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Abstract 

 

A-T (Ataxia-Telangiectasia) is a multi-systemic, rare genetic disorder hallmarked by 

predisposition to cancer, immune deficiency and most notably progressive neurodegeneration 

[1]. A-T results from mutation of the ATM gene (11q22.3). ATM is a protein kinase 

belonging to the phosphatidylinositol 3-kinase-like family [2]. ATM exerts control over 

genomic integrity by recognizing and responding to DNA damage, through phosphorylation 

of substrates involved in cell cycle control and DNA damage repair [1]. The ATM protein is 

involved with numerous cellular processes and as such, A-T represents a paradigm for 

neurodegenerative disorders, as well as cancer. 

 

 Experimental models of ATM function have been restricted to systems of limited context to 

understanding ATM biology and its potential role in development and tissue formation. 

Animal models have failed to faithfully recapitulate the full spectrum of A-T symptoms 

including the neurodegenerative aspect, which remains poorly understood. Existing human 

cellular models (such as fibroblasts and lymphoblastoid cell lines from patients) allow 

analysis of ATM in limited contextual space. Little is known about the involvement of ATM 

or its downstream substrates have in the mechanisms that exist to direct and protect 

development within the embryo. Perturbed regulation of DNA damage at critical temporal 

junctures within the developing embryo could lead to the progressive degenerative 

characteristics observed in this disorder. Further to this, accumulating evidence points to 

involvement of ATM in areas outside of its canonical role of orchestrating the DNA damage 

response including; meiosis [3], proteasome-mediated protein degradation [4], mitochondrial 

function [5], insulin resistance and glucose metabolism [5, 6], modulation of synaptic 

functions in neurons [7], vesicle trafficking [8], pentose-5 pathway signaling [9], HDAC4 

localization  [10]  and as a sensor and responder to oxidative stress [11, 12]. Emerging 

evidence also suggests that ATM has tissue specific functionality and is required during 

development [13, 14].  

 

hESCs (human embryonic stem cells) constitute a powerful tool  for modeling of 

development and disease. To date only one report describes the effect of ATM knockout in 

hESCs by BAC-mediated transgenesis [15]. The authors show that ATM knockout results in 

cells that display hypersensitivy to IR (ionizing radiation) and show lack of G2M cell cycle 



arrest after DNA damage, recapitulating aspects of the phenotype seen in existing cellular A-

T models and demonstrating that ATM is a critical responder to DNA damage in this context. 

A recent technology to emerge from Japan has made it possible to reprogram terminally 

differentiated somatic cells, such as fibroblasts, into cells which resemble hESCs, in terms of 

self-renewal and their ability to generate cells of all three germ layers [16] and are so named 

induced pluripotent stem cells (iPSCs).  

 

To date, studies on A-T have failed to answer the fundamental question of why certain cell 

types are seemingly more affected than others. As access to pluripotent stem cells becomes 

mainstream, it becomes possible, to a degree, to recreate and study in vitro processes giving 

rise to various cell types, including neurons, using directed differentiation protocols. 

 

We hypothesized that ATM deficient cells may be difficult or impossible to reprogram 

without intervention or assistance, and that this difficulty may be at least in part due 

excessive levels of reprogramming-induced or existing DNA damage, to the poor growth 

characteristics of A-T cells or the inability to participate in certain pathways necessary for 

reprogramming. We show that it was indeed possible to generate iPSCs from A-T patients 

albeit at reduced efficiency. This thesis describes the first generation and characterization of 

bona fide iPS cells from patients with A-T. Additionally we use this model system to explore 

the role and functionality of ATM in an embryonic setting, showing that ATM signaling is 

vitally required for the maintenance of cell cycle control and DNA fidelity after DNA 

damage. We have defined the transcriptional landscape of pluripotent stem cells from patients 

with A-T and point to novel findings regarding oxidative phosphorylation pathways. Further 

to this, we have used this model system to explore the role of ATM in neurogenesis and 

neuronal activity. We provide evidence that fosters support for the theory that A-T involves 

aspects of mitochondrial dysfunction and explore whether calcium trafficking is defective in 

neurons generated from patient iPSCs. Importantly we have illustrated the proof of concept 

that genetic manipulation of neuronal cells is possible by delivery of full length ATM, which 

also restored a functional DNA damage response.  

 

Finally, we utilized a neuronal differentiation protocol to generate neural progenitors 

characteristic of the developing cerebellum, and describe the transcriptome of these cells in 

the absence of ATM. These data present unique and novel insights into the developing A-T 

brain and recapitulate many of the existing findings regarding the molecular pathways that 



may underpin the neurodegeneration in A-T. We speculate that this dataset will be a useful 

tool in understanding the growth requirements required for further expansion and study of 

these cell types in vitro, which could be harnessed to identify and screen drugs useful for the 

treatment of A-T patients. 
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1.0 Literature review 

1.1 History of embryonic stem cell research 

 

International stem cell research has endured a tumultuous past that has been plagued with a host 

of technical, ethical and political complications - many of these played out in the American 

political arena, which has set the world stage for this area of research. Since the early 1970s, The 

American Congress has imposed bans and restrictions on federally funded embryonic and fetal 

tissue research that have been continually contested, overturned and appealed. Despite this, 

extensive progress has been made on a number of fronts including the first clinical trial of hESC 

(human embryonic stem cells) for treatment of acute spinal injuries (Geron, 2009). hESCs serve 

extensively as disease models where they are useful in understanding development and also 

facilitate the procurement of cells and tissues that are normally difficult to acquire. Recently the 

remarkable finding that terminally differentiated somatic cells could be reprogrammed to an 

embryonic-like state emerged from the laboratory of Shinya Yamanaka in Kyoto, Japan [16]. 

 

hESCs are harvested from the developing embryo five days post fertilization, resulting in 

destruction of this embryo. These cells are derived from the inner cell mass (ICM) of the 

blastocyst, an embryonic structure comprising approximately 100 cells and that represent an 

intermediate stage between the morula (a clump of cells which grows by embryonic cleavage) 

and the gastrula (in which germ layers begin to form and organize before organogenesis) (See 

Figure 1.1). hESCs are pluripotent, meaning that they are capable of differentiating into cell and 

tissue types from all three germ layers (ectoderm, mesoderm and endoderm) that go on to 

constitute the entire human body. As well as this, hESCs are theoretically capable of infinite 

self-renewal [17]. hESCs differ from adult stem cells which reside within the human body in 

stem cell ‘niches’ and are referred to as multipotent.   
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Figure 1.1 – Embryonic stem cells are harvested from the inner cell mass of a blastocyst. 

These cells are pluripotent, meaning they can form any cells or tissue within the human 

body (with the exception of the placenta). Figure adapted from [18]. 

 

In 1998, a group led by James Thomson published for the first time, a method for isolation and 

propagation of hESC using in vitro culture methods [17]. Following on from Gail R Martin’s 

work in mouse embryonic stem cells [19], and pioneering work in hESC isolation [20], Thomson 

and colleagues showed that hESCs isolated from IVF-donated embryos  cultured to the 

blastocyst stage could be expanded on mitotically-inactivated mouse embryonic fibroblasts. 

These cells were described as possessing a ‘high ratio of nucleus to cytoplasm, prominent 

nucleoli, and a colony morphology similar to that of rhesus monkey ES cells” [17]. In addition, 

they were shown to have 46, XX & XY karyotypes, and the capability of extended growth in 

culture, free from signs of replicative crisis. Notably, a high level of telomerase expression was 

observed in these cells. Telomerase expression is associated with cell immortality and normally 

absent in diploid somatic cells [17]. 

 

Because of their ability to self-renew and differentiate into other cell types, ESCs have long been 

touted as a panacea to a range of congenital and acquired illnesses. In reality their utilization has 

largely been as a research tool for examining development and disease, although these two 

issues are inextricably intertwined. ESCs were recently used to treat Stargardt’s Macular 

Dystrophy and age-related macular degeneration with promising results [21]. A range of 
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technical, ethical and political challenges exist with respect to their ongoing use and this has 

spurred researchers to investigate alternate sources of pluripotent stem cells.  

 

Given their provenance, a major limitation of ESCs is immune rejection of ESC based grafts by 

the host, potentially limiting their clinical relevance. Currently, a theoretical therapy might hope 

to replace a damaged cell or tissue type that is subsequently recognized by the body as foreign 

and targeted by the immune system, with major implications for the health of the patient and 

success of the graft. While immunologists seek to further understand or circumvent this process 

by either deleting MHC molecules from the hESCs [22] or re-educating the host immune 

system, a simpler solution would be to harness tissue originating from the host. One strategy 

proposed to circumvent graft rejection is the use of Somatic cell nuclear transfer (SCNT), in 

which an enucleated egg from a donor is injected with the nucleus of a patient, resulting in a 

blastocyst which is genetically compatible with the donor from whom it is taken [23]. This 

process however is complex, labor intensive and while it addresses certain ethical and technical 

issues, it is not without those of its own, including the acquisition of donor eggs and the intrinsic 

low efficiency of the process. 

1.2 Discovery of induced pluripotent stem cells 

 

In 2006, a breakthrough emerged from a laboratory in Kyoto, Japan [16]. Yamanaka and 

Takahashi demonstrated that it was possible to return terminally differentiated cells back to a 

pluripotent state using novel methodology. This was achieved through combinatorial screening 

of 24 important stem cell genes, introduced into mouse fibroblasts using retroviruses and 

subsequent antibiotic selection linked to the Fbx15 locus, which is associated with an 

undifferentiated embryonic state [24]. The Yamanaka group uncovered a combination of 

transcription factors, Oct4, Sox2, c-Myc and Klf4 which when introduced into mouse fibroblasts 

and combined with proper culture conditions, gave rise to cells remarkably similar to ESCs, 

which he called induced pluripotent stem cells (iPSCs). The process is depicted in figure 1.2. 

Although these cells initially failed to produce chimaeric offspring and still maintained certain 

residual epigenetic artefacts of origin, they displayed many of the characteristics of ESCs [16]. 

This study paved the way for an explosion of interest into the field. 
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Figure 1.2 - a) Diagramatic representation of the iPSC generation process, including 

harvesting tissue from healthy/diseased patient, establishment of fibroblasts, introduction 

of reprogramming factors and downstream analysis b) induced pluripotent stem cell 

colony c) human embryonic stem cell colony. Figure a is adapted from [25]. Figure b 

from [26]. Figure c from Wikipedia commons. 

 

The following year, Yamanaka and colleagues published a follow-up work outlining successful 

generation of mouse iPSCs that could form chimaeras and had an epigenetic profile at certain 

loci resembling that of embryonic stem cells, by using a modified selection strategy [27]. This 

study was accompanied by two independent publications reporting similar findings [28, 29]. 

Translation to a human clinical situation was alluded to cautiously, with the finding that one of 

a 

b 

c 
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the reprogramming factors c-Myc (a known oncogene) caused cancer in one in five mice. c-Myc 

was proven to be dispensable for reprogramming, at the cost of greatly reduced efficiency [30]. 

 

Later that year, both Yamanaka and another group (led by Jamie Thomson) would independently 

reach the same conclusion – that it was possible to adapt this system for use with human cells 

[31, 32]. Jamie Thomson led work that closely resembled that of Yamanaka but instead used a 

lentiviral based delivery system and substituted two different reprogramming factors, Lin28 and 

Nanog, in place of Klf4 and c-Myc. Yamanaka had made the most significant discovery in 

regenerative medicine since the discovery of embryonic stem cell isolation and culture, by 

essentially showing that it was possible to re-awaken the dormant endogenous pluripotentcy 

network in a terminally differentiated cell. In addition to drastically changing the way in which 

the field regarded pluripotency and cell state, this discovery held promise in addressing two of 

the major hindrances associated with embryonic stem cell research - the ethical and political 

issues in destruction of embryos and also the issue of tissue sourcing with regards to donor 

compatibility and immune rejection of allogeneic tissue.  

 

Numerous variations and combinations of the reprogramming factors have since been used to 

generate iPSCs in a range of human and animal cellular models, with a myriad of results (See 

Figure 1.3). Fears for the feasibility of these retrovirally derived cells as a clinical tool have 

driven approaches to generate iPSCs free from viral integration sites including the use of 

Adenovirus [33], Cre/LoxP excisable elements [34], tagged proteins [35], episomal vectors [36], 

RNA [37, 38] and recently a piggyBac transposon system [39]. These systems have reported a 

wide variety of results including variable reprogramming efficiency and reproducibility.  
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Figure 1.3 – Comparison of three different methodologies to generate iPSC a) Retroviral 

transduction uses viral particles to randomly integrate copies of transgene into the 

genome b) Adenoviral transduction uses non-integrative infection to deliver 

reprogramming factors c) Plasmid transfection uses episomes to deliver reprogramming 

factors to target cells. Image adapted from [25]. 

 

It is now widely accepted that potential utilization of iPSCs as clinical entities will require non-

integrating methodologies which do not rely on transgene insertion into the genome. A separate 

issue remains the current lack of understanding of the process that drives this reversion to 

pluripotency and consequently, the degree or completeness to which cells are reprogrammed. 

Accumulating evidence suggests that iPSCs must overcome a barrier to be reprogrammed and in 

doing so undergo a genome-wide epigenetic remodeling, which may happen to various degrees 

based on a number of criteria including culture conditions, starting material and method of 

reprogramming [40, 41].  Interestingly, it was shown that iPSC possessed an ‘epigenetic 

memory’ of their tissue type of origin, and that this epigenetic state could modulate the ability of 

iPSC to differentiate effectively into certain tissues/lineages [42]. 
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1.3 Utilization of induced pluripotent stem cells 

 

 

Owing to the fact they have been synthetically derived and propagated in continuous culture, and 

also the fact that there has been no comprehensive definition of what is a truly reprogrammed 

iPSC, concerns remain which still prohibit these cells from being utilized in clinical settings. 

iPSCs are however, now widely being used as models for human disease and development, in an 

effort to further understand the onset and pathogenesis of a range of disorders, from 

schizophrenia [43] to amyotrophic lateral sclerosis [44] (See Figure 1.4).  

 

 

Figure 1.4 – a) Neurons generated from a patient with Schizophrenia [43] b) Motor 

neurons generated from patients with ALS [44]. 

 

The precise number of hESC lines worldwide is indeterminate but believed to exceed 100, each 

of which possesses a certain distinct genetic background. iPSC technology has made it possible 

to generate the hESC equivalent from patients with various genetic backgrounds and diseases, 

with relative ease. This now allows for more accurate, patient-specific modeling of diseases, and 

takes into account genomic contexts of mutations, rather than conventional gene knockdown 

methodology. iPSCs are model systems which can be differentiated into a range of tissue types 

which may help address problems associated with obtaining suitably relevant material for 

studying specific diseases. For example, it is not always feasible or possible to obtain relevant 

biopsied material from living patients, but propagated cells from a relatively painless skin biopsy 

can be reprogrammed to generate iPSCs, and then differentiated into the desired cell type to 

study. Recently it has been shown that a vast array of cell types can be reprogrammed, including 

a b 
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blood [45], dermal papilla  from hair follicles [46] and even renal tubule cells extracted from 

urine [47]. This might provide a system to generate easily sourced and immunologically matched 

tissue that could be re-implanted with lessened chance of immune rejection than tissue derived 

from an unrelated donor embryo. Additionally, the process by which these cells take in 

differentiating can be scrutinized and may reveal insights into development and disease 

pathology. 

1.4 Pluripotent cells in modeling development and disease 

 

Just as mice and humans share significant genetic homology, mouse and human stem cell 

research shares many similarities. Mouse embryonic stem cell research is free from many of the 

ethical and technical experimental constraints that surround human research (ie generation of 

chimaeras, tissue transplantation). To understand the state of current ESC research, both must be 

viewed critically. There are many gaps in our understanding of human ESC behavior where mice 

must stand in and available information must be appraised. In many cases mice provide relevant 

models with which to study human disease, however due to large cross-species differences in 

processes such as neurogenesis, direct comparison between mouse and humans with respect to 

neural pathology is often not suitable [48]. 

 

Pluripotent stem cells hold enormous potential for aiding our understanding of development of 

the body and the onset and molecular basis of disease. The defining feature of embryonic stem 

cells, the ability to form any cell of the human body, has allowed researchers to direct these cells 

into targets of interest to study and those that may have clinical relevance. Researchers in this 

field have made numerous achievements, but in keeping with brevity and relevance, this 

document will focus mainly on studies relating to neural development, given its relevance to A–

T and this work. 

1.4.1 Models of neurological disease 

 

The two main constituents of the human nervous system are the CNS (central nervous system), 

largely comprised of the brain and spinal cord and the PNS (perhipheral nervous system), the 

nerves and ganglia outside of the brain and spine.  
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Figure 1.5 – The CNS is comprised of the brain and spinal cord, while the PNS consists 

of nerves and ganglia outside this area. Figure adapted from http://universe-

review.ca/R10-16-ANS.htm 

 

ESCs have been used to artificially recreate several of the complex cell types from the CNS, 

especially the brain, for study or transplantation therapy purposes aimed at restoring lost 

functionality. The problem with respect to these approaches is determining how ESCs can be 

efficiently directed towards the specific cell type of interest. In many cases of transplantation 

therapy, groups have attempted to implant undifferentiated ESCs, with variable and sometimes 

dangerous results [49, 50]. In past instances this has resulted in tumour formation and so a 

strategy to bypass this has been to reduce the tumorigenic potential by partially or fully 

differentiating the cells to be transplanted into a committed cell type or an upstream precursor. A 

prime example of this is shown in recent work on Parkinson’s disease (PD)[51, 52]. PD is 

associated with the loss of dopaminergic neurons from the substantia nigra, which secretes 

dopamine to regulate cortical and thalamic behavior – defects in which cause the symptoms 

associated with PD, such as loss of motor control and dementia [53]. To safely replace the 

damaged cell type by transplantation would be the gold standard for treatment of this disorder; 

however to do this completely has remained elusive. Although these studies have shown some 

level of efficacy, they bring to light several of the limitations of current technologies, being 

safety and our knowledge of manipulation of this technology including efficiency and functional 
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incorporation of transplanted material. While iPSCs and their derivatives serve as viable disease 

models to study onset and treatment of disease, their use in the clinic may still be far away. 

 

1.4.2 Additional induced pluripotent stem cell disease models including chromosomal 

instability syndromes 

 

An increasing number of diseases have been modeled using iPSC technology including diabetes 

type 1 [54], Parkinson’s [55], Amyotrophic lateral sclerosis [44], spinal muscular atrophy [56], 

Rett syndrome [57], Huntington’s [58] amongst a long list of others. 

 

Two papers explored iPSC models of complex and multisystemic disease relating to 

chromosomal instability syndromes; Friedreich Ataxia (FRDA), an autosomal recessive disorder 

caused by trinucleotide (GAA) repeat expansion in the FXN gene and involving cardiomyopathy 

and neurodegeneration [59, 60], as well as Fanconi anaemia – caused by mutations in genes 

from the FA pathway and involving bone marrow failure and other malignant developments 

[61]. iPSC modeling of Friedrich Ataxia demonstrates the underlying promise of this 

technology. FRDA is manifested most notably in neuronal and cardiac cells, resulting in ataxia 

and cardiomyopathy respectively. Liu et al. were able to demonstrate that iPSC could be 

generated from two patients and subsequently differentiated into the cell types affected in 

FRDA; sensory neurons from the dorsal root ganglia and representative cardiomyoctes. Both the 

iPSCs and the differentiated cells recapitulated the disease-causing reduction in FXN protein 

level. This has provided a model that may allow for deeper insights into the progression of this 

disease, which is poorly understood. Part of this is due to the fact that animal models of FRDA 

do not fully recapitulate the symptoms seen in human patients [62, 63], and so in addition to 

revealing developmental insight into this disorder, this technology may provide a relevant and 

useful system for the screening of drugs that could be used to treat FRDA patients.  
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1.5 Ataxia–Telangiectasia 

 

Another autosomal recessive ataxia, the focus of this document, is Ataxia–Telangiectasia (A–T)- 

named so because of the ataxia (prominent unsteady gait), and oculocutaneous telangiectasia 

(the dilation of blood vessels around the eyes) [64].  

1.5.1 Symptoms and underlying etiology of A–T 

 

Patients with A–T suffer from radiosensitivity, predisposition to malignancies (particularly 

lymphomas), infertility, elevated risk of diabetes type 1, immune deficiency and pronounced 

cerebellar degeneration [65]. Because of this, most A–T patients are wheelchair bound by their 

early years, and many do not live beyond the age of 20, with sinopulmonary infections and 

cancer being the leading cause of mortality [66].  The multisystemic nature of A–T has caused 

some speculation about the potential for ATM involvement in activities other than DNA damage 

response. While the nuclear localization and involvement of ATM in response to DNA damage 

has been extensively characterized, and loss of this activity correlated with chromosomal 

breakage and malignancy, several groups have postulated theories and provided evidence that 

explain the symptoms of A–T which might fall outside of this paradigm. These include 

involvement of ATM in meiosis [3], proteasome-mediated protein degradation [4], insulin 

resistance and glucose metabolism [5, 6], modulation of synaptic functions in neurons [7], 

vesicle trafficking [8], pentose-5 pathway signaling [9], HDAC4 mislocalization [10] and most 

recently as a sensor and responder to oxidative stress [11, 12, 42]. Perturbation of ATM may 

disrupt these processes resulting in the symptoms observed in A–T, however the exact 

mechanisms in doing so are unclear. 
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Figure 1.6 – Schematic representation of A–T symptom manifestation; Telgangiectasia 

affecting the eyes, Neurodegeneration affecting the brain/cerebellum, systemic 

radiosensitivity, immune defects and cancer, sterility in the gonads [67]. 

 

1.5.2 ATM & the and molecular basis of A–T 

 

A–T is caused by mutational inactivation of the ATM gene, which was localized to 11q22-q23 in 

1988 [68] and first cloned  and identified in 1995 [69].  ATM belongs to the phosphatidylinositol 

3-kinase like (PIKK) family of serine threonine kinases that also includes ATR (‘Ataxia–

Telangiectasia Mutated and Rad3 related’), DNA PKcs (‘DNA-dependent protein kinase 

catalytic subunit’) and hSMG-1 [70], all of which are involved with DNA repair. ATM also 

shares homology with tel1 and rad3 in yeast and the TOR genes in yeast/mammals that are 

involved with cell cycle progression and meiotic recombination [71].  The ATM protein is 

comprised of five domains, containing from (N-C terminus) HEAT (Huntington Elongation 

factor 3 protein phosphatase 2A PI3-kinase Tor1), FAT (FRAP-ATM-TRRAP), KD (Kinase 

Domain), PRD (PIKK-regulatory domain) and FATC domains. The HEAT domain is known to 

function by binding to NBS1, another DNA damage surveillance protein. The FAT domain is 

theorized tointeract with the KD in ATM to enhance stability of the C-terminus of the protein. 
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The KD is responsible for the extensive kinase activity of ATM, which is regulating by PRD and 

FATC domains.[72].  

 

 

 

 

Figure 1.7 – ATM protein shares homology with ATR, SMG-1 and mTOR, containing 

FAT (FRAP-ATM-TRRAP), KD (Kinase Domain), PRD (PIKK-regulatory domain) 

and FATC domains. Also present towards the N-terminus but not shown, the HEAT 

(Huntington Elongation factor 3 protein phosphatase 2A PI3-kinase Tor1) domain. 

Figure taken from Cellular Biochemistry II. 

 

ATM is involved with the response to DNA damage by phosphorylating a large number of 

substrates to control the cell cycle and initiate DNA damage repair [65, 73].   

 

1.5.3 Animal and cellular models of A–T 

 

A wealth of research exists on A–T, however much is still unknown about the true nature of this 

disease. As with the case of FRDA, A–T animal models [74] have failed to accurately 

recapitulate the full spectrum of symptoms from this disorder - while mouse models of A–T 

demonstrate sterility, predisposition to malignant developments, neurologic manifestations, 

radiosensitivity and checkpoint signaling aberrations, they fail to reliably reproduce the most 

pronounced and debilitating aspect of A–T, which is the ataxia thought to arise from the loss of 

Purkinje cells (PCs) and granule cells (GCs) in the cerebellum [75]. Human cellular models of 
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A–T exhibit hypersensitivity to radiation, defective cell cycle arrest (G1, G2 and intra-S-phase 

radioresistant DNA synthesis) as well as culture stress and predisposition to chromosomal 

breakage and aberrations [73]. ATM has been shown to be largely nuclear in fibroblasts [76], 

while evidence points to some cytoplasmic localization in neuronal cell types [13, 14] indicating 

that ATM might play varying roles in different cellular contexts. Animal models are able to 

provide the opportunity to study ATM in integrated and differing cellular contexts, however the 

cross-species differences have prevented this approach from yielding answers that are vital – 

such as the reason for why some A–T symptoms are specifically manifested in certain cell types 

and not others. Access to pluripotent stem cells may help bridge this gap by offering insight into 

the relationship that ATM has with development and networks in a cell-type specific manner. 

 

1.5.4 Potential for modeling A–T in induced pluripotent stem cells 

 

Conventional disease models, such as fibroblasts and lymphoblastoid cell lines are restricted to 

demonstrating a limited range of contextual information which may be only partially relevant to 

the actual disease phenotype. This is why pluripotent stem cells are useful, as they allow the 

examination of what might be a valid model for the development of the embryo with respect to a 

particular disease, but also the unfolding of processes that occur downstream, such as 

neurogenesis, hematopoiesis and cardiogenesis. An embryonic knockout model of ATM could 

be expected to closely resemble the processes that occur during blastocyst stage, allowing insight 

into what role ATM might have in this and subsequent developmental contexts.  ATM is a 

known DNA damage regulator and is extensively characterized in somatic cell models [73, 75, 

77], however due to the technical and ethical constraints of working with such models, very little 

is known about the function of ATM in an embryonic context.   

 

1.6 The cell cycle and DNA damage in pluripotent and somatic cells 

 

Pluripotent stem cells must preserve their genome, as unrepaired damage will be passed on to 

daughter cells. This is achieved in three distinct ways; up-regulation of DNA-repair processes, 

increased efficiency of DNA repair and removal of cells from the pluripotent pool by either 

apoptosis or differentiation [78]. 
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To focus on the canonical role of ATM as a key player in protection of the genome as a 

transducer of DNA damage and cell cycle signaling in ESCs is a logical, but complicated place 

to start. Any system that is artificially cultivated ex vivo is at risk of developing karyotypic 

abnormalities, however it seems that there is a large burden of proof on ESCs and iPSCs in this 

regard, which may be in part due to the manner in which they are perceived as potential clinical 

entities. ESCs and iPSCs are by their very nature, culture artefacts and are propagated in highly 

synthetic conditions meaning that karyotypic abnormalities are bound to arise, and even as 

relevant precautions are taken, must be considered as transient or fragile models.  

 

The involvement of ATM in an embryonic context is only recently receiving attention. ATM has 

been demonstrated to activate signaling pathways in ESCs and iPSCs in response to DNA 

damage [79-81] and to be vital for G2M arrest in hESCs after introduction of DNA damage by 

treatment with IR [15, 80], however IR may not accurately represent the normal levels and type 

of DNA damage which occur within the cellular environment.   

 

Several recent findings highlight the phenomena of elevated levels of DNA damage signaling 

and repair gene expression in ESCs and iPSCs in comparison to somatic cells, which was 

attributed to the elevated need for protection of the genome [79, 82]. Maintaining a stable 

genome within the developing embryo is an important requirement for the survival and viability 

of an organism – similarly, the stability of ESCs and iPSCs relate directly to their applicability 

as clinical entities and disease models. Recent work outlines the high degree of similarity in 

response to DNA damage between ESCs and iPSCs with respect to cell cycle arrest, double 

strand break repair and gene expression [79]. Further to this, it was illustrated that pluripotent 

and somatic cells utilize DNA damage repair pathways via distinctly different methods which 

makes sense given the different nature of these cells and their requirements for growth [83]. It 

has been suggested that ESCs primarily utilize HRR (homologous repair and recombination) 

rather than error prone NHEJ (non-homologous end joining), which is supported by the 

observation of 10-fold higher formation of RAD51 foci in ESCs when compared to 

differentiated astrocytes [84]. HRR is dependent on sister chromatids for repair templates - as 
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ESCs spend 70% of their time in S and G2M phase, they are more easily able to initiate this 

more stringent form of repair [79]. ESCs have a doubling time of approximately 20-30 hours 

[85] and cycle rapidly due to an abbreviated G1 phase and facilitated G1 to S transition [86]. 

Due to this accelerated rate of DNA replication and also mitotic division, ESCs and iPSCs may 

be at a greater risk of replication errors, especially in the context of genomic instability 

syndromes, such as A–T. In somatic cells, ATM phosphorylates p53 to arrest G1/S cell cycle 

transition in the presence of DNA damage [87] however this mechanism functions differently in 

ESCs because they  lack a conventional restriction point in late G1 [88]. Filion et al.showed that 

ESCs lack a conventional G1 checkpoint in response to IR [81, 89]. This group and others [15, 

80] show supporting data and demonstrate that ESCs arrest in the G2 phase after IR in an ATM 

dependent manner.  

 

Numerous papers report that ESC are hypersensitive to environmental insult, resulting in 

elevated levels of apoptosis [90, 91]. Filion et al.demonstrated that ESCs undergo caspase-

related mitochondrial apoptosis, demonstrating a mechanism for the removal of irreparably 

damaged cells [81]. 

 

Due to the highly stringent need for faithful repair and fidelity within the embryo, there may be 

several levels of inbuilt redundancy that exist to take over in the absence of ATM. This is 

evidenced by findings that a BAC recombineered ATM knockout hESC line maintained normal 

karyotype for extended periods of culture. This is speculated to be because ATM independent 

pathways were sufficient to maintain genomic fidelity in normal culture conditions [15]. Adams 

et al. provide evidence showing that the repair pathways that dominate in the pluripotent state 

are ATR-driven HRR in comparison to ATM-driven NHEJ in differentiated cells [78]. The 

apparent contrast between the necessity for ATM in maintaining genomic integrity between 

somatic and pluripotent stem cells demonstrates that ATM related and unrelated DNA repair 

pathways behave in contextually dependent manners depending on cell state.  

 

ATM was recently shown to act in a chromatin-state dependent manner, with respect to repair of 

DNA DSB. It was found that ATM signaling increased proportionally to the heterochromatic 
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state of the genome [92]. ESCs are primarily euchromatic [93], and as Adams et al.pointed out, 

this may explain why ATM dependent DNA repair pathways appear to be dispensable to hESCs 

in some regards [78].  Analysis of these pathways in iPSCs and differentiated cells from patients 

with A–T will allow insight into these processes.  

 

1.6.1 DNA damage during reprogramming 

 

In addition to the way in which ATM deficient stem cells might provide interesting clues as to 

the developmental onset of this disorder, it remains to be seen what involvement this protein 

might have in the role of reprogramming cells to a pluripotent state. The DNA damage response 

has been shown to be one of the earliest initiated activities in cells that are undergoing 

reprogramming, but it is not clear as to how ATM might participate in this process [40, 94]. It 

has been shown that ATM knockout mouse tail-tip fibroblasts undergo reprogramming at a 

greatly reduced efficiency [95]. This group showed that it was not possible to produce mouse 

ATM knockout iPSC that maintained stable karyotypes. This is inconsistent with findings by 

Song et al. who generated stable ATM knockout hESCs [15]. This conflict could be because 

ATM is more active in mouse ESCs, or simply due to intrinsic culture instability or that 

insufficient numbers of clones were expanded under sub-optimal conditions. These comparisons 

should be viewed as speculation due to the cross species difference and also the different 

methodologies that each group used to derive these models. Interestingly, a recent paper showed 

that intermediate passage iPSCs show a reduced rate of copy number variations when compared 

to parental fibroblasts, early passage iPSCs and hESCs, suggesting that these cells undergo a 

selection against mutations over time [96]. 

1.7 Neurodegeneration in A–T 

 

Although there is some clinical variability of A–T symptoms [97], all A–T patients suffer from 

progressive neurodegeneration of the cerebellum. This process and the underlying mechanisms 

are poorly understood, largely because of the difficulty associated in generating relevant human 

cellular models and the cross species difference in animal models. A number of Atm knockout 

mice models have been generated which produced a range of degrees with which they were able 

to recapitulate symptoms of human A–T [98-101]. The neurodegeneration associated with A–T 
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contributes to the most debilitating aspect of this condition, being the ataxia which leaves 

patients wheelchair bound and indirectly results in contributing to the largest cause of death, 

which is recurrent sinopulmonary infections that arise partially as a result of failing to swallow 

breathe and eat properly.  

 

  

Figure 1.8 – a) MRI of juvenile A–T patient (age 11), showing pronounced and specific 

cerebellar degeneration, compared to a b) normal brain MRI. Pictured are child (a) [102] 

and adult (b). 

 

 

1.7.1 ROS and neurodegeneration 

 

ROS have been implicated in several other neurological disorders, including Parkinson’s and 

Alzheimer’s [103]. At least two publications [98, 101] show evidence linking ROS with specific 

degeneration of Purkinje cells in the cerebellum in A–T models. The former of these groups 

speculates that ATM acts outside of its canonical role as a DNA damage regulator in 

participating in the defense against ROS. ATM has shown to be involved in a specific and 

distinct form of ROS surveillance [11].  Indeed, it has been shown that A–T models display 

elevated levels of ROS and constitutive activation of multiple oxidative stress pathways, in a 

range of different cell types [104]. 

 

Recently, it was shown that p38 MAPK acts as a negative regulator to control neural stem cell 

proliferation (NSC) through activation by oxidative stress and may offer some insight into the 

b a 



19 

 

mechanism behind the neurodegeneration in this disorder (ie a potential failure of ATM deficient 

cells to properly regulate ROS) [105]. 

 

Given the large metabolic requirements and also the fact that a large proportion of the cells in 

the brain are post mitotic, the burden of ATM in neuronal cells may be chiefly in response to 

ROS, rather than DNA damage related cell cycle regulation. This remains a difficult hypothesis 

to prove, which might be assisted by using pluripotent stem cells to generate neural cell types in 

large scale to examine the process by which these cells take to differentiate, and where an 

absence of ATM might contribute to their degeneration. 

 

1.7.2 Other theories to explain neurodegeneration 

 

Although the central paradigm of DNA damage regulation has been used to explain the 

neurodegeneration in A–T, to different degrees, certain other theories have risen to prominence, 

including the recent phenomena of inter-cellular differences in aneuploidy [106] as well as 

ATM’s role in apoptosis signaling [107] and development. In situ hybridization experiments of 

the developing mouse CNS show dynamic patterns of ATM expression, showing high levels 

during early development which later taper off suggesting that problems with neural 

development might happen early as a consequence of ATM deficiency [108]. This was also 

proven to be the case in Xenopus development [109]. A similar study confirmed this in humans 

and provided evidence for a role of cytoplasmic ATM in developing cerebellar neurons [13]. In 

support of this, Allen et al.showed that ATM was required for normal development and 

differentiation of adult neural progenitor cells and hint at other physiological roles for this 

protein [110]. A recent paper implicates ATM in neural activity by showing that in its absence, 

cultured neurons lacking ATM exhibited defective LTP (Long Term Potentiation), while also 

showing slower rates of spontaneous vesicular dye release [7]. This group showed that ATM 

could be isolated from synaptosomal preparations, postulating that the ATM protein physically 

associated with phosphorylated versions of VAMP2 and Synapsin-1 in the pre-synaptic nerve 

terminal. Interestingly this group demonstrated a physical association between ATM and ATR, 

predominantly occurring in the cytoplasm of neuronal cells.  
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A relatively unexplored notion is that of defective calcium handling contributing towards the 

symptoms in A–T. Calcium is a versatile second messenger which co-ordinates a range of 

cellular processes, particularly in neurons where it is involved with neuronal survival, activity 

and signaling. Calcium levels are important in regulating processes such as cell death and 

migration during the development of the CNS. Khanna et al. showed defective calcium signaling 

in lymphoblastoid cells isolating from A–T patients [111]. There is an increasing body of 

literature implicating calcium and mitochondrial aberrations in a range of neurological and 

metabolic conditions. One such study demonstrates via patch-clamp-recording of murine 

Purkinje cells, an electrophysiological deficit caused by a significant decrease in calcium 

currents [112, 113]. 

 

The second major site of intracellular calcium storage is the mitochondria. The mitochondria are 

receiving increasing amounts of attention relating to a range of neuropathologic conditions [114, 

115]. A handful of papers provide evidence that ATM may be involved in regulating 

mitochondrial homeostasis [113,60, 116], however none propose a mechanism that may explain 

the involvement of mitochondria with the neurodegeneration in A–T. 

 

 It seems likely that rather than any one of these theories being correct, there may be an over-

arching connection between these that incorporates the role of ATM in development, responding 

to and repairing DNA damage, sensing ROS, metabolic signaling, apoptosis regulation and the 

possibility of unknown functions. To elucidate precisely why cells of the cerebellum are targeted 

remains the challenge. 

 

1.8 Purkinje and granule cells 

 

Purkinje cells, being the only cerebellar cortex projection neurons, are responsible for 

coordinating cerebellar motor control and motor learning [117]. This neural cell type represents 

a highly desirable target to study due to its implication in a range of diseases in addition to A–T, 

including Niemann-Pick syndrome [118], autism [119], Unverricht-Lundborg disease [120], and 

http://en.wikipedia.org/wiki/Unverricht-Lundborg_disease
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certain spinocerebellar ataxias [121, 122]. In the mouse cerebellum, PCs constitute <0.1% of the 

population [123], meaning that even in mouse models, where tissue can be obtained by sacrifice, 

studying this cell type is difficult. Additionally, PCs extracted from neonatal mice exhibit poor 

survival and failure to extend dendrites in culture [124]. There is evidence that an abnormal 

pattern of dendritic arborization and structural arrangement within the cerebellar molecular layer 

is associated with the ataxia in A–T patients [125, 126].  

 

Figure 1.9 – Schematic representation of sagittal cerebellar slice showing Purkinje and 

granule cells [127]. 

 

1.8.1 Purkinje cell differentiation 

 

Specific neural subtypes can be derived in vitro from ESC by generating neural precursors, and 

then directing differentiation to mimic in vivo regional, temporal and chemical changes 

associated with particular neural cell types. These cells can be assayed at time points to examine 

developmentally relevant processes. Recently, a Japanese group was able to generate mature 

cerebellar PC from mouse ESC by treating serum-free embryoid bodies with BMP4, Fgf8b and 

Wnt3a, in combination with feeder cells derived from neonatal mouse cerebellum [117]. FGF8 is 

a regional regulator which acts on the anteroposterior axis and is expressed in the boundary of 
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the MHB (mid-hind brain) to control cerebellar development through ras-ERK signaling [128], 

while BMP and WNT proteins regulate dorsal pattern formation [129]. These, and other secreted 

factors are involved in the development and regionalization of the early vertebrate brain.  By 

delivering these factors at certain concentrations at given times, Tao et al. were able to induce 

mouse ESC to form cerebellar neuronal precursors, as similarly reported elsewhere [130],  but 

then went on to amplify these GC precursors using SHH, before adding neurotrophic factors 

BDNF, NT3 and T3 to differentiate these cells into PCs and GCs. These cells were further 

matured using a co-culture system comprised of whole-cerebellum dissociations. Recently, 

Erceg et al. showed it was possible to produce cells with cerebellar characteristics from human 

ES&iPS cells [131].The ability to translate this system for use with human stem cells may allow 

for insight into A–T pathogenesis at a never before seen resolution.  
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2.0 Generation and characterization of lentivirally generated A–T iPSCs 

Introduction 

 

Reprogramming of cells from various sources occurs with a wide range of efficiencies [132]. 

These varied efficiencies are likely to be the culmination of a variety of intrinsic and extrinsic 

factors including the tissue of origin, the passage number and culture history of the target cells 

(which has bearing on the epigenetic and proliferative status of the target cells). Another major 

factor affecting reprogramming is the methodology and quality of the reprogramming process 

itself (including for conventional viral based approaches; viral titer and subsequent viral 

transduction efficiency, including downstream transgene insertion and stoicheometry) [133, 

134]. Genetic background is an important parameter affecting the efficiency of the 

reprogramming process with reports that cells from individuals with particular mutations are 

more difficult to reprogram than their control counterparts. These observations support the 

theory that modulation of pathways can either enhance or inhibit reprogramming [40]. 

