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Variation in body iron is associated with or causes diseases, including anaemia and iron overload. Here, we

analyse genetic association data on biochemical markers of iron status from 11 European-population studies, with

replication in eight additional cohorts (total up to 48,972 subjects). We find 11 genome-wide-significant

(Po5� 10� 8) loci, some including known iron-related genes (HFE, SLC40A1, TF, TFR2, TFRC, TMPRSS6) and

others novel (ABO, ARNTL, FADS2, NAT2, TEX14). SNPs at ARNTL, TF, and TFR2 affect iron markers in HFE C282Y

homozygotes at risk for hemochromatosis. There is substantial overlap between our iron loci and loci affecting

erythrocyte and lipid phenotypes. These results will facilitate investigation of the roles of iron in disease.
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A
bsorption, transport and storage of iron are tightly
regulated, as expected for an element, which is both
essential and potentially toxic. Iron deficiency is the

leading cause of anaemia1, and it also compromises immune
function2 and cognitive development3. Iron overload damages the
liver and other organs in hereditary hemochromatosis4, and in
thalassaemia patients with both transfusion and non-transfusion-
related iron accumulation5. Excess iron has harmful effects in
chronic liver diseases caused by excessive alcohol, obesity or
viruses6. There is evidence for involvement of iron in
neurodegenerative diseases7–9 and in Type 2 diabetes10,11.
Variation in transferrin saturation, a biomarker of iron status,
has been associated with mortality in patients with diabetes12 and
in the general population13. All these associations between iron
and either clinical disease or pathological processes make it
important to understand the causes of variation in iron status.
Importantly, information on genetic causes of variation can be
used in Mendelian randomization studies to test whether
variation in iron status is a cause or consequence of disease14,15.

We have used biomarkers of iron status (serum iron,
transferrin, transferrin saturation and ferritin), which are
commonly used clinically and readily measurable in thousands
of individuals, and carried out a meta-analysis of human genome-
wide association study (GWAS) data from 11 discovery and eight
replication cohorts. These phenotypes show significant herit-
ability in normal adults16,17, and previous population-based
studies have identified relevant single-nucleotide polymorphisms
(SNPs) and gene loci (HFE, TF, TFR2 and TMPRSS6 (refs 18,19))
for iron status biomarkers. HFE and TMPRSS6 have also been
shown to affect red cell count, haemoglobin and erythrocyte
indices20, most likely by affecting iron availability20–22.

Our aims were to identify additional loci affecting markers of
iron status in the general population and to relate the significant
loci to information on gene expression to identify relevant genes.
We also made an initial assessment of whether any such loci
affect iron status in HFE C282Y homozygotes, who are at genetic
risk of HFE-related iron overload (hereditary hemochromatosis
type 1, OMIM #235200).

Combination of results from discovery and replication stages of
our analysis shows significant effects on one or more of the iron
biomarkers at 11 loci. Those primarily affecting serum iron and
transferrin saturation include, or are close to, genes whose
products have recognized roles in iron homeostasis; HFE (the
haemochromatosis gene), TMPRSS6 (transmembrane protease,
serine 6) and TFR2 (transferrin receptor 2). Those mainly
affecting serum transferrin, apart from the TF (transferrin) gene
itself and TFRC (transferrin receptor), and those mainly affecting
ferritin (apart from SLC40A1, solute carrier family 40 (iron-
regulated transporter), member 1) are unexpected. There is a
significant overlap between the genes or loci affecting iron
biomarkers and those known to affect erythrocyte numbers or
size, which is reasonable given the importance of iron for
erythropoesis. We also find significant overlap between genes or
loci affecting iron biomarkers and known loci affecting plasma
lipids or lipoproteins, showing an unexplained link between these
areas of metabolism.

Results
SNP and gene associations. The combination of allelic associa-
tion data from 11 discovery and eight replication cohorts
(Supplementary Tables 1–3) showed 11 loci with significant
effects on one or more of the iron-related phenotypes (Table 1,
Fig. 1, Supplementary Figs 1 and 2, Supplementary Table 4). Four
of these (HFE, TF, TFR2, TMPRSS6) were previously known to
affect iron biomarker variation in the general population18,19.

Genes at two newly significant loci, SLC40A1, which codes for the
cellular iron exporter ferroportin and TFRC, which codes for the
iron importer transferrin receptor 1, are known to be important
for cellular iron homeostasis23. The other five loci (chromosome 8
at 18.3 Mbp, nearest gene NAT2; chromosome 9 at 136.2 Mbp,
nearest gene ABO; chromosome 11 at 13.4 Mbp, nearest gene
ARNTL; chromosome 11 at 61.6 Mbp, nearest gene FADS2;
chromosome 17 at 54.1 Mbp, nearest gene TEX14) were not
previously known to affect any of these phenotypes. These affect
either transferrin (NAT2, ARNTL, FADS2) or ferritin (ABO,
TEX14).

