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Abstract  

 

Background: Chlorotoxin is a small scorpion peptide that inhibits glioma cell 

migration. We investigated the importance of a major component of chlorotoxin’s 

chemical structure – four disulfide bonds – to its tertiary structure and biological 

function. 

Results: Five disulfide bond analogues of chlorotoxin were synthesised, with L-α-

aminobutyric acid residues replacing each or all of the disulfide bonds. Chemical 

oxidation and circular dichroism experiments revealed that Cys III-VII and Cys V-

VIII were essential for native structure formation. Cys I-IV and Cys II-VI were 

important for stability to enzymatic proteolysis but not for the inhibition of human 

umbilical vein endothelial cell migration. 

Conclusions: The disulfide bonds of chlorotoxin are important for its structure and 

stability, and have a minor role in its activity against cell migration. 
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Introduction 

 

Chlorotoxin (CTX) is a 36-amino acid peptide found in the venom of the giant Israeli 

scorpion Leiurus quinquestriatus [1], which possesses therapeutically interesting 

bioactivities [2, 3]. CTX displays high binding selectivity for glioma cells and also 

for cells from other tumours of neuroectodermal origin but not to healthy mammalian 

cells [2, 4]. This specific activity was initially thought to involve chloride channels 

expressed on the surface of cancer cell types [5] but recently, matrix 

metalloproteinase-2 and annexin A2 have been proposed as other possible targets of 

CTX [6, 7]. CTX also displays anti-angiogenic activity, as demonstrated in in vitro 

and in vivo bioassays [3]. For example, CTX inhibits the migration of human 

umbilical vein endothelial cells (HUVECs) in a dose-dependent fashion and inhibits 

the growth of blood vessels in a chick chorioallantoic membrane (CAM) assay [3]. 

 

The biological activities of CTX have led to several promising applications in cancer 

treatment or detection [8-14]. The synthetic version of CTX (TM-601) conjugated to 

a fluorophore, such as Cy5.5 or IRDye 800CW, retains its tumour binding properties 

and is being developed as an imaging agent to help distinguish cancerous from non-

cancerous cells during surgical resection of tumours [9, 10]. A radio-labelled 

analogue of CTX, 131I-CTX, has been used as a radiotherapy agent to control and 

detect tumour progression [11, 12]. In a phase I clinical trial, a single-dose study 

showed that 131I-CTX was well-tolerated by all individuals tested and displayed an 

encouraging safety profile with no grade 3 or 4 toxicities observed, and was 

eliminated from the body within 24 to 48 h [12]. 131I-CTX is currently in phase II 

clinical trials [12]. CTX has also been used as a targeting signal to deliver drugs to 
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cancer cells [13, 14], adding to the growing number of applications of CTX in cancer 

drug development.  

 

Because of its small size and proteinaceous nature, CTX is well suited to modern 

chemistry methods designed to enhance its therapeutic potential. In a recent study, 

CTX was modified to produce an optimal peptide for bio-conjugation to Cy5.5 for 

tumour imaging [15]. The native sequence of CTX, which is shown in Figure 1A, has 

three lysine residues, leading to a heterogenous mixture of mono-, di-, and tri-labelled 

peptides after Cy5.5 conjugation, which is an undesirable characteristic for regulatory 

approval. Thus, CTX was chemically re-engineered to contain only a single lysine at 

position 27, which was used to produce a mono-labelled molecule able to be used in 

clinical trials [15]. CTX has also been engineered to have improved stability against 

serum peptidases. A seven amino acid linker was introduced to connect the N- and C- 

termini of the peptide to produce a backbone cyclised analogue, which showed 

improved serum stability by around 20% compared to that of the native peptide. The 

cyclic analogue also maintained a similar overall tertiary fold and the ability to bind 

malignant tissue [15].  

 

Attempts to re-engineer CTX can be guided by structural information. CTX adopts a 

well-structured tertiary fold, with four disulfide bonds at the protein core (Figure 1B) 

surrounded by an α-helix and three anti-parallel β-strands [16]. Three of the disulfide 

bonds, Cys II-VI, Cys III-VII and Cys V-VIII, are involved in linking the α-helix to 

the β-strands, and the fourth disulfide bond, Cys I-IV, connects the N-terminal region 

with the remainder of the peptide. This structure is similar to that found in members 

of a scorpion peptide family characterised by an α/β motif and three disulfide bonds 
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[16]. As shown in Figure 2A, comparison of CTX with iberotoxin, a member of the 

α/β scorpion peptide family, shows that the connectivity of three disulfide bonds are 

similar, with the additional fourth disulfide bond of CTX, Cys I-IV, being the 

distinguishing structural feature. 