 

Given findings that p53 abrogation increased the efficiency of reprogramming [40, 94] it was 

reasonable to assume the existence of a barrier or roadblock which might prevent cells with 

excessive levels of DNA damage passing unfettered through this process. Evidence shows that 

DNA damage pathways are activated early during the reprogramming process [135]. We 

speculated that given the role of ATM in the maintenance of genomic stability that A–T 

fibroblasts might navigate this roadblock differently. On one hand, the role of ATM as a tumor 

suppressor with marked similarities to p53, might suggest that these cells should behave 

analogously to those reported in the above publications by passing through or skipping this 

roadblock, regardless of levels of DNA damage. Alternatively, the accumulation (before or 

during reprogramming) of DNA damage in the absence of ATM may contribute to difficulty in 

cellular reprogramming. Indeed it has been shown that the introduction of reprogramming 

factors (both virally and non-virally mediated) introduces genotoxic stress. Given the fact that 

ATM has been increasingly cited as a contributor to various metabolic pathways, and also the 

fact that somatic cells which lack ATM show intrinsic culture stress/elevated growth factor 

requirements [136], we postulated that this might also affect reprogramming efficiency.  
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To address this, we examined the response of A–T cells to various cell culture conditions after 

lentiviral transduction with reprogramming factors Oc4/Sox2 (pSIN4-EF2-O2S; and Klf4 /c-Myc 

(pSIN4-CMV-K2M), including media type (KSR or serum-containing DMEM), treatment with a 

p53 inhibitor (small molecule pifithrin-α) and either a low or high concentration of basic FGF. 

Post-transduction, equivalent numbers of cells from heterozygote and homozygote patients 

(family 1) were plated in six-well plates and assessed by microscopy at regular intervals for 

survival and proliferation.   

 

We initially used lentiviral transduction with two separate plasmids carrying Oct4/Sox2 (pSIN4-

EF2-O2S; Addgene plasmid 21162), and Klf4 /c-Myc (pSIN4-CMV-K2M; Addgene plasmid 

21164, [36] to generate iPS cells from two families (heterozygotes and homozygotes) as well as 

wild-type controls.  

 

Although there is a broad knowledge gap regarding the mechanism by which a terminally 

differentiated cell is reprogrammed back to a pluripotent state, the general consensus is that 

wide-scale remodeling of the epigenetic landscape occurs [29, 137]. This coincides with the 

newfound ability of these cells to re-express stem cell gene products and is facilitated by specific 

loss or gain of modifications of the DNA ultra-structure (ie methylation, ubiquitination, 

acetylation of DNA sequence or histone proteins). These modifications enforce chromatin 

dynamics that define the cell’s identity largely through transcriptional regulation. Although 

forced expression of reprogramming factors, which are master regulator stem cell transcription 

factors, can give rise to colonies with stem-cell-like properties, not all stem-cell-like colonies 

arising from these experiments are deemed fully reprogrammed induced pluripotent stem cells 

[138]. Often, cells are incompletely reprogrammed, that is, the epigenetic landscape resembles to 

a degree that of a pluripotent stem cell, with several critical regions retaining the mark of their 

tissue of origin [139]. This may result in something that looks like a stem cell, but may have 

aberrant proliferation and differentiation properties. A major challenge for the field remains to 

isolate ‘good-quality’ or bona-fide iPS cells for cultivation and experimentation. We examined a 

range of properties to identify and isolate good quality iPS cells including the expression status 

of important stem cell transcription factors and surface proteins, methylation levels at stem cell 
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associated regulatory loci, persistence of transgene, karyotype status and teratoma forming 

ability 

 

This chapter describes work that was published in Stem cells & Translational Medicine that 

describes the first report of generation of iPS cells from patients with Ataxia–Telangiectasia. 

Additionally contained herein are further details regarding the optimization of generation and 

characterization of these cell lines. 

 

Materials and methods 

 

Generation of iPSCs using lentiviral factors 

 

Primary fibroblasts isolated from dermal punch biopsies from patients with Ataxia–

Telangiectasia were collected through the A–T Clinic, Royal Children’s Hospital & UQ Centre 

for Clinical Research. Biopsies were dissected into small pieces and incubated under coverslips 

in DMEM (Invitrogen) with 12% FCS (fetal calf serum) until fibroblasts grew out. Primary 

human fibroblasts were harvested with TrypLE select (Invitrogen) and expanded in DMEM 

(GIBCO) with 15% FCS until cryopreservation at passage 2. Lentivirus carrying 

OCT4/IRES/SOX2 and KLF4/IRES/c-MYC (Addgene plasmid 21162: pSIN4-EF2-O2S & 

plasmid 21163: pSIN4-EF2-N2L)[36], (plasmid maps are shown in appendices) was produced 

by transfection of HEK293 cells with plasmids in 500 µg/ml Geneticin at 70-90% confluency. 

Before transfection, fresh media without geneticin was added. Following this warm Optimem 

media, Lipofectamine PLUS reagent were allowed to warm to room temperature before 

application at the manufacturer’s specifications with (per reaction) 2.5µg Lentiviral vector (O2S 

or K2M), 2.5 µg pVSVG and 5 µg of pCMR delta-8.2 packaging vector. Virus was collected the 

following day by filtering supernatant with a 0.45 µm filter. 

 

Target fibroblasts were transduced with lentiviral constructs by application of reprogramming 

virus for 24 hours. After transduction, >50,000 A–T fibroblasts were allowed to recover for 

between 24-48 hours before transferring to matrigel coated plates or mouse embryonic fibroblast 
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(MEF) feeder plates (36,000/cm
2
). We observed distinct patterns of recovery and proliferation 

after viral transduction and were able to quantitatively assess these patterns to design a strategy 

to facilitate and optimize generation of iPS cell colonies from A–T patient fibroblasts.  

 

Transduced A–T fibroblasts were weaned from DMEM with 15% FCS to 100% hESC culture 

medium over a period of 4 days, at 25% per day, as this was shown to greatly increase their 

survival and proliferation. In accordance with a recent attempt to standardize nomenclature 

across hESCs and iPSCs [140], we have named these lines UQ0001i-ATh47, UQ0002i-AT34, 

UQ0003i-ATh41 and UQ0004i-AT30 where UQ refers to the institution in which they 

originated, the subsequent four-letter number refers to the order in which they were generated, i 

denotes iPSC origin, and AT (Ataxia–Telangiectasia)/ATh (Ataxia–Telangiectasia heterozygote) 

nomenclature previously developed for naming A–T cell lines, followed an internal patient 

identifier and  a blank space for clone number. A shortened version of this nomenclature is used 

henceforth to refer to these lines. All work was carried out with informed consent from patients 

under the approval of the Human Research Ethics Committee (HREC/09/QRCH/103). 

 

Cell Culture Conditions 

 

hESCs and iPSCs were grown in knock out serum (KSR) replacement hESC culture medium 

(80% DMEM F12 (GIBCO), 20% KnockOut-Serum replacement (GIBCO), 2 mM L-glutamine 

(GIBCO), 1% non-essential amino acids (NEAA) (GIBCO), 0.1 mM 2-mercaptoethanol and 

between [50-100 ng/ml] basic fibroblast growth factor) (Invitrogen) at 37°C at 5% CO2 and at 

high humidity. Cells were maintained on MEF feeder layers supplied by the Australian Stem 

Cell Centre. For experimentation, cells were cultured in feeder-free conditions on Matrigel™ 

(BD) in MEF conditioned hESC culture medium. Cells were passaged as previously described 

[17] before replating at a seeding ratio of between 1:2 and 1:6. hESC media was replaced daily 

and cells were split at approximately 80% confluence on days 6-7. 
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Screening of clones 

 

iPSC colonies were picked at early (2 weeks) and late time points (5 weeks) and sub-cultured 

clonally on MEFs in organ culture dishes. Clones were screened for expression of TRA-1-60 and 

Hoechst dye efflux, transgene persistence by RT-PCR, stem cell marker expression and 

methylation status at Oct4/Nanog promoters. Karyotypic stability was assessed via G-band 

analysis (>15 metaphases analyzed per sample) by a commercial genotyping service (Sullivan 

Nicolaides Pathology, QLD, Australia).  Transgene silencing in selected clones was later 

confirmed by quantitative RT-PCR. 

Teratoma formation 

 

iPSCs grown on MEFs were collected by collagenase IV treatment, and approximately 2 million 

iPSCs resuspended in 50 μL DMEM/F12 supplemented with 30% BD Matrigel™ were injected 

into hind limb muscles of Methoxyflurane anaesthetised 6-week-old-immune compromised 

SCID mice (CB17-SCID mice from the Animal Resource Centre (ARC) in Western Australia). 

After eight to ten weeks, teratomas were dissected and fixed in 4% paraformaldehyde. Samples 

were embedded in paraffin, stained with haematoxylin and eosin and examined for the presence 

of representatives of the three germlayers by an independent pathologist. All mouse procedures 

were conducted under local ethical guidelines and after gaining permission from the local animal 

ethics committee (University of Queensland, QLD, Australia).  

 

Bisulfite sequencing 

 

Live iPSCs were sorted by flow cytometry for TRA-1-60 and genomic DNA was isolated. 1-2 

μg of DNA was bisulfite converted using EpiTect Bisulfite kit (QIAGEN) before PCR of 

Oct4/Nanog promoter regions and cloning into the PCR2.1 vector. Clones were screened and 

selected for sequencing (primers are listed in appendices). Synthetically hypermethylated HeLA 

cells and H9 hESCs were also included as controls. 
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Immunostaining 

 

For immunostaining cells were washed in PBS and fixed in 4% paraformaldehyde for 15 

minutes at 4°C. For nuclear staining samples were permeabilized in 0.1% TritonX100 at room 

temperature for 10 minutes, before blocking with 10% goat serum and incubation with the 

relevant antibodies overnight at 4°C. Antibodies and dilutions used were OCT4 (Millipore) 

[1:1000], SSEA-4 [1:100], TRA-1-60 (Millipore) [1:1000], NANOG (Millipore) [1:400], TRA-

1-81 (all from Millipore, USA) or OCT4 [1:1000] (Santa-Cruz). Following washing with PBS (3 

times 5 minutes at room temperature) secondary antibodies goat anti-mouse IgG1, goat anti-

mouse IgG2B, goat anti-mouse IgM and Donkey anti-rabbit IgG (Alexa fluor) [1:1000] were 

used. Nuclei were stained with DAPI or Hoechst. This preparation minus the addition of primary 

antibody was used to confirm specificity of staining.  

 

Cryopreservation 

 

A four-well vitrification plate was prepared with wells containing 1) 1mL ES Hepes media, 3) 

1ml 10% vitrification solution and 4) 1ml 20% vitrification solution (well 2 left blank). Plate 

was equilibrated in incubator at 37
o
C 5% CO2. 5mL cryovials (with needle-punched bottom) 

were inserted into a cryocane within a small liquid nitrogen canister. Colonies were manually 

dissected using a 22 gauge needle and transferred into well 1 of the vitrification plate using a 

20µL pipette. 8-10 pieces were moved into well 3 of the vitrification plate for no more than 1 

minute. A new pipette tip was used to transfer 20 µL of 20% vitrification solution to the lid of 

the well-plate creating a high drop. Pieces were taken from well 3 in minimal volume and 

transferred gently to well 4. Pieces were left for no more than 30 seconds before transferring to 

the 20 µL drop. A second small drop containing as many pieces as possible in 5 µL was 

generated on the well-plate lid. Capillary action drew these pieces into a cryostraw by placing 

the straw at a 30-45 degree angle touching the droplet/plate, before immediate transfer to the 

cryovial/cryostraw. A diagram below illustrates aspects of the procedure. 
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RNA isolation, cDNA synthesis, PCR and Q-PCR 

 

RNA was isolated using RNeasy isolation kit (QIAGEN). Concentration and 260/280 ratios 

were quantified using a NanoDrop 1000 spectrophotometer before synthesis of cDNA using 

iscript cDNA synthesis kit (Biorad) according to the manufacturer’s specifications (500ng). RT-

PCR was performed for OCT4 (657bp) and SOX2 (498bp) transgenes according to the following 

conditions; 94
°
C

 
5 mins, 32 cycles (94

°
C

 
1 min, 58

°
C 30 sec, 72

°
C 1 min), 72

°
C 7min and KLF4 

(563bp), c-MYC (350bp) transgenes as well as GAPDH (152bp) according to the following; 94
°
C

 

5 mins, 32 cycles (94
°
C

 
1 min, 57

°
C 30 sec, 72

°
C 1 min), 72

°
C 7min. Primers are listed in the 

appendices. qPCR was performed for OCT4 transgene, endogenous OCT4 and -Actin using a 

C1000 thermal cycler (Biorad) (Ssofast evagreen qPCR mix) (Biorad), according to the 

following conditions; 95
°
C 3 mins, 30 cycles (95

°
C 10 sec, 60

°
C 30 sec). Expression data was 

calculated using the ΔΔCt method. 

  

ES-Hepes media 

10% Vit soln 20% Vit soln 

20ul    5ul 
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Results 

Growth and proliferation of cells after viral transduction 

 

Proliferation and survival after viral transduction was monitored by observing cells in culture in 

random fields of view by microscopy. An ImageJ cell counting algorithm was used to quantify 

the number of cells per field of view. Growth was noted to be generally greater in heterozygote 

line ATh47 when compared with homozygote line AT34, across most conditions (Figures 2.1A 

&2.1B). Within the range of conditions tested for heterozygote line ATh47, growth and 

proliferation was markedly increased in media containing FCS when compared to KSR (Figure 

2.1A). In the presence of KSR, cyclic-pifithrin-α induced p53 inhibition resulted in increased 

growth (Figure 2.1A). This same effect was also observed in cells grown in the presence of FCS 

(Figure 2.1A). Similarly in heterozygote line ATh47, homozygote line AT34 showed a marked 

response in growth to the presence of FCS (Figure 2.1B) and a similar trend for increased 

growth in the presence of p53 inhibitor was noted, however this was more subtle. 
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Figure 2.1A – Graphs depicting proliferation rate of A–T heterozygote (family 1 – 

Ath47) after viral transduction in a range of growth conditions. 
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Figure 2.1B – Graphs depicting proliferation rate of A–T homozygote (family 1 – AT34) 

after viral transduction in a range of growth conditions. 
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Figure 2.1C – Heatmap representative of data from figures 2.1A&B detailing 

proliferation after viral transduction in variety of conditions (note heatmap timed data 

reads right to left from growth condition label). Color indicates cell density/viability 

ranging from blue (lowest) to white (intermediate) to red (highest). 

 

Interestingly, while growth of cells was remarkably low, the addition of KSR gave rise to colony 

type structures with densely packed cells reminiscent, but distinct from human embryonic stem 

cell colonies (see figure 2.1D iii & iv) which we hypothesized to be cells that were experiencing 

some selective advantage in the stem cell media KSR. These colonies were not observed in 

media containing FCS. Given the fact that media containing FCS seemed to favor growth and 

expansion of cells post-transduction, but did not result in the formation of any pseudo-colony 

type structures we speculated that a strategy involving stepwise weaning of transduced cells 

from FCS containing media to that of KSR would give them sufficient selective advantage to 

grow but also form colonies.  
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Figure 2.1D - Representative phase-contrast photographs are shown from growth 

experiment of A–T heterozygote ATh47 (i) and A–T homozygote AT34 (ii) in FCS 

containing media and also ATh47 (iii) and AT34 (iv) in KSR media.  

 

In parallel to this experiment, transduced fibroblasts were treated as outlined in materials and 

methods to derive iPS cell colonies. This involved plating ≥50,000 cells onto mouse embryonic 

fibroblasts feeder (MEF) layers at a MEF density of 36,000 cells/cm
2
. Given the above data 

showed that survival of transduced cells was much higher in the presence of FCS, but KSR was 

required for formation of pseudo-colony type structures, we adopted an approach to wean 

transduced cells from 100% DMEM with FCS (15%) to 100% KSR over a period of four days, 

at a rate of 25% per day.  
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Isoloation of putative iPSC colonies 

 

The sporadic appearance of clusters of large refractile cells was observed, which were identified 

as adipocytes (See figure 2.1E vii). After 2 weeks, we also noticed small clusters of cells 

resembling human embryonic stem cell colonies that were identified as putative iPS colonies 

(Figure 2.1E iix).  

 

Figure 2.1E - Transduced fibroblasts were seeded onto MEFs. ATh47 (v) and AT34 (vi) 

are shown. We noticed formation of adipocytes (vii) and early iPS cell colonies (iix). 

Scale bar is 15 µm (v,vi & iix) and 5 µm for vii. 

 

These putative iPS cell colonies were ‘picked’ by cutting with a 22 gauge needle attached to a 

1ml syringe and transferred to organ culture dishes on MEFs at a density of 36,000/cm
2
 for 

clonal expansion. A vitrified stock was cryopreservered initially (outlined in materials & 

methods) and then colonies were subject to screening for characteristics of properly 

reprogrammed cells [41].  
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Figure 2.1F – Morphology of fibroblasts (ATh47, AT34 and control CRL2429) and 

intermediate/early passage iPS cell colonies. Scale bar is 50 µm. 

Reprogramming efficiency 

 

After 3 weeks of growth under reprogramming conditions, the gross number of colonies which 

exhibited human embryonic stem cell-like appearance was recorded. Relative to wild-type 

controls, heterozygote and homozygote lines ATh47 and AT34 gave rise to fewer colonies, 

despite seeding of equivalent numbers of transduced cells. Reprogramming efficiency of 

homozygote AT34 was approximately 4% relative to controls, in contrast to ATh47 that was 

15%, indicating a potential role for ATM during reprogramming. A second family (ATh41 and 

AT30) displayed a greater number of colonies in both heterozygote and homozygote lines 

relative to controls, although the efficiency of homozygotes compared to heterozygotes was 
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drastically reduced consistent with the first set of reprogramming experiments (Figure 2.2). We 

observed that reprogramming of cells from a second A–T family (AT41 & AT30) could occur 

without the stepwise addition of FCS containing media, however this was not as efficient (Figure 

2.2). 

 

 

Figure 2.2 – Reprogramming efficiencies in family 1 (ATh47 heterozygote and AT34 

homozygote) relative to controls. Family 2 (ATh41 heterozygote and AT30 

homozygote). 

 

iPSC nomenclature 

 

According to a recent attempt to standardize nomenclature across hESCs and iPSCs [141], we 

named these lines UQ0001i-ATh47, UQ0002i-AT34, UQ0003i-ATh41 and UQ0003i-AT30.  

UQ refers to the institution in which they were generated, the subsequent four-letter number 

refers to the order in which they were generated, i denotes iPSC origin, and AT (Ataxia–

Telangiectasia)/ATh (Ataxia–Telangiectasia heterozygote) nomenclature previously established 

for naming AT cell lines [142] and finally a blank space for clone number. A shortened version 

of this nomenclature is used henceforth to refer to iPS cell clones used for experimentation. 
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Initial screening of iPSCs for criteria pertaining to a fully reprogrammed state (TRA-1-

60/Hoescht efflux & pluripotency marker expression) 

 

Live immunostaining was performed to assay for immuno-reactivity of early pluripotency 

marker TRA-1-60, in combination with Hoescht efflux (ie active pumping out of Hoescht 

staining agent) (Figure 2.3). Clones were selected that exhibited TRA-1-60 expression and 

exhibited a Hoescht-dim phenotype.  

 

 

Figure 2.3 – Criteria for selection as bona-fide iPS colonies begins with testing 

immunoreactivity with TRA-1-60 (left panel) and Hoescht dye efflux (middle panel). 

Brightfield photograph also shown (right panel). 

 

Selected clones were further expanded and fixed to assay for immunoreactivity with a broader 

suite of markers including OCT4, NANOG, TRA-1-60, TRA-1-81 and SSEA-4 (Figure 2.4A). 

Additionally, flow cytometric analysis confirmed the robust and uniform expression of 

pluripotency marker TRA-1-60 (Figure 2.4B). 
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Figure 2.4A – iPS cell colonies exhibited nuclear stem cell markers OCT4 and NANOG 

in addition to surface markers TRA-1-60, TRA-1-81 and SSEA-4. Scale bars are 10 µm 

(left panel set – high magnification) and 1 µm (right panel set – low magnification) 

respectively. A negative control featuring an identical preparation with omission of 

primary antibody was included (bottom row). 
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Figure 2.4B – Flow cytometric analysis further exemplifies robust and uniform 

expression of pluripotency marker TRA-1-60 in A–T (AT34) and control iPSCs. 

 

From the selected clones, RT-PCR was used to ascertain whether the transgenes used in 

generation of the iPS cells were actively expressing after 13 weeks in culture (Figure 2.5A). 

Clones showing diminished levels of transgene activity were sought after as this was taken to 

indicate silencing of these genes and resultant acquisition of a pluripotent phenotype 

independent from the exogenous factors. Validation of iPS cells from control and a second 

family (AT30/ATh41) was employed using the same methodology (data not shown). 

 

Figure 2.5A – RT-PCR shows by passage 10 most clones (AT34) robustly expressed 

Oct4/IRES transgene, with the exception of C7 (lane 6) & C11 (lane 9). Silencing of 

most other transgenes had occurred by this stage with the exception of two clones 

expressing Sox2/IRES (clones 12&13, lanes 10&11). Most clones expressed endogenous 

Oct4 and Nanog. Amplification of GAPDH was used as a loading control. Positive 

controls (lane 15) were plasmid DNA and H9 human embryonic stem cell line in the case 

of GAPDH.  
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Screening and monitoring of karyotypic stability 

 

Because of the role for ATM in maintenance of genome integrity, cell lines were examined for 

gross karyotypic abnormalities at regular intervals (Figure 2.6 and Table 2.6B shows karyotype 

spreads and table summarizing results). Although three out of the eight clones examined 

developed chromosomal abnormalities, five A–T iPSC clones displayed normal karyotypes 

between passage 11-16 and this was maintained out to passage 31 in the case of one clone. 
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Figure 2.6  – Karyotypes of selected iPS cell lines  
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Figure 2.6 (cont.) – Karyotypes of selected iPS cell lines  
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Table 2.6B – Summary of Metaphase spreads/karyotypes depicted in Figure 2.6 

 

Further characterization & screening of iPSC for criteria pertaining to a fully 

reprogrammed state (Transgene qPCR, Bisulfite sequencing of Oct4/Nanog promoters & 

teratoma formation assay) 

 

Transgene extinction in samples C7 and C11 (AT34) was confirmed after 30 weeks in culture by 

qPCR amplification with primers specific for the 3’ end Oct4 and adjacent IRES sequence 

(Figure 2.7). Transgene transcript could be detected in virally transduced cells at 168 & 208 

hours after viral infection but not in untransduced fibroblasts. We failed to detect any residual 

Oct4 transgene expression in AT34 (C7 &C11) after 30 cycles but could easily detect robust 

expression in a transgene expressing positive iPS cell line. No amplification of transcript was 

observed in no template or minus reverse transcriptase controls. 

 

  Name Clone# Passage Karyotype 

UQ0002i-AT34 2 15 46,XX[15] 

UQ0002i-AT34 5 15 46,XX[15] 

UQ0002i-AT34 6 15 46,XX,t(2;5)(p13;q13),t(3;10)(112;q22) 

UQ0002i-AT34 7 16 46,XX[15] 

UQ0002i-AT34 7 25 46,XX[15] 

UQ0002i-AT34 7 31 46,XX[15] 

UQ0002i-AT34 11 15 45,XX 14,der(20)t(14;20)(q11.2;p11.2) 

UQ0002i-AT34 12 11 46,XX[15] 

UQ0002i-AT34 13 11 46,XX[15] 

UQ0004i-AT30 17 21 46,XX,+14,der(14;14)(q10;q10)[15] 

UQ0004i-AT30 32 21 46,XX[15] 
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Figure 2.7 – qPCR analysis of gene expression demonstrates transcript from the 

Oct4/IRES transgene was detected within 168 hours of lentivirally transducing 

fibroblasts. We confirmed silencing of the Oct4/IRES transgene and also active 

expression of endogenous Oct4 in samples C7 & C11 (AT34). Untransduced fibroblasts, 

a minus reverse transcriptase and also no template reactions were run as controls. 

 

 

 We next determined the methylation status of the Oct4 & Nanog promoter loci, given that 

demethylation of CpG islands in this region is associated with a fully reprogrammed state [36]. 

We used bisulfite modification of genomic DNA and PCR amplification at promoter loci to 

ascertain the methylation status of these promoters in our iPS cells and controls relative to their 

corresponding parental fibroblasts by sequencing of these loci (Figure 2.8).  
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Figure 2.8 – CpG islands in the promoter regions of Oct4 and Nanog undergo 

hypomethylation as part of their transition from fibroblasts to iPS cells. Fully methylated 

HeLa cells were used as a positive control and H9 human embryonic stem cells used as a 

negative control. Open circles depict unmethylated CG diresidues. Full circles represent 

methylated CG diresidues. 

 

In A–T heterozygote line ATh47, the Oct4 CpG island containing promoter region underwent a 

transition from 73% to 13% methylation. Similarly Oct4 transitioned from 26% to 3% 

methylated indicating that hypomethylation of this locus had occurred as part of the 

reprogramming process. Likewise in A–T homozygote AT34 we observed a 73% to 0% and 

31% to 6% shift, respectively. Between five and ten clones were isolated and sequenced to 

encapsulate the spread of methylation that was present within the given cell population. 

 

A standard test for pluripotency was used to assess the potential of our derived iPS lines to 

contribute into all three germ lineages (endoderm, ectoderm and mesoderm) by injecting 

approximately 2x10
6 
iPS cells resuspended in 50 μL DMEM/F12 supplemented with 30% BD 

Matrigel™. iPSCs from both  A–T homozygotes (AT34 and AT30) and A–T heterozygote 

parents (ATh47) formed teratomas when injected into SCID mice comprising tissue types from 

all three germ layers (endoderm, mesoderm and ectoderm), indicating capacity for pluripotential 

tri-lineage differentiation (as shown in Figure 2.9).  
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Figure 2.9 – H&E stains of paraffin embedded teratoma sections from control, ATh47, 

AT34 and AT30 iPSCs that show presence of all three germ lineages, indicating 

pluripotentcy. 

 

* 
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We observed structures representative of all three germ lineages including glandular epithelium 

(endoderm), cartilage (mesoderm) and pigmented epithelium (ectoderm) (UQ0001i-control1), 

retinal epithelium (ectoderm), liver (mesoderm) and endodermal glands (endoderm) (A–T 

heterozygote UQ0001i-ATh47.1), neuroepithelium (ectoderm), cartilage (mesoderm) and 

intestinal tissue (endoderm) (A–T homozygote UQ0002i-AT34), neuroepithelium (ectoderm), 

stroma and cartilage (mesdoderm) and glandular epithelium (endoderm) (A–T homozygote 

UQ0004i-AT30. We conclude from this that no gross interference with pluripotency was evident 

in iPS cells generated from A–T patients. 

  

Discussion 

 

Emerging evidence suggests that the DNA damage pathways are activated early during 

reprogramming and may pose a barrier to iPSC generation [40, 94, 135]. The generation of 

iPSCs from chromosomal instability syndromes has indeed proven to be difficult without gene 

manipulation. Raya et al. showed that somatic cells from patients with the rare recessive 

chromosomal instability disorder Fanconi anaemia could be reprogrammed to pluripotency to 

generate patient-specific iPSCs only after correction of the defective gene with cDNA [61]. We 

have shown that this is not necessary, by demonstrating for the first time that fibroblasts from 

patients with A–T, a syndrome characterized by genome instability, can be reprogrammed to 

pluripotency and meet all the established criteria for bona fide iPSCs.  

 

We observed survival and proliferation of virally transduced fibroblasts to be vastly enhanced by 

the stepwise addition of KSR stem cell media to the native FCS containing fibroblast media 

(Figures 2.1A.B&C) but showed that neither this, nor the addition of p53 inhibitor was essential 

for the generation of iPS cells from A–T patient fibroblasts (Figures 2.1/2.2). 

 

 The efficiency of reprogramming A–T fibroblasts (family 1) to iPSCs was approximately 4% of 

that seen with controls, with heterozygotes of intermediate efficiency (Figure 2.2). This is in 

keeping with the observation that reprogramming of mouse Atm-deficient tail-tip fibroblasts 

occurs with efficiency less than 2% of that of wild-type fibroblasts [95]. Reprogramming of a 
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second family with a distinct genetic background showed results consistent with this – 

generation of colonies from homozygotes yielded markedly fewer colonies to those of 

heterozygotes (Figure 2.2). Interestingly reprogramming efficiency was drastically reduced in 

controls from these experiments indicating a natural intrinsic variability in this process. This 

serves to illustrate the point that reprogramming kinetics may vastly differ across experiments 

and tissue sources. For the purpose of detailed investigation into reprogramming kinetics, these 

data highlight the need for approaches that encompass simultaneous reprogramming of multiple 

cell lines with experimental replicates.  

 

During the process of reprogramming, cells may be less tolerant to the presence of DNA damage 

where p53 may play an important role in removing these cells by inducing apoptosis [40]. It is 

likely that the accumulation of DNA DSB during reprogramming of A–T fibroblasts renders 

these cells more susceptible to apoptosis or makes them otherwise unavailable for 

reprogramming. Short telomeres may also contribute to the barrier of cell reprogramming 

imposed by p53 [143]. This is also significant for A–T since fibroblasts and lymphoblastoid cells 

from these patients are characterized by abnormally short telomeres [144, 145]. Together this 

might explain the reduction in observed reprogramming efficiency in fibroblasts from A–T 

patients. 

 

This chapter is a description of an optimized methodology for the complete production and 

characterization of iPS cells from patient fibroblasts using lentiviral factors. Also outlined are 

experiments monitoring the growth and response of cells in the period between transduction and 

successful establishment of iPS cell colonies, with a variety of conditions postulated to enhance 

the reprogramming process through survival and selection. We used this data to adapt a protocol 

that allowed a more efficient acquisition of iPS cells from A–T fibroblasts by the stepwise 

addition of serum-containing media, rather than the stark addition of media that is reported in the 

literature.  

 

Further we outline techniques necessary to meet the stringent criteria required to validate these 

clones as bona-fide iPS including CpG island methylation status interrogation at specific gene 
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promoters (Bisulfite sequencing), assays for transgene silencing (PCR/qPCR), testing expression 

of pluripotency genes/proteins (PCR, qPCR, immunostaining and FACS respectively) and 

teratoma formation. We show that it was possible to not only derive but maintain karyotypically 

stable iPS cell cultures from A–T patients. 

 

Finally and importantly, this chapter provides validation of iPS cell lines that are used in 

subsequent work to investigate the role of ATM in pluripotent context and also as a model of 

this disease. In addition to the lentivirally-derived iPSC described in this chapter, in subsequent 

chapters we have utilized iPSC generated episomally within our lab (by Jian-Sun). The 

methodology concerning generation and characterization of these lines is described in [146]. 
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3.0 A–T iPSC recapitulate the cellular phenotype 

Introduction 

 

Conventionally available disease models commonly used in laboratory investigations, such as 

fibroblasts, lymphoblastoid cells and other immortalized cell lines are restricted to providing a 

limited range of contextual information, which may be only partially relevant to an actual 

disease phenotype. Human pluripotent stem cells are useful, as they allow as close a model 

system of the developmental state of the embryo as possible. This may be extended to explore 

early mechanisms of disease pathogenesis and also developmental processes that occur 

downstream, such as neurogenesis, hematopoiesis and cardiogenesis. An embryonic knockout 

model of ATM could be expected to closely resemble the processes which occur during the 

blastocyst stage of an individual with A–T, allowing insight into what role ATM might have in 

this and subsequent developmental contexts.   

 

Although ATM is a known DNA damage regulator and is extensively characterized in somatic 

cell models [73, 75, 77], due to the technical and ethical constraints of working with such 

models, very little is known about the function of ATM during early embryonic development. In 

the previous chapter the generation, screening and characterization of iPS cells from patients 

with A–T was described. The relative breadth of knowledge on the role of ATM in somatic cells 

in contrast to pluripotent stem cells presents a large knowledge gap. This chapter describes the 

use of iPS cells from A–T patients in an investigation into the role of ATM in human pluripotent 

cells to aid in the elucidation of early events which may help define the onset of this disease. 

 

These cells recapitulate important aspects of the A–T phenotype, including exhibition of various 

aberrant cellular responses to DNA damage, such as apoptosis and cell cycle control. We also 

have for the first time defined the transcriptional landscape of ATM deficient pluripotent cells 

and show deregulation of molecular pathways previously associated with ATM, as well as gene 

expression changes in the pentose phosphate and mitochondrial oxidative phosphorylation 

pathways. These findings provide novel insights into early developmental consequences of ATM 

deficiency that may contribute to A–T pathogenesis. 
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This chapter describes work that was published in Stem cells & Translational Medicine [147]. 

 

Materials and methods 

 

Immunoblotting 

 

Cell extracts were prepared as previously described [148]. Proteins were separated using SDS-

PAGE and transferred to nitrocellulose using Towbin’s buffer and 100V for 1h at 4
o
C prior to 

immunoblotting.  Membranes were blocked with PBS blocking buffer containing 5% skim milk 

and 0.05% Tween20 for 1 hour at room temperature and incubated for 16 hours with antibodies 

to SMC1 [1 µg/ml] , SMC1pS5957 [1 µg/ml], KAP-1 [1 µg/ml] and KAP-1pS824 [1 µg/ml] 

(rabbit polyclonals, Novus Biologicals, USA); anti-rabbit p53 [2 µg/ml]   and anti-mouse 

p53pS15 [2 µg/ml] (Cell Signalling Technology, MA); anti-rabbit Chk2 [2 µg/ml],Chk2pT68 [3 

µg/ml] (Abcam UK), anti-rabbit ATMpS1981 [2 µg/ml]   (Rockland, USA) or anti-ATM [2 

µg/ml]  (mouse monoclonals, GeneTex, USA) diluted in blocking buffer at the indicated 

dilutions . Following washing in PBS buffer containing 0.05% Tween20, anti-mouse HRP [1 

µg/3ml] (Millipore, USA) and anti-rabbit [1 µg/5ml] (Rockland, USA) secondary antibodies 

diluted in blocking buffer were used. Secondary antibody reactivity was visualized using ECL 

(PerkinElmer Life Science). 

Irradiation 

 

A Co
60

 source irradiator (GammaCell 220) was used to deliver 2 Gy of IR (ionizing radiation) to 

the cells (Dose rate 8130 Gy/Hour). Cells were returned to the incubator to recover to the 

appropriate time point before harvesting/fixation with 4% paraformaldehyde, lysate preparation 

or processing for FACS.  

TUNEL assay 

 

Following IR or mock dose, cells were washed once in PBS and harvested with cell dissociation 

buffer (GIBCO). The TUNEL assay was employed as per the manufacturer’s specifications to 

determine apoptosis according to the in situ cell death detection kit (Roche).  
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G2M Checkpoint Analysis 

 

Activation of the G2/M checkpoint was determined by histone H3 phosphorylation [149]. 

Immunohistochemistry for the mitosis-specific marker phosphorylated histone H3 (Serine 10) 

(P-Histone H3S10) (Cell Signaling) [0.5 µg/ml] was performed two hours after 2Gy ionizing 

radiation or mock dose. Mitotic index was derived by counting the proportion of immune-

positive cells for H3S10 staining divided by the number of nuclei stained by DAPI. General 

linear models were performed to assess for differences in the proportions for the three different 

groups (A–T, Control iPSCs and H9) and the irradiated states (irradiated and un- irradiated). 

Analyses were performed on the mean arcsine square-root proportions, and the results were then 

back-transformed for presentation. All results presented were backtransformed to the original 

scale.  No significant difference was found between control iPSCs and H9s, so we pooled this 

data to compare to A–T iPSCs. An average of >650 events were quantified from each condition 

in 3 independent experiments. Slides were photographed using an OlympusBX61 microscope 

(4x and 100x magnifications). 

Radioresistant DNA synthesis 

 

Radioresistant DNA synthesis was determined by DNA fiber labeling as described [150, 151]. 

Briefly, A–T and control iPSCs were pulsed for 15 minutes with [50 μM] chlorodeoxyuridine 

(CldU), washed, followed by exposure to mock/2 Gy of radiation prior to a second pulse for 15 

minutes with [50 μM] iododeoxyuridine (IdU). DNA fibres were made following the approach 

as previously outlined. Ongoing initiations and new replication forks were visualised via 

immunofluorescent microscopy after staining with rat monoclonal anti-Brdy 

(Bromodeoxyuridine) (Abcam) [13.3 µg/ml] and mouse monoclonal anti-BrdU (BD) (1/8 

concentration not provided by manufacturer). Secondary antibodies were goat anti-rat Alexa488 

conjugated secondary (Molecular Probes) [6.7 µg/ml] and donkey anti-mouse Alexa594 

conjugated secondary [6.7 µg/ml]. Two-by-two factorial ANOVA were performed to assess for 

differences in the proportions for the two different genotypes (A–T vs. control) and the 

irradiated states (irradiated and unirradiated). Analyses were performed on the arcsine square-

root proportions, and the results (means and confidence intervals) were then back-transformed 

for presentation. Analyses showed that there were no differences between the two sub-studies, 
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and all analyses were performed on the combined dataset, not taking into account the sub-

studies. All results presented from analyses were back transformed to the original scale. More 

than 700 events were quantified from each condition in 2 independent experiments. Slides were 

photographed using a Zeiss LSM 710 Confocal microscope (63x magnification). 

 

Expression Analysis 

 

RNA was harvested from TRA-1-60 FACS sorted hESCs (MEL1), control iPS (UQ0001i-

control1), A–T heterozygote iPS (UQ0001i-ATh47.1) and homozygote iPSCs (UQ0002i-

AT34.7), as well as from non-sorted parental fibroblasts, as technical triplicates. Total RNA was 

isolated from each FACS sorted iPSC cell line and from unsorted fibroblast cell samples using 

the RNeasy Mini Kit (QIAGEN). The total RNA (and A260/A280 ratio) was then quantified 

using a NanoDrop 1000. Total RNA (100ng) was subjected to reverse transcription, second-

strand cDNA synthesis and in-vitro transcription using the TotalPrep RNA Amplification Kit 

(Illumina). cRNA was hybridized to Illumina HT12 v4 BeadChip microarrays.  The raw 

expression data were normalized using quantile normalisation and without background 

correction, using the lumi R/Bioconductor package (version 2.4.0) [152]. Only probes passing 

the Illumina detection threshold were included in the expression analysis; a probe passed the 

Illumina detection score if it had a detection P-value ≤ 0.01 in at least 75% of cell lines in the 

same group; these criteria resulted in 20,593 probes being retained. All statistical analyses were 

performed using R version 2.13.2. All probes were mapped using the annotation package 

illuminaHumanv4.db (version 1.10.0) available from Bioconductor. The expression data is 

available for download from Stemformatics and GEO under the accession number GSE35347. 

Heatmaps were constructed using the gplots R/Bioconductor package (version 2.10.1) where 

agglomerative hierarchical clustering was used based on a measure of dissimilarity 1 – R, where 

R represents the Pearson correlation coefficient between any two gene expression profiles and 

ranges from -1 to 1. Probes mapping to multiple gene symbols were filtered to ensure a one-to-

one mapping between probe and gene symbol; the probe with the most significant P-value 

assessing the significance of differential expression between A–T and control iPSCs, was 

retained and represented in the resulting heatmap. P-values were generated using the 
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R/Bioconductor package limma (version 3.8.3), and adjusted for multiple testing using the 

Benjamini-Hochberg method [153]. The PluriNet gene list as identified by Muller et al. was 

originally downloaded from http://www.openstemcellwiki.org/ and consisted of 299 gene 

symbols, listed in appendices [154]. Plurinet genelist is listed in tab 1 of appendices. Pathway 

analysis was performed using the R/Bioconductor package attract (version 1.4.0) [155] where 

pathways were defined using the Kyoto Encyclopedia of Genes and Genomes [156]. The 

comparison of expression between mitochondrial genes in A–T   and control iPSCs was based 

on genes represented in MitoCarta, a curated list of genes known to be involved in mammalian 

mitochondrial function. We used attract to compute a P-value representing the enrichment of 

genes showing differential expression across the seven cell types for which expression analysis 

was present. The mitochondrial gene list (shown in tab 3 of appendices) had a statistically 

significant P-value of 9.47×10
-19

 and we were able to decompose this pathway into four groups 

of genes showing distinct patterns of correlated expression. Gene lists of groups of 

mitochondrial genes identified by attract and subdivided on the basis of cell type and/or 

genotype are listed in tab 4 of appendices. 

 

Imaging of mitochondria (membrane potential, mROS, mitochondrial mass) 

 

To image mitochondria in iPSC colonies, cells were incubated on-plate with TMRM 

(Tetramethylrhodamine, Methyl Ester, a cell permeant dye which accumulates within the 

membrane of active mitochondria) at [10 nM] and Mitotracker (a fluorescent mitochondrial stain 

which binds to mitochondria regardless of membrane potential) (Life technologies) at [100 nM] 

according to the manufacturer’s specifications and visualized on a fluorescent microscope. 

For FACs, undifferentiated colonies were washed once in PBS and then harvested with cell 

dissociation buffer for 10 minutes at 37°C to form single cells. Cells were washed once in PBS 

before application of TMRM at [10 nM] and NAO (Nonyl Acridine Orange, a dye which 

selectively binds to cardiolipin within mitochondria in a membrane potential-independent 

fashion) (Life technologies) at [10 µM] according to the manufacturer’s instructions.  TMRM 

was also added to the media during acquisition via FACs. CCCP (Carbonyl cyanide m-

chlorophenyl hydrazone, an uncoupler of the electron transport gradient within mitochondria) 
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(Life technologies) (was used at [50 uM] as a control. Mitochondrial ROS (Reactive oxygen 

species) were quantified by staining with mitoSOX (Life technologies) at [5 µM] according to 

the manufacturer’s specifications. 

