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Abstract

Unlike classical systems, the very act of observing quantum systems perturbs their behaviour.

This introduces “backaction noise”, which imposes limits on the knowledge that can be ob-

tained through measurement. Certain measurement techniques, known generally as quantum

non-demolition (QND) measurements, exist to circumvent this noise. An alternative method

to evade backaction noise is to amplify the observable of interest above the noise. However, this

generally leaves the system in a different state, and is therefore not considered a QND measure-

ment. In this thesis, I examine the benefits of amplification for various kinds of measurement

of mechanical harmonic oscillators which, at the micrometre and nanometre scale, comprise an

emerging quantum technology. For this prototypical case, modulation of the spring constant,

also known as parametric amplification, is a well-studied noiseless amplification technique. Us-

ing the theory of trajectories developed in the field of quantum optics, I show that a weak

measurement combined with a detuned parametric drive achieves the same ends as strong

QND measurement. Namely, it allows backaction-free observation of one quadrature of me-

chanical motion, and through this, quantum squeezing below the quantum zero-point motion.

This equivalence is experimentally confirmed in the classical limit using an optically detected,

electrically modulated cantilever. In addition, I analyse similar amplification enhanced tech-

niques for quantum entanglement and quantum tomography. These results are applicable to

research in quantum optomechanics and electromechanics, and can be translated to other kinds

of quantum harmonic oscillators, such as microwave cavities.
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Chapter 1

Introduction

1.1 Mechanical oscillators

Pendula, diving boards and resonating strings of musical instruments. These objects, due to

their ubiquity and their simple repetitive motion, are typical of some of the earliest studied

physical systems. The work of Galileo and Huygens explained why a pendulum, for example,

would make such an unprecedented time-keeping device. Firstly, to a good approximation, the

period of a pendulum’s motion depends only on its length and on the strength of gravity, both

being constants to a fairly good approximation. Secondly, an oscillation once started will go on

for many cycles undisturbed. Since this second property is a good indicator of effectiveness in

time-keeping instruments and of purity of sound in musical instruments, the number of cycles

before an oscillator’s motion is damped substantially is now appropriately known as a “quality

factor”.

Simple harmonic oscillators, as these objects are now known in physics, can be abstracted as

a “mass on a spring” which separates their two properties. The spring provides a restoring force

to its resting, or equilibrium, position. The mass provides inertia, or resistance to accelerating

forces. The ratio of these two quantities determines the frequency of oscillation. This can be

seen by writing the classical equation of motion

meff ẍ = −kx (1.1)

where ẍ is the second time-derivative (or acceleration) of the object at position x, meff is the

effective mass and k is the spring constant. The solution to such a differential equation is a

sinusoid with frequency

f =
1

2π

√

k/meff (1.2)

or in an equivalent angular frequency

ωm = 2πf =
√

k/meff (1.3)

In reality, oscillations do not last forever due to random collisions, for example with air

molecules. The average result of this can be well approximated by a deterministic frictional

14



force, proportional to velocity Ff = −γmeff ẋ
1. On the other hand, the random force from these

collisions FT(t) creates new, stochastic (that is, random in time) fluctuations in the oscillator.

The classical relationship between these two forces (i.e. the fluctuation-dissipation theorem)

will be covered in section 1.3. Taking these new forces into account, the full equation of motion

is

meff ẍ+ γmeff ẋ+ kx = FT(t) (1.4)

In general, FT is modelled as a white noise process. Often, such as for a heavy pendulum, these

fluctuations are too small to be noticed. In this case, and if γ ≪ ωm, the solution to the above

equation is approximately

x(t) ≈ x(0) cos(ωmt) e
−γt (1.5)

The exponential decay becomes appreciable when t = 2π/γ, by which time the number of cycles

is ω/γ = Q.

These equations and the physical quantities within are well-known to any undergraduate

student of physics. A mass-spring system represents the most intuitive form of the simple

harmonic oscillator, and is a valuable teaching tool for Newtonian mechanics. However, while

bulky mechanical oscillators are valuable for acoustical engineering and time-keeping, they

remain relics of a bygone classical world in this age of miniaturisation and speed-of-light com-

munication. This thesis deals with the question: is there a place for the mechanical oscillator

in the quantum age?

1.2 Towards the quantum regime

As physics delved into the microscopic world, the ubiquity of simple harmonic oscillators became

even more apparent. They are found in the vibrations of molecules and atomic lattices, in

electromagnetic waves and in superconducting devices. As these systems all fall within the

realm of quantum mechanics, an equivalent quantum version of the above mathematics has

been well studied. In the case of electromagnetism, this has resulted in the field of quantum

optics, from which many useful theoretical tools have emerged.

How does a quantum harmonic oscillator differ from its classical counterpart? There are a

few very important distinctions, including:

Quantum oscillators can exist in superpositions and entangled states. These are the

standard counter-intuitive quantum-mechanical effects that challenge ideas of locality and

of a single objective reality. The field of quantum information exists to exploit these

features.

1Throughout this thesis, we will use γ to signify the amplitude decay rate, so that the energy decays with

rate 2γ.
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A perfect measurement of the vibrational energy only allows discrete results. This

reflects the fact that the vibrational energy in a harmonic oscillator can be thought of as

consisting of an ensemble of indistinguishable particles (or bosons). For an electromag-

netic field these particles are photons, while for a vibrational system, they are termed

phonons.