 

The disulfide bond configuration of CTX incorporates a cystine knot motif. This 

motif is present in a number of peptide families, including the cyclotides, which are 

plant-derived cyclic peptides that have emerged as ultra-stable scaffolds in drug 

design [17-19] due to a combination of their cystine knot and head-to-tail cyclic 

backbone. In the cyclotide family, the cystine knot is composed of a topological ring 

formed by Cys I-IV and Cys II-V and their intervening backbone sequences, through 

which Cys III-VI penetrates, forming a stable and rigid configuration. In CTX, of the 

four disulfide bonds, Cys I-IV, Cys II-VI and Cys III-VII are involved in forming the 

knot and Cys V-VIII can be regarded as an ‘extra’ crosslink (Figure 2B). From this 

discussion it is clear that CTX is an interesting disulfide-bonded peptide that shares 

common features with diverse examples of plant and animal toxins and hence it is of 

interest to examine the role of its individual disulfide bonds in defining structure and 

activity. 

 

Studies on disulfide bonds in proteins and peptides have revealed that they can have a 

number of roles in structure, stability and activity, and their modification can be 

useful for modulating the pharmacological properties of peptides [20]. For the 

cyclotides, the disulfide bonds contribute to the stability of naturally-occurring 

examples, as well as to engineered drug leads based on the cyclotide framework [21-



6 

 

23]. For the α/β scorpion family members, leiurotoxin I and charybdotoxin, specific 

disulfide bonds are critical for maintaining the native-like structure [24, 25].  

 

In this study our aim was to determine the role of each of the four disulfide bonds in 

CTX and delineate their importance to the structure, stability and activity of the 

peptide. We reasoned that this information might facilitate the use of CTX as a drug 

design scaffold. We sequentially replaced each disulfide bond with a pair of L-α-

aminobutyric acid (Abu) residues and also synthesised an analogue with all disulfide 

bonds replaced. Herein we report the structural and functional characterisation of 

these analogues. 
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Experimental procedures 

 

Synthesis and purification 

CTX and the analogues were synthesised on a Symphony Multiplex automated 

synthesiser using Fmoc solid phase peptide synthesis (SPPS) chemistry. Rink amide 

resin was used for all synthesis. The Fmoc protecting group was removed using 30% 

piperidine in DMF, and a 4-fold excess of amino acid was used for coupling of amino 

acids (1:1:2 ratio of amino acid:HCTU:DIPEA). Completed peptides were washed 

with dichloromethane and the resin dried under nitrogen. The peptides were cleaved 

using a mixture of trifluoracetic acid (TFA), triisopropylsilane and water (95:2.5:2.5). 

The resin was incubated for two hours while being stirred continuously. After the 

incubation period, TFA was removed by rotary evaporation and the peptides were 

precipitated by adding approximately 50 mL of cold diethyl ether to the remaining 

solution and extracted three times with 70 mL of a 50/50 mixture of buffer A (0.05% 

(v/v) TFA in water) and buffer B (90% (v/v) acetonitrile, 0.045% (v/v) TFA in water) 

using a separation funnel. The crude peptide from this extraction was lyophilised 

overnight and followed by RP-HPLC purification using C18 columns with 1% min-1 

or 0.5% min-1 gradient from 0–60% buffer B and the eluant was monitored at 215 and 

280 nm. Purity of peptides was confirmed by LC-MS and analytical RP-HPLC. 

 

Folding and purification 

Reduced peptides at 0.1 mg/mL were oxidised in a buffer containing 0.1 M Tris-HCl 

pH 7.8, 0.2 M NaCl, 5 mM reduced glutathione and 0.5 mM oxidised glutathione for 

16–20 h at room temperature. The peptides were also oxidised in folding buffer plus 

10% (v/v) DMSO or in folding buffer plus 15% (v/v) isopropanol. The oxidised 
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peptides were purified using C18 columns on RP-HPLC. A gradient of 0.5% min-1 

from 0–60% buffer B was used, and the eluant was monitored at 215 and 280 nm. 

Purity of peptides was confirmed by LC-MS and analytical RP-HPLC. 

 

Conformational analysis 

The peptides were prepared at 50 µM in 2 mM Tris HCl buffer at pH 7.4 for CD 

analysis. Spectra were recorded at room temperature with a 0.1 cm path length quartz 

cell by accumulating three scans, from 180 to 250 nm using a CD spectropolarimeter 

(Jasco J-810). 

