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Abstract 
A comparison of the geochemical changes induced in sandstone by either pure or impure 

CO2 at geological CO2 storage conditions was investigated. Samples of Berea Sandstone 

were batch reacted in 1% w/v NaCl brine saturated with pure CO2 or mixed SO2-CO2 gas for 

360 hours at 50 ºC and 10 MPa. Geochemical analysis of incremental water samples 

showed increases in the concentrations of elements such as calcium, magnesium, iron, 

manganese, and silicon throughout experiments, likely being the products of carbonate and 

reactive silicate dissolution. Scanning electron microscope images taken of specific points of 

interest before and after batch reactions confirmed dissolution of carbonates, but showed no 

reaction for minerals such as K-feldspar. The magnitude of apparent mineral reaction was 

higher for the mixed gas SO2-CO2-brine experiment, with geochemical modelling also 

indicating greater dissolution of reactive silicates such as chlorite, and potential precipitation 

of amorphous silica.  

Keywords 
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1. Introduction 
Due to the high cost of gas purification, industrially sourced injection stream CO2 may 

contain low levels of co-contaminants such as SO2 (cf. Glezakou et al., 2012; Pearce et al., 

this issue), which when dissolved in groundwater will increase acidity beyond that of 

carbonic acid formed through CO2 dissolution. Berea Sandstone was chosen to investigate 

mineral dissolution resulting from geochemical reactions with either CO2 or mixed SO2-CO2 

acidified brine. An approximately 0.05 mol% SO2 in CO2 gas mixture was used in this study 

to simulate a possible gas mixture from a coal combustion source (de Visser et al., 2008; 

IEAGHG, 2011; Saraji et al., 2014). 
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Berea Sandstone has been used primarily in the context of the oil and gas sector to test 

various permeability scenarios, such as stress-dependent permeability (Baud et al., 2012), 

salinity dependent fines-inhibition of permeability (Azari and Leimkuhler, 1990; Hussain et 

al., 2013; Kia et al., 1987), CO2 flow behaviour (Mohamed et al., 2012; Moore et al., 2004), 

multiphase fluid flow (Müller, 2011), reactive transport model simulations (Heidaryan et al., 

2008; Ovaysi and Piri, 2013) and various geomechanical analyses (Dehler and Labuz, 2007; 

Feucht and Logan, 1990; Wissler and Simmons, 1985). 

Very few studies have explored the impact of mixed SO2-CO2 gas injection upon geological 

materials, with the main focus on reactions with pure minerals (Garcia et al., 2012; Glezakou 

et al., 2012; Palandri et al., 2005; Wilke et al., 2012), and only a couple of studies 

investigated whole-rock chemical interactions (Kummerow and Spangenberg, 2011; Pearce 

et al., this issue). SO2 when dissolved in groundwater may form either H2SO3 or H2SO4 (and 

H2S) that are both stronger acids than H2CO3, and likely to result in enhanced mineral 

dissolution and porosity within the acidified zone around a mixed gas plume (Knauss et al., 

2005; Xu et al., 2007). Over longer time periods and after pH buffering, dissolved sulfur 

species and CO2 may be expected to be precipitated as sulfate and carbonate minerals, with 

consequently greater mineral trapping potential in the far-field.  

2. Materials and methods 

2.1. Experimental approach 

In this study, sister sample 15 mm cubes of Berea Sandstone were reacted with either CO2-

brine or SO2-CO2-brine in a batch reactor, and the chemistry of the reaction water analysed 

to aid interpretation of potential mineralogical changes. Two different batch reactor systems 

were used, one of which allowed for incremental sampling of water chemistry. Modelling of 

incremental reaction water chemistry for selected samples was performed using the 

Geochemist’s  Workbench  (GWB)  to give some insight as to which mineral phases were 

major contributors to sample changes during experiments. Scanning Electron Microscope 

(SEM) surveys with Energy Dispersive Spectrometer (EDS) analyses were also done for 

selected points of interest on sample surfaces before and after batch reactor experiments.  

The amount of SO2 used for the mixed gas experiment was computed on the basis of having 

added 1 MPa of a mixture of 1 mol% SO2 in CO2 to the system and then added a further 4.5 

MPa pCO2 for a total gas volume of 0.131 L. The total moles of CO2 was calculated using 

the Stryjek-Vera second modification of the Peng-Robinson equation of state (Stryjek and 

Vera, 1986a, b). This equated to 0.045 mol% SO2 in CO2. 
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 Samples were subject to gas-brine-rock interactions in custom-built geochemical batch 

reactors. Deoxygenated 1% w/v analytical grade NaCl solution (70 mL) was added to the 

reactors with the rock sample.  The first cube (A) was reacted in a prototype 316 grade 

stainless steel batch reactor that did not allow for incremental sampling of vessel fluid during 

experiments (Dawson, 2012; Dawson et al., 2011; Massarotto et al., 2010). Subsequent 

samples (cubes B and C) were reacted in a new system based upon steel Parr reactors that 

did allow incremental fluid sampling (Figure 1), with custom built thermoplastic liners 

covering all metal parts to reduce corrosion as described in detail in Pearce et al. (this 

issue).  