 

Generation and characterization of non-viral A–T and control iPSCs  

 

In addition to lentivirally derived iPS lines, we further generated A–T and control iPS lines from 

fibroblast cultures by transfection with the pCEP4 episomal vectors pEP4EO2SCK2MEN2L and 

pEP4EO2SET2K (from [36], also using AMAXA nucleofection (free from viral particles).  

Derived lines were screened similarly to approaches outlined in publications from our laboratory 

[146, 147] by immunocytochemistry detection of pluripotency markers OCT4, NANOG, SOX2, 

SSEA-4, TRA-1-81, TRA-1-60 and formation of teratomas comprised of derivatives of all 3 

germ layers (data not shown).  Standard karyotype analysis confirmed normal or karyotypes in 

control andA–T iPSCs respectively (data not shown). 
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Results 

ATM protein levels 

 

Family one (ATh47 and AT34) mutation analysis revealed two frameshift deletions (7004delCA 

and 7886delTATTA) predicted to result in truncated and thus unstable ATM protein. Family two 

(AT30 and ATh41) mutation analysis revealed compound heterozygous mutations 8368delA and 

7570delG (work performed by Professor Richard Gatti, UCLA). As predicted, we failed to 

detect ATM protein (Figure 3.1A) in western blotting of lysates taken from AT34 fibroblasts or 

iPS cells (3 clones) (lanes 6, 7, 8&9 respectively). A reduced amount of ATM protein compared 

to controls was detected in A–T heterozygote ATh47 fibroblasts and iPS cells (lanes 4 and 5). 

DNA-PK was used as a loading control. Consistent with this, using immunofluorescent 

microscopy detection we could not visualize ATM in iPS cells from A–T homozygote AT34, 

while ATM could be detected in both the cytoplasm and nucleus of control iPS cells (Figure 

3.1B). 

     

 

Figure 3.1A – Absence of detectable ATM protein in lysates from A–T patient 

fibroblasts and iPS cells.  Western blot showing expression of ATM in H9 hESCs (lane 

1), control fibroblasts (lane 2), control iPSCs (lane 3), heterozygote A–T fibroblasts (lane 

4),  heterozygote A–T iPSCs (lane 5), A–T homozygote fibroblasts (lane 6),  and 

homozygote A–T  iPSCs (lane 7-9). DNA-PK is used as a loading control. 
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Figure 3.1B – Immunofluorscent microscopy reveals no detectable ATM protein in iPS 

cells from A–T patient AT34.  Immunofluorescent detection of ATM protein in control 

iPSCs (top) and A–T iPSCs (bottom). DAPI stains the nuclei. Secondary antibody 

staining alone revealed no cross reactivity (not shown). Scale bars are 1 µm. 

 

ATM Kinase assays 

 

To confirm lack of kinase activity in A–T patient derived iPS cells, we performed irradiation on 

cultured control/A–T iPS cells and also a human embryonic stem cell line (H9). Lysates were 

harvested at one and four hours post irradiation, including a mock-irradiated sample (ie 0 

hours/no irradiation). After immunoprecipitation (IP) with an antibody for ATM [157] 

we observed phosphorylation of ATM at S2996, S367 and S1981 in both control iPS and hESC 

lines. This however was absent in AT34 indicating a lack of detectable ATM kinase activity 

(Figure 3.2A). We confirmed this by immunostaining irradiated/mock-irradiated control and A–

T iPS cells for autophosphorylation sites on ATM, pS1981 and pS367 (Figure 3.2B). In 

agreement with western blotting/IP data, immunofluorescent staining failed to detect ionizing-

radiation induced foci (which correspond to proteins or protein modifications recruited to sites of 

DNA damage or repair [158]) in irradiated A–T iPSCs whereas clear nuclear localization of 

ATM pS367 and ATM pS1981 was detected in irradiated control iPSCs (Fig 3.2B). γH2AX foci 
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were present in both controls and A–T iPSCs indicating DNA repair was actively proceeding in 

the absence of ATM protein. 

        

Figure 3.2A - Ionizing radiation fails to activate ATM signaling in A–T iPSCs. Western 

blot analysis of ATM autophosphorylation sites S2996, S367 and S1981 in 

immunoprecipitated ATM protein from H9 hESCs, control iPSCs and A–T iPSCs 

following irradiation with 2 Gy IR for 0, 1 and 4 hours.  A Coomassie stained gel of the 

ATM immunoprecipitate is used as a loading control.  

 

 

 

Figure 3.2B - Immunofluorescent detection of ATM autophosphorylation sites S1981 

and S367 and H2AX foci in control iPSCs (top) and A–T iPSCs (bottom) after IR (2Gy, 

1hr). Scale bars are 0.5 µm. 
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Once ATM is activated it phosphorylates a large number of substrates in multiple pathways 

[148, 159, 160], including proteins involved in cell survival and cell cycle control (eg p53 and 

Chk2) and maintenance of chromatin structure (Kap1 SMC1). In control iPSCs, all of these 

substrates were phosphorylated and p53 was stabilized in response to radiation exposure but this 

did not occur in A–T iPSCs (Fig 3.2C). We conclude from this that ionizing radiation induced 

ATM-dependent signaling is defective in A–T iPSCs. 

 

 

Figure 3.2C – Western blot analysis of phosphorylation of ATM downstream targets 

SMC1 (S957), KAP1 (S824) and Chk2 (T68) and p53 stabilization in control and A–T 

iPSCs following 0, 1 and 4 hrs of IR (2 Gy).  
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Cell cycle response to ionizing radiation 

 

Another cellular hallmark of A–T is defective cell cycle checkpoint activation in response to 

DNA DSB [74]. We therefore measured G2M delay using histone H3 phosphorylation after 

exposure to 2 Gy of radiation. Control iPSCs showed characteristic inhibition of entry into 

mitosis two hours after exposure to 2 Gy similar to H9 hESCs (Fig 3.3A) whereas A–T iPSCs 

exhibited a greatly reduced inhibition of mitotic entry after the same dose of radiation.  

 

Figure 3.3A - H3S10 immunostaining of cells following 2 Gy IR or mock dose was 

quantified. A–T iPSCs show persistent staining relative to controls (H9 hESCs and 

control iPSCs shown in top panel) indicative of a failure to arrest at the G2M checkpoint.  

(>600 events were quantified from each condition in 3 independent experiments, error 

bars show SEM, p< 0.05). Scale bars are 25 µm.  

 

Exposure of cells to radiation leads to rapid inhibition of DNA synthesis, and this is used to 

determine the intra-S phase checkpoint. When somatic A–T cells are irradiated they exhibit 

radioresistant DNA synthesis or a defective S-phase checkpoint [142]. The S-phase checkpoint 

was determined using a DNA fibre assay where the extent of DNA synthesis is expressed as a 

percentage of new initiations relative to total elongations in irradiated and non-irradiated cells 

[151]. DNA synthesis was inhibited by 60% in control iPSCs while in A–T iPSCs DNA 

synthesis was only inhibited by 20%, demonstrating the presence of radioresistant DNA 

synthesis in A–T iPSCs (Fig 3.3B).   
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Figure 3.3B - A–T iPSCs exhibit radioresistant DNA synthesis following 2 Gy IR.) 

(>700 events were quantified from each condition in 2 independent experiments. Error 

bars show SEM). p<0.05). Scale bars are 16 µm. 

 

Radiosensitivity (TUNEL assay) 

 

We next examined the incidence of apoptosis in A–T and control iPSCs 24 h after exposure to 2 

Gy of radiation. As shown in Fig 3.3C radiation-induced apotosis was approximately 3-fold 

higher in A–T iPSCs than in control iPSCs. Fig 3.3C further shows that even under standard 

culture conditions A–T iPSCs exhibited a two-fold higher load of apoptosis relative to controls.  
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Figure 3.3C - Flow cytometric quantification of TUNEL staining of control and A–T 

(AT34) iPSCs 24 hrs after mock or 2 Gy IR. Populations were gated to exclude cellular 

debris and autofluorescence. Positive control was DNase treated iPSCs.   

 

Microarray/Expression analysis 

 

In addition to its role in responding to DNA DSB repair, ATM has also been implicated in a 

range of other cellular processes and its role in non-irradiated pluripotent cells has remained 

largely unexplored. We therefore examined in detail the transcriptome of unchallenged A–T 

iPSCs in culture using a combinatorial approach using the Genego and attract bioinformatic 

analysis tools. iPSCs from ATh47, AT34 & CRL2429 were sorted live by flow cytometry for 

expression of pluripotency surface marker TRA-1-160 to isolate a uniform series of RNA for 

comparison. Additionally we isolated RNA from hESC line MEL1 as a control for pluripotency 
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and also RNA from parental fibroblasts from ATh47, AT34 and CRL2429 (Figure 3.4A shows 

experimental design). Samples were prepared according to materials and methods and 

hybridized to Illumina HT12 v4 BeadChip microarrays. Samples were harvested as technical 

triplicates from each line, grown separately. The expression data is available for download from 

Stemformatics and GEO under the accession number GSE35347. 

 

 

Figure 3.4A – Workflow schema outlining experimental design for expression array study. 

iPS cells from ATh47, AT34& CRL2429 were sorted live by flow cytometry for expression 

of the pluripotency surface marker TRA-1-60. Additionally included were parental 

fibroblasts from each iPS line and also hESC line MEL1. 

 

Principal component analysis (Figure 3.4B) showed tight clustering of all experimental 

replicates. Separation of cell type (fibroblast vs pluripotent stem cell) based on gene expression 

could be clearly observed. Immediately apparent was the fact that pluripotent cells clustered 

more closely together, regardless of genotype. Control fibroblasts, A–T heterozygote fibroblasts 

and A–T homozygote fibroblasts separated from each other to a greater degree. These data 

indicate that the large transcriptome differences that exist between A–T fibroblasts and wild type 
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fibroblasts may largely be resolved after reprogramming. This may reflect the clonal nature of 

pluripotent stem cells. Additionally, the fact that loss of ATM impacts more strongly on 

fibroblasts than on pluripotent stem cells may provide evidence for redundancy of ATM in this 

setting.  

 

 

Figure 3.4B – Principal component analysis of all data (top) and detected genes only 

(bottom). Represented are ATh47 fibroblast (blue), ATh47 iPS (pink), AT34 fibroblast 

(purple), AT34 iPS (green), MEL1 hESC (yellow), CRL2429 fibroblast (brown) and 

CRL2429 iPS (black).  

 

We examined principal component analysis plots and performed hierarchical clustering using a 

genelist of 299 genes assembled by Muller et al. as part of the PluriNet - a list of genes critical 

for self-renewal and pluripotency (Genelist located in appendices tab 1 ‘Plurinet’) [154]. 
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Principal component analysis revealed the similarity in gene expression between A–T iPSCs, 

control iPSCs and hESCs and this was further reinforced by hierarchical clustering of the 299 

pluripotency associated genes of the PluriNet (See figure 3.4C). We observed distinct patterns of 

gene expression between fibroblasts and pluripotent stem cells. iPSCs from ATh47 and AT34 

were highly similar (Figure 3.4C) to control iPSCs and hESCs with respect to expression of 

these genes. We interpreted this to mean loss of ATM did not grossly affect pluripotency and that 

our reprogrammed lines were consistent with a fully reprogrammed iPSC phenotype. Heatmaps 

were constructed using the gplots R/Bioconductor package (version 2.10.1) where agglomerative 

hierarchical clustering was used based on a measure of dissimilarity 1 – R, where R represents 

the Pearson correlation coefficient between any two gene expression profiles and ranges from -1 

to 1.  
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Figure 3.4C – Heatmap generated from PluriNet genelist.  
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Despite the tight clustering of pluripotent cells with regards to expression of genes in the 

PluriNet, 7921 genes were identified by attract to exhibit patterns of differential expression 

(p<0.05) (See appendices tab 2 ‘iPS study genelists’ for genelist and log fold change values). A 

combinatorial approach was employed using both the Genego and attract bioinformatic analysis 

tools to analyze these differences. While Genego identifies pathways within significantly 

differentially expressed genes based upon existing knowledge (based on KEGG annotation), the 

attract pathway analysis tool examines the entire data set and identifies and amplifies new 

coordinately regulated gene sets that are relevant to the mechanisms underlying particular 

phenotypes [155]. 

 

Using attract, stark expression differences were identified that were largely defined by cell type 

(ie fibroblast vs. pluripotent stem cell). We focused on differences that were apparent within 

pluripotent stem cells, focusing on differences between control and ATM mutant iPS cells. Four 

of the significant pathways identified by attract are highlighted here to illustrate the expression 

differences observed between A–T and control iPSC lines. Each panel represents the average 

expression profile for a subset of genes in the pathway; the subset was selected by grouping 

together genes with correlated patterns of expression using agglomerative hierarchical 

clustering. The four main pathways that were identified by attract as most significantly altered 

were; focal adhesion (Figure 3.5A), ECM (Extra-cellular matrix) receptor interaction (Figure 

3.5B), the pentose phosphate pathway (Figure 3.5C) and oxidative phosphorylation (Figure 

3.5D). Genelists are available online through KEGG. 

 

Figure 3.5A depicts heatmap gene expression data from this dataset on a KEGG annotated 

genelist pertaining to focal adhesion, (adjusted p-value 8.40×10
-5

).  
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Figure 3.5A – Gene expression data based on focal adhesion genelist from KEGG. 

Adjusted p-value 8.40×10
-5

.  
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These data were decompressed into groups based on patterns of correlated gene expression. 

Figure 3.5B shows one group in which a significant difference is apparent. This group represents 

52 unique gene symbols (BIRC3, COL11A1, COL1A1, COL4A1, COL4A2, COL4A5, COL5A1, 

COL5A3, COL6A1, COL6A2, CTNNB1, DOCK1, FLNC, FN1, FYN, ITGA1, ITGA11, 

ITGA7,ITGA9, ITGAV, JUN, LAMA2, LAMB1, LAMB2, LAMC1, CDC42, MYL12A, RAC1, 

MAPK3   MAPK9   IGF1R,   MYLK, PARVB, PDGFD, PIK3R1, PIK3R2, PIP5K1C, PPP1CB, 

PRKCA, PTK2, RAP1B, RAPGEF1, ROCK1, ROCK2, SOS1, THBS2, THBS3, TLN1, VEGFA, 

VEGFB, XIAP, ZYX). 
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Figure 3.5B – Genelist compressed into groups. Group 3 showed a significant difference 

between control and ATM mutant iPSCs also apparent in differentiated cells. 

 

Figure 3.5C depicts heatmap gene expression data from this dataset on a KEGG annotated 

genelist pertaining to ECM receptor interaction, Adjusted p-value 0.000165. 
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Figure 3.5C - Gene expression data based on ECM receptor interaction genelist from 

KEGG. Adjusted p-value 0.000165.  

 

These data were decompressed into groups based on patterns of correlated gene expression. 

Figure 3.5D shows one group in which a significant difference is apparent. This group represents 

22 unique gene symbols (COL11A1, COL4A1, COL4A2, FN1, ITGA1, ITGA11, ITGAV, LAMA2, 

LAMB1, LAMB2, LAMC1, THBS3). 
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Figure 3.5D - Genelist compressed into groups. Shown is group 3 which showed a 

significant difference between control and ATM mutant iPSCs that is also apparent in 

differentiated cells. 

 

Figure 3.5E depicts heatmap gene expression data from this dataset on a KEGG annotated 

genelist pertaining to the pentose phosphate pathway, Adjusted p-value 0.00899. 
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Figure 3.5E - Gene expression data based on pentose phosphate pathway genelist from 

KEGG. Adjusted p-value 0.00899.  

 

These data were decompressed into groups based on patterns of correlated gene expression. 

Figure 3.5F shows one group in which a significant difference is apparent. This group represents 

7 unique gene symbols (DERA, G6PD, H6PD, LOC729020, PFKM, PGLS, RBKS). 
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Figure 3.5F – Genelist compressed into groups. Groups 1 showed a significant 

difference between control and ATM mutant iPSCs. 

 

Figure 3.5G depicts heatmap gene expression data from this dataset on a KEGG annotated 

genelist pertaining to the oxidative phosphorylation pathway, adjusted p-value 0.00336. 
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Figure 3.5G - Gene expression data based on oxidative phosphorylation genelist from 

KEGG, adjusted p-value 0.00336.  
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These data were decompressed into groups based on patterns of correlated gene expression. 

Figure 3.5G shows one group in which a significant difference is apparent. This group represents 

40 unique gene symbols (ATP5D, ATP5E, ATP5G2, ATP5J, ATP5L, ATP6V0A1, ATP6V0B, 

ATP6V0C, ATP6V0D1, ATP6V0E1, ATP6V1C1, ATP6V1D, ATP6V1G2, COX15, COX4I1, 

COX6B1, COX7A2, COX7A2L, COX8A, UQCR10, NDUFA1, NDUFA11, NDUFA12, NDUFA9,  

NDUFB10, NDUFB2, NDUFB3, NDUFB5, NDUFS7, NDUFV1, NDUFV3, PPA2, SDHA, 

SDHB, SDHC, SDHD, TCIRG1, UQCRB, UQCRC2, UQCRQ). 

 



78 

 

 

Figure 3.5H – Genelist compressed into groups. Shown is group 2 which showed a 

significant difference between control and ATM mutant iPSCs. 

  

This led us to analyze the expression of 1080 genes, previously identified in the MitoCarta 

database [161], that are directly or indirectly associated with mitochondrial function within the 

7921 genes that were differentially expressed (P-value < 0.05). Remarkably 464/1080 of these 

mitochondria associated genes were identified within the A–T iPSCs differentially expressed 

gene list (heatmap shown in Fig 3.5I), suggesting that mitochondrial function was a significantly 
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altered pathway in AT34.  (Appendices shows list of up- and down-regulated genes). Using 

attract we were further able to attribute these mitochondrial gene expression differences to either 

cell state (i.e. iPS + ES vs fibroblasts) or genotype (i.e. A–T homozygous + heterozygous vs 

wild type), identifying four groups of mitochondrial activity. In two of these groups (group 2 and 

3) ATM deficiency showed no difference, whereas Group 1 consisted of conserved ATM-centric 

changes that were apparent in both fibroblasts and pluripotent cells (Fig 3.5J). Most 

interestingly, Group 4 identified 212 mitochondria associated genes that appeared to be cell-type 

specific (See Appendices for gene lists of all four groups).  
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Figure 3.5I - Heatmap comparison of mitochondria associated genes (Mitocarta) between 

A–T heterozyogote fibroblasts and iPSCs, A–T homozygote fibroblasts and iPSCs, control 

fibroblasts and iPSCs and MEL1 hESCs.  
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Figure 3.5J - Based on a genelist of mitochondria associated genes (Mitocarta) attract 

analysis identifies four groups of mitochondria associated gene expression showing distinct 

patterns of correlated expression depending on cell type or genotype.     

 

 

Further curation of this list selecting for genes either encoded by mtDNA (mitochondrial DNA) 

or imported into mitochondria shows that 140/143 truly mitochondrial genes were upregulated in 
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AT34 (Fig 3.5K).  The majority of these 143 genes are either components of the respiratory 

chain, involved in assembly and import of respiratory chain complexes, mitochondrial 

metabolite transporters and mitochondrial ribosomal proteins and tRNA-synthetases (transfer 

RNA-synthetases) (see Appendices for annotated gene list). These gene expression changes are 

consistent with an upregulation of mitochondrial biogenesis in human pluripotent cells in the 

absence of ATM. (Fig 3.5L for statistical analyses). 

 

 

Figure 3.5K - Expression of 141 genes expressed in mitochondria derived from Group 4 

(iPS cell specific changes in A–T iPSCs from Fig 3B). Graphs (bar and radial) indicate log 

fold change of group 4 genes compared to control iPSCs and MEL1 hESCs. 

 

In addition to this agnostic/explorative approach to test for functional enrichment in mapped 

pathways, we speculated on processes that we hypothesized to be perturbed given the extensive 

number of roles of ATM. We examined a range of pathways using attract.  

 

Interestingly we observed no significant difference in p53 signaling pathways (p val  

0.336142616536926) (Figure 3.6A). Similarly, we did not uncover a difference in mapped 

Apoptosis pathways (p val 0.901958279328076) (Figure 3.6B), Insulin pathways (p val 
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0.882166731302835) (Figure 3.6C) or pathways in Cancer (p val 0.00699368907618373) 

(Figure 3.6D). We additionally examined Nucleotide excision repair pathways and found no 

significant difference (p val 0.590619722289039) (Figure 3.6E). Mismatch repair pathways (p 

val 0.00699368907618373) (Figure 3.6F) showed no significant differences nor did Base 

excision repair pathways (p val 0.0541797877745253) (Figure 3.6G). No differences were 

apparent upon examination of Non-homologous end joining pathways (p val 

0.577862061713731) (Figure 3.6H) or Homologous recombination (p val 0.369396388402474) 

(Figure 3.6I). It was interesting to note that in general, expression of genes encapsulated by the 

homologous recombination KEGG pathway tended towards greater levels of expression in 

pluripotent cells rather than fibroblasts. Further to this, there appeared consistent differences in 

expression levels in fibroblasts between control and mutants that were not apparent in 

pluripotent cells, indicating a potential redundancy for ATM related homologous recombination. 

We did observe a significant disruption in Cell cycle pathways (p val 0.000175757287476981) 

(Figure 3.6J). When we decomposed these differences into groups (Figure 3.6K) we observed 

differences mainly to occur in fibroblasts and not in iPS cells. (See Appendices for gene lists 

from all heatmaps).  
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Figure 3.6A – Heatmap of expression dataset depicting known p53 signalling pathways. 

Adjusted p val = 0.336142616536926.  
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Figure 3.6B – Heatmap of expression dataset depicting known Apoptosis signalling 

pathways. Adjusted p-val 0.901958279328076.  
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Figure 3.6C – Heatmap of expression dataset depicting known Insulin signalling 

pathways. Adjusted p-val 0.882166731302835.  
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Figure 3.6D – Heatmap of expression dataset depicting known Pathways in cancer 

signalling pathways. Adjusted  p-val 0.00699368907618373.  
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Figure 3.6E – Heatmap of expression dataset depicting known Nucleotide excision 

repair (NER) signalling pathways. Adjusted p-val 0.590619722289039.  
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Figure 3.6F – Heatmap of expression dataset depicting known Mismatch repair (MR) 

signalling pathways. Adjusted p val 0.00699368907618373.  
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Figure 3.6G – Heatmap of expression dataset depicting known Base excision repair 

(BER) signalling pathways. Adjusted p-val 0.0541797877745253.  
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Figure 3.6H – Heatmap of expression dataset depicting known Non-homologous end 

joining (NHEJ) signalling pathways. Adjusted p-val 0.577862061713731.  
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Figure 3.6I – Heatmap of expression dataset depicting known Homologous repair and 

recombination (HRR) signalling pathways. Adjusted p-val 0.369396388402474.  
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Figure 3.6J - Heatmap of expression dataset depicting known Cell cycle pathways. 

Adjusted p-val 0.000175757287476981.  
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Figure 3.6K - Based on a genelist of Cell cycle associated genes attract analysis 

identifies two groups of Cell cycle associated gene expression showing distinct patterns 

of correlated expression depending on cell type or genotype.     

 

 

We next assessed the role of mitochondrial function by testing the expression differences for the 

mitochondrial-associated genes across phenotype groups using attract. The attract algorithm 

computes an F-statistic for each gene and enrichment of a pathway is assessed by performing a 

two sample T-test between the F-statistics associated with mitochondrial function (yellow curve) 

with all detected genes (blue curve). Genes informative of phenotype-specific expression have 

larger F values. The panel (Figure 3.5L) outlines the distribution of the two sets of F-statistics, 

and shows how the mitochondrial function pathway has F-statistics that are in general elevated 

with respect to the distribution of all detected genes, implying mitochondrial function is a 

differentially expressed pathway (P-value < 10
-18

). (Figure 3.5M) We used the informativeness 

metric [155] to determine the number of distinct correlated patterns displayed by mitochondrial 

associated genes; the informativeness metric is a criterion to be maximized, we evaluated 

different numbers of clusters ranging from one to eleven, and four groups was found to be the 

optimal number. The expression patterns for the four groups are shown in Figure 3.5J.     
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Figure 3.5L - F-statistics and mitochondrial pathway differences as significantly altered. 

Figure 3.5M - Informativeness metrics show the number of distinct correlated patterns 

exhibited by mitochondrial associated genes. 

 

 

We next assembled an ad hoc genelist comprising several already available genelists from 

GeneGo featuring genes involved with reactive oxygen species (See appendices for genelist) 

(Figure 3.6N). Attract did not identify significant differences between A–T and controls.  



96 

 

 

Figure 3.6N - Attract did not identify evidence for significant differences between A–T and 

controls in ROS related pathway analysis.  
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Microarray data analysis has limitations in the sense that it deals in subjective measures and 

arbitrary cutoffs. This was made evident by the fact that with manual curation we uncovered 

significant upregulation of at least 20 additional genes encoding mitochondrial subunits that 

attract did not uncover, presumably because of their absence from KEGG pathways (Table 

3.7A). Similarly we uncovered a pattern of downregulation of fourteen of the fifteen calcium 

channel subunits present on the microarray (Table 3.7B). Of additional but separate interest we 

also observed downregulation of PRKAR1A and AKT1 in both AT34 and ATh47. An 

interesting candidate, USMG5 displayed a fourfold logarithmic reduction in AT34 relative to 

controls – this protein was recently implicated in an ataxia protein interaction network [162]. 

 

   

 

Symbol 

Log fold change  

(AT34vs Control 

iPS) 

Log fold change  

(ATh47 vs Control iPS) 

Log fold change 

(Control iPS vs 

hESC) 

ATP5G1 0.879697747 1.005706404 0.040068516 

ATP5D 0.808888661 0.305364676 -0.037015153 

ATPIF1 0.772782542 0.395881527 -0.276939929 

ATP5J 0.586485205 0.556881899 0.055372155 

ATP5J 0.582163227 0.681494553 0.000403128 

ATP5G3 0.559820711 0.514100551 0.154488698 

ATP5G2 0.552364632 0.772560084 0.322428895 

ATP5S 0.526482787 0.528431104 -0.093293718 

ATP5SL 0.48314288 0.61127372 0.008340032 

ATP5EP2 0.415975049 0.590469529 0.058106787 

ATP5E 0.404733121 0.792942441 0.025797113 

ATP5L 0.40031937 0.524885896 0.055296864 

ATPAF2 0.358323384 0.405847178 -0.029555362 

ATP5G2 0.335844459 0.766074004 0.190547207 

ATP5S 0.333281638 0.461165977 -0.215473278 

ATP5L 0.330950889 0.370221967 -0.019457518 

ATPBD4 0.315184184 0.657552259 -0.185593351 
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ATP5I 0.310226785 0.043968871 0.072011023 

ATP5J 0.302399925 0.252747201 -0.023577465 

ATP5O 0.259069258 0.54817956 0.082716635 

ATP5C1 0.242824677 0.063586125 -0.009348865 

ATP5A1 0.238097299 0.372145838 -0.118572547 

ATP5C1 0.228728672 0.089595633 0.097053251 

ATP5I 0.203871589 -0.121502466 0.056571071 

ATP5D 0.19339542 0.100848767 -0.228252914 

ATPAF1 0.158262357 0.586663787 -0.108477873 

ATP5J2 -0.003966432 0.001872947 -0.041567632 

ATP5J2 -0.087100137 -0.007233056 -0.234234751 

ATP5H -0.130968333 -0.07396789 -0.041035925 

ATP5H -0.2922839 -0.163063531 0.068335249 

ATPIF1 -0.33092393 -0.162238268 0.057887325 

ATP5G2 -0.82926336 -0.155006678 0.700133159 

 

Table 3.7A – Genelist and log fold-change values for mitochondrial subunits uncovered 

additional to list from attract. 
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SYMBOL Log fold change 

(AT34vsControl) 

Gene 

CACNG7 -0.4272 CACNG7 calcium channel, voltage-dependent, gamma subunit 7 

CACNA1G -0.32034 calcium channel, voltage-dependent, T type, alpha 1G subunit 

CACNA1A -0.22678 calcium channel, voltage-dependent, P/Q type, alpha 1A subun 

CACNG6 -0.14929 calcium channel, voltage-dependent, gamma subunit 6 

CACNG6 -0.07283 calcium channel, voltage-dependent, gamma subunit 6 

CACNB2 -0.13284 calcium channel, voltage-dependent, beta 2 subunit 

CACNA1C -0.11747 calcium channel, voltage-dependent, L type, alpha 1C subunit 

CACNB3 -0.06833 calcium channel, voltage-dependent, beta 3 subuni 

CACNA1S -0.03287 calcium channel, voltage-dependent, L type, alpha 1S subunit 

CACNB4 0.16541 calcium channel, voltage-dependent, beta 4 subunit 

CACNA1H -1.06409 calcium channel, voltage-dependent, T type, alpha 1H subunit 

CACNA1H -0.70808 calcium channel, voltage-dependent, T type, alpha 1H subunit 

CACNA2D2 -0.70487 calcium channel, voltage-dependent, alpha 2/delta subunit 2 

CACNA1F -0.60717 calcium channel, voltage-dependent, L type, alpha 1F subunit 

CACNA1I -0.53881 calcium channel, voltage-dependent, T type, alpha 1I subunit 

Table 3.7B – Manually curated list of calcium channel subunits shows a consistent trend 

for downregulation in A–T iPS compared to controls. 

 

While our analysis using attract goes some lengths to address these concerns we kept an open 

mind with respect to analysis of this dataset and instigated an independent analysis using 

GeneGo. We uploaded our dataset to GeneGo and examined representation of pathways 

featuring transcripts that were significantly up or down regulated. Table 3.7C below details the 

top 50 pathways based on the 7921 genes differentially expressed as deemed by attract (p<0.05). 

 

# Maps pValue Ratio 

1 Cytoskeleton remodeling_TGF, WNT and cytoskeletal remodeling 1.264E-15 54 111 

2 Cytoskeleton remodeling_Cytoskeleton remodeling 5.000E-14 49 102 

3 DNA damage_ATM/ATR regulation of G1/S checkpoint 3.698E-12 23 32 

4 Development_TGF-beta receptor signaling 5.363E-09 26 50 



100 

 

5 DNA damage_Role of Brca1 and Brca2 in DNA repair 7.937E-09 19 30 

6 Apoptosis and survival_Granzyme B signaling 3.632E-08 19 32 

7 Reproduction_GnRH signaling 5.843E-08 31 72 

8 Protein folding and maturation_POMC processing 6.676E-08 18 30 

9 Cell cycle_The metaphase checkpoint 7.438E-08 20 36 

10 DNA damage_Role of NFBD1 in DNA damage response 1.127E-07 11 13 

11 Apoptosis and survival_FAS signaling cascades 1.191E-07 22 43 

12 Transport_Clathrin-coated vesicle cycle 1.587E-07 30 71 

13 DNA damage_ATM / ATR regulation of G2 / M checkpoint 2.229E-07 16 26 

14 Cell cycle_Regulation of G1/S transition (part 1) 2.459E-07 20 38 

15 Cell cycle_Role of SCF complex in cell cycle regulation 2.509E-07 17 29 

16 Cell adhesion_Histamine H1 receptor signaling in the interruption 

of cell barrier integrity 

3.349E-07 22 45 

17 Cell cycle_Nucleocytoplasmic transport of CDK/Cyclins 4.486E-07 11 14 

18 Development_Slit-Robo signaling 4.916E-07 17 30 

19 Immune response_MIF - the neuroendocrine-macrophage 

connector 

5.442E-07 22 46 

20 Development_ACM2 and ACM4 activation of ERK 6.346E-07 21 43 

21 Development_A2A receptor signaling 6.346E-07 21 43 

22 Apoptosis and survival_Role of IAP-proteins in apoptosis 9.246E-07 17 31 

23 Development_Activation of Erk by ACM1, ACM3 and ACM5 1.030E-06 21 44 

24 DNA damage_Mismatch repair 1.293E-06 13 20 

25 Cell adhesion_Integrin-mediated cell adhesion and migration 1.358E-06 22 48 

26 Apoptosis and survival_DNA-damage-induced apoptosis 1.434E-06 11 15 

27 Apoptosis and survival_p53-dependent apoptosis 1.747E-06 16 29 

28 Immune response_Neurotensin-induced activation of IL-8 in 

colonocytes  

1.949E-06 20 42 

29 Transport_RAN regulation pathway 2.272E-06 12 18 

30 Development_G-Proteins mediated regulation MAPK-ERK 

signaling 

2.556E-06 21 46 

31 Muscle contraction_Regulation of eNOS activity in endothelial 

cells 

2.600E-06 26 64 

32 Signal transduction_Activin A signaling regulation 2.935E-06 17 33 
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33 Apoptosis and survival_TNFR1 signaling pathway 3.092E-06 20 43 

34 Apoptosis and survival_HTR1A signaling 3.165E-06 22 50 

35 Development_GM-CSF signaling 3.165E-06 22 50 

36 Cell adhesion_Chemokines and adhesion 3.293E-06 35 100 

37 Development_VEGF signaling via VEGFR2 - generic cascades 3.355E-06 31 84 

38 Immune response_CD16 signaling in NK cells 3.946E-06 27 69 

39 Regulation of CFTR activity (norm and CF) 4.279E-06 24 58 

40 Cell adhesion_Role of tetraspanins in the integrin-mediated cell 

adhesion 

4.335E-06 18 37 

41 Apoptosis and survival_Role of CDK5 in neuronal death and 

survival 

4.987E-06 17 34 

42 DNA damage_NHEJ mechanisms of DSBs repair 5.255E-06 12 19 

43 Immune response_ETV3 affect on CSF1-promoted macrophage 

differentiation 

5.587E-06 16 31 

44 Apoptosis and survival_Endoplasmic reticulum stress response 

pathway 

1.007E-05 22 53 

45 Cytoskeleton remodeling_Regulation of actin cytoskeleton by Rho 

GTPases 

1.179E-05 13 23 

46 Development_Angiotensin signaling via PYK2 1.377E-05 19 43 

47 Development_VEGF signaling and activation 1.377E-05 19 43 

48 Development_Angiotensin activation of ERK 1.568E-05 16 33 

49 Apoptosis and survival_Caspase cascade 1.568E-05 16 33 

50 Cell cycle_Spindle assembly and chromosome separation 1.568E-05 16 33 

 

Table 3.7C – List of top 50 pathways featuring significantly different gene expression 

signatures based on Genego pathway analysis of 7921 genes differentially expressed 

between A–T iPSCs and control iPSCs (p<0.05). 

 

 The first statistically significantly pathway was ‘TGF, WNT and cytoskeletal remodeling’. 54 

out of the 111 genes annotated to this pathway were significantly dysregulated in our dataset. A 

second entry ‘Cytoskeleton remodeling’ exhibited 49 out of 102 mapped genes as being 
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differentially regulated. Interestingly and in support of this data, there is evidence for altered 

cellular morphology and microfilament arrays arising from A–T patient fibroblasts [163]. 

 

Unsurprisingly, the next pathway in this list was ‘DNA damage ATM/ATR regulation of G1/S 

checkpoint’ that showed 23 out of 32 pathway constituents dysregulated in which ATM ia a 

central transducer of signaling. 

 

The fourth entry to occur was ‘Development TGF beta receptor signaling’ which showed 

twenty-six out of fifty pathway members to be significantly dysregulated. Disruption of this 

pathway is particularly interesting given TGF-β has downstream effects on development 

including neuronal differentiation which involves signaling through SMAD proteins [164]. 

Interestingly disruption of TGF-β signaling has been shown to contribute towards 

neurodegeneration in Alzheimer’s pathology [165, 166]. 

 

We next observed thirty out of seventy-one members of the ‘Transport Clathrin-coated vesicle 

cycle’ to be differentially regulated which was interesting given the report showing that ATM 

binds to β-ADAPTIN in cytoplasmic vesicles [8]. β-ADAPTIN is part of the AP-2 adaptor 

complex, which is involved in clathrin-mediated endocytosis of receptors. AP-2 was 

significantly downregulated in this dataset. 

 

Validation of microarray results 

 

It was interesting to note that both analysis methods (attract and GeneGo) yielded slightly 

different results, however this is not surprising given that they operate within different 

parameters for analysis. In our opinion, the major finding of our microarray analysis was the 

extensive and consistent upregulation of mitochondrial genes. We validated our microarray 

analysis by performing qPCR for a number of mitochondrially-expressed genes. We noticed 

significant (unpaired t-test) increases in transcript abundance in seven out of ten mitochondrial 

associated genes (Figure 3.7A). 
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Figure 3.7A – qPCR shows upregulation of nine of ten mitochondrial genes (between 

C11 control iPSCs and AT34 A–T iPSCs), six of which were statistically significant - 

ND1 (ns), ND4(*), ND6 (***), CYTB (**), COX2 (***), COX3 (***), ATP6 (***), ATP8 

(***), NRF1 (ns) andPOLG (ns). Unpaired t-tests were performed to ascertain statistical 

significance. Expression was normalized to B-Actin. 

 

We sought to ascertain whether this overt and extensive upregulation of mitochondrial genes 

was conserved in a second A–T iPS cell line and performed qPCR for a similar panel of 

mitochondrial genes in three control and three A–T clones, live sorted for surface marker TRA-

1-60.  
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Figure 3.7B – qPCR shows slight upregulation of mitochondrial genes (between second 

control line FB and second A–T line AT30 - three control and three mutant clones), 

however results fail to achieve significance by unpaired t-tests. Expression was 

normalized to B-Actin. 

 

Although we observed a statistically significant upregulation of mitochondrial genes ND4 (*), 

ND6 (***), CYTB (**), COX2 (***), COX3 (***), ATP6 (***), ATP8 (***) (Figure 3.7A), in 

AT34 compared to controls, this phenomena was not apparent to the same extent when we 

examined a second A-T line (AT30 – Figure 3.7B), indicating that these changes may have been 

mutation or cell-line specific. 
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Mitochondria in iPS cells 

 

We investigated whether there were any functional manifestations of this disruption of 

mitochondrial gene expression by examining a range of mitochondrial parameters including 

membrane potential (through the use of TMRM), mitochondrial localization/morphology 

(Mitotracker Green) and mitochondrial mass by staining with N-acridine-orange (NAO). 

Through incubation of iPS cells with Mitotracker Green and TMRM, we were able to visualize 

mitochondrial localization and also membrane potential (Figure 3.8A). We observed consistent 

Mitotracker Green and TMRM staining within iPS cell colonies although we noted marked 

fluctuations in intensity at the periphery of colonies that we took to correspond with increased 

mitochondrial biogenesis as a result of cellular differentiation.  

 

 

 

Figure 3.8A – iPS cells were incubated with TMRM to visualize mitochondrial 

membrane potential and Mitotracker Green to visualize mitochondria. Top panels show 

representative images from control iPS and lower panels show A–T iPS (AT34). 

 

We did not observe any apparent differences in staining intensity by fluorescent microscopy and 

decided to use a more quantitative approach by flow cytometry.  iPS cells were harvested for 
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flow cytometry as outlined and incubated with TMRM and NAO in the presence and absence of 

ATP synthase inhibitor Oligomycin and electron chain uncoupler CCCP as controls for 

specificity (Figure 3.8B). 

 

Figure 3.8B – iPS cells were incubated with TMRM in the presence and absence of 

CCCP and Oligomycin. Inlay in upper right-hand corner shows normalized 

mitochondrial membrane potentials (TMRM signal/NAO signal) for ease of viewing. 

One-way ANOVA reveals no significant differences between mitochondrial membrane 

potential. Graph shows mean results from 3 individual sets of flow cytometry 

experiments. 

 

Additionally we examined levels of mitochondrial ROS using mitoSOX. Although we did not 

observe statistically significant elevation of mitochondrial ROS between A–T and controls it was 
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interesting to note that in all iPS cell lines staining was almost two-fold higher than that in H9 

hESC (Figure 3.8C).  

Figure 3.8C – iPS cells incubated with mitoSOX reveal levels of mitochondrial reactive 

oxygen species.  Graph shows mean results from 3 individual sets of flow cytometry 

experiments. No significant difference was apparent after a One-way ANOVA. Lower 

panel shows flow cytometry plot (FITC). 

 

Discussion 

 

Several recent findings highlight the phenomena of elevated levels of DNA damage signaling 

and repair gene expression in ESCs and iPSCs in comparison to somatic cells, which has been 

attributed to the elevated need for protection of the genome [79, 82]. ATM has been 

demonstrated to activate signaling pathways in ESCs and iPSCs in response to DNA damage 

[79-81] and to be vital for G2M arrest in hESCs after introduction of DNA damage by low doses 

of IR [15, 80], however IR may not accurately represent the normal levels and type of DNA 

damage which occur within the cellular environment.   
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Maintaining a stable genome within the developing embryo is an important requirement for the 

survival and viability of an organism – similarly, the stability of ESCs and iPSCs relate directly 

to their applicability as clinical entities and disease models. Recent work outlines the high 

degree of similarity in response to DNA damage between ESCs and iPSCs with respect to cell 

cycle arrest, double strand break repair and gene expression [79]. Further to this, it was 

illustrated that pluripotent and somatic cells utilize DNA damage repair pathways via distinctly 

[84] different methods, which makes sense given the different nature of these cells and their 

requirements for growth. It has been suggested that ESCs primarily utilize HRR (homologous 

repair and recombination) rather than error prone NHEJ (non-homologous end joining), which is 

supported by the observation of 10-fold higher formation of RAD51 foci in ESCs when 

compared to differentiated astrocytes [84]. Our microarray data support this concept by showing 

a general trend for the upregulation of DNA repair pathway genes in pluripotent cells compared 

to fibroblasts. HRR is dependent on sister chromatids for repair templates - as ESCs spend 70% 

of their time in S and G2M phase, they are able to initiate this more stringent form of repair [79]. 