 

Reduction and alkylation of disulfide bonds 

From a 0.2 mM oxidised peptide stock in water of CTX2 or CTX3, 50 µL was mixed 

with 200 µL of 0.2 M citrate buffer pH 3.0 and 50 µL of 20 mM TCEP ((tris(2-

carboxyethyl)phosphine). Peptides were partially reduced following incubation at 

30°C for 40 min and alkylated by adding 300 µL of 0.1 M N-ethylmaleimide (NEM) 

and incubating for a further 15 min at 30°C. The reaction was stopped by 

acidification with 500 µL of 1% formic acid. The peptides were then purified using 

RP-HPLC with a gradient of 0.5% min-1 of 20–40% buffer B. Following 

lyophilisation the alkylated peptides were redissolved and fully reduced in 40 µL of 

0.1 M ammonium bicarbonate pH 8.0 containing 10 mM DTT (dithiothreitol) at 60°C 

for an hour. A second alkylation was performed by adding 25 mM iodoacetamide 

(IAM) and incubating for 30 min at room temperature. Sequencing grade trypsin was 

added to selected peptides at 1:20 (w/w) ratio in 100 mM ammonium bicarbonate 

buffer pH 8.0 and digestion was allowed to proceed overnight at 37°C. The samples 

were desalted using Ziptips (Millipore, C18) prior to analysis. 

javascript:%20reserve('r','sc1464d23aeee263','1394632800','',%20'sc14418f1fa69c2c',%20'0',%20'0');
javascript:%20reserve('r','sc1464d23aeee263','1394632800','',%20'sc14418f1fa69c2c',%20'0',%20'0');
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Sequence determination  

ESI-MS analysis was conducted for the digested and undigested peptides. The ESI-

MS measurements were performed on a QStar Pulsar I QqTOF mass spectrometer 

(AB/Sciex, Framingham, USA) equipped with an ESI source in positive ion mode. 

The spray voltage was set to 900 V. Nitrogen was used as the collision gas and the 

collision energies were adjusted manually in the range from 5 to 50 V. After the 

precursor ion for MS/MS was selected, the MS/MS spectra were collected and 

recorded for up to 30 min. Recorded mass spectra were analysed with the Analyst QS 

2.0 (AB/Sciex) software and the peptide sequenced using b- and y- ions (N- and C- 

terminal) as described previously [26]. 

 

Serum-stability assay 

The stability of native CTX and its analogues was determined as described previously 

[27, 28]. The incubation time points for all peptides with human serum were 0, 1, 2, 

3, 6, 12 and 24 h at 37°C.  

 

Cytotoxicity assay 

The cytotoxicity of native CTX and its analogues was performed and analysed as 

described previously [23]. Briefly, 5x103 HUVECs/well were seeded in a 96-well flat-

bottomed plate in a final volume of 100 µL in 10% FBS/EBM-2 media with 

supplements (Lonza) and incubated in 5% CO2 overnight at 37°C. Then, the media 

was removed and 90 µL of fresh media without serum was added to each well. 10 µL 

of CTX and its analogues were added in triplicates to a final concentrations ranging 

from 0.1 to 200 µM. 0.1% Triton X-100 was used as a positive control. After 

incubation for another 2 h, 10 µL of MTT (Sigma) solution in PBS (5 mg/mL) was 
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added to each well and incubated for 3 h. Media was removed, and formazan crystals 

were resuspended in 100 µL of DMSO. After 10 min the absorbance was read at 600 

nm with BioTek PowerWave XS machine.  

 

Migration assay 

The in vitro cell migration assay provides measurable antiangiogenic activity of 

molecules. To determine the activity of native CTX and its analogues, the peptides 

were evaluated for their ability to inhibit the cell migration of human umbilical vein 

endothelial cells (HUVEC). HUVECs were grown in 10% FBS/EBM-2 media with 

supplements (Lonza). Cells were serum-starved overnight, harvested and resuspended 

in media containing 0.1% FBS. Inserts were precoated with attachment factor (Gibco) 

prior to the assay and were removed before the assay. 100 µL of 1x106 cells/mL were 

added to the upper chamber of the 8 µm pore transwell plate (Corning) and 600 µL of 

0.1% FBS/EBM-2 without supplements or EBM-2 with 0.3 nM vascular endothelial 

growth factor (VEGF) were added in the lower chamber. Cells were incubated with 

peptides (20 µM of CTX or analogues) for 30 min prior adding to the inserts. Next, 

cells were incubated with peptides for 4 h at 37°C. The assay was stopped by 

removing media from upper and lower chambers, before being fixed with 4% 

formaldehyde/PBS for 15 min and stained with 0.05% crystal violet for 10 min. Cells 

were destained with 200 µL of 10% acetic acid/H2O for 10 min and absorbance was 

measured at 590 nm with BioTek PowerWave XS machine. Each peptide was tested 

in triplicates. Statistical analyses using one way ANOVA were performed to analyse 

the activities of CTX1, CTX2 and CTX3 and compared with that of the native parent 

peptide. 
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Results 

Synthesis, Folding and Purification  

The sequences of CTX and the five disulfide bond analogues used in this study, as 

well as their predicted disulfide bond connectivities are shown in Figure 3. In CTX1, 

all cysteine residues were replaced with Abu, whereas for the remaining peptides, 

only one pair of cysteine residues was replaced. Abu was chosen to be the cysteine 

substitute because it is isosteric to cysteine but is unable to form a disulfide bond. All 

peptides were synthesised using solid-phase Fmoc chemistry and yielded reduced 

peptides that were purified using RP-HPLC and showed a defined peak on analytical 

HPLC (Figure 4, black traces).  