A quantum oscillator is never at rest. With no external or thermal excitation, a quantum

harmonic oscillator is in what is known as its ground state. The ground state has non-

zero energy, consistent with Heisenberg’s uncertainty principle applied to position and

momentum. This is known as zero-point motion. By default, the mean-square position

and momentum noise have equal energies, as is the case for thermal noise.

The oscillator is necessarily influenced by measurement. This influence comes in two

forms: conditional and unconditional. The conditional influence is a reduction of the

uncertainty in the measured observable. The quantum states prepared by so-called “pro-

jective measurements” are ostensibly real as long as the measurement result is kept. The

unconditional influence is additional noise in the conjugate observable. This phenomenon

is known as quantum backaction and is necessary for the uncertainty principle to hold.

Measurement can therefore influence the ground state as described above. With a strong

instantaneous position measurement, the conditional position uncertainty can be reduced

below the level of the zero-point motion at the expense of increased momentum uncer-

tainty. The resulting state directly after the measurement is known as a squeezed state.

A fundamental question surrounding quantum mechanics is whether such features are nec-

essarily restricted to microscopic systems. Many attempts have been made to address why

quantum effects do not exist at the scale of everyday experience, the most successful of these

being the theory of decoherence[1]. According to this theory, interactions between the observed

system and an unobserved environment result in “lost” information. Accounting for this lost

information involves the loss of the quantum coherence required for effects such as superpo-

sition and entanglement to be observed. However, if interactions with the environment can

be limited, macroscopic systems can, in principle, behave quantum-mechanically. This would

allow the study of quantum mechanics in new regimes, such as that in which gravity is not

negligible[2, 3].

The past three decades have seen much experimental effort in scaling up quantum systems

towards the macroscopic level and likewise in scaling down macroscopic systems towards the

quantum regime[4]. For example, double-slit interferometry has been recently scaled up to large

molecules[5] and matter waves[6]. Similarly, the study of motional quantum states of trapped

ions[7, 8] has paved the way for similar experiments with trapped nanoparticles[9, 10]. These

last two examples technically fall under the umbrella of mechanical oscillators. Conversely,

quantum behaviour of mechanical oscillators can be pursued by scaling down “bulk” oscillators

such as beams, strings and cantilevers.
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Figure 1.1: Depiction of an oscillator as a box containing either a few large particles or many

small particles, with particles randomly exiting to and entering from the environment. If over

time the number of the particles in the box can be monitored, the particle-like nature is more

apparent in the box with higher-energy bosons. Here, the size of the opening in the box is a

useful analogy for the dissipation rate.

A concrete limitation for quantum mechanical behaviour in large mechanical oscillators is set

by their relatively low mode frequencies compared to conventional quantum oscillators. Since

the energy of a boson is given by E = hf , a 1kHz oscillator mode at room temperature contains

on the order of N ≈ 1010 phonons in the form of thermal noise, leading to fast decoherence.

This decoherence is illustrated in Figure 1.1, using the analogy of particles entering and exiting

a box. As temperature increases or frequency decreases, the mean number of phonons in the

oscillator increases. Not only are many phonons more disordered, but they enter and exit the

oscillator faster, disturbing the state of the oscillator. Additionally, such low phonon energies

make measurement at the single phonon level virtually impossible. In contrast, single photons

in the visible spectrum can be easily produced and detected[11].

Under what circumstances, then, can a mechanical oscillator exhibit the above quantum

features? This question will be covered in detail in Chapters 2 and 3. As a rough guide, one

would desire some combination of the following criteria

High mode frequency. This means smaller oscillators or (for trapped particles) tight con-

finement.

High quality factor. Damping is a macroscopic phenomenon that arises from noise entering

and escaping the oscillator. Reducing the damping rate therefore reduces decoherence.

Low temperature. As for the damping rate, reducing the amount of thermal noise mitigates

decoherence.
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Quantum-scale position measurement and control. Throughout this thesis, “quantum-

scale” refers to approximately the level of the zero-point motion. This is distinct from a

backaction-dominating measurement, as will be shown in subsequent chapters.

Miniaturisation of bulk mechanical devices, incorporating piezoelectric and dielectric ef-

fects for measurement and control, began in the 1980s. These microelectromechanical systems

(MEMS) have since opened up an active area of research devoted to their fabrication and use.

Oscillators, such as beams and cantilevers, are used as temperature, force, mass and magnetic

field sensors[12]. In particular, micron-scale cantilevers have found widespread use in atomic

force microscopy, while MEMS gyroscopes and accelerometers have been critical for the recent

revolution in “smart-phone” technology.

Continuing along this path, making use of fabrication technology such as electron beam

lithography, oscillators may now be fabricated with feature sizes at the nano-scale[13]. Along

with cryogenic refrigeration, this allows the study of high-frequency oscillators with very high

quality factors and low thermal noise. Beginning with a classical context, I will discuss ap-

proaches to precision measurement, control and noise minimisation in such devices. This will

be followed by discussion of amplification techniques, and a summary of recent efforts towards

quantum-scale measurement and control.

1.3 Measurement, control and feedback

This thesis primarily concerns the continuous measurement of a noisy system — that is, a

thermally excited oscillator. Since the 1950s, engineers have studied very similar problems in

developing automated technologies. A thermostat, for example, requires a continuous measure-

ment of the ambient temperature in order to continually adjust the heating and cooling controls

in a feedback loop. The field that then developed around continuous feedback became known

as control theory. In this section, I will briefly introduce various concepts in control theory

with a focus on sensing, which will then be extended to the quantum regime in Chapter 3.