ESCs have a doubling time of approximately 20-30 hours [85] and cycle rapidly due to an 

abbreviated G1 phase and facilitated G1 to S transition [86]. Due to this accelerated rate of DNA 

replication and also mitotic division, ESCs and iPSCs may be at a greater risk of replication 

errors, especially in the context of genomic instability syndromes, such as A–T. In somatic cells, 

ATM phosphorylates p53 to arrest G1/S cell cycle transition in the presence of DNA damage 

[87] however this mechanism exists differently in ESCs because they lack a conventional 

restriction point in late G1 [88]. Interestingly we observed no marked disruptions to basal p53 

signaling between ATM deficient iPS cells and controls, consistent with this notion. Filion et al. 

showed that ESCs lack this G1 checkpoint in response to IR [81]. This group and others [15, 80] 

show supporting data and demonstrate that ESCs arrest in the G2phase after IR in an ATM 

dependent manner.  

 

Although we provide evidence showing that gene expression of members of the major DNA 

repair pathways are minimally disrupted, we have clearly illustrated that IR-induced ATM 

signaling is absent in A–T iPS cells and as a result cell cycle aberrations are present. After IR, 
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we observed classical signs of damage induced inhibition of entry into mitosis in control iPS 

cells. In contrast to this A–T iPSCs displayed greatly reduced inhibition of mitotic entry, 

indicating that damage induced cell cycle control was compromised. It is not unreasonable to 

speculate that this method of action could foster the accumulation of compromised progenitors 

that would normally be targeted by repair or removal from the pool by cell death. In support of 

this we measured S-phase DNA synthesis and this checkpoint was found to be compromised 

also. 

 

Numerous papers report that ESCs are hypersensitive to environmental insult, resulting in 

elevated levels of apoptosis [90, 91]. Filion et al. demonstrated that ESCs undergo caspase-

related mitochondrial apoptosis, demonstrating a mechanism for the removal of irreparably 

damaged cells [81]. Because hypersensitivity to ionizing radiation is a well established 

characteristic of somatic A–T cells [167, 168] we examined the incidence of apoptosis in A–T 

and control iPSCs 24 hours after exposure to 2Gy of radiation. As shown in Figure 3.3C 

radiation-induced apoptosis was approximately 3-fold higher in A–T iPSCs than in control 

iPSCs. Figure 3.3C further shows that even under standard culture conditions A–T iPSCs 

exhibited a two-fold higher load of apoptosis relative to controls. In somatic cells ATM 

activation by DNA DSB and subsequent signaling through p53 represents a major pathway for 

induction of apoptosis [169], implying that loss of ATM activity may confer resistance to 

apoptosis. In contrast our data show an increased sensitivity to spontaneous and radiation 

induced apoptosis. 

 

Due to the highly stringent need for faithful repair and fidelity within the embryo, there may be 

several levels of inbuilt redundancy that exist to take over in the absence of ATM. This is 

evidenced by findings that a BAC recombineered ATM knockout hESC line maintained normal 

karyotype for extended periods of culture. This is speculated to be because ATM independent 

pathways were sufficient to maintain genomic fidelity in normal culture conditions [15]. Biton et 

al. used hESCs to demonstrate that ATM is nuclear and that it responds to DNA DSB [170]. 

More recently, ATM was shown to be vital for the coordination of cell cycle control of 

pluripotent stem cells after ionizing radiation (IR) in G2 but not G1 [80]. Interestingly, 
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interference with ATM activity in hESCs using the specific ATM inhibitor KU55933 [84] or 

BAC mediated gene knockout [15] suggested that ATM may be dispensable for repair of DSB 

and genomic stability in hESCs.  Adams et al. provide evidence showing that repair pathways 

that dominate in the pluripotent state are ATR-driven HRR in comparison to ATM-driven NHEJ 

in differentiated cells [78] The apparent contrast between the necessity for ATM in maintaining 

genomic integrity between somatic and pluripotent stem cells demonstrates that ATM related 

and unrelated DNA repair pathways behave in contextually dependent manners depending on 

cell state. In support of this, and despite the fact we observed aberrant post-damage induced 

control of cell cycle, we were able to generate and maintain karyotypically normal cultures of 

A–T iPS cells for extended periods. Methodologies capable of detecting genomic abberations at 

higher resolution such as array CGH may be optimal for increasing the understanding of 

genomic fidelity, however these can be cost-prohibitive.  Our microarray data also support the 

observations that ATM may be redundant in pluripotent cells. Interestingly, in pluripotent A–T 

cells we observed little disruption to pathways including p53 signaling, apoptosis, pathways in 

cancer, insulin signaling base excision repair, non-homologous end joining, mismatch repair or 

nucleotide excision repair, though many of these processes were disturbed in ATM deficient 

fibroblasts, supporting our theory for ATM redundancy in pluripotency. 

 

 ATM was recently shown to act in a chromatin-state dependent manner, with respect to repair 

of DNA DSBs. It was found that ATM signaling increased proportionally to the heterochromatic 

state of the genome [92]. ESCs are primarily euchromatic [93], and as Adams et al. pointed out, 

this may explain why ATM dependent signaling pathways appear to be dispensable to hESCs in 

some regards [78].   

 

In pluripotent A–T cells we observed differences in focal adhesion and ECM interaction 

pathways. Although there is some evidence to suggest cytoskeletal arrangement defects in cells 

from A–T patients [163], these pathways are reported to be highly variable in pluripotent stem 

cell lines (Personal communication: Professor Christine Wells), and our small sample size may 

have affected this. It is interesting to note however the recurrent appearance in these pathways of 

a number of genes linked to ATM including BIRC3 (Baculoviral IAP repeat-containing 3) [171]. 
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ATM has been demonstrated to signal to BIRC3 through NFκB in response to IR in murine 

lymphoid tissue. We also noticed dysregulation of C-Jun, previously shown to have a role in 

ATM related oxidative stress-mediated response [172]. PDGF (Platelet-derived growth factor-

beta was included in this list and has previously shown to activate ATM kinase in response to 

p53 induced oxidative stress [173]. We noted dysregulation of XIAP, previously shown to be 

part of the ATR/ATM related DNA damage response [174] and also dysregulation of IGF1R 

(Type 1 insulin –like growth factor receptor) which has previously been shown to modulate 

ATM function [175]. 

 

Gene expression profiling revealed that the pattern of expression in A–T fibroblasts was 

markedly different from that in control fibroblasts. Surprisingly, this was not the case for the 

control and A–T iPSC, where the majority of pathways were similarly regulated despite the 

absence of ATM. Nevertheless, our pathway analysis uncovered extensive differences in the 

regulation of oxidative phosphorylation genes supporting a defect at the level of the 

mitochondrion. It is not clear how ATM might be involved in the regulation of mitochondrial 

respiration, however, there have been several reports that illustrate mitochondrial abnormalities 

in these cells (Ambrose et al., 2007; Fu et al., 2008). Ambrose et al. (2007) described abnormal 

structural organization of mitochondria in A–T cells. They also observed reduced mitochondrial 

membrane potential and diminished respiratory activity in A–T cells that is consistent with the 

results obtained here. Fu et al. (2008) showed that ATM functions through AMPK in 

mitochondrial biogenesis and thus in its absence, defective biogenesis could be contributing to 

the disease phenotype. An extensive list of ataxias and other syndromes have been linked with 

mitochondrial dysfunction including NARP (neuropathy and retinis pigmentosa)[176], MELAS 

(mitochondrial encelphalomyopathy, lactic acidosis with stroke-like episodes) [177] and 

MERRF (Myoclonus epilepsy with ragged red fibres)[178]. These mitochondrial pathway 

defects may become evident when the mechanism or demand for energy production is altered, 

such as during differentiation induced mitochondrial biogenesis. An imbalance of mitochondrial 

enzyme activity could lead to overproduction of ROS, which has been associated with pathology 

in A–T [98, 179, 180]. It is not impossible that differences observed in mitochondrial gene 

expression stemmed from subtle differences in reprogramming state between control and A–T 
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cells as comparison of iPS cells remains a major challenge for the field. We also observed that 

G6PD was downregulated in A–T iPSC compared to controls. This is consistent with a recent 

report (Consentino et al. 2011) that showed that ATM activates the pentose phosphate pathway 

(PPP) by stimulating complex formation between heat shock protein 27 and G6PD to increase 

G6PD activity. In response to oxidative stress, carbohydrate metabolism is rerouted from 

glycolysis through the PPP and it is well established that oxidative stress activates ATM (Guo et 

al. 2009) and A–T cells show evidence of oxidative stress. The downregulation of G6PD in A–T 

iPSC fits with these observations. Despite extensive disruption of gene expression in 

mitochondrial related pathways we did not uncover any gross differences in mitochondrial 

membrane potential or levels of mitochondrial reactive oxygen species between A–T and control 

iPS cells. We speculate that as tissues differentiate and specialize, driving the demand for ATP, 

subtle differences may manifest more obviously. We cannot however discount the possibility 

that this expression signature could have arisen through other mechanisms, for example the 

process of live-sorting cells by flow cytometry which was used to obtain cells for RNA 

extraction is known to induce stress [181]. It is known that reprogramming causes drastic 

remodeling of a number of aspects relating to mitochondrial activity [182]. It is possible that our 

reprogrammed cells exist along a continuum with respect to their mitochondrial dynamics. 

Although we noted tight clustering of gene expression of members of the PluriNet, suggesting 

our cells were similarly pluripotent, we cannot discount changes that may be present as a result 

of this.    

 

The great majority of studies on the characterisation of A–T cells and on the functioning of 

ATM have been carried out in lymphoblastoid cells and fibroblasts and to a lesser extent on 

lymphocytes (Bensimon et al. 2011). Mouse models recapitulate a great deal of the A–T 

phenotype but do not exhibit neurodegeneration (Frappart and McKinnon 2006). It is becoming 

apparent that the DNA damage response is a dynamic process that is differentially regulated in 

response to ontological requirements. This study and others suggest that ATM is not vitally 

required for the maintenance of pluripotent genomic integrity. We suggest that manifestation of 

A–T symptoms may present during or downstream from differentiation events when cells 
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become more reliant on ATM dependent signaling for DNA repair or ATM in non-canonical 

contexts, such as protection against ROS or developmentally related apoptosis. 

 

Although we have shown that ATM is required for the coordination of DNA repair and cell 

cycle control initiatives after DNA damage (Figures 3.2C, 3.3A&B), our pathway analysis data 

support the theory that in an unchallenged state ATM is redundant for protection of the genome 

in pluripotent cells, being either not required or having compensatory mechanisms in place to 

fulfill its role in this context. We note marked disruption of DNA damage surveillance and repair 

processes in A–T fibroblasts that are not evident in A–T iPSCs that supports this idea. A limited 

number of studies have been carried out with ESCs in which ATM has been abrogated by 

disruption of the gene, siRNA knockdown or by treatment with the ATM inhibitor KU55933 

(Biton et al. 2007; Song et al. 2010). Momcilovic et al. (2009) showed that KU55933 had 

variable effects in ESCs at concentrations used in somatic cells and that a 10-fold increase was 

required to effectively inhibit ATM activity in this cell type. For this reason, A–T iPSCs may 

provide more stringent model systems to examine ATM involvement in the embryonic setting.  

 

While Atm-deficient mice recapitulate some of the cellular defects observed in A–T, including 

radiosensitivity, immunodeficiency, high incidence of cancer, and defective germ cell 

development [73, 99] other A–T-related defects, such as neuronal degeneration are not evident 

in Atm-deficient mice, highlighting the need for a human A–T model system. iPSCs from 

individuals with A–T therefore present an opportunity to elucidate the role of ATM in the 

pluripotent context, to study A–T pathogenesis and to create relevant patient-specific cell 

platforms for drug screening. Pluripotent stem cells provide a model system to differentiate cells 

of interest to study. It is possible to some degree to recreate the process of neurogenesis to obtain 

neurons of various regional identities. This technology may hold the secret to unlocking the 

complexities of ATM and its role in neurodegeneration.  
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4.0 A basic model for neurogenesis in A–T derived iPS cells 

Introduction 

 

The major debilitating symptom of A–T (crippling ataxia and loss of movement control) is 

thought to arise due to loss of granule and Purkinje cells from the cerebellum [183], however 

there is a wide array of evidence to support the pathological involvement of other cell types 

within the brain. These include anterior horn cells, which are present in the ventral grey matter 

section of the spinal cord. There is additional evidence implicating spinal motor neurons, and 

also cells in the Substantia nigra (located in the midbrain, consisting of a high level of 

dopaminergic neurons), Oculomotor nuclei (midbrain), inferior olivary nucleus (medulla 

oblongata) and the Dentate nucleus (deep within cerebellar white matter)[184-186].  

 

A number of models, including both mouse and human [14, 108, 187-190], have been put 

forward over the years to explore the function of ATM including its roles in neurodegeneration, 

yet little consensus exists regarding a common unifying role for ATM which sufficiently 

explains the neurodegeneration prominent in this condition. 

 

Possibly due to the fact that the first and major role for ATM revolves around its involvement in 

the maintenance of genomic stability, the central paradigm of DNA damage regulation by ATM 

is often used to explain the neurodegeneration in A–T. Popular theories assert that ATM is 

involved with DNA damage surveillance and removal of compromised progenitors during or 

after development. Other theories extend to postulate that ATM is involved in dynamically 

regulating brain-specific aneuploidy [106] or regulation of long interspersed element-1 (L1) 

retrotransposition (shuffling and expansion of repetitive DNA sequence elements) throughout 

the nuclear genome [191]. Although there is certainly evidence for these theories, it seems 

unlikely that they alone are responsible for the symptoms of A–T, given the myriad of other 

roles for ATM and pleiotropic nature of the disease. 

 

There is solid evidence that ATM is involved with developmental processing including 

regulation of cell death [107]. Dynamic patterns of ATM expression within the developing 

mouse CNS were observed following in situ hybridization experiments, showing high levels 
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throughout early development which later taper off suggesting that problems with neural 

development might happen early as a consequence of ATM deficiency [108]. This finding was 

supported by the observation that ATM was upregulated during Xenopus brain development also 

[109]. A similar study confirmed this in humans and provided evidence for a role of cytoplasmic 

ATM in developing cerebellar neurons [13]. Allen et al. showed that ATM was required for 

normal development and differentiation of adult neural progenitor cells and suggested other 

physiological roles for this protein [110].  Despite these findings, it is clear that a major question 

remains about whether A–T is a developmental or degenerative disease.  

 

A recent paper implicates ATM in neural activity by showing that in its absence, cultured 

neurons lacking ATM exhibited defective Long Term Potentiation, while also showing slower 

rates of spontaneous vesicular dye release [7]. This group showed that ATM could be isolated 

from synaptosomal preparations, postulating that the ATM protein physically associated with 

phosphorylated versions of VAMP2 and SYNAPSIN-1 in the pre-synaptic nerve terminal. 

Interestingly this group demonstrated a physical association between ATM and its close 

homologue ATR, predominantly occurring in the cytoplasm of neuronal cells. Another group 

showed that knockout of ATR in mouse models gave rise to animals grossly devoid of proper 

cerebellar development [192].  

 

Historically, ROS have often been cited as a contributor to the pathology in A–T [104]. At least 

two publications [98, 101] show evidence that links ROS with specific degeneration of PCs in 

the cerebellum in A–T models. Chen et al. speculate that ATM acts outside of its canonical role 

as a DNA damage regulator in participating in the defense against ROS. Only recently was the 

mechanism behind this explained [12] in which ATM was shown to be involved in a specific and 

distinct form of ROS surveillance and response through disulfide bond formation. Imbalance of 

ROS is a commonly recurring phenomena in many other diseases, especially neurological 

disorders, including Parkinson’s and Alzheimer’s [103] which is not surprising given imbalance 

of physiological processes can give rise to ROS with relative ease. It was shown that p38 MAPK 

acts as a negative regulator to control neural stem cell (NSC) proliferation in response to 

oxidative stress that may offer some insight into the mechanism behind the neurodegeneration in 
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A–T [105]. Given the large metabolic requirements and the fact that a large proportion of the 

neurons in the brain are post mitotic, the role of ATM in neuronal cells may be chiefly in 

response to ROS, rather than solely orchestrating DNA damage related cell cycle regulation.  

 

An area which is receiving increasing amounts of attention with respect to a range of 

neuropathologies is the mitochondrion. Mitochondria at their most basic provide energy for 

cellular metabolism in the form of ATP (Adenosine Triphosphate). The reality is that 

mitochondria are incredibly dynamic and complex organelles that orchestrate and are involved 

with almost every aspect of cell biology. Mitochondria are also the major source of ROS within 

the cell. Dysfunction of the mitochondria is increasingly being associated with diseased states. A 

recent publication describes a mechanism to explain the neurological dysfunction in ARSACS 

syndrome whereby mutations in the sacsin gene give rise to mislocalisation of mitochondria 

within the somites and proximal dendrites of Purkinje cells [193]. This in turn affected the 

ability of these neurons to properly synapse with each other. It is becoming harder to ignore the 

accumulating evidence implicating mitochondria in a myriad of different neurological 

syndromes and ataxias [176, 178]. A handful of papers provide evidence that ATM may be 

involved in regulating mitochondrial homeostasis [113, 194-196], however none propose a 

mechanism that may explain the involvement of mitochondria with the neurodegeneration in A–

T. In addition to the role of mitochondria in providing energy for cellular respiration and balance 

of ROS, the mitochondria are also the second largest source of calcium buffering within the cell 

[197]. 

 

Calcium levels are important in regulating processes such as cell death and migration during the 

development of the CNS. Calcium is a versatile second messenger which co-ordinates a range of 

cellular processes, particularly in neurons where it is involved with activity and signaling, 

development (including control of CNS migration [198]), mitochondrial function [199], kinase 

signaling [200], communication [201], homeostasis and survival (including regulated cell death) 

[202]. Dysregulation of calcium handling is implicated in a range of neuropathologies including 

stroke/cerebral ischemia (whereby impaired influx/egress of calcium across the plasma 

membrane affects calcium homeostasis) [203], certain variants of Alzheimer’s disease (in which 
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lipid peroxidation and resulting generation of toxic byproducts may impair membrane ion-

motive ATPases and glucose/glutamate receptors, altering calcium influx and also synaptic or 

endoplasmic reticulum calcium homeostasis) [204]. Unregulated accumulation of calcium is also 

a major component of excitotoxic cell death in the CNS. There is an increasing body of literature 

implicating calcium and mitochondrial aberrations in a range of neurological and metabolic 

conditions, including a study which demonstrates via patch-clamp-recording of murine Purkinje 

cells, an electrophysiological deficit caused by a significant decrease in calcium currents. 

Weaver syndrome presents an interesting case –mutations in the Girk2 (Kcnj6) a gene that 

encodes a G-protein-coupled inward rectifier potassium channel, results in a loss of ion 

selectivity and constitutive activation [205]. As a result calcium levels are perturbed resulting in 

defects in neurite extension, cell migration and aberrantly regulated cell death in cerebellar 

granule cells. 

 

It seems likely that rather than any one of the popular and isolated ATM theories being correct, 

there may be an over-arching connection between them that incorporates the role of ATM in 

development, responding to and repairing DNA damage, sensing ROS, metabolic signaling, 

mitochondrial homeostasis, apoptosis regulation and the possibility of unknown functions. To 

elucidate precisely what drives the neurodegenerative changes in A–T and why Purkinje cells 

within the cerebellum are predominantly affected remains the challenge. Therefore, we explored 

the concept of differentiating iPS cells into neuronal progenitors to investigate whether we could 

model various aspects of A–T with a view to better understanding this disease. 

 

Using a modified version to that published recently [206], we produced a highly pure population 

of neuronal progenitors which could be differentiated into electrophysiologically active neuronal 

cells. We investigated a range of parameters using this model including differentiation 

bias/potential, growth and proliferation in culture, gene expression and calcium trafficking 

kinetics after induction of neuronal activity by depolarization, HDAC4 localisation, 

mitochondrial morphology, localization and membrane potential. We showed that genetic 

manipulation of these neurons was possible by introducing copies of mCherry-tagged ATM, 
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which restored a functional DNA damage response. Additionally we delivered a real-time 

genetically encoded fluorescent calcium reporter gCaMP5 to further examine calcium kinetics. 

  

This chapter illustrates a proof of principle that patient-specific neurons can be made from iPS 

cells and that these neurons offer a robust and reproducible model system to investigate the 

neuropathology in ATM. Additionally we show a phenotype which may contribute to the 

understanding of this disease and highlight the fact that in vitro manipulation of neural stem 

cells, a technique which will be vital for use of stem cells in a clinical setting, is possible. 

 

Materials and methods 

 

Neuronal Differentiation 

 

iPSC cultures were grown for 5 days after passage prior to commencement of differentiation and 

changed directly into KSR hESC media supplemented with 5 Dorsomorphin (Stemgent) and 

10 µM SB431542 for the first 6 and 12 days of differentiation, respectively, with media changes 

every 2 days.  KSR hESC media was gradually substituted with Neurobasal medium (GIBCO) 

(with N2&B27 supplements used at the manufacturer’s specifications) (GIBCO) with 25%, 

50%, 75% and 100% N2B27 Neurobasal medium in KSR hESC media on days 4, 6, 8 and 10 

respectively.  Neurospheres were formed on day 6 of differentiation by 10 minute incubation in 

1 mg/ml Collagenase IV (GIBCO) at 37°C and dislodging of large pieces of colonies by use of a 

cell scraper and P1000 pipette.  Neuralized colony fragments were seeded into Ultra-low Cluster 

plates (Costar) where they aggregated into tight spheres.  On day 12 of differentiation 

neurospheres were seeded onto Matrigel™ (BD) coated plates and N2B27 Neurobasal media 

was subsequently changed every 3-4 days as neurons grew out from the sphere borders.  

Cultures were passaged every week by cell dissociation buffer (Sigma) at a 1:2 – 1:3 ratio, 

eventually leading to the complete dissociation of neurosphere aggregates.  4-6 week old 

cultures were subsequently matured by the addition of 20 ng/mL brain-derived neurotrophic 

factor (BDNF) and 20 ng/mL glial-cell-line-derived neurotrophic factor (GDNF) (R&D), 200 
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nM ascorbic acid, and 0.5 mM dibutyryl-cAMP (Sigma) for 2 weeks with media changes every 

2 days to replenish growth factors. 

 

Immunostaining 

 

For immunostaining cells were washed once gently, so as not to disturb large spheroid colonies 

or fragile cell extensions, in PBS and fixed in 4% paraformaldehyde for 15 minutes at room 

temperature. For nuclear staining samples were permeabilized in 0.1% TritonX100 at room 

temperature for 10 minutes or ice cold methanol for 15 minutes at -20
o
C, before blocking with 

10% goat serum and incubation with the relevant antibodies overnight at 4°C. Antibodies and 

dilutions used were β-III-TUBULIN (Millipore) [1:1000], GFAP (Dako) [1:1000], MAP2 

(Millipore) [1:1000], PAX6 (Developmental Studies Hybridoma Bank)[1:500], OTX5f5 [1:000]   

(Developmental Studies Hybridoma Bank), Synapsin (Calbiochem) [1:500].  Following washing 

with PBS (3 times 5 minutes at room temperature) secondary antibodies goat anti-mouse IgG1, 

goat anti-mouse IgG2B, goat anti-mouse IgM and Donkey anti-rabbit IgG (Alexa fluor) [2 µg/ml] 

were used to reveal reactivity. Nuclei were stained with DAPI or Hoechst. This preparation 

minus the addition of primary antibody was used to confirm specificity of staining.  

 

FACS 

 

Neurons were harvested by washing once in PBS and using either Cell dissociation buffer (Life 

technologies) or TrypLE (Invitrogen) to generate a single cell suspension. Cells were fixed in 

4% paraformaldehyde for 15 minutes at room temperature and blocked for 10 minutes in 1% 

BSA/PBS before application of primary pre-conjugated antibodies. Antibodies were CD44, 

CD24, CD184, CD271, CD15, B-III-TUBULIN (Millipore) [1:1000] & GFAP (Dako) [1;1000]. 

Cells were strained through a cell strainer to remove clumps and ensure a single cell suspension 

suitable for FACs. 
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Irradiation 

 

A Co
60

 source (GammaCell 220) irradiator was used to deliver 5 Gy of IR (Dose rate 8130 

Gy/Hour) to the cells. Cells were returned to the incubator to recover to the appropriate time 

point before harvesting/fixation with 4% paraformaldehyde.  

 

Imaging of mitochondria (mitochondria and mitochondrial membrane potential) 

 

For neurons a plate-based assay was employed. Mitochondria in live neurons were labeled using 

Mitotracker green at 100 nM and TMRM at 10nM. Hoescht was applied [1:15000] for 5 minutes 

to visualize nuclei. Autofocus functionality was employed to image a large number of fields 

across multiple wells in a black-walled 96 well plate using an InCell Analyzer 2000 automated 

microscope. Images were analyzed using software to delineate the borders of individual cells and 

quantify the fluorescent intensities in separate channels. Cells were imaged in phenol-red free 

HEPES containing media containing N2&B27 supplements. 

 

Neurosphere growth assay 

 

40 single neurospheres (2x10 control, 2x10 A–T) were individually seeded in suspension into 

wells of a 96-welled plate in N2B27 medium. Neurospheres were photographed every other day 

using an OlympusIX51 microscope for two weeks. Images were compressed to 8-bit files and 

appropriate thresholds were set to define the borders of each individual neurosphere before 

applying an area measurement algorithm using ImageJ. Sample identity was blinded to analyser. 

Neurite extension assay 

 

Neurospheres were seeded onto Matrigel (BD) coated tissue culture plastic dishes and allowed to 

attach for several hours. Time-lapse microscopy was employed over 17 hours to visualize the 

migration of neurons from the border of the spheres and extension of projections was quantified 

manually using ImageJ. Sample identity was blinded to analyser. 
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Calcium imaging (FLIPR) in neuronal cultures 

 

Calcium imaging was performed using the FLIPR Tetra High Throughput Cellular Screening 

System, essentially as described by Vetter and Lewis [207]. Neurons were seeded in a black 

walled 386 well plate, loaded with a calcium-sensitive fluorescent dye (5M Fluo-4-AM) in 

physiological salt solution (PSS; composition 140 mM NaCl, 11.5 mM glucose, 5.9 mM KCl, 

1.4 mM MgCl2, 1.2 mM NaH2PO4, 5 mM NaHCO3, 1.8 mM CaCl2, 10 mM HEPES) 

containing in addition 0.3% BSA for 30 minutes at 37 °C. Neurons were depolarized with 

microinjection of KCl to a final concentration of 50 mM. A FLIPR Tetra (Molecular Devices) 

fluorescent plate reader was used to measure response to activation with using a cooled CCD 

camera with excitation at 470 – 495nM and emission at 515–575nM. Camera gain and intensity 

were adjusted for each plate to yield a minimum of 1000 arbitrary fluorescence units (AFU) 

baseline fluorescence. Prior to addition of KCl, 10 baseline fluorescence readings were taken, 

followed by fluorescent readings every second for 300 seconds. Delta F/F was calculated for 

each time point as (fluorescence at time t – avg. baseline fluorescence)/(avg. baseline 

fluorescence) to give a normalized measure of fluorescence. Negative control consisted of 

neurons incubated with PSS buffer only. For the third FLIPR experiment, after depolarization a 

subsequent microinjection of Inomycin was performed to lyse cells and measure resulting 

fluorescence to normalize samples for cell numbers. 

 

Statistical analysis was performed on calcium transients data through application of a MATLAB 

algorithim designed to extract parameters from individual transients including max peak, slope 

of the curve and area underneath the curve. To exclude outliers from interfering with statistical 

analysis a threshold approach was adopted to identify and exclude traces from neurons that did 

not ‘fire’ in a given condition. This was also retained and recorded as a quantitave output. 

Images below depict four typical traces showing fluorescent signals from individual wells of 

neurons that (A) did not illicit a response to stimulus, (B) illicited some response but not 

sufficient to meet threshold critera and (C & D), illicited responses that met criteria and were 

used for subsequent downstream feature extraction and statistical analysis.   Student’s t-tests 

were applied to the data (with or without Welch’s correction, based on patterns of variance – a 
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boxed p-value represents tests with Welch’s correction). One way ANOVAs with multiple 

comparison post-tests were utilized where applicable. 

 

 

Amaxa nucleofection of neurons with gCaMP5 and ATMmCherry constructs 

 

Briefly, Amaxa AD1 buffer was equilibrated to room temperature containing 5 µg gCaMP5 and 

or ATM-mCherry plasmids (a kind gift from Dr Sergei Kozlov) per reaction. Plasmids were 

delivered to Matrigel coated 24 well plates (Nunc) containing neurons at approximately 70-80% 

confluency using the Amaxa Nucleofector 4D EH215 electroporation program. Fresh buffer was 

applied and cells were allowed to recover at 37°C in an incubator. 
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Single cell calcium imaging using gCaMP5 

 

Single cell calcium imaging was performed on neurons transfected with the real-time fluorescent 

calcium reporter gCaMP5. Cells were imaged in phenol-red free HEPES containing media with 

N2&B27 supplements. Neurons were selected on the basis of their morphology (multiple 

lengthy dendrites), which were also positive for gCaMP5 and imaged for 30 seconds of baseline 

fluorescence before the application of media to a final concentration of 50 mM KCl to induce 

depolarization. One image per second was taken. ImageJ was used to perform background 

fluorescent subtraction, application of Gaussian blur and define a region of interest before 

applying a stack-measuring algorithm to quantify change in fluorescence. Samples were blinded 

to the analyzer. 

 

Patch clamping of iPSC derived neurons 

 

Neurospheres were grown in N2B27 Neurobasal medium and were seeded on glass coverslips 

coated in Matrigel for several days until neurons migrated from the borders of the sphere. For 

electrophysiological recordings neurons were perfused with artificial cerebrospinal fluid 

containing 119 mM NaCl, 2.5 mM KCl, 1.3 mM MgCl2, 2.5 mM CaCl2, 1 mM Na2H2PO4, 26.2 

mM NaHCO3, and 11 mM glucose (equilibrated with 95% O2, 5% CO2). Recording pipettes 

(3¬5 M‡) fabricated from borosilicate glass were filled with a solution 135 mM KMeSO4, 8 mM 

NaCl, 10 mM HEPES, 2 mM Mg2ATP, 0.3 mM Na3GTP, 0.1 mM spermine, 7 mM 

phosphocreatine, and 0.3 mM EGTA. Visualization of the neurons was achieved using an 

upright microscope (BX50WI; Olympus) with 400x magnification. Whole-cell recordings were 

made using MultiClamp 700A (Molecular Devices), filtered at 4 kHz, and digitized at 8 kHz 

using an ITC-16 board (Instru-Tech). Analysis was performed using Axograph X. Individual 

neurons were voltage clamped at -70 mV and showed classical signs of voltage-gated sodium 

and potassium channel activity after depolarization (voltage steps from -80 mV to +40 mV). To 

verify that the inward and outward currents were driven by sodium and potassium, respectively, 

the inward currents were blocked by 1 mM Tetrodotoxin and the outward currents were blocked 

by replacing potassium with cesium in the pipette solution. 
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Quantification of γH2AX foci 

 

Neurons were treated in chamber slides with 50 mM KCl in N2B27 neurobasal media either 

singly (1x5 min) or triply (3x 5minutes with 5 minutes in between). Singly depolarized cells 

were fixed at two, six, twelve and twenty-four hours post depolarization including a mock 

depolarized control. Cells receiving repeated KCl stimuli were fixed at two and twenty-four 

hours post depolarization.  Cells were washed once gently, so as not to disturb fragile cell 

extensions, in PBS and fixed in 4% paraformaldehyde for 15 minutes at room temperature. 

Samples were permeabilized in 0.1% TritonX100 at room temperature for 10 minutes, before 

blocking with 1% BSA and incubation with γH2AX antibody (Millipore) (1:1000) overnight at 

4°C. Following washing with PBS (3 times 5 min at room temperature) secondary antibody goat 

anti-mouse IgG1, (1:1000) was used to reveal reactivity.  Slides were mounted in   Prolong Gold 

Antifade reagent with DAPI. This preparation minus the addition of primary antibody was used 

to confirm specificity of staining.  

 

Nuclei were chosen at random and foci were photographed using an OlympusBX61 fluorescent 

microscope. Images were blinded and subjected to analysis using the software TRI2 to quantify 

the mean number of foci per cell. Briefly, images were modified using the ‘smart-sharpen’ filter 

in Photoshop followed by conversion to an 8-bit format where TRI2 software applied a Hough 

transform based algorithm (CHARM). This approach was confirmed using a matlab algorithim 

to quantifty foci based on uniform parameters. 

 

Results 

 

Neuronal differentiation and validation 

 

We differentiated A–T and control iPSCs into neuronal progenitors using a modified version of 

the dual SMAD inhibition protocol previously described [208] (Figure 4.1A depicts in schematic 

form the protocol used). Through application of SB431542 (TGF-β inhibitor) and Dorsomorphin 

(BMP inhibitor) SMAD related control of pluripotency is disrupted. The result is interruption of 

normal pluripotentcy mechanisms and subsequent restriction of lineage commitment generating 
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a suspension of highly pure neuronal progenitors which grow as neurospheres. These spheres 

can be plated down upon which migration of cells with a neuronal morphology and reactivity for 

markers β-III-TUBULIN and MAP-2 are observed (Figure 4.1A). This protocol was optimized 

within our lab by James Briggs. PAX6 could be detected in paraffin embedded serially sectioned 

neurosphere aggregates by day 8 (Figure 4.1B). It should be noted that images show pelleted 

neurosphere aggregates from early during the induction protocol. As such there are cells present 

that are not yet expressing PAX6. Sample homogeneity is addressed in subsequent figures. 

 

 

Figure 4.1A - Schematic representation of neural induction protocol involving stepwise 

addition of N2B27 neurobasal medium and small molecules SB431542 and 

Dorsomorphin for the first 6 and 12 days respectively. Neurospheres were generated on 

day 6 of induction and plated after 12, giving rise to colonies with neuronal projections 

and morphologies and were β-III-TUBULIN and MAP-2 positive. 
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Figure 4.1B – Early neural progenitor marker PAX6 is detected by day 8 in serially 

sectioned neurosphere aggregates. Scale bars are 10 µm. 

 

Immunostaning for lineage specific transcription factors PAX6, OTX1 & OTX2 after 35 days of 

neuronal induction revealed the central region of these neurospheres (marked in Figure 4.1C) 

were largely reactive for these markers and as such resembled neuronal cells with an anterior 

neuronal phenotype (Figure 4.1C). 
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Figure 4.1C – Neuronal progenitors exhibit widespread expression of OTX1 & OTX2 

(FITC), as well as PAX6 (TRITC). 
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After the initial neural induction, neurospheres can be dissociated and passaged for prolonged 

periods of time resulting in a more pliable population of cells partly comprised of single 

neuronal cells and also smaller spheres still containing progenitor cells. qPCR analysis (Figure 

4.2A) revealed robust induction of core neurogenic genes in differentiated cultures over the 

course of the induction protocol. Stark upregulation of DCX, Pax6, Sox9 and Mash1 transcript 

was observed  - all corresponding to the appearance of a neural progenitor progenitor shown to 

appear by day 8 (See figure 4.1B). We also noted increases in Sox1 & Sox2 transcript however 

these were to a lesser magnitude. Large error bars here may be indicative of a spread in the 

timing and magnitude of appearance of this transcript, suggestive of inter-line variation with 

respect to neural induction kinetics.  
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Figure 4.2A – qPCR analysis of neural induction at day 0 (undifferentiated iPS cells), 

day 6 (intermediate neural progenitors), day 13 (neurospheres) and day 33 (committed 

neurons). 
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To ensure inter-line comparisons and subsequent downstream analyses were viable we 

examined the population composition of our neuronal inductions. The two major species 

of cells present (PAX6 expressing progenitors and β-III-TUBULIN positive immature 

neurons) were quantified and no differentiation bias was apparent between controls and 

A–T neurons as measured by an unpaired t-test (Figure 4.2B). Quantitative assessment of 

the proportions of cells present totaled ~90-100% (65-85% PAX6 + neural progenitors 

and 15-20% B-III-TUBULIN + neurons). After 60 days in culture we analyzed the 

expression of a combination of cell surface markers shown to identify neuronal 

populations [209]. We could detect CD15, CD24, CD44, CD184 by flow cytometry but 

not CD271. This expression profile is consistent with a mixed population of glia, neurons 

and neural stem cells (Figure 4.2C). Figure 4.2D shows phase contrast images before 

dissociation for FACs. Cells with overtly neuronal, glial or progenitor morphologies 

were easily distinguishable by light microscopy. 
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Figure 4.2B – PAX6 and β-III-TUBULIN immunoreactivity was quantified in A–T and 

control neurons showing comparably represented populations of progenitors/committed 

neurons by an unpaired t-test. Scale bar is 20 µm. 
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Figure 4.2C – Flow cytometry reveals reactivity with markers for CD15, CD24, CD44  

and CD184 but negligible reactivity with an antibody to CD271 indicating surface 

profiles consistent with a mixed population of glia, neurons and neural stem cells. 
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Figure 4.2D – Phase contrast images of neuronal cultures at day 60. Scale bars are 20 

µm. 

Neurosphere growth assay 

 

After 12 days of neural induction, proliferation of neurospheres was profiled over the course of 

two weeks by monitoring of growth size in culture. No significant difference was observed 

between two control and two A–T (AT30 and AT34) cell lines (n=10 for each cell line). A Two-

way ANOVA was applied with a Bonferonni post-test (P > 0.05). These data suggest that there 

is no detectable difference in neural commitment or neural stem cell expansion rate between 

control and A–T iPSC derived neurons. 
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Figure 4.3A – Neurosphere growth was profiled over 2 weeks. Control lines C11 & FB 

(Top row far left) showed a commensurate pattern of growth and expansion in 

comparison to A–T neurospheres AT34 & AT30 (lower row far left). Error bars indicate 

SEM. When pooled there was no significant difference in growth rate between A–T and 

controls (Two-way ANOVA with Bonferoni correction) (far right show graphs with 

SEM). Scale bar in lower left panel is 20 µm. 

 

Neurite extension assay 

 

Similarly when we observed neurite extension from neurons by time-lapse microscopy we 

observed no statistically significant difference between A–T and control derived neurons 

(unpaired t-test). Administration of an antioxidant 5-carboxy-1.1.3.3-tetramethylisoindolin-2-

yloxyl (CTMIO), previously shown to increase complex dendritogensis of ATM deficient 

murine Purkinje neurons [101], resulted in a reduction in neurite extension rate in both A–T and 

control derived neurons presumably due to the toxicity of the solvent. 
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Figure 4.3B – Neurite extension was measured over 17 hours using time-lapse 

microscopy in A–T and control iPS cell derived neurons with and without antioxidant 

CTMIO [10 µM]. Scale bar is 20 µm. An unpaired t-test shows no significant difference 

in mean neurite extension length between A–T and controls. Error bars show SEM. 

 

Gliogenesis 

 

We noticed after 60 days the onset of glia in our neuronal induction preparations (Figure 4.3C). 

We manually quantified the proportion of β-III-TUBULIN positive neurons to GFAP positive 

glial cells from two controls and two A–T neuronal cell lines (Figure 4.3D). 
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Figure 4.3C – Neurons (FITC channel marked by β -III-TUBULIN staining) and Glia 

(Deep red channel marked by GFAP marker) arose after 60 days of neural induction 

protocol. Scale bar is 25 µm. 

 

 

Figure 4.3D – The proportion of glial cells present was manually quantified in control 

and A–T cultures. Scale bar is 10 µm. 

 

We observed a statistically significant reduction in glial cells arising from A–T cultures. To 

confirm this phenomenon, we performed a second neural induction and used a more sensitive 

FACS based approach (Figure 4.3E). FACS plots are shown in Figure 4.3F. 



137 

 

 

 

Figure 4.3E – Population composition (neurons and glia) was examined by FACS and 

revealed no statistically significant difference between A–T and control populations. 
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Figure 4.3F – FACS plots show FSC/SSC and gating of neurons & glia to exclude 

debris (far left columns), gating to exclude autofluorescence in FL-1 (488 nm) (second 

column) and FL-4 (633 nm) (fourth column). Third column shows double-gated 

population of interest positive for β-III-TUBULIN. Fifth and final column shows 

reactivity with GFAP antibody using a similar gating strategy. 