 

To examine the effect of the disulfide bonds on the oxidative folding of CTX, the 

reduced peptides were oxidised at a concentration of 0.1 mg/mL in folding buffer (0.1 

M Tris-HCl pH 7.8, 0.2 M NaCl, 5 mM reduced glutathione and 0.5 mM oxidised 

glutathione), which was the same in composition as that used previously to 

chemically produce native-like CTX [15]. The addition of organic solvent or 

detergents has been reported to improve the oxidative yield of disulfide-rich 

cyclotides [29]. The peptides were therefore also oxidised in folding buffer containing 

10% (v/v) DMSO or 15% (v/v) isopropanol to explore the effect of additives on the 

folding of CTX. The ratio of oxidised (GSSG)/reduced (GSH) glutathione in the 

folding buffer was kept constant because this ratio has previously been used to obtain 

the native disulfide bond connectivity for CTX [15] and two related toxins [24, 25].  

The folding mixtures were analysed using analytical HPLC to characterise the yield 

of the oxidised peptides bearing the native-like disulfide bond connectivity. As 

illustrated in Figures 4A and 4F, oxidation of reduced CTX resulted in a defined 
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early-eluting peak that corresponded to a folded molecule with the correct disulfide 

bond connectivity, and this was confirmed by a proton chemical shift analysis using 

NMR (data not shown). The correctly folded CTX had an earlier elution time than its 

reduced form, consistent with the correct disulfide bond connectivity promoting the 

greater exposure of hydrophilic and polar residues. This result was found to be a 

general phenomenon, with the presence of an early-eluting peak being an indicator of 

a native-like structure having been formed. The area of the early-eluting peak formed 

after oxidation of CTX in the folding buffer, the folding buffer plus 10% (v/v) 

DMSO, and the folding buffer plus 15% (v/v) isopropanol was measured to be 60%, 

80% and 100%, respectively. The improved yield of the native-like peptide with the 

addition of DMSO or isopropanol suggests that organic solvents may encourage the 

exposure of some hydrophobic residues of CTX, thereby facilitating the formation of 

the correct disulfide bond connectivity. 

 

Oxidation of reduced CTX2 and CTX3 also produced a defined early-eluting peak in 

the folding buffer but the intensity of the peak was lower than that obtained for CTX 

in the same buffer. The area of the peak formed for CTX2 and CTX3, after oxidation, 

corresponded to 40% and 30%, respectively, compared to that of the corresponding 

reduced peptide, indicating that the folding process was affected by the removal of 

the associated disulfide bond (Figures 4B and 4C). Similar to what was observed for 

CTX, the presence of 10% (v/v) DMSO or 15% (v/v) isopropanol resulted in an 

improved yield of the early-eluting peak (Figures 4G and 4H). The area of the peak 

formed for CTX2 and CTX3, after oxidation, increased to 60% and 40%, 

respectively, in the presence of DMSO, and to approximately 60% and 80%, 

respectively, in the presence of isopropanol. CTX4 did not form a distinctive and high 
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yielding early-eluting peak, suggesting that non-native-like structures were favoured 

during folding (Figure 4D). Similar results were obtained for CTX5 in the folding 

buffer (Figure 4E), and for CTX4 and CTX5 in the folding buffer with 10% (v/v) 

DMSO or 15% (v/v) isopropanol (Figures 4I and 4J). 

 

Oxidised peptides were purified and their masses determined using mass 

spectrometry. The observed masses were consistent with the calculated masses of 

CTX and its analogues, which were 3993.6 Da and 3959.6 Da, respectively, 

confirming that the correct number of disulfide bonds had formed. After the oxidation 

of CTX3 in the presence of DMSO, an additional early-eluting peak with a mass of 

4572.2 Da was observed (Figure 4H, marked with an asterisk), which probably 

represents CTX3 attached to two glutathione molecules (MW = 612.6 Da). Covalent 

linkage of glutathione during oxidation was previously reported for charybdotoxin 

[25]. A mass spectrometry analysis of the chromatogram of the oxidation of CTX4 

and CTX5 identified the presence of an oxidised peptide mass at several different 

retention times, suggesting that multiple non-native-like disulfide bond connectivities 

had formed. CTX analogues contain six cysteine residues that can adopt 15 different 

oxidised disulfide species. The presence of multiple peaks during the folding process 

suggests that the native-like peptide is not the most favoured end product. Since the 

oxidation trials indicated that CTX4 and CTX5 did not efficiently oxidise into the 

native-like fold, we focussed on CTX2 and CTX3 in the subsequent conformational 

and stability studies. 