Mechanical oscillator-based sensors can be divided into two main categories. The first type

sets up an oscillator to monitor its position, in order to directly sense forces at or near the

oscillator frequency. Other influences such as external masses and temperature fluctuations,

which affect oscillator parameters, are instead detected by monitoring the frequency of the

oscillator. Both of these approaches are limited by measurement noise and by thermal noise.

We will focus here on the first kind — that is, on the limitations of position measurement.

When the position of an oscillator is monitored with high sensitivity — such as by optical

interferometry — in the absence of a signal to detect, random thermal fluctuations can be picked

up. In this case, the mean-square fluctuation 〈x(t)2〉 is determined by the relative strength of

the friction Ff and fluctuations FT in equation (1.4). In Einstein’s famous paper on Brownian

motion, this quantity was derived and found to be proportional to the temperature T . For
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an oscillator, these fluctuations will be distributed by frequency ω according to the oscillator’s

Lorentzian-shaped susceptibility

x(ω) = FT(ω)χ0(ω) (1.6)

where the susceptibility χ0(ω) is found by transforming Eq. (1.4) into the frequency domain

χ0(ω) =
1

meff(ω2
m − ω2 + iγω)

(1.7)

Using the standard assumption that the thermal force FT is white noise (i.e. power is indepen-

dent of frequency), the power spectral density of the oscillator is then given by[14]

SXX(ω) = 4γkBTmeff |χ2
0(ω)| (1.8)

=
4γkBT

meff

1

(ω2 − ω2
m)2 + γ2ω2

(1.9)

where kB is Boltzmann’s constant. Moving away from the resonance frequency, the thermal

signal will become weaker and eventually reach the measurement noise floor. In the case of an

ideal optical interferometer, this is an evenly distributed shot-noise level.

Imagine now that we want to measure these random thermal forces over time. To do this,

we want to continually estimate the oscillator’s position, and have this estimate be as precise as

possible. Given that the random thermal motion is characteristically different to the random

measurement noise (namely, having a different frequency distribution), there exists a filter to

optimally estimate the position signal from the time-varying measurement record. This filter

is a function of the known noise properties and oscillator parameters. As a result of this

filtering out of the noise, the uncertainty can be reduced from that given by the variance of

the unfiltered measurement to what is known as the conditional variance. This quantity, which

depends largely on the relative strength of the signal compared to the noise, represents how well

the position is localised by the measurement and is therefore of great significance in quantum

mechanics. The optimal filter and conditional variance for a quantum harmonic oscillator will

be derived in Chapter 3.

An ideal continuous estimate of an oscillator’s position is also useful in classical applications.

By converting this estimate an applied feedback force, the oscillator’s response can be controlled.

Negative feedback, where the aim is to apply a force opposing the oscillator’s velocity, reduces

the effective susceptibility around the resonance and increases the effective damping rate. This

commonly used technique is also termed cold damping (or active cooling) since this decreases

the effective Q-factor while also reducing the level of thermal noise[15, 16]. Reversing the

sign of negative feedback leads to a decreased damping rate, and ultimately self-sustained

oscillation[17]. Both of these effects can be generalised by an effective susceptibility

χ0(ω) =
1

meff(ω2
m − ω2 + iω(γ − γfb))

(1.10)

where γfb can be positive or negative, corresponding to positive or negative feedback.
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For a linear oscillator, feedback has no bearing on the resolution of a sensor, as the signal

and noise are both subject to the same susceptibility[14, 18]. However, negative feedback can

be useful to constrain an oscillator to the linear response regime, which generally bounds the

dynamic range of transducers[19]. In this case, the minimum noise level achievable with perfect

noiseless feedback is equivalent to the conditional variance[20].

1.4 Linear and phase-sensitive amplification

In everyday experience, an amplifier is a device that increases the energy of a signal compared

to some noise. Perhaps the most familiar of these are the towers of amplified speakers at

large outdoor concerts, necessary for singers and instruments to be audible from far away. For

a person deep in the crowd, turning up the amplifiers increases the strength of the musical

signal compared to the noise of the surrounding crowd. There is, however, another important

signal-to-noise ratio in this situation. The signals first need to be measured by microphones

or pickups. These microphones or pickups contain some finite amount of noise, which is also

amplified. Therefore, the loudness of the instrument relative to the measurement noise in the

pickups sets the ultimate limit to the signal-to-noise ratio as perceived by the distant listener

(assuming, as many festival organisers do, that the listener’s ears can handle arbitrarily loud

volumes).

In the classical limit, our task of monitoring a simple mechanical resonator is no different to

the task of recording an instrument with high fidelity. Continuing this analogy, it is reasonable

to ask if the resonator can be made louder using some device, so that the measurement noise

is weaker in comparison.2 If a double bass, for example, is played on a floor with the right

resonances, the instrument will be “pre-amplified” and made louder by the coupling.

This double bass example is reminiscent of one kind of controllable pre-amplifier. In abstract

terms, a harmonic oscillator mode can be pre-amplified by coupling to a second oscillator mode,

which must lose a corresponding amount of energy[21]. In the classical limit, this is completely

equivalent to improving the measurement sensitivity. However, a quantum-mechanical limit is

introduced if the signal is weak enough. Through this coupling the second mode must introduce

its zero-point noise to the signal, ultimately limiting the signal resolution. In fact, any form

of what is known as a “linear phase-insensitive amplifier” must introduce noise in order to not

violate quantum mechanics[22].