 

In a second neural induction and by using the more sensitive methodology of FACS we could 

not reproduce evidence for differences in the proportion of glia that were present between 

control and A–T neural populations (Figure 4.3E lower panel shows raw data and inlay in upper 

right shows pooled data with unpaired t-test results). Staining intensity for GFAP appeared 

SSC/FSC  | BCKGRND (488)   |  B-III-TUB | BCKGRND (633)  | GFAP 
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consistently more intense in both A–T lines in comparison to controls, possibly suggestive of 

Glial activiation. 

Neuronal activity 

 

To validate our neuronal differentiation protocol was producing neurons that were 

physiologically relevant we tested several parameters to assay for a stimulus-based response. 

When stimulus was applied (KCl 50 mM depolarization), these cultured neurons displayed 

electrophysiological activity in the form of calcium transients, as shown by Ca2+ imaging 

performed using the FLIPR (Fluorometric imaging plate reader) Tetra High Throughput Cellular 

Screening System (Figure 4.4 – Panel A). Additionally we isolated RNA from stimulated 

neurons and examined transcription of Immediate early genes (IEGs) which are known to be 

transcribed after neuronal activation [210]. We observed between 1.5 to 5-fold change in gene 

expression four hours after depolarization (Figure 4.4 - Panel B). Using an unpaired t-test (with 

Welch’s correction) we observed no statistically significant difference in transcription of any 

IEGs between control and A–T derived neurons. As an added measure we performed whole cell 

recordings by patch clamping neurons (Figure 4.4 - Panel C). To verify that the inward and 

outward currents were driven by sodium, and respectively potassium, the inward currents were 

blocked by 1 mM Tetrodotoxin and the outward currents were blocked by replacing potassium 

with cesium in the pipette solution. Immunostaining with an antibody to SYNAPSIN (a protein 

involved with neurotransmitter release and an indirect marker of functional neurons, revealed 

robust expression of this marker (Figure 4.4D). 
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Figure 4.4 – Neuronal activity in neurons (A) Depolarization induced calcium transients in 

iPSCs derived neuronal cultures following in vitro maturation. A representative experiment 

is shown. Buffer only control is shown in dark grey. (B) Four hours post depolarization IEG 

activity is measured by qPCR for Arc, BDNF Ex IV, CFos, EGR1, Neurit and Plat2.An 

unpaired t-test (with Welch’s correction) revealed no significant differences between A–T 

and controls. (C) Whole cell recording by patch clamping of iPS cell derived neurons display 

activity of voltage-gated sodium and potassium channel activity after depolarization (voltage 

steps from -80mV to +40mV). (D) Immunoreactivity with antibody to Synapsin was 

observed. Scale bar is 5 µm. 



141 

 

 

Having established that our protocol generated SYNAPSIN positive neurons that display both 

induction of IEGs aswell as Na/K transients following patch clamping, we next interrogated KCl 

induced neuronal calcium trafficking. Routine validation of neurons across separate neural 

differentiation experiments was done by assaying for presence of neuronal activity as shown by 

calcium trafficking after application of stimulus. Through loading of neurons with a calcium 

sensitive dye (Fluo-4-AM), equivalent numbers of neuronal cells were seeded into 384 well 

plates and imaged using a high throughput fluorescent plate reader setup (FLIPR Tetra) that was 

used to observe intracellular calcium transient kinetics after stimulation of neurons by 

microinjection of depolarizing agent. We subjected calcium transients to feature extraction (max 

peak/amplitude, area under the curve and slope) and statistical analysis, highlighting differences 

in kinetics between individual cell lines/clones. We initially tested a variety of conditions in two 

validated neuronal cell lines (one control C32, and one A–T AT34) to elucidate the mechanisms 

driving this, which are outlined below (Figure 4.5A). 

 

Neurons derived from control iPS (C32) exhibited classic entry and release of calcium after 

microinjection of 50 mM KCl. After measuring 10 seconds of baseline fluorescence we observed 

a sharp rise (2.5 fold) in fluorescence indicating calcium influx into the cell via voltage-gated ion 

channels (Figure 4.5A; panels C&D). In contrast we observed markedly less robust entry of 

calcium into the A–T cells after depolarization with an approximate 1.25 fold increase in 

fluorescent intensity (Figure 4.5A; panels C&D). Comparison of max amplitude between A-T 

and control neurons revealed a statistically significant difference (p = <0.0001). Along with this 

we noticed a change in the shape of the curve, in which calcium egress seemed constant and 

protracted rather than a steep slope as seen in controls (Figure 4.5A, panels C&D). To explore 

this we examined the area under the curve and slope of the curve between control and A-T 

neurons. Differences in both parameters were statistically significant (p = 0.0002 and p = 

<0.0001 respectively). 16 replicate wells of each cell line were imaged simultaneously and data 

pooled. Error bars showing SEM are shown on the right-hand panels. Statistical data was taken 

only from replicate wells that met threshold criteria considered as ‘firing’ (criteria shown in 
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materials and methods)  – comparable firing rates were generated (87.5 & 81.25% for control 

and A-T respectively).  

 

To test whether ATM may be having an acute effect on calcium trafficking within the cell, we 

incubated both control and A–T neurons with ATM inhibitor Ku55993 at a concentration of 10 

µM for 24 hours. Incubation with Ku55993 in controls (Figure 4.5A, panels E&F) resulted in not 

only a reduction in amplitude but modification of the shape of the curve indicating that this 

treatment was having some effect on calcium trafficking within the cells. It should be noted that 

we also observed this effect in A–T neurons (Figure 4.5A, panels G&H) that was pronounced. 

Interestingly, when control neurons were incubated for an identical period of time with a DMSO 

only control at the same concentration to that used in application of inhibitor there was no 

difference in calcium efflux (Figure 4.5A, panels I&J). We did however observe a difference 

when A–T neurons were imaged in the presence of DMSO only control (Figure 4.5A, panels 

K&L) in the form again of a change in amplitude and slope of the curve. Statistical analyses 

support these findings by showing that a significant change in amplitude of the curve was 

present in A-T neurons (p<0.0001), but not controls (p = 0.3070). Taken together these data 

suggest that treatment with ATM inhibitor is having some effect on calcium trafficking but it 

becomes difficult to define the precise degree amongst the background of having a population of 

cells (A–T) seemingly more sensitive to treatment with the inhibitor vehicle. It is also possible 

that this inhibitor is having an off-target effect on a target other than ATM that is influencing 

calcium trafficking or generally impacting on cell viability. 

 

We previously noted the consistent down-regulation of mRNA coding for calcium channel 

subunits in A–T iPSC microarray data (Table 3.7B) and speculated that if this was conserved in 

neurons, this may affect calcium uptake and release. We used two calcium channel inhibitors 

(Nifedipine, an L-type calcium channel blocker and CVID, an N-type calcium channel blocker) 

to examine whether we could reproduce the difference in calcium activity observed between A–

T neurons and controls. Application of 10 µM Nifedipine almost completely ameliorated 

calcium efflux in control cells, drastically changing the amplitude (p = <0.0001), area under the 

curve (p = <0.0001) and slope of the curve (p = <0.0001) (Figure 4.5A, panels M&N). We 
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noticed a similar trend in A–T neurons (Figure 4.5A, panels O&P) (p = <0.0001, p = 0.0072 and 

p = 0.0055 respectively). Interestingly, application of CVID at 10 µM resulted in almost no 

change to the amplitude (p = 0.3685), area under the curve (p = 0.9758) or slope of the curve (p 

= 0.1791) in control neurons (Figure 4.5A, panels Q&R) but a reduction in the amplitude (p = 

<0.0001) of the curve in A–T neurons (Figure 4.5A, panels S&T). Additionally a change could 

be observed in the slope of the curve however this failed to meet statistical significance (p = 

0.1202).  All experimental conditions were performed to include four to sixteen replicates that 

were pooled. SEM is presented on the right hand side panels in each case. 



144 

 

 



145 

 

 



146 

 

 

 

Figure 4.5A – Calcium dynamics after depolarization. Traces are presented on the left 

hand side without error bars for ease of viewing. In all cases panels to the right display 

identical trace graphs with error bars showing SEM. Graphs depicting statistical analyses 

are present to the right of each trace showing max peak (top), area under the curve 

(middle) and slope of the curve (bottom). P-values were generated by performing 

unpaired t-test with or without Welch’s correction depending on distribution of variance. 

(A & B) Experimental design and overview (C&D) Control (C11 solid line) and A–T 

(AT34 dotted line) neurons loaded with Fluo-4-AM and depolarized with 50 mM KCl. 

A–T neurons (dotted line) show reduced amplitude and latency in rate of calcium release 

after depolarization.16 replicate wells of each cell line were imaged simultaneously and 

data pooled. Error bars are shown on the right-hand panels. Control and A–T neurons 

incubated with ATM inhibitor Ku55993 at a concentration of 10 µM for 24 hours 

(E,F,G&H). DMSO only control at the same concentration to that used in application of 
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inhibitor there was no difference in calcium efflux (panels I,J,K&L). Control and A–T 

neurons treated with 10 µM. Nifedipine (M,N, panelsO&P). Control and A–T neurons 

treated with CVID at 10  µM (panels Q,R,S&T). All experimental conditions were 

performed to include four replicates which were pooled. SEM is presented on the right 

hand side traces in each case. Dotted lines mark treated sample for comparison. 

 

To investigate whether this phenomena was reproducible we performed this experiment a second 

time on an independent set of differentiated control and A–T neurons (Figure 4.5B). To test this 

was a legitimate effect not arising from an accumulated karyotypic artefact we included a second 

control (C11) and A–T (AT30) line. Feature extraction from calcium transients through a 

MATLAB algorithim showed comparable rates of firing in controls (100% & 83.66%) and A-T 

neurons (100% & 57.14%). A student’s t-test confirmed the absence of a statistically significant 

difference (p= 0.6264, Figure 4.5B, panel ZL). We again observed an effect whereby calcium 

egress in A-T neurons appeared latent and protracted in comparison to those of controls (Figure 

4.5B, panels B&C) however this was not as apparent as the initial experiment. For simplification 

of viewing, these results were pooled by genotype to present the remaining analysis. Statistical 

analyses were performed on unpooled (by genotype) data that met the threshold considered to 

constitute a successful ‘firing’ event (Student’s t-test to compare firing rate and One way 

ANOVA with multiple comparisons to examine peak, area and slope parameters (Figure 4.5B, 

panels ZL-ZO).  Statistically significant differences in peak height were apparent between 

samples, however this extended beyond the control vs A-T genotype comparison (ie. significant 

differences could be observed between control lines). This was also observed for both the area 

under and slope of the curve. We consider this to constitute evidence that factors outside of 

ATM status contribute the differences observed in these data and as a result additional 

controls/modifications to this technique may be necessary. 

 

Control (Figure 4.5B, panels F&G) and A–T (Figure 4.5B, panels H&I) treatments incubated 

with DMSO only showed minimal changes. To test whether the previous observations with 

ATM inhibitor Ku55993 were specific and reproducible we incubated cells again with Ku55993 

for 24 hours at two different concentrations, 1 µM and 10 µM. Surprisingly we saw little effect 
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at either condition in controls (Figure 4.5B panels J&K/N&O) or A–T neurons (Figure 4.5B 

panels L&M/P&Q). We observed consistent effects to the previous experiment when N-type 

calcium channel blocker Nifedipine was applied at 10 µM (Figure 4.5B panels R&S/T&U 

respectively). In contrast to the previous experiment we witnessed consistent shifts in the shape 

of the curves in both control (Figure 4.5B panels V&W) and A–T (Figure 4.5B panels X&Y) 

after application of CVID at 10 µM. 

 

We explored the notion that the mitochondria may be contributing to the dynamics of calcium 

efflux by attempting to disrupt mitochondria via the electron transport chain using CCCP.  Acute 

(two hour) treatment of control (Figure 4.5B panels Z&ZA) neurons resulted in a slight shift in 

the slope of the curve indicating the possibility that mitochondrial calcium stores might be 

contributing to the calcium transients. Interestingly we did not observe this shift in A–T neurons 

(Figure 4.5B, panels ZB&ZC). We did however observe a consistent trend for an increase of 

calcium entry into A–T neurons when CCCP was applied for sustained periods of time (15 

hours) at 10 µM (Figure 4.5B, panels ZF&ZG) and 1 µM. 11 and 13 replicate wells were 

analyzed respectively for each experimental condition. 
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Figure 4.5B – Calcium dynamics after depolarization. In all cases (except panel A & ZL-

ZO) panels to the right display identical trace graphs with error bars showing SEM. 

(Figure 4.5B panel A) Experimental design and overview (Figure 4.5B, panels B&C). 

Control neurons (C11 & C32 marked by solid lines) and A–T (AT34 & AT30 marked by 

dotted lines) neurons loaded with Fluo-4-AM and depolarized with 50 mM KCl. 11 and 

13 replicate wells were analyzed respectively for each experimental condition to 

establish baseline depolarization kinetics. (Figure 4.5B, panels D&E) Data pooled per 

genotype. A–T neurons (dotted line) show consistent latency in rate of calcium release 

after depolarization. Control (Figure 4.5B, panels F&G) and A–T (Figure 4.5B, panels 

H&I) treatments incubated with DMSO only. Control (Figure 4.5B, panels J&K/N&O) 

or A–T neurons (Figure 4.5B, panels L&M/P&Q) treated with 1 µM or 10 µM Ku55993 

respectively. Nifedipine was applied at 10 µM to controls and A–T neurons (Figure 4.5B, 

panels R&S/T&U respectively). Control (Figure 4.5B, panels V&W) and A–T (Figure 

4.5B, panels X&Y) after application of CVID at 10 µM. Acute (two hour) treatment with 

decoupler of mitochondrial electron transport chain CCCP at 10 µM of control (Figure 
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4.5B, panels Z&ZA) and A–T (Figure 4.5B, panels ZB&ZC) neurons. CCCP was applied 

for 15 hours at 10 µM in control (Figure 4.5B panels ZD&ZE) and A–T (Figure 4.5B 

panels ZF&ZG) and also at 1 µM (Figure 4.5B panels ZH&ZI/ZJ&ZK). 11 and 13 

replicate wells were analyzed respectively for each experimental condition. Dotted lines 

mark treated sample for comparison. (ZL) Statistical analysis of firing rate between 

control and A-T neurons shows no statistically significant difference (Student’s t-test). 

(ZM, ZN & ZO) Statistical analyses (One-way ANOVA with multiple comparisons) of 

slope peak, area under the curve and slope of the curve, respectively. P-values for 

significant interactions only are shown (with exception of t-test in panel ZL).  

 

In an attempt to ascertain whether there was a legitamate effect caused by ATM deficiency we 

performed a third neural induction using two existing previously validated lines, control (C32) 

and A–T (AT34) in addition to two new episomally derived iPS cells (Control – FB and A–T 

AT30) (Figure 4.5C). To confirm that the change in calcium transient kinetics we observed was 

not due to fluctuation in plating density or survival rate we used Inomycin as a loading control to 

normalize traces for cell number. Additionally, we included a vastly increased number of 

technical replicates (>90).  Comparable firing rates were observed between two control lines 

(95.75 & 96.875%) and two A-T lines (90.625 & 85.4%), respectively. A student’s t-test 

revealed no significant difference in this regard (Figure 4.5C, panel C). We again observed 

AT34 (Figure 4.5C, panels A & B) (light dotted line) to show a characteristically slow egress of 

calcium after depolarization. We did not witness this phenomenon in AT30 (heavily dotted line; 

non-virally generated), despite previously having seen this in AT30 (virally generated line from 

same patient– Figure 4.5B, panels B &C), which resembled transients from control neurons. 

Statistical analyses supported the notion that there were differences between control and A-T 

lines – a one-way ANOVA shows statiscally significant differences between amplitude in 

control and A-T lines. (Figure 4.5C, panel D) There was however a significant difference (albeit 

to a lesser degree) between the two control lines (C2 & C3). Similarly, there were significant 

differences in both the area under the curve (Figure 4.5C panel E) and slope of the curve (Figure 

4.5C panel F). Again these differences were not limited to A-T vs control comparisons with 
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differences present between C2 & C3 indicating that the effect observed might have been due to 

intrinsic variabilities of the cell lines, rather than ATM deficiency.  
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Figure 4.5C – (A) Normalized traces after correction for cell number as marked by 

Inomycin fluorescence. Top panel shows data without error bars for ease of viewing. (B) 

Lower panel shows data with SEM. (C) Statistical analyses on firing rate (Student’s t-test) 

and one way ANOVAs pertaining to peak height (D), area under the curve (E) and slope of 

the curve (F). 
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This data shows evidence for calcium handling errors in certain A–T neuronal cell lines but not 

others. Statistical analysis supports this assertion to a degree, but also highlights the distinct 

possibility that factors outside of ATM deficiency may contribute towards calcium trafficking 

ability. We believe the strongest possibility is that differences in population composition beyond 

our limit of detection (ie particular sub-sets of neuronal or glial cell types) may have contributed 

to this effect and that the cumulative signal of a population of cells may not be the most suitable 

method for interrogating cellular handling deficits, which may only manifest in a small subset of 

neuronal cells. To ascertain whether this phenomenon was manifested through differences at the 

cellular level of calcium traficking or whether it represented a shift in the population makeup of 

excitable neurons, we approached the problem by imaging of single neuronal cells transiently 

transfected with a genetically encoded real-time calcium reporter, gCaMP5.  

 

Cells transfected with gCaMP5 were visualized in phenol-red free media on an Olympus 

inverted fluorescent time-lapse microscope (Figures 4.5D&E). A field of view containing at least 

one gCaMP5 positive neuron was located and 30 seconds of baseline fluorescence recorded 

before application of KCl to a final concentration of 50 mM.  

 

After LUT (look-up-table) inversion, subtraction of background fluorescence, application of a 

gaussian blur filter, regions of interest could be defined and fluorescence from individually 

imaged time points could be converted to numerical data corresponding to a fluorescent value 

representative of calcium intensity.  
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Figure 4.5D - Fluorescent time-lapse imaging of gCaMP5 positive control neurons. 
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Figure 4.5E - Fluorescent time-lapse imaging of gCaMP5 positive A-T neurons. 

 

We were able to isolate consistent calcium transients by analyzing time-lapse imagestacks as 

outlined above. Analysis of images taken of depolarized control neurons revealed classical 

uptake and release of calcium. Images in figures depict before/after treatment with KCl in FITC 

channels and also false-colour heatmap. In contrast we noticed A–T neurons (AT34) to show a 

higher incidence of aberrant calcium flux (5 out of 8 A–T neurons showing traces vastly 

different patterns from classical uptake and release dynamics). When pooled, these traces 

revealed a very minor shift in the curve, possibly consistent with a calcium handling abnormality 

(Figure 4.5F). Statistical analyses (Figure 4.5F, panels A-C) of extracted data showed 

comparable rates of firing (75% & 75% respectively) and also no significant differences in 
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amplitude (p = 0.6154) or slope of the curve (p = 0.8124). As opposed to the high throughput 

imaging studies in Figures 4.5A, B & C, statistical analyses of calcium transients from gCaMP5 

imaging experiments were limited to feature extraction reporting peak and slope curve metrics. 

We could not fit a model which reliably captured the area under the curve, given the profiles of 

individual neurons showed a spread in activity-types (as opposed to whole-plate pooled signal), 

see individual traces in Figure 4.5E.  
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Figure 4.5F – Pooled data from timelapse gCaMP5 imaging (B) Middle panel shows 

SEM, top panel is without for viewing ease. (C) Firing rate was comparable between A-T 

and control, as was amplitude (D) and slope of curve (E). No significant differences were 

found between control and A-T neurons. 
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We expanded the single cell imaging experiment to include two A–T and two control lines to 

examine whether this effect was reproducible (Figure 4.5G). Neuronal firing rates as determined 

by our data extraction protocol revealed no significant differences (p = 0.6419). Comparison of 

curve peaks displayed no significant difference (p = 0.1124). Similarly the slopes of the curves 

were not significantly different (p = 0.6302), however it was apparent that there were differences 

in calcium efflux post-depolarisation. A statistical test to demonstrate this could not be 

performed. 

 

We observed data consistent with Figures 4.5A,B & C– while we noticed a similar trend towards 

latent calcium flux after depolarization in AT34, this evident but not as apparent in our second 

A–T line (AT30) supporting observations from the final FLIPR experiment. Differences in 

calcium transients did not reach statistical significance on the parameters tested, indicating that 

additional experimental/analysis methods need require development or that a larger number of 

clones might be required to demonstrate whether this phenotype was truly a result of ATM 

deficiency. 
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Figure 4.5G – Data from timelapse fluorescence microscopy of gCaMP5 positive 

neurons (bottom panels shows replicate traces from each cell line with SEM, top panel is 

without for viewing ease). Panels F-H show statistical analyses. 
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Transfection of neurons with ATM-mCherry 

 

We sought to test whether reintroduction of ATM caused modulation of calcium handling by 

first testing for presence of a well known phenotype of ATM deficiency; a defective DNA 

damage response. We were able to transfect neuronal preparations with a mCherry tagged 

version of ATM at low efficiency (see Figure 4.5H main panel for phase contrast/TRITC 

fluorescence merged live image). Interestingly we noted fluorescence emanating from both the 

nucleus alone (bottom right panel) and nucleus/cytoplasm combined (upper panel). 

 

  

Figure 4.5H - Neurons transfected with ATMmCherry after 60 hours. 

 

We irradiated/mock-irradiated control and A–T neurons with 5 Gy ionizing radiation (Figure 

4.6A). After one hour, reactivity with antibodies to ATMpS1981 and SMC1pS957 was observed 

in controls, but not in A–T derived neurons.  
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Figure 4.6A – Control and A–T neurons (AT34) were mock/irradiated with 5 Gy ionizing 

radiation. Immunostaining shows reactivity with ATMpS1981 and SMC1pS957 following 

one hour indicating ATM autoactivation and phosphorylation of DNA damage substrate 

SMC1. Scale bars are 1 µm. 

 

We then mock/irradiated neurons transfected with ATM-mCherry. Following one hour and 

immunostaining with an antibody to ATMpS1981 we observed foci in control neurons that were 

also present in mCherry positive A–T neurons (Figure 4.6B). 
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Figure 4.6B – Introduction of ATM-mCherry restores a functional DNA damage 

response. Top panels show staining for pan-neuronal marker β-III-TUBULIN and 

mCherry positive control and A–T cells. Scale bars are 10 and 1 µm respectively. Lower 

panels show restoration of ATMpS1981 foci in ATM-mCherry expressing cells.  

 

We next sought to ascertain whether delivery of ATM-mCherry had an effect on calcium 

transients after depolarization. We were able to generate a small number of cells doubly 

transfected with both gCaMP5 (FITC channel) and ATM- mCherry (TRITC channel) (Figure 

4.6C). Imaging took place as described above. 

 



167 

 

 

Figure 4.6C – Neurons transfected with gCaMP5 (FITC) and ATM mCherry (TRITC) 

 

Figure 4.6D – gCaMP5/ATM mCherry neurons were depolarized using 50 mM KCl and 

fluorescent intensity monitored. 

 

Despite successful complementation of ATM and restoration of DNA damage response, imaging 

of neurons positive for gCaMP5 and ATM mCherry did not reach efficiency where we could 

compare calcium trafficking kinetics.  
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While we showed a robust and reproducible difference in calcium trafficking kinetics in one A–

T neuronal cell line (multiple experiments by FLIPR and single cell imaging), we could not 

reproduce this change in all other A–T cell lines, suggesting the possibility that this effect may 

have been attributable to a factor other than ATM. It is feasible that this defect arose from a 

karyotypic abnormality, residual transgene reactivation or some other accumulated culture 

artefact. We were not able to definitively prove this defect was due to ATM deficiency using 

ATM inhibitor due to irreproducibility of its action and off-target effects. Although we showed 

restoration of a functional DNA damage response through complementation of A–T neurons 

with ATM-mCherry, this was at too low of an efficiency to be useful for illucidating population-

wide calcium trafficking dynamics and suitable controls could not be derived. It is plausible also 

that a shift in population composition may have given this effect ie. it is possible that the 

presence of sub-populations of responding neurons were differently represented across 

experiments and cell lines. Evidence supporting this includes the fact that differing responses 

were observed with independent treatments with Nifedifine and CVID.  

 

Mitochondria in iPSC derived neurons 

 

Given our iPS cell expression data and the accumulating evidence for the role of ATM in 

mitochondrial homeostasis we explored several parameters of mitochondrial activity in iPS 

derived neuronal cells from A–T and controls. Despite extensively disrupted mitochondrial gene 

expression patterns, we previously noted that iPS cells from A–T fibroblasts displayed 

comparable mitochondrial membrane potential relative to controls (Chaper three – Figure 3.8D). 

We speculated that the shift of metabolic pathways from pluripotency (largely glycolytic) to 

neuronal cells (more reliant on oxidative phosphorylation) would drive the demand for ATP 

generation by oxidative phosporylation upwards and may reveal differences between A–T and 

controls.  

 

Mitotracker green was employed to visualize mitochondrial localization and morphology in live 

neurons, whilst TMRM was used to examine mitochondrial membrane potential (Figure 4.7A).  
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Figure 4.7A – Mitochondria in live neurons. Shown from left to right are brighfield 

images, FITC channel showing mitochondria stained with Mitotracker green, deep red 

channel showing mitochondrial membrane potential via TMRM and finally merged 

channels. 

 

We saw no evidence for aberrant mitochondrial morphology or localization, especially noting 

the distribution of mitochondria throughout the length of the dendrites in both control (top row) 

and A–T (bottom row) (Figure 4.7B).  

 

Figure 4.7B – Mitochondrial localisation in live neurons. FITC channel showing 

mitochondria stained with Mitotracker green are located to proximal ends of neuronal 

dendrites in both control and A–T neurons. 



170 

 

 

To quantify mitochondrial characteristics we employed a high-throughput plate-based assay 

using an InCell Analyzer automated microscope to photograph a large number of replicate wells. 

Mitochondria were labeled using Mitotracker green and TMRM to visualize fluorescent signal 

according to accumulation within the mitochondria relative to membrane potential. Hoechst was 

used to visualize nuclei. InCell analyzer software was used to identify cells based on positive 

staining in the ultraviolet/Hoechst region (Figure 4.7C see upper left panel). Intensity 

segmentation was used in the FITC (Mitotracker green – Figure 4.7C see upper right panel) and 

deep red (TMRM – Figure 4.7C see lower left panel) channels to define the peripheries of the 

cells.  

 

Figure 4.7C – Mitochondria in live neurons identified by InCell analysis software. 

Shown are nuclei stained by Hoechst (upper left), FITC channel showing mitochondria 

stained with Mitotracker green (upper right), deep red channel showing mitochondrial 

membrane potential via TMRM intensity (lower left) and finally merged channels (lower 

right). Red borders indicate the peripheries of single objects identified by InCell 

Analyzer automated analysis software. 

 

Fluorescent intensity in each channel was ascribed a numerical value by InCell analysis 

software. 25 randomly assigned fields of view were automatically photographed for each 
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channel (Hoechst/FITC/Deep red/Brightfield) from each well of a 96 well plate. Six technical 

replicate wells were imaged from each cell line (two control - C11&C32 and two A–T - 

AT34C11 &AT30C32), making for a total of 150 merged channel images each consisting of 

between zero and ten neurons. Three technical replicates for each cell line were imaged in the 

presence of electron transport chain uncoupler CCCP. An unpaired t-test showed no significant 

differences in intensity from Mitotracker staining between A–T and controls (Figure 4.7D top 

row, right panel). We did however detect significant differences in mitochondrial membrane 

potential between control and A–T lines (Figure 4.7D bottom row, right panel). We observed 

consistent but small decreases in mitochondrial membrane potential in the presence of CCCP, 

possibly due to the polarized nature of the neurons. Interestingly, these differences were even 

less apparent in both A–T lines, suggesting a possible defect of the electron transport chain 

mechanism. 
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Figure 4.7D – Top left panel shows raw readout for mitotracker values. Top right shows 

normalized numbers for mitotracker green fluorescence. Lower left panel shows raw 

values for TMRM/mitochondrial membrane potential values. Lower right shows 

normalized values. Error bars show SEM. 

 

Given the evidence for altered calcium handling and mitochondrial aberrations, we sought to 

ascertain whether A–T neurons might exhibit elevated levels of excitotoxic cell death in 

response to depolarization with increasing concentrations of KCl after 24 hours. We seeded 

equivalent numbers of control (C11&C32) and A–T (AT34&AT30) derived neurons into wells 

of a 384 well black-walled plate and treated these with a concentration gradient of KCl (from 0-

100 mM) for 24 hours. Survival was ascertained by quantifying the number of adherent neuronal 

cells after this period (See figure 4.7E) via high-throughput microscopy using the InCell 
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Analyzer as described above. Two control and two A–T lines were used. 25 fields of view were 

imaged for each fluorescent channel from biological triplicates. No difference was apparent 

between control and A–T cells after a Two-way ANOVA statistical test was applied. 

 

Figure 4.7E – Toxicity to a concentration gradient of [0-100 mM] KCl was assessed by 

surviving fraction of adherent cells after 24hours. A Two-way ANOVA reveals no 

significant difference between control and mutant neurons. 

 

HDAC4 localisation in neurons 

 

A recent publication details the mislocalization of HDAC4 in Atm deficient neurons [10]; we 

speculated that since HDAC4 is a substrate for mitochondrial caspase, such a mislocalisation of 

HDAC4 in A–T neurons may underlie the reduction in mitochondrial membrane potential 

observed in A–T iPS derived neuronal cultures. We therefore examined the localization of 

HDAC4 within our neuronal population using a MATLAB based algorithm to plot the ratio of 

nuclear to cytoplasmic HDAC4 intensity.  We defined the borders and intensity of neuronal 

cultures fluorescently stained with antibodies to β-III-TUBULIN (pan-neuronal marker - FITC), 

HDAC4 (Cy3/Deep red) and DAPI (DNA/nucleus). β-III-TUBULIN identified and delineated 

the cellular borders of neurons. Using MATLAB we identified single neuronal cells and 
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quantified the ratio of fluorescent intensity emanating from both nucleus alone (borders defined 

by DAPI in the ultraviolet fluorescent channel) and from the entirety of the cell in the deep red 

channel (See Figure 4.8A for segmentation and Figure 4.8B for merged photographs). 

 

 

Figure 4.8A – Upper left panels show output of image segmentation by MATLAB 

algorithim. β-III-TUBULIN (pan-neuronal marker - FITC) shown in upper right panels, 

HDAC4 (Cy3/Deep red) shown in lower left panels and DAPI (DNA/nucleus) shown in 

lower right panels. 

  

 

Figure 4.8B – HDAC4 in neurons. Merged channels from HDAC4 (Cy3/Deep red) and 

β-III-TUBULIN (pan-neuronal marker - FITC). DAPI stains the nucleus. 
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Figure 4.8C – HDAC4 nuclear intensity does not differ significantly between control 

and A–T neurons as indicated by an unpaired t-test. 

 

These values were used to derive a mean nuclear intensity ratio. In contrast to recent findings 

[10] we did not uncover evidence for a statistically significant difference in cellular localization 

of HDAC4 in A–T neurons (Figure 4.8C), suggesting that this effect may be specific to certain 

neuronal sub-types and also suggesting that differences in mitochondrial membrane potential 

were HDAC4 localization independent. This difference in observation may also be due to 

discrepancies between antibody specificity and would require further testing to prove 

definitively. Interestingly we observed evidence of punctuate pockets of HDAC4 localized to the 

dendrites of neurons from both control and A–T (Figure 4.8D), suggesting possible additional 

roles for HDAC4, for example in vesicle trafficking. 
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Figure 4.8D – HDAC4 localization in neuronal dendrites. Merged channels from 

HDAC4 (Cy3/Deep red) and β-III-TUBULIN (pan-neuronal marker - FITC). DAPI 

stains the nucleus. 

 

Activity induced DNA damage 

 

Given the recent finding that physiological brain activity caused DNA double-strand breaks in 

murine neurons [211], and the accepted role for ATM in resolving these breaks [92], we 

examined the response of neurons in culture in response to KCl induced depolarization by 

examining γH2AX foci formation kinetics. 
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Figure 4.9 – (A) γH2AX kinetics after depolarization with [50mM] KCl. Two-way 

ANOVA with Bonferonni post-test reveals a statistically significant difference between 

A–T and control neurons in γH2AX foci numbers six & twelve hours after stimulus. (B) 

Foci diameter size showed no statistically significant differences between control and A–

T neurons at all time points with the exception of the mock-treated control. (C) Foci area 

size showed no statistically significant differences between control and A–T neurons at 

all time points. (D) Representative photos of nuclei (DAPI) and γH2AX foci (FITC). (E) 

Breakdown of depolarization kinetics by number of foci per cell. 

 

A baseline reading of between 2 and 3 foci per cell was detected from both A–T neurons and 

controls. Two hours after stimulation with KCl we detected neither a robust induction of γH2AX 

foci nor a significant difference between A–T and control neurons. Interestingly, six hours after 

stimulus we detected an approximately two-fold induction of γH2AX foci in A–T neurons that 

continued to increase until 12 hours before beginning to decrease to levels approaching baseline. 

This same induction of foci was not apparent in control neurons suggesting that in the absence of 

ATM neuronal activity induced DNA strand break repair is impaired. There were no statistically 

significant differences in foci size by diameter or area (Figure 4.9 B&C) between A–T and 

controls or any of the time points, indicating that foci measuring parameters were adequate 

across all conditions. When broken down to examine foci numbers cell by cell (4.9E), the A–T 

neurons were more predisposed to forming γH2AX foci but commensurate with controls in their 

ability to resolve them by 24 hours. 

 

We performed this experiment a second time (Figure 4.9B) and observed a consistent induction 

of γH2AX foci after treatment with KCl. Again kinetics of foci repair were different between A–

T and controls. We did not detect evidence for induction of DNA strand breaks using treatment 

with neurotransmitter GABA (Figure 4.9B). 
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Figure 4.9F - γH2AX kinetics after depolarization with [50mM] KCl and GABA. Two-

way ANOVA with Bonferonni post-test reveals a statistically significant difference 

between A–T and control neurons in γH2AX foci numbers two hours after KCl stimulus. 

We did not observe statistically significant differences in γH2AX foci after treatment 

with GABA. 
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Discussion 

 

Using a modified version of a published protocol [206], we generated an homogenous 

population of neuronal progenitors that are capable of  differentiating into electrophysiologically 

active committed neurons. This was, to the best of our knowledge and at the time of writing the 

first exemplification of an iPS cell derived neuronal model of A–T. However this has recently 

changed [196, 212]. 

 

We profiled a range of parameters including differentiation propensity, proliferation & neurite 

extension rate, and found no evidence for defects arising from ATM deficiency. This was 

surprising given reports suggesting that ATM is required for neurogenesis [110] 

and also the fact that we had previously observed ATM deficiency to cause dysregulation of 

TGF beta receptor signaling gene networks, which govern differentiation (chapter 3). 

 

These neurons displayed classical signs of voltage-gated sodium and potassium channel activity 

after depolarization and also trafficking of calcium. We noticed a recurrent trend for the aberrant 

and latent egress of calcium after depolarization from certain A–T neuronal cell lines. A 

relatively unexplored notion is that of defective calcium handling contributing towards the 

symptoms in A–T. Of particular interest has been the elucidation of calcium related deficiencies 

underlying a range of neuropathologies with striking similarities to those in A–T. Amongst 

others, these include defective calcium channel currents in Purkinje cells of mutant leaner mice 

[213] and also altered calcium signaling in spinocerebellar ataxia type 2 [214]. Khanna et al. 

showed defective calcium trafficking in lymphoblastoid cells isolated from A–T patients [111]. 

Of additional interest, Chiesa et al. showed that ATM deficient mice exhibited age-dependent 

defects in calcium spike bursts and calcium currents in patch clamping of Purkinje cells slices 

[112].  Interestingly, through stimulation and high-throughput imaging we observed differences 

in calcium trafficking kinetics after depolarization in neurons derived from A–T iPS cells that is 

consistent with a number of these reports. We extended this study to show that this effect was 

reproduced at the single cell level by transfecting neurons with a genetically encoded real-time 
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fluorescent calcium reporter gCaMP5. This calcium handling deficit was not reproducible 

through the administration of ATM inhibitor Ku55933, nor did it extend to all cell lines tested, 

presenting the possibility that it is the complex culmination of genetic background, neuronal 

cell-type specific or artefactual in nature. Interestingly, when we depolarized A–T neurons 

generated from episomally derived iPS cells we did not observe the same trend effect on calcium 

trafficking, suggesting that either generational background affects neuronal activity (possibly by 

reactivation of transgene) or by affecting population dynamics by skewing the presence of cell 

types featuring a calcium handling deficit. A recent finding from Barzili et al. showed reduced 

phase synchronization of cultured mouse A–T cortical neurons using a multi-electrode array 

[215]. Barzilai et al. suggest that astrocytes are compromised in the absence of ATM and as a 

result prevent calcium wave propagation is disturbed, which is consistent with our results 

(Personal communication, Ari Barzilai). It is possible that this defective glial contribution may 

have contributed to the effect we observed when monitoring calcium trafficking dynamics in our 

neuronal cultures. Also of interest, is the fact that ATM and it’s close homolog ATR were 

recently shown to localize to dendrites and dendritic spines where they were shown to undergo 

bicuculline activiation to phosphorylate target substrates [216].  This may explain the observed 

deficits with calcium trafficking and also the inability to reproduce this apparent defect through 

application of an ATM inhibitor (which is known to affect ATR also and may have confounded 

interpretation). Prolonged imaging whereby time until calcium levels reach baseline may be an 

informative set of follow-up experiments to these. 

  

We were able to deliver an mCherry-tagged ATM construct into these neurons and showed that 

it restored a functional DNA damage response. We could not generate sufficient numbers of 

doubly transfected cells to ascertain the effect of ATM restoration on calcium trafficking.  

 

Several publications [5, 113, 116, 194, 195] detail the association of ATM and impaired 

mitochondrial homeostasis in a range of cell types other than neurons, leading us to study 

aspects of mitochondrial health in iPS cell derived neurons. We did not detect evidence for 

mislocalisation of mitochondria within the neural cell bodies or axons of these cells, but noticed 

a consistent and small decrease in the mitochondrial membrane potential. This result was 
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recently confirmed by Lee et al., [196] in a paper which details the generation of iPS cells from 

patients with A–T and their subsequent use for neuronal differentiation and drug screening. 

 

We explored a recent development to emerge from the field that the mislocalization of HDAC4 

is causative to the neurodegenerative phenotype in A–T by examining localization of HDAC4 in 

iPS cell derived neurons, speculating that a similar subset of cells may show aberrant HDAC4 

localization in addition to differences in MMP, however we showed this not to be the case, 

suggesting that HDAC4 localization may be highly cell-type specific. 

 

A very recent paper demonstrates that physiologic brain activity causes DNA double-strand 

breaks in neurons [211]. Given the role of ATM in responding to double-strand breaks we 

examined the possibility that this process may be perturbed in A–T by studying the kinetics of 

γH2AX foci after stimulation of neurons with KCl. Suberbielle et al., showed that exploration of 

novel environments caused double strand breaks in neurons of mice but they did not directly 

induce neuronal activity in cultured cells from these mice. Although this was shown to occur via 

the NMDA (n-methyl-d-aspartate) receptor, little insight into the mechanism driving these 

phenomena was apparent. This raises an interesting question as to the purpose of these induced 

double strand breaks, regarding whether their existence may be due in fact to metabolic damage 

or a more precisely controlled mechanism to regulate transcription in activated neurons. 

 

We observed stark differences in kinetics between control and A–T neurons. While baseline 

levels of γH2AX foci were comparable, drastically more foci were formed following 

depolarization in A–T neurons compared to controls indicating a potential mechanism for 

accumulation of DNA damage in neuronal cells. This may help explain semi-recent findings of 

increased chromosome instability in the A–T brain [106] and excess aneuploidy in an A–T 

mouse model of the adult cerebral cortex. 

 

We have established a model system that allows for investigation into the role of ATM in the 

developing human nervous system. Given the suggestions in the literature and also our previous 

findings we chose to focus on several areas of interest to study – calcium handling, the 



183 

 

mitochondria and neuronal activity. Provided in this chapter is evidence that both the 

mitochondria and the ability of A–T neurons in calcium handling are compromised, adding to 

the theory that A–T is a disease of the mitochondria. We speculate that given the close 

connection between the mitochondria and calcium buffering, that this is not an unrelated defect. 

 

Importantly we have shown that in vitro manipulation of neural stem cells, a technique that will 

be vital for use of stem cells in a clinical setting, is possible by restoring ATM and thus a 

functional DNA damage response. Emerging techniques including use of TALENs and 

CRISPRs to perform high fidelity genome editing (eg. correction of mutations) may be more 

suitable to utilization in this setting [217, 218]. We show a novel mechanism whereby activity-

induced neuronal double-strand breaks occur more readily in A–T derived neurons than in 

controls – a mechanism which could shed important light onto this disorder. 