Vessels were purged of residual air with a low pressure N2 flush. A HPLC pump was used to 

pressurize the prototype system prefilled with CO2 to 6.0 ± 0.5 MPa and subsequently with 

brine to 10 MPa ± 0.5 MPa.  For the new reactor, a Teledyne ISCO syringe pump (500HP) 

was used to pressurise the Parr vessels to 10.0 ± 0.5 MPa, initially with N2 gas. Following an 

initial baseline water–rock soak for 2 days in the Parr vessels, 2 mL of solution phase was 

sampled, and N2 gas subsequently replaced with either pure food grade CO2 (Coregas) or 

~ 0.05 mol% SO2 in CO2 pressurized with the syringe pump to 10 MPa ± 0.5 MPa.  

Rock samples were reacted for 10 days immersed in the brine at 10 MPa and 50 ºC. Fluid 

samples were periodically taken for analysis. The short reaction time was chosen to 

represent conditions expected near an injection well-bore during initial flooding with CO2 or 

mixed gas.  In the immediate well-bore environment, gas-acidified groundwater is expected 

to be displaced by a gas-dominated phase thus terminating the main aqueous reactions in 

that region (e.g. André et al., 2011). Cubes A and B were reacted with supercritical CO2 

(sCO2) dissolved in brine, and cube C with the SO2 in sCO2 mixture dissolved in brine. The 

gas:liquid ratio was ~ 2:1, and the water:rock ratio ~ 10:1.  

Baseline levels of elements mobilised from the Parr reactors were determined by performing 

blank experiments at the same conditions as the experiments but without the rock sample. 

2.2. Analytical methods 

The solution chemistry of the geochemical batch reactors was periodically determined during 

the course of the experiments to monitor reaction progress. Solution pH was measured 

immediately with a TPS WP81 meter and probes with an error of ± 0.01 ex situ at the 

conclusion of experiments. Sampled aliquots of solution (~2 mL) were preserved with 2% v/v 

HNO3 and (with the exception of the pure water blank) were diluted approximately 85X prior 

to analysis. An ICP-OES (Perkin Elmer Optima 3300 DV ICP-OES with  a  3σ  detection  limit  
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of 0.001 mg L-1) was used to measure elemental concentrations of aqueous species in the 

experiment waters within an error range of ~ 5%.  

SEM-EDS analyses were performed using a JEOL JSM-6460LA environmental SEM fitted 

with a Minicup EDS. The 6460 has low vacuum capability, which negated the need to coat 

sample surfaces with an electron conductive material in order to obtain high quality images 

of sample surfaces. For semi-quantitative EDS spot analyses, 1000x magnification was 

used, which equates to an area of electron beam-sample surface interaction of roughly 3 

micrometres. Quantitative EDS analysis was not possible due to surface roughness. The 

brightness and contrast of SEM backscatter electron images give an indication of 

compositional differences within the samples, with brighter regions corresponding to heavier 

elements, and different minerals appearing as different shades of grey. However, surface 

charging and topography effects also contribute to image brightness and so visual 

appearance of the images can only be used as an approximate guide as to the different 

minerals present within the samples. 

To assist identification of mineral dissolution and precipitation during the geochemical 

experiments, specific points of interest on sample surfaces were selected for precise pre and 

post reaction imaging with SEM (Figure 2). Low magnification images (30X) were 

sequentially taken across sample surfaces and numbered relative to one of the surface 

corners (e.g. #1 top left). Low accuracy EDS spot surveys were performed at low 

magnification and then any points of interest were imaged at successively higher 

magnifications (e.g. 200X, 500X, 1000X). Specific SEM stage rotation and x-y-z coordinates 

could be recorded for notable features within specific fields of view, additionally like-features 

were identified by eye in pre and post reaction views.  

2.3. Berea Sandstone sample characterisation 

Samples from the Berea Sandstone quarry, USA, were obtained from Australian National 

Low Emissions Coal R&D as part of a “round robin”  comparison test of permeability 

measured in different laboratories. Surface fines resulting from the cutting of samples into 

cubes were removed by immersion in ethanol in open beakers within a well-ventilated sonic 

bath for 15 minutes, with samples then oven dried at 60 ºC for two days. Ethanol was used 

instead of water in order to avoid clay-water cation exchange reactions within the sample 

prior to experiments.  

Sample specific mineralogy was obtained via whole rock and clay separate X-ray diffraction 

(XRD) analysis of a crushed sister sample; this is compared with literature data in Table 1 for 

the purpose of determining an initial mineralogy for modelling the geochemical experiments. 
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Not all minerals present within samples are necessarily present in sufficient amount to be 

quantifiable by XRD.  Moreover, trace minerals may be sufficiently reactive to contribute 

significantly to reaction water chemistry (Dawson, 2012). Rock sample surfaces were 

analysed using SEM-EDS to survey the sample mineralogy, especially trace minerals 

undetected or poorly detectable by XRD, and textural characteristics of the cubes.  

SEM analysis indicated that the Berea Sandstone samples were predominantly quartzose, 

and contained feldspar grains and Fe-Ca-Mg-Mn-carbonate cements.  Lesser amounts of 

dickite, kaolinite, micas and alteration products tentatively identified as chlorite, vermiculite, 

and smectite were also identified (Figure 3). The very small particle size and irregular shape 

and packing density of the clay-sized minerals made quantitative EDS determination of 

composition impossible. Pore space is partially occluded by clays and carbonate cements of 

variable composition, and sometimes also iron oxide/hydroxide. Very thin laminations of fine-

grained material occur between the coarse quartz grain dominated layers. Whole-rock and 

clay separate XRD analysis of a sister-sample detected only trace amounts of reactive clay 

species (Table 1), likely because they were generally present in very thin depositional layers 

within the sample that amounted to only a very small fraction of total sample mass.  