An alternative, and simpler, pre-amplification process for an oscillator is parametric ampli-

fication. This does not require a second mode, and can be achieved by a simple modulation of

the spring constant. The effect of this is for oscillations of a particular phase to be favoured

2Here, we run into the question of what constitutes a measurement, and must invoke quantum mechanics.

For now, we can use the rule-of-thumb that a coupling a system to more than a few, traceable degrees of freedom

is a measurement. For example, when an optical signal reaches a photodetector and becomes embedded in an

environment of excited electrons.
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over others. A fluctuation, such as from a thermal bath or an applied force, is therefore either

amplified or damped depending on its phase with respect to the parametric drive. This ampli-

fication is noiseless in principle, and therefore highly suited to quantum applications as a way

to circumvent measurement noise[21, 23, 24]. The phase-sensitive nature of parametric ampli-

fication causes the thermal noise in an oscillator to become unevenly distributed[25]. Similarly,

when applied to the ground state, the noise reduction in one quadrature of motion results in a

quantum squeezed state[26]. Parametric amplification is the primary focus of this thesis, and

will be covered in depth in Chapter 4.

1.5 State of the art: Optomechanics and electromechan-

ics

Bulk mechanical oscillators couple naturally to a wide variety of quantum systems. Therefore, in

addition to fundamental physics, quantum-enabled mechanical oscillators are desirable for use in

quantum memories[27, 28, 29] and to interface hybrid quantum information networks[30, 31, 32].

Presently, the pursuit of quantum-scale measurement and control of a mechanical oscillator can

be divided among three kinds of architectures: optomechanical, electromechanical, and hybrid

systems.

Firstly, in cavity optomechanics, a high-quality mechanical oscillator modulates the effective

length of a high-quality optical or microwave cavity. As optical and microwave cavities exist in

many sizes, the mechanical elements may range from the kilogram to the picogram scale[33, 34].

The large end of this scale was pioneered in efforts to detect the gravity waves emitted during

cosmological events. One promising way of detecting gravity waves is to capture transient

length perturbations in kilometer-scale interferometers[35]. The standard quantum limit for

position measurement was identified in this context; it is at this limit that quantum backaction

prevents further precision from a continuous measurement with increasing optical power. The

technique of backaction evasion was subsequently developed by Braginsky et al[35, 36], in order

to beat the standard quantum limit. This will be discussed further in Section 3.6.

The typical dispersive optomechanical interaction couples the position of a mechanical mode

to the resonance frequency of a optical or microwave cavity mode. This can be achieved with a

mechanical mode as one end of a Fabry-Perot cavity[38], as part of a whispering-gallery cavity

structure[39] or photonic crystal[40], as a dielectric element[41, 42] or harmonically trapped

nano-particle[9] in a cavity, or as the capacitive element of an microwave LC resonator[43],

among others. Models incorporating a dissipative effect on the optical mode also exist[44], but

will not be covered in this thesis. By driving the cavity on resonance, the position can be read

out in the phase of the outgoing light. For smaller, high-frequency mechanical oscillators, the

damping of the cavity may occur on a longer timescale than the mechanical period. Known as

the “resolved sideband regime”, this leads to additional possibilities depending on the strength
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Figure 1.2: A toroidal optomechanical resonator (left) and a nanomechanical resonator coupled

to a superconducting qubit (right). Left: the optical mode travels around the silica torus,

with a resonance frequency dependent on the outer circumference of the toroid. A mechanical

mode in the toroid, such as the radial breathing mode pictured, changes the circumference,

thereby modulating the optical resonance. Light coupled in and out via a tapered fibre can

then be modulated if tuned near this resonance. Right: A metal-coated silicon nitride beam is

suspended over an etched gap. This is coupled to a Cooper pair box (CPB, above in picture)

and an electrode. The charging energy of the CPB depends on the capacitance between the

CPB and the nanoresonator, which depends on the distance between them. This leads to

the oscillator frequency depending on the quantum state of the CPB, as can be confirmed by

reflectometry via the electrode. Figures adapted from Verhagen et al. (2012)[27] and LaHaye

et al. (2009)[37].

of the coupling. Passive cooling can be achieved by driving off-resonance, so that the optical

mode forms a nearly zero-temperature bath for the mechanical mode[40, 43]. Driving on the

other side of resonance leads to linear amplification of the mechanical mode and, with high

optical power, dynamical instability[45]. A combination of these two drives is a simple method

of backaction evasion[46].

Optomechanical systems, due to the versatility of the interaction and the efficiency of cou-

pling, have accounted for the majority of progress in quantum-scale mechanical measurement

to date. This progress includes milestones such as ground-state cooling[43, 40], observation of

backaction noise[47] and measurement with imprecision below the standard quantum limit[48].

These capabilities are useful for verification of quantum states and for quantum-scale sensing.

However, the level of quantum control possible with present-day experimental parameters is

limited to the creation of Gaussian states such as squeezed states. More exotic quantum states,

such as Schrödinger Cat states and number states are non-Gaussian.3 While these kinds of

states can be created using extended optomechanical techniques[49, 50] and the strong single-

photon coupling regime[51], they are beyond present experimental capabilities.