Conditional analysis on the discovery cohorts (Table 1,
Supplementary Fig. 4) showed additional independent signals at
the TF locus for transferrin and transferrin saturation and at
TMPRSS6 for iron. Gene-based analysis in the discovery cohort
(Supplementary Table 5) gave significant results (critical P-value
for testing of 17,000 genes o3� 10� 6) for ferritin in a region
covering two genes (C15orf43 and SORD) on chromosome 15,
where individual SNPs gave only suggestive associations. Allelic
associations across this region are also shown in Supplementary
Fig. 2. This locus did not show any SNPs with genome-wide
significance in the combined discoveryþ replication data.

In the replication cohorts, the lead SNPs at the 11 significant
loci explained 3.4, 7.2, 6.7 and 0.9% of the phenotypic variance for
iron, transferrin, saturation and (log-transformed) ferritin,
respectively. Allelic association results for all SNPs tested will
be available from http://genepi.qimr.edu.au/.

Secondary analyses. In view of the known association between
ferritin concentration and inflammatory conditions, we repeated
the discovery meta-analysis of ferritin including C-reactive pro-
tein (CRP, a marker of inflammation) as a covariate. This resulted
in a decrease in effect sizes (expressed as standardized regression
slopes or betas in an additive-allelic-effect model) for the lead
SNPs at significant and suggestive loci, to an average of 73% (s.d.
15%) of the previous betas (Supplementary Fig. 5). The P-values
became less significant, partly because of the decrease in effect
size and partly because the number of subjects with CRP data was
less than the number available for the initial analysis.

To check whether results were similar after excluding people
with iron deficiency, we removed subjects with serum ferritin
concentration below 30mg l� 1 and repeated the meta-analyses
for all four phenotypes. This decreased effect sizes for transferrin
and transferrin saturation, but had negligible effects for SNPs,
which were significant or suggestive for ferritin or iron compared
with those from the all-subjects analysis (Supplementary Table 6).

We also examined the association between serum transferrin
concentration and FADS2 variation. Because this gene is known
to be associated with other phenotypes related to lipids and
components of the metabolic syndrome, we included high-
density lipoprotein cholesterol (HDL-C) as a covariate and
repeated the association meta-analysis for transferrin and the
most significant SNP at the FADS2 locus, rs174577. (HDL-C was
chosen because it was available for a greater proportion of
subjects than either triglycerides or glucose, which are also
associated with FADS polymorphisms.) This conditional analysis
resulted in a 35% reduction in the effect size for this SNP, from
b¼ 0.068±0.011 to 0.044±0.009.

Effects on gene expression and regulation. We next checked for
data that may help explain the biological role of the significant
SNPs or identify the causal variants which they tag, using sources
listed in Methods. The synthesis of information from our results
and external sources is exemplified in Fig. 2, which shows the
alignment of data at the TFR2 locus. The region that includes
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Table 1 | Results from discovery, discovery and replication, and conditional analyses.

CHR SNP BP (Build 37) Nearest
Gene(s) *

A1w A2 Freq A1 Phenotype Beta s.e. P-value

2 rs744653 190,378,750 WDR75–SLC40A1 T C 0.854 Iron D �0.002 0.014 0.902
Dþ R 0.004 0.010 0.702

Transferrin D 0.092 0.014 2.00� 10� 10

Dþ R 0.068 0.010 1.35� 10� 11

Saturation D �0.037 0.014 0.0087
Dþ R �0.028 0.011 0.0084

Ferritin (log) D �0.098 0.013 1.20� 10� 13

Dþ R �0.089 0.010 8.37� 10� 19

3 rs8177240 133,477,701 TF T G 0.669 Iron D �0.073 0.011 2.37� 10� 12

Dþ R �0.066 0.007 6.65� 10� 20

Transferrin D �0.423 0.011 3.82� 10� 340

Dþ R �0.380 0.007 8.43� 10�610

Saturation D 0.097 0.011 5.85� 10� 20

Dþ R 0.100 0.008 7.24� 10� 38

Ferritin (log) D 0.028 0.010 0.0050
Dþ R 0.021 0.007 0.0039

3 rs9990333 195,827,205 TFRC T C 0.460 Iron D 0.021 0.010 0.030
Dþ R 0.017 0.007 0.014

