause some PC values to become

unused).

5. Elementary block level mapping. BT nodes that are synchronised with each

other can only “execute” if they are all “ready.” Because of the atomicity of atomic

compositions, “readiness” applies at the elementary block level, thus synchroni-

sations and internal I/Os are processed after the elementary blocks are created.

Note that the synchronisation for internal I/O is only partial synchronisation, but

“readiness” applies at the elementary block level here as well. Finally, because of

the peculiarity of the semantics of selections, they must be processed last.

Sections 4.2 through 4.6 describe the stages of the translation in detail.

4.2 Expansion of References

The first stage in a BT translation is the expansion of references (BT nodes with the =>

directive). The semantics of BTs described in [CH11] specifies that a reference is to be

replaced by a copy of the subtree rooted at the referenced node. This process is called

expansion since it is similar to macro expansion in some programming languages.

The semantics of BTs described in [CH11] actually restricts references to be to BT

nodes in sibling alternative branches. If the goto semantics is used, such cases can be

handled as in Section 4.4.3. The well-formedness requirements of references can be relaxed

to allow a reference to a BT node in another thread (i.e., a BT node in a different parallel

branch), since the copy semantics correctly handles such a case. This necessitates the

“expansion” of a reference.

Without loss of generality, references are restricted so that a target is strictly on the

left of the reference, i.e., the target node occurs earlier in a depth-first preorder traversal

than the source node and the target node must not be an ancestor of the source node. The

target of a reference is also restricted to be a non-leaf node. The expansion of references

is performed in a left-to-right fashion (one may use a depth-first left-to-right traversal to

find and replace the references, since references must be from leaf nodes).

38 CHAPTER 4. TRANSLATING BEHAVIOR TREES

Lock

[unset]

?
Light

[amber]
�����9
XXXXXz

Lock

???unset???

Lock

[set]

Lock

???unset???

Lock

[set]

? ?
Light

[green]

Light

[red]

? ?
Lock

[unset]

L1 Lock

[unset]

=>
L1

?
Light ∧
[amber]

Lock

[unset]

?
Light

[amber]
�����9
XXXXXz

Lock

???unset???

Lock

[set]

Lock

???unset???

Lock

[set]

? ?
Light

[green]

Light

[red]

? ?
Lock

[unset]

L1 Lock

[unset]

L1

? ?
Light ∧
[amber]

Light ∧
[amber]

Figure 4.1: Expansion of a reference

The target of a reference must match the source in that the component and “be-

haviour” parts of the target node must be the same as the corresponding parts of the

source node. Additionally, the source and target must either both be unlabelled or be

labelled identically. There may be multiple BT nodes that qualify as a target for a ref-

erence (i.e., the BT nodes match the source and satisfy the restrictions above). In such

a case, we apply the tie-breaking rules in Section 4.4.3 to choose the target. Figure 4.1

shows the expansion of a reference to a BT node labelled L1, with the expanded BT on

the right.

If the goto semantics is used for references whose targets are in the same thread, such

references are not expanded. (Two nodes are in the same thread if their nearest common

ancestor is not a parallel branching node and there is no parallel branching node in the

paths — excluding the ends — from the nearest common ancestor to the nodes.) Instead,

they are treated as a gotos and handled as in Section 4.4.3.

4.3 Assigning PCs

The second stage in the translation of a BT is assigning PCs. The main role of a PC is to

indicate the state of a thread in an execution in terms of where it is. Each thread in a BT

is assigned a PC unique to that thread. The value of the thread’s PC indicates the status

of the thread. A PC value of 0 indicates that the thread is inactive. A non-zero natural

number value indicates that the thread is either active or suspended (after it spawned

4.3. ASSIGNING PCS 39

subthreads) and indicates where in the BT the thread is active or suspended.

When a thread is about to make a choice among alternative branches, it is simulta-

neously at the entry points of the alternative branches. In such a case, a single execution

point for the thread (indicated by the thread’s PC value) corresponds to multiple BT

points that are entrances to BT nodes, each of which is the start of an alternative branch.

Associated with a node is an entry point and an exit point. The exit point is connected

to the entry points of the node’s children (if any). The connection is reflected in the

consistency between the value of the node’s PC at the node’s exit and the value at the

entrances to the node’s children. However, if the node is a parallel branching node, each

of the children will have its own PC to reflect the fact that it starts a new thread.

The method of assignment here is simply one of many possible ways of of assigning

PCs that satisfy the requirements that each thread must have a unique PC and the value

of a thread’s PC must be different at different execution points in the thread. Each node

is assigned with a PC and values for the PC at the entry and exit points of the node.

A PC identifier is completely determined by its index: a strictly positive integer. A PC

identifier is constructed by concatenating the string "PC" with the string representing the

index. For example, the identifier for a PC with index 11 is "PC11". For a node n:

• the PC index is denoted PCidx(n),

• the PC entry value is denoted PCval(n), and

• the PC exit value is denoted xPC(n).

For convenience in describing the rules for assigning PCs and PC values, a next PC index

is assigned for each node and is denoted xidx(n) for node n. The rules for assigning the

4-tuple 〈PCidx, PCval, xPC, xidx〉 are as follows:

1. For r the root node of the BT:

• PCidx(r)← 1,

• PCval(r)← 1,

• xPC(r)← 2, and

• xidx(r)← 2.

2. If a non-leaf node n0 that is not a branching node has been assigned a 4-tuple, then

its child n1 is assigned a 4-tuple as follows:

• PCidx(n1)← PCidx(n0),

• PCval(n1)← xPC(n0),

40 CHAPTER 4. TRANSLATING BEHAVIOR TREES

• xPC(n1)← xPC(n0) + 1, and

• xidx(n1)← xidx(n0).

3. If an alternative branching node n0 with i branches (to nodes n1...ni) has been

assigned a 4-tuple, then n1 is assigned a 4-tuple as per rule 2. For j = 2, ..., i, if

nj−1 and its descendants have been assigned 4-tuples, then nj is assigned assigned

a 4-tuple as follows:

• PCidx(nj)← PCidx(n0),

• PCval(nj)← xPC(n0),

• xPC(nj)← xPC(m1) + 1, and

• xidx(nj)← xidx(m2),

where m1 is the last descendant of nj−1 in the same thread to be assigned a 4-tuple

and m2 is the last descendant of nj−1 (not necessarily in the same thread) to be

assigned a 4-tuple (m1 = m2 = nj−1 if nj−1 does not have a descendant, m1 = nj−1

if nj−1 is a parallel branching node).

4. If a parallel branching node n0 with i branches (to nodes n1...ni) has been assigned

a 4-tuple, then n1 is assigned a 4-tuple as follows:

• PCidx(n1)← xidx(n0),

• PCval(n1)← 1,

• xPC(n1)← 2, and

• xidx(n1)← xidx(n0) + i.

For j = 2, ..., i, if nj−1 and its descendants have been assigned 4-tuples, then nj is

assigned a 4-tuple as follows:

• PCidx(nj)← xidx(n0) + j − 1,

• PCval(nj)← 1,

• xPC(nj)← 2, and

• xidx(nj) = xidx(m),

where m is the last descendant of nj−1 to be assigned a 4-tuple (m = nj−1 if nj−1

does not have a descendant).

4.4. BT NODE LEVEL MAPPING 41

Rules 2, 3 and 4 are repeated until all nodes have been assigned 4-tuples.

Once all BT nodes have been assigned 4-tuples, for each node n the PC identifier

PC(n) can be assigned the appropriate string based on PCidx(n). Thereafter, only

PC(n), PCval(n) and xPC(n) are needed for each node n. Figure 4.2 shows PC values

assigned to entry points of BT nodes.

PC1=1

Lock
[unset]

?PC1=2

Light
[amber]
�����9
XXXXXz

PC1=3

PC2=1

Lock
???unset???

PC2=2
Lock

[set]

PC3=1

Lock
???unset???

PC3=2
Lock

[set]

? ?PC2=3

Light

[green]

PC3=3

Light

[red]

? ?PC2=4

Lock

[unset]

PC3=4

Lock

[unset]

? ?PC2=5

Light ∧
[amber]

PC3=5

Light ∧
[amber]

Figure 4.2: Assigned PC Values

4.4 BT Node Level Mapping

The third stage in the BT translation is BT node level mapping. The stage consists of

three steps:

1. assigning default guarded updates to BT nodes,

2. processing the effects of branching, and

3. processing control flow directives.

4.4.1 Default Guarded Updates

The first step in the third stage of a BT translation is assigning default guarded updates

to BT nodes. To help describe the construction of elementary blocks, a guarded update

is broken into the following parts:

42 CHAPTER 4. TRANSLATING BEHAVIOR TREES

Class(n) PCGuard MGuard PCUpdate MUpdate

update PC(n) = PCval(n) true {PC(n)← xPC(n)} {ca(n)← val(n)}

guard PC(n) = PCval(n) ex(n) {PC(n)← xPC(n)} {}

event PC(n) = PCval(n) true {PC(n)← xPC(n)} {}

Table 4.1: Default Guarded Update Parts

• PCGuard: part of the guard about the relevant PC (usually of the form PC(n) =

PCval(n)).

• MGuard: the “main” guard (usually not about the relevant PC).

• PCUpdate: update of PC variables.

• MUpdate: update of BT components and component attributes.

A guarded update is constructed from the parts as follows:(
PCGuard ∧MGuard,PCUpdate ∪MUpdate

)
.

The default values for the guarded update parts are based on the class of the node

and are shown in Table 4.1. The three classes of BT nodes are:

• update: consisting of state realisation nodes;

• guard: consisting of selection nodes and guard nodes;

• event: consisting of event nodes, input nodes and output nodes.

Note that for the purpose of this translation, external input and output nodes can be

treated as event nodes, thus input and output nodes here are internal I/O nodes.

For a node n in the update class, ca(n) is the component or component attribute

specified in node n and val(n) is the component state or attribute value specified in n.

For a node n in the guard class, ex(n) is the boolean expression representing the guard.

Note that PC(n), PCval(n), xPC(n), ca(n), val(n) and ex(n) are all placeholders.

The guarded update parts can be further modified at later stages of the translation. In

addition, the translation of internal I/O causes single guarded updates to be partitioned

into multiple guarded updates, causing the parts to be partitioned.

4.4.2 Branching

The second step in the third stage in a BT translation is translating the effects of branch-

ing. BTs have alternative branching and parallel branching. Nothing needs to be done

4.4. BT NODE LEVEL MAPPING 43

for nodes that start alternative branching. For a node that starts parallel branching,

however, the effects of activating the subthreads need to be modified. If node n starts

parallel branching to n1, ..., nm, then the PCUpdate for n needs to be modified as follows:

PCUpdate(n) ← PCUpdate(n) ∪
m⋃
i=1

{(
PC(ni), PCval(ni)

)}
.

4.4.3 Control Flow Directives

The third step in the third stage in a BT translation is translating the effects of control

flow directives kill (−−), revert (∧) and, optionally, reference (=>).

A BT node with a kill control directive (−−), when executed, causes the thread of

the target BT node to be killed (deactivated). The “behavior” specified in the BT node

must be cleared and replaced by the killing action. Thus if n is a BT node with a kill

flag, then parts of n are modified as follows:

MGuard(n) ← true,

PCUpdate(n) ← PCUpdate(n)⊕Kill(target),

MUpdate(n) ← {},

where ⊕ is the override operator, target is the BT node that is the target of the kill, and

Kill(target) represents killing the target thread:

Kill(target) =
⋃

PC∈threadPCs(target)

{
PC ← 0

}
,

where threadPCs(target) gives the PCs of the target thread and all its subthreads.

A BT node with a reversion control directive (∧), when executed, causes the target

thread to be killed and restarted immediately after the target node. The PC update part

of a BT node n with a reversion directive is modified as follows:

PCUpdate(n)← PCUpdate(n)⊕Kill(target)⊕ PCUpdate(target).

PCUpdate(target) will restart the target thread immediately after the target node. The

BT node already has much of the “behavior” of the target node1, thus only the “PC

effects” need to be inherited from the target node.

If the goto semantics is used, a BT node with a reference control directive (=>),

when executed, causes control to jump to the target BT node. This is restricted to cases

where the referencing node and the target node are in the same thread. The handling

of references when the copy semantics is used is already covered in Section 4.2. As with

1The “behavior” of the target node is executed at the node with the directive.

44 CHAPTER 4. TRANSLATING BEHAVIOR TREES

reversion, it is assumed that the “behavior” of the target node is executed at the node

with the reference directive. Again, the “PC effects” are inherited from the target node.

The PC update component of the referencing node is modified as follows:

PCUpdate(n)← PCUpdate(n)⊕ PCUpdate(target).

The translation of a BT with control flow directives requires the following well-

formedness conditions to be met:

• A BT node with a reversion or reference directive cannot have a descendant.

• The target of a kill/reversion/reference cannot be an atomic composition.

• To use the goto semantics, a reference must be to a non-leaf node in the same

thread/subthread (the source and target nodes must have the same PC).

• Reversion must be to an ancestor node.

The target of a kill/reversion/reference must match the source in that the component

and “behaviour” parts of the source node must be the same as the corresponding parts

of the target node. Additionally, the source and target must either both be unlabelled

or be labelled identically. There may be multiple BT nodes that qualify as a target for

a source (i.e., the BT nodes match and satisfy the constraints above), thus there are

“tie-breaking” rules for choosing the target in such a case. The tie-breaking rules are:

1. The target node with the nearest common ancestor with the source wins.

2. If there is still a tie after 1, the target in the leftmost path from the nearest common

ancestor wins.

3. If there is still a tie after 2, then one is an ancestor of the others still in contention,

and the ancestor wins.

Note that a node and an ancestor of the node have the ancestor as the nearest common

ancestor. For a reversion, since the target must be an ancestor, the first rule will break

a tie.

4.5 Creating Elementary Blocks

The fourth stage in a BT translation is creating elementary blocks. An elementary block

is created for each BT node that is not in an atomic composition. BT nodes in an

4.5. CREATING ELEMENTARY BLOCKS 45

atomic composition are merged into a single elementary block. An atomic composition

is restricted to contain at most one event node (internal I/O or external event).

To create an elementary block b from the atomic composition of BT nodes n1, ..., nm,

b’s parts are set as follows:

PC(b) ← PC(n1),

PCval(b) ← PCval(n1),

PCGuard(b) ← (PC(n1) = PCval(n1)),

MGuard(b) ←
m∧
i=1

MGuard(ni)[θi],

PCUpdate(b) ← PCUpdate(nm),

MUpdate(b) ← MUpdate(n1)⊕ ...⊕MUpdate(nm),

where [θi] is a substitution operation based on updates:

[θi] = MUpdate(n1)⊕ ...⊕MUpdate(ni−1).

Because atomic composition can be combined with alternative branching, a BT node

can be the head of more than one block. A BT node n with atomic alternative branching

with m branches produces at least m blocks, each constructed as above with n as the first

node of each block. If any of the branches in turn is atomically linked to another atomic

alternative branching, then it produces more than m branches. In general, a BT node

does not have to be one with atomic alternative branching to be the head of multiple

blocks because branches are propagated up the tree along atomic compositions.

The combination of atomic composition with parallel branching is disallowed. In

addition, an atomic composition is restricted to have at most one synchronised BT node

and at most one BT node of the event class.

Each node n that is not in an atomic composition is turned into an elementary block

b with

PC(b) ← PC(n),

PCval(b) ← PCval(n),

PCGuard(b) ← PCGuard(n),

MGuard(b) ← MGuard(n),

PCUpdate(b) ← PCUpdate(n),

MUpdate(b) ← MUpdate(n).

Atomic compositions may cause some values of PCs to become unused. As an opti-

misation, PC values can be reassigned so that the range of values for a PC is contiguous.

46 CHAPTER 4. TRANSLATING BEHAVIOR TREES

PC1=1

Lock

[unset]

?PC1=2

Light

[amber]
�����9
XXXXXz

PC1=3

PC2=1

Lock

???unset???

Lock

[set]

PC3=1

Lock

???unset???

Lock

[set]

? ?PC2=2

Light

[green]

PC3=2

Light

[red]

? ?PC2=3

Lock

[unset]

PC3=3

Lock

[unset]

? ?PC2=4

Light ∧
[amber]

PC3=4

Light ∧
[amber]

Figure 4.3: Reassigned PC Values

For a PC that has its values reassigned, all updates to the PC and all comparisons in-

volving the PC’s values must be adjusted accordingly. Figure 4.3 shows the PC values

after reassignment.

4.6 Elementary Block Level Mapping

The fifth stage in a BT translation is elementary block level mapping. It consists of the

following steps:

1. processing synchronisation,

2. processing internal input/output,

3. processing selection, and

4. processing prioritisation (optional).

4.6.1 Synchronisation

The first step in the fifth stage of a BT translation is translating the effects of the

synchronise control directive (=). Since a synchronised BT node can be part of an atomic

composition, the synchronisation is on elementary blocks. If S is a set of elementary

4.6. ELEMENTARY BLOCK LEVEL MAPPING 47

blocks that are to be synchronised, then the parts for S are formed as follows:

MGuard(S) ←
∧
b∈S

PCGuard(b) ∧MGuard(b),

PCUpdate(S) ←
⋃
b∈S

PCUpdate(b),

MUpdate(S) ←
⋃
b∈S

MUpdate(b),

where the parts are assigned to each b ∈ S. If there is a conflict in the update, i.e.,

∃v, a, b : {v ← a, v ← b} ⊆ (PCUpdate(S) ∪MUpdate(S)) ∧ a 6= b,

then the BT is considered erroneous. For each b ∈ S, the following parts are set:

MGuard(b) ← MGuard(S),

PCUpdate(b) ← PCUpdate(S),

MUpdate(b) ← MUpdate(S).

The synchronised blocks are restricted to not only be in different threads (i.e., have

different PCs), but the closest common ancestor of any two of the synchronised blocks

must be a parallel branching node. The matching of nodes for full synchronisation is

similar to the matching of source and target nodes for kill, reversion and reference (see

Section 4.4.3). However, for synchronisation there is no source and target: all of the syn-

chronised nodes must have the synchronisation flag. More than two nodes can participate

in a synchronisation, thus no tie-breaking rules are necessary.

4.6.2 Internal I/O

The second step in the fifth stage of a BT translation is translating the effects of internal

I/O. Internal output does not have to wait for input to be ready, but all ready inputs

must receive the output. Since an atomic composition can have at most one event node,

an elementary block is restricted to have at most one I/O node.

An output block can have any finite number of corresponding input blocks, including

none. If b is an output block and I is the set of corresponding input blocks for b then

the transition for b is partitioned into 2|I| guarded updates. The partitions are indexed

by ri ∈ P(I), representing the input blocks that are ready (an input block i is ready

if the condition PCGuard(i) ∧MGuard(i) is satisfied). The partitioned parts for b are

48 CHAPTER 4. TRANSLATING BEHAVIOR TREES

constructed as follows (PCGuard(b) is not partitioned):

MGuard(b)(ri) ← MGuard(b) ∧
(∧
i∈ri

PCGuard(i) ∧MGuard(i)
)
∧(∧

i∈I\ri

¬
(
PCGuard(i) ∧MGuard(i)

))
,

PCUpdate(b)(ri) ← PCUpdate(b) ∪
(⋃
i∈ri

PCUpdate(i)
)
,

MUpdate(b)(ri) ← MUpdate(b) ∪
(⋃
i∈ri

MUpdate(i)
)
.

An input block can only transition with a corresponding output block. All other

matching input blocks that are ready must also transition. Let I be the set of other

matching input blocks and O be the set of matching output blocks. The partitions for

an input block use two indices: o ∈ O and ri ∈ P(I). The partitioned parts for an input

block b are constructed as follows:

MGuard(b)(o)(ri) ← MGuard(b) ∧ PCGuard(o) ∧MGuard(o) ∧(∧
i∈ri

PCGuard(i) ∧MGuard(i)
)
∧(∧

i∈I\ri

¬
(
PCGuard(i) ∧MGuard(i)

))
,

PCUpdate(b)(o)(ri) ← PCUpdate(b) ∪ PCUpdate(o) ∪
(⋃
i∈ri

PCUpdate(i)
)
,

MUpdate(b)(o)(ri) ← MUpdate(b) ∪MUpdate(o) ∪
(⋃
i∈ri

MUpdate(i)
)
.

Note that the above allows for non-deterministic choice in the case where several matching

output blocks are ready.

4.6.3 Selection

The third step in the fifth stage of a BT translation is translating the effects of selection.

A selection node in a BT is similar to a guard node, except it must not cause its thread

to be blocked, thus it does not wait until its guard becomes true. A selection node can

be used to determine which alternative branch to take, in which case all branches must

be guarded by selection. If a thread is at a selection point and none of the selections are

ready2 then the thread terminates. A selection node does not need to guard an alternative

branch: its parent can be BT node without branching, in which case the thread of the

selection node is killed when the node is reached and the selection is not ready (there are

no other alternative selections).

2A selection is ready if its guard expression evaluates to true.

4.7. COLLECTING GUARDED UPDATE PARTS 49

Selections are handled through blocks rather than individual BT nodes. A block is

a selection block if it contains a selection node. At any point where there is a selection,

an “else” block is synthesized which kills the thread when encountered and none of

the selections are ready at that point. Note that parallel branches are different thread

points (unlike alternative branches), thus selection at a parallel branch must be handled

individually.

If A is the set of selection blocks at a selection point, an “else” block e is added at the

same point. This means PC(e)← PC(b) and PCval(e)← PCval(b) for b ∈ A (any b in

A would do since all have the same PC(b) and PCval(b) values). Because an elementary

block may have multiple guarded updates, we define CMGuard(b) as follows:

CMGuard(b) ,


∨
ri∈P(I) MGuard(b)(ri) if b is an output block∨
o∈O
∨
ri∈P(I) MGuard(b)(o)(ri) if b is an input block

MGuard(b) otherwise.

The “else” block e is constructed with the following parts:

PCGuard(e) ← (PC(e) = PCval(e)),

MGuard(e) ←
∧
b∈A

¬CMGuard(b),

PCUpdate(e) ← {PC(e)← 0},

MUpdate(e) ← {}.

Note that the above construction also works in the case where the selection block does

not start an alternative branch (|A| = 1).

4.6.4 Prioritisation

There is an option in the translation for prioritising system transitions over external

events (including external input and output). With the prioritisation option, the guard

of each elementary block e that contains an external event BT node is modified as follows:

MGuard(e)← MGuard(e) ∧
∧
b∈A

¬(PCGuard(b) ∧ CMGuard(b)),

where A is the set of elementary blocks that do not contain external event BT nodes.

4.7 Collecting Guarded Update Parts

After all the stages of the translation have been completed, each guarded update is formed

from its parts.

50 CHAPTER 4. TRANSLATING BEHAVIOR TREES

• If (g, u) represents the guarded command for an elementary block b that is neither

an input block nor an output block, then it is formed as follows:

g ← PCGuard(b) ∧MGuard(b),

u ← PCUpdate(b) ∪MUpdate(b).

• An input block b has its transition partitioned into into multiple guarded updates.

If (g, u) represents the guarded update for the partition indexed by (o)(ri), then it

is formed as follows:

g ← PCGuard(b) ∧MGuard(b)(o)(ri),

u ← PCUpdate(b)(o)(ri) ∪MUpdate(b)(o)(ri).

• An output block b has its transition partitioned into into multiple guarded updates.

If (g, u) represents the guarded update for the partition indexed by (ri), then it is

formed as follows:

g ← PCGuard(b) ∧MGuard(b)(ri),

u ← PCUpdate(b)(ri) ∪MUpdate(b)(ri).

4.8 Summary and Possible Future Work

A method for translating a substantial subset of the BT notation into objects in the

proposed framework has been described in this chapter. Operators in expressions are

omitted from the translation because they are problematic:

• integer arithmetic operates on an infinite domain, and

• both [Beh07] and [CH11] are unclear on whether set operations can be performed

on arbitrary (untyped) sets.

Perhaps if BT components and attributes are typed (either using a typing mechanism or

using assertions) such that they have finite domains, then the translation can be extended

to handle operators in expressions.

Chapter 5

Reachability

This chapter discusses the computation of reachability in model checking. The main

contribution in this chapter is an algorithm for computing reachability that in some cases

is significantly more efficient than a naive reachability computation. Although computing

reachability and then using the reachability information in further analysis is not always

the best strategy, there are cases where it is a good strategy. The algorithm can be

used for such cases. Other uses of reachability information include discovering deadlock

situations and finding violations of safety properties.

The process of model checking involves the concept of reachable states. In checking

that a temporal logic formula is satisfied by a model, typically we must show that partic-

ular states in the model are never reached or particular states in the model are reachable.

As an example, to show that Gp is satisfied by the model, we must show that no state is

reachable (from an initial state), from which a (suffix) path where ¬p holds can start.

Reachability is also important in other types of analysis. As an example, for a system

that is intended to be non-terminating, deadlocked states can be characterised as states

that are reachable but from which there are no transitions. In the example BT of Figure

3.1, the states characterised by

(PC1 = 3) ∧ (PC2 = 1) ∧ (PC3 = 1) ∧ (Lock = set) ∧ (Light = amber) (5.1)

resulting from thread 2 executing N7 while thread 3 is at N10 (and thus killing thread

3), or thread 3 executing N12 while thread 2 is at N5 (and thus killing thread 2), are

reachable but there are no transitions from them, hence they represent deadlocked states.

A strategically important question in model checking is how and when do we decide

whether or not a state is reachable? A bad strategy can result in unnecessary complexity

in the model checking. Three basic strategies for dealing with reachability that are used

in model checking are:

1. Precomputing reachable states.

51

52 CHAPTER 5. REACHABILITY

2. Reachable by construction, e.g., in on-the-fly model checking.

3. Inferring the existence of reachable states.

The following sections discuss each of the basic strategies within the framework. An

algorithm for computing reachable states that mimics Kildall’s algorithm for flow analysis

[Kil73] is proposed in Section 5.1, complete with its proof of correctness.

5.1 Precomputing Reachable States

Precomputing reachability can be prohibitively expensive. However, precomputing reach-

able states often simplifies the operations required to perform an analysis. Going back to

the deadlock problem of the example BT of Figure 3.1, if Reachable(N8) characterises

the set of reachable states at the entrance of N8, then performing the following logical

operation:

Reachable(N8) ∧ ¬

(∨
b∈B

(∨
(g,u)∈GU(b)

g

))
immediately yields (5.1). Thus the result of precomputing reachable states can be used

to simplify deadlock analysis. Perhaps more importantly, in the context of counterexam-

ple path generation, precomputing counterexample states (reachable “fair states”) allows

an analysis to focus on states that are guaranteed to be reachable, which may be desir-

able since the existence of a finite prefix to a cycle involving counterexample states is

guaranteed.

A state is reachable if it is an initial state or there is a transition from a reachable

state to it. A fixpoint characterisation of the set of reachable states for a system modelled

by a set of elementary blocks B is

µZ.S0 ∨ fB(Z) (5.2)

where S0 is a proposition that characterises the set of initial states and fB is the overall

forward transfer function for the system modelled by B. The fixpoint computation for

reachable states can be performed using a single transition relation to compute fB(Z).

However, it may require a large OBDD to represent a large monolithic transition relation.

Keeping the forward transfer functions distributed mitigates this problem. One can go

one step further by computing reachable states at elementary blocks using Algorithm 5.1

which is inspired by Kildall’s algorithm [Kil73] (sometimes called chaotic iteration).

There are two global variables used by the algorithm:

• W , representing a working set of elementary blocks, and

5.1. PRECOMPUTING REACHABLE STATES 53

• Reachable, a collection of reachable sets of states, indexed by elementary block.

Algorithm 5.1 computes the sets of reachable states at the entrances of elementary blocks,

where choose(W) chooses an element of W . For each elementary block b, the resulting

reachable states at the entrance of b is stored in Reachable(b). The algorithm assumes

that for each elementary block b, the image transfer function fb is available.

Algorithm 5.1. Compute Reachable States

Step 1 - Initialisation:

W ← ∅;
for each b ∈ B do

Reachable(b)← S0 ∧ (PC(b) = PCval(b));

if Reachable(b) 6= false then W ← W ∪ {b};

Step 2 - Iteration:

while W 6= ∅ do

b← choose(W);

W ← W \ {b};
D ← fb(Reachable(b));

for each c ∈ B do

C ← D ∧ (PC(c) = PCval(c));

if ¬(C ⇒ Reachable(c)) then

Reachable(c)← Reachable(c) ∨ C;

W ← W ∪ {c};

Since we deal with finite systems, it is not too difficult to prove the following theorem:

Theorem 5.1. Algorithm 5.1 terminates and produces the following result:

∀b ∈ B : Reachable(b)⇔ (µZ.S0 ∨ fB(Z)) ∧ (PC(b) = PCval(b)).

Proof. Step 1 in the algorithm iterates over a finite set, so it terminates. Each iteration

in step 2 deletes a block from the working set W and sometimes adds blocks to W. It only

adds a block c to W if the set characterised by Reachable(c) can be enlarged and enlarges

the set in the process. Since the set characterised by Reachable(c) has a maximum size

that is finite, the addition of a block can only be performed a finite number of times, thus

step 2 always terminates.

Let P denote µZ.S0 ∨ fB(Z). We now show that

∀b ∈ B : Reachable(b)⇒ (P ∧ PC(b) = PCval(b)) (5.3)

54 CHAPTER 5. REACHABILITY

is an invariant of step 2. Initialisation of Reachable(b) in step 1 guarantees that the

invariant holds on entry to step 2. The only place in step 2 where Reachable is modified

produces

newReachable(c)⇔ Reachable(c) ∨ (fb(Reachable(b)) ∧ PC(c) = PCval(c)).