 

This chapter also serves to illustrate the proof of principle that patient-specific neurons can be 

made from iPS cells and that these neurons offer a robust and reproducible model system to 

investigate the neuropathology in ATM. We showed a proof of concept that this system could be 

used to test drugs (CTMIO and the effect on neurite extension). Although in this case we cannot 

report useful findings in this regard, iPS cells and their derivatives are likely to be highly useful 

as a tool for patient-specific drug screening in the future.  A major challenge remains to establish 

a developmentally relevant model system with which to understand the progression and 

pathogenesis of A–T. Namely, a model that closely recreates the developmental cascade of 

events which unfold during the formation of the cerebellum may be more informative about the 

nature of the defect involved in A–T. Additionally this model would give the most relevant drug-

screening platform possible, with the idea that cells from within the cerebellar cortex, such as 

Purkinje and granule cells could be generated in large numbers and used for in vitro drug testing 

purposes.  
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5.0 A developmentally relevant model system for Neurogenesis in A–T 

Introduction 

 

Degeneration of the cerebellum is largely understood to underlie the ataxic component of A–T, 

however the mechanism by which this occurs is unclear. Circuitry within the cerebellum controls 

motor and sensory learning as well as the vestibular ocular reflex. There is little consensus in the 

field regarding whether A–T is a developmental or progressive disease. The role of ATM within 

the developing cerebellum also remains largely unclear although there are reports of temporal 

ATM upregulation, which are consistent with a specific purpose during development [13]. Given 

the extensive body of evidence that ATM is responsible for orchestrating a wide array of 

developmental, metabolic and protective processes, it seems unlikely that it is the perturbation of 

one particular process that leads to to the devastating defects seen in A–T. We therefore 

hypothesize that defects in a combination of interrelated processes that involve ATM may 

instigate particular pathologies at different stages of development and that the full spectrum of 

neurodegeneration in A–T is the compounded effect of one or more of these processes. To 

deconvolute the role of ATM in developmental, cell autonomous and cell to cell interaction 

based processes in the cerebellum requires a systematic temporal analysis of the development of 

the various cell types of the cerebellum. 

 

Development of the early nervous system is controlled in vivo by strict spatial and temporal 

gradients of morphogen expression. While these are well studied in animals and evolutionarily 

conserved to a degree, large knowledge gaps exist with respect to human development. Through 

understanding of these processes and the networks which govern these developmental events, it 

is possible to recreate them, to a certain extent, in vitro [206, 219]. Early during embryonic 

development, neurogenesis occurs in which the developing embryonic brain begins to organize 

into three distinct compartments or regions, namely the prosencephalon (forebrain), 

mesencephalon (midbrain) and rhombencephalon (hindbrain) (shown in figure 5.1A). A distinct 

border forms between the mid and hindbrain territories – the isthmic organizer, a prominent 

signaling center which is involved with secretion of inductive cues in the form of growth factors 
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involved with patterning. Development of the isthmic organizer is controlled by the region-

specific transcription factors, En1&2, Pax2,5& 8, Otx2 and Gbx2 [220]. The cerebellum arises 

from the caudal-most region (the rhombencephalon) of the neural tube. Individual regions called 

rhombomeres form within the rhombencephalic segment — the cerebellum arises from two 

rhombomeres located in the alar plate of the neural tube [221].  

 

Formation of the cerebellum can be thought of to occur via discrete steps. Firstly the 

characterization of the cerebellar territory at the mid–hindbrain (MHB) boundary (dictated by 

the isthmic organizer) occurs. Following this, formation of two compartments for cell 

proliferation occurs. Firstly, the Purkinje cells and the deep cerebellar nuclei arise from the 

ventricular zone of the metencephlaic alar plate (during mouse embryonic development Purkinje 

cells are born between E11 and E13 as their progenitors exit the cell cycle and start to migrate 

out of the ventricular zone). Secondly, the second germinal zone (also known as the rhombic lip) 

produces granule neurons where they eventually migrate to form the internal granule layer of the 

cerebellar cortex. Subsequent formation of cerebellar circuitry and maturation takes place post-

natally [222]. 

 

Insight from developmental studies shows that enforced expression of Fgf8 is sufficient to 

induce ectopic midbrain and cerebellar tissue formation [223]. Insulin has been shown to have 

caudalizing activity, suppressing expression of forebrain markers Six3, Rx & Otx2 during 

neuronal differentiation [220]. FGF2 has been demonstrated to have rhombomere-1 inducing 

activity in an embryonic neural explant assay [224] and to increase expression of Wnt1 and Fgf8 

[220].  During development of the mouse cerebellum, both BDNF (Brain derived neurotrophic 

factor) and NT-3 (Neurotrophin-3) are required (Released by granule cells; maximal levels occur 

during post-natal development at weeks 1-2 for NT-3 and week 2 for BDNF). Knockout studies 

in mice demonstrate that both NT-3 and BDNF are required for survival and differentiation of 

Purkinje and granule cells, as well as functioning of the cerebellar circuit and development of 

cerebellar foliation [225]. CAPS2 (Ca2+-dependent activator protein for secretion) facilitates 

formation of vesicles that contain catecholamines and neuropeptides [226]. CAPS2 knockout 

mice show a decrease in BDNF and NT-3 release resulting in aberrant cerebellar development 
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and function (delayed development/increased cell death of Purkinje and granule cells, defective 

migration, atrophic arbors of PCs). RA (retinoic acid) influences the expression of the Hox 

homeotic genes with neuronal stem cells of the hindbrain/branchial regions being especially 

responsive [227]. RARβ (retinoic acid receptor Beta) has been shown to mediate the response to 

RA treatment in controlling Hox gene expression, with the finding that RA controls anterior 

posterior polarization in mouse embryos [228]. SHH and JAG1 (NOTCH2 ligand) induce 

expansion of granule cell progenitors during the development of the cerebellar cortex [229]. 

 

Several research groups have attempted to take advantage of these insights into signaling events 

that occur during early development to achieve specification of hindbrain neurons including 

Purkinje and granule cells, albeit with varying success. 

 

In 2006, a Japanese group reported the first generation of cerebellar neurons from murine ES 

cells, reporting induction of MATH1
+ 

cerebellar granule cell precursors and Purkinje cell 

progenitors (that give rise to the two main constituents of the cerebellar cortex) [130]. This was 

achieved via timed application of soluble patterning signals FGF8, BMP4 and WNT3a to serum-

free cultured embryoid bodies. Shortly after this initial observation, an American group [229] 

published a similar protocol using secreted factors WNT1, FGF8 and Retinoic acid, 

recapitulating patterning events in the cerebellar region of the neural tube, followed by 

application of factors that induce early granule cell marker expression (BMP6, BMP7 & GDF7) 

and finally treatment with mitogens (JAG1, SHH) which are involved with proliferation. More 

recently a publication followed that outlined a protocol attempting to more closely recreate the 

self-inductive signaling microenvironment of the early murine cerebellum. In this study, timed 

prospective selection of Purkinje cell progenitors using the cell-surface marker NEPH3 was 

performed [220]. A modified version of work performed by Salero et al., [229] was shown to 

produce a population of functional cerebellar-like cells from hESCs [131]. 
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Figure 5.1A - Diagramatic representation of the developing mouse (E9.5) with a focus 

on the neural tube (coloured). Depicted are the prosencephalon (pro) & diencephalon (di) 

-structures that give rise to the forebrain, and also the mesencephalon (midbrain, mes) 

and rhombomere 1 (r1, which forms the cerebellum). Also depicted is the isthmic 

organizer (is) that separates the mesencephalon and r1 by a border of gene expression 

(blue marks Otx2 positive territory, while red shows Wnt1, Yellow is Fgf8 and Green is 

Gbx2).  Figure adapted from [230]. 

 

In this chapter, are reproduction and optimizisation of the protocol of Erceg et al. (2010) to 

ascertain whether it is possible to generate neurons resembling those of the cerebellum. We 

successfully induced expression of mid–hindbrain markers EN1, HOXB4 & GBX2 and also 

transcription factors demarcating the two main cerebellar progenitor types, MATH1 (rhombic 

lip/granule cell progenitors) and PTF1α (ventricular zone/Purkinje, Golgi, Stellate cell 

progenitors). Further, it is shown that it is possible to expand these progenitors to produce cells 

that express markers consistent with, and are morphologically similar to, developing granule 

cells. Although we noticed the sporadic appearance of neuronal cells with a Purkinje cell-like 

morphology (large distinctive soma, multiple, branching, elaborate dendrites), it was not 

possible to isolate or propagate these cells, pointing towards a knowledge gap regarding the 

correct supportive trophic microenvironment required for culture and expansion of these cells. 

To gain insight into the early events which occur during the formation of the cerebellum and 
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how this may be affected in the absence of ATM, RNA sequencing of neuronal progenitors after 

34 days of differentiation was performed. 

 

Materials and methods 

 

Differentiation of cerebellar-like cells 

 

Embryoid bodies (EBs) were formed by detachment of undifferentiated iPS cells from the MEF 

monolayer (12,000/cm
2
) using a P200 pipette. EBs were transferred to a low-attachment plate 

(Costar) in Knock-Out Serum (KSR) replacement hESC culture medium (80% DMEM -F12 

(GIBCO), 20% KnockOut-Serum replacement (GIBCO), 2 mM L-glutamine (GIBCO), 1% non-

essential amino acids (NEAA) (GIBCO), 0.1 mM 2-mercaptoethanol at 37°C at 5% CO2 at high 

humidity. EBs were cultured in the absence of basic fibroblast growth factor (to promote 

differentiation towards neurectodermal lineage). Medium was changed each day. After four days 

EBs were resuspended in neural induction medium (DMEM F-12with Glutamax (GIBCO), N2 

supplement (GIBCO) and heparin sulfate (R&D)) and supplemented with human FGF8 (Sigma 

Aldrich) (100 ng/mL) and RA (Retinoic acid) (10 µM) (Sigma Aldrich). After 7 days of 

incubation in this medium EBs were deposited in plates coated with laminin (Sigma) (2 µg/mL) 

and fibronectin (BD) (5 µg/mL) in basal medium eagle (BME) media (Invitrogen) supplemented 

with ITS (Insulin, Transferrin, Selenite) (GIBCO), human FGF8 (100 ng/mL), human FGF4 

(Life technologies) (100 ng/mL) and human basic fibroblast growth factor (Invitrogen) (20 

ng/mL) and allowed to grow for four days. Medium was changed to DMEM-F12 with human 

FGF8 (100 ng/mL), WNT1 (Peprotech/Abacus) (50 ng/mL) and WNT3A (50 ng/mL) (R&D) for 

five days. The next stage of differentiation involved culturing the cells in BME media 

supplemented with N2, B27 (GIBCO), human BMP4 (R&D), (50 ng/mL), human BMP6 (R&D) 

(20 ng/mL), human BMP7 (Peprotech/Abacus) (100 ng/mL) and human growth differentiation 

factor 7 (GDF7) (R&D) (100 ng/mL) for a further eight days. Attached cells were then 

disaggregated and replated on laminin/fibronectin for another 8 days of growth in BME 

supplemented with N2, B27, human BMP4 (50 ng/mL), human BMP6 (20 ng/mL), human 

BMP7 (100 ng/mL), human GDF7 (100 ng/mL), human Sonic hedgehog (R&D) (100 ng/mL), 
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human neurotrophin 3 (R&D), (NT3) (100 ng/mL), jagged1 (JAG1) (R&D) (20 ng/mL) and 

human brain derived neutrotrophic factor  (BDNF) (100 ng/mL) (R&D). 

Immunostaining 

 

For immunostaining cells were gently washed once with PBS+ so as not to disturb large 

spheroid colonies or fragile cell extensions in PBS and fixed in 4% paraformaldehyde for 15 

minutes at room temperature. For nuclear staining samples were permeabilized in 0.1% 

TritonX100 at room temperature for 10 minutes or ice cold methanol for 15 minutes at -20
o
C, 

before blocking with 10% goat serum and incubation with the relevant antibodies overnight at 

4°C in blocking medium. Antibodies and dilutions used were ZIC1 (Saphire bioscience) 

(1:1000), ZIC3 (Millipore) (1:1000), ENGRAILED1 (Millipore) (1:500), GBX2 (Abnova) 

(1:500), β-III-TUBULIN (Millipore) (1:1000), MATH1 (Developmental hybridoma studies 

bank) (1:1000). Following washing with PBS (3 times 5 minutes at room temperature) secondary 

antibodies goat anti-mouse IgG1, goat anti-mouse IgG2B, goat anti-mouse IgM and Donkey anti-

rabbit IgG (Alexa fluor) (2 µg/ml) were used to reveal reactivity. Nuclei were stained with DAPI 

or Hoechst. This preparation minus the addition of primary antibody was used to confirm 

specificity of staining.  

Paraffin embedded tissue sectioning and immunostaining 

 

Neurospheres were harvested by centrifugation at room temperature (500g) and fixed in 4% 

paraformaldehyde at room temperature as a loose cell pellet before making into a cell pellet by 

adding molten agarose, spinning down again then allowing solidification. Once solidified, pellets 

were processed into paraffin, embedded and sectioned. Sections were mounted on Menzel 

Superfrost Plus adhesive slides and air dried overnight at 37OC. Sections were next dewaxed and 

rehydrated through descending graded alcohols to water before transfer to Tris buffered saline 

(TBS) pH 7.6. Endogenous peroxidase activity was blocked by incubating the sections in 2.0% 

H2O2 in TBS for 10 minutes. Sections were washed in three changes of water before transfer of 

slides to EDTA antigen retrieval buffer pH8.8 for 15 minutes at 100
o
C to heat unmask the 

antigen from the aldehyde bonds. Slides were allowed to cool for 20 minutes in the retrieval 

solution then were washed in 3 changes of TBS. Nonspecific antibody binding was inhibited by 

incubating the sections in Biocare Medical Background Sniper for 15 minutes.   
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The following primary antibodies: PAX6 (Developmental studies hybridoma bank) (1:100), 

PTF1α (Abnova) (1:100), ZIC3 (Millipore) (1:100) and ENGRAILED1 (Millipore) (1:100) were 

diluted with TBS, applied to the slides and were incubated at room temperature for 60 minutes.  

Sections were washed in three changes of TBS before MACH1 Mouse Probe was applied for 15 

minutes at room temperature. Sections were washed in three changes of TBS and MACH1 

Universal Polymer HRP was applied for 30 minutes at room temperature. Sections were washed 

in three changes of TBS before the signal was developed in betazoid DAB chromogen, MACH1 

Kit for 5 minutes. Sections were then washed in water three times to remove excess chromogen. 

Sections were lightly counterstained in Haematoxylin, washed in water, dehydrated through 

ascending graded alcohols, cleared in xylene, and coverslipped. Antibodies were tested against a 

panel of known controls including tissue from pancreas, kidney, placenta, colon, uterus, lung and 

melanoma skin, as well as mouse whole brain and human embryonic cerebellum. 

Neurosphere growth assay 

 

Twenty single neurospheres (10 control, 10 A–T) were seeded in suspension individually into 

wells of a 96-well low attachment plate (Costar) in N2B27 Neurobasal media. Neurospheres 

were photographed every other day using an Olympus IX51 microscope for two weeks. Images 

were compressed to 8-bit files and appropriate thresholds were set to define the borders of each 

individual neurosphere before applying an area measurement algorithm using ImageJ. 

 

Sequencing library preparation 

 

Total RNA was extracted using RNA Spin II isolation columns (Machery Nagel). On column 

digestion of DNA with RNase free DNase was performed according to the manufacturer’s 

specifications (Ambion, Austin, TX). RNA samples were subject to RNA integrity analysis using 

the RNA 6000 Nano total RNA kit (Agilent). All samples recorded a RIN (RNA integrity 

number) in excess of 8.5 out of 10. Samples were processed according to the TruSeq Stranded 

Total RNA Sample preparation LS protocol kit (Illumina) as per the manufacturer’s 

specifications. In short, and according to best practices for RNA handling, rRNA was depleted 

from 1 µg total RNA samples using rRNA removal beads and a magnetic stand, before 
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purification, fragmentation and cDNA synthesis. Samples were adenylated at the 3’ end before 

ligation of specific adapters. DNA fragments were enriched by PCR specific for adapter 

sequences. Libraries were cleaned up and validated by resolution on DNA 1000 Bioanalyzer 

chips (Agilent). Libraries were sequenced across two lanes of a HighSeq 2500, using the rapid 

run protocol to obtain 100bp paired-end reads. 

 

Differential gene expression analysis 

 

After read quality control using FastQC [231], primary alignment to the reference human 

genome (hg19) was carried out using the Burrows-Wheeler Aligner [232] version 0.6.2 with 

default mapping parameters. Output data was converted to bam format using SAMtools [233]. 

The exon_utils.py module of the MISO framework [234] was used to extract constitutive exons 

longer than 1000 nucleotides, and pe_utils.py was used to determine the mate inner distance and 

mate standard deviation parameters for each dataset. Tophat [235] version 2.0.8 was then used to 

map reads to the genome and reference transcriptome (GENCODE v. 17 [236]) simultaneously, 

with the parameters --b2-very-sensitive --read-mismatches 3 --read-gap-length 2 --read-edit-dist 

3 --read-realign-edit-dist 0. All subsequent analyses were conducted using the results of this 

mapping. Count tables were obtained using the HTSeq [237] framework in union mode, with 

GENCODE v. 17 as a reference. Differential gene expression analysis was conducted using the 

R package for statistical computing [238] using the edgeR [239] and DESeq [240] libraries. 

Genes were tested for differential expression if they displayed one count per million in at least 

three of the libraries (edgeR) or at least 10 counts across all of the datasets (DESeq). Genes were 

considered differentially expressed if found to be significant by both tools with a Benjamini-

Hochberg adjusted p-value < 0.01 and a greater than twofold change in expression between the 

replicate samples. 

Comparison with Illumina Human Body Map and Developmental Brain Transcriptome 

Data  

 

Developmental brain transcriptome RNA-seq RPKM data was downloaded from 

http://www.brainspan.org/. Illumina Human Body Map 2.0 RNA-seq data for 16 tissues (1 

paired end and 1 single end library per tissue) from the sequence read archive (Accession 

http://www.brainspan.org/
http://www.brainspan.org/
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number ERA022994) was mapped to the human genome/transcriptome as described above. 

Gene-level RPKMs for the data generated in this study and the Illumina Human Body Map were 

calculated based on counts determined by htseq to GENCODE17 genes. Due to challenges in 

unambiguously assigning reads to transcripts and to enable accurate data comparison, an 

approach similar to that taken by the developmental brain transcriptome project was used: 

composite models of genes were generated, with each gene annotated as the union of all exonic 

nucleotides across all of its transcripts in GENCODE17, and the length of each of these was 

used as the “gene length” for the RPKM calculation. Hierarchical clustering of ranked RPKM 

with average agglomeration of euclidean distance was then performed in R using the pvclust 

[241]  package.  

 

Gene ontology and pathway analysis 

 

Pathway analysis was carried out using Ingenuity Pathway Analysis [242]. 

Gene ontology analysis was also carried out using the DAVID software suite [243]. Biological 

process, cellular component and molecular function were annotated using GO level 1, which 

contain annotations for the largest number of genes; using all annotation levels for these analyses 

did not significantly alter the results. PANTHER phylogeny-aware ontologies at all levels are 

also presented. Tissue similarity analysis was carried out using DAVID using the UP_tissue 

module. DAVID Results are included in appendices tabs 9-18.  
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Results 

 

Induction of the Isthmic organizer 

 

Given the recurrent trend amongst published works detailing differentiation of cerebellar 

neurons to reproduce self-inductive developmental signaling cues, I examined whether evidence 

that delivery of factors involved in early isthmocerebellar development (FGF8 and RA) were 

sufficient to instigate this program in our culture setting. To do this I differentiated the hESC 

line H9 using a shortened version of the above protocol and assayed for the presence of the 

hindbrain-specific transcription Gbx2, which marks the isthmic organizer and thus the mid-

hindbrain barrier. I also examined the synergistic co-repression and Otx2 (which competes with 

Gbx2 to define the mid-hind brain barrier) and the expression of caudal neural cell marker 

Hoxb4. 

 

 

Figure 5.2A – Pooled data from from four* independent qPCR experiments (technical 

triplicates run in each) amplifying Otx2, Gbx2 and HoxB4 transcript from day zero 

(undifferentiated iPS), day four (after four days of EB formation) and day 11 (treatment 

of EBs with retinoic acid and FGF8). Whole brain lysate cDNA (a kind gift from the 

Queensland Brain Bank) was used as a positive control from which Otx2, Gbx2 and 

HoxB4 expression could be detected robustly (not shown). Transcript expression was 

normalized to B-Actin. NTC were included and did not approach threshold levels. Error 

bars show SEM. *Fewer than four replicates performed for HoxB4 due to limited 

material. 
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Similar to the data reported by [131] we observed a gradual decline in Otx2 transcript with a 

concordant upregulation of Gbx2 transcript (Figure 5.2A). This is in keeping with the 

downregulation of Otx2 by Gbx2 which takes place in the first rhombomere in vivo in an 

antagonistic relationship that serves to define and control cerebellar development from the MHB 

junction [244].  Expression of HoxB4, a marker for caudal neural cells [245] could be detected 

after 11 days of differentiation indicating specification of hindbrain cells had commenced by this 

stage. 

 

We next confirmed the robustness of this protocol in a further two iPSC lines (C11&C32) and 

again performed qPCR for Otx2 and Gbx2 (Figure 5.2B). A vehicle only (mixture of solvents 

used for dilution of small molecules and growth factors) was used as a control. 

 

Figure 5.2B – qPCR data amplifying Gbx2 and Otx2 transcript from day zero 

(undifferentiated iPSCs), day four (after four days of EB formation) and day 11 

(treatment of EBs with retinoic acid and FGF8). Expression levels from vehicle only 

control are included. NTC were run and did not approach threshold levels. Transcript 

expression was normalized to GAPDH. Error bars show SEM. 

 

Similar kinetics were observed to those in Figure 5.2A, as Otx2 transcript declined during the 

induction protocol with a concordant upregulation of Gbx2. We did notice stark differences in 

induction efficiency in Gbx2 between differentiation experiments that could indicate a high 

degree of intrinsic variability in a particular cell line’s ability to respond to FGF8 and or retinoic 
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acid. Detectable levels of both transcripts were evident in vehicle only controls, although at 

reduced levels indicating that the vehicle and or undirected differentiation process alone was 

sufficient to induce some neural commitment. 

 

We next examined whether pre-patterning of EBs with two small molecules previously shown to 

induce neuronal differentiation (SB431542 and Dorsomorphin) would more efficiently induce 

neuroectodermal differentiation than incubation in hESC media (without bFGF) alone (Figure 

5.2C).  

Figure 5.2C - qPCR data amplifying Gbx2 and Otx2 transcript from day zero 

(undifferentiated iPSCs), day four (after four days of EB formation), day six (after 6 

days’ incubation with SB431542 & Dorsomorphin), day six (vehicle only), day 11 

(treatment of EBs with retinoic acid and FGF8), day 11 (vehicle only) and finally day 13 

(after 6 days of treatment with SB421542 and Dorsomorphin as well as subsequent 

incubation with FGF8 and retinoic acid). NTC were run and did not approach threshold 

levels. Transcript expression was normalized to GAPDH. Error bars show SEM. 

 

We observed similar differentiation kinetics to previous experiments. It was however clear that 

pre-patterning by addition of an additional six-day window of treatment of adherent cultures 

with SB431542 (10 µM) and Dorsomorphin (5 µM) induced robust expression of Otx2. As 
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expected, we saw concordant downregulation of Otx2 and upregulation of Gbx2 by day 13, 

which was markedly higher than samples induced with FGF8 and retinoic acid alone.  

 

We observed by qPCR a characteristic pattern of increasing Gbx2 expression coupled with 

dwindling abundance of Otx2 mRNA, a process known to occur to delineate the border of the 

first rhombomere. Collectively we interpret these data to mean that application of factors 

involved with early patterning of the mid–hindbrain in vivo are capable of giving rise to similar 

events in vitro and that this process can be used to generate neuronal precursor cells with a gene 

expression signature characteristic of the developing hindbrain.  

 

Generation of a population of cerebellar-like cells 

 

We extended our differentiation protocol using the approach outlined in [131]. Briefly, we 

maintained and expanded undifferentiated control and A–T iPS cells on MEFs (12,000/cm
2
) for 

four days before generating embryoid bodies. These embryoid bodies were cultured in hESC 

KOSR media without bFGF for four days before application of neural induction media 

containing FGF8 and retinoic acid. We then plated these neuralized EBs onto tissue-culture 

plates previously coated with laminin and fibronectin and in the presence of FGF8, FGF4 and 

bFGF for seven days. Subsequent to this, we changed media to include WNT1, WNT3a and 

FGF8 for a further five days before harvesting and replating these cells in the presence of media 

containing BMP4, BMP6, BMP7 and GDF7 for eight days. Further to this, we incubated these 

cells in media containing BMP4, BMP6, BMP7 and GDF7, SHH, JAG1, BDNF and NT3 for an 

additional 8 days (full protocol is described in materials and methods section and outline showed 

in Figure 5.3A).   We noticed the appearance of neuroepithelial type cells by day 14, and 

subsequent formation of polarized rosette type structures by day 16, which could be isolated and 

replated to produce a population of rapidly proliferating neural cells by day 24 onwards (see 

Figure 5.3A). 
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Figure 5.3A – Representative phase contrast images at time points detailing the 

differentiation process starting with undifferentiated iPS cell colonies (D0) and 

subsequent generation of embryoid bodies (D4), plating down of neuralized EBs gives 

rise to neuroepithelia (D14) forming rosettes (D16) and finally a population of 

proliferating neurons with heterogenous morphology (D24). Scale bars are 10 µm with 

the exception of D14 that is 20 µm to exhibit detail and extent of neuroepithelial colony.  

 

Neurosphere growth assay 

 

We monitored growth and expansion of control and A–T neurospheres in culture by capturing 

brightfield images of neurospheres and applying an ImageJ threshold based algorithm to 

calculate growth by change in area (Figure 5.3B). No differences between control and A–T iPSC 

derived neurospheres were apparent as measured by a Two-way ANOVA (with Bonferoni post-

test) at the initial three time points. Growth rates did appear to diverge at day 10 onwards, with 

A–T neurospheres proliferating more rapidly (P<0.05 and P<0.01 respectively) indicating that 

the internal growth program may change subtly over this period.  
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Figure 5.3B – Neurosphere growth measurements during 5 days in neural 

induction media (FGF8 & Retinoic acid) reveal no significant differences at 

initial 3 time points measured but statistically significant differences (P<0.05 and 

P<0.01 respectively) as measured by Two-way ANOVA with Bonferoni post-test. 

 

Serial sectioning of paraffin embedded neurospheres  

 

To confirm the presence of cerebellar specific proteins we obtained human embryonic 

cerebellum and adopted a protocol to paraffin embed and stain serially sectioned material from 

both control tissue and neurospheres. We detected expression of mid-hind brain marker 

ENGRAILED 1 in controls and also neurospheres cultured beyond 34 days. By day 50 robust 

expression of ventricular zone progenitor marker PTF1α was observed. Reactivity with ZIC3 

and PAX6 was noted in a subset of cells suggesting granule cell differentiation had begun to 

occur. It was interesting to note the appearance of foliation at the periphery of the neurospheres 

(Figure 5.3C, lower 3 right hand side panels), reminiscent of the arrangement of the cerebellar 

cortex. 

 



199 

 

 

Figure 5.3C – Undifferentiated iPS cells and Neurospheres (D34+) were serially 

sectioned and stained for ENGRAILED1, PAX6, PTF1α & ZIC3. Human embryonic 

cerebellum (HEC) was used as a positive control. Scale bars are 5 & 10 µm. 

 

Expansion of cerebellar-like neurons 

 

When EBs were plated down and expanded after 24 days of neural induction we observed the 

eventual appearance of a heterogenous population of cells with neuronal morphologies including 

cells with small soma, multiple dendrites displaying small stubby claw-liked appendages (Figure 
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5.3D upper left panel). Additionally, we observed cells with glial/astrocytic type morphology 

(Figure 5.3D upper right panel). The continued appearance of spheroid aggregates with axon-

extending neurons (lower left panel) was noted in addition to highly dense networks of axon-

projecting neurons (lower right panel). 

 

 

Figure 5.3D – Phase contrast microscopy of commonly observed neuronal morphologies 

after final neural spheroid body attachment (day 24 onwards). Scale bars are 12.5 µm. 

 

We observed a large number of cells with morphologies consistent with the description 

ofgranule cells of the cerebellum. This included the appearance of stubby claw-like 

appendages/projections and recurrent branching of axonal projections in a T-shaped form, 

commonly associated with cerebellar granule cells (Figures 5.3E&F). 
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Figure 5.3E – Phase contrast and fluorescent microscopy of common T-shaped 

branching of axons characteristic of cerebellar granule cells (marked by asterisk). Scale 

bars are 10 µm. 

 

 

 

Figure 5.3F – Phase contrast microscopy of cells that show morphology consistent with 

developing cerebellar granule cells. Scale bars are 10 µm. 
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When stained with antibody for pan-neuronal marker β-III-TUBULIN, we observed 

morphologies consistent with that of a cerebellar granule cell including distinctive stubby claw 

like appendages (*), characteristically shaped soma (**) and the distinctive T-shaped branching 

of axons (***) (Figure 5.3G).  

 

  

Figure 5.3G –Fluorescent microscopy of putative granule cell stained with β-III-

TUBULIN exhibiting distinctive stubby claw like appendage (*), characteristic soma 

(**), common T-shaped branching of axons (***) and association with an adjacent 

neuron (****). Scale bars are 5 µm. Inlay shows a silhouette of cerebellar granule cell for 

comparison (Santiago Ramón y Cajal, 1899. Instituto Santiago Ramón y Cajal, Madrid, 

Spain).  

 

We interpret these findings to mean this induction protocol was capable of producing cerebellar 

progenitors which mostly gave rise to granule cells of the cerebellum. These findings are 

consistent with reported induction efficiency [131] and also in keeping with what might be 

expected given that in vivo the cerebellar cortex is predominantly composed of granule cells. 

 

http://en.wikipedia.org/wiki/Santiago_Ram%C3%B3n_y_Cajal
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After 34 days of culture we observed the sporadic appearance of cells with a large soma and 

multiple branching dendrites, a morphology reminiscent of Purkinje neurons (see figure 5.3H). 

Various degrees of dendritic complexity were observed, suggestive of Purkinje neurons at 

various stages of maturation. We could not, however, maintain the survival of this cell type for 

prolonged periods possibly due to incorrect supporting trophic microenvironment. Isolation and 

identification with putative markers (PCP2, CALBINDIN & NEPH3) proved unsuccessful, due 

to difficulties isolating this cell type. This is consistent with the work of Muguruma et al. who 

showed that after isolation of NEPH3 positive Purkinje cell precursors growth in conventional 

high-density culture settings showed gradual cell death and failure to express late Purkine cell 

markers such as L7 and calbindin [220]. 

 

 

Figure 5.3H– Neuronal cells exhibitive a morphology similar to Purkinje cells (large 

soma and distinctive multiple branching dendrites) were generated but could not be 

isolated or propagated. Scale bars are 10 µm. 

 

Our results showed that timed application of factors involved with cerebellar development 

induced expression of hindbrain specific transcription factors GBX2, HOXB4 and EN1, and 

later expression of proteins known to be expressed in the developing cerebellum (PTF1α, PAX6, 

ZIC3 & B-III-TUBULIN). We observed migration and expansion of neurons morphologically 

characteristic of granule cells which showed important hallmarks of this cell type. Our ability to 
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culture and propagate these cells was restricted, presumably because of the limited knowledge 

base regarding correct growth factor and microenvironment requirements of granule and 

Purkinje cells.  

RNA Sequencing 

 

To more thoroughly define this cell population and also to investigate the impact of ATM 

deficiency on this in vitro generated early cerebellar cell population, we next performed RNA 

sequencing to profile the expression of A–T (AT30) and control (C11) neural inductions (day 

34). Three separate iPS cell cultures and neuronal inductions from individual clones were 

sequenced. This data is available upon request through Stemformatics (http://stemformatics.org).  

 

Fifty to eighty per cent of reads were mapped uniquely in each of the datasets, corresponding to 

30-120 million mapped reads per library; a low number of non-uniquely mapping reads (5-7% 

when compared to number of uniquely mapped) were also reported. Most mapped reads were 

mapped as pairs, with >70% of reads mapped in proper pairs across all datasets.  Approximately 

30% of the reads were mapped across splice junctions, which is expected given that the median 

exon length in humans is 120 nucleotides and that reads were sequenced using a paired end 100 

bp protocol. The TruSeq protocol is designed to retain RNA strand information, and consistent 

with this our data shows 89-96% of reads mapped in a strand-specific manner. Overall, the 

mapping statistics for all datasets are comparable, and demonstrate that a good quality set of 

RNA sequencing libraries had been generated, enabling differential gene expression and 

alternative splicing analyses. Mapping statistics are presented in tab 8 of appendices. 

 

To ensure high sequencing data fidelity and downstream alternative splicing analysis 

we compared junction saturation across all sequencing libraries (Figure 5.4A). For a well-

annotated organism, the number of expressed genes in particular tissue is almost fixed, so the 

number of splice junctions should also be fixed. These are usually reflected in the reference gene 

model, in our case GENCODE 17, which includes data from the Illumina Body Map and other 

tissue atlas interrogations. All of these “tissue –characteristic" splice junctions should be 

rediscovered from saturated RNA-sequencing data, otherwise, downstream alternative splicing 

http://stemformatics.org/
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analysis could be problematic because low abundance splice junctions are missing. Figure 5.4A 

illustrates that in our dataset the red curve of "known junctions" has almost reached a plateau, 

indicating that we have saturated known junctions and alternative splicing analysis, especially 

for known isoforms. 
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Figure 5.4A – Junction saturation in all sequenced libraries. Comparison of junction 

saturation across all sequencing libraries; known junctions are presented in red, novel 

junctions - in green, all junctions in blue.  
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Analysis of novel junctions (Figure 5.4B) demonstrates that a significant proportion of 

alternative splicing events (~10-20%) are novel in each of the datasets. This reflects the 

underlying diversity of the transcriptome of both the pluripotent cells and the neurons derived 

from them, and  is encouraging for alternative splicing analysis: a subset of these novel events 

are likely to be unique to the A–T cells or specific to a developmental stage. Saturation was 

assessed by resampling 5%, 10%, 15%, ..., 95% of total alignments, then detecting splice 

junctions from each subset and comparing them to the GENCODE 17 reference gene model. The 

current sequencing depth is almost saturated for known junctions, which is discernible by the red 

curve reaching a plateau at when considering 80-100% of reads in the dataset. Novel junctions 

continue to be discovered as the depth of sequencing increases. 
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Figure 5.4B - Junction annotation in all sequenced libraries – comparison of splicing 

junctions detected in data with annotated splicing junctions in GENCODE 17. Annotated 

junctions are those for which both the 5’ and 3' splice sites are annotated; completely 

novel junctions are those for which neither the the 5’ and 3' splice sites are annotated, 

and partially novel are those for which either the 5' or 3' splice site is annotated, while the 

other site is not. A significant number of unannotated alternative splicing events are 

observed in the data. 
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Figure 5.4C illustrates that sequencing coverage across the gene body is uniform. This signifies 

that the library preparation method used has not preferentially enriched for shorter transcripts, 

which in turn enables us to be confident that our differential expression analysis is unbiased and, 

more critically, alternative splicing analysis is possible. The minor drop in coverage at the 5' end 

of genes is expected and characteristic of the current TruSeq protocols, and signifies that we may 

encounter difficulties in attempting to conduct alternative transcription start site analysis, but 

these challenges should be similar in all of the datasets generated. 
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Figure 5.4C - Read coverage over gene body in all sequenced libraries.  

Read coverage over gene body in all sequenced libraries was obtained by scaling all 

transcripts annotated in GENCODE 17 to 100 nt and calculating the number of reads 

covering each nucleotide position using the geneBody_coverage2.py module of the 

RSEQC framework). A minor 3' bias in coverage is observed in all sequencing libraries.  
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Generation of differential expression genelists 

 

Differential expression genelists were generated for three main comparisons; Day 0 vs Day 34 of 

culture for AT30 (A–T) iPSCs to neurons, Day 0 vs 34 of culture for C11 (Control) iPSCs to 

neurons, and differential expression between Day 34 AT30 and C11 neurons. Volcano plots 

show dynamic expression of coding genes in differentiation of A–T and control iPSC-derived 

neurons. Volcano plots reveal significant (red points: adj. p-value <= 0.01; logFC >= 1) changes 

in coding gene expression after 34 days of neuronal differentiation betweem AT30 and C11 

cerebellar cultures at day 34 (Figures 5.4 D & E respectively). Expected down-regulation of 

pluripotency-associated genes including NANOG, SOX2, OCT4, MACC1 and LIN28A was 

observed, as well as upregulation of neuronal markers such as EN1, HOXB4, HOXB3, ISL1 and 

SOX6.  

  

Figure 5.4D – Volcano plot shows distribution of differentially expressed genes in AT30 

after 34 days of neural differentiation with log fold change (x-axis) and adjusted p-value 

(y-axis). 
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Figure 5.4E – Volcano plot shows distribution of differentially expressed genes in C11 

after 34 days of neural differentiation with log fold change (x-axis) and adjusted p-value 

(y-axis). 

 

 

Atm transcript during neuronal differentiation 

 

We initially examined levels of Atm transcript in control and A–T samples over the course of the 

neural induction. Interestingly, Atm appeared to be downregulated with differentiation (Figure 

5.4F). Fewer reads mapped to the Atm gene in AT30 at both differentiation time points 

indicating transcript level was lower/negligible in AT30. AT30 (a.k.a MC3) is a compound 

heterozygote, with two deletions in the Atm cDNA (8368delA and 7570delG; hg19 genomic 

coordinates chr11:108214045 and chr11:108202224). These are predicted to result in mRNA 

instability as a result of nonsense-mediated decay, since the stop codon TGA is introduced at 

cDNA positions 7591-7593 and 8413-8415 (hg19 genomic coordinates chr11:108,202,247-
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108,202,249 and chr11:108,214,094-108,214,096, respectively). IGV snapshots demonstrating 

the presence of these deletions in the RNA-sequencing data are presented in Figures 5.4G and 

I5.4H. 

 

Figure 5.4F - Normalized expression of Atm across differentiation time course in control 

(C11) and AT (AT30) cells.  
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Figure 5.4G - IGV snapshot demonstrating the presence of Atm 8368delA mutation in 

AT30 (lower half of diagram) but absent in C11 controls (upper half of diagram).  

 

Figure 5.4H - IGV snapshot demonstrating the presence of Atm 7570delG mutation in 

AT30 (lower half of diagram) but absent in C11 controls (upper half of diagram). 
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Gene ontology analysis after differentiation 

 

Gene ontology analysis was carried out using the DAVID software suite [243]. Biological 

process, cellular component and molecular function were annotated using GO level 1 for A-T 

expression data (Day 34 vs 0) (shown below Table 5.5, white background in upper section of 

table) and control (Day 34 vs 0) (lower section of Table 5.5A, grey background). In both A-T 

and control annotation sets, GO:0032502 (‘developmental process’) was the top pathway 

identified (P-values 2.03E-41 & 2.80E-34 respectively). 

Category Term Count % PValue 

GOTERM_BP_1 GO:0032502~developmental process 1177 23.1 2.03E-41 

GOTERM_MF_1 GO:0005488~binding 3655 71.6 5.12E-21 

GOTERM_BP_1 
GO:0032501~multicellular organismal 
process 1414 27.7 1.18E-20 

GOTERM_BP_1 GO:0022610~biological adhesion 291 5.7 1.11E-15 

GOTERM_CC_1 GO:0044421~extracellular region part 367 7.19 4.69E-14 

GOTERM_CC_1 GO:0044456~synapse part 121 2.37 5.09E-13 

GOTERM_CC_1 GO:0045202~synapse 159 3.11 1.92E-12 

GOTERM_BP_1 
GO:0016043~cellular component 
organization 825 16.2 1.14E-10 

GOTERM_BP_1 GO:0009987~cellular process 3042 59.6 1.92E-07 

GOTERM_BP_1 GO:0065007~biological regulation 2212 43.3 2.19E-07 

GOTERM_BP_1 GO:0032502~developmental process 1311 2.24 2.80E-34 

GOTERM_MF_1 GO:0005488~binding 4241 7.26 9.69E-19 

GOTERM_CC_1 GO:0044421~extracellular region part 418 0.72 2.44E-14 

GOTERM_BP_1 GO:0009987~cellular process 3605 6.17 8.23E-13 

GOTERM_BP_1 GO:0022610~biological adhesion 309 0.53 8.23E-11 

GOTERM_BP_1 
GO:0032501~multicellular organismal 
process 1556 2.66 2.45E-10 

GOTERM_CC_1 GO:0045202~synapse 171 0.29 3.06E-10 

GOTERM_BP_1 
GO:0016043~cellular component 
organization 947 1.62 4.32E-10 

GOTERM_CC_1 GO:0044456~synapse part 117 0.2 5.36E-07 

GOTERM_BP_1 GO:0048511~rhythmic process 66 0.11 1.42E-05 

Table 5.5A - Biological process, cellular component and molecular function were 

annotated using GO level 1. A-T (white background) and Control (grey background). 
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PANTHER phylogeny-aware ontologies were performed and are shown in Table 5.5B. Again 

‘Developmental processes’ was the top-most hit in both cases (P-values 1.72E-30 & 6.43E-14 

respectively). Also present in the top five pathways were ‘Ectoderm development’ and 

‘Neurogenesis’ indicating enrichment for primitive neuronal cells. We noted the A-T dataset to 

generally display a greater enrichment for processes pertaining to neuronal development.  