Standard petrographic analysis of a polished thin section found that the predominantly 

quartzose sandstone contains a few percent mica flakes (Figure 4). Haematite and clays, as 

well as carbonate cements to a lesser extent, occlude some of the porosity. Minor amounts 

of degraded feldspars and rare lithic fragments were also observed. 

2.4. Geochemical modelling 

The React and SpecE8 components of  the  Geochemist’s  Workbench  (GWB)  version 9 

software package (Bethke and Yeakel, 2013) were used to model reaction pathways for 

experiments with samples B and C following addition of either CO2 or mixed SO2-CO2.There 

were two main objectives for the modelling; a) identifying which mineral/s contributed to the 

observed increases in dissolved elements, especially silicon and aluminium, and b) to 

determine if the mineral fines observed to be partially occluding porosity play a significant 

role in any geochemical reactions. These were investigated by varying model input mineral 

mass, composition, and surface area in order to achieve the best modelled fits for the 

experimental data. 

The initial modelled mineral composition is shown in Table 1. The measured concentration of 

elements in the experimental water during the nitrogen rock-brine soak step was used as the 

basis for the initial water composition used in the models (Table 2). Initial silicon 

concentration was below detection limit (owing to high analysis dilution factors) and therefore 
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the background level of silicon measured during pure water reactor blanks was used in the 

solution basis after conversion to concentration of SiO2. The system was balanced with 

respect to chlorine and bicarbonate in SpecE8.  

The CO2 fugacity was calculated on the basis of the pressure (10 MPa), temperature (50 ºC), 

and salinity (1% w/v NaCl solution) (Duan and Sun, 2003; Duan et al., 2006). A modified 

version of the EQ3/6 thermodynamic database for aqueous and mineral species (Bethke and 

Yeakel, 2013; Delany and Lundeen, 1989) was utilised. Script files (Pearce et al., this issue) 

containing the kinetic input data in Table 3 were used for all minerals except rhodochrosite, 

for which the inbuilt GWB rate law was employed using an initial rate constant of 

4*10-13 mol/cm2sec. Due to the limitations of the modelling software used, rather then 

defining SO2 behaviour together with CO2 in the model basis, 0.06 mol/kg SO2 was added to 

the cube C SO2-CO2 model as a reactant with a cut-off of 0.033 mol/kg to match the 

experimentally determined dissolved sulfate concentrations (calculated by converting 

measured dissolved S assuming this was sulfate) over time.  

The exact composition of some minerals was varied (Table 4) in order for the models to 

better match experimentally determined dissolved element concentration profiles over time. 

A range of compositions of minerals such as the carbonate cement and fine grained 

phyllosilicates was indicated by SEM-EDS analyses. Accordingly, the composition of chlorite 

used in each model was different due to better matches for the respective Fe and Mg 

concentration profiles depending upon which type of chlorite was used. Similarly, different 

composition ankerite, and differing proportions and surface areas of all relevant carbonate 

minerals were used in each model in order to obtain the best fits with experimental data. 

The quartz mass was varied in order to balance the sum of mineral masses relative to an 

initial sample mass of 6.8 g. Mineral masses used in the models were based upon measured 

and literature XRD data as well as standard petrography and SEM-EDS analyses of sample 

surfaces (Table 1). Both surface area and to some extent mineral mass were manipulated as 

variables to constrain the modelled concentration profiles for elements.  As experiments 

were performed on a cube of Berea Sandstone rather than crushed rock samples not all 

minerals present may have been accessible to reactive fluids, e.g. where cements or clays 

covered grains, and the exact proportions of minerals present could have varied between 

samples. Initial surface areas were increased as indicated in Table 3.   

3. Results 
3.1. Experimental water chemistry 
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The solution pH at the termination of the Berea SO2-CO2-brine experiment was 2.69, 

significantly lower than in the pure CO2-brine reactions (pH 5.77 or 4.42), as shown in 

Table 2.  Analysis of incremental water samples collected periodically during the 

experiments showed increases in the concentration of dissolved elements in solution with 

time (Table 2).  The major aqueous elements for both CO2-brine and SO2-CO2-brine 

experiments included Ca, Fe, and Mg (Figure 5a). 

Over three times the concentration of Fe was measured in solution during Berea SO2-CO2-

brine reaction (345 mg/kg) compared to Berea CO2-brine reaction (114 mg/kg) (Table 2 and 

Figure 5 a).  The concentration of dissolved Al was also highly elevated (~ 30 times) and Si 

~ 2 times higher in the SO2-CO2-brine experiment compared to the pure CO2 experiment 

after 12 days reaction (Figure 5 b).  On the other hand, Ca, Mg and Mn concentrations were 

only slightly elevated during the SO2-CO2 experiment (Figure 5a,b). 