Since P is a solution for Z in Z ⇔ (S0 ∨
∨
b∈B fb(Z)),

P ⇔ (S0 ∨
∨
b∈B

fb(P))

thus fb(P)⇒ P . Recall from Section 3.3 that all image and pre-image transfer functions

are monotonic, thus fb is monotonic, and since Reachable(b)⇒ P , we have

fb(Reachable(b))⇒ fb(P)

and get

(fb(Reachable(b)) ∧ PC(c) = PCval(c))⇒ (P ∧ PC(c) = PCval(c))

and since Reachable(c)⇒ (P ∧ PC(c) = PCval(c)), we get

newReachable(c)⇒ (P ∧ PC(c) = PCval(c)))

thus proving the invariant (5.3). A second invariant is

∀b, c ∈ B : Reachable(b) ∧ PC(c) = PCval(c)⇒ Reachable(c). (5.4)

The invariant (5.4) holds after step 1 since

S0 ∧ (PC(b) = PCval(b))⇔ Reachable(b) and

S0 ∧ (PC(b) = PCval(b)) ∧ (PC(c) = PCval(c))⇒ Reachable(c)

thus Reachable(b) ∧ PC(c) = PCval(c)⇒ Reachable(c). Similarly, in step 2 we have

Reachable(b) ∧ PC(c) = PCval(c)⇒ Reachable(c),

Reachable(b) ∨ (D ∧ (PC(b) = PCval(b)))⇔ newReachable(b) and

D ∧ (PC(b) = PCval(b)) ∧ (PC(c) = PCval(c))⇒ newReachable(c)

thus newReachable(b) ∧ PC(c) = PCval(c)⇒ newReachable(c), meaning the invariant

(5.4) is preserved by each iteration of step 2. Upon termination, we have for all b, c ∈ B :

fb(Reachable(b)) ∧ PC(c) = PCval(c)⇒ Reachable(c),

whether Reachable(b) was updated (to non-false) last in step 1 or step 2, since in either

case b was put in W , and the processing of b in step 2 guarantees the condition (whether

5.2. REACHABLE BY CONSTRUCTION 55

or not C ⇒ Reachable(c)). In addition, step 1 ensures that ∀b ∈ B : S0 ∧ PC(b) =

PCval(b) ⇒ Reachable(b) (step 2 never makes the set characterised by Reachable(b)

smaller, for any b). Thus we have for all b ∈ B:

(S0 ∨
∨
d∈B

fd(Reachable(d))) ∧ PC(b) = PCval(b)⇒ Reachable(b).

Invariant (5.4) together with fd(S) ≡ fd(S ∧ PC(d) = PCval(d)) guarantees that

fd(Reachable(d)) ≡ fd(
∨
b∈B Reachable(b)). Thus for all b ∈ B:

(S0 ∨ fB(
∨
d∈B

Reachable(d))) ∧ PC(b) = PCval(b)⇒ Reachable(b).

Taking the disjunction over all b ∈ B gives us

(S0 ∨ fB(
∨
d∈B

Reachable(d))) ∧
∨
b∈B

PC(b) = PCval(b)⇒
∨
b∈B

Reachable(b),

and since (
∨
b∈B PC(b) = PCval(b)) ≡ true (we assume that a state is at the entrance

of at least one block) we get

(S0 ∨ fB(
∨
d∈B

Reachable(d)))⇒
∨
d∈B

Reachable(d).

Since P is the least solution for Z in Z ≡ S0 ∨ fB(Z), we get

P ⇒
∨
d∈B

Reachable(d),

thus for all b ∈ B:

P ∧ PC(b) = PCval(b)⇒ Reachable(b). (5.5)

The invariant (5.3) gives us for all b ∈ B:

Reachable(b))⇒ P ∧ PC(b) = PCval(b). (5.6)

Combining (5.5) with (5.6) proves the algorithm produces the desired result.

5.2 Reachable by Construction

Some search strategies start at initial states and search forward from the initial states.

With such a search strategy, at each step, the next set of states is chosen that are reachable

from the current set of states in exactly one transition. At all times, only states that

are reachable from the initial states are considered. Thus reachability is maintained by

construction.

There are two examples of a forward search in this thesis, where the states are reach-

able from the initial states by construction:

56 CHAPTER 5. REACHABILITY

• on-the-fly symbolic LTL model checking (described in Section 7.2.3), and

• the final phase of directed counterexample path generation (described in Chapter

8).

The naive on-the-fly symbolic LTL model checking algorithm described in Section

7.2.3 is an example of a blind (unconstrained) search. It can find a counterexample path

very quickly if one exists, since it typically only needs to go through a tiny fraction of

the search space before a counterexample path is found. However, it performs badly

if there is no counterexample because it needs to go through the entire search space.

Its performance may be improved by constraining the search, e.g., using partial order

reduction [PWW96], where certain paths are excluded from the search because other

paths, which in some sense represent them, are already included in the search.

The final phase of directed counterexample path generation, described in Chapter

8, is different in that the search is guaranteed to be successful without any need for

backtracking. At each step, the existence of a non-empty next set of states is guaranteed.

This is because the search space has been constrained by earlier phases of the directed

counterexample path generation, and the constrained search space has been determined

to contain solutions. Thus the forward search in the final phase is very efficient.

For a forward search using symbolic states, some post-processing is required. Recall

from Section 3.3 that in our framework, forward searches for a path operate on symbolic

states. Although all symbolic states in a forward search are reachable from the initial

symbolic state, once a tentative symbolic path is found, the symbolic states need to

be narrowed using (3.19) so that (3.18) is satisfied. For both of the above examples,

narrowing is performed after a tentative path is found so that (3.18) is satisfied.

In summary, reachable by construction generally entails a forward search, which can

be effective if a depth-first search can quickly find a solution. In the case of on-the-fly

symbolic LTL model checking, if there is a counterexample, then a depth-first search can

quickly find a counterexample path. In the case of the final phase of directed counterex-

ample path generation, a depth-first search is guaranteed to succeed quickly without any

need for backtracking.

5.3 Inferring the Existence of Reachable States

The third strategy for reachability is to ignore it during the main computation. An

example of the application of this strategy is in a fixpoint approach to symbolic model

checking.

5.4. SUMMARY 57

In symbolic LTL model checking using the fixpoint approach, the set of “fair states”

is computed via a fixpoint computation. Ultimately, the goal is to find all fair states

that are reachable from certain initial states (the initial states must satisfy additional

properties, as will be explained in Section 7.2.2). An intermediate goal is to find the set

of initial fair states that satisfy the additional properties. There are two basic strategies

with respect to reachability in achieving the intermediate goal:

1. perform the fixpoint computation within the set of reachable states (precomputed,

e.g., using Algorithm 5.1) producing the set of reachable fair states, or

2. ignore reachability during the fixpoint computation and simply produce the set of

fair states.

To achieve the intermediate goal, it does not matter whether we compute the set of

reachable fair states or simply the set of fair states. Once the set of (reachable) fair states

has been computed, it is intersected with the set of initial states that satisfy additional

properties, producing the set of initial counterexample states. A non-empty set of initial

counterexample states guarantees the existence of a counterexample path (an infinite

sequence of reachable counterexample states), without actually computing the entire

set of counterexample states. This is a consequence of the definition of the set of fair

states and having the initial states satisfy additional properties (the additional properties

commit the initial states to start counterexample paths). Of course, if a counterexample

path is desired, then it would need to be searched, but the search can take advantage of

the set of initial counterexample states and the set of fair states.

Being able to obtain the set of initial counterexample states, whether the set is empty

or not, can be useful. If the set is empty then there is no counterexample and there is

nothing else to do. If the set is not empty, then it can be used to reduce the search

space for counterexample paths. However, there are alternatives for symbolic model

checking that do not require the computation of the set of initial counterexample states:

for example, the on-the-fly symbolic LTL model checking described in Section 7.2.3.

5.4 Summary

Three basic strategies for reachability in model checking have been described: precomput-

ing reachable states, obtaining reachability by construction, and inferring the existence

of reachable states. A particular strategy may not be appropriate for all model checking

problems. Some of the experiments described in Chapter 9 examine the appropriateness

of the strategies for different problems and look at the trade-offs between strategies.

58 CHAPTER 5. REACHABILITY

Chapter 6

Foundation for LTL Model Checking

This chapter identifies general concepts that are used in a wide variety of LTL model

checking approaches. The concepts are applied, in Chapter 7, to the state-machine-level

framework described in Chapter 3 to form a framework for symbolic LTL model checking

and counterexample generation that accommodates various LTL encoding schemes: the

schemes for encoding LTL model-checking problems in a states-and-transitions setting.

The concepts are applied to the classic LTL encoding scheme developed by Lichtenstein

and Pnueli [LP85], and the Transition-based Generalised Büchi Automaton (TGBA)

encoding scheme developed by Rozier and Vardi [RV11].

The main contributions of the conceptual framework include:

• The use of path commitments and transition constraints as building blocks for LTL

tableaux. This allows transition-oriented LTL encoding schemes as well as the clas-

sic LTL encoding scheme to be used. Because path commitments and transition

constraints are propositional formulas, optimisations of LTL tableaux can be per-

formed symbolically.

• Key theorems are stated using general concepts that are independent of the encoding

scheme. To show that an LTL encoding scheme is sound, the key theorems must

be proved within the encoding scheme.

• General proof plans for the key theorems are developed. The applications of the

proof plans for the classic LTL encoding scheme and the TGBA encoding scheme

are included in Appendix A.

To illustrate the concepts covered in this chapter, suppose the following LTL formula

is to be checked against the model for the BT example in Figure 3.1:

GF(Light = green) ∧GF(Light = red). (6.1)

59

60 CHAPTER 6. FOUNDATION FOR LTL MODEL CHECKING

An LTL formula spec being model-checked is implicitly quantified over all paths in the

model, and thus is taken to be the CTL* formula Aspec. The standard way of model

checking Aspec is to perform “proof by contradiction” by checking to see if E¬spec holds

in the model, i.e., ¬spec is satisfied by a path in the model. In the rest of this thesis, ϕ

is used to denote ¬spec, where spec is the LTL formula being model-checked. Thus, for

our example spec of (6.1), we have ϕ ≡ ¬spec:

ϕ ≡ FG(¬(Light = green)) ∨ FG(¬(Light = red)). (6.2)

It is generally assumed that the model M being checked has a set of initial states

S0 ⊆ S. To show the satisfiability of ϕ in M , we must show that there exists a path π

in M , with π0 ∈ S0, that satisfies ϕ, i.e., M,π |= ϕ. However, model checking usually

does not operate directly on paths since each path is an infinite sequence of states and,

in general, there are an infinite number of paths in the model. Instead, model checking

usually operates on states and transitions.

To deal with path formulas in a states-and-transitions setting, all well-known ap-

proaches for checking the satisfiability of ϕ in a model M = (S,R, L) essentially impose

a tableau for ϕ on the model M , producing an augmented model M ′. The tableau is a

decision graph that determines the cases that need to be examined to check the satis-

fiability of ϕ. In an augmented model M ′, a state in M is augmented such that it is

constrained to only start certain classes of paths. This is accomplished by encoding path

commitments in augmented states and constraining transitions among augmented states

based on the path commitments. As a result, one can keep track of classes of paths

without explicitly constructing the paths, enabling the checking of paths that satisfy ϕ

in a states-and-transitions setting.

Traditionally, M ′ has been described as the product of the Kripke structure M and

the Kripke structure for the tableau. M ′ may also be viewed as a refinement of M where

some behaviours (paths) in M that do not satisfy ϕ are thrown away, but behaviours in

M that satisfy ϕ are preserved in M ′. The idea is the additional structures in M ′ make

it easier to identify paths that satisfy ϕ.

Section 6.1 describes the construction of M ′ from M . Paths that satisfy ϕ in M

must necessarily map to the class of paths that are “committed” to ϕ in M ′. However,

if ϕ involves eventual conditions (subformulas of ϕ that need to eventually hold in suffix

paths), then checking the class of paths is not sufficient. Section 6.2 describes how

eventual conditions can be taken into account. To demonstrate the generality of the

concepts described in this chapter, they are applied to two LTL encoding schemes: the

classic LTL encoding scheme [LP85], and the TGBA encoding scheme [RV11].

6.1. THE AUGMENTED MODEL 61

6.1 The Augmented Model

All well-known approaches for checking the satisfiability of ϕ in a model M augment

states and transitions in M with path commitments and transition constraints, although

under different guises. An augmented model M ′ = (S ′, R′, L′) is constructed as a result of

augmenting states and transitions in M . The resulting M ′ depends on the LTL encoding

scheme used as well as ϕ, but the concepts described in this section apply to all encoding

schemes. Let us now delve into the concepts that are used in constructing M ′.

Some encoding schemes rely on ϕ being in negation normal form (NNF). One advan-

tage of having ϕ in NNF is that the satisfiability of ϕ does not rely on the satisfiability

of a negation of a temporal operation as a subproblem.

Definition 6.1 (Negation normal form). A path formula is in negation normal form

(NNF) if negations apply only to atomic formulas.

The TGBA encoding scheme requires that ϕ be in NNF. An LTL formula can be

normalised to NNF by applying the following rules:

¬¬p ≡ p,

¬(p ∧ q) ≡ ¬p ∨ ¬q,
¬(p ∨ q) ≡ ¬p ∧ ¬q,
¬Xp ≡ X¬p,
¬Gp ≡ F¬p,
¬Fp ≡ G¬p,

¬(pU q) ≡ ¬pR¬q, and

¬(pR q) ≡ ¬pU¬q.

(6.3)

The ϕ in (6.2) is already in NNF.

The classic LTL encoding scheme does not require ϕ to be in NNF, but considers

{X,U} to be the set of primitive temporal operators, and requires the temporal opera-

tions in ϕ to be primitive. An LTL formula can be normalised to a form in which the

temporal operators are restricted to be in {X,U} by applying the following rules:

Gp ≡ ¬(trueU¬p),
Fp ≡ trueU p, and

pR q ≡ ¬(¬pU¬q).
(6.4)

Some LTL formulas cannot be normalised to be both in NNF and have the temporal

operators restricted to be in {X,U}. For the classic LTL encoding scheme, the ϕ in (6.2)

can be normalised to

ϕ ≡ (trueU¬(trueU (Light = green))) ∨ (trueU¬(trueU (Light = red))).

62 CHAPTER 6. FOUNDATION FOR LTL MODEL CHECKING

The concept of path commitment is implicitly used in all LTL encoding schemes known

to the author. Informally, if a commitment to satisfying a path formula p is “asserted” by

an augmented state s′, then any finite prefix path in M ′ that starts at s′ is consistent with

an infinite path that satisfies p (although the infinite path might not be in M ′). If p is

also a state formula (in LTL, a state formula cannot have any temporal operation), e.g., p

is (Light = red), then the commitment to satisfy p is asserted by an augmented state s′ if

and only if M ′, s′ |= p. Such a path commitment is called a trivial path commitment since

the commitment is trivially fulfilled by s′. In contrast, if p involves temporal operations,

then the fulfillment of the path commitment may involve other augmented states.

Trivial path commitments are already “encoded” in unaugmented states in M . To

enable non-trivial path commitments to be encoded in augmented states, some non-

trivial path commitments need to be considered as atomic propositions in M ′. This can

be accomplished by representing such non-trivial path commitments as Boolean state

variables in M ′.

Definition 6.2 (Elementary formula). A path formula p involved in checking the satisfi-

ability of ϕ is called an elementary formula if and only if p is not a state formula and the

commitment to satisfy p is represented as a Boolean state variable, denoted Vp, in M ′.

The set of elementary formulas, constructed for the purpose of checking the satisfiability

of ϕ, is denoted el(ϕ).

Note that the definition of elementary formulas here is different from [CGH94] where

they include atomic propositions in el(ϕ). Instead, it follows the definition in [RV11].

Because path commitments for atomic propositions in M are trivial path commitments,

atomic propositions are not included in el(ϕ).

Let us use AP (ϕ) to denote the set of atomic propositions in ϕ; AP (ϕ) ⊆ AP . Exactly

what are in el(ϕ) depends on the LTL encoding scheme but the construction of el(ϕ) must

obey the following rules:

el(p) = {}, if p ∈ AP (ϕ),

el(¬p) = el(p),

el(p ∧ q) = el(p) ∪ el(q), and

el(p ∨ q) = el(p) ∪ el(q).

For the classic LTL encoding scheme, two additional rules complete the definition of

el(ϕ):

el(Xp) = {Xp} ∪ el(p), and

el(pU q) = {X(pU q)} ∪ el(p) ∪ el(q).

6.1. THE AUGMENTED MODEL 63

The definition of el(ϕ) for the TGBA encoding scheme includes the following additional

rules:

el(Xp) = {}, if p has no temporal operations,

el(Xp) = {p} ∪ el(p), if p has temporal operations,

el(pU q) = {pU q} ∪ el(p) ∪ el(q),

el(pR q) = {pR q} ∪ el(p) ∪ el(q),

el(GFp) = {GFp} ∪ el(p),

el(Gp) = {Gp} ∪ el(p), if p 6= Fq for any q, and

el(Fp) = {Fp} ∪ el(p).

In addition, for the TGBA encoding scheme, if there is a path formula p of the form

Xq for some q, and there is an occurrence of p in ϕ that is not inside another temporal

operation, then ϕ is added to el(ϕ). This ensures that the path commitment for ϕ can

be encoded in an augmented state. There can be variations for the rules for el(Xp), but

the rules must enable the commitment to satisfy p to be encoded in an augmented state.

For example, the second rule for el(Xp) can be replaced by the following two rules:

el(Xp) = el(p), if there is no occurrence of Xq in p not inside another

temporal operation, for any q, and

el(Xp) = {p} ∪ el(p), if there is an occurrence of Xq in p not inside another

temporal operation, for some q.

Only certain formulas may be involved in checking the satisfiability of ϕ.

Concept 6.1 (Closure). In checking the satisfiability of ϕ, the closure of ϕ, denoted

cl(ϕ) is a set of formulas whose construction is dependent on the encoding scheme. The

satisfiability of ϕ can depend on the satisfiability of p as a subproblem only if p ∈ cl(ϕ).

It is required in the framework that ϕ ∈ cl(ϕ).

For the classic LTL encoding scheme, cl(ϕ) , el(ϕ) ∪ sub(ϕ) where sub(ϕ) denotes

the set of subformulas of ϕ. For the TGBA encoding scheme, cl(ϕ) is inductively defined

as follows:

• If p ∈ el(ϕ) ∪ AP (ϕ) then p ∈ cl(ϕ).

• If p ∈ cl(ϕ) and (¬p) ∈ sub(ϕ) then (¬p) ∈ cl(ϕ).

• If p ∈ cl(ϕ), q ∈ cl(ϕ) and (p ∧ q) ∈ sub(ϕ) then (p ∧ q) ∈ cl(ϕ).

64 CHAPTER 6. FOUNDATION FOR LTL MODEL CHECKING

• If p ∈ cl(ϕ), q ∈ cl(ϕ) and (p ∨ q) ∈ sub(ϕ) then (p ∨ q) ∈ cl(ϕ).

It is not difficult to show that for both the classic LTL encoding scheme and the TGBA

encoding scheme, ϕ ∈ cl(ϕ).

An LTL encoding scheme may add Boolean state variables called promise variables

to the augmented model M ′. Promise variables are used in checking eventual conditions,

to be described in Section 6.2. For the TGBA encoding scheme, for each p ∈ el(ϕ) of the

form qU r, GFq or Fq, a promise variable denoted Pp is added to M ′. Let us denote the

set of promise variables added Pϕ, i.e., for the TGBA encoding scheme,

Pϕ = {Pp | p ∈ el(ϕ) and p is of the form qU r,GFq or Fq}.

For the classic LTL encoding scheme, Pϕ = {}. Let us also define Vϕ = {Vp | p ∈ el(ϕ)}
and varsϕ = Vϕ ∪ Pϕ. A state s ∈ S is refined into 2n augmented states in S ′ where

n = |varsϕ|. Each augmented state s′ ∈ S ′ is an assignment

{v1 ← d1, ..., vm ← dm, vm+1 ← b1, ..., vm+n ← bn}

where v1, ..., vm are the state variables of M , vm+1, ..., vm+n are the Boolean state variables

in varsϕ, for 1 ≤ i ≤ n : di ∈ type(vi), and for 1 ≤ i ≤ m : bi ∈ {true, false}. S ′ is then

defined as follows:

S ′ , type(v1)× type(v2)× ...× type(vm)× bool × ...× bool︸ ︷︷ ︸
n times

. (6.5)

The labelling L′ is defined such that for each s′ ∈ S ′, we have:

L′(s′) = L(s) ∪ {v | v ∈ varsϕ ∧ (M ′, s′ |= v)}. (6.6)

For each s′ ∈ S ′, the projection of s′ denoted proj(s′) is defined to be the s ∈ S such that

L(s) = L′(s′) \ varsϕ (recall from Section 2.1 that a state is completely determined from

its label). The projection of a path π′ in M ′ is obtained by projecting each augmented

state in π′:

proj(π′) = 〈proj(π′0), proj(π′1), proj(π′2), ...〉.

Let us define APT , AP (ϕ)∪ varsϕ. We now have enough concepts to describe path

commitments and transition constraints.

Concept 6.2 (Path commitment). For each p ∈ cl(ϕ), the path commitment to satisfy p,

denoted Sϕ(p), is a state formula in the augmented model M ′ whose atomic propositions

are in APT . The exact definition of Sϕ(p) is specific to the LTL encoding scheme used,

6.1. THE AUGMENTED MODEL 65

but must include the following rules:

Sϕ(p) ≡ p, if p ∈ AP (ϕ),

Sϕ(p) ≡ Vp, if p ∈ el(ϕ),

Sϕ(¬p) ≡ ¬Sϕ(p),

Sϕ(p ∧ q) ≡ Sϕ(p) ∧ Sϕ(q), and

Sϕ(p ∨ q) ≡ Sϕ(p) ∨ Sϕ(q).

For the classic LTL encoding scheme, the following additional rule completes the definition

of Sϕ:

Sϕ(pU q) ≡ Sϕ(q) ∨ (Sϕ(p) ∧ Sϕ(X(pU q)).

For the TGBA encoding scheme, no additional rule for Sϕ is required.

A path commitment in an augmented state restricts the paths that can start from

the augmented state. Part of the restriction is enforced using transition constraints. For

p ∈ cl(ϕ), if the path commitment Sϕ(p) holds in an augmented state s′, then it gives

rise to a transition constraint Tϕ(p) for any transition from s′.

Concept 6.3 (Transition constraint). For p ∈ cl(ϕ) ∪ sub(ϕ), a transition constraint

Tϕ(p) is a propositional formula whose atoms are in APT ∪ {next(q) | q ∈ prop(ϕ)},
where prop(ϕ) is the set of propositions whose atoms are in APT , and an atom next(q)

means the proposition q holds in the next state (the state that is the target of the

transition). The exact definition of Tϕ(p) is specific to the encoding scheme, but must

include the following rules:

Tϕ(p) ≡ p, if p ∈ AP (ϕ),

Tϕ(¬p) ≡ ¬Tϕ(p),

Tϕ(p ∧ q) ≡ Tϕ(p) ∧ Tϕ(q),

Tϕ(p ∨ q) ≡ Tϕ(p) ∨ Tϕ(q), and

Tϕ(Xp) ≡ next(Sϕ(p)).

For the classic LTL encoding scheme, the following additional rule completes the definition

of Tϕ:

Tϕ(pU q) ≡ Tϕ(q) ∨ (Tϕ(p) ∧ Tϕ(X(pU q)).

For the TGBA encoding scheme, the following additional rules complete the definition of

Tϕ (note that the domain of Tϕ is cl(ϕ)∪ sub(ϕ) which, for the TGBA encoding scheme,

66 CHAPTER 6. FOUNDATION FOR LTL MODEL CHECKING

is sub(ϕ)):

Tϕ(pU q) ≡ Tϕ(q) ∨ (Tϕ(p) ∧ PpU q ∧ Tϕ(X(pU q))),

Tϕ(pR q) ≡ Tϕ(q) ∧ (Tϕ(p) ∨ Tϕ(X(pR q))),

Tϕ(Gp) ≡ Tϕ(p) ∧ Tϕ(X(Gp)), if p 6= Fq for any q,

Tϕ(Fp) ≡ Tϕ(p) ∨ (PFp ∧ Tϕ(X(Fp))), and

Tϕ(GFp) ≡ Tϕ(X(GFp)) ∧ (Tϕ(p) ∨ PGFp)

Informally, a transition constraint Tϕ(p) ensures that an augmented state s′ with a

commitment Sϕ(p) can transition to an augmented state t′ only if the sequence 〈s′, t′〉
can be the prefix of a path that satisfies p, thus ensuring that the transition is consistent

with the path commitment. As an example, with the TGBA encoding scheme, suppose

the path commitment Sϕ(Gp) holds in an augmented state s′, meaning s′ is committed

to start only paths that satisfy Gp. Suppose p is not of the form Fq for any q. The

semantic definition of Gp from Section 2.1 is:

M,π |= Gp⇔ ∀i ≥ 0 : (M,πi |= p), (6.7)

which is equivalent to the definition

M,π |= Gp⇔ (M,π |= p) ∧ (M,π1 |= Gp) (6.8)

which can be read as s′ can start only paths that satisfy p and t′ can start only paths

that satisfy Gp. The transition constraint Tϕ(Gp) is

Tϕ(Gp) ≡ Tϕ(p) ∧ Tϕ(X(Gp))

where Tϕ(p) corresponds to M,π |= p in (6.8) (s′ can start only paths that satisfy p) and

Tϕ(X(Gp)) corresponds to M,π1 |= Gp in (6.8) (t′ can start only paths that satisfy Gp).

Because the transition constraint corresponds exactly with the definition of the satisfia-

bility of Gp, the transition constraint is sufficient to ensure that the commitment Sϕ(Gp)

is fulfilled by the suffix paths (provided subsidiary commitments are also fulfilled). As we

shall see in Section 6.2, transition constraints are not sufficient for temporal operations

involving eventual conditions.

Definition 6.3 (Satisfaction of transition constraint). For augmented states s′1, s
′
2, and a

transition constraint T , the satisfaction of T by the transition (s′1, s
′
2), denoted (s′1, s

′
2) |=

T , is evaluated using the following rules:

(s′1, s
′
2) |= p ≡ M ′, s′1 |= p, if p ∈ APT ,

(s′1, s
′
2) |= next(p) ≡ M ′, s′2 |= p,

(s′1, s
′
2) |= ¬p ≡ (s′1, s

′
2) 6|= p,

(s′1, s
′
2) |= p ∨ q ≡ ((s′1, s

′
2) |= p) ∨ ((s′1, s

′
2) |= q), and

(s′1, s
′
2) |= p ∧ q ≡ ((s′1, s

′
2) |= p) ∧ ((s′1, s

′
2) |= q).

6.1. THE AUGMENTED MODEL 67

Augmenting states in M with Boolean state in varsϕ and adding the necessary tran-

sition constraints, produces an augmented model M ′ = (S ′, R′, L′), with S ′ defined by

(6.5) and L′ defined by (6.6).

Definition 6.4 (Transition Relation for Augmented Model). The transition relation R′

is defined as follows:

(s′1, s
′
2) ∈ R′ ⇔ (proj(s′1), proj(s

′
2)) ∈ R ∧

(∀p ∈ el(ϕ) : Vp ∈ L′(s′1)⇔ (s′1, s
′
2) |= Tϕ(p)).

(6.9)

If ϕ is in NNF, the following alternative definition can be used:

(s′1, s
′
2) ∈ R′ ⇔ (proj(s′1), proj(s

′
2)) ∈ R ∧

(∀p ∈ el(ϕ) : Vp ∈ L′(s′1)⇒ (s′1, s
′
2) |= Tϕ(p)).

(6.10)

If (6.9) is used as the definition of R′, then the encoding scheme is said to be using

a a strict encoding. If ϕ is in NNF and (6.10) is used as the definition of R′, then the

encoding scheme is said to be using a loose encoding (called sloppy encoding in [RV11]).

The use of a loose encoding when ϕ is in NNF causes M ′, π′ 6|= p to be treated as a

“do not care” for p ∈ el(ϕ), which may lead to a more efficient encoding than a strict

encoding.

The elementary formulas of ϕ and transition constraints associated with the elemen-

tary formulas form a tableau for checking the satisfiability of ϕ. The tableau may be

thought of as a mechanism to ensure that all relevant cases (of behaviours) are con-

sidered. The cases are determined by el(ϕ), and there are 2el(ϕ) elements in P(el(ϕ))

representing the combinations of elementary formulas that make up the cases.

Definition 6.5 (Symbolic Tableau). IfR′ is defined using (6.9), then the symbolic tableau

for ϕ is: ∨
c∈P(el(ϕ))

 ∧
p∈el(ϕ)

if p ∈ c then Vp ∧ Tϕ(p) else ¬Vp ∧ ¬Tϕ(p)

 (6.11)

If R′ is defined using (6.10) then the symbolic tableau for ϕ is:

∨
c∈P(el(ϕ))

 ∧
p∈el(ϕ)

if p ∈ c then Vp ∧ Tϕ(p) else ¬Vp

 (6.12)

A symbolic a tableau is a transition constraint. In Chapter 7, a symbolic tableau is

further processed into a collection of simpler transition constraints.

The purpose of augmenting states is to keep track of modalities in the search for a

path that satisfies ϕ. Augmenting states in a path introduces no “new truths” for the

path. This is made formal in Theorem 6.1.

68 CHAPTER 6. FOUNDATION FOR LTL MODEL CHECKING

Theorem 6.1 (Conservative Extension).

∀i ≥ 0, p ∈ cl(ϕ) ∪ sub(ϕ) : (M ′, π′i |= p)⇔ (M, proj(π′i) |= p).

Proof. The proof is by induction on the structure of p. For the base case, we have

p ∈ AP (ϕ) in which case M ′, π′i |= p and M, proj(π′i) |= p are identically determined

by L(proj(π′i)). Each of the inductive cases follows from the semantics of temporal logic

described in Section 2.1 (the number of cases depends on the encoding scheme, but the

proof for each case is independent of the encoding scheme).