Transferrin D �0.067 0.010 3.01� 10� 11

Dþ R �0.051 0.007 1.95� 10� 13

Saturation D 0.049 0.010 7.37� 10� 7

Dþ R 0.039 0.007 7.28� 10� 8

Ferritin (log) D 0.002 0.009 0.829
Dþ R 0.001 0.007 0.878

6 rs1800562 26,093,141 HF E (C282Y) A G 0.067 Iron D 0.372 0.020 3.96� 10� 77

Dþ R 0.328 0.016 2.72� 10� 97

Transferrin D �0.550 0.021 1.26� 10� 153

Dþ R �0.479 0.016 8.90� 10� 196

Saturation D 0.577 0.020 1.52� 10� 178

Dþ R 0.577 0.016 2.19� 10� 270

Ferritin (log) D 0.211 0.019 1.43� 10� 29

Dþ R 0.204 0.016 1.54� 10� 38

6 rs1799945 26,091,179 HFE (H63D) C G 0.850 Iron D �0.190 0.014 1.65� 10�42

Dþ R �0.189 0.010 1.10� 10� 81

Transferrin D 0.119 0.014 5.59� 10� 17

Dþ R 0.114 0.010 9.36� 10� 30

Saturation D �0.228 0.014 2.98� 10�60

Dþ R �0.231 0.010 5.13� 10� 109

Ferritin (log) D �0.059 0.013 7.38� 10�6

Dþ R �0.065 0.010 1.71� 10� 10

7 rs7385804 100,235,970 TFR2 A C 0.621 Iron D 0.055 0.010 7.19� 10�8

Dþ R 0.064 0.007 1.36� 10� 18

Transferrin D �0.009 0.011 0.396
Dþ R �0.003 0.007 0.728

Saturation D 0.054 0.010 1.79� 10� 7

Dþ R 0.054 0.008 6.07� 10� 12

Ferritin (log) D 0.022 0.010 0.0255
Dþ R 0.015 0.007 0.039

8 rs4921915 18,272,466 NAT2 A G 0.782 Iron D �0.009 0.012 0.477
Dþ R 0.004 0.009 0.633

Transferrin D 0.082 0.012 1.74� 10� 11

Dþ R 0.079 0.009 7.05� 10� 19

Saturation D �0.034 0.012 0.0041
Dþ R �0.026 0.009 0.0036

Ferritin (log) D �0.006 0.011 0.603
Dþ R 0.001 0.009 0.886

9 rs651007 136,153,875 ABO T C 0.202 Iron D �0.012 0.013 0.358
Dþ R �0.004 0.009 0.611

Transferrin D 0.017 0.013 0.188
Dþ R �0.001 0.009 0.916

Saturation D �0.020 0.013 0.110
Dþ R �0.006 0.009 0.498

Ferritin (log) D �0.060 0.012 2.54� 10� 7

Dþ R �0.050 0.009 1.31� 10�8
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genome-wide-significant SNPs (after replication) for serum iron
contains documented eQTLs for TFR2, and H3K27Ac histone
modification sites (documented in data from ENCODE). In this
case, there is striking alignment at the region around 100.2 Mbp
at one end of the TFR2 gene, which includes the most significant
SNPs at this locus, documented eQTLs for this gene, and the
histone modification in K562 (erythroleukaemia) cells.

A similar approach was taken for the other significant loci, as
summarized in Supplementary Table 7. SNPs identified through
the GWAS had significant cis-effects on expression of SLC40A1,
TFRC, ARNTL and FADS1/FADS2. At the C15orf43-SORD
locus on chromosome 15, rs16976620 (allelic association
with ferritin P¼ 4.52� 10� 7) affected expression of SORD at
P¼ 4.02� 10� 4. The chromosome 22 region near TMPRSS6
contains eQTLs for the hepatic expression of TMPRSS6 (ref. 24).
However, the chromosome 3 locus near TF contains eQTLs for
SRPRB but not for TF; and SNPs at the loci identified as TFR2,
ABO and TEX14 are eQTLs for multiple other genes. The
ENCODE regulatory data show potential regulatory sequences or
histone marks in the regions where we found SNP associations on

chromosome 2 near SLC40A1, chromosome 11 near the FADS
genes, and at the chromosome 17 locus near TEX14.

Some lead SNPs from our significant loci also showed trans-
effects on more distant genes (Supplementary Table 7). Most
notably, the three non-synonymous coding SNPs in HFE and
TMPRSS6 (rs1800562, rs1799945 and rs855791) had strong effects
on expression of ALAS2 (aminolevulinate, delta-, synthase 2), which
catalyses the initial step in haem synthesis in erythroid tissues.

Overlap with other phenotypes and disease associations.
Because of previous data showing that iron-related loci overlap
with loci affecting erythrocyte phenotypes, and because several of
our significant loci have been reported to affect lipid phenotypes,
we compared our results against published meta-analysis data
on erythrocytes and lipids. Results are summarized in
Supplementary Table 8. Among the 75 significant loci for
erythrocyte phenotypes25, we found associations with one or
more of our iron phenotypes after Bonferroni correction for
multiple testing at Po6.7� 10� 4 (Po0.05 adjusted for testing of

Table 1 (Continued)

CHR SNP BP (Build 37) Nearest
Gene(s) *

A1w A2 Freq A1 Phenotype Beta s.e. P-value

11 rs6486121 13,355,770 ARNTL T C 0.631 Iron D 0.001 0.010 0.898
Dþ R �0.009 0.007 0.202

Transferrin D �0.056 0.011 1.04� 10� 7

Dþ R �0.046 0.007 3.89� 10� 10

Saturation D 0.026 0.010 0.0132
Dþ R 0.015 0.008 0.048

Ferritin (log) D 0.012 0.010 0.2298
Dþ R 0.006 0.007 0.424

11 rs174577 61,604,814 FADS2 A C 0.330 Iron D 0.003 0.011 0.785
Dþ R 0.001 0.007 0.878