 

Conformational analysis 
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Circular dichroism (CD) spectra for proteins or peptides have particular signatures 

that reflect the secondary structure [30]. As shown in Figure 5, the CD spectrum of 

CTX showed both a positive maximum at around 190 nm and two negative minima at 

approximately 209 nm and 220 nm, indicating the presence of an α-helical secondary 

structure element. This result is consistent with the three dimensional structure of 

CTX where there is an α-helix spanning residues 12 to 19 (Figure 1). CTX2 and 

CTX3 displayed a similar spectrum to that of CTX, strongly suggesting that they 

adopted the native-like fold. For a peptide with a random coil structure, the CD 

spectrum should contain a positive maximum at around 212 nm and a negative 

minimum at 195 nm. CTX1 presents this signature (Figure 5, open rhombus), 

indicating that the disulfide bonds are important for stabilising the structure of CTX. 

Thus, we conclude that the overall structure of the analogues CTX2 and CTX3 is 

comparable to that of CTX but different to that of CTX1. It should be noted that 

although the CD spectra indicated that CTX2 and CTX3 had similar overall 

conformations compared to the native peptide, the 1H 1D spectra of both peptides 

indicated that there was significant conformational flexibility (Supplementary Figure 

1). Based on this observation, we postulate that removal of both Cys I-IV and II-VI 

bonds will have a significant destructive effect on conformation. 

 

Disulfide bond connectivity  

To confirm that the correct disulfide bond pairing had formed for CTX2 and CTX3, 

these peptides were partially reduced to generate a mixture of isoforms with some 

disulfide bonds reduced and the remainder oxidised. The mixtures were subjected to 

alkylation with NEM and subsequently analysed using mass spectrometry, identifying 

the presence of peptides with either two or four NEM-alkylated cysteines. Peptides 
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with a differing number of NEM modifications were separated using RP-HPLC and 

completely reduced using DTT and further subjected to a second alkylation with 

IAM. To facilitate their MS/MS characterization, the alkylated peptides were digested 

with trypsin to obtain smaller peptide fragments. The peptides that were analyzed by 

MS/MS are shown in Table 1 and Supplementary Figure 2. MS/MS sequencing of 

the CTX2 isoform containing two NEM-alkylated cysteines reveled that Cys II and 

Cys VI were alkylated with NEM, confirming that the disulfide bond Cys II-VI had 

formed correctly. Similarly, MS/MS analysis of CTX3 containing two NEM-

alkylated cysteines indicated that Cys I-IV had also formed correctly. For the CTX3 

derivative containing four NEM-alkylated and two carbamidomethyl cysteines, the 

NEM-alkylated cysteines were identified to be Cys I, Cys IV, Cys V, and Cys VIII, 

which is consistent with a Cys I-IV and Cys V-VIII connectivity, and the 

carbamidomethyl cysteines were Cys III and Cys VII. We were unable to isolate the 

CTX2 derivative containing four NEM-alkylated cysteines because it did not produce 

a defined peak during the partial reduction procedure (Supplementary Figure 3). 

Nonetheless, we concluded that CTX2 formed the correct disulfide bond connectivity 

based on the obtained MS data and the excellent agreement between the CD spectra 

of CTX, CTX2 and CTX3 (Figure 5). Thus, sequencing of the differentially alkylated 

derivatives of CTX2 and CTX3 indicated that the correct disulfide bond connectivity 

had formed. 

 

Stability of peptides 

CTX is a very stable peptide that can resist enzymatic proteolysis in vitro and in vivo 

[15]. To compare the relative stabilities of the analogues, CTX, CTX1, CTX2 and 

CTX3 were incubated in human serum (containing proteolytic enzymes), and in PBS 
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at 37°C and monitored over 24 h. As expected, PBS did not have an effect on peptide 

stability (data not shown). Consistent with a previous study [15], CTX displayed high 

stability, with around 80% of intact CTX remaining after 24 h incubation (Figure 

6A). Compared to CTX, CTX2 and CTX3 degraded rapidly, with less than 15% of 

the intact peptides remaining after 12 h. Figure 6A shows that CTX1 had the lowest 

stability of all peptides tested, as it had completely degraded after 3 h. 

 

Biological activity 

CTX can inhibit cell migration of HUVECs through a mechanism that may involve 

multiple pathways [3]. The biological activity of native CTX and its analogues were 

studied by measuring their ability to inhibit HUVEC migration. Firstly, we confirmed 

that CTX, CTX1, CTX2 and CTX3 were not toxic to HUVECs; CTX and CTX1 

showed no toxic effects up to a tested concentration of 200 µM, whereas CTX2 and 

CTX3 were not toxic up to a tested concentration of 75 µM (Supplementary Figure 

4). All peptides were then examined for their inhibitory effect on cell migration at 20 

µM in the presence of 0.3 nM vascular endothelial growth factor (VEGF), which 

acted as a chemoattractant. This peptide concentration was chosen based on a dose-

response curve that was performed for CTX (Supplementary Figure 5). CTX and its 

analogues were able to inhibit approximately 50% of cell migration induced by 

VEGF (Figure 6B). Surprisingly, CTX1, which is analogous to the completely 

reduced form of CTX, had inhibitory activity that was similar to the native peptide, 

suggesting that the three dimensional structure of CTX formed by the disulfide bonds 

is not required for the inhibitory effect on cell migration.  
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Discussion 

CTX forms a compact tertiary structure containing a highly cross-linked core 

composed of four disulfide bonds. In this study, we aimed to gain insights into the 

role of individual disulfide bonds on the structure and function of CTX, which would 

facilitate the design and development of optimised cancer drug leads based on the 

CTX scaffold. 