The purpose of constructing the augmented model M ′ is to help keep track of paths

and rule out irrelevant paths. However, we do not want paths that satisfy ϕ to be ruled

out. The following theorem ensures that paths that satisfy ϕ are not ruled out.

Theorem 6.2 (Preservation of Satisfying Paths).

(M,π |= ϕ) ⇒ ∃π′ : proj(π′) = π ∧ (M ′, π′0 |= Sϕ(ϕ)).

Proof. The proof of Theorem 6.2 is dependent on the encoding scheme. The proofs for the

classic LTL encoding scheme and the TGBA encoding scheme are provided in Appendix

A.

6.2 Eventual Conditions

Unfortunately, the converse of Theorem 6.2 (the ⇐ direction) does not hold. The exis-

tence of π′ as in Theorem 6.2, with M ′, π′0 |= Sϕ(ϕ), does not guarantee that M,π |= ϕ.

Eventual conditions cannot be guaranteed using only transition constraints. Figure 6.1

s′1 -N8/N9 s′2 -N10 s′3 -N11 s′4

6
N12

M ′, s′1 |= Lock = unset

M ′, s′1 |= Light = amber
M ′, s′1 |= ¬Sϕ(G¬(Light = red))

M ′, s′1 |= Sϕ(FG¬(Light = red))

M ′, s′2 |= Lock = set

M ′, s′2 |= Light = amber

M ′, s′2 |= ¬Sϕ(G¬(Light = red))
M ′, s′2 |= Sϕ(FG¬(Light = red))

M ′, s′3 |= Lock = set

M ′, s′3 |= Light = red
M ′, s′3 |= ¬Sϕ(G¬(Light = red))

M ′, s′3 |= Sϕ(FG¬(Light = red))

M ′, s′4 |= Lock = unset

M ′, s′4 |= Light = red

M ′, s′4 |= ¬Sϕ(G¬(Light = red))
M ′, s′4 |= Sϕ(FG¬(Light = red))

Figure 6.1: A cycle without eventual condition G¬(Light = red) fulfilled.

illustrates a case where an eventual condition G¬(Light = red) is never fulfilled although

6.2. EVENTUAL CONDITIONS 69

the transitions in the cycle satisfy the transition constraints for Sϕ(FG¬(Light = red))

(the example assumes the TGBA encoding scheme is used).

Let π′ be the indefinite repetition of the cycle in Figure 6.1 starting at s′1, i.e.,

π′ = 〈s′1, s′2, s′3, s′4, s′1, ...〉. Then M ′, π′0 |= Sϕ(FG¬(Light = red)) but because the

eventual condition G¬(Light = red) is never fulfilled in a suffix of π′, i.e., ∀i ≥ 0 :

M ′, π′i 6|= Sϕ(G¬(Light = red)), we get M ′, π′ 6|= FG¬(Light = red), thus M, proj(π′) 6|=
FG¬(Light = red) (from Theorem 6.1). Note that a cycle with the same transitions

but with ¬Sϕ(G¬(Light = red)) replaced by Sϕ(G¬(Light = red)) is ruled out of M ′

because M ′, s′3 |= Light = red.

Let us examine why transition constraints, although necessary, are insufficient to

ensure that the commitment Sϕ(Fp) is fulfilled for an arbitrary path formula p. The

semantic definition of Fp is

M,π |= Fp⇔ ∃i ≥ 0 : (M,πi |= p) (6.13)

which is equivalent to the following definition:

M,π |= Fp⇔ (M,π |= p) ∨ (M,π1 |= Fp) ∧ ∃i ≥ 1 : (M,πi |= p). (6.14)

The transition constraint Tϕ(Fp) from a state with path commitment Sϕ(Fp) is

Tϕ(Fp) ≡ Tϕ(p) ∨ (PFp ∧ Tϕ(X(Fp))).

Tϕ(p) corresponds to M,π |= p in (6.14) and Tϕ(X(Fp)) corresponds to M,π1 |= Fp, but

∃i ≥ 1 : (M,πi |= p) in (6.14) is not covered by the transition constraint (a transition

constraint can only “look ahead” one transition, thus can guarantee only that a prefix

up to the next state is consistent with a satisfying path). The condition p in ∃i ≥ 1 :

(M,πi |= p) is called an eventual condition.

Concept 6.4 (Eventual condition). The eventual condition for a path formula p ∈ cl(ϕ),

denoted ec(p), is a path formula whose fulfillment is necessary for satisfying p in the sense

(M,π |= p)⇒ ∃i ≥ 0 : (M,πi |= ec(p)),

and it is based on the form of p. The exact definition of ec is dependent on the encoding

scheme, but must include the following rule:

ec(pU q) ≡ q.

For the classic LTL encoding scheme, the following rule completes the definition of

ec:

ec(p) ≡ true, if p is not of the form qU r for any q and r.

70 CHAPTER 6. FOUNDATION FOR LTL MODEL CHECKING

For the TGBA encoding scheme, the following rules complete the definition of ec:

ec(Fp) ≡ p,

ec(GFp) ≡ p, and

ec(p) ≡ true, if p is not of the form qU r,Fq,GFq, for any q and r.

If ϕ is not in NNF and the encoding scheme is not the classic LTL encoding scheme, then

we need to be able to handle the following:

(M,π 6|= p)⇒ ∃i ≥ 0 : (M,πi |= ec(¬p)),

which may require rules such as

ec(¬Gp) ≡ ¬p and ec(¬(p R q)) ≡ ¬q.

Although the equivalence

M,π |= Fp⇔ (M,π |= p) ∨ (M,π1 |= Fp) (6.15)

is a consequence of the definition (6.13), (6.15) as a co-inductive definition is not equiva-

lent to (6.13). Had (6.15) been the definition, then transition constraints would have been

sufficient, but π′ = 〈s′1, s′2, s′3, s′4, s′1, ...〉 would have incorrectly satisfied FG¬(Light =

red) (π′ does not satisfy ∃i ≥ 0 : π′i |= G¬(Light = red)). Thus (6.15) is incorrect

as a definition, and (6.14) must be used instead. Because transition constraints do not

ensure that eventual conditions will be fulfilled, additional checking must be performed

to ensure the fulfillment of eventual conditions.

Rather than directly tracking fulfillments of eventual conditions, LTL checking typ-

ically uses fairness constraints for checking eventual conditions. (Recall from Section

2.2.3, Lichtenstein and Pnueli showed that the check for eventual conditions can be per-

formed in terms of fairness constraints.) The set of fairness constraints for the purpose

of checking the satisfiability of ϕ is denoted Cϕ. For the classic LTL encoding scheme,

Cϕ is defined as follows:

Cϕ , {¬Sϕ(p) ∨ Sϕ(ec(p)) | p ∈ cl(ϕ) ∧ (ec(p) 6≡ true)}. (6.16)

For the TGBA encoding scheme, Sϕ(ec(p)) is not necessarily defined for p ∈ cl(ϕ). In-

stead, the TGBA encoding scheme uses promise variables to track fulfillment of eventual

conditions. For the TGBA encoding scheme, Cϕ is defined as follows:

Cϕ , {¬v | v ∈ Pϕ}. (6.17)

The theorem that is the basis for all LTL model checking algorithms known to the author

is as follows:

6.3. PROOF PLANS 71

Theorem 6.3 (Main Theorem for LTL Checking).

M,π |= ϕ ⇔ ∃π′ : proj(π′) = π ∧ (M ′, π′0 |= Sϕ(ϕ))

∧ ∀c ∈ Cϕ, i ≥ 0 : ∃j ≥ i : M ′, π′j |= c.

Proof. The proof of Theorem 6.3 is dependent on the encoding scheme. The proofs for the

classic LTL encoding scheme and the TGBA encoding scheme are provided in Appendix

A.

6.3 Proof Plans

6.3.1 Proof Plan for Theorem 6.2

Let us start with a proof plan for Theorem 6.2:

(M,π |= ϕ) ⇒ ∃π′ : proj(π′) = π ∧ (M ′, π′0 |= Sϕ(ϕ)).

Given that M,π |= ϕ, how do we construct a path π′ in M ′ such that proj(π′) =

π ∧ (M ′, π′0 |= Sϕ(ϕ))? The safest way is to make π′ a “strict mapping” of π in that

∀i ≥ 0, p ∈ el(ϕ) : (M,πi |= p)⇔ (M ′, π′i |= Vp). (6.18)

Additionally, for an encoding scheme that uses promise variables, the values of the promise

variables at each augmented state in the path are determined as follows:

∀i ≥ 0, Pp ∈ Pϕ : (M,πi |= p ∧ ¬ec(p))⇔ (M ′, π′i |= Pp). (6.19)

Thus for an encoding scheme that does not use promise variables, each augmented state

π′i is constructed as follows:

L′(π′i) = L(πi) ∪ {Vp | p ∈ el(ϕ) ∧ (M,πi |= p)}, (6.20)

and for an encoding scheme that uses promise variables, each augmented state π′i is

constructed as follows:

L′(π′i) = L(πi) ∪ {Vp | p ∈ el(ϕ) ∧ (M,πi |= p)} ∪ {Pp | Pp ∈ Pϕ ∧ (M,πi |= p ∧ ¬ec(p))}
(6.21)

(recall from Section 2.1 that a state is completely determined by its label).

To show that π′ constructed as above is in fact a path in M ′, we must show that

∀i ≥ 0 : (π′i, π
′
i+1) ∈ R′. (6.22)

The proof can be made easier if Theorem 6.2 is strengthened to state the existence of a

“strict” mapping of a path that satisfies ϕ.

For an encoding scheme that does not use promise variables, the strengthening pro-

duces Lemma 6.1.

72 CHAPTER 6. FOUNDATION FOR LTL MODEL CHECKING

Lemma 6.1.

M,π |= ϕ

⇒ ∃π′ : proj(π′) = π ∧ ∀i ≥ 0, p ∈ cl(ϕ) : (M,πi |= p)⇔ (M ′, π′i |= Sϕ(p)).

The proof of Lemma 6.1 is specific to the encoding scheme but can use the following

plan:

1. show that π′ as a sequence of states constructed according to (6.20) satisfies

∀i ≥ 0, p ∈ cl(ϕ) : (M,πi |= p)⇔ (M ′, π′i |= Sϕ(p)), (6.23)

and

2. given that π′ satisfies (6.23) show that π′ satisfies (6.22).

The application of the proof plan to the classic LTL encoding scheme, proving Lemma

6.1 in the scheme, is described in Section A.1.

For an encoding scheme that uses promise variables and requires ϕ to be in NNF, the

strengthening produces Lemma 6.2.

Lemma 6.2.

M,π |= ϕ

⇒ ∃π′ : proj(π′) = π ∧ ∀i ≥ 0, p ∈ cl(ϕ) : (M,πi |= p)⇔ (M ′, π′i |= Sϕ(p))

∧ ∀i ≥ 0, p ∈ el(ϕ) ∧ (ec(p) 6≡ true) : (M,πi |= p ∧ ¬ec(p))⇔ (M ′, π′i |= Pp).

The proof of Lemma 6.2 is specific to the encoding scheme but can use the following

plan:

1. show that π′ as a sequence of states constructed according to (6.21) satisfies

∀i ≥ 0, p ∈ cl(ϕ) : (M,πi |= p)⇔ (M ′, π′i |= Sϕ(p))

∧ ∀i ≥ 0, p ∈ el(ϕ) ∧ (ec(p) 6≡ true) : (M,πi |= p ∧ ¬ec(p))⇔ (M ′, π′i |= Pp),

(6.24)

and

2. given that π′ satisfies (6.24) show that π′ satisfies (6.22).

The application of the proof plan to the TGBA encoding scheme, proving Lemma 6.2 in

the scheme, is described in Section A.2.

For an encoding scheme that does not use promise variables, Theorem 6.2 follows from

Lemma 6.1 (since ϕ ∈ cl(ϕ)). For an encoding scheme that uses promise variables (and

requires ϕ to be in NNF), Theorem 6.2 follows from Lemma 6.2 (since ϕ ∈ cl(ϕ)).

6.3. PROOF PLANS 73

6.3.2 Proof Plan for Theorem 6.3

Next, let us develop a proof plan for Theorem 6.3:

M,π |= ϕ ⇔ ∃π′ : proj(π′) = π ∧ (M ′, π′0 |= Sϕ(ϕ))

∧ ∀c ∈ Cϕ, i ≥ 0 : ∃j ≥ i : M ′, π′j |= c.

Let us start with the ⇒ direction.

For an encoding scheme that does not use promise variables, using Lemma 6.1, what

remains to prove the ⇒ direction is to prove Lemma 6.3.

Lemma 6.3.

(M,π |= ϕ) ∧ proj(π′) = π

∧ ∀i ≥ 0, p ∈ cl(ϕ) : (M,πi |= p)⇔ (M ′, π′i |= Sϕ(p))

⇒ ∀c ∈ Cϕ, i ≥ 0 : ∃j ≥ i : M ′, π′j |= c,

The proof of Lemma 6.3 is specific to the encoding scheme but can use the following

plan:

1. expand Cϕ according to its definition,

2. transform the quantification over elements of Cϕ into quantification over formulas

in the closure of ϕ that have non-trivial eventual conditions, and

3. use the last antecedent in the lemma, from which the conclusion of the lemma

follows, to complete the proof.

The application of the proof plan to the classic LTL encoding scheme, proving Lemma

6.3 in the scheme, is described in Section A.1.

For an encoding scheme that uses promise variables and requires ϕ to be in NNF,

using Lemma 6.2, what remains to prove the ⇒ direction is to prove Lemma 6.4.

Lemma 6.4.

(M,π |= ϕ) ∧ proj(π′) = π

∧ ∀i ≥ 0, p ∈ cl(ϕ) : (M,πi |= p)⇔ (M ′, π′i |= Sϕ(p))

∧ ∀i ≥ 0, p ∈ el(ϕ) ∧ (ec(p) 6≡ true) : (M,πi |= p ∧ ¬ec(p))⇔ (M ′, π′i |= Pp)

⇒ ∀c ∈ Cϕ, i ≥ 0 : ∃j ≥ i : M ′, π′j |= c.

The proof of Lemma 6.4 is specific to the encoding scheme but can use the following

plan:

1. expand Cϕ according to its definition,

74 CHAPTER 6. FOUNDATION FOR LTL MODEL CHECKING

2. transform the quantification over elements of Cϕ into quantification over elementary

formulas of ϕ that have non-trivial eventual conditions, and

3. use the last antecedent in the lemma, from which the conclusion of the lemma

follows, to complete the proof.

The application of the proof plan to the TGBA encoding scheme, proving Lemma 6.4 in

the scheme, is described in Section A.2.

For the ⇐ direction, we must prove

proj(π′) = π ∧ (M ′, π′0 |= Sϕ(ϕ)) ∧ ∀c ∈ Cϕ, i ≥ 0 : ∃j ≥ i : M ′, π′j |= c

⇒ (M,π |= ϕ)
(6.25)

which can be done with the help of Lemma 6.5.

Lemma 6.5.

∀c ∈ Cϕ, i ≥ 0 : ∃j ≥ i : M ′, π′j |= c

⇒ ∀i ≥ 0, p ∈ cl(ϕ) : (M ′, π′i |= Sϕ(p))⇒ (M ′, π′i |= p).

The proof of Lemma 6.5 is specific to the encoding scheme but can use the following

plan:

1. expand Cϕ according to its definition,

2. transform the quantification over elements of Cϕ into quantification over formulas

in the closure of ϕ or elementary formulas of ϕ, depending on whether the encoding

scheme uses promise variables, and

3. complete the proof by induction on the structure of the variable quantified over

formulas in the closure of ϕ.

The application of the proof plan to the classic LTL encoding scheme, proving Lemma

6.5 in the scheme, is described in Section A.1. The application of the proof plan to the

TGBA encoding scheme, proving Lemma 6.5 in the scheme, is described in Section A.2.

(6.25) follows from Lemma 6.5 (with the second i instantiated to 0 and p instantiated

to ϕ) and Theorem 6.1.

6.3.3 Summary

In summary, for an encoding scheme that does not use promise variables, the proof plans

developed have reduced the proof of Theorem 6.2 to a proof of Lemma 6.1, and the proof

of Theorem 6.3 to proofs of Lemmas 6.3 and 6.5. For an encoding scheme that uses

promise variables (and requires ϕ to be in NNF), the proof plans developed have reduced

the proof of Theorem 6.2 to a proof of Lemma 6.2 and the proof of Theorem 6.3 to proofs

of Lemmas 6.4 and Lemma 6.5.

6.4. SUMMARY AND DISCUSSION 75

6.4 Summary and Discussion

Essential concepts in LTL model checking have been presented in a fashion that is in-

dependent of the LTL encoding scheme and the model checking approach and strategy.

This results in a framework for LTL model checking that supports multiple approaches

and strategies. A tool based on the framework can be developed that accommodates a

multitude of approaches and strategies. This is important because no single approach or

strategy has been found to be best for all model checking problems. It also allows the

possibility of running different approaches and strategies in parallel and using the result

of whichever succeeds first.

All LTL model checking approaches known to the author are based on a version of

Theorem 6.3, thus our framework covers all of those approaches. The soundness of an

LTL encoding scheme in model checking can be assured by proving Theorem 6.3 within

the encoding scheme. Proof plans for proving theorems that represent the soundness of

an LTL encoding scheme have been developed. The applications of the proof plans to

show the soundness of the classic LTL encoding scheme and the TGBA encoding scheme

are included in Appendix A.

76 CHAPTER 6. FOUNDATION FOR LTL MODEL CHECKING

Chapter 7

LTL Model Checking within the

Framework

Chapter 6 identified the essential concepts used in LTL model checking that are indepen-

dent of the encoding scheme and the model checking approach. The concepts identified,

together with the symbolic framework for state machines described in Chapter 3, serve

as a foundation for symbolic LTL model checking and counterexample generation. This

chapter describes how the concepts are applied and how model checking might be per-

formed within the resulting framework.

The novel contributions of this chapter include:

• The use of global constraints to optimise analysis. For some forms of LTL formulas,

the checking of the formula can be optimised by treating part of the formula as a

global constraint and checking a smaller formula under the global constraint.

• The idea of normalising transition constraints for an LTL tableau into disjunctive

normal form, where each disjunct is a simple transition constraint and represents

a case in the tableau. A simple transition constraint may be viewed as consisting

of a guard and a post condition, and is used in the framework to construct transfer

functions in the augmented model.

• An algorithm for on-the-fly symbolic LTL model checking. The algorithm is a novel

adaptation of the double depth-first search (double-DFS) algorithm of [CVWY92]

in a symbolic setting.

Section 7.1 shows how the augmented model M ′ described in Section 6.1 can be

constructed within the framework described in Chapter 3, and defines the concept of

symbolic counterexample paths. The result provides a framework for LTL model checking

and counterexample generation. Section 7.2 shows how different techniques and strategies

77

78 CHAPTER 7. LTL MODEL CHECKING WITHIN THE FRAMEWORK

for LTL model checking and counterexample generation can be performed within the

resulting framework.

7.1 The LTL Model Checking Framework

7.1.1 Normalisation of ϕ

Recall from Section 6.1 that an LTL encoding scheme typically requires ϕ to be in some

normal form. Normalisation involves the application of transformation rules. The classic

LTL encoding scheme requires that ϕ be normalised to contain temporal operators only

from the set {X,U}. The normalisation for the classic LTL encoding scheme can be

performed using the transformation rules in (6.4). The TGBA encoding scheme requires

that ϕ be normalised into NNF. Normalisation into NNF can be performed using the

transformation rules in (6.3).

Although not necessary, additional transformations may be performed to obtain an

efficient encoding. As an example, the following transformation rules may be applied to

obtain fewer temporal operations:

Gp ∧Gq ≡ G(p ∧ q), and

Fp ∨ Fq ≡ F(p ∨ q).

For the classic LTL encoding scheme, the above optimising transformation rules need to

be applied before the normalising transformation rules.

Another type of optimisation deals with global constraints. Consider the following

LTL specification

¬Gp ∨ q (7.1)

with p being a state formula (thus p contains no temporal operation). The negation of

(7.1) is equivalent to

Gp ∧ ¬q. (7.2)

Checking the satisfiability of (7.2) can be made more efficient if p is made into a global

constraint (i.e., all states must satisfy p). The satisfiability checking of (7.2) would then

be performed with ϕ ≡ ¬q under the global constraint p.

Finally, some LTL model checking problems require no tableau construction. Consider

the following LTL specification

Gp (7.3)

with p being a state formula (thus p contains no temporal operation). The negation of

(7.3) is equivalent to

F¬p. (7.4)

7.1. THE LTL MODEL CHECKING FRAMEWORK 79

If the system is non-terminating, then checking the satisfiability of (7.4) amounts to

checking for reachable states that satisfy ¬p, since a finite path to a state that satisfies

¬p can be extended into an infinite path. For a system that may terminate, although

strictly speaking such a system is not covered by standard temporal logic, the reachability

of a state that satisfies ¬p may be viewed as a violation of (7.3) as a safety property,

even if a finite path to p cannot be extended into an infinite path.

7.1.2 Tableau Generation

Recall from Section 6.1 that the tableau for ϕ is characterised by the transition constraint

∨
c∈P(el(ϕ))

 ∧
p∈el(ϕ)

if p ∈ c then Vp ∧ Tϕ(p) else ¬Vp ∧ ¬Tϕ(p)


if R′ is defined by (6.9), or

∨
c∈P(el(ϕ))

 ∧
p∈el(ϕ)

if p ∈ c then Vp ∧ Tϕ(p) else ¬Vp


if R′ is defined by (6.10). For simplicity, let us assume that the Boolean state variables

added when constructing M ′ (i.e., elements of Vϕ ∪ Pϕ) are also OBDD variables. The

sequence of these variables ordered according to the OBDD ordering is denoted xvars(ϕ)

(the sequence represents a totally ordered set).

Since a transition constraint is a propositional formula, it can be normalised into

disjunctive normal form. Moreover, each disjunct can be further normalised such that

it contains at most one literal involving next and the literal occurs positively. Such

a normalised disjunct is called a simple transition constraint. The normalisation of a

disjunct can use the following transformation rules:

¬next(p) ≡ next(¬p), and

next(p) ∧ next(q) ≡ next(p ∧ q).

A transition constraint is in normal form if and only if it is in disjunctive normal form

and each disjunct is a simple transition constraint. A normalised transition constraint is

a transition constraint in normal form.

For a simple transition constraint ctr, the conjunction of the non-next literals in ctr

is called the guard of ctr, denoted guard(ctr), and if there is a literal of the form next(p)

in ctr, then p is called the post condition of ctr, denoted post(ctr). If ctr does not have

a next literal, then post(ctr) ≡ true. A transition (s′, t′) satisfies a simple transition

constraint ctr if and only if M ′, s′ |= guard(ctr) and M ′, t′ |= post(ctr), i.e.,

((s′, t′) |= c)⇔ (M ′, s′ |= guard(c)) ∧ (M ′, t′ |= post(c)).

80 CHAPTER 7. LTL MODEL CHECKING WITHIN THE FRAMEWORK

An augmented state s′ can transition to an augmented state t′ if and only if there is a

disjunct ctr of the normalised transition constraint characterising the tableau for ϕ such

that (s′, t′) |= ctr. A disjunct that contains next(false) as a literal can be removed from

a normalised transition constraint since no transition can satisfy the post condition false.

Let TCϕ represent the set of disjuncts of a normalised transition constraint charac-

terising the tableau for ϕ. Then the symbolic image and pre-image transfer functions in

M ′ for each elementary block b are defined as follows:

f ′b(I) ,
∨

ctr∈TCϕ

fb(ignore(xvars(ϕ), I ∧ guard(ctr))) ∧ post(ctr), (7.5)

r′b(O) ,
∨

ctr∈TCϕ

rb(ignore(xvars(ϕ), O ∧ post(ctr))) ∧ guard(ctr). (7.6)

Note that the normalisation procedure for the overall transition constraint TCϕ can

perform propositional simplification. In fact, with the use of OBDDs, some impossible

transitions are automatically removed. The Minato-Morreale algorithm developed by

Minato [Min93] based on the recursive operators of Morreale [Mor70] can be used to

produce disjunctive normal forms from OBDDs.

To illustrate the construction of a tableau on a concrete example, let us use the ϕ in

(6.2) as an example, using the TGBA encoding scheme:

ϕ ≡ FG(¬(Light = green)) ∨ FG(¬(Light = red)).

The set of elementary formulas, el(ϕ) would be

el(ϕ) = {FG¬(Light = green),G¬(Light = green),

FG¬(Light = red),G¬(Light = red)}.

Let

v1 denote VFG¬(Light=green),

v2 denote VG¬(Light=green),

v3 denote VFG¬(Light=red),

v4 denote VG¬(Light=red),

p1 denote PFG¬(Light=green), and

p2 denote PFG¬(Light=red).

Suppose R′ is defined by (6.10) (a loose encoding is used). For simplicity, let us further

suppose that the normalisation into disjunctive normal form is naive and considers each

c ∈ P(el(ϕ)) as a separate case independent of the other elements of P(el(ϕ)). The case

for c = {v2, v3} corresponds to the following transition constraint:

¬v1 ∧ v2 ∧ v3 ∧ ¬v4 ∧ Tϕ(G(¬(Light = green))) ∧ Tϕ(FG(¬(Light = red)))

7.1. THE LTL MODEL CHECKING FRAMEWORK 81

(since v2 denotes VG¬(Light=green) and v3 denotes VFG¬(Light=red)), which, when evaluated

using the rules for Tϕ and Sϕ, and simplified using propositional logic and the rule for

next, produces the normalised transition constraint

¬v1 ∧ v2 ∧ v3 ∧ ¬v4 ∧ ¬(Light = green) ∧ ¬(Light = red) ∧ next(v2 ∧ v4) ∨

¬v1 ∧ v2 ∧ v3 ∧ ¬v4 ∧ p2 ∧ ¬(Light = green) ∧ (Light = red) ∧ next(v2 ∧ v3),

which has two disjuncts. Each disjunct is a simple transition constraint with a guard and

a post condition. Let ctr1 be the first disjunct and ctr2 be the second disjunct. Then we

have:

guard(ctr1) ≡ ¬v1 ∧ v2 ∧ v3 ∧ ¬v4 ∧ ¬(Light = green) ∧ ¬(Light = red),

post(ctr1) ≡ v2 ∧ v4,

guard(ctr2) ≡ ¬v1 ∧ v2 ∧ v3 ∧ ¬v4 ∧ p2 ∧ ¬(Light = green) ∧ (Light = red),

post(ctr2) ≡ v2 ∧ v3.

Both ctr1 and ctr2 would become elements of TCϕ. The guards and post conditions would

be used to modify the image and pre-image transfer functions as specified by (7.5) and

(7.6).

7.1.3 Symbolic Counterexample Paths

Recall from Section 2.2.3, Lichtenstein and Pnueli [LP85] showed that ϕ is satisfiable in

M ′ if and only if there is a prefix to a self-fulfilling strongly connected component (SCC)

in the graph of states and transitions in M ′. A self-fulfilling cycle within the self-fulfilling

SCC can always be constructed, thus if ϕ is satisfiable in M ′, then there is a path π′

in M ′ that satisfies ϕ of the form p · sω where p is a possibly empty finite sequence of

augmented states and s is a non-empty finite sequence of augmented states that forms a

self-fulfilling cycle that is repeated forever (π′ is of the so-called lasso form). π′ can be

projected to M to become π with M,π |= ϕ (π retains the lasso form of π′). Although

there may also be paths that satisfy ϕ that are not of the lasso form, such paths are

difficult to characterise and are of no practical interest.

A counterexample path of the form p · sω is difficult to read if the model M is large

because the value of each state variable must be specified at each state in the path.

An advantage of a symbolic setting is that a symbolic state (which represents a set of

states) often has a more concise characterisation than an explicit state. Also, with a

counterexample path of the form p · sω, there is no indication of how a state transitions

to the next state in the path. A counterexample path can be easier to comprehend if the

transitions are included at the level of the modelling notation used. Many model checkers

82 CHAPTER 7. LTL MODEL CHECKING WITHIN THE FRAMEWORK

present counterexample paths with these high-level transitions. In our framework, these

high-level transitions are represented by elementary blocks.

Definition 7.1 (Symbolic Counterexample Path). A symbolic counterexample path is a

triple:

(Iπ, pπ, sπ)

where Iπ characterises a set of initial states, prefix pπ is a possibly empty finite sequence

of elementary blocks, and cycle sπ is a non-empty finite sequences of elementary blocks

that is repeated forever. The elementary blocks represent high-level transitions.

Symbolic states after Iπ can be computed successively using the image transfer func-

tions for the corresponding elementary blocks in pπ and sπ. For a symbolic counterex-

ample path in M ′, a symbolic state represents a set of augmented states and the image

transfer function used for an elementary block b is f ′b. A symbolic counterexample path

in M ′ can be projected to a symbolic counterexample path in M by projecting each

symbolic augmented state in the path.

If 〈SS0, SS1, SS2, ...〉 represents the sequence of symbolic augmented states in a sym-

bolic counterexample path, and 〈b0, b1, b2, ...〉 represents the sequence of transitions, then

the following must hold:

∀i ≥ 0 : (SSi+1 ≡ f ′bi(SSi)) ∧ (SSi ≡ r′bi(SSi+1)). (7.7)

As a consequence, if pπ = 〈bp1 , bp2 , ..., bpm〉 and sπ = 〈bs1 , bs2 , ..., bsn〉 (where m ≥ 0 is the

length of the prefix and n > 0 is the length of the cycle), then the following must hold:

(SS0 ≡ Iπ)

∧ ∀i : 1 ≤ i ≤ m⇒ (SSi ≡ f ′bpi
(SSi−1)) ∧ (SSi−1 ≡ r′bpi

(SSi))

∧ ∀i : 1 ≤ i ≤ n⇒ (SSm+i ≡ f ′bsi
(SSm+i−1)) ∧ (SSm+i−1 ≡ r′bsi

(SSi))

∧ (SSm+n ≡ SSm).