The measured concentrations of aqueous Ca, Fe, Mg, Si, Mn, Cu, Pb, and V were higher for 

all rock sample experiments relative to blank levels, and hence probably originated from rock 

dissolution.  The values for Cu, Pb, V fluctuate due to these being at the lower limits of the 

analysis. The concentrations of As, B, Be, Co, Se, and Ti were below the respective 

detection limits for these elements. Significant sample dilution to bring major element 

concentrations within calibration measurements may have contributed to trace element 

concentrations dropping below detection. Ba, Cd, K, Li, Na, P, and Sr concentrations did not 

exceed background levels during the rock sample experiments and were above the 

respective detection limits.  

For the CO2-brine experiments with cubes A and B, the concentrations of Al, Mo, Ni, S, and 

Zn were similar to the background levels of the reactor systems and so it is possible that 

they resulted from  a combination of fluid-rock interaction, background residue from previous 

experiments, and/or reactor corrosion (Table 2). Some of the Cr, Fe, Ni, V, and Zn mobilised 

during the SO2-CO2 experiment with cube C probably did originate from reactor material, but 

the amount of aqueous iron present by the end of the experiment was at least an order of 

magnitude greater than the SO2-CO2-brine blank with no sample. 

The observed dissolved sulfur increase over time to 730 mg/kg in the SO2-CO2 experiment  

was likely due mostly to equilibration between gaseous and aqueous SO2  subsequently 

converted into aqueous sulfate (partly through oxidation by Fe oxides present in the rock).  
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3.2. Experimental rock surface changes 

Comparison of SEM images taken before and after experiments (Figure 6 a-d) indicated 

dissolution of carbonate cement occurred during all experiments.  There was complete 

removal of surficial carbonate cement during the SO2-CO2-brine experiment (e.g. Figure 6d), 

whereas some carbonate cement remained visible near the surface of cubes A and B after 

pure CO2 reactions (e.g. Figure 6b). This observation correlates well with the fact that the 

concentrations of aqueous elements measured for the SO2-CO2 experiment were greater 

than for the CO2 experiments. The observed increases in aqueous Mn throughout all sample 

experiments (Figure 5b) likely correlated with dissolution of the carbonate cements. SEM-

EDS analyses pre-reaction showed all carbonate cements to contain Mn in addition to 

varying amounts of Ca, Fe, and Mg (e.g. Figure 4f).  

SEM and XRD indicated that the Berea Sandstone samples contained trace chlorite, 

vermiculite and smectite (Figure 4, Table 1). Evidence of corrosion of silicates was not 

observed in post reaction SEM.  This, however, may be owing to an inability to locate trace 

reactive silicates on the surfaces of reacted cubes pre/post reaction.  Loss of fine material 

from between the framework grains of the samples was observed; however, it was not clear 

whether this was due to chemical reaction or physical mobilisation of fines from the cube 

surface. The surfaces of large aluminosilicate grains (e.g. K-feldspar Figure 6f) showed no 

changes following the batch reactor experiments.  

3.3. GWB mineral reaction modelling 

The incremental water chemistry of the batch reactor experiments for cubes B (Berea CO2-

brine reaction) and C (Berea SO2-CO2-brine reaction) were modelled using the 

Geochemist’s  Workbench (GWB) with respect to mineral and water chemistry.  Model 

outputs of dissolved element concentration (with experimental results plotted for comparison 

as icons), minerals dissolved and precipitated, and solution pH are shown in Figures 7 and 8. 

The modelled element concentrations in solution show a good match with the experimental 

data for most elements. Carbonate mineral dissolution was observed in both models with 

CO2 or SO2-CO2-brine reaction. A greater mass of ankerite reacted in the SO2-CO2-brine 

model than in the pure CO2-brine model (Table 6 and 7). The mass of chlorite decreased 

more significantly than other silicates in both models, indicating this was the most reactive 

silicate. In the SO2-CO2 model a greater mass of chlorite, kaolinite and K-feldspar dissolved 

than in the CO2 brine model.  

Elemental S precipitated in the SO2-CO2-brine model, resulting in a flattening of the sulfate 

concentration with time.  Quartz precipitation is unlikely to have happened in experiments at 
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the overall low pH observed, but together with chalcedony was a proxy to reduce silica 

concentration in solution as the leaching of Fe and Al from reactive silicates to leave a silica-

rich layer cannot be modelled. Precipitation of an aluminium-rich phase during the cube B 

experiment was plausible given that measured Al concentration remained fairly constant 

over time. The model favoured diaspore precipitation over boehmite and gibbsite, which is in 

agreement with experiments performed over a similar pH range by Peryea and Kittrick (1988) 

that found diaspore was the most stable phase.  

Solution pH in the Berea CO2-brine model was initially ~ 3 and then increased to ~ pH 4.5 

after 10 days in reasonable agreement with experimental pH. In the Berea SO2-CO2-brine 

model, pH reduced from ~ 3 to ~ pH 2.4 after 10 days in reasonable agreement with the pH 

measured at the conclusion of the experiment. This was in spite of the fact that pH 

measurements were ex situ, although given that the waters were still degassing via bubbling 

they were still gas-saturated during pH measurements.    

As the current experiments use batch rather than flow reactors, the exchange of aqueous 

fluid in the rock pores with dissolved CO2 (and SO2) saturated brine may be diffusion limited.  