 

Category Term Count % PValue 

PANTHER_BP_ALL BP00193:Developmental processes 778 15.2 1.72E-30 

PANTHER_BP_ALL BP00246:Ectoderm development 306 5.99 8.22E-27 

PANTHER_BP_ALL BP00199:Neurogenesis 270 5.29 2.69E-25 

PANTHER_MF_ALL MF00178:Extracellular matrix 162 3.17 4.37E-13 

PANTHER_BP_ALL BP00274:Cell communication 419 8.21 2.47E-12 

PANTHER_BP_ALL BP00166:Neuronal activities 222 4.35 3.42E-11 

PANTHER_BP_ALL BP00167:Synaptic transmission 124 2.43 1.04E-10 

PANTHER_BP_ALL BP00124:Cell adhesion 226 4.43 8.13E-10 

PANTHER_MF_ALL MF00040:Cell adhesion molecule 156 3.06 9.13E-10 

PANTHER_MF_ALL MF00024:Ion channel 140 2.74 5.88E-08 

PANTHER_BP_ALL BP00193:Developmental processes 800 1.37 6.43E-14 

PANTHER_MF_ALL MF00178:Extracellular matrix 175 0.3 1.01E-11 

PANTHER_BP_ALL BP00199:Neurogenesis 253 0.43 2.19E-10 

PANTHER_BP_ALL BP00246:Ectoderm development 281 0.48 3.16E-09 

PANTHER_MF_ALL 
MF00013:Tyrosine protein kinase 
receptor 47 0.08 3.49E-08 

PANTHER_MF_ALL MF00241:Protein kinase receptor 59 0.1 5.93E-08 

PANTHER_BP_ALL 
BP00108:Receptor protein tyrosine 
kinase signaling pathway 99 0.17 2.28E-07 

PANTHER_MF_ALL MF00040:Cell adhesion molecule 162 0.28 9.05E-07 

PANTHER_BP_ALL BP00274:Cell communication 441 0.75 1.07E-06 

PANTHER_MF_ALL MF00219:Annexin 42 0.07 1.81E-06 
 

Table 5.5B - PANTHER phylogeny-aware ontologies at all levels are shown in A-T 

(white background) and Control (grey background). 
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Tissue similarity analysis using DAVID UP_tissue module (Table 5.5C) shows that after 34 days 

of differentiation the expression pattern of both A-T (white background) and control (grey 

background) was most similar to Brain (P-value of 3.09E-16 & 9.10E-22 respectively). 

Interestingly, the A-T genelist (AT30/MC3) registered 45.3% similarity to Brain, whereas 

control cells (C11) scored 4.66%.  

Category Term Count % PValue 

UP_TISSUE Brain 2313 45.3 3.09E-16 

UP_TISSUE Plasma 107 2.1 6.14E-05 

UP_TISSUE Liver 615 12 6.28E-05 

UP_TISSUE Endothelial cell 30 0.59 1.76E-04 

UP_TISSUE Fetal brain 244 4.78 0.00101 

UP_TISSUE Lens epithelium 12 0.24 0.00216 

UP_TISSUE Epithelium 743 14.6 0.00257 

UP_TISSUE Kidney 431 8.44 0.00483 

UP_TISSUE Breast 35 0.69 0.00487 

UP_TISSUE Retinal pigment epithelium 12 0.24 0.00659 

          

UP_TISSUE Brain 2721 4.66 9.10E-22 

UP_TISSUE Liver 728 1.25 1.58E-06 

UP_TISSUE Epithelium 904 1.55 1.79E-06 

UP_TISSUE Placenta 1126 1.93 8.68E-06 

UP_TISSUE Plasma 118 0.2 2.90E-04 

UP_TISSUE Heart 212 0.36 5.89E-04 

UP_TISSUE Kidney 509 0.87 9.32E-04 

UP_TISSUE Tongue 154 0.26 0.00112 

UP_TISSUE Fetal brain 279 0.48 0.00169 

UP_TISSUE Amygdala 223 0.38 0.0019 

Table 5.5C - Tissue similarity analysis (DAVID) using the UP_tissue module shows 

expression pattern from both A-T (white background) and control (grey background) 

differentiated cells most closely resembles Brain. 

In each case while Brain was the most significant hit, there appeared to be differences that we 

interpreted to correspond to how terminally differentiated towards the neuronal lineage these 

cells had become. 
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IPA analysis of gene expression data following differentiation of A-T iPSCs 

     A genelist comprising genes that were differentially expressed between undifferentiated iPSCs 

and after 34 days of differentiated was uploaded to the Ingenuity Pathway Analysis (IPA) tool. 

Full reports are available in the appendices section. 

 

IPA-assisted curation of the differentially expressed list of genes yielded a list of the top ten 

most highly and lowly differentially expressed genes (Table 5.5D). LRRC4B (leucine rich repeat 

containing 4B) is a protein of unknown function that is expressed in the brain and displays a 

developmentally regulated pattern of expression [246]. AGR2 (Anterior Gradient Homolog 2) is 

a proto-oncogene, which is downstream of Pou5f1 and has roles in migration, differentiation and 

cell growth. NNAT (Neuronatin) regulates segment identity and ion channels during hindbrain 

development and may also be involved with positive regulation of insulin secretion as well as 

formation and maintenance of the nervous system. Coexpression of neuronatin splice forms was 

shown to promote growth of medullablastoma, a granule cell progenitor tumour [246]. Kikyo et 

al. showed that disruption to neuronatin expression resulted in perturbation of cerebellar 

foliation in mice [247]. RBP2 (Retinol binding protein-2) is a histone demethylase implicated in 

differentiation through chromatin modification and regulation of the cell cycle [248]. OR51E2  

(Olfactory receptor 51E2) is a G-protein-coupled receptor implicated in prostate cancer [249].  

Pln (Phospholamban) is a substrate for PKA and involved in controlling Ca
2
+ transport ATPase 

activity. CLDN8 (Claudin 8) is a member of the claudin protein family, and is a component of 

the tight junction complex. CARTPT (Cocaine and amphetamine regulated transcript) is a 

neurotransmitter with roles in energy homeostasis and brain development and is an afferent 

marker of the developing cerebellum [250]. IFI44 (Interferon induced Protein 44) is a non cell-

type specific microtubule-associated protein. KRT4 (Keratin 4) encodes Keratin type II, 

cytoskeletal 4.  

 

Amongst the list of top downregulated transcripts were Hes3 (a regulator of stem cell 

pluripotency through the Notch signaling pathway) [251], Ventx (displays NANOG-like activity 

in mammalian embryos [252]) and Zscan10 (cell-specific transcription factor required to 

maintain pluripotency in ES cells). Ido1 (Indoleamine 2,3-Dioxygenase 1) is an enzyme that 
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catalyzes tryptophan catabolism to N-formyl-kynurenine.  Cldn10 (Claudin 10) encodes a 

claudin family member involved in tight junction complex formation. LIN28A is a key 

pluripotency factor involved in stem cell maintenance and growth. Prdm14 (PR domain 

containing 14) encodes a protein with putative histone methyltransferase speculated to affect cell 

pluripotency by suppressing the expression of genes involved with differentiation. Pou5f1 (Oct4) 

is one of the main drivers of pluripotency and essential for stem cell maintenance. Dppa4 

(developmental pluripotency associated 4) is a nuclear factor associated with active chromatin 

and involved with early embryogenesis and pluripotency. Nmrk2 (nicotinamide riboside kinase 

2) is a broadly expressed enzyme with ribosylnicotinamide kinase activity.  

 

To summarize, the top ten most highly expressed transcripts were largely all associated with 

neuronal differentiation and maintenance, and the top ten lowest expressed transcripts were 

associated with pluripotency, grossly validating the notion that AT30 had exited the pluripotent 

state and acquired a neuronal phenotype. 

  



220 

 

 

 

Top Molecules  

Molecules (up) Exp. Value 

LRRC4B  11.757 

AGR2 10.388 

NNAT  10.05 

RBP2  10.022 

OR51E2  9.994 

PLN  9.928 

CLDN8  9.89 

CARTPT  9.851 

IFI44  9.736 

KRT4  9.5 

  

Molecules (down) Exp. Value 

HES3 -10.8 

VENTX  -8.749 

ZSCAN10  -8.597 

IDO1  -8.597 

CLDN10  -8.565 

LIN28A -8.502 

PRDM14  -8.262 

POU5F1  -8.04 

DPPA4  -7.924 

NMRK2  -7.864 

 

Table 5.5D – List of Top Molecules that are upregulated (upper section) and 

downregulated (lower section) between A–T iPS (AT30) at Day 0 and 34 
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Of particular interest was defining the shift in transcription that had occurred during the 34 day 

differentiation process. We hypothesized we would observe a downregulation of genes involved 

in pluripotency and upregulation of processes involving anterior-posterior patterning and 

neuronal specification. As expected, amongst the top pathways identified by IPA analysis were  

‘Transcriptional Regulatory Network in Embryonic Stem Cells’ (p-value 7.16E-9), ‘Cellular 

Development - Differentiation of neurons’ (p value 1.35E-11. 70), ‘Embryonic development – 

Development of body axis’ (p-value of 8.14E-28), and ‘Embryonic development - Development 

of rhombencephalon’ (p-value 4.94E-10). 

 

Figure 5.5A illustrates the ‘Transcriptional Regulatory Network in Embryonic Stem Cells’ 

annotated pathway, featuring members of the pluripotency network Oct4, Sox2, Nanog as well as 

Foxd3, the forkhead transcription factor required for maintenance of pluripotency [253], which 

are all downregulated. Also noted is upregulation of Cx36, L1cam involved with Neurogenesis 

and Atbf1, Hand, Otx1, Meis1, Isl1 and Pax6, all involved with ectodermal differentiation. 

 

Figure 5.5A – ‘Transcriptional Regulatory Network in Embryonic Stem Cells.’ (P-value 

7.16E-9). Genes colored red are upregulated, genes colored green are downregulated. 
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Figure 5.5B  depicts a number of genes annotated to the process of ‘Cellular Development - 

Differentiation of neurons’. Unsurprisingly, an extensive number of these genes are upregulated 

after 34 days of neural induction. Of particular note is the moderate expression of mid-hind brain 

marker En1 (lower left), strong expression of the rhombic lip progenitor marker Atoh1 (Math1) 

(pictured lower middle of figure) and downregulation of Otx2 (lower left hand corner of figure), 

a marker of anterior neuronal cells. We observed strong expression of Dcx (Doublecortin, 

middle right-hand side of figure), a microtubule associated marker of immature migrating 

neurons [254]. Nf1a (Nuclear factor 1A) exhibited upregulation – this gene is involved with co-

ordination of granule cell development through regulation of cell adhesion molecules [255]. We 

noted the negative expression of Lhx5, a factor involved with forebrain specification. Similarly 

we could not detect expression of genes characteristic of other brain regions such as Hb9 (spinal 

motor neurons) or Nkx2-2 (motor neurons). 
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Figure 5.5B – ‘Cellular Development - Differentiation of neurons’ (P-value 1.35E-11). 

Genes colored red are upregulated, genes colored green are downregulated. 

 

We observed extensive activity in regulatory networks annotated to ‘Embryonic development – 

Development of body axis’ (Figure 5.5C). This led us to examine the expression of members of 

the Hox gene family [256], a set of transcription factors that regulate development through 

controlling segment identity and positional specification (Table 5.5E).  Hoxa2, which is involved 

in developmental patterning of the hindbrain [257] was significantly upregulated. Similarly, 
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expression levels of Hoxb3 and Hoxb4, markers of caudal neural stem cells [245] were 

significantly higher after 34 days of neural induction. 

 

 

Figure 5.5C – ‘Embryonic development – Development of body axis’ (P-value of 8.14E-

28). Genes colored red are upregulated, genes colored green are downregulated. 
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Gene ID LogFC Gene 

ENSG00000105991 1.145427 HOXA1 

ENSG00000253293 4.966813 HOXA10 

ENSG00000005073 5.762732 HOXA11 

ENSG00000106031 7.749493 HOXA13 

ENSG00000105996 3.438338 HOXA2 

ENSG00000105997 4.211327 HOXA3 

ENSG00000197576 6.109767 HOXA4 

ENSG00000106004 7.522661 HOXA5 

ENSG00000106006 5.199186 HOXA6 

ENSG00000122592 3.124284 HOXA7 

ENSG00000078399 2.271848 HOXA9 

ENSG00000253552 4.29586 HOXA-AS2 

ENSG00000254369 1.198842 HOXA-AS3 

ENSG00000173917 3.209529 HOXB2 

ENSG00000120093 4.166593 HOXB3 

ENSG00000182742 4.501958 HOXB4 

ENSG00000120075 8.942241 HOXB5 

ENSG00000108511 7.030623 HOXB6 

ENSG00000260027 5.628308 HOXB7 

ENSG00000120068 4.291911 HOXB8 

ENSG00000170689 1.17242 HOXB9 

ENSG00000198353 4.102079 HOXC4 

ENSG00000172789 6.863063 HOXC5 

ENSG00000197757 2.993665 HOXC6 

ENSG00000037965 2.883769 HOXC8 

ENSG00000180806 3.325562 HOXC9 

ENSG00000128652 3.971744 HOXD3 

ENSG00000170166 3.853519 HOXD4 

ENSG00000175879 4.788749 HOXD8 

ENSG00000224189 3.138314 HOXD-AS1 

Table 5.5E – List of HOX genes and log-fold expression values differentially regulated 

between day 0 and 34 of neural differentiation in A–T iPS cells (AT30). 
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Of major interest, ‘Embryonic development - Development of rhombencephalon’ (Figure 5.5D) 

was one of the top differentially regulated pathways (P-value 4.94E-10).  Expression of Dio3 

(thyroid hormone-inactivating type 3 deiodinase - top left of figure), an enzyme belonging to the 

iodothyronine deiodinase family was detected. Dio3 is expressed within the embryonic and 

neonatal mouse cerebellum. Dio3 knockout mice show reduced cerebellar foliation and 

increased disappearance of the external germinal layer with premature expansion of the 

molecular layer [258]. Dner (Delta/Notch-Like EGF Repeat Containing – top middle of figure) 

is a transmembrane protein, specific to neurons, which mediates Notch signaling through cell to 

cell interactions. Dner was recently shown to be essential for precise cerebellar development, 

where it is abundantly expressed in Purkinje and granule cells [259]. Mice lacking Dner display 

impaired cerebellar functionality [260]. Unc5c (Unc-5 Homolog C) belongs to the family of 

Netrin receptors. Netrins are secreted proteins that are involved with directing axon extension 

and migration during neural development. Recent results show that Unc5c played a role in dorsal 

guidance of axons in the developing hindbrain and that perturbation of Unc5c disrupted long-

range dorsal guidance of inferior olivary and pontine axons within the cerebellum [261]. Agtr2 

(angiotensin II receptor, type 2 - top left of figure) that was highly expressed has been associated 

with a role in brain development and cognitive function. Agtr2 was found largely expressed in 

the cerebellum [262]. We detected strong expression of Zic1 and Zic4 (Zic family members 1&4 

– lower right hand side of figure). The Zic genes encode zinc finger proteins and are highly 

restricted to cerebellar granule cells and their precursors, disruption of which leads to postnatal 

ataxia arising from cerebellar hypoplasia [263]. Although not annotated to this network we also 

detected a 2.295 log fold-change of Clbn1 (Cerebellin 1), a neuropeptide involved with synaptic 

integrity and plasticity in the cerebellum [264]. Gbx2 expression was extinguished at this stage, 

in keeping with reports in the literature regarding its initial early involvement in inducing a self-

organizing signaling centre [265, 266]. We noted the robust expression of the Reelin gene, a 

gene well characterized in cerebellar development and suspected to be downsteam of Pax6 

[267]. Reelin is an extracellular matrix glycoprotein that regulates cerebellar corticogenesis 

[268]. Similarly we noted overexpression of Shh (top right of figure), a morphogen and critical 

orchestrator of cerebellar formation [269]. 
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Figure 5.5D – ‘Embryonic development - Development of rhombencephalon’, P-value 

4.94E-10. Genes coloured red are upregulated, genes coloured green are downregulated. 

 

To further understand what impact the loss of ATM might have in the role of commitment 

towards cerebellar neurons, differential expression data from between day 0 and 34 samples was 

overlaid on a more extensively mapped set of genes predicted to interact with ATM (not shown). 

The most heavily upregulated gene was Hgf (Hepatocyte growth factor), downsteam of ATM 
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and known to have a neuroprotective role in the regulation of apoptosis in cerebellar granule 

cells [270].  

 

IPA analysis of gene expression data following differentiation of control iPSCs 

We next examined differential expression between control (C11) iPS cells after 34 days of 

neural induction. Pathway report is available in Appendices. 

 

Differential expression analysis revealed a list of the top ten most highly up and down -regulated 

molecules (Table 5.6A). The top most upregulated transcript was Angptl1 (Angiopoietin-related 

1), a growth factor and member of the VEGF family. Additonally, Agr2 (Anterior Gradient 

Homolog 2), a proto-oncogene, which is downstream of Pou5f1 and has roles in migration, 

differentiation and cell growth was the molecule second most upregulated (AGR2 also appeared 

in the top ten list for AT30). C6 (Complement component 6) is a part of the membrane attack 

complex that is involved in the adaptive and innate immune response. Interestingly, members of 

the complement pathway have been implicated in regulation of neurogenesis [271]. Cfh 

(Complement factor H) is also a member of the complement family and was elevated more than 

11 log-fold. Casp4 (Caspase 4) is a well-characterized enzyme involved with apoptosis, cell 

migration and the inflammatory response. Nr1h4 (Nuclear receptor subfamily 1, group H, 

member 4) known to interact with the Retinoid acid receptors [272]. Agtr2 (Angiotensin II 

receptor type 2) regulates neuronal apoptosis. Scrg1 (Scrapie responsive gene one) is distributed 

primarily in the CNS, where it associates with members of the neuronal secretory pathways. CF1 

is another member of the complement family that regulates complement activation by cleaving 

C3b and C4b. Ogn (Osteoglycin) codes for a protein well known in bone formation that is also 

expressed in the brain. 

 

Amongst the list of top downregulated transcripts was Wnt8a, (Wingless –related MMTV 

integration site 8A), a gene known to be involved with embryonic pattern formation. Tdgf1 

(Teratocarcinoma-derived growth factor 1) encodes an epidermal growth factor-related protein 

essential for embryonic development.  Zscan10 (a cell-specific transcription factor required to 

maintain pluripotency in ES cells – also featured in the top 10 downregulated genes in AT30). 
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Ido1 (Indoleamine 2,3-Dioxygenase 1) is an enzyme that catalyzes tryptophan catabolism to N-

formyl-kynurenine.  LIN28A is a key pluripotency factor involved in stem cell maintenance and 

growth and was also featured in the top 10 downregulated genes in AT30. Hes3 (a regulator of 

stem cell pluripotency through the Notch signaling pathway) [251], Prdm14 (PR domain 

containing 14) encodes a protein with putative histone methyltransferase speculated to affect cell 

pluripotency by suppressing the expression of genes involved with differentiation. Dppa2 

(developmental pluripotency associated 2) is a nuclear factor expressed specifically by 

pluripotent cells. Usp44 (Ubiquitin specific peptidase 44) is a negative regulate of H2B 

ubiquitylation known to undergo downregulation during differentiation.  Prdm14 (PR domain 

containing 14) is a member of the pluripotency network. Lect1 (Leukocyte cell derived 

Chemotaxin 1) is a glyosylated transmembrane protein with known roles in self-renewal and 

pluripotency.  

 

In summary, and consistently with the top ten lists from AT30 analysis, the top ten most highly 

expressed transcripts after 34 days of neural induction in control iPS line C11 were largely all 

associated with neuronal differentiation and maintenance, and the top ten lowest expressed 

transcripts were associated with pluripotency, again grossly validating the notion that control iPS 

cells had exited the pluripotent state and acquired a neuronal phenotype.  
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Top Molecules  

Molecules (Up) Exp. Value 

ANGPTL1  12.11 

AGR2  11.874 

C6  11.349 

CFH  11.163 

CASP4  10.923 

NR1H4  10.887 

AGTR2 10.83 

SCRG1  10.812 

CFI  10.493 

OGN  10.262 

  

Molecules (Down) Exp. Value 

WNT8A  -9.438 

TDGF1  -9.357 

ZSCAN10 -8.743 

LIN28A  -8.741 

HES3  -8.711 

IDO1 -8.682 

DPPA2 -8.403 

USP44  -8.043 

PRDM14 -8.039 

LECT1 -8.033 

 

Table 5.6A – List of Top Molecules that are upregulated (upper section) and 

downregulated (lower section) between undifferentiated Control iPS (C11) at day 0 and 

34 of neural induction. 

 

Consistent with AT30, we could detect statistically significant differential regulation of 

pathways involved with self-renewal and pluripotency; including ‘Transcriptional control of 
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pluripotency’ (Figure 5.6A, P-value 6.22E-4). Figures 5.6A illustrates downregulation of 

pluripotency factors including Sox2, Sall4, Oct4, Nanog and concordant upregulation of factors 

involved with differentiation including Activin A, Noggin, Lefty, Meis1 and Gata4.  

 

 

Figure 5.6B – ‘Transcriptional control of pluripotency’ pathway. P-value 6.22E-4. 

Genes colored red are upregulated, genes colored green are downregulated.  

 

As with analysis of AT30, IPA identified ‘Embryonic development – Development of body axis’ 

as being a significantly over-represented network (Figure 5.6B, P-value 3.57E-19) in the C11 

transcriptome after 34 days of differentiation. We again examined the expression of members of 

the Hox family (Table 5.6B). While we noticed highly similar levels of Hox gene expression, 

(Figure 5.6C) Hoxa2 (involved with hindbrain patterning) expression was noticeably absent in 

comparison to AT30. Despite this, we noticed comparable levels of Hoxb3 and Hoxb4. Given 

the role of Hox genes in anterior-posterior patterning and specification, these data suggest that 

after 34 days of neural differentiation, C11 and AT30 existed in slightly different developmental 

space. 
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Figure 5.6B – ‘Embryonic development – Development of body axis’ P-value 3.57E-19. 

Genes colored red are upregulated, genes colored green are downregulated.  
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Gene ID LogFC Gene 

ENSG00000253293 7.06931 HOXA10 

ENSG00000005073 8.252914 HOXA11 

ENSG00000106031 6.558066 HOXA13 

ENSG00000105997 5.920035 HOXA3 

ENSG00000106004 5.390647 HOXA5 

ENSG00000078399 4.650409 HOXA9 

ENSG00000253552 6.67837 HOXA-AS2 

ENSG00000159184 7.448134 HOXB13 

ENSG00000173917 4.499966 HOXB2 

ENSG00000120093 4.78546 HOXB3 

ENSG00000182742 5.042186 HOXB4 

ENSG00000108511 5.456975 HOXB6 

ENSG00000260027 7.01179 HOXB7 

ENSG00000120068 4.669538 HOXB8 

ENSG00000170689 4.715488 HOXB9 

ENSG00000233101 3.409145 HOXB-AS3 

ENSG00000198353 5.320818 HOXC4 

ENSG00000197757 4.965382 HOXC6 

ENSG00000037965 5.60361 HOXC8 

 

Table 5.6B - List of Hox genes and log-fold expression values differentially regulated 

between day 0 and 34 of neural differentiation in control iPS cells (C11). 
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 Figure 5.6C – Graph depicting relative expression (Log fold-change between 

undifferentiated iPS and day 34 differentiated neurons) of members of the Hox family. 

 

IPA analysis again showed ‘Embryonic development – Development of brain’ as a significantly 

altered pathway (Figure 5.6D, P-value 1.54E-8). Consistent with AT30 results we observed 

negative expression of Lhx5 and Otx2, genes involved with forebrain and mid/forebrain 

specification, respectively (lower right-hand side of figure 5.6D). Upregulation of the mid-

hindbrain specific transcription factor En1 was noted, however expression of Atoh1 (Math1) was 

noticeably absent, providing further evidence that although differentiated simultaneously using 

identical media formulations, AT30 and C11 showed some differences in end-state. Using IPA 

we examined the expression patterns of a number of molecules upstream of Atoh1 (Figure 5.6E) 

that were highly similar with the exception of Hes5, the basic helix-loop helix notch effector 

gene. Interestingly a recent study showed that knockdown of ATM homologue DNA-PK 

resulted in upregulation of Lmx1a activity resulting in biased regional specific neuronal 

specification [273]. 
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 Figure 5.6D – ‘Embryonic development – Development of brain’ P-value 1.54E-8.  

Genes colored red are upregulated, genes colored green are downregulated.  
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Figure 5.6E - Molecules upstream of ATOH1. Expression values are shown for AT30 

(left) and C11 (right) 

 

Hierarchical clustering and further characterisation 

 

Both IPA (Figures 5.5 & 5.6) and DAVID gene ontology (Tables 5.5A, B & C) analysis 

supported the theory that both C11 and AT30 cells had lost their pluripotent phenotype and 

acquired neuronal fates. DAVID gene ontology showed a strong enrichment for genes associated 

with ectoderm development, neurogenesis, synapse and tyrosine kinase signalling, and tissue 

similarity analysis showed the list of differentially expressed genes was closest to genes 

expressed in the brain. IPA analysis supported this assertion and provided the capability to 

examine specific pathways. For example, ‘Embryonic development – Development of Brain,’ 

was similar in both A-T and control genesets. While the majority of pathways that changed 

significantly over the course of the differentiation process were conserved between A-T and 

control, certain differences became apparent. For example A-T neurons showed significant 

upregulation of genes belonging to the ‘Embryonic development - Development of 

rhombencephalon’ pathway, whilst control neurons did not. We noticed that Math1 expression 

was much higher in A-T neurons than control.  It became apparent that it would be necessary to 

define more specifically which developmental space these cells had entered into, before 

performing comparisons between the two datasets. To this end, we compared our data to a range 

of existing sequencing and microarray datasets by performing hierarchal clustering of ranked 
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RPKM values of the Illumina Body map, the Allen Brain Atlas (ABA) early prenatal sample 113 

and our iPS-derived neurons. Figure 5.7A shows principal component analysis of DESeq2 

variance-stabilized RNA-seq data from undifferentiated iPSCs and from cells after 34 days of 

differentiation in comparison to a range of Illumina Body map samples. PCA shows that 

undifferentiated iPSCs (pink/green left-hand side) are highly similar to each other but clearly 

distinct after 34 days of differentiation (purple/dark green). Samples at this time point were 

distinct from all tissue samples (upper right-hand corner) but could be seen to be moving in a 

direction consistent with brain (black, right-hand middle). A bar plot shows the percentage of 

variance explained by the principal components (Figure 5.7B). 

 

 

Figure 5.7 – (A) Principal component analysis of DESeq2 variance-stabilized RNA-seq 

data from the day 0 iPS cells and neurons and the Illumina body map. (B) Bar plot of the 

percentage of variance explained by the principal components.  

 

Clustering (Figure 5.7C) shows that the transcriptome of iPS-derived neuronal cells (blue text) 

was most similar to that of brain and testes in the Illumina Body map (green text). The Allen 

Brain Atlas samples (red text) cluster away from both Illumina Body map and iPS-derived data, 

likely for technical reasons: both the Illumina Body Map and iPS-data were processed from 

reads to counts in a similar manner, while ABA data was downloaded as RPKM values from the 

ABA website, because raw data has not been publicly released. We could not reliably cluster our 
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datasets with data from the Developmental brain transcriptome, using various brain regions from 

several developmental time points presumably due to cross-species differences, cross-platform 

incompatibilities or major differences in transcriptome profiles between cultured cells/harvested 

tissues. This issue remains an ongoing challenge for the field to address.  

 

 

 

  

Figure 5.7C - Hierarchal clustering of ranked RPKM values of the Illumina Body map, 

the Allen Brain Atlas early prenatal sample 113 and iPS-derived neurons (Control, C11 

and ATM mutants, MC3/AT30). 

 

A common solution is to look at expression of a small number of important genes/transcription 

factors reported by the literature to make a call about cell-state and identity, which is what we 

have done and what is summarized in Figure 5.7D. Figure 5.7D depicts relative expression 

values for 10 such targets that are important markers of cerebellar identity, which we found to be 

well correlated (9 out of 10 genes were co-ordinately regulated). This list includes Atoh1 

(Math1), En1, Hoxb4, Isl1, Lhx9, Meis1, Meis2, Nfix, Reln and Shh.  We found all of these 
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genes, with the exception of Atoh1 to be similarly expressed in both C11 and AT30 and on this 

basis speculate that they exist in close developmental proximity to each other. Highly similar 

expression of members of the Hox gene family (Figure 5.6D) supports this notion. 

 

 

 

 

 

Figure 5.7D – Relative expression of ten genes critical to cerebellar development in C11 

and AT30. 

 

 Additionally we looked at expression of the genes reported to define these cell types by the 

authors of this protocol which we show are highly similar to our data. Figure 5.7 E depicts 

hierarchical clustering based on separation by sample type using Pearson correlation using 

RPKM data from Stemformatics. A genelist was assembled from genes reprorted to be expressed 

after cerebellar differentiation by Erceg et al., 2010 [131] at the transcript level. Figure 5.7F 

shows bar graphs representing this at the gene level, highlighting those that were statistically 

significant (log fold-change values are shown at the gene level). 
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Figure 5.7E - Hierarchical clustering based on separation by sample type using Pearson 

correlation using RPKM data from Stemformatics. Genelist was assembled from genes 

reprorted to be expressed after cerebellar differentiation by Erceg et al 2010 [131]. 

Dominant isoforms have been selected and displayed. 
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Figure 5.7F – Log fold-change gene expression values of statistically 

significantly differentially expressed genes using genelist compiled by 

 Erceg et al. 

 

It is likely given the overall expression patterns, and in particular those of En1, Meis1 and Atoh1 

that AT30 represents a developmental stage resembling that of the upper rhomblic lip, whereas 

C11 may be on the cusp of this, expressing a consistent array of cerebellar markers with the 

exception of Atoh1 and a greater degree of En1. Further supporting the theory that A-T neurons 

had reached a more terminally differentiated state can be seen in Figure 5.7E which shows 

elevated levels of Dcx, B-III-Tubulin, Zic1 and Cntn2, which are expressed in migrating granule 

neurons. 

 

 

It is impossible to draw conclusions about whether this apparent inconsistency in differentiation 

state is attributable to normal intrinsic differentiation potential, or ATM mediated, without 

differentiation and sequencing of further samples. We present an analysis of the remaining data 

with the caveat that an absolute quantitative assessment of the similarity is currently beyond our 
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means and that although these cells appear to be in close developmental proximity, we cannot 

rule out the possibility that differences we have uncovered may be due to differences in cellular 

identity. 

 

Pathway analysis between control and A-T neurons 

 

As described above, we performed differential gene expression analysis and gene set enrichment 

using IPA between day 34 A–T and Control neuronal inductions (Tables 5.8A and 5.8B 

summaraize the results of an IPA report). 

 

Top Networks   

Associated Network Functions  Score 

Nervous System Development and Function, Cell Morphology, Cellular 

Assembly and Organization  
41 

Embryonic Development, Organismal Development, Cellular Development  39 

Cell-To-Cell Signaling and Interaction, Nervous System Development and 

Function, Carbohydrate Metabolism  
39 

Nervous System Development and Function, Tissue Morphology, Embryonic 

Development 
38 

Embryonic Development, Endocrine System Development and Function, 

Nervous System Development and Function  
37 

Table 5.8A – Top networks identified as differentially regulated between AT30 and C11 

after 34 days of neuronal induction 
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Top Diseases and Bio Functions   

Diseases and disorders   

Name  p-value  # Molecules 

Cancer  2.69E-32 - 4.81E-04 813 

Respiratory Disease  8.12E-27 - 5.40E-04  528 

Hereditary Disorder  1.03E-26 - 3.79E-04  213 

Neurological Disease  1.03E-26 - 6.07E-04  389 

Psychological Disorders  1.03E-26 - 5.96E-04  301 

Molecular and cellular functions   

Name  p-value  # Molecules 

Cell-To-Cell Signaling and Interaction  6.72E-34 - 6.21E-04  226 

Cell Morphology  5.13E-19 - 6.21E-04  358 

Cellular Assembly and Organization  5.13E-19 - 6.21E-04  261 

Cellular Development  5.13E-19 - 5.59E-04  342 

Cellular Function and Maintenance  5.13E-19 - 3.78E-04  241 

Physiological System Development and Function   

Name p-value # Molecules 

Nervous System Development and Function  2.04E-34 - 6.07E-04 473 

Behavior 2.03E-33 - 6.07E-04 232 

Tissue Morphology 3.03E-28 - 5.59E-04 349 

Organ Morphology 3.20E-22 - 5.76E-04 234 

Tissue Development  2.54E-17 - 5.76E-04 368 

Top canonical pathways   

Name p-value # Molecules 

Glutamate Receptor Signaling  1.63E-08 19/71 (0.268) 

Axonal Guidance Signaling 5.57E-08 63/471 (0.134) 

Amyotrophic Lateral Sclerosis Signaling  1.08E-07 24/118 (0.203) 

CREB Signaling in Neurons  9.98E-07 32/206 (0.155) 

Cardiac b-adrenergic Signaling  3.76E-06 26/158 (0.165) 

 

Table 5.8B - Top Diseases and Biological Functions as determined by IPA. This table is 

broken down into four sections listing processes that are over/under represented in this 

dataset and include Diseases and disorders, Molecular and Cellular Functions, 

Physiological System Development and Function and Top Canonical Pathways. P-values 

and numbers of significantly dysregulated molecules within pathways are given. 

 

Table 5.8C shows a list of the top molecules that are upregulated (upper section) and 

downregulated (lower section) between A–T neurons (AT30) and control (C11) neurons at Day 
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34. Nnat (Neuronatin) regulates segment identity and ion channels during hindbrain 

development and may also be involved with positive regulation of insulin secretion as well as 

formation and maintenance of the nervous system. ZNF285 (Zinc Finger Protein 285) is a zinc 

finger protein putatively involved with transcriptional regulation. XIST (X-Inactive specific 

transcript) is involved in developmental silencing of the second X-chromosome in females 

(AT30 is from a female donor, whereas C11 is male). Atoh1 (Math1) is one of the major 

neurogenic factors involved in specification of granule cell progenitors. GSTT1 (Glutathione S-

transferase Theta 1) is an enzyme responsible for the conjugation of reduced glutathione with 

toxic substrates, aiding removal of these byproducts from the body. CNTN6 (Contactin 6) is a 

neuronal membrane protein functioning as a cell adhesion molecule that plays a role in the 

formation of axon connections during development of the nervous system. CAT (Catalase) 

encodes a critical antioxidant enzyme present in the peroxisome where it converts hydrogen 

peroxide to oxygen and water. H19 (Imprinteed maternally expressed transcript) expresses a 

non-coding RNA that has tumour suppressor roles. This gene is also imprinted, which may help 

explain its presence in this list. LDOC1 (Leucine Zipper, Down-regulated in Cancer 1) is thought 

to orchestrate the transcriptional response mediated by NFκB. HES5 (Hairy And Enhanced of 

Split 5) encodes a protein which is activated downstream of Notch, and is involved in cellular 

differentiation. 

 

Amongst the most lowly expressed transcripts were RPS4Y1 (Ribosomal Protein S4, Y-Linked 

1) encodes a ribosomal component of the 40s subunit. SLC15A4 (Solute Carrier Family 15, 

Member 4) is a proton oligopeptide cotransporter. MAGEA3/MAGEA6 (Melanoma antigen 

family A3/6) encode members of the MAGEA family that enhance ubiquitin ligase activity of 

RING-type zinc finger-containing E3 ubiquitin-protein ligases and are speculated to have a role 

in embryonal development. KDM5D (Lysine (K)-Specific Demethylase 5D) is an enzyme that 

specifically demethylates K4 of Histone H3. EIF1AY (Eukaryotic Translation Initiation Factor 

1A Y-linked) is involved with ribosomal subunit assembly/binding. USP9Y (Ubiquitin Specific 

Peptidase 9, Y-linked) functions as a ubiquitin-protein or polyubiquitin hydrolase and may be 

involved with protein turnover. It is a component of the TGF-beta/BMP signaling cascade with 

roles in deubiquitination of SMAD4. HLA-DRB5 (Major Histocompatability Complex, Class II, 
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DR Beta 5) plays a role in the immune system by presentation of peptides from extracellular 

proteins. C9orf64 (Chromosome 9 Open Reading Frame 64) encodes a protein of unknown 

function belonging to the member of the DUF2419 family and predicted to have a role in the 

peroxisome. LOC100287163/ZNF717 (Zinc Finger Protein 717) is a zinc finger protein with 

unknown functionality. PCDH11X/PCDH11Y (Protocadherins 11X&Y) play important roles in 

cell to cell recognition during segmental development and function of the CNS. 

 

Top Molecules  

Molecules  Exp. Value  

NNAT  10.764 

ZNF285 10.258 

XIST  9.873 

ATOH1  9.599 

GSTT1  9.4 

CNTN6  7.988 

CAT  7.404 

H19 7.03 

LDOC1  6.658 

HES5  6.6 

  

RPS4Y1  -9.703 

SLC15A4 -8.987 

MAGEA3/MAGEA6*  -8.829 

KDM5D  -8.672 

EIF1AY -8.268 

USP9Y -7.782 

HLA-DRB5  -7.439 

C9orf64  -7.27 

LOC100287163/ZNF717 -6.882 

PCDH11X/PCDH11Y -6.006 

Table 5.8C – List of Top Molecules that are upregulated (upper section) and 

downregulated (lower section) between A–T neurons (AT30) and control (C11) neurons 

at Day 34.  

 

IPA identified the top 5 differentially expressed network functions between AT30 and C11 after 

34 days of neural differentiation to include; ‘Nervous System Development and Function, Cell 
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Morphology, Cellular Assembly and Organization’, ‘Embryonic Development, Organismal 

Development, Cellular Development’, ‘Cell-To-Cell Signaling and Interaction, Nervous System 

Development and Function, Carbohydrate Metabolism’, ‘Nervous System Development and 

Function, Tissue Morphology, Embryonic Development’ and ‘Embryonic Development, 

Endocrine System Development and Function, Nervous System Development and Function’.  

 

ERK 1 /2 is one of the central genes annotated to the ‘Nervous System Development and 

Function, Cell Morphology, Cellular Assembly and Organization’ network. Interestingly a 

number of transducers of ERK1/2 are heavily upregulated (GPRIN1, GPRIN2, NELL2, GNAZ, 

SHC4, LRRN1, TMEFF2, ZNF300 & PTPRZ1). ATM has been shown to regulate ERK1/2 [274]. 

In addition, chronic activation/phosphorylation of ERK1/2 has been implicated with loss of 

ATM and linked to the redox imbalance that is suspected to play a part in the pathogenesis of A–

T [275]. This pathway also featured upregulation of a number of potassium channels (KCNAB1, 

KCNA1, 2&3). Aberrant activity of potassium channel activity is common in a number of 

neurodegenerative disorders and has previously been shown in ATM deficient cells [276].  

 

 ‘Cell-To-Cell Signaling and Interaction, Nervous System Development and Function, 

Carbohydrate Metabolism’ was statistically significantly dysregulated. Intriguingly, the GPCR 

(G-protein couple receptor) family of molecules is heavily featured. A unique GPRC, G2a was 

found to act as an anti-proliferative cell cycle regulator and respond to various DNA damaging 

agents in a fashion similar to ATM [277]. Two important neurotransmitter receptors (GRM – 

Glutamate receptor metabotrophic 3) and GABBR2 (Gamma-aminobutyric acid (GABA) B 

receptor 2) were upregulated. Aberrant expression levels and activity of neurotransmitter 

receptors has been associated with neurodegeneration in a number of cases [278]. 

 

Nervous System Development and Function, Tissue Morphology, Embryonic Development’ 

showed Myc, a critical signal transducer and orchestrator of cell cycle, to be upstream of a 

number of genes which were misexpressed between A–T and control neurons including DCX, 

SEMA4A, HES5, & AKAP6.  The Myc genes have been previously shown to be required for 

proper growth and development of the brain [279]. MYC was recently shown to be required for 
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the activation of ATM-dependent checkpoints as part of the DNA damage response [280]. XIST 

appears in this pathway network, however its appearance can be explained by the fact that C11 

and AT30 are from individuals of different gender. It is widely understood that there are sex-

specific differences largely brought about by incomplete or erased X-inactivation [281]. For this 

reason it may be pertinent to perform sex-matched differentiation experiments. 