(7.8)

Note that m can be 0 (pπ can be an empty sequence). Since each elementary block b is

deterministic, we have |f ′b(SS)| ≤ |SS| (the cardinality of the the image of SS under R′b

is not greater than the cardinality of SS). Thus all symbolic states in a cycle must have

the same cardinality.

During a search for a symbolic counterexample path, (7.8) may be temporarily vio-

lated. This is because a forward search involves making choices of elementary blocks for

transitions. As an example, suppose from a symbolic state SSi the prefix search chooses

elementary block bpi+1
as the transition. Some of the states in SSi might not be able to

transition through bpi+1
, thus the equivalence r′bpi+1

(f ′bpi+1
(SSi)) ≡ SSi might not be sat-

isfied, which means (7.8) might not be satisfied. Hence, once pπ, sπ and SSm+n have been

7.2. ANALYSES WITHIN THE FRAMEWORK 83

determined, the symbolic states in the path must be narrowed so that (7.8) is satisfied.

The symbolic states that are affected by sπ are narrowed first as follows:

for i from n down to 1 do SSm+i−1 ← SSm+i−1 ∧ r′bsi (SSm+i). (7.9)

Note that we must have SSm+n 6≡ false. If the result of narrowing SSm results in

SSm+n 6≡ SSm, then we do not have a cycle and some recovery action is needed (see

Section 8.4 for an example recovery action).. Otherwise the symbolic states affected by

pπ are narrowed as follows:

for i from m down to 1 do SSi−1 ← SSi−1 ∧ r′bpi (SSi);
Iπ ← SS0.

(7.10)

7.2 Analyses within the Framework

7.2.1 Strategies for Model Checking

The LTL model checking framework described in Section 7.1 does not specify how model

checking and counterexample generation are to be performed. A range of approaches and

strategies can be applied within the framework. The complete analysis comprising model

checking and counterexample generation can be incremental, e.g., perform the following

tasks:

1. compute the set of reachable states,

2. compute the set of reachable “fair” states using the set of reachable states,

3. search for a counterexample path using the set of reachable fair states,

or it can be a single task as in on-the-fly LTL model checking, which directly searches for

a counterexample path.

In the incremental approach, the set of fair states is computed using fixpoint oper-

ations before the search for a counterexample path is performed. Strategically, there is

choice between determining reachability eagerly or lazily. Reachability determination can

be postponed until the search for a counterexample path, skipping the first task in the

above sequence and computing the set of fair states instead of the set of reachable fair

states. Regardless of the strategy for reachability, subsequent searches for counterexample

paths need not repeat the computation of fair states.

Two standard approaches for LTL model checking are:

• the fixpoint approach, and

84 CHAPTER 7. LTL MODEL CHECKING WITHIN THE FRAMEWORK

• the on-the-fly approach.

The following sections describes how the two approaches can be applied within our frame-

work.

7.2.2 The Fixpoint Approach

Symbolic model checking as originally proposed by McMillan [McM92], follows a fixpoint

approach first proposed by Emerson and Lei [EL86], using the fixpoint operations of µ-

calculus [Koz83]. Although the original symbolic model checker was for CTL with fairness

constraints, Clarke et al [CGMZ95] showed how LTL model checking can be encoded as a

model checking problem for CTL with fairness constraints. The fixpoint approach for LTL

model checking here is essentially that of Clarke et al, but is described directly in terms

of fixpoint and propositional operations. Fixpoint operations are explained in Section

3.3, and Algorithm 5.1 for computing reachability in Chapter 5 provides an example of

an implementation of a fixpoint operation.

Recall from Section 6.2 that as part of checking the satisfiability of ϕ, eventual con-

ditions are checked using a set Cϕ of fairness constraints.

Definition 7.2 (Fair States). An augmented state is said to be fair with respect to Cϕ

if it can start a path in which each of the fairness constraints in Cϕ is satisfied infinitely

often.

The set of fair states is denoted Fϕ, and has the following fixpoint characterisation

(see [McM92] where transition relations are used rather than pre-image functions under

transition relations):

Fϕ , νZ.
∧
c∈Cϕ

r′B(µY.(Z ∧ c) ∨ r′B(Y)). (7.11)

The actual computation of r′B(p) can be distributed among the elementary blocks using

r′b for each elementary block b. Equation (7.11) applies to all encoding schemes.

Theorem 7.1. An LTL formula ϕ is satisfiable in the underlying unaugmented model M

if and only if Fϕ ∧ Sϕ(ϕ) ∧ S0 is not false in the augmented model M ′.

Proof. The theorem is a symbolic formulation of Theorem 6.3 with paths constrained to

start at initial states characterised by S0. Theorem 6.3 states that a path π satisfies ϕ

if and only if there exists a refinement π′ of π in M ′ which starts at an augmented state

that satisfies Sϕ(ϕ) and is fair with respect to Cϕ. The existence of such π′ that starts at

an augmented state in S0 can be determined from Fϕ ∧Sϕ(ϕ)∧S0 since Fϕ characterises

all augmented states that can start fair (with respect to Cϕ) paths.

7.2. ANALYSES WITHIN THE FRAMEWORK 85

Since ϕ is the negation of the LTL formula model checked, Fϕ∧Sϕ(ϕ)∧S0 characterises

the set of augmented states that can start counterexample paths, hence the following

definition

Definition 7.3 (Initial counterexample states). Iϕ defined as

Iϕ , Fϕ ∧ Sϕ(ϕ) ∧ S0

characterises the set of initial counterexample states.

Equation (7.11) and Theorem 7.1 form the basis for symbolic LTL model checking

using the fixpoint approach. Both are independent of the encoding scheme. If Iϕ 6≡ false

then the existence of a counterexample path is guaranteed. States in a counterexample

path are necessarily reachable fair states. On the other hand, if Iϕ ≡ false, then there

is no counterexample, and the original LTL specification is satisfied by M . However,

Iϕ does not immediately give us a counterexample path. We still need to search for a

counterexample path.

The first method for generating a counterexample path given Cϕ, Fϕ and Iϕ was

developed by Clarke et al [CGMZ95] in the context of symbolic CTL model checking

with fairness constraints. The search for a counterexample path is guided by fair states

that satisfy fairness constraints. In our framework, the set of fair states that satisfy a

fairness constraint c ∈ Cϕ is characterised by c ∧ Fϕ. If Qc
i denotes the set of fair states

that can reach c ∧ Fϕ in exactly i steps, we have

Qc
0 ← c ∧ Fϕ, and

Qc
i ← r′B(Qc

i−1) for i ≥ 1,

In [CGMZ95], Qc
i denotes the set of fair states that can reach c ∧ Fϕ in i or fewer steps

instead of exactly i steps. We could do the same thing by computing

Qc
0 ← c ∧ Fϕ, and

Qc
i ← Qc

i−1 ∨ r′B(Qc
i−1) for i ≥ 1,

but it is not clear which approach is better. Perhaps the approach in [CGMZ95] takes

advantage of the fixpoint computation already performed. The rest of the search proceeds

as in [CGMZ95]. Narrowing using (7.9) and (7.10) needs to be performed on a potential

symbolic counterexample path.

The method of Clarke et al is not the only way to generate counterexample paths

once Iϕ is computed. A method for directed counterexample path generation that can be

performed after Fϕ is computed is proposed in Chapter 8.

Recall from Section 7.2.1 that different reachability strategies can be used in a fixpoint

approach to model checking. For general reachability, we have two basic strategies:

86 CHAPTER 7. LTL MODEL CHECKING WITHIN THE FRAMEWORK

1. Precompute the set of reachable states (reachable from S0) and use the information

for subsequent analysis. We call this strategy eager reachability strategy (ERS).

2. Do not precompute general reachability and compute fair states without any con-

cern for reachability. Reachability of fair states can be determined in subsequent

analysis. We call this strategy lazy reachability strategy (LRS).

There are also two basic strategies for reachability with respect to counterexample

path generation:

1. Precompute the set of reachable counterexample states (the set FCϕ of fair states

reachable from S0 ∧ Sϕ(ϕ)), and use FCϕ as the search space for counterexample

path generation. We call this strategy eager counterexample strategy (ECS).

2. Do not precompute the set of reachable counterexample states, and use Fϕ as

the search space for counterexample path generation. We call this strategy lazy

counterexample strategy (LCS).

7.2.3 On-the-fly Symbolic LTL Model Checking

The proposed on-the-fly symbolic model checking algorithm is an adaptation of the double

depth-first-search (double-DFS) algorithm [CVWY92] that is commonly associated with

an explicit automata approach in LTL model checking. No fixpoint computation of fair

states is needed. The algorithm searches for a counterexample path directly from the set

of initial states. Fairness is discovered on-the-fly in a depth-first search for a symbolic

counterexample path.

Algorithm 7.1. Standard Double-DFS Algorithm

dfs1(s) :

push(s, stk1);

for each successor s′ of s do

if s′ not in stk1 then dfs1(s′);

if s is an accepting state then dfs2(s);

pop(stk1);

dfs2(s) :

push(s, stk2);

for each successor s′ of s do

if s′ in stk1 then terminate(true);

else if s′ not in stk2 then dfs2(s′)

pop(stk2);

7.2. ANALYSES WITHIN THE FRAMEWORK 87

The basic double-DFS algorithm in [CVWY92] is shown as Algorithm 7.1 (but without

hashing). The procedure dfs1 searches for a reachable accepting state and the procedure

dfs2 searches for a cycle involving the reachable accepting state found. To use the algo-

rithm, dfs1 is invoked with each initial state until either success (when terminate(true)

is executed) or there is no more initial state to process. The algorithm implements an

emptiness check for a language of infinite paths. The language may be viewed as being ac-

cepted by a Büchi automaton (BA) [Büc60]. When the algorithm detects non-emptiness,

a witness for the non-emptiness can be produced from the contents of stk1 and stk2. In

our application, the witness corresponds to a counterexample path (a path satisfying ϕ).

The proposed on-the-fly symbolic LTL checking algorithm is an adaptation of the

standard double-DFS algorithm with the following important differences:

• The proposed algorithm works with symbolic transitions (using elementary blocks)

and symbolic states.

• The proposed algorithm constructs the Büchi automaton implicitly and on-the-fly.

The proposed algorithm is first and foremost a search for a counterexample path

rather than simply an emptiness check for a language accepted by a BA. A search for a

counterexample path needs to keep track of fairness constraints fulfilled. As the num-

ber of fairness constraints becomes large, precise tracking of fairness constraints fulfilled

becomes infeasible. Here we follow an approach that is commonly used in moving from

a generalised Büchi automaton (GBA) to a BA1: serialising the fulfillment of fairness

constraints in a specific order. The fairness constraints are placed in some order, say

c1, c2, ..., cn, and their fulfillment is strictly one by one in that order. A counter ctr is

used to keep track of fairness constraints fulfilled in the path considered so far. Initially,

no fairness constraint is fulfilled and ctr = 0. Thereafter, ctr = i means for all j such that

1 ≤ j ≤ i, cj has been fulfilled, but for all j such that i < j ≤ n, cj has not been recorded

as being fulfilled (although it might have been fulfilled). Using this method of imprecise

but safe tracking (if a fairness constraint has been recorded as being fulfilled, then it has

been fulfilled), the counter ctr is reset to 0 upon transition from a state in which ctr = n.

For our application, a state in a BA is an augmented state further augmented with the

counter ctr. An accepting state in the Büchi automaton is a state with ctr = n.

Because the tracking of fairness constraints is imprecise, some counterexample paths

may not be recognised by the algorithm. However, if there is a counterexample path,

then there is one that is recognised by the algorithm because a counterexample path

1The GBA and the BA do not necessarily accept the same language. The GBA allows precise tracking

of fairness constraint and the BA corresponds to imprecise tracking.

88 CHAPTER 7. LTL MODEL CHECKING WITHIN THE FRAMEWORK

can always be “serialised” by transforming its cycle part (whose states belong to a “self-

fulfilling” strongly connected component) to one that fulfills the fairness constraints in

order. In general, the serialisation may result in a longer cycle.

Algorithm 7.2. Naive Symbolic On-the-fly LTL Counterexample Path Generation

dfs1(S, ctr) :

push((S, ctr), stk1);

for each b ∈ B do

push(b, bstk1);

if ctr = n then

S1 ← f ′b(S);

if (S1 6≡ false) ∧ ¬in((S1, 0), stk1) then dfs1(S1, 0);

else

S1 ← f ′b(S) ∧ C(ctr + 1);

if (S1 6≡ false) ∧ ¬in((S1, ctr + 1), stk1) then dfs1(S1, ctr + 1);

S1 ← f ′b(S) ∧ ¬C(ctr + 1);

if (S1 6≡ false) ∧ ¬in((S1, ctr), stk1) then dfs1(S1, ctr);

pop(bstk1);

if ctr = n then dfs2(S, n);

pop(stk1);

dfs2(S, ctr) :

push((S, ctr), stk2);

for each b ∈ B do

push(b, bstk2);

if ctr = n then

S1 ← f ′b(S);

if in((S1, 0), stk1) then terminate(S1, 0);

if (S1 6≡ false) ∧ ¬in((S1, 0), stk2) then dfs2(S1, 0);

else

S1 ← f ′b(S) ∧ C(ctr + 1);

if in((S1, ctr + 1), stk1) then terminate(S1, ctr + 1);

if (S1 6≡ false) ∧ ¬in((S1, ctr + 1), stk2) then dfs2(S1, ctr + 1);

S1 ← f ′b(S) ∧ ¬C(ctr + 1);

if in((S1, ctr), stk1) then terminate(S1, ctr);

if (S1 6≡ false) ∧ ¬in((S1, ctr), stk2) then dfs2(S1, ctr);

pop(bstk2);

pop(stk2);

7.2. ANALYSES WITHIN THE FRAMEWORK 89

Algorithm 7.2 is to be invoked with dfs1(S0 ∧ Sϕ(ϕ), 0), and C is assumed to be an

array of fairness constraints with C(i) ≡ ci for 1 ≤ i ≤ n. The stacks stk1, bstk1, stk2,

bstk2 are initially empty. Termination via terminate means a counterexample path is

found. Further processing needs to be performed to obtain (Iπ, pπ, sπ) from S0 ∧ Sϕ(ϕ),

stk1, bstk1, stk2, bstk2, and the symbolic state and index arguments of the terminate.

The stacks bstk1 and bstk2 contain the symbolic transitions, while stk1 and stk2 contain

the provisional symbolic states between symbolic transitions. Note that upon termination

via terminate, length(bstk1) = length(stk1) and length(bstk2) = length(stk2). The

algorithm terminates (via terminate or otherwise) since the model is finite and n is

finite.

If Algorithm 7.2 terminates via terminate with symbolic state SS and index ii, the

cycle part of a symbolic counterexample path sπ can be computed as follows:

• j ← stackIndex((SS, ii), stk1);

• sπ ← append(substack(bstk1, j), bstk2);

where stackIndex((SS, ii), stk1) gives the length of the prefix of stk1 up to and including

(SS, ii), substack(bstk1, j) gives the prefix of bstk1 of length j, and append is the sequence

append operation. Note that we assume that when a stack is treated as a sequence, a push

operation pushes an element to the tail end of the sequence. Let stk3 and bstk3 be the

results of popping j times the stacks stk1 and bstk1 respectively. Then pπ ← bstk3. Let

i = length(stk3), stk3 = 〈(SS0, ii0), ..., (SSi−1, iii−1)〉, pπ = 〈bp1 , ..., bpm〉 and SSi ≡ SS.

Then after narrowing symbolic states using (7.10), the narrowed SS0 becomes Iπ.

In Algorithm 7.2, the operation in((SS, ii), stk) simply checks to see if (SS, ii) is an

entry in the stack stk. A less naive algorithm can use a subsumption test instead of

equality when checking if (SS, ii) is a stack entry so that in((SS, ii), stk) is equivalent

to there exists an entry (SSS, ii) in stk such that SSS ∧ SS ≡ SS. However, the

resulting cycle needs to have the symbolic states narrowed and the narrowed initial and

final symbolic states in the cycle need to be identical (see Section 7.1.3). Otherwise, sπ

does not necessarily produce a valid cycle.

Theorem 7.2. ϕ is satisfiable in M ′ if and only if Algorithm 7.2 terminates via termi-

nate when invoked with dfs1(S0 ∧ Sϕ(ϕ), 0).

Proof. The only differences between Algorithm 7.2 and Algorithm 7.1 (whose correctness

has been shown in [CVWY92]) are:

• Algorithm 7.2 uses symbolic transitions and symbolic states, and

• Algorithm 7.2 constructs the Büchi automaton on-the-fly.

90 CHAPTER 7. LTL MODEL CHECKING WITHIN THE FRAMEWORK

A set of Büchi automaton states is represented by a pair consisting of a symbolic state

S and a counter ctr. Whereas a successor s′ of a BA state is chosen directly from the

BA, Algorithm 7.2 implicitly constructs the BA on-the-fly, and breaks the handling of

successors into three cases:

1. The case where ctr = n (which means the symbolic state is an accepting state),

the successor must have ctr = 0 regardless of fairness constraints satisfied in the

successor.

2. The case where ctr = i, 0 ≤ i < n, and the successor symbolic state satisfies

C(i+ 1), ctr is incremented to i+ 1.

3. The case where ctr = i, 0 ≤ i < n, and the successor symbolic state does not satisfy

C(i+ 1), ctr remains at i.

The three cases represent the serialisation of fulfillment of fairness constraints. The use of

symbolic states simply means the enumeration of explicit states is avoided or postponed.

A symbolic state in the search (which in the algorithm is checked to be not equivalent

to false) represents a non-empty set of states. The explicit states in the symbolic state

are exactly those that can be reached from any state satisfying Sϕ(ϕ) ∧ S0 through the

transitions (elementary blocks) chosen up to that point.

Partial order reduction [PWW96] can be used to reduce the search space in on-the-

fly LTL checking. [HPY96] shows how the double-DFS algorithm can be modified to

accommodate partial order reduction in explicit on-the-fly model checking. To accom-

modate partial order reduction in a symbolic setting, Algorithm 7.2 needs to be similarly

modified.

A variation of the on-the-fly approach might be an “iterative deepening” search for

counterexamples, achieved by placing a depth limit in the depth-first search, and itera-

tively increasing the depth limit.

7.3 Summary

This chapter described how the conceptual foundation for LTL model checking from

Chapter 6 can be applied using the state machine framework of Chapter 3. The result is

a symbolic framework for LTL model checking and counterexample generation that ac-

commodates various approaches and strategies, including on-the-fly LTL model checking

as well as the traditional fixpoint approach. A novel idea proposed in this chapter is that

of on-the-fly symbolic LTL model checking.

Chapter 8

Directed Counterexample Path

Generation

With on-the-fly LTL model checking, the search for a counterexample path is a blind

search, while the method of Clarke et al [CGMZ95] performs a search that is guided by

states that satisfy fairness constraints. Without modification, such searches correspond to

blunt instruments that cannot be directed towards or away from specific cases of interest.

In this chapter, a method for symbolic counterexample path generation that involves a

goal-directed search is proposed.

Section 8.1 gives a motivating example for directed counterexample path generation.

Section 8.2 outlines the proposed method for directed counterexample path generation.

Sections 8.3 and 8.4 provide details of the proposed method. Section 8.5 discusses possible

uses of directed counterexample path generation.

8.1 A Motivating Example

Consider the BT example in Figure 8.1 representing a simple hypothetical system, chosen

to illustrate the capabilities required for directed search. The system has three subsystems

— SubA, SubB and SubC — and two critical components: CompA and CompB. After

CompA and CompB are initialised, five threads are spawned. Two of the threads allow

components CompA and CompB to fail, and the other three control the operations of

subsystems SubA, SubB and SubC. The operation of subsystem SubA, represented by BT

nodes 7 through 11, requires both CompA and CompB to be operational. The operation

of SubB, represented by BT nodes 12 through 15, requires CompA to be operational.

The operation of SubC, represented by BT nodes 16 through 18, does not require either

component to be operational. External events (indicated by 〉〉event〈〈) and prioritisation

of system transitions over external events (explained in Section 4.6.4) are used in the

91

92 CHAPTER 8. DIRECTED COUNTEREXAMPLE PATH GENERATION

CompA

[op]

CompB

[op]

1

2

PC1 = 1, PC2 = 0, PC3 = 0, PC4 = 0, PC5 = 0, PC6 = 0

PC1 = 2, PC2 = 1, PC3 = 1, PC4 = 1, PC5 = 1, PC6 = 1�����������9

�
���

��� ?

H
HHH

HHj

XXXXXXXXXXXz
CompA

〉〉fails〈〈3

?PC2 = 2

CompA

[failed]4

CompB

〉〉fails〈〈5

?PC3 = 2

CompB

[failed]6

SubA

[op]7

?PC4 = 2

SubA

〉〉check〈〈

CompA
???op???

CompB
???op???

8

9

10

?PC4 = 3

SubA ∧
[op]11

SubB

[op]12

?PC5 = 2

SubB

〉〉check〈〈

CompA
???op???

13

14

?PC5 = 3

SubB ∧
[op]15

SubC

[op]16

?PC6 = 2

SubC

〉〉check〈〈17

?PC6 = 3

SubC ∧
[op]18

Figure 8.1: A Motivating Example

model to prevent race conditions.

When the system is operating failure-free, CompA and CompB would be operational,

indicated in the BT model by both CompA and CompB having the value op after their

initialisation in BT nodes 1 and 2. Failure-free operation of the system can be formalised

as the LTL formula:

G((PC1 = 1) ∨ (CompA = op) ∧ (CompB = op)). (8.1)

The state formula (PC1 = 1) characterises the set of starting states before CompA and

CompB are initialised (the BT translation described in Chapter 4 does not assume that

state variables are initialised, thus there may be many possible starting states).

Suppose we want to know if subsystem SubC can still operate after a component fails.

The continued operation of SubC is represented in the BT model by a cycle that goes

through BT node 18 (which is a reversion back to the BT node 16, meaning the effect

of executing BT node 18 is the same as the effect of executing BT node 16). Thus, the

continued operation of SubC after a component failure is indicated by a counterexample

to the LTL formula (8.1) whose cycle goes through BT node 18. This motivates the idea

of a cycle constraint in a counterexample path.

Definition 8.1 (Cycle Constraint). We define a cycle constraint cc in a symbolic coun-

terexample path to be a state formula that must be satisfied by at least one symbolic

state in the cycle part of the counterexample path.

8.1. A MOTIVATING EXAMPLE 93

For continued operation of SubC, cc ≡ (PC6 = 3) would be sufficient. This is because

• system transitions are prioritised over external events in the model, and

• each iteration of a thread in the model goes through at least one external event,

thus when the thread for SubC is at (PC6 = 3) (at the entrance to BT node 18), the

other threads would all be waiting for external events, and since the execution of BT

node 18 is considered a system transition, the other threads would all be blocked leaving

the execution of BT node 18 as the only possible transition.

An example symbolic counterexample path for (8.1) that satisfies the cycle constraint

(PC6 = 3) is the following:

Iπ ≡ (PC1 = 1) ∧ (PC2 = 0) ∧ (PC3 = 0) ∧ (PC4 = 0)

∧ (PC5 = 0) ∧ (PC6 = 0),

pπ = 〈(1, 2), 7, 12, 16, 3, 4, 17〉,

sπ = 〈18, 17〉.

The counterexample path was in fact produced by a prototype described in Section 9.1.

The counterexample path can be read as: after initialisations of CompA and CompB,

each of the subsystems advances to its wait-for-event state, CompA then fails and SubC

proceeds indefinitely in a cycle. The counterexample path corresponds to CompA failing

and SubC keeps on operating, and shows how it can happen.

The above counterexample involves CompA failing. Suppose now we would like to

know if there are counterexamples to (8.1) in which SubC keeps on operating but CompA

does not fail. A global constraint can be used here.

Definition 8.2 (Global Constraint). We define a global constraint gc in a counterexample

path to be a state formula that must be satisfied by all states in the counterexample path.

By specifying gc ≡ ¬(CompA = failed) as well as cc ≡ (PC6 = 3), we are specifying

constraints for a counterexample to (8.1) in which CompA does not fail and SubC keeps

on operating.

When asked to find a symbolic counterexample path to (8.1) that satisfies the cycle

constraint (PC6 = 3) and the global constraint ¬(CompA = failed), the prototype

produced a symbolic counterexample path with Iπ and sπ as above, and

pπ = 〈(1, 2), 7, 12, 16, 5, 6, 17〉.

This corresponds to CompB failing instead of CompA. The global constraint essentially

directs the search for a counterexample away from cases where CompA fails.

94 CHAPTER 8. DIRECTED COUNTEREXAMPLE PATH GENERATION

Cycle constraints can also be used to direct the search for a counterexample path

towards a specific set of components failing. As an example, we can specify cc ≡ (PC6 =

3)∧(CompA = failed)∧(CompB = failed) to direct the search towards a counterexample

path where SubC still operates after CompA and CompB both failed. When asked

to find a symbolic counterexample path that satisfies cc ≡ (PC6 = 3) ∧ (CompA =

failed) ∧ (CompB = failed), the prototype produced a symbolic counterexample path

with Iπ and sπ as above and

pπ = 〈(1, 2), 7, 12, 16, 3, 4, 5, 6, 17〉.

The prefix is longer than in the previous two counterexample paths since now both

components need to fail before the cycle is reached.

Suppose now we direct the search for a counterexample path for (8.1) with the cycle

constraint (PC5 = 3). The prototype produced the following symbolic counterexample

path:

Iπ ≡ (PC1 = 1) ∧ (PC2 = 0) ∧ (PC3 = 0) ∧ (PC4 = 0)

∧ (PC5 = 0) ∧ (PC6 = 0),

pπ = 〈(1, 2), 7, 12, 16, 5, 6, (13, 14)〉,

sπ = 〈15, (13, 14)〉.

The counterexample path corresponds to CompB failing and SubB keeps on operating.

If we direct the search for a counterexample path for (8.1) with cc ≡ (PC5 = 3) and

gc ≡ ¬(CompB = failed) then no counterexample path would be found. Similarly, for

the case where SubA keeps on operating, there is no counterexample to (8.1).

8.2 Method Outline

The proposed method for directed symbolic counterexample path generation is invoked

with two parameters:

• cc - a state formula (a proposition without temporal operations) specifying a con-

straint that must be satisfied by a symbolic state in the cycle part of the symbolic

counterexample path (all states in the symbolic state must satisfy cc). A cc value

of true means there is no cycle constraint.

• gc - a state formula specifying a global constraint (all states in the symbolic coun-

terexample path must satisfy gc). A gc value of true means there is no global

constraint.

8.3. CYCLE SEARCH 95

The two parameters direct the search for a counterexample path. Neither of the two

parameters can be false.

The basic strategy in the search for a counterexample path is as follows:

• Find a cycle in which all fairness constraints are fulfilled, which visits a symbolic

state that satisfies gc ∧ cc (i.e., all states in the symbolic state satisfy gc ∧ cc), and

in which all the symbolic states satisfy gc. The cycle found produces sπ.

• Find a prefix pπ from a symbolic state that satisfies Sϕ(ϕ) ∧ S0 ∧ gc to the cy-

cle. If found, the prefix determines Iπ and completes the generation of a symbolic

counterexample path.

The symbolic state that functions as a starting point for the search is SB0. If the

method is invoked after Fϕ has been computed, then SB0 is initialised as follows:

SB0 ← gc ∧ cc ∧ Fϕ.

Otherwise SB0 is initialised as follows:

SB0 ← gc ∧ cc.

SB0 in effect becomes the cycle constraint.

8.3 Cycle Search

The method searches for the cycle part of a symbolic counterexample path first. The

cycle search consists of the following stages:

• Search backward from SB0 to find a starting point for “choosing” a cycle, while

partitioning the possible intermediate symbolic states in the cycle based on the

fairness constraints to be fulfilled.

• From the starting point found, choose transitions (elementary blocks) to form a

candidate cycle, using the partitioned possible intermediate symbolic states.

• Narrow and validate the the symbolic states in the candidate cycle (see Section

7.1.3 for why this is needed).

The cycle search described here uses precise tracking of fairness constraints. If the

number of fairness constraints is large, imprecise tracking, e.g., via the serialisation tech-

nique as in Section 7.2.3, can be used instead to avoid the exponential complexity of

precise tracking.

96 CHAPTER 8. DIRECTED COUNTEREXAMPLE PATH GENERATION

Possible intermediate states are partitioned. At each step in the backward search stage

of the cycle, the symbolic state is partitioned based on the fairness constraints fulfilled

in paths from the symbolic state to SB0. There are 2k partitions at each step i, denoted

Pi(cmb) where each index cmb is a subset of Cϕ, and k = |Cϕ|. The partition Pi(cmb)

represents states that can transition to states in SB0 in exactly i steps with exactly the

fairness constraints in cmb fulfilled along the path (inclusive of the end points). P0 is

initialised as follows:

for cmb ⊆ Cϕ do

P0(cmb)← SB0 ∧
∧
c∈Cϕ

if c ∈ cmb then c else ¬c.

Procedure 8.1, when successful (via terminate(success)), produces a positive integer n

and partitions Pi(cmb) for 0 ≤ i ≤ n and cmb ⊆ Cϕ. It is invoked after initialisation of P0,

using cycle-stage1(1). Termination other than through terminate(success) is considered

a failure, and restart(cycle-stage-1(1)) abandons the current search and restarts a new

search (with revised SB0 and P0). The variables SB0, n, and Pi(cmb) for 0 ≤ i ≤
n, cmb ⊆ Cϕ, are global variables.