Therefore it is possible the reactive fluid did not interact with minerals below the surface of 

the Berea cubes if pore networks were not connected. The model outputs and high reactive 

surface areas needed indicate that a large portion of the minerals were likely in contact with 

low pH fluid and reacted.  Experimental work using similar conditions with micro CT imaging 

in this issue has indicated reactive fluids penetrate to the centre of 3mm diameter sandstone 

sub-plugs (Farquhar et al., this issue).  Given the large grain size and higher porosity of the 

Berea sandstone, it is expected that some fluid penetration did occur; however, further work 

outside the scope of this study would be necessary to determine the full extent of fluid 

penetration and sample reaction.    

4. Discussion 
The magnitude of the concentration of the dissolved elements Al, Ca, Cr, Fe, Mg, Mn, Mo, 

Ni, Pb, Si, V, and Zn was higher in the SO2-CO2 experiment with cube C compared with the 

CO2-only experiments with cubes A and B (Table 5). Dissolved SO2 being converted to 

sulfurous and/or sulfuric acid, that are much stronger acids than carbonic acid, would have 

contributed to enhanced acid activated dissolution of minerals in cube C (Knauss et al., 

2005; Xu et al., 2007). The pH in the SO2-CO2-brine experiment was lower than in pure CO2 

reactions indicating formation of sulfuric acid did occur. This is in agreement with previous 

experiments reacting pure mineral separates with pure or impure CO2 and brine (Wilke et al., 

2012), where the addition of SO2 resulted in a solution pH ~ 1-3 and reaction of silicates 

(e.g. biotite and albite).   
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In the current experiments, the concentrations of Al, Fe and Si in solution were much higher 

in the case of the SO2-CO2-brine reaction with Berea Sandstone in comparison with CO2-

brine reactions. This suggests that silicate dissolution/leaching was enhanced due to the 

lower pH.  Incremental fluid samples taken periodically throughout the experiments generally 

show an initial rapid increase in concentration of most elements following initial exposure to 

reaction fluids, suggesting that primarily dissolution of mineral fines is occurring during this 

time. The large modelled surface areas required for minerals such as chlorite and 

carbonates in order to match the experimentally determined concentrations of aqueous 

species confirms the key role played by mineral fines in the water-rock interactions that took 

place.  

The SEM surveys pre and post reaction (Figure 6) coupled with the water chemistry data 

indicate that carbonate cement dissolution contributed to the measured increases in 

aqueous elements over time for all rock sample reactions. Static geochemical modelling for 

Berea cubes B and C with CO2 or SO2-CO2-brine confirmed carbonate dissolution, which 

appeared more extensive with the presence of SO2. Wilke et al. (2012) also observed high 

reactivity of carbonates in the presence of SO2 in good agreement with the current work.  

They observed ~ 10 times greater Ca concentration in solution with SO2 present in 

comparison to pure CO2 reaction. Significant corrosion of dolomite and calcite was observed 

in SEM post SO2-CO2-brine reaction by Wilke et al. (2012).   

Chlorite was identified as likely being the most reactive aluminosilicate phase (Figures 7 and 

8).  Previous work has indicated that chlorite undergoes incongruent dissolution at acidic pH, 

with preferential leaching of Fe and Al leaving a silica-rich layer (Baker et al., 1993; Brandt et 

al., 2003).  Higher silicate corrosion (albite) was also observed in the presence of SO2 in the 

work of Wilke et al. (2012). This effect is not directly accounted for in the GWB model for 

dissolution of chlorite, and is likely why chalcedony and quartz precipitation in the models 

was necessary as a proxy to reduce the silica concentration in solution and attempt to match 

experimentally observed values. 

It is possible that the experimental pH was more acidic than modelled for the majority of the 

experiment. This could also explain why the SO2-CO2-brine model for cube C precipitated 

chalcedony and therefore modelled aqueous silicon failed to match the measured increases 

with time. The only reliable pH measurements for the experiments were made ex situ at the 

conclusion of the experiment where CO2 degassing means they represent a maximum 

value, although the measured values did match well with the modelled pH values. 

Mineral surface areas of the carbonates as well as chlorite had to be increased substantially 

above initial values chosen in order to model the initial reaction water chemistry, which 
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suggests that a lot of the reacted material was most likely mineral fines. Experimentally, 

there would likely have been a continuum of different surface areas for each mineral, with 

mass apportioned among them rather than the single surface area, mass, and composition 

values used in the models. Moreover, not all mineral matter present within the cubes would 

have interacted significantly with the reaction water. This is partly due to not all minerals 

being linked via interconnected porosity to the cube surfaces, but also because of diffusion 

effects resulting from the static nature of the experiments. 

An alternative modelling approach would have been to split the models into two phases, an 

initial model in which mainly fines were reacting and then a second model continuing on from 

it for which lower surface area minerals began to react (Farquhar et al., this issue). 

Alternatively, the two approaches could have been combined into a single model in which 

minerals were included more than once, but with different masses and surface areas for 

each entry. However, given that the purpose of the modelling done for this study was to 

confirm which phases were most likely involved in geochemical reactions, and whether 

mineral fines played a key role in reactions, the current modelling is sufficient. 

Reactive transport models of other studies have indicated that enhanced dissolution during 

SO2-CO2-brine-rock interactions compared with CO2-brine-rock would ultimately result in 

enhanced precipitation of carbonates, sulfates and potentially even sulfides once the pH 

became sufficiently alkaline (Knauss et al., 2005; Xu et al., 2007). Therefore there is likely 

greater potential for mineral trapping of CO2 for the mixed SO2-CO2-brine scenario compared 

with pure CO2-brine. However, the low quantity of carbonate present within the Berea 

samples A, B, and C and the short timeframe of experiments precluded any significant 

precipitation of minerals being observed.  