 

Role of disulfide bonds in the structure of chlorotoxin 

Our conformational analysis suggested that Cys I-IV and Cys II-VI can be removed 

without affecting the overall topology of CTX, highlighting the structural similarity 

between CTX and the α/β family of scorpion peptides. As mentioned in the 

introduction, the disulfide bonds Cys II-VI, Cys III-VII and Cys V-VIII of CTX are 

topologically similar to the disulfide bond configuration of the α/β family of scorpion 

toxins. Deletion of Cys I-IV resulted in a disulfide bond connectivity identical to that 

of the α/β family, which require only three disulfide bonds to form their native 

structures. Moreover, deletion of Cys II-VI of CTX, which corresponds to the first 

disulfide bond in the α/β motif, did not affect the overall structure of CTX. This 

behaviour has been reported for other α/β toxin family members, namely leiurotoxin I 

and charybdotoxin, where deletion of the first disulfide bond did not affect the overall 

structure [24, 25, 31]. In studies on leiurotoxin I and charybdotoxin, deletion of the 

second or third disulfide bonds was important for folding into a native structure. We 

observed a similar behaviour for CTX analogues; deletion of either Cys III-VII or 

Cys V-VIII in CTX, which correspond to the second and third disulfide bonds, 

respectively, in leiurotoxin I and charybdotoxin, had a significant impact on the 

ability of the peptides to fold into their native structure.  



18 

 

Analysis of the disulfide bond connectivity of native CTX indicates that it contains a 

cystine knot motif, with Cys V-VIII being a fourth and additional disulfide bond. 

However, the oxidative folding of CTX was significantly affected by the removal of 

Cys V-VIII. Thus, even though CTX may contain features of the cystine knot family, 

structurally it is more closely related to the α/β motif family. 

 

Role of disulfide bonds in stability 

CTX contains four disulfide bonds, and, as is typical for disulfide-rich peptides [20], 

is very stable against chemical and biological degradation both in vivo and in vitro 

[15]. When discussing the potential of CTX in drug design, its stability is one of the 

most attractive pharmacological features, as poor stability is a major limitation facing 

the development of peptides as drugs or drug scaffolds [32]. The high serum stability 

of CTX may be due to its highly compact fold, which is stabilised by the presence of 

four disulfide bonds, reducing exposure of its sequence to proteolytic attack. Our 

finding that CTX1, which contains no disulfide bonds, was rapidly degraded provides 

evidence to support the idea that a well-defined conformation is important for 

stability. Interestingly, CTX2 and CTX3 were both less stable than CTX, though they 

were able to maintain the native-like fold. This might be due to the fact that both 

lacked one disulfide bond compared to CTX, which could potentially introduce 

increased conformational flexibility and therefore increased accessibility to enzymatic 

proteolysis. This is consistent with reports of other disulfide rich peptides, where 

modification of the disulfide bond conformation affected stability [21, 28]. 

 

Role of disulfide bonds in activity 



19 

 

The biological activity of native CTX and its analogues was tested by measuring their 

ability to inhibit the migration of HUVECs. As shown in Figure 6B, all peptides 

were able to inhibit HUVEC migration. In the case of CTX2 and CTX3, the deletion 

of one disulfide bond does not result in any changes in the ability to inhibit 

angiogenesis, which was expected because CTX2 and CTX3 adopted a native-like 

conformation and we initially assumed that the activity of CTX was dependent on its 

tertiary structure. However, the reduced form, CTX1, which adopted a random coil 

structure, was also found to inhibit the migration of HUVECs with a similar potency 

as CTX, suggesting that a well-defined native-like fold is not required for the 

inhibitory activity and that it is, in fact, the primary structure which is important. It is 

therefore tempting to speculate that the activity of CTX against cell migration does 

not involve a specific cell receptor.  