Procedure 8.1. Cycle Search Stage 1

cycle-stage1(i) :

SBi ← r′B(SBi−1) ∧ gc;
for each cmb ⊆ Cϕ do

Pi(cmb)← SBi ∧
(∧

c∈Cϕ\cmb ¬c
)
∧
∨
t⊆cmb

(
r′B(Pi−1(t)) ∧

∧
c∈cmb\t c

)
;

if (Pi(Cϕ) ∧ SB0) ≡ SB0 then

n← i;

terminate(success);

if (Pi(Cϕ) ∧ SB0) 6≡ false then

SB0 ← Pi(Cϕ) ∧ SB0;

for each cmb ⊆ Cϕ do

P0(cmb)← SB0 ∧
∧
c∈Cϕ

if c ∈ cmb then c else ¬c;
restart(cycle-stage-1(1));

if ¬∃j : i > j ≥ 0 ∧ ∀cmb ⊆ Cϕ : Pi(cmb) ≡ Pj(cmb) then

cycle-stage-1(i+ 1);

In the case where (Pi(Cϕ)∧SB0) 6≡ SB0 but (Pi(Cϕ)∧SB0) 6≡ false, SB0 is narrowed

and the backward search is restarted. This step solves the problem of SB0 possibly

containing states that cannot be in cycles (and thus cannot be the starting point for

choosing a cycle). This step also tends to favour short cycles.

8.3. CYCLE SEARCH 97

Theorem 8.1. If Procedure 8.1 terminates successfully via terminate(success), then

the resulting SB0 characterises a non-empty subset of the set characterised by the original

SB0, and from any state in the resulting SB0, there is a path with exactly n transitions

to a state in SB0, where all fairness constraints in Cϕ are fulfilled in the path. Otherwise

Procedure 8.1 terminates unsuccessfully. Note that only states that satisfy the global

constraint gc are considered.

Proof. For the first part of Theorem 8.1 (where Procedure 8.1 terminates successfully),

we first prove (8.2).

∀0 ≤ i ≤ n, cmb ⊆ Cϕ : ∀s ∈ Pi(cmb) :

∃p : p is a path from s, of exactly i transitions, to a state in SB0

and for each c ∈ Cϕ : c is fulfilled in p iff c ∈ cmb.
(8.2)

The proof of (8.2) is by induction on i.

• Case i = 0 (base case). This follows from the initialisation of P0 if Procedure 8.1 is

never restarted or from the last assignment of P0 if there is a restart.

• Case i > 0. This follows from the assignment

Pi(cmb)← SBi ∧

 ∧
c∈Cϕ\cmb

¬c

 ∧ ∨
t⊆cmb

r′B(Pi−1(t)) ∧
∧

c∈cmb\t

c

 ;

in Procedure 8.1. The induction hypothesis assures us that Pi−1(t) contains exactly

the states that can transition to SB0 in exactly i − 1 transitions with exactly the

fairness constraints in t fulfilled in the path to SB0. A fairness constraint c not in

cmb cannot be fulfilled in a state in Pi(cmb) or in a path of i− 1 transitions from a

state in Pi−1(t) to a state in SB0 for all t ⊆ cmb, thus cannot be fulfilled in a path

of i transitions from a state in Pi(cmb) to a state in SB0. The above assignment

also guarantees that a state s in Pi(cmb) can transition to a state in Pi−1(t) where

t ⊆ cmb and any c ∈ cmb that is not fulfilled by s is in t. Thus Pi(cmb) contains

exactly those state from which there are paths of exactly i transitions to SB0 where

all fairness constraints in cmb are fulfilled.

If Procedure 8.1 terminates successfully, then SB0 is a subset of Pn(Cϕ), and from (8.2)

we can conclude that from any state in SB0 there is a path of n transitions to a state in

SB0 with all the fairness constraints in Cϕ are fulfilled in the path.

The second part of Theorem 8.1 is guaranteed by the “visited check”:

if ¬∃j : i > j ≥ 0 ∧ ∀cmb ⊆ Cϕ : Pi(cmb) ≡ Pj(cmb)

and the finiteness of the model.

98 CHAPTER 8. DIRECTED COUNTEREXAMPLE PATH GENERATION

If Procedure 8.1 terminates successfully, then the second stage — represented by

Procedure 8.2 — can start. Procedure 8.2 produces a provisional cycle represented by

transitions b1, ..., bn and intermediate symbolic states SS0, ..., SSn. It is invoked using

cycle-stage2(1) after SS0 and cmb0 are initialised as follows:

SS0 ← SB0;

cmb0 ← Cϕ.

The variables b1, ..., bn, SS0, ..., SSn and cmb0, ..., cmbn are global variables.

Procedure 8.2. Cycle Search Stage 2

cycle-stage2(i) :

for each b ∈ B, t ⊆ cmbi−1 do

SSi ← f ′b(SSi−1 ∧
∧
c∈cmbi−1\t c) ∧ Pn−i(t);

if SSi 6≡ false then

bi ← b;

cmbi ← t;

if i = n then terminate(success);

else cycle-stage2(i+ 1);

Theorem 8.2. If invoked after a successful Procedure 8.1, Procedure 8.2 terminates

successfully.

Proof. At every iteration (recursive call) of Procedure 8.2, the choice of elementary block

bi and combination cmbi (which means partition Pn−i(cmbi) is chosen) together with (8.2)

ensure success without any need to backtrack (cmbi represents fairness constraints to be

fulfilled starting from the next iteration).

After Procedure 8.2 terminates via terminate(success), SS0, ..., SSn and b1, ..., bn

represent a provisional cycle. The provisional symbolic states must be narrowed as follows:

for i from n down to 1 do SSi−1 ← SSi−1 ∧ r′bi(SSi).

After narrowing the symbolic states, the equivalence SS0 ≡ SSn is checked. If the

equivalence holds, then the cycle search is successful, with sπ ← 〈b1, ..., bn〉, and the

prefix search can begin.

8.4 Prefix Search

If the SS0 from the cycle search gives us (SS0 ∧ S0) 6≡ false, then an empty prefix has

been found and we assign pπ ← 〈〉 and Iπ ← SS0 ∧ S0. Since the starting symbolic state

8.4. PREFIX SEARCH 99

for the cycle is now Iπ, SS0 must be adjusted: SS0 ← Iπ, and the symbolic states in the

cycle further narrowed. It is possible, although unlikely in practice, that the resulting

SS0 is not equivalent to the resulting SSn. In such a case, (Iπ, pπ, sπ) is still a symbolic

counterexample path (since all states in the original unnarrowed cycle can participate in

the cycle and remain in the original cycle), but the cycle is of length a multiple of n. The

intermediate symbolic states in the cycle can be computed as follows:

SS0 ← Iπ;

j ← 0;

repeat

for i from 1 to n do

SSjn+i ← f ′bi(SSjn+i−1);

j ← j + 1;

until SSjn ≡ SS0

The real length of the cycle is jn.

If (SS0 ∧ S0) ≡ false, then a search for a prefix to the cycle must be performed. The

search for a prefix to the cycle also consists of a backward search stage followed by a

forward “choosing” stage, but the stages are simpler than the corresponding stages for

the cycle search because there is no need to track fairness constraints, thus the restricted

possible intermediate symbolic states in the prefix need not be partitioned. The symbolic

state that functions as the starting point for the backward search is SP0, initialised as

follows:

SP0 ← SS0.

The backward search stage of finding a prefix is represented by Procedure 8.3. Procedure

8.3, when successful (via terminate(success)), produces a positive integer m representing

the length of the prefix, and SP0, ..., SPm representing the restricted possible intermediate

symbolic states. After the initialisation of SP0, it is invoked using prefix-stage1(1).

Procedure 8.3. Prefix Search Stage 1

prefix-stage1(i) :

SPi ← r′B(SPi−1) ∧ gc;
SPi ∧ S0 6≡ false then

m← i;

terminate(success)

if ¬∃j : i > j ≥ 0 ∧ (SPi ≡ SPj) then

prefix-stage-1(i+ 1);

100 CHAPTER 8. DIRECTED COUNTEREXAMPLE PATH GENERATION

Theorem 8.3. If Procedure 8.3 terminates successfully, then from any state in the

resulting SPm, there is a path with exactly m transitions to a state in SP0. Otherwise

Procedure 8.3 terminates with failure.

Proof. For the first part of Theorem 8.3 (where Procedure 8.3 terminates successfully),

we first prove (8.3).

∀0 ≤ i ≤ m : ∀s ∈ SPi :

∃p : p is a path from s, of exactly i transitions, to a state in SP0.
(8.3)

The proof of (8.3) is by induction on i.

• Case i = 0 (base case). This is trivial.

• Case i > 0. This follows from the assignment

SPi ← r′B(SPi−1) ∧ gc;

in Procedure 8.1. The induction hypothesis assures us that SPi−1 contains exactly

the states that can transition to SP0 in exactly i− 1 transitions.

The first part of Theorem 8.3 follows directly from (8.3).

The second part of Theorem 8.3 is guaranteed by the “visited check”:

if ¬∃j : i > j ≥ 0 ∧ (SPi ≡ SPj)

and the finiteness of the model.

If Procedure 8.3 terminates via terminate(success), then a prefix can be found and

the second stage, represented by Procedure 8.4, can start. The starting point for the

choosing stage is the symbolic state SSS0, initialised as follows:

SSS0 ← SPm ∧ S0.

After initialisation, Procedure 8.4 is invoked using prefix-stage2(1).

Procedure 8.4. Prefix Search Stage 2

prefix-stage2(i) :

for each b ∈ B do

SSSi ← f ′b(SSSi−1) ∧ SPm−i;
if SSSi 6≡ false then

bi ← b;

if i = m then

terminate(success);

else

prefix-stage2(i+ 1);

8.5. USING DIRECTED COUNTEREXAMPLE GENERATION 101

Theorem 8.4. If invoked after a successful Procedure 8.3, Procedure 8.4 terminates

successfully.

Proof. At every iteration (recursive call) of Procedure 8.4, the choice of elementary block

bi together with (8.3) ensure success without any need to backtrack.

After Procedure 8.3 is successful, invocation of Procedure 8.4 will terminate success-

fully, with SSS0, ..., SSSm and b1, ..., bm representing a provisional prefix. The provisional

symbolic states must be narrowed as follows:

for i from m down to 1 do SSSi−1 ← SSSi−1 ∧ r′bi(SSSi).

After narrowing the symbolic states for the prefix, we have Iπ ← SSS0 and pπ ←
〈b1, ..., bm〉, and SS0 must be adjusted: SS0 ← SSSm, and the symbolic states in the

cycle further narrowed. It is possible, although unlikely in practice, that the resulting

SS0 is not equivalent to the resulting SSn, just like in the null prefix case. The treatment

for when SS0 6≡ SSn is similar to the null prefix case, but with SS0 ← SSSm instead of

SS0 ← Iπ.

Although it is possible to get variations of directed counterexample search that guar-

antee the production of a counterexample path satisfying the constraints if one exists, it

may be preferable to not provide the guarantee and use a fixpoint approach to verify the

absence of counterexample paths. For example, to ensure that there are no counterex-

ample paths satisfying the global constraint gc, then the fixpoint computation

νZ.
∧
c∈Cϕ

gc ∧ r′B(µY.(gc ∧ Z ∧ c) ∨ gc ∧ r′B(Y))

can be performed with Z initialised to Fϕ. The intersection of the result with S0 and

Sϕ(ϕ) can be checked for emptiness. Note that it is not sufficient to check only S0 ∧
Sϕ(ϕ) ∧ Fϕ ∧ gc.

8.5 Using Directed Counterexample Generation

The example in Section 8.1 illustrates a case where directed counterexample path genera-

tion can be useful. Although the model in the example is a simplified model, it illustrates

concepts that can be used in larger and more realistic models.

The global constraint gc in directed counterexample path generation provides a simple

and efficient way of ruling out certain parts of the model from counterexamples. One

systematic way of finding multiple counterexamples of interest is as follows:

1. Let the model checker find the first counterexample.

102 CHAPTER 8. DIRECTED COUNTEREXAMPLE PATH GENERATION

2. Based on the counterexample found, determine certain parts of the model to rule out

from subsequent counterexamples. Characterise those parts as a global constraint

gc1.

3. Set gc← ¬gc1, i← 2.

4. Let directed counterexample path generation find a counterexample with the global

constraint gc.

5. If a counterexample path is found, determine more parts of the model to rule out

from subsequent counterexamples. Characterise the parts as a global constraint

gci, set gc← gc ∧ ¬gci, i← i+ 1 and repeat from step 4.

6. Otherwise use the fixpoint computation as in Section 8.4 with global constraint gc

to verify that there are no more counterexamples.

If step 2 can be automated, then the generation of multiple counterexamples can be

automated. Whether step 2 can be automated depends on the problem domain. An

example application where step 2 can be automated is described in Section 9.5

In Section 8.1 we saw how cycle constraints can be used to rule in certain parts of the

model in the cycle parts of counterexample paths. Setting cc to some value other than

true may be useful even if we are not interested in the cycle part of a counterexample

path. For example, if we know that the system has a main loop, then specifying cc to

correspond to a point in the main loop may speed up the search for a counterexample

path. For BT models, an obvious candidate for the point is a reversion BT node. Thus,

suppose elementary block b corresponds to the reversion BT node, PC(b) = PCi and

PCval(b) = vali; then we would specify cc to be PCi = vali.

8.6 Summary

In this chapter, a novel technique for directed counterexample path generation has been

presented. The mechanism allows a search for a counterexample path to be directed

away from certain parts of the model and/or towards certain parts of the model. The

mechanism is intended to support a controlled and incremental generation of multiple

counterexample paths.

Chapter 9

Experiments with a Prototype

As a proof of concept, a prototype LTL model checker that incorporates the ideas pro-

posed in this thesis has been developed. A brief description of the prototype appears in

Section 9.1. Experiments were performed with the prototype for the following purposes:

• To demonstrate the utility of directed counterexample path generation in ruling in

or ruling out certain classes of counterexamples.

• To confirm that using directed counterexample path generation in an incremental

approach to generating multiple counterexamples is more efficient than the approach

whereby the LTL specification is modified and the model checker is rerun.

• To examine the effect of choice of reachability strategy on the performance (execu-

tion time) of directed counterexample path generation.

• To assess the viability of mixing and matching directed counterexample path gener-

ation with other techniques, in particular with the symbolic on-the-fly LTL model

checking technique described in Section 7.2.3.

The utility of directed counterexample path generation is partially demonstrated by

the example in Section 8.1. However, the example is small. Larger examples were tried

to assess how directed counterexample path generation scales up. We hypothesise that

directed counterexample path generation scales up as well as model checking using the

fixpoint approach. These examples are described in Sections 9.2 and 9.3.

Sections 9.2 and 9.3 also provide timing comparisons between the incremental ap-

proach using directed counterexample path generation versus the approach whereby the

LTL specification is modified and the model checker is rerun. A favourable timing com-

parison strengthens the case for the directed counterexample path generation approach.

This is in addition to other advantages of the directed counterexample path generation

103

104 CHAPTER 9. EXPERIMENTS WITH A PROTOTYPE

approach, including being less prone to error because of its simplicity when compared to

modifying the LTL specification.

The effects of different reachability strategies on directed counterexample path gen-

eration are examined in Sections 9.2 and 9.3. The main decisions with respect to reach-

ability strategy in LTL model checking using the fixpoint approach and the subsequent

counterexample path generation are:

• Whether to compute the set of reachable states and use the set to directly compute

the set of reachable fair states or simply compute the set of fair states Fϕ. (Recall

from Section 7.2.2 that the strategy whereby the set of reachable states is computed

and used to compute the set of reachable fair states is called the eager reachability

strategy, and the strategy whereby the set Fϕ of fair states is computed without

computing the set of reachable states first is called the lazy reachability strategy.)

• Whether or not to compute the set FCϕ of fair states reachable from Fϕ ∧ Sϕ(ϕ) ∧
S0. If FCϕ is computed, then directed counterexample path generation initialises

SB0 as follows: SB0 ← gc ∧ cc ∧ FCϕ, where gc represents a global constraint

and cc represents a cycle constraint (see Section 8.2 for the roles of SB0, gc and

cc in directed counterexample path generation). (Recall from Section 7.2.2 that

the strategy whereby FCϕ is computed is called the eager counterexample strategy,

and the strategy whereby FCϕ is not computed is called the lazy counterexample

strategy.)

The symbolic on-the-fly LTL model checking technique described in Section 7.2.3 can

sometimes find a counterexample path much faster than the fixpoint approach, but the

counterexample path found tends to have a much longer prefix and cycle than necessary.

Experiments were conducted to assess the viability of using directed counterexample

path generation as a post-processor to improve the counterexample path found by the

on-the-fly technique. These experiments are described in Section 9.4.

9.1 The Prototype

The prototype is written in ANSI Common Lisp and includes its own ordered binary

decision diagram (OBDD) package with the capability to output formulas directly from

OBDDs in disjunctive normal form or conjunctive normal form using the Minato-Morreale

algorithm [Min93,Mor70].

The prototype includes a translator from a substantial subset of BT to elementary

blocks as described in Chapter 4. The prototype allows the BT translation to either

prioritise system transitions over external events or not prioritise at all.

9.2. AN EXAMPLE FROM A CASE STUDY 105

Directed counterexample path generation has been implemented in the prototype with

an interface that allows the analyst to specify the entrance of a BT node to become part

of the cycle constraint cc. For the example in Figure 8.1, the analyst can simply specify

BT node 18, and the interface automatically adds PC6 = 3 as a conjunction to cc.

The symbolic on-the-fly LTL model checking technique described in Section 7.2.3 has

been implemented in the prototype. The implementation allows a global constraint gc to

be specified, in which case the search space is restricted to states satisfying gc.

All of the experiments were performed on a notebook computer with an Intel i7-

3740QM processor and 16GB of RAM running 64-bit Ubuntu 14.04. The Common Lisp

used was Steel Bank Common Lisp version 1.1.9.

9.2 An Example from a Case Study

Experiments were conducted using an example from a case study on model-based safety

risk assessment [LWK12] for the following purposes:

• To assess how directed counterexample path generation scales up. We hypothesise

that directed counterexample path generation scales up as well as model checking

using the fixpoint approach.

• To confirm that an incremental approach using directed counterexample path gen-

eration is more efficient than modifying the LTL specification and rerunning the

model checker.

• To examine the effect of reachability strategy on directed counterexample path

generation.

The system in the case study is part of a command and control system for drop missions of

a firefighting aircraft. A drop solution for a mission is calculated based on meteorological

and navigational data. Meteorological data is sent from a command centre through a

data link with backup through voice communication. The entire case study is available

on the web at http://itee.uq.edu.au/sse/afms/.

The model used as an example here is the model at the second stage of the risk

assessment process (the model is called Model 2 on the web). The BT model has 79

BT nodes, 10 threads, and 260 states. The model has system transitions prioritised over

external events. At this stage of the process, functional failures such as the data link

going down are included in the model.

Several hazardous situations were formulated in the original case study. For the

example here, we choose the hazard where a drop solution is calculated with out-of-date

106 CHAPTER 9. EXPERIMENTS WITH A PROTOTYPE

meteorological data.

?PC4=3

DataLink
?status=down?

2.3

?PC4=4

VoiceLink
[sendMetData]2.4

?PC4=5

MetData
[pending]

2.5

?PC4=6

Operator
〉〉EnterMetData〈〈2.6

?PC4=7

MetData
[stored]

2.7

?PC4=8

UpdateMetData
[start]

2.8 ∧

?PC7=5

PrepareDS
[start]

9.4

?PC7=6

Calculator
[CalculateDS]

9.5

?PC7=7

DropSolution
[computed]

9.6

?PC7=9

Operator
〉〉RejectDS〈〈9.8

?PC7=10

PrepareDS
[start]

9.9 ∧

?PC7=13

Operator
〉〉EnterExCmd〈〈9.17

?PC7=14

PrepareDS
[start]

9.18 =>

?PC7=20

Operator
〉〉EnterExCmd〈〈9.26

?PC7=21

PrepareDS
[start]

9.27 =>

Figure 9.1: Fragments of the BT Model

The fragment at the top of the second column in Figure 9.1 is where the drop solution

is calculated in the BT model (it is calculated with the execution of BT node 9.5). Out-

of-date meteorological data is represented by MetData = Pending, thus the hazard H

where a drop solution is calculated with out-of-date meteorological data can be formulated

as follows:
H ≡ ¬(Calculator = CalculateDS)

∧ MetData = Pending

∧ X(Calculator = CalculateDS).

The formula G(¬H) states that the hazard H does not occur in any behaviour:

G(¬(¬(Calculator = CalculateDS)

∧MetData = Pending

∧ X(Calculator = CalculateDS))).

(9.1)

A counterexample found in model checking (9.1) represents a behaviour in which the

hazard H occurs. Different situations that lead to the hazard are represented by different

counterexamples.

9.2.1 The Original Approach

In the original case study, SAL [dMOS03] was used as the model checker. The BT-to-SAL

translator mentioned in Section 4.1 was used to translate the BT model into SAL. The

9.2. AN EXAMPLE FROM A CASE STUDY 107

method for finding multiple counterexamples for G(¬H) in the original case study was

as follows:

1. Model check G(¬H).

2. If there is a counterexample then analyse the counterexample to determine the

situation that leads to the hazard.

3. Modify the LTL specification so that the situations covered by counterexamples

already found do not appear as subsequent counterexamples.

4. Rerun the model checker with the modified LTL specification and repeat from step

2.

Step 2 was a manual process that required some problem domain expertise. The modi-

fication of the LTL specification in step 3 was rather ad hoc and could have been made

more systematic.

The counterexample path that SAL produced when model checking (9.1) executed

BT nodes 9.17 and 9.18 with MetData = Pending just before BT node 9.5 is executed

(execution of the counterexample path prefix to BT node 9.17, involving BT node 2.5,

causes MetData to be set to Pending). Manual examination of the counterexample path

determined that this corresponds to a situation under which the hazard H occurs after

the operator enters the “execute” command when meteorological data is pending (the

“execute” command is indicated by an event that occurs in BT node 9.17 and BT node

9.26).

Recall from Section 4.1 that the SAL translation of a BT model assigns a Boolean

SAL input variable to each BT external input event. A BT node in which an external

input event occurs can only be executed if the corresponding SAL input variable has the

value true. Let xcmd represent the SAL input variable for the “execute command” event.

Then the LTL specification is modified to

(¬G(¬((MetData = Pending) ∧ xcmd))) ∨ (G¬H). (9.2)

When given (9.2) to model check, SAL produced a counterexample path that executed BT

nodes 9.3 and 9.4 with MetData = Pending just before BT node 9.5 is executed. Manual

examination determined that the counterexample corresponds to a situation under which

the hazard H occurs when the mission is of a scheduled type (one of three types of drop

missions). To prevent the situation from appearing in subsequent counterexamples, the

LTL specification was modified to

(DMP.Type = Scheduled)∨ (¬G(¬((MetData = Pending)∧ xcmd)))∨ (G¬H). (9.3)

108 CHAPTER 9. EXPERIMENTS WITH A PROTOTYPE

Table 9.1: Results for SAL on Case Study Example

run1 run2 run3 run4

time 3.8s 15.2s 25.4s 15.1s

prefix length 20 20 25 N/A

cycle length N/A 5 5 N/A

The clause (DMP.Type = Scheduled) appears in (9.3) without the G operation because

DMP.Type never changes in the BT model. When given (9.3) to model check, SAL

produced a counterexample path that executed BT nodes 9.8 and 9.9 with MetData =

Pending just before BT node 9.5 is executed. Manual examination determined that

the counterexample corresponds to a situation under which the operator rejected a drop

solution with meteorological data pending. Let rdrp represent the SAL input variable

for the event “operator rejects drop solution”. The LTL specification was then modified

to

(DMP.Type = Scheduled)∨(¬G(¬((MetData = Pending)∧(xcmd∨rdrp))))∨(G¬H).

(9.4)

When given (9.4) to model check, SAL determined that there is no counterexample.

Assuming SAL and the manual examinations are correct, this means all situations that

can lead to hazard H have been covered.

Table 9.1 shows statistics from the SAL runs when rerun on the machine described in

Section 9.1. SAL version 3.3 was used. The runs run1, run2, run3 and run4 correspond

to model checking (9.1), (9.2), (9.3) and (9.4) respectively. Note that for run1, SAL

produced a prefix only. This suggests that SAL recognised (9.1) as a safety property

and optimised its model checking (it did not perform a “full” LTL model checking). The

timing results show that modifying the LTL specification can increase the SAL running

time considerably.

9.2.2 Incremental Approach using Directed Counterexample Path

Generation

In the incremental approach using directed counterexample path generation, computation

of the set Fϕ of fair states is performed just once, and directed counterexample path gen-

eration is used multiple times to produce multiple counterexamples. Global constraints

are used to direct the search for counterexample paths away from certain parts of the

model.

The methodology used in the incremental approach is slightly more systematic than

9.2. AN EXAMPLE FROM A CASE STUDY 109

the methodology used in the original case study. For each ith counterexample found, the

situation under which the hazard H occurs is characterised by a state formula ci (the

situation corresponds to a class of counterexamples, and the counterexample found is a

representative of the class). Note that in general a class of counterexamples cannot be

characterised using a state formula. Without directed counterexample path generation,

if the LTL specification had to be modified, then the modified LTL formula for the ith

model checking run (where i > 1) can be as follows:

(¬G(¬c1 ∧ ... ∧ ¬ci−1)) ∨ (G¬H). (9.5)

With directed counterexample path generation, ¬c1 ∧ ...∧¬ci−1 becomes the global con-

straint gc, without the LTL specification G(¬H) modified. The steps in the methodology

are as follows:

1. Compute the set of fair states Fϕ where ϕ ≡ F(H).

2. Set i to 1.

3. Use directed counterexample path generation with global constraint ¬c1∧¬c2∧ ...∧
¬ci−1.

4. If a counterexample path is produced, characterise the new situation under which

the hazard H occurs as a state formula ci. Repeat from step 3 after incrementing

i by 1.

Let ctri denote the generation of the ith counterexample path according to the above

steps. For ctr1, directed counterexample path generation produced a counterexample

path that executed BT nodes 9.3 and 9.4 with MetData = Pending just before BT node

9.5 is executed. This corresponds to the second counterexample found by SAL (where

DMP.Type = Scheduled). Since PC7 = 5 at the entrance to BT node 9.4, we set c1 as

follows:

c1 ← (MetData = pending) ∧ (PC7 = 5).

For ctr2, directed counterexample path generation produced a counterexample path that

executed BT nodes 9.17 and 9.18 with MetData = Pending just before BT node 9.5

is executed. This corresponds to the first counterexample found by SAL in which the

operator enters the “execute” command while meteorological data is pending. Since the

event “operator enters the execute command” only occurs in BT node 9.17 and BT node

9.26, PC7 = 13 at the entrance to BT node 9.17 and PC7 = 20 at the entrance to BT

node 9.26, we set c2 as follows:

c2 ← (MetData = pending) ∧ ((PC7 = 13) ∨ (PC7 = 20)).

110 CHAPTER 9. EXPERIMENTS WITH A PROTOTYPE

For ctr3, directed counterexample path generation produced a counterexample path that

executed BT nodes 9.8 and 9.9 with MetData = Pending just before BT node 9.5 is

executed. This corresponds to the third counterexample found by SAL in which the

operator rejects a drop solution while meteorological data is pending. Since PC7 = 10

at the entrance to BT node 9.9, we set c3 as follows:

c3 ← (MetData = pending) ∧ (PC7 = 10).

No counterexample path was found by directed counterexample path generation for ctr4.

A check using the fixpoint approach described in Section 8.4 was performed for ctr4 to

ensure there are no more counterexamples.

Experiments were performed with different reachability strategies. Recall from Section

7.2.2 that there are two basic strategies for general reachability:

1. eager reachability strategy (ERS) whereby the set reachable of reachable states is

computed and reachable is used in subsequent analysis (computing reachable∧Fϕ
instead of Fϕ, for example), and

2. lazy reachability strategy (LRS) whereby reachable is not computed and Fϕ is

directly computed.

There are also two basic strategies for reachability with respect to counterexample gen-

eration:

1. eager counterexample strategy (ECS) whereby the set FCϕ of fair states reachable

from S0 ∧ Sϕ(ϕ) is computed and used as the search space for counterexample

generation, and

2. lazy counterexample strategy (LCS) whereby FCϕ is not computed and Fϕ or

reachable ∧ Fϕ is used as the search space for counterexample generation.

Four different overall reachability strategies were tried for the experiments:

1. ERS-LCS: ERS followed by LCS,

2. ERS-ECS: ERS followed by ECS,

3. LRS-LCS: LRS followed by LCS, and

4. LRS-ECS: LRS followed by ECS.

Table 9.2 shows the timing results for the four reachability strategies above. The

column labelled “reach” is for computing reachable. The column labelled “check” is for

9.2. AN EXAMPLE FROM A CASE STUDY 111

Table 9.2: Timing Results for the Incremental Approach

strategy reach Fϕ FCϕ ctr1 ctr2 ctr3 ctr4 check

ERS-LCS 9.72s 1.15s N/A 3.62s 2.82s 2.11s 1.81s 0.56s

ERS-ECS 9.73s 1.15s 7.07s 1.43s 1.05s 0.62s 0.41s 0.70s

LRS-LCS N/A 275s N/A 18.9s 20.5s 24.9s 14.4s 219s

LRS-ECS N/A 275s 9.2s 1.6s 1.1s 0.6s 0.4s 220s

checking that there are no more counterexamples, using the fixpoint approach described

in Section 8.4. For i from 1 to 4, the column ctri is for directed counterexample generation

with global constraint ¬c1 ∧ ¬c2 ∧ ... ∧ ¬ci−1. Note that for an overall strategy that uses

ERS, the column Fϕ is for computing reachable ∧ Fϕ. Regardless of the strategy, the

same set of counterexamples was found. The paths ctr1 and ctr2 each has a prefix length

of 24 and a cycle length of 7, and ctr3 has a prefix length of 29 and cycle length of 7.