 

Given the assumption that the majority of the differences encapsulated by this pathway analysis 

should reflect the differences between individuals with functional/non-functional ATM, we were 

particularly interested in gene expression differences captured under the top predicted Diseases 

and Disorders by IPA, namely ‘Neurological Disease’ (P-value 1.03E-26-6.07-04). Functionally 

annotated groups within this classification included ‘Movement disorders’ (Figure 5.8A, P-value 

3.08E-26), ‘progressive motor neuropathy’ (Figure 5.8B, P-value 4.25E-09), ataxia (Figure 

5.8C, ‘ataxia’) and ‘cerebellar ataxia’ (Figure 5.8D, P-value 3.68E-04). Given the fact that A–T 

is primarily a disease of the cerebellum, and that motor control is severely affected, these lists 

may potentially contain targets that help explain the mechanism of neurodegeneration and 

targets that may be amenable to therapeutic intervention. We examined which constituents in 

these lists that were directly annotated as interacting with ATM, of which there were several, 

including; Tdp1, Tp53, Vimentin and Pcna. Tdp1 (Tyrosyl-DNA phosphodiesterase 1) has a role 

in repair of stalled topoisomrease I-DNA complexes. ATM deficiency has recently been linked 

with an accumulation of DNA–Topoisomerase I covalent intermediates in neural cells [282]. 

Additionally Tdp1 has been shown to have roles in defense against oxidative damage [283]. 

Interestingly, mutation of Tdp1 gives rise to the disorder SCAN1 (Spinocerebellar ataxia with 

axonal neuropathy) [284], striking in its similarity to A–T. Tp53 is a well known substrate of 

ATM and critical tumor suppressor that has been described to have roles in developmental 

apoptosis in specific brain regions, including the cerebellum [285]. Vimentin is a member of the 

intermediate filament (IF) protein family. It is expressed in neuronal and glial precursor cells 

during nervous system formation. Interestingly, Vimentin knock-out mice show poorly 

developed and abnormal Bergmann glia and stunted Purkinje cell growth [286]. These findings 

implicate Vimentin in the proper development of the cerebellum. Pcna (Proliferating cell nuclear 
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antigen) is an enzyme that is involved with both DNA synthesis and repair. ATM was recently 

shown to interact with PCNA [287], perturbation of which has been implicated with A–T [288]. 

 

 

 

Figure 5.8A - IPA identified the network functions associated with ‘Neurological 

Disease – Movement disorders’ as significantly differentially expressed between 

AT30 and C11 after 34 days of neural differentiation. Molecules in green are 

downregulated, red are upregulated.  
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Figure 5.8B - IPA identified the network functions associated with ‘Neurological 

Disease – progressive motor neuropathy’ as significantly differentially expressed 

between AT30 and C11 after 34 days of neural differentiation. Molecules in 

green are downregulated, red are upregulated.  
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Figure 5.8C - IPA identified the network functions associated with ‘Neurological 

Disease - ataxia’ as significantly differentially expressed between AT30 and C11 

after 34 days of neural differentiation. Molecules in green are downregulated, red 

are upregulated.  
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Figure 5.8D - IPA identified the network functions associated with ‘Neurological 

Disease – cerebellar ataxia’ as significantly differentially expressed between 

AT30 and C11 after 34 days of neural differentiation. Molecules in green are 

downregulated, red are upregulated. 

 

The top four listed differentially regulated canonical pathways were ‘Glutamate Receptor 

Signaling’ (P value = 1.63E-08), Axonal Guidance Signaling (P-value = 5.57E-08), Amyotrophic 

Lateral Sclerosis Signaling (P-value 1.08E-07) & CREB signaling in Neurons (, P-value 9.98E-

07). The observation of extensive upregulation of numerous constituents of the ‘Glutamate 
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receptor signaling’ pathway indirectly supports the recent observation that GABAergic neurons 

are under-represented in the absence of ATM [212]. 

 

 ‘Axonal guidance signaling’ pathway, was found to be statistically significantly different after 

34 days of neuronal differentiation between C11 and AT30. It has been shown that loss of ATM 

causes reduced dendrite numbers and complexity in cerebellar Purkinje cells. Interestingly this 

has been attributed to accumulation of ROS, with the observation that treatment with antioxidant 

could partially restore this phenotype [101]. In support of this theory we note the upregulation of 

the CATALASE enzyme (7.404 log-fold) as well as GSTT1 (9.4 log-fold). 

 

CREB signaling (identified as differentially regulated between AT30 and C11) is driven largely 

by nuclear calcium levels and vitally important for survival and signaling in neurons [289]. 

ATM has been linked with CREB signaling in biochemical assays using leukemia cell lines 

[290] and SH-SY5Y neuronal cells [291]. 

 

Interstingly, the processes annoted to ‘Cell to cell signaling & interaction’ were significantly 

differentially expressed (p-value 6.72E-34 – 6.21E-04). Further investigation of this revealed A–

T neuronal cells to exhibit differential regulation of genes involved with the processes annotated 

to ‘Long term potentiation’ (Figure 5.8E, p-value –log 13.514). This is in keeping with a recent 

paper to explore the role of cytoplasmic ATM in the modulation of synaptic function in neurons 

[7]. Li et al. demonstrate a physical role for ATM in the phosphorylation of vesicle proteins 

VAMP2 & SYNAPSIN-1 and show that hippocampal LTP is significantly impaired in the 

absence of ATM. 
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Figure 5.8E - IPA identified the network functions associated with ‘Cell to cell 

signaling & interaction – Long term potentiation’ as significantly differentially 

expressed between AT30 and C11 after 34 days of neural differentiation. 

Molecules in green are downregulated, red are upregulated.  

 

 

Dynamic differentiation-associated changes in non-coding RNA 

Approximately 150 GENCODE-annotated lincRNA and ~130 processed transcripts (which are 
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defined as RNAs that overlap with coding genes but do not contain an open reading frame) were 

also found to be differentially expressed in the course of neuronal differentiation (See Figure 

5.9A & B for volcano plots). We limited our analysis to ncRNAs that were differentially 

expressed in common between C11 and AT30 after 34 days of neuronal differentiation. This 

included down-regulation of known pluripotency-associated transcripts such as linc-RoR (> 

1200x downregulated) and DANCR (>3x downregulated). linc-ROR is a miR-145 sponge 

expressed in pluripotent cells; it serves as a decoy for miR-145, which is involved in OCT4, 

NANOG and SOX2 repression in development [292]. Levels of the corresponding pre-miRNA 

(pre-miR-145) were also upregulated over 120 times in the course of differentiation. 

Differentiation-antagonizing long non-coding RNA (DANCR) has been characterised as critical 

for maintaining the potency of keratinocyte progenitors [293] and is strongly down-regulated in 

osteoblast and adipocyte differentiation in the ENCODE datasets [293]; the current study is the 

first to report of its downregulation in a neuronal differentiation paradigm.  
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Figure 5.9A – Volcano plot depicting differentially expressed non-coding RNAs in 

AT30 after 34 days of neural differentiation. 
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Figure 5.9B – Volcano plot depicting differentially expressed non-coding RNAs in C11   

after 34 days of neural differentiation. 

 

 

The most strongly down-regulated ncRNA was LINC00371, which was expressed in iPS cells 

and nearly undetectable (1 read in only one of the 6 libraries) in differentiated neurons. This 

transcript resides on chromosome 13, <2kb upstream of the GUCY1B2 gene; H3K27Ac data 

from ENCODE suggests its transcription is regulated independently of the lincRNA transcript 

(see Figure 5.9C). No information about roles for the enzyme or the adjacent lincRNA in the 

nervous system or maintenance of pluripotency has been described.  
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Figure 5.9C– ncRNA LINC00371 was the most strongly down-regulated ncRNA after 

34 days of neural differentiation. 

 

 

One of the most strongly down-regulated transcripts was RP11-69I8.2, a previously 

uncharacterized lincRNA located in the ENPP1-CTGF locus on chr6 (see Figure 5.9D).  

 

 

Figure 5.9D - RP11-69I8.2, a previously uncharacterized lincRNA located in the 

ENPP1-CTGF locus on chr6 was one of the most strongly down-regulated transcripts 

after 34 days of neural differentiation 
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Connective tissue growth factor (CTGF) has recently been shown to modulate interneuron 

survival in the mouse olfactory bulb [294], and was >2x upregulated with differentiation 

(significant only in the edgeR analysis) in both the control and A–T cells. 

Similarly to a study from the Lachman group [295], who characterised the transcriptome of 

undifferentiated human iPS and cells following 10 days of neuronal differentiation toward a 

glutamatergic phenotype, strong down-regulation of the AC005062.2 lincRNA and its proximal 

metastasis-associated in colon cancer 1 (MACC1) gene were observed. MACC1 regulates cell 

proliferation by modulating the transcription of MEF, the receptor of hepatocyte growth factor 

HGF [296]. Similarly to this study, strong upregulation of the HOTAIRM1 lncRNA was also 

observed. 

 

The strongest upregulation (>1000x) was observed for two poorly annotated, multi-exon 

lincRNA transcripts: RP11-123O2.2 and LINC00968, for which no previous reports of neuronal 

function or expression exist.  

 

The most strongly upregulated (>150x) annotated lncRNA was FENDRR (fetal-lethal noncoding 

developmental regulatory RNA/FOXF1 adjacent non-coding developmental regulatory RNA), a 

transcript identified in a screen for non-coding RNAs crucial for heart development and 

expressed specifically in cardiac mesoderm progenitor cells [297, 298]. Knockout of this RNA 

was found to cause embryonic lethality because of defects in lateral plate mesoderm resulting in 

omphalocele and reduced ventricle wall thickness in the heart; the molecular basis of these 

defects was shown to be a reduction in the expression of FOXF1, IRX3, and PITX2, critical 

mesoderm lineage specification genes, due to reduced levels of H3K4me3 at their promoters. 

Intriguingly, FENDRR was found to bind the TrxG/MLL component WDR5, which is known to 

be required for binding of the methyltransferase complex to H3K4me2 and for global H3K4 

trimethylation [299], and the promoter regions of FOXF1 and PITX2 in a DNA-RNA triplex-

helical configuration [297].  

 

FOXF1 and PITX2 were strongly upregulated after 34 days of differentiation (8x and 60x, 
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respectively), and while PITX2 has a well-characterised role in the development of neurons in 

the mouse subthalamic nucleus and midbrain; [300, 301], its role in the cerebellum is unknown. 

Mutations in PITX2 cause Axenfeld-Rieger syndrome, a heterogenous disorder that in some 

cases can be associated with cerebellar abnormalities [302]. The highest levels of PITX2 in a 

transcriptomic study of discrete human brain regions were detected in the early rhombic lip, 

followed by the mediodorsal nucleus of thalamus and dorsal thalamus (see Figure 5.9E).  

 

 Figure 5.9E – Expression levels of PITX2 from human brain  

 

FOXF1 is expressed in the developing cerebellum and early low-resolution studies report its 

expression in astrocytes of both the cerebral and cerebellar cortex [303]; to our knowledge, no 

other studies describe the presence or function of this gene in the nervous system. 

Transcriptomic analysis shows dynamic changes in the expression of this gene in cerebellar 

development (Figure 5.9F), as well as across other brain regions (Figure 5.9G).  
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Overall, FOXF1 and PITX2 genes appear to be differentially expressed in our dataset and in 

multiple regions and developmental stages of the mouse and human brain, supporting the notion 

that we have generated neuronal precursors of the cerebellum. 

  Figure 5.9F - Expression of FOXF1 in cerebellar developmental datasets.  
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 Figure 5.9G - Expression of FOXF1 in other brain regions. 

 

 

Overall, while a handful of the differentially expressed lncRNAs observed have been 

characterised and are discussed above, the majority remain poorly understood and await detailed 

functional studies to explore their roles in the nervous system and contribution to neurological 

disease. We provide evidence for the existence of several novel ncRNAs in our differentiated 

cells and also point to activity of a number of existing ncRNAs known to be involved with brain 

& cerebellar development in vivo. 

 

Differential expression of small RNA precursors 

 

Among the most strongly down-regulated pre-miRNAs were the precursor transcripts of miR-

145, described above, and the miR-17-92 cluster host gene. miR-17-92 family members are the 
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most highly expressed miRNAs in medulloblastoma [304], and are associated with a 

constitutively activated Sonic Hedgehog signalling pathway [305]. Knockout of this cluster has 

recently been shown to maintain the potency of radial glial cells in the cortex and prevent their 

differentiation into intermediate progenitors [306]. Functionally relevant targets of these 

miRNAs in the cerebellum remain to be identified.  

 

The precursor transcripts of miR-137, miR-22 and miR-143 were strongly upregulated with 

differentiation. miR-137 has previously been found to be enriched in the neuronal lineage in the 

dentate gyrus and molecular layer of the mouse hippocampus [307] and in synaptosomes 

isolated from rat forebrains [308] and is required for a proper balance between proliferation and 

differentiation of adult neural stem cells due to its role in modulating global H3K27me3 levels 

via post-transcriptional repression of the Polycomb group protein EZH2 [307]. miR-22 was 

shown to have a similar expression pattern in the cerebellum during mouse development as the 

bone morphogenic proteins BMP2 and BMP4, which inhibit the SHH-induced proliferation of 

cerebellar granule neuronal precursors [309], and to significantly increase cell cycle length in 

this system. Reduced levels of miR-22 have been found in the brains of Huntington’s and 

Alzheimer’s disease patients [310, 311], and its overexpression suppresses neurodegeneration in 

primary rat cortical neuronal cultures [310]. miR-143 has been found in nociceptive dorsal root 

ganglia neurons, and was down-regulated in response to inflammatory cytokines in this model 

system [312].  

 

Analysis of both the coding and non-coding transcriptomes differentially regulated in 

development support the hypothesis that cerebellar-like neuronal cells have been generated, and 

that use of this human iPSC-derived model system is useful for interrogating novel cerebellar 

transcripts in a human neurological context. 

 

RNAseq analysis validation - transcript analysis as a measure of differentiation status 

 

The major finding of our cerebellar differentiation experiment (which featured differentiation of 

iPS cells from one A-T patient (AT30) and one control (C11) in technical triplicate) was that 
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these cells had lost their pluripotent phenotype and made a transition to a neuronal-like state. We 

describe results from several methodologies (gene ontology analysis, principal component 

analysis, hierarchical clustering based on published/reported genelists and manual 

curation/biological introspection) supporting the conclusion that these cells resembled those of 

the developing cerebellum and that these stages were subtly distinct from one another.  Although 

we noted a core subset of genes annotated to hindbrain/cerebellar development that were co-

ordinately regulated between A-T and control samples, it was evident that there were differences 

in terminal differentiation state after identical treatment.  

 

While global gene expression signatures showed a brain-specific pattern (Fig 5.7A, Table 5.5C), 

they failed to be useful in ascertaining precise spatio-temporal identity. Strong expression of a 

number of prominent markers was used to theorize about this status (Fig 5.7D). Specifically, we 

noted similar expression levels of Engrailed1 (1.73/5.73 LogFC A-T/Control respectively) and 

Hoxb4 (4.50/5.00 LogFC mRNA between A-T and control) differentiation experiments. While 

expression of more mature cerebellar marker Pax6 (2.81/2.89 LogFC A-T/Control respectively) 

was also expressed similarly, the rhombic lip progenitor marker Math1 was expressed at 

markedly higher levels in A-T neurons, relative to control neurons (5.08 LogFC /negligible in 

controls). We interpret this to mean that differentiation may have proceeded at a different rate in 

A-T cells relative to controls.  

 

Whilst the sample size is small and it is known that differentiation kinetics can vary largely 

[313], we examined the concept that A-T neurons might be poised to differentiate at a noticeably 

different rate to controls.  We performed differentiation using the aforementioned protocol on a 

further three control and three A-T iPSC lines (sex-matched donor lines were used to control for 

potential differentiation bias inherent to gender).  

 

A qPCR experiment was designed to test the hypothesis that expression of transcripts 

informative to differentiation status during early (Engrailed1/Hoxb4) and late differentiation 

(Math1/Pax6) would be distinct between control and A-T samples. Primers were designed to 

span exon-exon boundaries to exclude the possibility of genomic DNA contamination 
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contributing to PCR signal, as well as DNase treatment of RNA. Primer efficiencies were 

calculated using pooled cDNA libraries. Melt curves indicated primers were specific via the 

presence of a sharp peak. A minus Reverse transcriptase and no template controls were included 

to control for reaction contamination/specificity. Nil/negliglbe levels of transcript could be 

detected from cDNA generated from undifferentiated pluripotent stem cells but could be 

detected from E16 BL6 mouse cerebellum (a kind gift from Dr Conor O’leary).  Sequencing data 

for differentiated/undifferentiated cells was consulted to inform on suitable housekeeping primer 

design. ACTB and GAPDH were chosen given their steady expression at both time points 

(primer sequences are listed in appendices).   

 

Figure 5.9H (panel A) shows comparable expression of Engrailed1 mRNA in all six 

differentiated cell lines (no significant differences One way ANOVA, Kruskall-Wallis test with 

multiple comparisons). We observed a similar pattern with respect to Hoxb4 transcript (Panel B). 

Interestingly, H9b showed strong much lower expression of Engrailed1 but strong expression of 

Math1 and Pax6 (panels C & D), indicating this cell line had differentiated further than others. 

Results were pooled by genotype and reassessed using independent statistical methodology (not 

shown), of which the conclusions were the same. 
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Figure 5.9H- qPCR data shows expression of mid-hindbrain specific genes (A) 

Engrailed1, (B) Pax6, (C) Hoxb4 and (D) Math1 after 34 days of differentiation. 

Transcript was not detected or detected at negligible levels in undifferentiated stem cells 

(D0) and also no template controls (not shown). –R T controls are shown for Pax6 and 

Hoxb4. Data has been normalized to ACTB and GAPDH. Error bars show SEM from 

three independent experiments. A one way ANOVA (Kruskall-Wallis test) with multiple 

comparisons was used to ascertain statistical significance. 

 

 

Taken together we interpret this data in several regards - firstly, we have validated that our 

differentiation process is reproducible in its ability to induce expression of key markers of the 

developing mid-hindbrain region in an independent differentiation procedure. These markers 

were detected in positive control tissue, but not undifferentiated stem cells. We observed that 

while the majority of differentiated cell lines tested expressed Engrailed1 and Hoxb4 at 
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comparable levels, one cell line showed much stronger expression of more mature markers 

Math1 and Pax6. Given that Math1 and Pax6 are expressed in granule cell 

progenitors/developing granule neurons, we speculate that H9b represents cells that have 

differentiated to this stage. Importantly, this shows a strikingly similar pattern of expression 

(albeit simplified to four key markers) to that observed during RNA sequencing experiments. 

This suggests that observed differentiation bias was likely not due to ATM status or gender bias, 

and most probably due to innate differences in differentiation propensities between cell lines. 

Both of these studies highlight the need for large sample sizes and informative benchmarks or 

checkpoints to standardize differentiation procedures across experiments and indeed cell lines in 

the same experiment.   

 

Discussion 

 

The primary utility of induced pluripotent stem cells is to model aspects of a given disorder. This 

area of the field is in its infancy but developing rapidly. The relative ease with which iPSCs are 

generated in comparison to derivation of hESCs has made pluripotent stem cells accessible to 

many laboratories. Similarly, the ethical impediments associated with obtaining and working 

with such cells are far fewer and the capacity for disease modeling is extensive. Directed 

differentiation protocols capable of generating a range of cell and tissue types that encapsulate 

broad and complex genetic backgrounds, are currently being optimized and employed to 

establish disease models and drug screening platforms for many neurological diseases.  

 

We set out to ascertain whether it was possible to generate neuronal cell types resembling those 

that are affected in A–T, namely Purkinje and granule cells of the cerebellum. Several groups 

previously have managed to generate cerebellar-like cells from murine ESCs, while only one 

group has used human pluripotent stem cells, however these protocols are rudimentary. We 

combined and optimized these protocols to produce neuroepithelial cells exhibiting gene 

expression patterns highly reminiscent of the developing mid-hindbrain signaling center and 

further, to generate hindbrain neuronal cells at high efficiency, as marked by the transcription 

factors EN1 and GBX2. We showed that it was possible to generate cells that exhibited 
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expression of transcription factors marking the two major lineages of cerebellar progenitor 

(MATH1 & PTF1α), which give rise to granule cells and Purkinje cells respectively, in vivo. 

Following further differentiation, these cultured cells developed morphological characteristics of 

immature granule cells and expression of granule cell markers such as PAX6, B-III-TUBULIN 

and ZIC1. Using standard culture conditions we were unable to isolate the putative Purkinje cells 

or culture granule cells for extended periods of time, demonstrating that further optimization of 

growth factor regimes and modification of the microenvironment remains to be achieved. This is 

in keeping with recent work by Muguruma et al. who demonstrated that after isolation of 

NEPH3 positive Purkinje cell precursors, growth in conventional high-density culture settings 

showed gradual cell death and failure to express late Purkinje cell markers such as L7 and 

calbindin [220]. An approach utilizing feeder layers or 3d scaffolds resembling ECM features of 

the developing cerebellum may assist in this regard by providing cues which are critical for 

processes such as neuronal activity, migration and maturation. Nevertheless, this work is, to our 

knowledge the only exemplification of a cerebellar disease being modeled in iPSC-derived 

cerebellar-like cells. 

 

We performed RNA sequencing on control and A–T neuronal inductions, as well as their 

respective undifferentiated counterparts. Sequencing quality control indicated a high level of 

sequence coverage and a robust and reliable dataset with tight experimental replicates.  

 

Over the course of the differentiation both AT30 and C11 downregulated pluripotency genes and 

upregulated neural commitment, anterior/posterior patterning gene programs. More specifically, 

after 34 days of differentiation both cell lines exhibited expression of a number of well 

characterized genes driving cerebellar development which were highly coordinately regulated, 

such as Isl1, Meis1, Shh, Reelin, Lhx9 and Nfix. Expression of members of the Hox gene family 

were tightly regulated providing further evidence that control and A-T cells existed in a similar 

developmental space. We noted several important exceptions to this, namely the absence of 

expression of Atoh1 and Hoxb4 expression in C11 control iPSCs after 34 days of differentiation 

leading us to theorize that C11 may represent a more immature cerebellar neuronal progenitor 

than AT30. It should however be noted that we detected widespread activity of downstream 
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ATOH1 targets in both C11 and AT30 when comparing our gene expression data with a recently 

published ATOH1 targetome dataset [314].This may be attributable to the fact that ATOH1 

targets can build up in the absence of ATOH1 to sufficient levels to sustain the differentiation 

process of the developing cerebellar cortex alone [314, 315].   

 

 We observed a number of non-coding RNAs and small miRNA precursors that are known to be 

expressed in the developing cerebellum in vivo, supporting the claim that we had generated 

cerebellar precursors.  

 

We observed a number of differences when comparing the day 34 transcriptomes of AT30 and 

C11. Interestingly, IPA predicted with high confidence gene expression patterns indicative of 

neurological disease, and in particular progressive motor neuropathy and cerebellar ataxia, major 

hallmarks of A–T. This exemplifies the concept that iPS cells can be used for disease modeling 

purposes and presents a unique window of human brain development, which has not been 

previously investigated. We were able to detect gene expression evidence that is congruous with 

a number of theories based on other cellular systems and animal models regarding the nature of 

the neurodegeneration in A–T. These include the commonly held theory [180, 316] that ROS 

levels are misregulated and adversely affect the cerebellum – Indeed in our dataset two of the 

most highly upregulated genes in A–T neuronal cells were GSTT1 and CATALASE, important 

factors in the clearance of damaging ROS intermediates. In contrast to current hypotheses our 

data suggest that this may be an early event in the development of the cerebellum, rather than a 

progressive accumulation that affects the brain later in life.  In further support of this, we noticed 

misregulation of a number of ERK1/2 substrates. This is significant because ERK1/2 is critical 

in maintaining redox balance, and is a known target of ATM [275].  

 

The equally prevalent notion that ATM maintains genomic fidelity of neural precursors and 

resulting progeny during development was represented in our dataset as well. We detected 

significant downregulation of a number of MYC substrates. MYC is required for activation of 

the ATM dependent DNA damage response and also critically required for neurogenesis [279, 



269 

 

280]. Further to this, we detected differential regulation of Tp53 and Pcna, two important 

transducers of DNA damage and regulators of cell cycle control. 

 

A recent study implicated cytoplasmic ATM in the regulation of long-term potentiation and 

vesicular release in cultured neuronal cells. Our expression profiling supports this notion by 

revealing significant changes in the network constituents governing the process of Long-term 

potentiation. While Li et al. [7] showed this defect in cultured Hippocampal neurons, our data 

suggest that this phenomenom extends also to cerebellar neurons, however this will require 

functional studies to confirm. 

 

In contradiction to a report from Oka & Takashima [13], we noticed downregulation of Atm 

during differentiation (however it should be noted that this is relative to Atm expression in 

pluripotent stem cells). Further studies with the A–T iPSCs generated in this thesis would benefit 

greatly from sequencing at multiple developmental time points. It is important to examine the 

kinetics of Atm activity, as if a sharp peak in Atm expression could be identified and correlated 

with a particular developmental event, this may shed light on the origin and onset of this disease. 

 

The capacity for using iPSCs for discovery of novel disease phenotypes and the molecular 

mechanisms underlying these events is promising, however in the current study we contended 

with the issue of low replicate number and the resulting underpowered statistical significance.  

Another major confounding factor centered on the comparison of a slightly different, and not 

fully defined, population of cells. Nevertheless a number of interesting and novel candidates for 

involvement in cerebellar neurodegeneration in A–T were prominent and warrant further 

validation. These included aberrant regulation of glutamate receptor signaling, CREB signaling 

and axonal guidance pathways. Interestingly, Carlessi et al. [212] showed neuronal 

differentiation bias after ATM knockdown with neuronal progenitors consistently producing 

fewer GABAergic neurons. Although we did not quantify the ratios of GLUTAmatergic to 

GABAergic neurons, the fact that we observe extensive upregulation of genes involved with 

glutamate receptor signaling may support the notion that such a bias also exists in our cultures. 

One of the most highly differentially expressed genes between A–T and control neurons was 
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Hes5, the basic helix-loop helix notch effector gene. A recent study shows knockdown of DNA-

PK to result in upregulation of Lmx1a activity resulting in biased regional specific neuronal 

specification, in which Hes5 was implicated [273]. It would be interesting to validate the 

proportions of neuronal progenitors at various timepoints throughout differentiation to see if 

such a bias exists in the absence of ATM, however this will require a greater degree of 

understanding regarding the temporal expression of cell-surface markers which delineate 

specific neuronal sub-populations, work currently underway in the Wolvetang laboratory. 

 

This dataset provides a rich resource for examining neuronal specific isoforms and splicing 

events, which may be perturbed in the absence of ATM. We are pursuing both these aspects 

aswell as the behaviour of repeat elements such as LINE1, however this extends beyond the 

scope of this thesis and here we have focused on differential gene expression analysis. 

 

These data are a valuable resource for researchers to formulate and test hypotheses regarding the 

early developmental events that occur in the absence of ATM. It does however represent only a 

snapshot in time and ideally, further timepoints, clones and patients/ATM mutants should be 

sequenced in order to garner more statistical confidence. Isogenic controls, generated using 

technologies such as TALENs or CRISPRs may help reduce biological variability in terms of 

background genetic differences and differenetiation potential. We hope that this dataset may also 

be used to obtain some insight into the origins of A–T and also reveal clues about what may 

constitute suitable conditions for the further growth and expansion of cerebellar neurons that 

could be used for drug screening to ameliorate symptoms associated with A–T.  
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6.0 Discussion and future direction 

Since the advent of the iPS cell [16], research into development and disease has undergone a 

renaissance. Previously, researchers relied on tools such as fibroblasts/lymphoblastoid cell lines, 

animal models and pathological tissue to answer basic research questions. Now, with relative 

ease, iPSCs can be generated from patients with various diseases. These cells reflect the complex 

genetic background of a given disease and supercede models that may aim to knock down or 

abolish gene or protein activity with variable efficiency. Pluripotent stem cells provide insight 

into early developmental events that may precede the onset of disease, such as the loss of 

genomic integrity, dysregulation of pathways that govern pluripotency leading to differentiation 

bias, defective autophagy/mitophagy or other biochemical abnormalities [40, 143, 146, 147]. If 

the currently accepted hypothesis holds true, that iPSCs are functionally equivalent with hESCs, 

these models allow researchers to interrogate happenings from a very early time point of human 

development – the development of the blastocyst.   

 

We reported the first generation of iPSCs from patients with Ataxia–Telangiectasia using a 

lentiviral-based methodology [147]. Subsequent similar reports have followed [190, 196]. 

Following this, we generated iPSCs from A–T patients using integration-free technologies 

(Unpublished data – Jian Sun). Non-virally generated iPSCs from A–T patients did not show a 

large difference in reprogramming efficiency indicating that the response to the viral 

transduction itself may have been responsible for the impaired reprogramming kinetics initially 

observed (data not shown). A–T is a disease with an unknown underlying etiology and no 

current effective treatment, thus making it an excellent candidate for the establishment of a 

pluripotent stem cell model. 

 

Given the role for ATM in the maintenance of genomic fidelity, we used iPSCs generated from 

patients with A–T to study several aspects related to this. A large proportion of the current 

understanding within this area is reliant on data generated from cellular models such as 

fibroblasts and lymphoblastoid cells and as such, represents a snapshot of a much larger picture. 

In recent times, and as use of pluripotent stem cells grows more mainstream, interest has shifted 

to understanding the pathways and mechanisms that govern the maintenance of genomic fidelity 
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in pluripotent stem cells and their resulting progeny. As pluripotent stem cells give rise to the 

cells and tissues that completely constitute an organism, the burden to maintain a stable genome 

is paramount. As a result of this, expression of DNA damage repair and signaling genes are 

heavily upregulated [79, 82, 83]. ATM was shown to activate signaling pathways in embryonic 

stem cells [79, 81] and to be required for arrest at the G2M phase of the cell cycle after treatment 

with IR [15, 80]. We have shown this to be the case for iPSCs also, demonstrating that in iPSCs 

ATM undergoes activation by autophosphorylation at Serine 1981 and signals to downstream 

substrates involved with DNA repair and cell cycle control. We showed this process to be 

defective in iPSCs generated from A–T patients [147]. Similarly we demonstrated that unlike 

iPSCs from control individuals, A–T iPSCs were resistant to damage-induced G2M arrest and 

also exhibited radioresistant DNA synthesis. Although we used IR to illicit this response, an 

agent that may not necessarily occur during embryonic development, this concept represents a 

paradigm which supports the theory that loss of ATM may lead to accumulation of stem cells 

harboring unchecked genetic abnormalities. 

 

There is compelling evidence that ATM is redundant for the repair of DNA damage and 

maintenance of genomic fidelity in the absence of exogenous DNA damage sources. ESCs are 

thought to primarily use HRR instead of the error prone NHEJ – a claim supported by the 

observation of a 10-fold higher rate of RAD51 foci formation in ESCs in comparison to 

differentiated astrocytes from the same cell line [84]. Our microarray data support the idea that 

in differentiated cells (in this case parental fibroblasts) loss of ATM dramatically impacts levels 

of basal cell cycle regulation and DNA repair activity, whereas disruption to these pathways are 

minimal in pluripotent stem cells lacking ATM. 

 

Our microarray data point to a number of differences that warrant further investigation, 

including Cytoskeletal remodeling pathways, focal adhesion, ECM pathways, TGFβ receptor 

signaling, pentose phosphate signaling and oxidative phosphorylation. We choose to focus on 

differences at the level of the mitochondrion. In the transition from fibroblast to iPS cell, a shift 

occurs in energy consumption dynamics whereby the energy requirements of the cells are met by 

changing levels of oxidative phosphorylation, highlighting the distinct metabolic differences 
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between these two cell types. While it is a possibility that differences in oxidative 

phosphorylation gene expression arose because our A–T iPSCs were reprogrammed to a 

different state to that of our controls, we do not think this is the case for three main reasons; 

firstly, our A–T iPSCs adhere to all known criteria for pluripotency and cluster strongly with 

control iPSCs and ESCs when examining genes from the Plurinet. Secondly, we show a similar 

and overlapping subset of disruptions to oxidative phosphorylation pathways between control 

and A–T fibroblasts. Finally, we report differences that are consistent with recent reports in the 

literature, implicating ATM in mitochondrial homeostasis [5, 113, 195, 196]. While these 

publications point to mitochondrial differences in a variety of cells such as lymphoblastoid cells 

thymocytes and an undefined population of neurons, we point to differences in pluripotent stem 

cells which could be thought to occur upstream of the development of all these cells/tissues. This 

brings to light interesting questions regarding the nature of the onset of these mitochondrial 

differences and whether they are as a result of abnormalities that are acquired early during 

development. There is a rich array of literature [114, 176, 193] supporting the involvement of 

mitochondria in a number of other neurodegenerative diseases and we both eagerly await and are 

actively pursuing enlightenment in this regard with respect to A–T.  

 

While differences in mitochondrial gene expression in iPSCs did not seem to significantly alter 

mitochondrial membrane potential (as a measure of mitochondrial health), we suspected that as 

the demand for energy increases and switches to a state more reliant on oxidative 

phosphorylation, such as during the process of neurogenesis and or downstream neuronal 

metabolism, these differences may manifest more overtly. To test this theory we subjected 

control and A–T iPSCs to neuronal differentiation to produce neural progenitors and comitted 

neuronal cells. 

 

Through directed differentiation protocols, particular phenotypes that are localized to specific 

cell types can be observed, manipulated and studied [43, 55, 196]. To examine whether we could 

model the neurodegenerative aspect of A–T in iPSC derived neuronal cells, we embarked upon 

two separate lines of inquiry; a) to detect evidence that ATM deficiency resulted in gross deficits 

in general neuronal induction and maintenance, including differentiation efficiency, growth and 
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expansion and neuronal activity and b) the production of neuronal progenitors characteristic of 

the developing cerebellum, in order to more specifically model this disease. 

 

Through general modeling of neurogenesis using an SB431542/Dorsomorphin based induction 

protocol we showed that iPSCs from patients with A–T generated neurons that could be 

expanded in culture at a similar rate to those of controls. Similarly, when we quantified the two 

main species of cells present in these inductions, we detected no evidence that loss of ATM 

impacted on the process of differentiation or neuronal specification. We observed that these 

neurons extended axons at a similar rate and formed connections with each other while 

expressing punctate staining for the synaptic marker SYNAPSIN. These neurons exhibited 

Sodium/Potassium currents and the ability to traffic calcium in response to stimulus.  We 

examined calcium trafficking using a high throughput plate-reader based assay and the 

fluorescent calcium indicator FLUO-4-AM, as well as a single-cell based imaging approach 

using the genetically encoded calcium reporter gCaMP5. We were able to identify a reproducible 

defect in calcium trafficking that occurred in select lines only, which warrants further 

investigation. Despite the use of ATM inhibitor, calcium channel and mitochondrial inhibitors 

we were not able to isolate or identify the nature of this deficiency and speculate that it may be 

the complex culmination of genetic background and differentiation induced population 

dynamics. 

 

Interestingly, we show that application of KCl induces neuronal activity in the form of calcium 

trafficking and upregulation of IEGs, and that this also induced an elevation in the number of 

DNA double-strand breaks, as marked by phosphorylation of H2AX. We observed that these 

breaks were accumulated and repaired with differential kinetics in A–T neuronal cells suggesting 

a novel potential mechanism for neurodegeneration in A–T. A recent paper [211] illustrates the 

induction of DNA DSBs in the brains of mice in response to exposure to novel environments. It 

remains to be seen what physiological roles these breaks may play and how ATM is involved. 

 

We executed a number of experiments centered around modeling previously described aspects of 

A–T speculated to cause neurodegeneration, including mislocaisation of HDAC4, neurite 
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extension rate (in the presence and absence of novel antioxidant compound CTMIO), 

mitochondrial metabolism, calcium trafficking, and DNA repair. We show that this model 

system represents a valuable tool for investigating A–T, however, we could not point to any 

specific mechanisms that might be adapted for use as readouts in a drug-screening assay.  

 

A concept that will be required if cell replacement therapies are ever to occur is that of genetic 

correction of the underlying pathogenic mutation (or a suitable workaround to providing a 

patient with their own cells, such as immune supression). We were able to show restoration of a 

functional DNA damage induced phenotype through delivery of mCherry-tagged ATM, 

demonstrating that genetic manipulation and correction of neurons/neural stem cells is possible. 

Although this was at low efficiency, there are a number of approaches to utilize burgeoning 

technologies such as TALEs and CRISPRs that may be utilized to generate, select and produce 

pure populations of cells that may be suitable for transplantation. These technologies can also be 

used to generate isogenic controls to study, which are important given that genetic variation 

across individuals can confound studies. 

 

The field contends with the notion that neurological diseases can be modeled using neuronal 

cells generated from iPSCs. While in principle this holds true, the fact is that the brain is one of 

the most complicated structures known to exist and that our ability to reproduce it in part is in its 

primitive infancy. Two main issues crystalize this notion. The first being that there is a general 

trend towards publishing a disease model coupled with an unclassified ‘neuronal’ cell 

population, and whilst this may be useful, it makes the interpretation of data difficult and 

comparison between studies impossible. The genetic background of a given disease may or may 

not grossly affect production of neurons in a way that is informative of the in vivo biology of the 

disease. The second issue is that production of neurons in vitro generally gives rise to immature 

cells and that the existing knowledge on specific selection of subtypes of neurons is limited. 

While it is possible to reproduce several core elements of neurogenesis in vitro the 

environmental cues that neurons receive in the developing and postnatal brains may be vastly 

different than anything that is possible to produce. For example it is known that neurons are 

reliant on bursts of neuronal activity for various stages of maturation [317]. Model in vitro 
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systems may not be able to reproduce these processes fully and as a result the end product is an 

immature neuronal population. While we initially embarked upon an untargeted approach, we 

moved to adopt a protocol that favored the use of molecules aimed at recapitulating a normal 

developmental program through stepwise progression. Nevertheless, the fact that limited 

knowledge exists on human brain development in terms of classification of useful markers to 

identify and isolate particular neuronal subtypes at various time points is a formidable barrier. 

We showed through application of retinoic acid and FGF8 that we were able to induce gene 

expression changes that are highly similar to patterns known to occur in the developing mid-

hindbrain junction (Upregulation of Hoxb4 & Gbx2 and downregulation of Otx2). We identified 

induction of GBX2 and ENGRAILED1 and the subsequent expression of MATH1 & PTF1A, 

marking the two main cerebellar progenitor types. Further to this we could isolate neuronal cells 

that were reactive with antibodies to ZIC3, PAX6 and B-III-TUBULIN and that showed largely 

morphology consistent with developing cerebellar granule neurons. We also noted the sporadic 

appearance of a much larger neuronal subtype with multiple and elaborate branching dendrites, 

which we could not isolate or culture for extended periods, which we speculate to be the other 

main constituent of the cerebellar cortex, the Purkinje cell. While a wealth of information from 

animal developmental biology studies aids in the understanding of the developmental cascade 

which unfolds in vivo and which we have tried to recapitulate in vitro, neurogenesis is still 

drastically different in mouse than it is in human and as a result, useful information is limited. 

For example it would be ideal if surface markers could be identified that delineate the different 

neuronal progenitor types at different stages, allowing purification, analysis and expansion. 

Technologies such as smart FLARES or plasmid-based selection approaches may be used to 

identify and derive specific neuronal sub-populations.   

 

We carried out RNA sequencing on a population we knew to be largely positive for hindbrain 

specific markers, but was otherwise undefined. Analysis of this dataset showed global gene 

expression profiles similar to that of brain samples, however we were not able to show more 

definitively where our cells lay on a developmental spectrum by direct comparison to datasets 

from developing brain regions, because of technical differences & limitations. Gene expression 

from these samples, including non-coding RNAs supported the notion that we had generated 
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primitive cerebellar progenitors. This provides a window of insight into the development of the 

A–T brain with unprecedented resolution. Findings from gene ontology analysis (both 

DAVID_UP tissue module and PANTHER phylogeny), IPAand manual curation of the genelist 

supported the concept that there were innate differences in differentiation status of the cells 

studied. This brings to light an interesting question, being ‘How similar/well-defined must a 

stem cell-derived population be before comparisons are valid or the population is considered 

characterised?’ We suspect this is a question that many people are currently trying to answer and 

speculate that the solution will be at the interface between a deeper biological understanding of 

the cell type and smarter informatics approaches. 

 

Examination of these datasets revealed gene expression consistent with a number of theories 

regarding the neurodegenerative aspect of A–T and may provide further clarity in these regards 

pertaining to their temporal onset and the gene regulatory networks that surround them. We are 

particularly interested in developing this model further to produce mature granule and Purkinje 

cells and hope that this dataset will be of use in predicting conditions to foster growth and 

expansion of these cell types. Ideally these cells would allow for the screening of drugs that 

could improve the lives of people living with A–T.  
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