Nanoelectromechanical systems (NEMS), on the other hand, are the conjunction of nano-

3Two-mode entanglement is possible with only squeezed Gaussian states, as will be covered in Section 2.4.
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scale oscillators with electronic elements. The electronic component may be simply a classically

modelled electrode, but can also involve solid-state qubits[52, 37], single-electron transistors[53],

quantum point contacts[54, 55] and two-dimensional electron gases[56]. Although position

measurement is far less efficient in these devices compared to optomechanics, nonlinearity of

coupling allows a greater degree of control[57, 58, 59]. Notably, parametric amplification is

very easily achieved using nonlinear capacitive forces[25, 60]. Additionally, the use of quantum

electronics allows a wider array of quantum states to be prepared[26]. Significant milestones

towards this goal that have been achieved to date include mechanical transduction of two-level

quantum systems[37] and parametric amplification using a qubit[24]. Much progress has also

been recently made with coupled oscillators in this architecture[61, 62], paving the way for

quantum entanglement.

It is also possible to combine the precision measurement of optomechanics with the control

capabilities of NEMS. The most notable example of this is using superconducting microwave

optomechanics. Here, a coplanar waveguide resonator or a lumped-element LC oscillator forms

the microwave cavity, allowing the typical optomechanical interaction[43]. This microwave

resonator can then be coherently coupled to quantum electronic elements such as SQUIDs[63]

or Cooper pair boxes[64], which share this superconducting architecture. Other proposals for

hybrid systems include electrodes added to optical cavities[65, 66, 67, 68] and combined optical-

microwave systems[69].

1.6 Outline of thesis

In this thesis, I will be investigating the combination of continuous position measurement and

an independent parametric drive applied to a mechanical oscillator. I will show that a paramet-

ric drive can allow the kinds of quantum measurement currently possible in optomechanics, but

with less reliance on efficient measurement and without the need for backaction evading tech-

niques. Consequently, this finds application in NEMS and hybrid systems in which parametric

amplification is possible but quantum-scale measurement is still out of reach, or in systems

where control capabilities are otherwise sacrificed in favour of strong measurement.

Chapter 2 introduces the necessary quantum mechanical formalisms for a harmonic oscilla-

tor. Chapter 3 covers basic quantum measurement, introducing rotating-wave master equations

for continuous position measurement as well as backaction evasion. In Chapter 4, conditional

and unconditional dynamics are derived for an oscillator in the presence of a detuned paramet-

ric drive. This contains the key result that conditioning due to measurement can be enhanced

by detuned parametric amplification. The main results of this chapter are then confirmed ex-

perimentally in Chapter 5. Chapter 6 applies this idea to the low-temperature quantum regime,

quantifying the amount of quantum squeezing that can be generated, as well as effectiveness as

a QND measurement. Similarly, Chapter 7 transports the concept to two-mode schemes and

quantifies the quantum entanglement that can be generated. Finally, in Chapter 8, quantum
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measurement of an oscillator is subjected to an alternative approach based on linear quantum

trajectories. This approach is applied to quantum state tomography in the presence of resonant

parametric amplification.
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Chapter 2

Quantum states of harmonic oscillators

2.1 The rotating wave approximation and quadrature

phase space

The state of a classical oscillator at a particular time can be described entirely by its position

and momentum, both of which are exactly defined. If appropriately normalised versions of

these two variables are used as axes on a graph, an undisturbed oscillator will trace out circles

about the origin. For a quantum harmonic oscillator, the state at a particular time can instead

be described by time-dependent probability distributions over position and momentum, now

represented as operators x̃ and p̃1. For the ground state |0〉, the distribution is Gaussian with

〈0|x̃|0〉 = 〈0|p̃|0〉 = 0 (2.1)

meffωm〈0|x̃2|0〉 =
〈0|p̃2|0〉
meffωm

= h̄/2 (2.2)

〈0|x̃p̃+ p̃x̃|0〉 = 0 . (2.3)

The second of these is a result of equipartition of energy and the uncertainty principle, defined

by the canonical commutation relation

[x̃, p̃] = h̄/2 (2.4)

which enforces a minimum uncertainty product

∆x̃∆p̃ ≥ h̄/2 . (2.5)

The time-evolution of the state can be found in terms of the Hamiltonian for a quantum

harmonic oscillator, which defines the total energy as the sum of kinetic and potential energies

H̃ =
p̃2

2meff

+
1

2
ωmx̃

2 (2.6)

1Throughout this thesis, the tilde sign (∼) is reserved for operators in the laboratory frame, while the hat

sign (ˆ) is reserved for operators in the rotating frame
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In the Heisenberg picture, the expected value of an observable Â evolves as

d〈Â〉 =
i

h̄
〈[H̃, Â]〉 dt (2.7)

Substituting Â = x̃ or Â = p̃ with the above Hamiltonian results in equations of motion similar

to those for a classical oscillator. It can also easily be seen that an initial ground state does

not evolve with time under this Hamiltonian.

The distributions over x̃ and p̃ above become complicated, however, if the oscillator is excited

out of the ground state. If the decay of the oscillator occurs on a much longer timescale than the

oscillator period (i.e. high Q), along with all other relevant dynamics, it is much more convenient

to use a quadrature phase space. This assumes that the momentum is approximately the same

as the position (correctly normalised) a quarter of a cycle earlier. Converting the operators to

this new phase space requires transforming to an interaction picture and making the rotating

wave approximation. Rewriting x̃ and p̃ in terms of the ladder operators ã and ã†

√

meffωm

h̄
x̃ = (ã+ ã†)/

√
2 (2.8)

√

1

h̄meffωm

p̃ = −i(ã− ã†)/
√

2 (2.9)

such that

[ã, ã†] = −2i[x̃, p̃]/h̄ = 1 , (2.10)

the stationary-frame Hamiltonian becomes

H̃ = h̄ωm(ã†ã+ 1/2) = H̃0 (2.11)

The transformation to a rotating frame at ωm is then made by defining the operators

â = eiH̃0t/h̄ãe−iH̃0t/h̄ (2.12)

= ãeiωmt (2.13)

â† = eiH̃0t/h̄ã†e−iH̃0t/h̄ (2.14)

= ã†e−iωmt (2.15)

This transformation also applies to remaining terms in the Hamiltonian, which become known

as the interaction Hamiltonian. Terms that evolve on the order of the rotating frame frequency

ωm or faster are discarded, while slower terms are kept. In this case, since there are no other

terms, the interaction Hamiltonian is ĤI = 0. In other words, when using this basis, the

quantum state is stationary in time.