However, in each case, the counterexample path could have been shortened by rolling

part of the prefix into the cycle.

The following are some observations from Table 9.2.

• For the example, ERS is a better general reachability strategy than LRS.

• For the example, ECS improves (lowers) the running times of directed counterex-

ample generation compared to LCS, but incurs a one-time overhead of computing

FCϕ.

• For the example, a good reachability strategy with respect to counterexample gen-

eration (ECS) can salvage a bad basic reachability strategy (LRS).

• In each case, the run time for directed counterexample generation is lower than the

run time for the fixpoint computations (reachable plus Fϕ plus FCϕ).

To demonstrate the advantages of an incremental approach, experiments were also

performed with the traditional approach whereby the model checker is rerun with each

modified LTL specification, allowing comparisons between the approaches. The modifi-

cations to the LTL specification (9.1) were in accordance with (9.5). The counterexample

paths produced using the traditional approach are the same as the corresponding coun-

terexample paths produced using the incremental approach.

Table 9.3 shows the timing results for individual stages as well as the total for model

checking and counterexample generation. The following are some observations from table

9.3.

112 CHAPTER 9. EXPERIMENTS WITH A PROTOTYPE

Table 9.3: Timing Results for the Traditional Approach

strategy ctr1 ctr2 ctr3 ctr4

ERS-LCS reachable 9.78s 7.72s 6.79s 6.82s

ERS-LCS reachable ∧ Fϕ 1.14s 2.16s 3.77s 1.38s

ERS-LCS ctr 3.61s 3.31s 4.4s 0s

ERS-LCS total 14.53s 13.19s 14.96s 8.2s

ERS-ECS reachable 9.75s 7.64s 6.81s 6.79s

ERS-ECS reachable ∧ Fϕ 1.14s 2.14s 3.77s 1.38s

ERS-ECS FCϕ 7.07s 6.23s 5.63s 0s

ERS-ECS ctr 1.42s 1.62s 1.11s 0s

ERS-ECS total 19.38s 17.63s 17.32s 8.17s

LRS-LCS Fϕ 275s 416s 1037s 1127s

LRS-LCS ctr 19s 23s 122s 0s

LRS-LCS total 294s 439s 1159s 1127s

LRS-ECS Fϕ 275s 348s 1035s 1126s

LRS-ECS FCϕ 9.3s 7.6s 7.4s 0s

LRS-ECS ctr 1.6s 1.3s 1.4s 0s

LRS-ECS total 285.9s 356.9s 1043.8s 1126s

9.2. AN EXAMPLE FROM A CASE STUDY 113

Table 9.4: Incremental Approach vs Traditional Approach

approach strategy ovhd ctr1 ctr2 ctr3 ctr4 total

incremental ERS-LCS 10.87s 3.62s 2.82s 2.11s 12.37s 31.79s

traditional ERS-LCS N/A 14.53s 13.19s 14.96s 8.2s 50.88s

incremental ERS-ECS 17.95s 1.43s 1.05s 0.62s 1.11s 22.16s

traditional ERS-ECS N/A 19.38s 17.63s 17.32s 8.17s 62.5s

incremental LRS-LCS 275s 18.9s 20.5s 24.9s 234s 573.3s

traditional LRS-LCS N/A 294s 439s 1159s 1127s 3019s

incremental LRS-ECS 284.2s 1.6s 1.1s 0.6s 220.4s 507.9s

traditional LRS-ECS N/A 285.9s 356.9s 1043.8 1126s 2812.6s

• The worst reachability strategy (LRS-LCS) applies equally bad to the original LTL

formula and all modified LTL formulas.

• For the example, a good reachability strategy with respect to counterexample gen-

eration (ECS) can salvage a bad basic reachability strategy (LRS).

• The effect of a bad reachability strategy is magnified as the problem gets bigger

(comparing LRS-LCS versus ERS-LCS).

A side-by-side comparison of the incremental approach versus the traditional approach

is shown in Table 9.4. The column labelled “ovhd” is for the initial overhead for fixpoint

computations in the incremental approach. Irrespective of the reachability strategy, the

total time for the incremental approach is less than the total time for the traditional

approach.

The following conclusions are reached based on the results of the experiments:

• The results of the experiments are consistent with the hypothesis that directed coun-

terexample path generation scales up as well as model checking using the fixpoint

approach. For all of the examples, the inital overhead of computing reachability and

Fϕ is greater than the computation time for an individual directed counterexample

path generation.

• The results in Table 9.4 are consistent with the hypothesis that the incremental

approach using directed counterexample path generation is more efficient than the

traditional approach whereby the LTL specification is modified.

• For the example, it is better to use ERS as the strategy for general reachability

rather than LRS. If LRS is used, ECS can be used to salvage the situation.

114 CHAPTER 9. EXPERIMENTS WITH A PROTOTYPE

Table 9.5: Timing Results for Non-prioritised Model

strategy reach Fϕ FCϕ ctr1 ctr2 ctr3 ctr4

ERS-ECS 756s 1999s 1282s 149s 161s 151s 152s

LRS-LCS N/A 21.2s N/A 3.2s 3.9s 4.4s 4.1s

Table 9.6: Results for SAL on Non-prioritised Model

run1 run2 run3 run4

time 8.2s 124.8s 107.9s 200.3s

prefix length 17 17 17 17

cycle length N/A 4 4 4

9.3 Example Without Prioritisation

In the example here, we modify the model from Section 9.2 by not prioritising system

transitions. The directed counterexample path generation produced paths with prefix

length of 21 and cycle length of 5 for ctr1, ctr2 and ctr3, and produced a path with prefix

length 23 and cycle length 5 for ctr4. As with the experiments with the prioritised model,

each counterexample path could have been shortened by rolling part of the prefix into

the cycle.

Two reachability strategies were tried for the example: ERS-ECS and LRS-LCS. In

contrast to the prioritised model, here LRS-LCS is a much better strategy than ERS-

ECS. The timing results are shown in Table 9.5. An implementation of Algorithm 5.1

was used for computing reachable and FCϕ. When an implementation of a naive fixpoint

computation algorithm was used instead, the computation of reachable took 1806s (versus

756s) and the computation of FCϕ took 2902s (versus 1282s).

Results for SAL are included in Table 9.6 for comparison. Side by side comparison

of the incremental approach using directed counterexample path generation versus the

traditional approach of model checking modified LTL specifications as per (9.5) appears

in Table 9.7, with the LRS-LCS reachability strategy. The traditional approach with

the modified LTL specifications produced the same set of counterexample paths as the

incremental approach using directed counterexample path generation.

Table 9.7: Incremental Approach vs Traditional Approach for Non-prioritised Model

approach strategy Fϕ ctr1 ctr2 ctr3 ctr4 total

incremental LRS-LCS 21.2s 3.2s 3.9s 4.4s 4.1s 36.8s

traditional LRS-LCS N/A 24.2s 19.8s 126.1s 243.2s 413.3s

9.4. COMBINATION WITH ON-THE-FLY APPROACH 115

Table 9.8: Results for Symbolic On-the-fly LTL Model Checking

ctr1 ctr2 ctr3 ctr4

time 0.200s 0.223s 0.109s ∞
prefix 144 144 144 N/A

cycle 14 14 14 N/A

Based on the results of the experiments, the following conclusions are reached:

• The results in Table 9.5 are consistent with the hypothesis that directed coun-

terexample path generation scales up as well as model checking using the fixpoint

approach. In each case, the time required for directed counterexample path gener-

ation is much less than the time required to compute Fϕ.

• The side by side comparison in Table 9.7 supports the hypothesis that the incre-

mental approach using directed counterexample path generation is more efficient

than the approach where the LTL specification is modified.

• In contrast to the prioritised model, ERS is a bad strategy for the non-prioritised

model.

• Algorithm 5.1 scales up better than a naive fixpoint computation algorithm.

9.4 Combination with On-the-fly Approach

Experiments were conducted using the model from Section 9.2 to assess the viability

of using directed counterexample path generation as a post-processor to improve coun-

terexample paths found by symbolic on-the-fly LTL model checking described in Section

7.2.3.

First, an experiment was performed using symbolic on-the-fly LTL model checking

with global constraints to find multiple counterexamples, emulating the methodology in

Section 9.2. The purpose of the experiment is to assess symbolic on-the-fly LTL model

checking in terms of computation time and quality of counterexample paths found.

The second experiment was to use directed counterexample path generation as a

post processor for improving a counterexample path found by the symbolic on-the-fly

LTL model checker. For each counterexample path found by the on-the-fly LTL model

checker, the starting symbolic state for the cycle part of the counterexample path is used

as SB0 in directed counterexample path generation (see Section 8.2).

Table 9.8 shows the results from symbolic on-the-fly LTL model checking with global

constraints. The timing results show that symbolic on-the-fly LTL model checking can

116 CHAPTER 9. EXPERIMENTS WITH A PROTOTYPE

Table 9.9: Combined On-the-fly and Directed Counterexample Generation

reach ctr1 ctr2 ctr3 ctr4

time 11.43s 2.48s 2.14s 1.56s 0.72s

prefix N/A 33 33 38 N/A

cycle N/A 7 7 7 N/A

find a counterexample path quickly if there is one. However, the quality of the coun-

terexample paths are not very good as both the prefixes and the cycles are too long.

This is caused by the depth-first nature of the search plus the imprecise tracking of fair-

ness constraints. The on-the-fly LTL checker also had trouble with ctr4, which has no

counterexample. The checking was aborted after 24 hours. Perhaps a technique such as

partial order reduction [PWW96] can help, but it would need to be adjusted to handle

the X operator. Partial order reduction would also help for a non-prioritised model.

Table 9.9 shows the result of experiments with using directed counterexample path

generation as a post-processor to symbolic on-the-fly LTL model checking (the ctr4 timing

is for verifying that there are no more counterexamples). The counterexample paths

were improved by the post-processing (the cycle lengths were reduced to 7 from 14, and

the prefix lengths were reduced to 33 and 38 from 144). However, the quality of the

counterexample paths are not as good as using directed counterexample path generation

directly using Fϕ as the search space. Perhaps the SB0 determined using on-the-fly LTL

checking is less than optimal.

9.5 Automated Multiple Counterexample Generation

To demonstrate the possibility of automating the generation of multiple counterexamples

for specific problem domains, experiments were performed based on a case study in

generating minimal cut sets in safety analysis [LWY10,LYW12]. The case study involves

the hydraulic system in an Airbus A320. There are three redundant hydraulic subsystems

involving eleven components that can fail (and assumed to fail independently of each

other). The three hydraulic subsystems are called yellow, green and blue. The eleven

components are:

1. the yellow distribution line (disty),

2. the green distribution line (distg),

3. the blue distribution line (distb),

4. engine 1 (E1),

9.5. AUTOMATED MULTIPLE COUNTEREXAMPLE GENERATION 117

5. engine 2 (E2),

6. power transfer unit (PTU)

7. engine-driven pump for the yellow subsystem (EDPy),

8. engine-driven pump for the green subsystem (EDPg),

9. electric motor pump for the blue subsystem (EMPb),

10. electric motor pump for the yellow subsystem (EMPy), and

11. a ram air turbine pump (RAT).

For a complete description of the model, see [LWY10] or [LYW12].

The model for the hydraulic system includes some behaviour so that, for example,

RAT does not become active unless both engines are off and the aircraft is flying at a speed

of greater then 100 knots. The failure status of a component is effectively represented by a

Boolean state variable, for example the Boolean state variable distyFailed represents the

failure status of disty. (Technically, distyFailed is of an enumerated type (true, false),

and the possible values of the failure status are represented by the equalities distyFailed =

true and distyFailed = false.)

For our purposes, a minimal cut set is a subset of

{distyFailed, distgFailed, distbFailed, E1Failed, E2Failed, PTUFailed,

EDPyFailed, EDPgFailed, EMPbFailed, EMPyFailed, RATFailed}

which “violates” some specification and a removal of any element from the subset will

result in a non-violation. For example, {distyFailed, distgFailed} would be a minimal

cut set if

• there is a behaviour involving a state in which disty failed and distg failed that is

a counterexample to the specification, and

• there is no counterexample where all the other components do not fail and at least

one of disty or distg does not fail.

The experiments used the following specification:

G((initialised and all three active)⇒ G(at least two active)) (9.6)

where “at least two active” is equivalent to

• yellow subsystem is active and green subsystem is active, or

118 CHAPTER 9. EXPERIMENTS WITH A PROTOTYPE

• yellow subsystem is active and blue subsystem is active, or

• green subsystem is active and blue subsystem is active.

In the model, once a components fails, it remains in a failed state.

To arrive at cut sets (which are potential minimal cut sets), each symbolic counterex-

ample path produced for (9.6) is examined. Specifically, we can zoom into the symbolic

state that starts the cycle part of the counterexample path and normalise the symbolic

state into conjunctive normal form (irredundant product of sums). As an example, the

symbolic state that starts the cycle part of the first counterexample path found by the

prototype for (9.6), in conjunctive normal form, is

(PC1 = 3) ∧ (PC2 = 3) ∧ (PC3 = 2) ∧ (PC4 = 1) ∧ (PC5 = 1) ∧ (PC6 = 2)

∧ (PC16 = 0) ∧ (PC17 = 2) ∧ (PC7 = 4) ∧ (PC8 = 2) ∧ (PC18 = 4) ∧ (PC19 = 1)

∧ (PC9 = 2) ∧ (PC20 = 2) ∧ (PC21 = 1) ∧ (PC10 = 2) ∧ (PC22 = 2) ∧ (PC23 = 1)

∧ (PC11 = 1) ∧ (PC12 = 2) ∧ (PC24 = 3) ∧ (PC25 = 1) ∧ (PC13 = 2) ∧ (PC26 = 1)

∧ (PC27 = 1) ∧ (PC14 = 2) ∧ (PC28 = 0) ∧ (PC30 = 0) ∧ (PC31 = 0) ∧ (PC29 = 2)

∧ (PC15 = 2) ∧ (PC32 = 3) ∧ (PC33 = 1) ∧ (Pilot = ready) ∧ (Engine1 = active)

∧ (Engine2 = active) ∧ (yellow = off) ∧ (PTUy = active) ∧ (PTU = active)

∧ (EDPy = active) ∧ (EDPg = active) ∧ (EMPy = active) ∧ (EMPb = active)

∧ (RAT = off) ∧ distyFailed ∧ ¬distgFailed ∧ distbFailed ∧ ¬E1Failed

∧ ¬E2Failed ∧ ¬PTUFailed ∧ ¬EDPyFailed ∧ ¬EDPgFailed ∧ ¬EMPbFailed

∧ ¬EMPyFailed ∧ ¬RATFailed ∧ (green = active) ∧ (blue = off)

∧ (Aircraft = flyingSlow) ∧ (System = operating).

(In the prototype, the symbolic state is represented by a Lisp s-expression which may be

viewed as an abstract syntax representation.)

We can collect conjuncts that represent failed components from the conjunctive normal

form. In the above example, we get {distyFailed, distbFailed}, and this becomes a cut

set and therefore a potential minimal cut set. To verify that {distyFailed, distbFailed}
is in fact a minimal cut set, we must show that there is no counterexample for (9.6) in

which all the other components do not fail and at least one of disty or distb does not fail.

This can be performed by model checking (9.6) with the global constraint

¬distgFailed ∧ ¬E1Failed ∧ ¬E2Failed ∧ ¬PTUFailed ∧ ¬EDPyFailed
∧ ¬EDPgFailed ∧ ¬EMPbFailed ∧ ¬EMPyFailed ∧ ¬RATFailed

∧ (¬distyFailed ∨ ¬distbFailed).

(9.7)

The prototype was able to verify that (9.6) with global constraint (9.7) has no coun-

terexample. Had (9.6) with global constraint (9.7) produce a counterexample, then the

9.5. AUTOMATED MULTIPLE COUNTEREXAMPLE GENERATION 119

counterexample would have at least one less failing component (because of the global

constraint) and we get a smaller cut set. The process can be repeated until a minimal

cut set is found.

Once a minimal cut set is found, it can be eliminated from further consideration using

the technique in Section 9.2.2. This can be repeated until we can verify that there are no

more cut sets. The entire process has been automated in a script written in Lisp. Using

the script, there were five 2-element minimal cut sets found:

{distyFailed, distbFailed}, {distyFailed, distgFailed}, {distgFailed, distbFailed},
{distyFailed, EMPbFailed}, {distgFailed, EMPbFailed}.

There were ten 3-element minimal cut sets found:

{distyFailed, PTUFailed, EDPgFailed}, {distbFailed, PTUFailed, EDPgFailed},
{distyFailed, E1Failed, PTUFailed}, {distbFailed, E1Failed, PTUFailed},
{PTUFailed, EDPgFailed, EMPbFailed}, {E1Failed, PTUFailed, EMPbFailed},
{EDPyFailed, EDPgFailed, EMPyFailed}, {E1Failed, EDPyFailed, EMPyFailed},
{E2Failed, EDPgFailed, EMPyFailed}, {E1Failed, E2Failed, EMPyFailed}.

There were six 4-element minimal cut sets found:

{distbFailed, PTUFailed, EDPyFailed, EMPyFailed},
{distgFailed, PTUFailed, EDPyFailed, EMPyFailed},
{distbFailed, E2Failed, PTUFailed, EMPyFailed},
{distgFailed, E2Failed, PTUFailed, EMPyFailed},
{PTUFailed, EDPyFailed, EMPbFailed, EMPyFailed},
{E2Failed, PTUFailed, EMPbFailed, EMPyFailed}.

The script was able to verify that there are no more cut sets. During the run, it produced

3 cut sets that are non-minimal before all the minimal cut sets were found. The running

time for the script was around 65 minutes.

When the script was modified to use the combination approach of Section 9.4 instead

of directed counterexample path generation, it performed worse with a running time of

almost 4 hours. Although counterexamples were found faster, many were of poor quality

in that they were unnecessarily long involving too many component failures (caused by

the depth-first nature of the on-the-fly LTL model checking). This resulted in the script

producing 58 cut sets that were non-minimal before all minimal cut sets were found. Thus,

although the individual cut set generation was faster, the total run time was longer.

120 CHAPTER 9. EXPERIMENTS WITH A PROTOTYPE

9.6 Summary and Discussion

Experiments have been performed with a prototype to demonstrate the utility of the

directed counterexample path generation. Results from the experiments support the

hypothesis that directed counterexample path generation scales up as well as the fixpoint

approach of model checking, i.e., if the computation of Fϕ is feasible, then directed

counterexample path generation is feasible.

Results from the experiments also support the hypothesis that the incremental ap-

proach of multiple counterexample generation using the directed search is more efficient

than the traditional approach of modifying the LTL specification and rerunning the model

checker.

Various reachability strategies were tried in the experiments. The experiments showed

that the choice of strategy for reachability can have a dramatic effect on the model

checking and counterexample path generation times. In general, if the BT model uses

prioritisation, it is better to use an eager reachability strategy (ERS), and if the BT

model does not use prioritisation, it is better to use a lazy reachability strategy (LRS).

With respect to OBDD ordering, the prototype simply uses the dynamic weight as-

signment method of Minato et al [MIY90] with guards and post conditions viewed as

forming a circuit. Although OBDD ordering is important and can have a dramatic effect

on model checking time, it is beyond the scope of this thesis.

The OBDD package is not a state-of-the-art OBDD package (it only has about half

the features of a state-of-the-art OBDD package). The OBDD package is used because of

its ease of integration into the prototype. The purpose of the prototype is not to build a

faster model checker but to demonstrate potential advantages of directed counterexample

path generation.

Experiments on combining symbolic on-the-fly LTL model checking with directed

counterexample path generation produced some mixed results. Although the simple

combination improved the quality of counterexample paths from those produced by the

on-the-fly checking, the counterexample paths produced are not as good as those produced

with directed counterexample path generation directly using Fϕ as the search space. Much

work is required to produce an effective combination of on-the-fly checking and directed

counterexample path generation.

Experiments with a case study in cut set analysis demonstrated that the techniques

developed in this thesis can be used to automatically and efficiently generate “meaningful”

multiple counterexamples in a specific domain. The experiments also demonstrated the

poor quality of counterexamples found using a depth-first search.

Chapter 10

Conclusion

10.1 Answers to Research Questions

This thesis has answered the research questions posed in Section 1.2 as follows.

• Research Question 1.

– Question: Can the search for an LTL counterexample path be directed away

from certain parts of a model or towards certain parts of a model?

– Answer: Affirmative. Global constraints can be used to direct the search away

from certain parts of the model, while cycle constraints can be used to direct

the search towards certain parts of the model.

• Research Question 2.

– Question: Can a method for such a directed counterexample path generation

be made independent of the modelling notation?

– Answer: Affirmative. This is accomplished by having the directed counterex-

ample path generation operate in a general framework that is independent of

the modelling notation.

• Research Question 3.

– Question: Can a method for directed counterexample path generation be in-

corporated into a symbolic framework?

– Answer: Affirmative. The general framework in which the directed counterex-

ample path generation operates is a symbolic framework.

• Research Question 4.

121

122 CHAPTER 10. CONCLUSION

– Question: How do model checking strategies, such as when reachability is

determined, affect directed counterexample path generation?

– Answer: For reachability strategies, a model with a “sparse” transition relation

(where the ratio between the number of transitions and the number of states

is relatively small) seems to be better handled using an eager strategy such

as ERS, while a model with a “dense” transition relation (where the ratio

between the number of transitions and the number of states is relatively large)

seems to be better handled using a lazy strategy such as LRS.

• Research Question 5.

– Question: Can directed counterexample path generation be mixed and matched

with existing techniques?

– Answer: Affirmative. This was demonstrated by combining symbolic on-the-

fly LTL model checking with directed counterexample path generation.

10.2 Contribution

The main contribution of this thesis is a technique for directed counterexample path

generation in a symbolic framework for LTL model checking. Directed counterexample

path generation can be used to control the generation of multiple counterexample paths,

which is important in many applications of model checking, including safety analysis

and test-case generation. It provides an alternative to a blind search for multiple coun-

terexamples and to an approach in which either the LTL specification or the model is

modified to rule out certain classes of counterexamples. With directed counterexample

path generation, cycle and global constraints are used to rule in or rule out certain classes

of counterexamples.

Directed counterexample path generation provides a mechanism to explore the coun-

terexample space. Symbolic model checking using the fixpoint approach need only be

performed once. Thereafter, either the set of counterexample states (states that can oc-

cur in counterexamples) or the set of fair states can be used as a counterexample space

which can be explored using directed counterexample path generation. Multiple coun-

terexamples can be generated without the need to perform a fixpoint computation each

time a counterexample path is to be generated. Results of experiments with a prototype

show that this incremental approach to generating multiple counterexamples can be more

efficient than modifying the LTL specification and rerunning the model checker for each

subsequent counterexample after the first counterexample.

10.2. CONTRIBUTION 123

Another contribution of this thesis is the symbolic framework for LTL model checking,

consisting of a state-machine level and an LTL-encoding level. The choice of a symbolic

setting reflects the author’s view that symbolic techniques scale up better than techniques

that operate on individual states and transitions. Also, transformations on symbolic

expressions are easier to perform (e.g., using ordered binary decision diagrams) and prove

correct than transformations on graph structures.

The state-machine level of the framework is essentially a Kripke structure with addi-

tional structures representing objects in the modelling notation in the form of elementary

blocks. Elementary blocks allow analysis to take advantage of structural information

from the modelling notation and simplifies the mapping of the result of analysis back to

the modelling notation. The use of guarded updates in describing an elementary block

lends to simple implementations of image and pre-image functions — under the transition

relation for the block — without the need for relational products.

Essential concepts in LTL model checking are incorporated in the LTL-encoding level

of the framework. Using the concepts of path commitments and transition constraints,

the LTL-encoding level of the framework accommodates various LTL encoding schemes

including the classic LTL encoding scheme and the Transition-based Generalised Büchi

Automaton (TGBA) encoding scheme. Proof plans for showing the soundness of an

encoding scheme within the framework are included. The use of the proof plans were

demonstrated on the classic LTL encoding scheme and the TGBA encoding scheme.

As well as accommodating various LTL encoding schemes, the symbolic framework

is neutral with respect to the model checking approach and strategy. In addition to

the traditional fixpoint approach to symbolic model checking, an on-the-fly approach

to LTL model checking, usually associated with an explicit automata-based approach,

can be used within the symbolic framework, as evidenced by the symbolic on-the-fly LTL

model checking algorithm proposed in the thesis. By accommodating different approaches

and strategies within a single framework, the approaches and strategies can be mixed and

matched. An example of mixing and matching was the experiment on combining symbolic

on-the-fly model checking with directed counterexample path generation.

Being able to use different LTL encoding schemes, different model checking approaches

and different model checking strategies within a single framework is important. This is

because a good choice of LTL encoding scheme, model checking approach or model check-

ing strategy for one problem can be a bad choice for a different problem. Experiments

with the prototype demonstrated this with respect to the strategy on reachability.

124 CHAPTER 10. CONCLUSION

10.3 Possible Future Work

Although the utility of directed counterexample path generation has been demonstrated,

much work remains to make it even more effective. In particular, we have not investigated

the effect of OBDD ordering on directed counterexample path generation. Perhaps using

some ordering criteria can improve the performance of directed counterexample path

generation.

So far, directed counterexample path generation has been used with symbolic model

checking using the fixpoint approach. However, the algorithm does not assume that the

search space is a subset of the set of fair states. More investigation is needed to determine

whether directed counterexample path generation can be effective without restricting the

search space to be a subset of the set of fair states.

Another possibility is to combine directed counterexample path generation with the

counterexample generation technique of Clarke et al [CGMZ95]. In principle, global

constraints can be used with the technique of Clarke et al. It remains to be seen whether

the cycle constraint aspect of directed counterexample generation can be combined with

the search strategy used in the technique of Clarke et al to produce a more efficient

directed search.

The on-the-fly symbolic LTL model checking algorithm proposed in the thesis is a

naive algorithm that does not perform well if there is no counterexample path. Incorpo-

rating a technique such as partial order reduction [PWW96] into the algorithm to improve

its performance is a possibility. To make partial order reduction have wider applicability,

it may need to be adjusted to be able to handle the X operator.

Finally, an approach similar to bounded model checking [BCCZ99] is a possibility

with on-the-fly symbolic LTL model checking by placing a depth limit on the depth-first

search. A variation on this would be to iteratively increase the depth limit (sometimes

called iterative deepening).

Appendix A

Soundness Proofs

A.1 Soundness of the Classic Encoding Scheme

We now apply the proof plans from Section 6.3 to the classic LTL encoding scheme.

A.1.1 Proof of Theorem 6.2

To complete the proof of Theorem 6.2, we must prove Lemma 6.1:

M,π |= ϕ

⇒ ∃π′ : proj(π′) = π ∧ ∀i ≥ 0, p ∈ cl(ϕ) : (M,πi |= p)⇔ (M ′, π′i |= Sϕ(p)).

Proof. The first step according to the plan from Section 6.3.1 is to show that π′ as a

sequence of states constructed according to (6.20) satisfies (6.23):

∀i ≥ 0, p ∈ cl(ϕ) : (M,πi |= p)⇔ (M ′, π′i |= Sϕ(p)).

This corresponds to proving (A.1).

(M,π |= ϕ) ∧ proj(π′) = π

∧ ∀i ≥ 0, p ∈ el(ϕ) : (M,πi |= p)⇔ (M ′, π′i |= Vp)

⇒ ∀i ≥ 0, p ∈ cl(ϕ) : (M,πi |= p)⇔ (M ′, π′i |= Sϕ(p)).

(A.1)

Note that at this point, π′ is not necessarily a path in M ′. The proof is by induction on

the structure of p ∈ cl(ϕ). The cases are as follows:

• Case p ∈ AP (ϕ):

(M,πi |= p)⇔ (M,πi |= p)⇔ (M ′, π′i |= p)⇔ (M ′, π′i |= Sϕ(p)).

• Case p ≡ ¬q, using the induction hypothesis, we have

(M,πi |= ¬q)⇔ (M,πi 6|= q)⇔ (M ′, π′i 6|= Sϕ(q))⇔ (M ′, π′i |= Sϕ(¬q)).

125

126 APPENDIX A. SOUNDNESS PROOFS

• Case p ≡ q ∧ r, using the induction hypothesis, we have

(M,πi |= q ∧ r)
⇔ (M,πi |= q) ∧ (M,πi |= r)

⇔ (M ′, π′i |= Sϕ(q)) ∧ (M ′, π′i |= Sϕ(r))

⇔ (M ′, π′i |= Sϕ(q ∧ r)).

• Case p ≡ q ∨ r, using the induction hypothesis, we have

(M,πi |= q ∨ r)
⇔ (M,πi |= q) ∨ (M,πi |= r)

⇔ (M ′, π′i |= Sϕ(q)) ∨ (M ′, π′i |= Sϕ(r))

⇔ (M ′, π′i |= Sϕ(q ∨ r)).

• Case p ≡ Xq (p ∈ el(ϕ)):

(M,πi |= p)⇔ (M ′, π′i |= Vp)⇔ (M,π′i |= Sϕ(p)).

• Case p ≡ qU r, using the induction hypothesis (note that X(qU r) ∈ el(ϕ)):

(M,πi |= qU r)

⇔ (M,πi |= r) ∨ (M,πi |= q) ∧ (M,πi |= X(qU r))

⇔ (M ′, π′i |= Sϕ(r)) ∨ (M ′, π′i |= Sϕ(q)) ∧ (M ′, π′i |= Sϕ(X(qU r)))

⇔ (M ′, π′i |= Sϕ(qU r)).

The second step in the proof plan is, given that π′ satisfies (6.23), show that π′ satisfies

(6.22). This corresponds to proving (A.2).