Transferrin D 0.068 0.011 1.90� 10� 10

Dþ R 0.062 0.007 2.28� 10� 17

Saturation D �0.023 0.011 0.029
Dþ R �0.025 0.008 0.0016

Ferritin (log) D �0.020 0.010 0.040
Dþ R �0.012 0.007 0.098

17 rs411988 56,709,034 TEX14 A G 0.564 Iron D �0.007 0.010 0.4673
Dþ R �0.002 0.007 0.770

Transferrin D 0.033 0.010 0.0012
Dþ R 0.014 0.007 0.052

Saturation D �0.021 0.010 0.036
Dþ R �0.012 0.007 0.115

Ferritin (log) D �0.049 0.009 1.28� 10� 7

Dþ R �0.044 0.007 1.59� 10� 10

22 rs855791 37,462,936 TMPRSS6 (V736A) A G 0.446 Iron D �0.187 0.010 4.31� 10� 77

Dþ R �0.181 0.007 1.32� 10� 139

Transferrin D 0.040 0.010 0.00013
Dþ R 0.044 0.007 1.98� 10� 9

Saturation D �0.192 0.010 3.50� 10�80

Dþ R �0.190 0.008 6.41� 10� 137

Ferritin (log) D �0.051 0.010 5.81� 10�8

Dþ R �0.055 0.007 1.38� 10� 14

Conditional analysis
3 rs8177179 133,463,457 TF A G 0.521 Transferrin D �0.154 0.010 2.74� 10�49

3 rs1799852 133,475,722 TF (L247L) T C 0.098 Saturation D 0.110 0.019 7.13� 10� 9

22 rs228916 37,505,552 TMPRSS6 T C 0.875 Iron D �0.086 0.016 2.94� 10�8

CHR, chromosome; SNP, single-nucleotide polymorphism.
For each SNP and phenotype, results are given for the Discovery cohorts only (D, N¼ 23,986) and for the combined Discovery and Replication cohorts (Dþ R, N¼48,972). P-values are from meta-
analysis of covariate-adjusted standardized regression coefficients of phenotypic values on the allele count for A1.
*Where the SNP is a coding variant, the amino acid change is also shown.
wA1 is the effect allele for each SNP in the association analysis.
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75 SNPs) for ABO, HFE, TFR2, TFRC and TMPRSS6, and
additionally for HBS1L (P¼ 9.78� 10� 7 for transferrin
saturation) and PGS1 (P¼ 1.84� 10� 4 for ferritin). For the
157 lipid loci reported by the Global Lipids Genetics
Consortium26, two loci (HFE and HBS1L) gave Po3.18� 10� 4

(Po0.05 adjusted for testing of 157 loci) for iron and saturation,
six (FADS1/2/3, GCKR, HFE, NAT2, SNX5 and TRIB1) for
transferrin, and six (ABO, HFE, LOC84931, LRP1, PGS1 and
TRIB1) for ferritin. Moreover, plots of observed versus expected
P-value distributions for the iron phenotypes (Fig. 3) showed that
even the erythrocyte and lipid loci not reaching statistical sig-
nificance do affect iron biomarkers to a greater degree than can be
explained by chance.

The SNP association results were also analysed using Ingenuity
Pathway Analysis, selecting SNPs, which showed associations at
Po0.01, o0.001 and o0.0001 for transferrin saturation, and
similarly for ferritin. Results for these two phenotypes, chosen as
markers of iron availability and iron stores, showed substantial
overlap. The Po0.01 threshold identified an excess of genes that
have been reported to affect or be associated with lung cancer,
cardiovascular disease and diabetes; and also with a range of
developmental and nerve cell functions (Supplementary Fig. 6).

Results for the Po0.001 threshold were similar but showed lesser
statistical significance, as expected because of the smaller number
of genes included.

Effects on iron status in HFE C282Y homozygotes. We tested
whether the lead SNPs at loci that affect iron-related biomarkers
in the general population also explain variation in iron status in
C282Y homozygotes who are at genetic risk of HFE-related iron
overload. These comprised 76 homozygotes from the QIMR
Adult cohort (one of the discovery cohorts), plus 277 homo-
zygotes from the HEIRS study27. Results are shown in Table 2 for
significant associations, and more fully in Supplementary Table 9.

The strong association between rs8177240 in the TF gene and
serum transferrin was clearly present in HFE YY homozygotes
(P¼ 1.93� 10� 9). The YY group showed association between
serum iron and rs7385804 at TFR2 (b¼ 0.178±0.053,
P¼ 0.00076, critical P-value¼ 0.005 after adjusting for testing
of ten loci). The standardized beta for this SNP was approxi-
mately three times as great in the YY sample as in the overall
meta-analysis (0.178±0.053 against 0.055±0.010). There was
also a significant association (P¼ 0.0022) between rs6486121 in
ARNTL and ferritin. When we checked for associations between a
genetic risk score calculated from the significant and suggestive
SNPs in the population-based meta-analysis results, and the
biomarker phenotypes in the HEIRS sample, only transferrin
showed a significant association and this was stronger among the
men than the women (Supplementary Table 10).