 

Our work contrasts with some aspects of a study on charybdotoxin, which 

demonstrated that its disulfide bond arrangement is important to maintain activity of 

the peptide [25]. The observed uncoupling between structure and activity for CTX 

with respect to cell migration inhibitory activity might not apply to other activities: in 

nature, the function of CTX is to subdue a target prey or organism and in that role, the 

disulfide bonds might be vital. On the other hand, our results are consistent with a 

recent study on a θ-defensin, a three disulfide-bond peptide from leukocytes of rhesus 

macaques, which showed that its disulfide bonds are not important for its anti-

bacterial activity [28]. From a drug design perspective, it is worth noting that the 

migration assay was performed in a serum-free environment, i.e., no peptidases were 

present to degrade the peptides. Therefore, in an in vivo setting, the higher stability of 
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CTX (compared to that of CTX1) would probably translate to higher effective 

inhibitory activity.  

 

Cyclisation to improve stability 

Our study showed that for CTX, three disulfide bonds are sufficient to produce a 

native-like structure. Cys III-VII and Cys V-VIII are critical for the formation of a 

folded peptide, whereas Cys I-IV and Cys II-VI are not required for maintaining the 

overall fold. This is a significant finding because the reduced chemical complexity of 

a CTX analogue containing only three disulfide bonds, compared to the four-disulfide 

bond CTX, may be more favourable for large-scale industrial production. However, it 

is important to note that the deletion of one disulfide bond does significantly affect 

the stability of the peptide. We postulate that this reduced stability might be reversed 

through backbone cyclisation, based on the fact that cyclisation can reduce the 

accessibility of terminal amino acids to serum peptidases and enhance conformational 

rigidity [33, 34]. Although cyclisation might potentially complicate production of 

CTX analogues, modern chemical and biochemical approaches (e.g. enzyme-

mediated methods [35, 36] facilitate efficient synthesis of cyclic peptide derivatives. 

Backbone cyclisation has been applied to the native CTX to improve serum stability 

by around 20%, [15] as well as other disulfide-rich peptides [23, 37, 38]. In some 

cases, cyclisation can also improve the potency of the peptide; for example, 

cyclisation of gomesin, an 18-residue cysteine-rich peptide from the spider 

Acanthoscurria gomesiana, improved its toxicity against cancer cells [23] as well as 

its antimalarial activity [23].  

 

CTX as a scaffold for drug design 
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Primary structure comparison of CTX with other small scorpion toxins containing the 

α/β structural motif indicates that the only conserved amino acids are the six cysteines 

that form the motif [25]. The α/β motif can tolerate multiple sequence combinations, 

indicating that we should be able to modify the sequences between the cysteines of 

the α/β motif without losing the overall structure. Thus, CTX is potentially a valuable 

scaffold for incorporation of biologically-active peptide epitopes, such as those with 

antitumor  or anti-angiogenesis activity into its sequence using an approach called 

molecular grafting to combine the favourable pharmacological features of CTX (i.e. 

stability and binding specificity to cancer cells) with the activity of the peptide 

epitope. This approach has been successfully used to design stable disulfide-rich 

peptides that have potent activity in animal models of chronic diseases [19, 27, 39, 

40]. 

 

In conclusion, our study has shown that for CTX, three disulfide bonds are necessary 

and sufficient to produce a native-like structure. The bonds formed by Cys III-VII and 

Cys V-VIII are essential for correct peptide folding; whereas, those formed by Cys I-

IV and Cys II-VI can be removed without affecting the structure, though their 

removal significantly alters the stability of the peptide. Finally, we have shown that 

the disulfide bonds are not necessary for CTX to exert its inhibitory action on cell 

migration. 
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Future perspective 

In recent years there has been increased interest in the development of peptides as 

therapeutics. In general, this is because peptides offer better selectivity and potency 

compared to small molecules, as well as potentially fewer side effects [20]. Despite 

these advantages, peptides still face the significant challenges of poor stability and 

bioavailability. CTX could be an excellent scaffold peptide to try to overcome these 

challenges, as it is highly stable. Our data suggest that significant changes to the 

sequence of CTX, without affecting the overall conformation, might be possible. 

CTX has a natural ability to preferentially bind to cancer cells and therefore has 

significant potential in cancer drug development. 

 

Executive summary 

Role of disulfide bonds in the structure of chlorotoxin 

Two specific pairings are important to form the native-like structure of CTX. The 

cystine pairs Cys I-IV and Cys II-VI can be removed without significantly affecting 

the structure of CTX. However, cystine pairs Cys III-VII and Cys V-VIII are 

important for forming the native structure. 

 

Role of disulfide bonds in stability 

Although CTX is a very stable peptide, it needs all four disulfide bonds to prevent it 

from being susceptible to protease degradation. When a single disulfide bond is 

lacking, stability is reduced. 

 

Role of disulfide bond in activity 
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The ability of CTX to inhibit HUVEC migration does not depend on the native 

disulfide bond connectivity stabilising the tertiary structure because the reduced form 

is able to inhibit HUVEC migration with a similar potency to native CTX.  
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Key terms 

Peptide: A short chain of amino acids (usually fewer than 50 residues). 

 

Glioma: A type of aggressive malignant brain tumour.  