(M,π |= ϕ) ∧ proj(π′) = π

∧ ∀i ≥ 0, p ∈ el(ϕ) : (M,πi |= p)⇔ (M ′, π′i |= Vp)

⇒ ∀i ≥ 0 : (π′i, π
′
i+1) ∈ R′.

(A.2)

The mapping from π to π′ where each π′i satisfies (6.20) is a “strict mapping”. As a result,

the transitions in π′ ought to satisfy R′ as defined by (6.9) (which corresponds to a strict

encoding), regardless of whether R′ is defined by (6.9) or (6.10). Thus it is sufficient to

prove that the transitions satisfy R′ as defined by (6.9), even if R′ is defined by (6.10).

Because π is a path in M , we have ∀i ≥ 0 : (proj(π′i), proj(π
′
i+1)) ∈ R. Since (A.1)

has been proved, what remains is to prove

(M,π |= ϕ) ∧ proj(π′) = π

∧ ∀i ≥ 0, p ∈ el(ϕ) : (M,πi |= p)⇔ (M ′, π′i |= Vp)

∧ ∀i ≥ 0, p ∈ cl(ϕ) : (M,πi |= p)⇔ (M ′, π′i |= Sϕ(p))

⇒ ∀i ≥ 0, p ∈ el(ϕ) : (M ′, π′i |= Sϕ(p))⇔ ((π′i, π
′
i+1) |= Tϕ(p)).

(A.3)

A.1. SOUNDNESS OF THE CLASSIC ENCODING SCHEME 127

For the classic LTL encoding scheme, an elementary formula p is of the form Xq for some

q, and we have

(M ′, π′i |= Sϕ(Xq))

⇔ (M,πi |= Xq)

⇔ (M,πi+1 |= q)

⇔ (M ′, π′i+1 |= Sϕ(q))

⇔ ((π′i, π
′
i+1) |= next(Sϕ(q)))

⇔ ((π′i, π
′
i+1) |= Tϕ(Xq)),

thus (M ′, π′i |= Sϕ(p)) ⇔ ((π′i, π
′
i+1) |= Tϕ(p)), which proves (A.3), and thus (A.2) irre-

spective of whether (6.9) or (6.10) is used for the definition of R′. Combining (A.1) and

(A.2) gives us a proof of Lemma 6.1.

The proof of Lemma 6.1 completes the proof of Theorem 6.2 (see Section 6.3.1).

A.1.2 Proof of Theorem 6.3

To complete the proof of Theorem 6.3, we need to prove Lemmas 6.3 and 6.5. Let us

first prove Lemma 6.3:

(M,π |= ϕ) ∧ proj(π′) = π

∧ ∀i ≥ 0, p ∈ cl(ϕ) : (M,πi |= p)⇔ (M ′, π′i |= Sϕ(p))

⇒ ∀c ∈ Cϕ, i ≥ 0 : ∃j ≥ i : M ′, π′j |= c.

Proof. The first two steps in the proof plan for Lemma 6.3 from Section 6.3.2 is to expand

Cϕ in ∀c ∈ Cϕ, i ≥ 0 : ∃j ≥ i : M ′, π′j |= c, and transform the quantification:

∀c ∈ Cϕ, i ≥ 0 : ∃j ≥ i : M ′, π′j |= c

⇔ ∀c ∈ {¬Sϕ(p) ∨ Sϕ(ec(p)) | p ∈ cl(ϕ) ∧ (ec(p) 6≡ true)}, i ≥ 0 : ∃j ≥ i : M ′, π′j |= c

⇔ ∀p ∈ cl(ϕ), i ≥ 0 : (ec(p) 6≡ true)⇒ ∃j ≥ i : M ′, π′j |= ¬Sϕ(p) ∨ Sϕ(ec(p)).

Since only p of the form qU r has ec(p) 6≡ true, all we need to prove is

(M,π |= ϕ) ∧ proj(π′) = π

∧ ∀i ≥ 0, p ∈ cl(ϕ) : (M,πi |= p)⇔ (M ′, π′i |= Sϕ(p))

⇒ ∀i ≥ 0 : ∃j ≥ i : M ′, π′j |= ¬Sϕ(qU r) ∨ Sϕ(r).

(A.4)

Zooming in on ∀i ≥ 0 : ∃j ≥ i : M ′, π′j |= ¬Sϕ(qU r) ∨ Sϕ(r), suppose (A.4) does not

hold, i.e., there exists i0 ≥ 0 such that ∀j ≥ i0 : M ′, π′j 6|= ¬Sϕ(qU r) ∨ Sϕ(r), thus we

have ∀j ≥ i0 : M ′, π′j |= Sϕ(qU r) ∧ ¬Sϕ(r). But from the last antecedent in (A.4) we

have (M ′, π′j |= Sϕ(qU r)) ⇔ (M,πj |= qU r) and (M ′, π′j |= Sϕ(r)) ⇔ (M,πj |= r) for

all j ≥ i0. Thus we have M,πi0 |= qU r and ∀j ≥ i0 : M,πj 6|= r, which is a contradiction,

therefore (A.4) holds. The proof of Lemma 6.3 is complete.

128 APPENDIX A. SOUNDNESS PROOFS

Next, we prove Lemma 6.5:

∀c ∈ Cϕ, i ≥ 0 : ∃j ≥ i : M ′, π′j |= c

⇒ ∀i ≥ 0, p ∈ cl(ϕ) : (M ′, π′i |= Sϕ(p))⇒ (M ′, π′i |= p).

Proof. Following the proof plan in Section 6.3.2, after expanding the definition of Cϕ and

transforming the quantification, we get

∀p ∈ cl(ϕ) : (ec(p) 6≡ true)⇒ ∀i ≥ 0 : ∃j ≥ i : M ′, π′j |= ¬Sϕ(p) ∨ Sϕ(ec(p))

⇒ ∀p ∈ cl(ϕ), i ≥ 0 : (M ′, π′i |= Sϕ(p))⇒ (M ′, π′i |= p).

The final step according to the proof plan is the induction on the structure of p. For

the classic LTL encoding scheme, either a strict encoding is used (R′ defined by (6.9)) or

ϕ is in NNF and a loose encoding may be used (R′ defined by (6.10)). Zooming in on

(M ′, π′i |= Sϕ(p))⇒ (M ′, π′i |= p), the cases are as follows:

• Case p ∈ AP (ϕ): (M ′, π′i |= Sϕ(p))⇔ (M ′, π′i |= p)⇔ (M ′, π′i |= p).

• Case p ≡ ¬q, for a strict encoding, using the induction hypothesis, we have:

(M ′, π′i |= Sϕ(¬q))⇔ (M ′, π′i 6|= Sϕ(q))⇒ (M ′, π′i 6|= q)⇔ (M ′, π′i |= ¬q),

and for a loose encoding (where q ∈ AP (ϕ)), we have:

(M ′, π′i |= Sϕ(¬q))⇔ (M ′, π′i 6|= Sϕ(q))⇔ (M ′, π′i 6|= q)⇔ (M ′, π′i |= ¬q).

• Case p ≡ q ∧ r, using the induction hypothesis:

(M ′, π′i |= Sϕ(q ∧ r))
⇔ (M ′, π′i |= Sϕ(q)) ∧ (M ′, π′i |= Sϕ(r))

⇒ (M ′, π′i |= q) ∧ (M ′, π′i |= r)

⇔ (M ′, π′i |= q ∧ r).

• Case p ≡ q ∨ r, using the induction hypothesis:

(M ′, π′i |= Sϕ(q ∨ r))
⇔ (M ′, π′i |= Sϕ(q)) ∨ (M ′, π′i |= Sϕ(r))

⇒ (M ′, π′i |= q) ∨ (M ′, π′i |= r)

⇔ (M ′, π′i |= q ∨ r).

• Case p ≡ Xq, using the induction hypothesis and R′, for a strict encoding we have:

(M ′, π′i |= Sϕ(Xq))⇔ (M ′, π′i+1 |= Sϕ(q))⇒ (M ′, π′i+1 |= q)⇔ (M ′, π′i |= Xq),

and for a loose encoding we have:

(M ′, π′i |= Sϕ(Xq))⇒ (M ′, π′i+1 |= Sϕ(q))⇒ (M ′, π′i+1 |= q)⇔ (M ′, π′i |= Xq).

A.2. SOUNDNESS OF THE TGBA ENCODING SCHEME 129

• Case p ≡ qU r, the conjecture’s antecedent gives us ∃j ≥ i : (M ′, π′j |= ¬Sϕ(qU r)∨
Sϕ(r)). Let j0 be the smallest j such that j ≥ i ∧ (M ′, π′j |= ¬Sϕ(qU r) ∨ Sϕ(r)),

i.e.,

j0 ≥ i ∧ (M ′, π′j0 |= ¬Sϕ(qU r) ∨ Sϕ(r))

∧ ∀j : i ≤ j < j0 ⇒ (M ′, π′j |= Sϕ(qU r) ∧ ¬Sϕ(r)).
(A.5)

If j0 = i then, using the induction hypothesis and M ′, π′j0 |= ¬Sϕ(qU r) ∨ Sϕ(r),

we have

(M ′, π′i |= Sϕ(qU r))⇔ (M ′, π′i |= Sϕ(r))⇒ (M ′, π′i |= r)⇒ (M ′, π′i |= qU r)

and we are done. Otherwise, j0 > i and from (A.13) and the definition of Sϕ(qU r)

we get

(M ′, π′i |= Sϕ(qU r))⇒ ∀j : i ≤ j < j0 ⇒ (M ′, π′j |= Sϕ(q)).

Using the definitions of Sϕ(qU r) and R′, we have

(M ′, π′j0−1 |= Sϕ(qU r) ∧ ¬Sϕ(r))

⇒ (M ′, π′j0−1 |= Sϕ(q) ∧ Sϕ(X(qU r)))

⇒ (M ′, π′j0 |= Sϕ(qU r)),

and combined with (M ′, π′j0 |= ¬Sϕ(qU r) ∨ Sϕ(r)), we get (M ′, π′j0 |= Sϕ(r)).

Therefore, using the induction hypothesis, we have

(M ′, π′i |= Sϕ(qU r))

⇒ (M ′, π′j0 |= Sϕ(r)) ∧ (∀j : i ≤ j < j0 ⇒ (M ′, π′j |= Sϕ(q)))

⇒ (M ′, π′j0 |= r) ∧ (∀j : i ≤ j < j0 ⇒ (M ′, π′j |= q))

⇒ (M ′, π′i |= qU r).

We have proved Theorem 6.2 and Theorem 6.3 within the classic LTL encoding

scheme. The proofs handle both the case where the encoding is strict (i.e., R′ is de-

fined by (6.9)) and the case where the encoding is loose (i.e., R′ is defined by (6.10) and

ϕ is in NNF).

A.2 Soundness of the TGBA Encoding Scheme

We now apply the proof plans from Section 6.3 to the TGBA encoding scheme.

130 APPENDIX A. SOUNDNESS PROOFS

A.2.1 Proof of Theorem 6.2

To complete the proof of Theorem 6.2, we must prove Lemma 6.2:

M,π |= ϕ

⇒ ∃π′ : proj(π′) = π ∧ ∀i ≥ 0, p ∈ cl(ϕ) : (M,πi |= p)⇔ (M ′, π′i |= Sϕ(p))

∧ ∀i ≥ 0, p ∈ el(ϕ) ∧ (ec(p) 6≡ true) : (M,πi |= p ∧ ¬ec(p))⇔ (M ′, π′i |= Pp).

Proof. The first step according to the plan from Section 6.3.1 is to show that π′ as a

sequence of states constructed according to (6.21) satisfies (6.23):

∀i ≥ 0, p ∈ cl(ϕ) : (M,πi |= p)⇔ (M ′, π′i |= Sϕ(p)).

This corresponds to proving (A.6).

(M,π |= ϕ) ∧ proj(π′) = π

∧ ∀i ≥ 0, p ∈ el(ϕ) : (M,πi |= p)⇔ (M ′, π′i |= Vp)

∧ ∀i ≥ 0, p ∈ el(ϕ) ∧ (ec(p) 6≡ true) : (M,πi |= p ∧ ¬ec(p))⇔ (M ′, π′i |= Pp)

⇒ ∀i ≥ 0, p ∈ cl(ϕ) : (M,πi |= p)⇔ (M ′, π′i |= Sϕ(p)).

(A.6)

Note that at this point, π′ is not necessarily a path in M ′. The proof is by induction on

the structure of p ∈ cl(ϕ). The cases are as follows:

• Case p ∈ AP (ϕ):

(M,πi |= p)⇔ (M,πi |= p)⇔ (M ′, π′i |= p)⇔ (M ′, π′i |= Sϕ(p)).

• Case p ∈ el(ϕ): (M,πi |= p)⇔ (M ′, π′i |= Vp)⇔ (M,π′i |= Sϕ(p)).

• Case p ≡ ¬q, since ϕ is in NNF, q ∈ AP (ϕ), and we have

(M,πi |= ¬q)⇔ (M,πi 6|= q)⇔ (M ′, π′i 6|= Sϕ(q))⇔ (M ′, π′i |= Sϕ(¬q)).

• Case p ≡ q ∧ r, using the induction hypothesis, we have

(M,πi |= q ∧ r)
⇔ (M,πi |= q) ∧ (M,πi |= r)

⇔ (M ′, π′i |= Sϕ(q)) ∧ (M ′, π′i |= Sϕ(r))

⇔ (M ′, π′i |= Sϕ(q ∧ r)).

• Case p ≡ q ∨ r, using the induction hypothesis, we have

(M,πi |= q ∨ r)
⇔ (M,πi |= q) ∨ (M,πi |= r)

⇔ (M ′, π′i |= Sϕ(q)) ∨ (M ′, π′i |= Sϕ(r))

⇔ (M ′, π′i |= Sϕ(q ∨ r)).

A.2. SOUNDNESS OF THE TGBA ENCODING SCHEME 131

The second step in the proof plan is, given that π′ satisfies (6.23), show that π′ satisfies

(6.22). This corresponds to proving (A.7).

(M,π |= ϕ) ∧ proj(π′) = π

∧ ∀i ≥ 0, p ∈ el(ϕ) : (M,πi |= p)⇔ (M ′, π′i |= Vp)

∧ ∀i ≥ 0, p ∈ el(ϕ) ∧ (ec(p) 6≡ true) : (M,πi |= p ∧ ¬ec(p))⇔ (M ′, π′i |= Pp)

⇒ ∀i ≥ 0 : (π′i, π
′
i+1) ∈ R′.

(A.7)

The mapping from π to π′ where each π′i satisfies (6.21) is a “strict mapping”. As a

result, the transitions in π′ ought to satisfy R′ as defined by (6.9) (which corresponds

to a strict encoding), regardless of whether R′ is defined by (6.9) or (6.10). Thus it is

sufficient to prove that the transitions satisfy R′ as defined by (6.9).

Unlike the classic LTL encoding scheme whose elementary formulas are of the form

Xp, elementary formulas in the TGBA encoding scheme has various forms. In addition,

a transition constraint for an elementary formula in the TGBA encoding scheme may

be defined in terms of subsidiary transition constraints on formulas that may not be

elementary but are in sub(ϕ). To help prove (A.7), the following is proved first:

(M,π |= ϕ) ∧ proj(π′) = π

∧ ∀i ≥ 0, p ∈ el(ϕ) : (M,πi |= p)⇔ (M ′, π′i |= Vp)

∧ ∀i ≥ 0, p ∈ el(ϕ) ∧ (ec(p) 6≡ true) : (M,πi |= p ∧ ¬ec(p))⇔ (M ′, π′i |= Pp)

∧ ∀i ≥ 0, p ∈ cl(ϕ) : (M,πi |= p)⇔ (M ′, π′i |= Sϕ(p))

⇒ ∀i ≥ 0, p ∈ sub(ϕ) : (M,πi |= p)⇔ ((π′i, π
′
i+1) |= Tϕ(p)).

(A.8)

The proof is by induction on the structure of p ∈ sub(ϕ). Zooming in on (M,πi |= p)⇔
((π′i, π

′
i+1) |= Tϕ(p)), the cases are as follows:

• Case p ∈ AP (ϕ): (M,πi |= p)⇔ (M ′, π′i |= p)⇔ ((π′i, π
′
i+1) |= Tϕ(p)).

• Case p ≡ ¬q: since ϕ is in NNF, we have q ∈ AP (ϕ), and we get

(M,πi |= ¬q)⇔ (M,πi 6|= q)⇔ ((π′i, π
′
i+1) 6|= Tϕ(q))⇔ ((π′i, π

′
i+1) |= Tϕ(¬q)).

• Case p ≡ q ∧ r: using the induction hypothesis, we get

(M,πi |= q ∧ r)
⇔ (M,πi |= q) ∧ (M,πi |= r)

⇔ ((π′i, π
′
i+1) |= Tϕ(q)) ∧ ((π′i, π

′
i+1) |= Tϕ(r))

⇔ ((π′i, π
′
i+1) |= Tϕ(q ∧ r)).

132 APPENDIX A. SOUNDNESS PROOFS

• Case p ≡ q ∨ r: using the induction hypothesis, we get

(M,πi |= q ∨ r)
⇔ (M,πi |= q) ∨ (M,πi |= r)

⇔ ((π′i, π
′
i+1) |= Tϕ(q)) ∨ ((π′i, π

′
i+1) |= Tϕ(r))

⇔ ((π′i, π
′
i+1) |= Tϕ(q ∨ r)).

• Case p ≡ Xq: q ∈ cl(ϕ), we get

(M,πi |= Xq)

⇔ (M,πi+1 |= q)

⇔ (M ′, π′i+1 |= Sϕ(q))

⇔ ((π′i, π
′
i+1) |= next(Sϕ(q)))

⇔ ((π′i, π
′
i+1) |= Tϕ(Xq)).

• Case p ≡ qU r: using the induction hypothesis, we get

(M,πi |= qU r)

⇔ (M,πi |= r ∨ (qU r ∧ ¬r) ∧ q ∧X(qU r))

⇔ ((π′i, π
′
i+1) |= Tϕ(r) ∨ Tϕ(q) ∧ PqU r ∧ Tϕ(X(qU r)))

⇔ ((π′i, π
′
i+1) |= Tϕ(qU r)).

• Case p ≡ qR r: using the induction hypothesis, we get

(M,πi |= qR r)

⇔ (M,πi |= r ∧ (q ∨X(qR r)))

⇔ ((π′i, π
′
i+1) |= Tϕ(r) ∧ (Tϕ(q) ∨ Tϕ(X(qR r))))

⇔ ((π′i, π
′
i+1) |= Tϕ(qR r)).

• Case p ≡ Gq, q 6≡ Fr for any r: using the induction hypothesis, we get

(M,πi |= Gq)

⇔ (M,πi |= q ∧X(Gq))

⇔ ((π′i, π
′
i+1) |= Tϕ(q) ∧ Tϕ(X(Gq)))

⇔ ((π′i, π
′
i+1) |= Tϕ(Gq)).

• Case p ≡ Fq: using the induction hypothesis, we get

(M,πi |= Fq)

⇔ (M,πi |= q ∨ (Fq ∧ ¬q) ∧X(Fq))

⇔ ((π′i, π
′
i+1) |= Tϕ(q) ∨ PFq ∧ Tϕ(X(Fq)))

⇔ ((π′i, π
′
i+1) |= Tϕ(Fq)).

A.2. SOUNDNESS OF THE TGBA ENCODING SCHEME 133

• Case p ≡ GFq: using the induction hypothesis, we get

(M,πi |= GFq)

⇔ (M,πi |= (q ∨ (GFq ∧ ¬q)) ∧X(GFq))

⇔ ((π′i, π
′
i+1) |= (Tϕ(q) ∨ PGFq) ∧ Tϕ(X(GFq)))

⇔ ((π′i, π
′
i+1) |= Tϕ(GFq)).

The proof of (A.8) is complete. From (A.6) and (A.8), we get

(M,π |= ϕ) ∧ proj(π′) = π

∧ ∀i ≥ 0, p ∈ el(ϕ) : (M,πi |= p)⇔ (M ′, π′i |= Vp)

∧ ∀i ≥ 0, p ∈ el(ϕ) ∧ (ec(p) 6≡ true) : (M,πi |= p ∧ ¬ec(p))⇔ (M ′, π′i |= Pp)

⇒ ∀i ≥ 0, p ∈ el(ϕ) : (M ′, π′i |= Vp)⇔ ((π′i, π
′
i+1) |= Tϕ(p)),

which when combined with ∀i ≥ 0 : (proj(π′i), proj(π
′
i+1)) ∈ R (π is a path in M), proves

(A.7):

(M,π |= ϕ) ∧ proj(π′) = π

∧ ∀i ≥ 0, p ∈ el(ϕ) : (M,πi |= p)⇔ (M ′, π′i |= Vp)

∧ ∀i ≥ 0, p ∈ el(ϕ) ∧ (ec(p) 6≡ true) : (M,πi |= p ∧ ¬ec(p))⇔ (M ′, π′i |= Pp)

⇒ ∀i ≥ 0 : (π′i, π
′
i+1) ∈ R′,

irrespective of whether (6.9) or (6.10) is used for the definition of R′. Lemma 6.2 follows

from (A.6), (A.7), and the immediate satisfaction of ∀i ≥ 0, p ∈ el(ϕ) ∧ (ec(p) 6≡ true) :

(M,πi |= p ∧ ¬ec(p))⇔ (M ′, π′i |= Pp) when π′ is constructed according to (6.21).

The proof of Lemma 6.2 completes the proof of Theorem 6.2 within the TGBA en-

coding scheme.

A.2.2 Proof of Theorem 6.3

To complete the proof of Theorem 6.3, we need to prove Lemmas 6.4 and 6.5. Let us

first prove Lemma 6.4:

(M,π |= ϕ) ∧ proj(π′) = π

∧ ∀i ≥ 0, p ∈ cl(ϕ) : (M,πi |= p)⇔ (M ′, π′i |= Sϕ(p))

∧ ∀i ≥ 0, p ∈ el(ϕ) ∧ (ec(p) 6≡ true) : (M,πi |= p ∧ ¬ec(p))⇔ (M ′, π′i |= Pp)

⇒ ∀c ∈ Cϕ, i ≥ 0 : ∃j ≥ i : M ′, π′j |= c.

Proof. Following the proof plan from Section 6.3.2, we expand Cϕ in ∀c ∈ Cϕ, i ≥ 0 :

∃j ≥ i : M ′, π′j |= c and transform the quantification:

∀c ∈ Cϕ, i ≥ 0 : ∃j ≥ i : M ′, π′j |= c

⇔ ∀c ∈ {¬v | v ∈ {Pp | p ∈ el(ϕ) ∧ (ec(p) 6≡ true)}}, i ≥ 0 : ∃j ≥ i : M ′, π′j |= c

⇔ ∀p ∈ el(ϕ), i ≥ 0 : (ec(p) 6≡ true)⇒ ∃j ≥ i : M ′, π′j |= ¬Pp.

134 APPENDIX A. SOUNDNESS PROOFS

Thus we need to prove

(M,π |= ϕ) ∧ proj(π′) = π

∧ ∀i ≥ 0, p ∈ cl(ϕ) : (M,πi |= p)⇔ (M ′, π′i |= Sϕ(p))

∧ ∀i ≥ 0, p ∈ el(ϕ) ∧ (ec(p) 6≡ true) : (M,πi |= p ∧ ¬ec(p))⇔ (M ′, π′i |= Pp)

⇒ ∀p ∈ el(ϕ), i ≥ 0 : (ec(p) 6≡ true)⇒ ∃j ≥ i : M ′, π′j |= ¬Pp.

(A.9)

Zooming in on ∀p ∈ el(ϕ), i ≥ 0 : (ec(p) 6≡ true) ⇒ ∃j ≥ i : M ′, π′j |= ¬Pp, suppose

(A.9) does not hold, i.e., for some p ∈ el(ϕ) with ec(p) 6≡ true, there exists i0 ≥ 0

such that ∀j ≥ i0 : M ′, π′j |= Pp. Using the last antecedent in (A.9) we get ∀j ≥ i0 :

(M,πj |= p ∧ ¬ec(p)). Thus we have M,πi0 |= p and ∀j ≥ i0 : M,πj 6|= ec(p), which is

a contradiction (since M,πi0 |= p implies ∃j ≥ i0 : M,πj |= ec(p) — see Concept 6.4),

therefore (A.9) holds. This completes the proof of Lemma 6.4.

Next, we prove Lemma 6.5:

∀c ∈ Cϕ, i ≥ 0 : ∃j ≥ i : M ′, π′j |= c

⇒ ∀i ≥ 0, p ∈ cl(ϕ) : (M ′, π′i |= Sϕ(p))⇒ (M ′, π′i |= p).

Proof. Following the proof plan in Section 6.3.2, after expanding the definition of Cϕ and

transforming the quantification, we get (A.10).

∀p ∈ el(ϕ), i ≥ 0 : (ec(p) 6≡ true)⇒ ∃j ≥ i : M ′, π′j |= ¬Pp
⇒ ∀p ∈ cl(ϕ), i ≥ 0 : (M ′, π′i |= Sϕ(p))⇒ (M ′, π′i |= p).

(A.10)

Before we prove (A.10), we prove two things. The first is (A.11).

∀p ∈ cl(ϕ), i ≥ 0 : (M ′, π′i |= Sϕ(p))⇒ ((π′i, π
′
i+1) |= Tϕ(p)). (A.11)

The proof of (A.11) is by induction on the structure of p ∈ cl(ϕ). The cases are as follows:

• Case p ∈ AP (ϕ): (M ′, π′i |= Sϕ(p))⇔ (M ′, π′i |= p)⇔ ((π′i, π
′
i+1) |= Tϕ(p)).

• Case p ≡ ¬q, we have q ∈ AP (ϕ), and we get

(M ′, π′i |= Sϕ(¬q))
⇔ (M ′, π′i 6|= Sϕ(q))

⇔ ((π′i, π
′
i+1) 6|= Tϕ(q))

⇔ ((π′i, π
′
i+1) |= Tϕ(¬q)).

• Case p ≡ q ∧ r, using the induction hypothesis:

(M ′, π′i |= Sϕ(q ∧ r))
⇔ (M ′, π′i |= Sϕ(q)) ∧ (M ′, π′i |= Sϕ(r))

⇒ ((π′i, π
′
i+1) |= Tϕ(q)) ∧ ((π′i, π

′
i+1) |= Tϕ(r))

⇔ ((π′i, π
′
i+1) |= Tϕ(q ∧ r)).

A.2. SOUNDNESS OF THE TGBA ENCODING SCHEME 135

• Case p ≡ q ∨ r, using the induction hypothesis:

(M ′, π′i |= Sϕ(q ∨ r))
⇔ (M ′, π′i |= Sϕ(q)) ∨ (M ′, π′i |= Sϕ(r))

⇒ ((π′i, π
′
i+1) |= Tϕ(q)) ∨ ((π′i, π

′
i+1) |= Tϕ(r))

⇔ ((π′i, π
′
i+1) |= Tϕ(q ∨ r)).

• Case p ∈ el(ϕ), using (6.9) or (6.10) as the definition of R′:

(M ′, π′i |= Sϕ(p))⇔ (M ′, π′i |= Vp))⇒ ((π′i, π
′
i+1) |= Tϕ(p)).

The second thing to prove is (A.12). This is because the TGBA encoding scheme is

transition-oriented, so the proof of (A.10) involves reasoning about transition constraints

on formulas in sub(ϕ).

∀p ∈ el(ϕ), i ≥ 0 : (ec(p) 6≡ true)⇒ ∃j ≥ i : M ′, π′j |= ¬Pp
⇒ ∀p ∈ sub(ϕ), i ≥ 0 : ((π′i, π

′
i+1) |= Tϕ(p))⇒ (M ′, π′i |= p).

(A.12)

The proof of (A.12) makes up the bulk of the proof of the soundness of the TGBA

encoding scheme, and contains many intricate details. The proof of (A.12) is by induction

on the structure of p ∈ sub(ϕ). Zooming in on ((π′i, π
′
i+1) |= Tϕ(p))⇒ (M ′, π′i |= p), the

cases are as follows:

• Case p ∈ AP (ϕ): ((π′i, π
′
i+1) |= Tϕ(p))⇔ (M ′, π′i |= p)⇔ (M ′, π′i |= p).

• Case p ≡ ¬q, we have q ∈ AP (ϕ), and we get

((π′i, π
′
i+1) |= Tϕ(¬q))⇔ ((π′i, π

′
i+1) 6|= Tϕ(q))⇔ (M ′, π′i 6|= q)⇔ (M ′, π′i |= ¬q).

• Case p ≡ q ∧ r, using the induction hypothesis:

((π′i, π
′
i+1) |= Tϕ(q ∧ r))

⇔ ((π′i, π
′
i+1) |= Tϕ(q)) ∧ ((π′i, π

′
i+1) |= Tϕ(r))

⇒ (M ′, π′i |= q) ∧ (M ′, π′i |= r)⇔ (M ′, π′i |= q ∧ r).

• Case p ≡ q ∨ r, using the induction hypothesis:

((π′i, π
′
i+1) |= Tϕ(q ∨ r))

⇔ ((π′i, π
′
i+1) |= Tϕ(q)) ∨ ((π′i, π

′
i+1) |= Tϕ(r))

⇒ (M ′, π′i |= q) ∨ (M ′, π′i |= r)⇔ (M ′, π′i |= q ∨ r).

136 APPENDIX A. SOUNDNESS PROOFS

• Case p ≡ Xq, using the induction hypothesis, (6.9) or (6.10) as the definition of R′,

and (A.11):

((π′i, π
′
i+1) |= Tϕ(Xq))

⇔ ((π′i, π
′
i+1) |= next(Sϕ(p)))

⇔ (M ′, π′i+1 |= Sϕ(q))

⇒ ((π′i+1, π
′
i+2) |= Tϕ(q))

⇒ (M ′, π′i+1 |= q)

⇔ (M ′, π′i |= Xq).