Discussion
Our meta-analysis of GWAS on iron-related phenotypes from up
to 48,000 people of European descent showed multiple significant
associations. Some increased the significance of loci known from
previous studies or showed significant associations with addi-
tional phenotypes (TF, TFR2, HFE, TMPRSS6); some were at loci
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containing genes whose products have known roles in iron
homeostasis, including the transferrin receptor TFRC and the
iron transporter ferroportin (SLC40A1); and others were novel
(near to ARNTL, FADS2 and NAT2 for transferrin, ABO and
TEX14 for ferritin). Significant associations were found for
biomarkers of iron status that reflect both cellular iron
metabolism and systemic regulation of iron23.

There was variation in the phenotypes affected by the
significant loci, as summarized in Supplementary Fig. 3. Three
of the loci mainly affected serum ferritin (ABO, SLC40A1, TEX14);
three others mainly affected serum iron and transferrin saturation
(HFE, TFR2, TMPRSS6); and five mainly affected serum
transferrin (ARNTL, FADS2, NAT2, TF and TFRC). The loci with
the strongest effects on serum iron (HFE, TMPRSS6) had
significant, but smaller, effects on serum ferritin and it is likely
that this is due to higher circulating concentrations of iron leading
over time to higher iron stores and hence higher serum ferritin.

We note that there are factors that can modify the relation-
ships between these biomarker phenotypes and whole-body or
tissue-specific iron status. Ferritin has been criticized as a marker
of iron stores because it is an acute-phase protein increased by
inflammation, but comparisons with independent methods28,29

have validated it sufficiently for use in epidemiological studies.
Moreover, the loci that affected ferritin in this study have not
been reported in GWAS for inflammatory biomarkers or CRP30,
and SLC40A1, which showed a highly significant association with
ferritin, has strong biological plausibility because it codes for
ferroportin. Including CRP as a covariate in the ferritin
association analysis changed the effect size similarly for all the
significant or suggestive SNPs (Supplementary Fig. 5), whereas
effects related to both inflammation and iron status would be
expected to alter betas for some SNPs and not others.

We also note that matching of significant loci to genes is
subject to uncertainty. For some, the location of the peak
association close to a gene with a known and relevant
physiological function gives confidence in the gene assignment.
For others, data from previous reports or databases on association
between SNPs and gene expression will identify a probable gene,
but in other cases expression data are consistent with any of
several genes or else no relevant data are available. If so, the name
of the nearest gene may be provided for identification of the locus
but this may require revision as more information becomes
available.

Five confirmed loci contain genes (TF, TFR2, HFE, TMPRSS6,
SLC40A1) that were already known to affect iron homeostasis.
These genes have been previously identified via monogenic
diseases or from functional studies. Interestingly, no association
has been identified with genes for several other important players
in iron homeostasis such as ferritin, the protein that safely stores
excess iron, or hepcidin and hemojuvelin, which are essential in
the hepcidin signalling pathway and when mutated cause severe
juvenile-onset hemochromatosis (type 2A, 2B). Mutations at the
loci identified cause late-onset (HFE, type 1) or less severe (TFR2,
type 3 and SLC40A1, type 4A) hemochromatosis.

SNPs at HFE and TMPRSS6 that mainly affect iron and
transferrin saturation showed interesting trans-effects on gene
expression for ALAS2. As this gene is on the X chromosome
and we only analysed GWAS data for autosomes, we do not
know whether ALAS2 variation affects our phenotypes. However,
ALAS2 activity controls the initial and rate-limiting step
in porphyrin synthesis so a co-ordinated effect on both iron
and protoporphyrin availability for formation of haem is an
interesting possibility.

SLC40A1 is a prime candidate for affecting iron stores, as it
codes for ferroportin and mutations in this gene are associated
with the autosomal dominant type 4 hemochromatosis, char-
acterized by high ferritin levels. The most significant SNPs near
SLC40A1 in our study are about 45 and 60 kbp from the gene, but
are known to affect SLC40A1 expression. Variation near SLC40A1
also affects transferrin, probably through an effect on cellular iron
availability.

Genome-wide studies of erythrocyte traits known to vary with
iron status20–22,25 have previously found associations with many
of these loci: erythrocyte volume (MCV) and haemoglobin
content (MCH) with HFE, TFR2, TFRC and TMPRSS6;
haematocrit with HFE, TFR2, and TMPRSS6; and erythrocyte
count with TFR2 (ref. 25). The results for our iron data at loci
known to affect erythrocyte phenotypes are illustrated in Fig. 3a;
an unexpectedly high proportion of them affect iron, transferrin
and ferritin.

New associations were found for ferritin near ABO and TEX14.
The ABO blood group locus has shown significant associations
for several phenotypes; rs651007 has a particularly strong effect
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on E-selectin31 and has also been found in GWAS on low-density
lipoprotein cholesterol32, coronary artery disease33 and red blood
cell count25. The latter is relevant to our ferritin finding, but
whether ABO variation primarily affects iron stores and therefore
erythrocyte count, or vice versa, is unclear.