5. Conclusions 

Incremental fluid concentrations show an initial increase in most measured major and trace 

elements over time, with greater concentrations of aqueous elements measured for SO2-

CO2-brine experiments in comparison to CO2-brine experiments. Comparison between SEM 

images of selected areas of interest pre and post reactions showed that dissolution of 

carbonate cements occurred whereas low surface area grains of K-feldspar showed no 

reaction. GWB modelling indicated that reaction of chlorite likely occurred during all 

experiments, though this was not directly observed via SEM due to the difficulty in locating 

pure chlorite flakes of sufficient size for semi-quantitative SEM-EDS analysis. Geochemical 

modelling also indicated that the majority of minerals that took part in reactions during the 

short term experiments of this study were likely high surface area fines. 
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Figures 

Figure 1: Illustration of Parr reactor showing thermoplastic liner.  

Figure 2: Illustration of method of locating and taking images of the same regions of interest 

on sample surfaces pre and post reaction. a) Low magnification ranging view for locating 

area of interest (in box); b) higher magnification image of area of interest; c) EDS spectra of 

unreactive zircon grain used to assist locating positions of areas of interest; d) EDS spectra 

of siderite cement between quartz grains within area of interest on Berea Sandstone. Z = 

zircon, Q = quartz, S = siderite. 

Figure 3: SEM back-scatter electron images of unreacted Berea Sandstone, a) K-feldspar, 

kaolin, quartz; b) K-feldspar, perthitic K-feldspar, quartz ; c) Vermiculite and chlorite, 

degraded K-feldspar, quartz; d) carbonate cement, quartz; e) dickite between quartz grains; f) 

EDS spectra of Fe-dolomite on quartz in d). D = dickite, Fe-D = ferroan dolomite, kA = 

kaolinite, kF = K-feldspar, pkF = perthitic K-feldspar, dM = degraded Mg-K-Fe-mica. 

Figure 4: Muscovite flake between quartz grains, cross polarized light 20X magnification. 

Figure 5: Selected measured major (a) and minor (b) aqueous ion concentrations (mg/kg) 

during the SO2-CO2 experiment with cube C indicated by open symbols and dashed lines, 

and the pure CO2 experiments with cube B indicated by solid symbols and lines. Point zero 

on the charts refers to the concentration of a given element present within the brine used for 

the experiment. The approximate error in the concentration values is 5%. 
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Figure 6: Pre and post reaction SEM images of minerals on the Berea surface. a) Pre CO2 

reaction siderite and haematite (white) between quartz grains (grey), b) post CO2 reaction in 

same area as a) with siderite corroded, c) pre SO2-CO2-brine reaction siderite, and quartz. d) 

post SO2-CO2-brine reaction, same area as c) with extensive siderite corrosion exposing 

hematite. (e) K-feldspar surface, and (f) same area as e) and post SO2-CO2-brine exposure. 

H = haematite, kF = K-feldspar, Q = quartz, S = siderite. 

Figure 7: The geochemical modelling outputs (lines) are indicated for CO2-brine Berea 

Sandstone cube B, with experimentally measured concentrations indicated as icons. With a) 

and b) dissolved element concentration evolution with time, c) d) e) changes in mineral mass 

over time, f) change in solution pH. Day zero is when CO2 was added to system. 

Figure 8: The model outputs of Berea SO2-CO2-brine reaction (lines) are indicated, with 

experimentally measured concentrations indicated as icons. With a), b) and c) element 

concentration evolution with time, d) e) changes in minerals over time, f) change in solution 

pH. Day zero is when SO2-CO2 was added to system.      

Legends 

(For table 1) 

a Literature XRD mineral data averaged from Azari and Leimkuhler (1990), Deshpande 
(2006), Van Den Abeele et al. (2002) and Wissler and Simmons (1985). n.d. = not detected. 
Approximate error for each XRD value is +/- 5%. 

(For table 4) 

aRhodochrosite was included to account for the manganese in carbonate cements observed 
by SEM-EDS. 

(For table 5) 

a <DT means below detection limit. The concentrations of As, B, Be, Co, Ti, and Se were 

below detection limit for all analyses. 

(For tables 6 and 7) 

a Negative values indicate precipitation. 
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Table 1: Mineral composition of Berea Sandstone as determined by whole rock and clay 
separate XRD analysis in this study and others 

Minerals 
Percentage composition 

This study Literature 
averagea 

Ankerite 0.4  
Anorthite 3.2 n.d. 
Calcite trace 1 
Chlorite trace 0.4 
Dolomite 0.2  

Dolomite + Ankerite  2.6 
Illite/Muscovite trace 2 

Kaolin 1.6 5.5 
K-feldspar 4.1 5 

Quartz 90.6 80 
Siderite trace 2.5 
Smectite trace 1 

 

Table 2: The input solution basis used for the models, where cube B was reacted with CO2-
brine, and cube C was reacted with SO2-CO2-brine. 