The position and momentum operators, given in terms of stationary operators by Eqs (2.8-

2.9), can now be represented in terms of their rotating-wave equivalents. This leads to a

decomposition into slower-evolving degrees of freedom X and Y .
√

meffωm

h̄
x̃ = X̂ sin(ωmt) + Ŷ cos(ωmt) (2.16)

√

1

h̄meffωm

p̃ = Ŷ sin(ωmt) − X̂ cos(ωmt) (2.17)
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Figure 2.1: Representations of the position-momentum phase space (left) and quadrature phase

space (right), which are equivalent in the limit of low damping. In the position-momentum

phase space, with appropriate scaling, a coherent oscillation is represented by a state that

follows a circular path with time. In quadrature phase-space, the same oscillation is represented

as stationary values of X and Y .

where

X̂ = (â+ â†)/
√

2 (2.18)

Ŷ = −i(â− â†)/
√

2 . (2.19)

Taking the commutator of each side of the above two equations, we find

[X̂, Ŷ ] = i[â, â†] = i (2.20)

In this new phase space, the amplitude is given by the distance from the origin and the phase

of oscillation is the angle from the X-axis. The total squared amplitude is

meffωm

h̄
x̃2 +

1

h̄meffωm

p̃2 = X̂2 + Ŷ 2 (2.21)

The left hand side has an expectation value of unity. Due to symmetry, the ground state

variance for each quadrature is therefore VX = VY = 1/2.

Besides its usefulness for describing quantum states, the quadrature picture contains the

seeds of backaction evading position measurement. Since position and momentum are dynam-

ically linked, the backaction of a strong position measurement will result in momentum noise,

which becomes position noise one quarter of a cycle later. This sets a fundamental limit to the

accuracy of a continuous position measurement. However, for a freely evolving oscillator the

position quadratures X and Y are not dynamically linked, since in the rotating frame ĤI = 0.

Therefore, one quadrature can be continuously measured with arbitrary accuracy, with the

backaction noise only affecting the other quadrature.

2.2 Coherent states and the density matrix

In the rotating frame, a pure coherent oscillation is simply a ground state displaced in quadra-

ture phase space, as shown in Figure 2.1. This can be assigned a complex number α, and the
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corresponding quantum state can be written |α〉. This state has the property

(〈α|X̂|α〉 + i〈α|Ŷ |α〉)/
√

2 = 〈α|â|α〉 = α (2.22)

In words, the real and imaginary parts of α are the expectation values of X̂ and Ŷ (up to a

factor of
√

2). The amplitude of oscillation is |α| and the phase of oscillation is Arg[α]. The

ground state is then simply the case α = 0.

Coherent states form a complete basis for quantum states of an oscillator. As a simple

example, the pure superposition state

|ψ〉 = (|α〉 + | − α〉)/
√

2 (2.23)

is known as a cat state. A generalised state can be represented as a density matrix

ρ̂ =

∫

P (α)|α〉〈α| d2α (2.24)

which allows for both quantum superpositions and classical mixtures of coherent states. Ex-

pectation values of an operator Â are given by the trace

〈Â〉 =

∫

P (α)〈α|Â|α〉 d2α (2.25)

= Tr(ρ̂Â) (2.26)

In the Heisenberg picture, similarly to Eq. (2.7) this expectation value evolves as

d〈Â〉 =
−i
h̄
〈[Ĥ, Â]〉 dt (2.27)

This thesis will be limited to mixed Gaussian states. For these states, the highest statistical

moments are given by

VX = 〈X̂2〉 − 〈X̂〉2 (2.28)

VY = 〈Ŷ 2〉 − 〈Ŷ 〉2 (2.29)

C = 〈X̂Ŷ + Ŷ X̂〉/2 − 〈X̂〉〈Ŷ 〉 . (2.30)

These, along with the means 〈X〉, 〈Y 〉 characterise the state. The purity of the state is given

by

P =
1

4(VXVY − C2)
≤ 1 (2.31)

which has a maximum of unity for a coherent or squeezed coherent state and is reduced for a

mixture. This quantity is important to quantum applications, which rely on quantum rather

than classical superpositions. These applications include the production of exotic nonclassi-

cal states[70], entanglement between multiple oscillators[71] and continuous variable quantum

computing[72].
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2.3 Squeezed states

Quantum squeezing occurs when one quadrature has a variance smaller than the ground-state

variance. This has to be accompanied by an increase in the orthogonal quadrature in order to

preserve the uncertainty principle, given by Eq. (2.5) in the case of position and momentum.