TEX14 codes for a testis-expressed protein, but there was no
evidence for male–female heterogeneity in the effect on ferritin
(pHet for the lead SNP, rs368243, was 0.45). The most significant
SNPs are within the TEX14 gene but the suggestive-significance
region extends across other genes. Expression data suggest that
variation affecting RAD51C may be important, but the function of
this gene (in DNA repair and meiosis) also has no obvious
connection with iron status. The same holds for SEPT4, for
which rs411988 is an expression QTL. Another gene within the
LD block, MTMR4, deserves consideration because it changes
SMAD phosphorylation, with possible effects on the BMP-SMAD
pathway affecting control of hepcidin34. The region on
chromosome 15 identified in the gene-based analysis is centred
on C15orf43 but also overlaps with SORD (sorbitol
dehydrogenase). SORD has no obvious connection with iron
status and the function of the protein coded by C15orf43 is
unknown, although there is some evidence that it is present in
human plasma (http://pax-db.org/#!protein/986968, accessed
2014-03-27). These two loci illustrate the difficulty, which may
be encountered in interpreting allelic associations; in some cases,
the region containing the most significant results overlaps with
several genes, there may be unrecognized regulatory regions with
effects on more distant genes, and data on gene expression may
not reflect expression in the relevant tissue. For all these reasons,
assignment of significant effects to specific genes must often be
provisional.

Effects on transferrin were seen for most of the loci, which
affect serum iron, including HFE, TF, TFRC, and TMPRSS6.
Contrary to the result for TFRC, variation at the other transferrin
receptor gene TFR2 did not affect transferrin concentration; this
may reflect the different functions of the two receptors. TfRC is
involved in cellular iron uptake, which may directly affect the
regulation of transferrin expression. TfR2 on the other hand has
been reported to be involved in hepatocyte sensing of circulating
iron and signalling to hepcidin production, which may subse-
quently affect circulating levels of iron and the transferrin
saturation. TfR2 variation could also affect these iron parameters
through its effect on erythropoiesis35.

Transferrin was also affected by SNPs near ARNTL, NAT2 and
FADS2. The role of these in iron homeostasis is uncertain;

transferrin is central to iron transport and receptor-mediated
uptake by cells but these loci did not affect serum iron or ferritin.
ARNTL, and its product BMAL1, is mainly known for
interactions with CLOCK genes and generation of circadian
rhythm. Notably, serum iron16,36, liver iron37, hepcidin38 and
TfR1 gene expression39 all show circadian variation. The region
affecting transferrin on chromosome 8 contains the NAT2 gene,
which again has no obvious relevance for iron. It has been shown
to affect lipids32 and cardiovascular risk (see Supplementary
Table 8 of ref. 40). The gene product is important for xenobiotic
metabolism; NAT2 codes for an N-acetyl transferase, which
determines fast- or slow-acetylator status. At FADS2, the
significant SNPs for transferrin are intronic but they affect
expression of FADS genes. FADS1/2/3 variation affects a wide
range of phenotypes including serum lipids32,41, polyunsaturated
fatty acid content of serum phospholipids42; fatty acid
composition of membranes and phospholipids43; fasting glucose
and insulin response44,45 and liver enzymes46. The most
significant FADS SNPs for lipids are rs174546, rs174547 and
rs174548 (refs 32,41,47) and each gave significant or near-
significant P-values for transferrin in our data (P¼ 7.43� 10� 10,
8.47� 10� 10 and 7.29� 10� 8, respectively). This, together with
the decrease in the locus effect on transferrin after inclusion of
HDL-C as a covariate, suggests a common basis for effects on
lipids and transferrin. The pathways involved are unknown, but
iron homeostasis and lipid metabolism show overlap in the
literature32,48–51 as well as in our data. It has recently been
shown, for example, that signalling pathways for the protein
kinase mTOR, which regulates energy metabolism and lipid
synthesis among other functions52, affect transcriptional control
of hepcidin and therefore potentially affect iron uptake and
distribution53.

Despite the varied functions of these three genes (ARNTL,
FADS2, NAT2), which unexpectedly affect transferrin, they have
the common feature of significant effects on plasma triglycer-
ides26. Detailed comparison of our results against published lipid
loci showed that a high proportion of lipid loci (not only for
triglycerides) have detectable effects on our iron phenotypes,
especially on transferrin (Fig. 2b, Supplementary Table 8). The
pleiotropic effects at such loci, connecting iron homeostasis not
only with erythropoiesis but also with lipids and possibly with
cardiovascular risk, deserve further investigation.

One important clinical question about iron overload is why
some HFE C282Y homozygotes develop biochemical evidence of
iron overload and clinical symptoms of hemochromatosis, while

Table 2 | Results for HFE YY subjects.