 
 

 

 

 

 
 
 
 
 
 
 

Species/Sample 
Aqueous and gaseous species model input 
parameters (mg/kg unless otherwise noted) 
Cube B Cube C 

H2O 0.07 (kg) solvent 0.07 (kg) solvent 
Al3+ 1.01 1.43 
Ca2+ 42.1 57.9 
Cl- 9095 8468 

𝐶𝑂 ( ) ⇔ 𝐻  53.2 (fugacity) 53.2 (fugacity) 
Fe2+ 6.65 14 

HCO3
- 5.15*10-4 (mol/kg) charge 

balance 
2.579*10-4 (mol/kg) charge 
balance 

K+ 32.41 26.29 
Mg2+ 7.17 9.35 
Mn2+ 1.29 1.96 
Na+ 5819 5380.5 

𝑂 ( ) ⇔ 𝑂 ( ) N/A -40.0 (log fugacity) 
SiO2(aq) 1.0055 1.0055 

                                    𝑆𝑂  N/A 0.01 
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Table 3: Kinetic parameters used in geochemical models 
 Mineral K25(acid) 

mol/cm2/s 
Ea(acid) 
kJ/mol 

n  K25(neut) 
mol/cm2/s 

Ea(neut) 
kJ/mol 

K(precip) 
mol/cm2/s 

τ 

Amorphous silica 0 0 0 1.70E-17 68.70 K(diss) 2E+10 
Ankerite 1.59E-08 45.0 0.900 1.26E-13 62.76 K(diss)/1e+05 3E+10 
Anorthite 3.16E-08 16.6 1.000 7.59E-14 17.80 K(diss) 2E+10 
Calcite 5.01E-05 14.4 1.000 1.55E-10 23.50 K(diss) 1E+10 

(Fe-Mg)-Chlorite 1.62E-14 25.1 0.490 1.00E-17 94.30 K(diss) 2E+10 
Dolomite 6.46E-08 36.1 0.500 2.95E-12 52.20 K(diss) 3E+10 
Hematite 4.07E-14 66.2 1.000 2.51E-19 66.2 K(diss) 3E+10 

Illite/Muscovite 1.91E-16 46.0 0.600 8.91E-20 14.00 K(diss) 2E+10 
Kaolinite 4.90E-16 65.9 0.777 6.61E-18 22.20 K(diss)/50 2E+10 

K-feldspar 8.71E-15 51.7 0.500 3.89E-17 38.00 K(diss) 2E+10 
Quartz  0  0 0  3.98E-18 90.90 K(diss) 5E+10 
Siderite 1.59E-08 45.0 0.900 1.26E-13 62.76 K(diss)/50 2E+10 

Smectite (K-
Montmorillonite) 

1.05E-15 23.6 0.340 1.66E-17 35.00 K(diss) 2E+10 

 
Table 4: Input mineral mass and surface area in refined models (with initial values in 
brackets where different to final values) 

Reactant/input data Mass (g) Surface area (cm2/g) 
Cube B Cube C Cube B Cube C 

Ankerite (Ca0.6-Mg0.2-Fe0.2) 0.045 
(0.027) 

N/A 15,000 (10) N/A 

Ankerite (Ca-Mg0.5-Fe0.5) N/A 0.06 
(0.027) 

N/A 40,000 (10) 

Anorthite 0.217 0.217 10 10 

Calcite 0.017 
(0.014) 

0.01 40 (10) 25 (10) 

Chlorite (Fe3.75-Mg1.25) 
0.0105 
(0.027) 

N/A 12,100,000 
(70) 

N/A 

Chlorite (Daphnite-14A) N/A 0.37 
(0.027) 

N/A 1,000,000 
(70) 

Dolomite 0.0175 
(0.02) 

0.017 1500 (10) 700 (10) 

Hematite 0.05 0.05 40 40 
Illite/muscovite 0.136 0.136 30 30 

Kaolinite 0.136 0.136 40 40 
K-feldspar 0.306 0.306 10 10 

Quartz 5.7911 
(5.44) 

5.425 
(5.44) 

10 10 

Rhodochrositea 0.0012 
(0.007) 

0.005 
(0.007) 

60,000 (10) 20,000 (10) 

Siderite 0.0047 
(0.17) 

N/A (0.17) 75,000 (10) N/A 

Smectite (K-Montmorillonite) 0.068 0.068 40 40 
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Table 5: ICP-OES measured element concentrations (mg/kg) in solution during experiments with CO2-brine or SO2-CO2-brine a 

 

Sample /  
Elementa Gas Day Al Ba Ca Cd Cr Cu Fe K Li Mg Mn Mo Na Ni P Pb S Si Sr V Zn 

ex 
situ 
pH 

Stock 1%  
NaCl solution N/A N/A 0.99 <DT 11.7 <DT 0.013 <DT 0.3 22.71 4.24 1.06 0.13 0.09 5194 <DT 3.27 <DT <DT <DT 1.12 0.64 <DT 

 

Pure water 
blank CO2 4 0.16 <DT 1.79 <DT 0.090 0.14 0.57 0.21 0.052 0.16 0.17 <DT 8.59 0.103 0.08 0.0049 <DT 0.47 0.059 0.0093 0.18 