• Case p ≡ qU r: first we prove

((π′i, π
′
i+1) |= Tϕ(qU r))

⇒ ∀j ≥ i : ((π′j, π
′
j+1) |= Tϕ(q) ∧ PqU r ∧ Tϕ(X(qU r)))

∨ ∃k : i ≤ k ≤ j ∧ ((π′k, π
′
k+1) |= Tϕ(r))

(A.13)

by induction on j. For j = i, the antecedent ((π′i, π
′
i+1) |= Tϕ(qU r)) gives us

((π′j, π
′
j+1) |= Tϕ(qU r))

⇔ ((π′j, π
′
j+1) |= Tϕ(r) ∨ Tϕ(q) ∧ PqU r ∧ Tϕ(X(qU r)))

⇔ ((π′j, π
′
j+1) |= Tϕ(q) ∧ PqU r ∧ Tϕ(X(qU r)))

∨ ∃k : i ≤ k ≤ j ∧ ((π′k, π
′
k+1) |= Tϕ(r)).

For j > i, the induction hypothesis gives us two cases to prove. In the first case,

the induction hypothesis gives us ((π′j−1, π
′
j) |= Tϕ(q) ∧ PqU r ∧ Tϕ(X(qU r))), thus

((π′j−1, π
′
j) |= Tϕ(q) ∧ PqU r ∧ Tϕ(X(qU r)))

⇒ ((π′j, π
′
j+1) |= Tϕ(qU r))

⇔ ((π′j, π
′
j+1) |= Tϕ(r) ∨ Tϕ(q) ∧ PqU r ∧ Tϕ(X(qU r)))

⇒ ((π′j, π
′
j+1) |= Tϕ(q) ∧ PqU r ∧ Tϕ(X(qU r)))

∨ ∃k : i ≤ k ≤ j ∧ ((π′k, π
′
k+1) |= Tϕ(r)).

In the second case, the induction hypothesis gives use ∃k : i ≤ k ≤ j − 1 ∧
((π′k, π

′
k+1) |= Tϕ(r)), thus

∃k : i ≤ k ≤ j − 1 ∧ ((π′k, π
′
k+1) |= Tϕ(r))

⇒ ((π′j, π
′
j+1) |= Tϕ(q) ∧ PqU r ∧ Tϕ(X(qU r)))

∨ ∃k : i ≤ k ≤ j ∧ ((π′k, π
′
k+1) |= Tϕ(r)).

This completes the induction proof for (A.13).

We now show that given ((π′i, π
′
i+1) |= Tϕ(qU r)), then ∃k ≥ i : ((π′k, π

′
k+1) |=

Tϕ(r)). Suppose not, then using (A.13) we get ∀j ≥ i : ((π′j, π
′
j+1) |= Tϕ(q)∧PqU r∧

Tϕ(X(qU r))). However, the antecedent ∀p ∈ el(ϕ), i ≥ 0 : (ec(p) 6≡ true)⇒ ∃j ≥

A.2. SOUNDNESS OF THE TGBA ENCODING SCHEME 137

i : M ′, π′j |= ¬Pp in (A.12) gives us ∀i ≥ 0 : ∃j ≥ i : M ′, π′j |= ¬PqU r, thus we get a

contradiction.

Given ((π′i, π
′
i+1) |= Tϕ(qU r)), let k0 be the smallest k such that k ≥ i∧((π′k, π

′
k+1) |=

Tϕ(r)). From (A.13) we get ∀j : i ≤ j < k0 ⇒ ((π′j, π
′
j+1) |= Tϕ(q)). In addition, we

have k0 ≥ i ∧ ((π′k0 , π
′
k0+1) |= Tϕ(r)). Thus we have

((π′i, π
′
i+1) |= Tϕ(qU r))

⇒ ((π′k0 , π
′
k0+1) |= Tϕ(r)) ∧ ∀j : i ≤ j < k0 ⇒ ((π′j, π

′
j+1) |= Tϕ(q))

⇒ ((M ′, π′k0 |= r) ∧ ∀j : i ≤ j < k0 ⇒ (M ′, π′j |= q))

⇔ (M ′, π′i |= qU r).

This completes the proof for the case p ≡ qU r.

• Case p ≡ qR r: first we prove

((π′i, π
′
i+1) |= Tϕ(qR r))

⇒ ∀j ≥ i : ((π′j, π
′
j+1) |= Tϕ(r) ∧ Tϕ(X(qR r)))

∨ ∃k : i ≤ k ≤ j ∧ ((π′k, π
′
k+1) |= Tϕ(q) ∧ Tϕ(r))

(A.14)

by induction on j. For j = i, the antecedent ((π′i, π
′
i+1) |= Tϕ(qR r)) gives us

((π′j, π
′
j+1) |= Tϕ(qR r))

⇔ ((π′j, π
′
j+1) |= Tϕ(r) ∧ Tϕ(X(qR r))) ∨ Tϕ(r) ∧ Tϕ(q)

⇔ ((π′j, π
′
j+1) |= Tϕ(r) ∧ Tϕ(X(qR r)))

∨ ∃k : i ≤ k ≤ j ∧ ((π′k, π
′
k+1) |= Tϕ(q) ∧ Tϕ(r)).

For j > i, the induction hypothesis gives us two cases. In the first case, the induction

hypothesis gives us ((π′j−1, π
′
j) |= Tϕ(r) ∧ Tϕ(X(qR r))), thus

((π′j−1, π
′
j) |= Tϕ(r) ∧ Tϕ(X(qR r)))

⇒ ((π′j, π
′
j+1) |= Tϕ(qR r))

⇔ ((π′j, π
′
j+1) |= Tϕ(r) ∧ Tϕ(X(qR r))) ∨ Tϕ(r) ∧ Tϕ(q)

⇒ ((π′j, π
′
j+1) |= Tϕ(r) ∧ Tϕ(X(qR r)))

∨ ∃k : i ≤ k ≤ j ∧ ((π′k, π
′
k+1) |= Tϕ(q) ∧ Tϕ(r)).

In the second case, the induction hypothesis gives us ∃k : i ≤ k ≤ j − 1 ∧
((π′k, π

′
k+1) |= Tϕ(q) ∧ Tϕ(r)), thus

∃k : i ≤ k ≤ j − 1 ∧ ((π′k, π
′
k+1) |= Tϕ(q) ∧ Tϕ(r))

⇒ ((π′j, π
′
j+1) |= Tϕ(r) ∧ Tϕ(X(qR r)))

∨ ∃k : i ≤ k ≤ j ∧ ((π′k, π
′
k+1) |= Tϕ(q) ∧ Tϕ(r)).

This completes the induction proof for (A.14).

138 APPENDIX A. SOUNDNESS PROOFS

From (A.14) we get

((π′i, π
′
i+1) |= Tϕ(qR r))

⇒ ∀j ≥ i : ((π′j, π
′
j+1) |= Tϕ(r) ∧ Tϕ(X(qR r)))

∨ ∃k : i ≤ k ≤ j ∧ ((π′k, π
′
k+1) |= Tϕ(q) ∧ Tϕ(r))

⇒ ∀j ≥ i : ((π′j, π
′
j+1) |= Tϕ(r))

∨ ∃k : i ≤ k ≤ j ∧ ((π′k, π
′
k+1) |= Tϕ(q) ∧ Tϕ(r))

⇒ ∀j ≥ i : ((π′j, π
′
j+1) |= Tϕ(r) ∨ Tϕ(q) ∧ Tϕ(r))

∨ ∃k : i ≤ k < j ∧ ((π′k, π
′
k+1) |= Tϕ(q) ∧ Tϕ(r))

⇒ ∀j ≥ i : ((π′j, π
′
j+1) |= Tϕ(r)) ∨ ∃k : i ≤ k < j ∧ ((π′k, π

′
k+1) |= Tϕ(q))

⇒ ∀j ≥ i : (M ′, π′j |= r) ∨ ∃k : i ≤ k < j ∧ (M ′, π′k |= q)

⇔ ∀j ≥ i : (∀k : i ≤ k < j ⇒ (M ′, π′k 6|= q))⇒ (M ′, π′j |= r)

⇔ (M ′, π′i |= qR r).

• Case p ≡ Gq: first we prove

((π′i, π
′
i+1) |= Tϕ(Gq))⇒ ∀j ≥ i : ((π′j, π

′
j+1) |= Tϕ(q) ∧ Tϕ(X(Gq))) (A.15)

by induction on j. For j = i, the antecedent ((π′i, π
′
i+1) |= Tϕ(Gq)) gives us

((π′j, π
′
j+1) |= Tϕ(Gq))⇔ ((π′j, π

′
j+1) |= Tϕ(q) ∧ Tϕ(X(Gq))).

For j > i, the induction hypothesis gives us ((π′j−1, π
′
j) |= Tϕ(q)∧Tϕ(X(Gq))), thus

((π′j−1, π
′
j) |= Tϕ(q) ∧ Tϕ(X(Gq)))

⇒ ((π′j, π
′
j+1) |= Tϕ(Gq))

⇒ ((π′j, π
′
j+1) |= Tϕ(q) ∧ Tϕ(X(Gq))).

This completes the induction proof for (A.15).

From (A.15) we get

((π′i, π
′
i+1) |= Tϕ(Gq))

⇒ ∀j ≥ i : ((π′j, π
′
j+1) |= Tϕ(q) ∧ Tϕ(X(Gq)))

⇒ ∀j ≥ i : ((π′j, π
′
j+1) |= Tϕ(q))

⇒ ∀j ≥ i : (M ′, π′j |= q)

⇔ (M ′, π′i |= Gq).

• Case p ≡ Fq: first we prove

((π′i, π
′
i+1) |= Tϕ(Fq))

⇒ ∀j ≥ i : ((π′j, π
′
j+1) |= PFq ∧ Tϕ(X(Fq)))

∨ ∃k : i ≤ k ≤ j ∧ ((π′k, π
′
k+1) |= Tϕ(q))

(A.16)

A.2. SOUNDNESS OF THE TGBA ENCODING SCHEME 139

by induction on j. For j = i, the antecedent ((π′i, π
′
i+1) |= Tϕ(Fq)) gives us

((π′j, π
′
j+1) |= Tϕ(Fq))⇔ ((π′j, π

′
j+1) |= Tϕ(q) ∨ PFq ∧ Tϕ(X(Fq)))

⇔ ((π′j, π
′
j+1) |= PFq ∧ Tϕ(X(Fq))) ∨ ∃k : i ≤ k ≤ j ∧ ((π′k, π

′
k+1) |= Tϕ(q)).

For j > i, the induction hypothesis gives us two cases. In the first case, the induction

hypothesis gives us ((π′j−1, π
′
j) |= PFq ∧ Tϕ(X(Fq))), thus

((π′j−1, π
′
j) |= PFq ∧ Tϕ(X(Fq)))

⇒ ((π′j, π
′
j+1) |= Tϕ(Fq))

⇔ ((π′j, π
′
j+1) |= Tϕ(q) ∨ PFq ∧ Tϕ(X(Fq)))

⇒ ((π′j, π
′
j+1) |= PFq ∧ Tϕ(X(Fq))) ∨ ∃k : i ≤ k ≤ j ∧ ((π′k, π

′
k+1) |= Tϕ(q)).

For the second case we have ∃k : i ≤ k ≤ j − 1 ∧ ((π′k, π
′
k+1) |= Tϕ(q)), thus

∃k : i ≤ k ≤ j − 1 ∧ ((π′k, π
′
k+1) |= Tϕ(q))

⇒ ((π′j, π
′
j+1) |= PFq ∧ Tϕ(X(Fq))) ∨ ∃k : i ≤ k ≤ j ∧ ((π′k, π

′
k+1) |= Tϕ(q)).

This completes the induction proof for (A.16).

We now show that given ((π′i, π
′
i+1) |= Tϕ(Fq)), then ∃k ≥ i : ((π′k, π

′
k+1) |= Tϕ(q)).

Suppose not, then using (A.16) we get ∀j ≥ i : ((π′j, π
′
j+1) |= PFq ∧ Tϕ(X(Fq))).

However, the hypothesis ∀p ∈ el(ϕ), i ≥ 0 : (ec(p) 6≡ true)⇒ ∃j ≥ i : M ′, π′j |= ¬Pp
in (A.12) gives us ∀i ≥ 0 : ∃j ≥ i : M ′, π′j |= ¬PFq, thus we get a contradiction.

Thus we have

((π′i, π
′
i+1) |= Tϕ(Fq))⇒ ∃k ≥ i : ((π′k, π

′
k+1) |= Tϕ(q))

⇒ (∃k ≥ i : (M ′, π′k |= q))⇔ (M ′, π′i |= Fq).

• Case p ≡ GFq: first we prove

((π′i, π
′
i+1) |= Tϕ(GFq))⇒ ∀j ≥ i : ((π′j, π

′
j+1) |= Tϕ(GFq)) (A.17)

by induction on j. For j = i, the antecedent ((π′i, π
′
i+1) |= Tϕ(GFq)) gives us

((π′j, π
′
j+1) |= Tϕ(GFq)).

For j > i, the induction hypothesis gives us ((π′j−1, π
′
j) |= Tϕ(GFq)), thus

((π′j−1, π
′
j) |= Tϕ(GFq))

⇒ ((π′j−1, π
′
j) |= Tϕ(X(GFq)) ∧ (Tϕ(p) ∨ PGFq))

⇒ ((π′j, π
′
j+1) |= Tϕ(GFq)).

This completes the induction proof for (A.17).

140 APPENDIX A. SOUNDNESS PROOFS

We now show that given ((π′i, π
′
i+1) |= Tϕ(GFq)), then ∀j ≥ i : ∃k ≥ j : ((π′k, π

′
k+1) |=

Tϕ(q)). Suppose not, then using (A.17) we get

((π′i, π
′
i+1) |= Tϕ(GFq))

⇒ ∀j ≥ i : ((π′j, π
′
j+1) |= Tϕ(GFq))

⇔ ((π′j, π
′
j+1) |= Tϕ(X(GFq)) ∧ (Tϕ(p) ∨ PGFq))

⇔ ((π′j, π
′
j+1) |= Tϕ(X(GFq)) ∧ PGFq).

However, the antecedent ∀p ∈ el(ϕ), i ≥ 0 : (ec(p) 6≡ true)⇒ ∃j ≥ i : M ′, π′j |= ¬Pp
in (A.12) gives us ∀i ≥ 0 : ∃j ≥ i : M ′, π′j |= ¬PGFq, thus we get a contradiction.

Thus we have
((π′i, π

′
i+1) |= Tϕ(GFq))

⇒ ∀j ≥ i : ∃k ≥ j : ((π′k, π
′
k+1) |= Tϕ(q))

⇒ (∀j ≥ i : ∃k ≥ j : (M ′, π′k |= q))

⇔ (M ′, π′i |= GFq).

The proof of (A.12) is complete. Combining (A.11) and (A.12) immediately gives us

(A.10), proving Lemma 6.5.

The proofs of Lemma 6.4 and Lemma 6.5 complete the proof of Theorem 6.3 within

the TGBA encoding scheme,

Bibliography

[AHU74] A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The Design and Analysis of

Computer Algorithms. Addison-Wesley, 1974.

[BCCZ99] A. Biere, A. Cimatti, E.M. Clarke, and Y. Zhu. Symbolic Model Checking

without BDDs. In 5th International Conference on Tools and Algorithms for

Construction and Analysis of Systems (TACAS 99), pages 193–207, 1999.

[BCM+92] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Sym-

bolic Model Checking: 1020 States and Beyond. Information and Computa-

tion, 98(2):142–170, 1992.

[BE] Behavior Engineering homepage. www.griffith.edu.au/engineering-

information-technology/institute-integrated-intelligent-

systems/research/behavior-engineering. Accessed: 2014-07-24.

[Beh07] Behavior Tree Group. Behavior Tree Notation v1.0 (2007). Technical report,

ARC Center for Complex Systems, 2007.

[Bet55] E.W. Beth. Semantic Entailment and Formal Derivability. Mededelingen

van de Koninklijke Nederlandse Akademie van Wetenschappen, Afdeling Let-

terkunde, N.R., 18(13):309–342, 1955.

[BK08] C. Baier and J.-P. Katoen. Principles of Model Checking. MIT Press, 2008.

[Bos08] J. Boston. Behavior Trees — How they Improve Engineering Behaviour?

In 6th Annual Software and Systems Engineering Process Group Conference

(SEPG 2008), 2008.

[Bry86] R.E. Bryant. Graph-Based Algorithms for Boolean Function Manipulation.

IEEE Transactions on Computers, C-35(8):677–691, 1986.

[Büc60] J.R. Büchi. On a Decision Method in Restricted Second Order Arithmetic.

In International Congress on Logic, Methodology and Philosophy of Science,

pages 1–11. Stanford University Press, 1960.

141

142 BIBLIOGRAPHY

[CCGR99] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri. NuSMV: A New

Symbolic Model Verifier. In 11th International Conference on Computer

Aided Verification, LNCS 1633, pages 495–499. Springer, 1999.

[CE81] E.M. Clarke and E.A. Emerson. Design and Synthesis of Synchronization

Skeletons using Branching Time Temporal Logic. In Logic of Programs:

Workshop, LNCS 131, pages 52–71. Springer, 1981.

[CG05] M. Chechik and A. Gurfinkel. A framework for counterexample gener-

ation and exploration. In 8th International Conference on Fundamental

Approaches to Software Engineering, LNCS 3442, pages 220–236. Springer,

2005.

[CGH94] E. Clarke, O. Grumberg, and K. Hamaguchi. Another Look at LTL Model

Checking. In 6th International Conference on Computer Aided Verification,

LNCS 818, pages 415–427. Springer, 1994.

[CGJ+00] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-

Guided Abstraction Refinement. In 12th International Conference on Com-

puter Aided Verification, LNCS 1855, pages 154–169. Springer, 2000.

[CGL94] E.M. Clarke, O. Grumberg, and D.E. Long. Model Checking and Ab-

straction. ACM Transactions on Programming Languages and Systems,

16(5):1512–1542, 1994.

[CGMZ95] E.M. Clarke, O. Grumberg, K.L. McMillan, and X. Zhao. Efficient Gener-

ation of Counterexamples and Witnesses in Symbolic Model Checking. In

32nd annual ACM/IEEE Design Automation Conference, pages 427–432.

ACM, 1995.

[CGP99] E.M. Clarke, Jr., O. Grumberg, and D.A. Peled. Model Checking. MIT

Press, 1999.

[CH11] R.J. Colvin and I.J. Hayes. A Semantics for Behavior Trees using CSP with

Specification Commands. Science of Computer Programming, 76(10):891–

914, 2011.

[CVWY92] C. Courcoubetis, M.Y. Vardi, P. Wolper, and M. Yannakakis. Memory-

Efficient Algorithms for the Verification of Temporal Properties. Formal

Methods in System Design, 1(2/3):275–288, 1992.

BIBLIOGRAPHY 143

[Dij75] E.W. Dijkstra. Guarded Commands, Nondeterminacy and Formal Deriva-

tion of Programs. Communications of the ACM, 18(8):453–457, 1975.

[dMOR+04] L. de Moura, S. Owre, H. Rueß, J. Rushby, N. Shankar, M. Sorea, and

A. Tiwari. SAL 2. In 16th International Conference on Computer Aided

Verification, LNCS 3114, pages 496–500. Springer, 2004.

[dMOS03] L. de Moura, S. Owre, and N. Shankar. The SAL language manual. Technical

Report SRI-CSL-01-02, SRI International, 2003.

[Dro03] R.G. Dromey. From Requirements to Design: Formalizing the Key Steps

(Invited Keynote Address). In 1st International Conference on Software En-

gineering and Formal Methods, pages 2–11. IEEE Computer Society, 2003.

[Dro06] R.G. Dromey. Formalizing the Transition from Requirements to Design. In

Mathematical Frameworks for Component Software — Models for Analysis

and Synthesis, World Scientific Series on Component-Based Development,

pages 156–187. World Scientific Publishing, 2006.

[EH86] E.A. Emerson and J.Y. Halpern. “Sometimes” and “Not Never” Revisited:

on Branching versus Linear Time Temporal Logic. Journal of the ACM,

33(1):151–178, 1986.

[EL86] E.A. Emerson and C-L. Lei. Efficient model checking in fragments of the

propositional mu-calculus (extended abstract). In Proceedings, 1st Annual

Symposium on Logic in Computer Science, pages 267–278. IEEE Computer

Society, 1986.

[Eme81] E.A. Emerson. Branching Time Temporal Logic and the Design of Correct

Concurrent Programs. PhD thesis, Harvard University, 1981.

[FS78] L. Flon and N. Suzuki. Consistent and Complete Proof Rules for the Total

Correctness of Parallel Programs. In Proceedings of the 19th Annual Sympo-

sium on Foundations of Computer Science, pages 184–192. IEEE Computer

Society, 1978.

[GH99] A. Gargantini and C. Heitmeyer. Using Model Checking to Generate Tests

from Requirements Specifications. In Software Engineering ESEC/FSE99,

LNCS 1687, pages 146–162. Springer, 1999.

[GPVW95] R. Gerth, D. Peled, M.Y. Vardi, and P. Wolper. Simple On-the-fly Auto-

matic Verification of Linear Temporal Logic. In International Symposium on

144 BIBLIOGRAPHY

Protocol Specification, Testing and Verification, pages 3–18. Chapman and

Hall, 1995.

[GS97] S. Graf and H. Saidi. Construction of Abstract State Graph. In 9th In-

ternational Conference on Computer Aided Verification, LNCS 1254, pages

72–83. Springer, 1997.

[GWY08] L. Grunske, K. Winter, and N. Yatapanage. Defining the Abstract Syntax of

Visual Languages with Advanced Graph Grammars A Case Study Based on

Behavior Trees. Journal of Visual Languages & Computing, 19(3):343–379,

2008.

[HKD09] T. Han, J.-P. Katoen, and B. Damman. Counterexample Generation in

Probabilistic Model Checking. IEEE Transaction on Software Engineering,

35(2):241–257, 2009.

[Hol04] G.J. Holzmann. The SPIN Model Checker: Primer and Reference Manual.

Addison-Wesley, 2004.

[HPY96] G.J. Holzmann, D. Peled, and M. Yannakakis. On Nested Depth First

Search. Proceedings of the Second SPIN Workshop, 32:81–89, 1996.

[JD03] A.L. Juarez Dominguez and N.A. Day. Generating Multiple Diverse Coun-

terexamples for an EFSM. Technical Report CS-2013-06, University of Wa-

terloo, 2003.

[Kil73] G.A. Kildall. A Unified Approach to Global Program Optimization. In 1st

Annual ACM SIGACT-SIGPLAN Symposium on Principles of Program-

ming Languages, pages 194–206. ACM, 1973.

[Koz83] D. Kozen. Results on the Propositional mu-Calculus. Theoretical Computer

Science, 27:333–354, 1983.

[LP85] O. Lichtenstein and A. Pnueli. Checking that Finite-State Concurrent Pro-

grams Satisfy their Linear Specification. In 12th Annual ACM SIGACT-

SIGPLAN Symposium on Principles of Programming Languages, pages 97–

107. ACM, 1985.

[LWK12] P.A. Lindsay, K. Winter, and S. Kromodimoeljo. Model-based Safety Risk

Assessment using Behavior Trees. In Proceedings of the 6th Asia Pacific Con-

ference on System Engineering. Systems Engineering Society of Australia,

2012.

BIBLIOGRAPHY 145

[LWY10] P.A. Lindsay, K. Winter, and N. Yatapanage. Safety Assessment using

Behavior Trees and Model Checking. In 8th International Conference on

Software Engineering and Formal Methods, pages 181–190. IEEE Computer

Society, 2010.

[LYW12] P.A. Lindsay, N. Yatapanage, and K. Winter. Cut Set Analysis using Behav-

ior Trees and Model Checking. Formal Aspects of Computing, 24(2):249–266,

2012.

[MC81] J. Misra and K.M. Chandy. Proofs of Networks of Processes. IEEE Trans-

actions on Software Engineering, SE-7(4):417–426, 1981.

[McM92] K.L. McMillan. Symbolic Model Checking. PhD thesis, Carnegie Mellon

University, 1992.

[Min93] S. Minato. Fast Generation of Prime-Irredundant Covers from Binary Deci-

sion Diagrams. IEICE Transactions on Fundamentals of, E76-A(6):967–973,

1993.

[MIY90] S. Minato, N. Ishiura, and S. Yajima. Shared Binary Decision Diagram

with Attributed Edges for Efficient Boolean Function Manipulation. In 27th

ACM/IEEE Design Automation Conference, pages 52–57, 1990.

[Mor70] E. Morreale. Recursive Operators for Prime Implicant and Irredundant

Normal Form Determination. IEEE Transactions on Computers, 19(6):504–

509, 1970.

[Nam01] K.S. Namjoshi. Certifying Model Checkers. In 13th International Conference

on Computer Aided Verification, LNCS 2102, pages 2–13. Springer, 2001.

[NNH99] F. Neilson, H.R. Neilson, and C. Hankin. Principles of Program Analysis.

Springer, 1999.

[Per84] C. Perrow. Normal Accidents: Living with High Risk Technologies. Basic

Books, 1984.

[PLTP08] P. Papacostantinou, P. Lee, T. Tran, and V. Phillips. Implementing a Be-

haviour Tree Analysis Tool Using Eclipse Development Frameworks. In 19th

Australian Software Engineering Conference, pages 61–66. IEEE Computer

Society, 2008.

146 BIBLIOGRAPHY

[Pnu77] A. Pnueli. The Temporal Logic of Programs. In 18th Annual Symposium

on Foundations of Computer Science, pages 46–57. IEEE Computer Society,

1977.

[PWW96] D. Peled, T. Wilke, and P. Wolper. An Algorithmic Approach for Checking

Closure Properties of ω-Regular Languages. In 7th International Conference

on Concurrency Theory, LNCS 1119, pages 596–610. Springer, 1996.

[QS82] J.P. Queille and J. Sifakis. Specification and Verification of Concurrent

Systems in CESAR. In International Symposium on Programming, 5th Col-

loquium, LNCS 137, pages 337–351. Springer, 1982.

[RH01] S. Rayadurgam and M.P.E. Heimdahl. Coverage Based Test-Case Gen-

eration Using Model Checkers. In 8th IEEE International Conference on

Engineering of Computer-Based Systems (ECBS 2001), pages 83–92. IEEE

Computer Society, 2001.

[RV07] K.Y. Rozier and M.Y. Vardi. LTL Satisfiability Checking. In Model Checking

Software, 14th International SPIN Workshop, LNCS 4595, pages 149–167.

Springer, 2007.

[RV11] K.Y. Rozier and M.Y. Vardi. A Multi-encoding Approach for LTL Sym-

bolic Satisfiability Checking. In 17th International Symposium on Formal

Methods, LNCS 6664, pages 417–431. Springer, 2011.

[SB05] V. Schuppan and A. Biere. Shortest Counterexamples for Symbolic Model

Checking of LTL with Past. In 11th International Conference on Tools and

Algorithms for the Construction and Analysis of Systems, LNCS 3440, pages

493–509. Springer, 2005.

[SS04] N. Shankar and M. Sorea. Counterexample-Driven Model Checking. Tech-

nical Report SRI-CSL-03-04, SRI International, 2004.

[SVV09] M. Schmalz, D. Varacca, and H. Völzer. Counterexamples in Probabilistic

LTL Model Checking for Markov Chains. In 20th International Conference

on Concurrency Theory, LNCS 5710, pages 587–602. Springer, 2009.

[tex] TextBE: A Textual Editor for Behavior Engineering. Project URL:

code.google.com/a/eclipselabs.org/p/textbe/. Accessed: 2014-07-24.

[WLC+07] L. Wen, K. Lin, R. Colvin, J. Seagrott, N. Yatapanage, and G. Dromey.

Integrare — a Collaborative Environment for Behavior-Oriented Design. In

BIBLIOGRAPHY 147

4th International Conference on Cooperative Design, Visualization, and En-

gineering, LNCS 4674, pages 122–131. Springer, 2007.

Index

Cϕ, 70

FCϕ, 86

Fϕ, 84

Sϕ(p), 64

Tϕ(p), 65

Pϕ, 64

Vϕ, 64

cl(ϕ), 63

ec(p), 69

el(ϕ), 62

next(q), 65

proj(s′), 64

sub(ϕ), 63

atomic proposition, 9

Büchi automaton, 87

BA, 87

Behavior Tree (BT) notation, 18

closure, 63

computation tree logic, 11

conservative extension, 68

CTL, 11

CTL model checking, 12

CTL*, 9

cycle constraint, 92

eager counterexample strategy, 86, 110

eager reachability strategy, 86, 110

ECS, 86, 110

elementary block, 26

elementary formula, 62

ERS, 86, 110

eventual condition, 69

fair states, 84

fairness constraint, 12

fixpoint operation, 15

GBA, 87

generalised Büchi automaton, 87

global constraint, 93

guarded update, 24

image, 25

Kripke structure, 10

lazy counterexample strategy, 86, 110

lazy reachability strategy, 86, 110

LCS, 86, 110

linear temporal logic, 11

loose encoding, 67

LRS, 86, 110

LTL, 11

LTL encoding scheme, 14

LTL model checking, 13

model checking, 11

negation normal form, 61

NNF, 61

path commitment, 13, 62, 64

path formula, 9

PC, 27

pre-image, 25

148

INDEX 149

program counter, 27

projection, 64

promise variable, 64

reachability, 51

semantics of temporal logic, 10

state formula, 9

strict encoding, 67

symbolic model checking, 14

symbolic tableau, 67

tableau, 13, 60, 67

temporal logic, 9

temporal operator, 9

transfer function, 25

transition constraint, 13, 65