Squeezing of the position or momentum is possible by using a strong projective measurement,

however this is difficult to sustain due to their dynamic relationship. That is, squeezing the

position adds momentum noise, which becomes position noise a quarter of a cycle later. In this

section we will consider the slower-evolving position quadratures X̂ and Ŷ . A pure (P = 1)

squeezed state can be characterised by the variances

VX =
1

2g
cos2(θ) +

g

2
sin2(θ) (2.32)

VY =
1

2g
sin2(θ) +

g

2
cos2(θ) (2.33)

C = (
g

4
− 1

4g
) sin(2θ) (2.34)

where g > 1 determines the magnitude of squeezing. When φ = 0, π, the X quadrature is

maximally squeezed, and when φ = π/2, 3π/2 the Y quadrature is maximally squeezed.

As will be shown in the next chapter, single-quadrature measurement can result in a

squeezed state by reducing the uncertainty of the measured quadrature at the expense of back-

action in the other. Another, unconditional, way to reduce the uncertainty of one quadrature

is to modify the way that energy is distributed — that is, to break the symmetry between

quadratures. This can be done by modulating the spring constant at twice the resonance fre-

quency ωm. A sinusoidal force at frequency ωm will then encounter either a reduced or increased

effective spring constant, depending on its phase with respect to the modulation. This process,

known as parametric modulation, can be described by the Hamiltonian

H̃ =
p̃2

2m
+
x̃2

2
[k0 − kr sin(2ωmt+ 2θ)] (2.35)

= H̃0 + H̃I (2.36)

where the interaction Hamiltonian is

H̃I = − x̃
2

2
kr sin(2ωmt+ 2θ) (2.37)

To transform into the rotating frame, we can use the substitution ã→ â exp(−iωmt). Expanding

out x2 and the sine function, we get

ĤI =
kr
8k0

ih̄ωm(â2e−2iωt + â†â+ ââ† + â†2e2iωt)(e2iωmt+2iθ − e−2iωmt−2iθ) (2.38)

Of the eight resulting terms, only two are time-independent. Under the rotating wave approx-

imation, the other terms are discarded, leaving

ĤI =
ih̄χ

2
(â2e2iθ − â†2e−2iθ) (2.39)

= S[χ exp(−iθ)] (2.40)
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where

χ =
kr
4k0

ωm (2.41)

can be interpreted as proportional to the peak-to-peak frequency modulation of ωm. The

rotating wave approximation requires that χ ≪ ωm, or equivalently that the spring-constant

modulation kr is small compared to the original spring constant k0. The squeezing operator S

is standard in quantum optics. Applying the Heisenberg equation of motion with θ = 0

d〈X̂〉 = −χ〈X̂〉 dt (2.42)

d〈Ŷ 〉 = χ〈Ŷ 〉 dt (2.43)

d〈X̂2〉 = −2χ〈X̂2〉 dt (2.44)

d〈Ŷ 2〉 = 2χ〈Ŷ 2〉 dt (2.45)

The parametric drive strength χ here appears as a positive and negative damping rate for the X̂

and Ŷ quadrature, respectively. When applied to an initial coherent state, the zero-point noise

becomes distributed unevenly between quadratures. It is easy to show that the product VXVY

remains constant, so the state remains pure. In other words, no additional noise is required

to saturate the uncertainty principle, and the amplification is therefore noiseless in principle.

This stands in contrast to linear (phase-insensitive) amplification which must necessarily add

noise, as discussed in Section 1.4.

After a modulation for time t, the variances are given by Eqs (2.32-2.34), where

g = e2χt (2.46)

In reality, the squeezing is limited by noise and dissipation. The effect of parametric modulation

in the presence of thermal noise, dissipation, measurement and detuning will be examined in

Chapter 4.

2.4 Entangled Gaussian states

While squeezing of a single mode is useful for sensing due to the reduced quantum noise in

one quadrature[35], it has less practical utility than single-mode non-Gaussian quantum states.

However, the crucial quantum resource of quantum entanglement can be unlocked when squeez-

ing exists in collective modes. Take as an example two oscillators with positions x1 and x2. If

by some means the positions can be correlated so that x1 − x2 has very low uncertainty, while

the positions individually have relatively large uncertainty, then a measurement of x1 will also

reduce the uncertainty of x2. This is true even classically, and does not in itself imply quantum

behaviour. This classical kind of entanglement is based on a reality in which x1 and x2 have

well-defined values but are unknown to the observer. Quantum noise is, however, fundamen-

tally indeterministic. If the uncertainties in x1 and x2 are comprised of quantum mechanical

noise, a projective measurement of x1 must therefore prepare, rather than verify, the state of
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the second oscillator. The implied inseparability of the two ostensibly separated systems due

to this instant disturbance is the subject of the EPR paradox[73]. This phenomenon implying

“spooky action at a distance” is perhaps the most perplexing feature of quantum mechanics,

and has been widely demonstated[74]. It should be noted that in this continuous-variable set-

ting, the EPR paradox can still be resolved by hidden variables, since the joint probability

distribution is classical[75]. Nonetheless, entanglement in variables such as position and mo-

mentum is believed to be valuable for continuous-variable quantum computation[76] and tests

of macroscopic quantum mechanics[2, 6].

Quantitatively, the conditions for quantum entanglement in Gaussian states can be ex-

pressed in multiple equivalent ways based on a covariance matrix characterising the system.