SNP CHR BP (Build 37) Nearest gene A1 A2 Freq A1 Phenotype Effect s.e. P-value

rs8177240 3 134,962,864 TF T G 0.669 Iron �0.094 0.053 0.077
Transferrin �0.306 0.051 1.93� 10�9

Saturation 0.017 0.054 0.752
Ferritin 0.022 0.051 0.670

rs7385804 7 100,078,232 TFR2 A C 0.621 Iron 0.178 0.053 0.00076
Transferrin 0.038 0.054 0.485
Saturation 0.119 0.054 0.026
Ferritin �0.037 0.052 0.471

rs6486121 11 13,355,770 ARNTL T C 0.631 Iron �0.057 0.053 0.288
Transferrin 0.029 0.053 0.588
Saturation �0.058 0.054 0.280
Ferritin �0.153 0.05 0.0022

CHR, chromosome; SNP, single-nucleotide polymorphism.
For each SNP and phenotype, results are given for C282Y homozygotes (N¼ 353) from the QIMR Adult cohort and the HEIRS samples. P-values are from meta-analysis of covariate-adjusted
standardized regression coefficients of phenotypic values on the allele count for A1. Results are shown for the most significant SNP at each locus where any SNP shows Po0.005 for any of the four
phenotypes.
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most do not54. A systematic review of longitudinal studies found
that 38–76% of homozygous people have increased ferritin and
transferrin saturation (biochemical penetrance)55. However,
clinical symptoms are less common at 2–38% in men and 1–
10% in women56,57. We therefore evaluated the effects of our lead
SNPs in HFE C282Y homozygotes, combining data from the
largest of our Discovery cohorts with available phenotypic
information and DNA from participants in the HEIRS study.

Because of limited numbers of C282Y homozygotes (total N
available for data analysis was 353), we had limited power to
detect relevant effects. Among our results, the association
between two SNPs in TFR2 and serum iron seems the most
relevant. There is both clinical and experimental evidence for
interaction between the gene products of HFE and TFR2. Severe
juvenile hemochromatosis occurred in a family carrying muta-
tions in both HFE and TFR2 (ref. 58). In mice, homozygosity for
deletion of both Hfe and TfR2 greatly decreases hepcidin levels59

and causes massive iron overload60. These reports are consistent
with evidence that TFR2 and HFE proteins interact in control of
hepcidin signalling; they may form an iron-sensing complex that
modulates hepcidin expression in response to blood levels of
diferric transferrin61,62.

Overall, there was a lack of correlation between effect sizes for
lead SNPs at the significant loci identified in the general
population, and in the YY homozygotes. Similarly, a predictor
based on allele count and effect size for SNPs taken forward
for replication and genotyped in the HEIRS subjects did
not significantly predict iron, saturation or ferritin in the
HEIRS C282Y homozygotes (Supplementary Table 10 and
Supplementary Fig. 7). The exception, transferrin, was due to
the strong effects at the TF locus.

Previous studies have proposed determinants of HFE clinical or
biochemical penetrance. Apart from age, sex and probably
alcohol intake63, the focus has been on genetic modifiers but no
candidate has been convincingly identified64. Since iron
homeostasis involves a complex regulating network23,65, it
seems probable that any genetic effects on penetrance are
either highly polygenic (in which case large genome-wide
studies on HFE C282Y homozygotes will be needed) or result
from rare variants, which have not yet been examined in
sufficient detail. TFR2 variation as a modifier of HFE C282Y risk
has statistical support and biological plausibility but confirmation
is needed.

Our results have revealed genes or loci whose effects on iron
status were previously unsuspected and which need to be
integrated into our understanding of iron homeostasis. Discovery
of SNPs that significantly affect iron status, and compilation of
genomic scores, will allow Mendelian randomization studies on
the multiple conditions associated with variation in iron load and
help to clarify a potential causal role of iron in such conditions
(for example, Parkinson’s14 or Alzheimer’s66 diseases). However,
the existence of pleiotropic effects, with many loci affecting both
iron and lipid phenotypes, shows the need for caution in selecting
SNPs or scores for such applications.

Methods
Subjects. We established the Genetics of Iron Status Consortium to coordinate
our efforts in understanding the causes and consequences of genetic variation in
biochemical markers for iron status, that is, serum iron, transferrin, transferrin
saturation and ferritin. Discovery samples consisted of summary data on genome-
wide allelic associations between SNP genotypes and iron markers from 23,986
subjects of European ancestry gathered from 11 cohorts in nine participating
centres (Supplementary Table 1). Replication samples to confirm suggestive and
significant associations were obtained from up to 24,986 subjects of European
ancestry in 8 additional cohorts (also in Supplementary Table 1). There was no
systematic selection whether a cohort was allocated into the discovery or replica-
tion samples. This allocation was based on the availability of data when the ana-
lyses were conducted. Information on phenotypic means, methods for phenotype

measurement, and genotyping methods for each contributing cohort are shown in
Supplementary Tables 2 and 3. Each participating study was approved by the
appropriate human research ethics committee, as listed for each study in
Supplementary Table 1, and all subjects gave informed consent.

GWAS. Genome-wide association tests, genotype imputation and associated
quality control procedures (QCs) were performed in each cohort separately. Within
each cohort, QCs were applied to individual samples and SNPs before imputation
into HAPMAP II (Release 22, NCBI Build36, dbSNP b126) or, for InterAct, 1,000
Genomes. These include removing individuals based on missingness, relatedness,
population and ethnic outliers. Poor-quality SNPs were also removed based on
missingness, minor allele frequency, Hardy–Weinberg equilibrium test and Men-
delian errors for family data. These QCs for each cohort are summarized in
Supplementary Table 3.