Blank 
experiments  
with 1% NaCl 

N2 11 2.82 0.441 14.4 0.14 0.647 0.20 3.97 27.53 4.22 1.87 0.68 0.21 6184 1.31 2.81 <DL <DL <DL 1.12 0.73 0.78 

CO2 11 0.95 <DT 13.20 <DT 0.539 0.0050 3.42 23.85 4.10 0.25 0.18 0.19 5514 0.26 3.27 <DT <DT 0.47 1.06 
 0.74 0.085 

SO2- 
CO2 

11 1.04 <DT 12.9 0.20 5.09 0.22 14.82 29.16 3.84 0.071 0.51 0.17 5424 2.76 3.16 <DT 439 0.25 1.32 1.16 1.57 

Berea A CO2 15 <DT 0.079 145.3 0.088 0.11 <DT 80.59 6.33 <DT 41.23 5.44 <DT 5933 0.87 <DT <DT <DT 3.88 0.078 <DT 0.52 5.77 

Berea B 

N2 2 1.01 <DT 42.1 <DT 0.13 0.30 6.65 32.41 4.16 7.17 1.29 0.11 5819 0.01 3.23 <DT <DT <DT 1.07 0.68 <DT 

 

CO2 

5 1.64 <DT 149 <DT 0.68 0.70 72.2 22.13 4.26 35.13 5.69 0.17 5799 1.92 3.54 <DT <DT 2.50 1.22 0.81 0.32 

9 1.80 <DT 222 <DT 0.21 0.60 98.0 25.04 4.03 50.35 7.88 0.20 5953 1.33 2.88 <DT <DT 11.60 1.17 0.94 0.29 

12 1.37 <DT 249 <DT 0.15 0.43 114 27.28 3.84 59.60 8.26 0.15 5889 0.48 3.28 0.06 <DT 13.40 1.20 0.84 0.50 4.72 

Berea C 

N2 2 1.43 <DT 57.9 <DT 0.26 0.33 14.0 26.29 4.11 9.35 1.96 0.18 5395 0.28 3.02 <DT <DT <DT 1.11 0.70 2.07 

 
SO2- 
CO2 

5 22.5 <DT 205 <DT 3.34 0.63 199 27.76 4.23 58.48 7.89 0.47 6003 1.95 3.47 0.08 403 1.99 1.19 0.94 1.44 

9 34.5 <DT 278 <DT 5.55 0.53 281 20.46 4.06 74.18 10.01 0.34 5752 3.23 2.55 0.20 618 16.14 1.24 1.03 1.46 

12 43.5 <DT 297 <DT 8.21 0.16 345 33.50 3.96 87.17 11.63 0.38 5706 6.68 2.62 0.15 730 26.96 1.23 1.14 1.75 2.69 
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Table 6: Mineral mass changes for Cube B CO2-brine model after 10 days reaction 

 
Weight  

Amount reacteda 

Initial Final 
Reactants (%) (g) (g) (g) (%) 
Ankerite 0.66 0.045 0.0143 3.07E-02 68.29 
Anorthite 3.19 0.217 0.2169 6.89E-05 0.032 
Calcite 0.25 0.017 0.0056 0.01137 66.88 
(Fe-Mg)-Chlorite 0.15 0.0105 0.0028 0.007733 73.65 
Dolomite 0.26 0.0175 0.0005 0.01701 97.2 
K-feldspar 4.5 0.306 0.3060 9.36E-08 3.06E-05 
Hematite 0.75 0.05 0.0500 3.94E-11 7.89E-08 
Illite/muscovite 2 0.136 0.1360 1.87E-10 1.37E-07 
Kaolinite 2 0.136 0.1360 7.44E-09 5.47E-06 
Quartz 85.2 5.7911 5.7911 -5.55E-08 -9.58E-07 
Rhodochrosite 0.02 0.0012 0.0001 0.001084 90.33 
Siderite 0.07 0.0047 0.0001 0.004644 98.81 
Smectite (K-Montmorillonite) 1 0.068 0.0680 4.40E-08 6.47E-05 

 

Table 7: Mineral mass changes for Cube B SO2-CO2-brine model after 10 days reaction 

  
Weight (g)  

Amount reacteda 

Initial Final 
Reactants (%) (g) (g) (g) (%) 
Ankerite 0.88 0.06 0.0001 5.99E-02 99.78 
Anorthite 3.19 0.2167 0.2166 6.89E-05 0.032 
Calcite 0.15 0.01 0.0050 0.00502 50.2 
Chlorite (Daphnite-14A) 5.44 0.37 0.3292 0.04083 11.04 
Dolomite 0.25 0.017 0.0032 1.38E-02 81.24 
K-feldspar 4.5 0.306 0.3060 9.37E-08 3.06E-05 
Hematite 0.74 0.05 0.0500 5.47E-10 1.09E-06 
Illite/muscovite 2 0.136 0.1360 1.87E-10 1.37E-07 
Kaolinite 2 0.136 0.1360 1.59E-08 1.17E-05 
Quartz 79.8 5.425 5.4250 -6.94E-08 -1.28E-06 
Rhodochrosite 0.07 0.005 0.0023 0.002739 54.78 
Smectite (K-Montmorillonite) 1.00 0.068 0.0680 4.35E-08 6.40E-05 
SO2(g)    0.1552 100 
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Highlights 

 Greater mineral dissolution during SO2-CO2-brine experiments compared with CO2-brine 

 Mineral behaviour shown via SEM images of identical spots pre and post experiment  

 Geochemical modelling indicated that chlorite reacted during all experiments 