 

Anti-angiogenesis: The physiological ability to inhibit the growth of new blood 

vessels from pre-existing vessels.  

 

Disulfide bond: A covalent bond, derived by the coupling of two thiol groups. 

 

α/β motif: A structural motif characterised by an α-helix and a triple-stranded 

antiparallel β-sheet stabilised by three or four disulfide bonds. 

 

Cyclotides: Plant-derived disulfide-rich peptides characterised by a head-to-tail 

cyclised backbone together with a cystine knot motif. 
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Figure captions  

 

Figure 1. Three-dimensional structure and amino acid sequence of CTX. A. The 

amino acid sequence of CTX. The disulfide connectivities are shown using solid lines 

and the cysteine residues are labelled using Roman numerals from I to VIII. B. 

Schematic representation of CTX (PDB code 1CHL). The disulfide bonds are shown 

in stick format and the cysteine residues are labelled using Roman numerals from I to 

VIII.  

 

Figure 2. Structure and sequences of selected peptides containing an α/β motif or 

a cystine knot motif. A. Sequence alignment of CTX with iberotoxin, a small 

scorpion toxin characterised by three disulfide bonds that belongs to the α/β family. 

The disulfide bond connectivities are shown as solid black lines and the cysteine 

residues are labelled using Roman numerals from I to VIII. The ‘outlier’ disulfide 

connectivity that differs between the two molecules is shown on the CTX sequence. 

B. Sequence alignment of CTX with kalata B1, which comprises a cystine knot motif. 

The disulfide bond connectives are shown as solid black lines and the cysteine 

residues are labelled using Roman numerals from I to VIII. The ‘outlier’ disulfide 

connectivity that differs between the two molecules is shown on the CTX sequence. 

The cyclic backbone of kalata B1 is shown at the bottom of the sequence by a dashed 

black line that joins both ends of the molecule. 
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Figure 3. Amino acid sequences of CTX and analogues. The cystine pairings are 

shown using solid black lines. Cysteine residues that were replaced by Abu (α-

aminobutyrate) are represented with an X. 

 

Figure 4. Analytical RP-HPLC profiles of reduced and oxidised native CTX and 

its analogues. Panels A to E (CTX, CTX2, CTX3, CTX4, and CTX5) illustrate CTX 

and its analogues folded in 0.1 M Tris pH 7.8/0.2 M NaCl, 5 mM/0.5 mM 

GSH/GSSG). Black and pink traces correspond to reduced and oxidised peptides, 

respectively. Panels F to J (CTX, CTX2, CTX3, CTX4 and CTX5) ) illustrate CTX 

and its analogues folded in the same condition as panels A to E, with the addition of 

15% (v/v) isopropanol (brown trace) and 10% (v/v) DMSO (blue trace). The asterisk 

indicates a disulfide bond isomer mixed with glutathione. 

 

Figure 5. Circular dichroism spectra of CTX and its analogues. Spectra were 

recorded at room temperature in 2 mM Tris buffer, pH 7.4. [θ] corresponds to molar 

ellipticity. 

 

Figure 6. Serum stability and migration activity of native CTX and its 

analogues. A. Degradation of CTX and analogues peptides in human serum after 24 

h. B. Effect of native CTX and its analogues on HUVEC migration. VEGF acts as a 

positive control with 100% HUVECs migration. All peptides were tested at 20 µM. 

The data is shown as mean and standard deviation of triplicate measurements from a 

combination of three independent experiments. Statistical analyses using one way 
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ANOVA showed that the activities of CTX1, CTX2 and CTX3 were not significantly 

different to that of the native parent peptide. However when compared to the positive 

control (VEGF), these analogues were significant different with p-value < 0.05.  
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Figure 1. 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Table 1.Sequences and masses of alkylated peptides of CTX2 and CTX3 that were analysed 

by MS/MS. 

Peptide Sequence M (Da) m/z values 
observed 

CTX2+2NEM MXMPCNFTTDHQMARKCDDXCGGKGRGKCNYGPQCLCR 4215.6 
1054.94+, 
843.55+, 
703.76+ 

CTX3+2NEM MCNMPXFTTDHQMARKCDDCNCGGKGRGKXYGPQCLCR 4215.6 
1054.94+, 
843.55+, 
703.76+ 

CTX3+4NEM MCNMPXFTTDHQMARKCDDCNCNGGKGRGKXYGPQCLCNR 4443.6 - 

CTX3+4NEM+
2CAM 

MCNMPXFTTDHQMARKCCDDCNCNGGKGRGKXYGPQCCLCNR 4579.6 - 

CTX3+4NEM+
2CAM/digest 

XYGPQCCLCNR 1205.4 603.72+ 

CTX3+4NEM+
2CAM/digest 

KCCDDCNCNGGK 1234.3 618.12+ 

CC:Carbamidomethylcysteine. CN: Cysteine alkylated with NEM. X:α-aminobutyric acid. 
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