The association between genotyped and imputed SNPs and each iron
phenotype was performed using an additive model for allelic effects, on the
standardized residuals of the phenotype after adjusting for age, principal
component scores and other study specific covariates, for each sex separately. The
details of the association analysis and imputation method for each cohort are
presented in Supplementary Table 3.

Meta-analysis. We conducted meta-analysis of GWAS results from the discovery
cohorts in the Metal package67 using a standard error-based approach, which
weights the SNP effect size (standardized regression slope, beta) using the inverse
of the corresponding squared s.e. SNPs were included in the meta-analysis if they
met the following conditions: imputation quality score either Rsq (which estimates
the squared correlation between imputed and true genotypes) for MACH software
Z0.3, or the ‘info’ measure for IMPUTE software 40.5; Hardy–Weinberg Equi-
librium Test P-value (pHWE) Z10� 6; minor allele frequency Z0.01; genotyping
Call Rate Z0.95 and if they survived QCs in all cohorts to avoid disproportionate
contribution of a single cohort to the meta-analysis. In total, B2.1 million SNPs
met these conditions. A genomic control correction was applied to all cohorts.
Heterogeneity of effect sizes between cohorts or between sexes was also assessed
using Cochran’s Q statistic within Metal. Loci containing SNPs with Po5� 10� 6

were carried forward for in silico replication in independent samples, again using
Metal for the meta-analysis. The threshold P-value for choice of SNPs for repli-
cation is conventional and based in part on data for European populations in
Duggal et al.68

Power to detect allelic effects was estimated using the Genetic Power Calculator
(http://pngu.mgh.harvard.edu/Bpurcell/gpc/). Under reasonable assumptions
about allele frequencies for causative and marker polymorphisms (QTL increaser
allele frequency¼ 0.2, marker allele frequency¼ 0.2, linkage disequilibrium
between them d0 ¼ 0.8, a¼ 5� 10� 8), the Discovery dataset with N¼ 24,000 gives
77% power to detect allelic effects which each account for 0.25% of the phenotypic
variance.

Gene-based analysis. Gene-based analysis considers all SNPs within a gene as a
unit for the association analysis. We performed gene-based analysis on SNP
association P-values from the meta-analysis of discovery samples using VEGAS
(http://gump.qimr.edu.au/VEGAS/, accessed 2014-03-27) (ref. 69). The sig-
nificance of gene-based analysis was based on Bonferroni correction of testing
B17,000 genes (that is, Po3� 10� 6).

Conditional analysis. To find independent signals within each significant locus,
we performed conditional analysis in each cohort by repeating the association
analysis but including the most significant SNP at each significant locus (in the
initial meta-analysis) as covariates. We performed meta-analysis of the conditional
association results using the same approach as in the main meta-analysis.

Gene expression. The eQTL look-up was based on a meta-analysis of expression
data for known disease-associated loci in non-transformed peripheral blood cells,
from 5,300 samples from seven cohorts. The original analysis used HapMap2
imputed SNPs and a cis-window of ±250 kb from the transcription start-site.
More details can be found in the paper by Westra et al.70

Information on gene expression in macrophages and monocytes was based on
results obtained by the Cardiogenics consortium, on 758 samples, as described in
the Supplementary Note33.

Online resources for gene expression and regulation included http://
eqtl.uchicago.edu/cgi-bin/gbrowse/eqtl/, http://genenetwork.nl/bloodeqtlbrowser/
and Schadt et al.24 for eQTL data, http://genome.ucsc.edu/ENCODE/ for
information on histone modification and http://ecrbrowser.dcode.org/ for
comparison of DNA sequences across species.

Bioinformatic analyses. Pathway analysis and assessment of known disease
associations or biological functions was performed using Ingenuity Pathway
Analysis (IPA; Ingenuity Inc., Redwood City, CA, 94063), selecting SNPs, which
showed associations at Po0.01,o0.001 ando0.0001 for transferrin saturation, and
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similarly for ferritin. IPA compares the list of genes associated with the selected
SNPs against a proprietary library of gene-disease and gene-function associations
and test frequencies of observed and expected occurrences.

Analysis in HFE C282Y homozygotes. Data and DNA samples from HFE C282Y
homozygotes in the HEIRS study27 were obtained from the NIH Biologic Specimen
and Data Repository Information Coordinating Center (BioLINCC) (https://
biolincc.nhlbi.nih.gov/home/). HEIRS was a population-based survey of the
prevalence and effects of HFE polymorphisms, and subjects were not selected for
having a diagnosis or positive family history of hemochromatosis. Selected SNPs
(those showing significant or suggestive results in our primary meta-analysis) were
genotyped by primer-extension mass spectrometry (MassArray, Sequenom Inc, San
Diego CA); all samples were confirmed as being homozygous for the minor allele of
rs1800562 by this method. Allelic association results for the QIMR adults and
HEIRS C282Y homozygotes were combined by meta-analysis.
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