Simon gives a condition based on single mode variances and their correlations[77], while Duan

presents an equivalent condition based on collective mode variances[78]. Duan’s form of insep-

arability, naturally suited to experimental scenarios such as two-mode optical squeezing, will

be used here. In the rotating frame, one can define the collective quadratures

XC = (|a|X1 +
1

a
X2)/

√
2 (2.47)

YC = (|a|Y1 −
1

a
Y2)/

√
2 (2.48)

where a is any nonzero real number. A sufficient condition for entanglement is then

Var(XC) + Var(YC) < (a2 +
1

a2
)/2 (2.49)

Duan then derives a necessary and sufficient condition for entanglement by restricting a to a

particular value a0 that depends on the covariance matrix. In the simplest case, the elements

of the covariance matrix are given by VX1 = VX2 = VY 1 = VY 2, CXX = −CY Y , and CXY =

CY X = 0, producing a0 = ±1. Letting a = 1, and naming the resulting collective quadratures

XC = X+ and YC = Y−, the condition becomes

SS = VX+ + VY− < 1 (2.50)

That is, the arithmetic mean of the two collective quadrature variances must be below the

ground state variance. The sum SS < 1 therefore quantifies the amount of entanglement. This

quantity is directly related to the log-negativity[79] by

EN = − ln(SS) (2.51)

for SS < 1. Notably, [X+, Y−] = 0, so there is no physical lower bound to SS due to the

uncertainty principle. In other words, VX+ and VY− can be arbitrarily squeezed at the expense

of VX− and VY+, while the individual oscillators have both quadrature variances at or above

the zero-point motion. This implies correlations between the oscillators at such a level that

measurement of one must disturb the other.
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If the two oscillators have different properties, it is possible to modify a0 to retain a nec-

essary and sufficient condition for entanglement. However, this assumes a certain form for

the covariance matrix. A more convenient product form of inseparability has been given by

Bowen[80] in the spirit of the product criterion for the EPR paradox proposed by Reid[81]. In

this case, the sufficient condition for entanglement is

2
√

Var(XC)Var(YC) < (a2 +
1

a2
)/2 (2.52)

When Var(XC) = Var(YC), this reduces to the sum form above. Notably, in this product

form the value a0 that gives the necessary condition is insensitive to certain operations on the

covariance matrix. Again setting a = 1, we obtain a sufficient condition for entanglement, that

is also necessary in the symmetric case

SP = 2
√

VX+VY− < 1 (2.53)

In this form, the geometric mean of the two collective quadratures must be below the ground

state variance. Even in the case that VX1 = VX2, VY 1 = VY 2 and CXY = CY X = 0, this

condition remains necessary and sufficient for certain values of CXX and CY Y . In other words,

for a given value of a0, the product form places fewer restrictions on the covariance matrix

than the sum form. Notably, if VX+ 6= VY− then this condition, even when no longer strictly

necessary for entanglement, is more lenient on the larger of the two variances. The quantity

SP will be used for analysis of two-mode entanglement in Chapter 7.
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Chapter 3

Quantum measurement of a mechanical

oscillator

3.1 Introduction

When continuously monitoring the position of a mechanical oscillator at finite temperature,

three regimes inevitably emerge[82]. In the regime in which even the oscillator’s Brownian

motion cannot be resolved, termed here the bad measurement regime, the uncertainty of the

position estimate is dominated by thermal noise. In the classical measurement regime, the

thermal Brownian motion can be resolved but the zero-point motion cannot, and the uncertainty

is then dominated by measurement noise. Finally, a measurement strong enough to resolve

the zero-point motion results in the back-action dominated regime. The border between the

second and third regimes, when considering force sensitivity, is usually termed the standard

quantum limit (SQL)[35]. It is here that the uncertainty of a continuous position estimate begins

to saturate at the ground state variance, provided the measurement is efficient and suitably

filtered[82]. On the other hand, a backaction evading measurement will allow one quadrature

of motion to be transduced with uncertainty below the zero-point motion. In this chapter,

I will use master equation formalisms developed in quantum optics to model thermal noise,

backaction noise and measurement conditioning. These master equations will then be used to

analyse both continuous measurement and backaction evading measurement of a mechanical

oscillator, highlighting these three regimes.

3.2 The master equation for a dissipative oscillator

The Schrödinger equation describes the unitary evolution of a pure quantum state in a closed

system. However, we wish to model an open system: an oscillator that is being continuously

measured and under the influence of dissipation. Since the state is influenced by noise, it is

better to use a statistical description based on the density matrix. The standard way to model
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this evolution is using what is known as a master equation[83].

First we will model the influence of the dissipation via the thermal bath, which cannot

be directly measured. The thermal noise and dissipation of a mechanical oscillator is treated

using the Lindblad master equation. This turns out to be equivalent to the more commonly

encountered case of an optical cavity, as shown in Ref. [82]. As it is based on the density

matrix, the master equation encapsulates any observable of the system, including mean values

and variances. The evolution of a generalised observable Â is given by

d〈Â〉 = − i

h̄
〈[Â, H̃]〉 dt+ [2γN ]〈D[â†]Â〉 dt+ [2γ(N + 1)]〈D[â]Â〉 dt (3.1)

where the mean phonon occupation N is governed by the Bose-Einstein distribution

N =
1

exp(h̄ωm/kBT ) − 1
. (3.2)

The first term in Eq. (3.1) is the unitary evolution in the Heisenberg picture introduced in

Section 2.1. The additional terms contain the Lindblad superoperator

D[â]Â = â†Ââ− 1

2
(â†âÂ+ Ââ†â) ,

The Lindblad term for the annihilation operator â describes dissipation. This outweighs the

â† term, describing noise entering the system, by the energy damping rate 2γ. Consequently,

when setting Ĥ = 0 and solving for Â = X̂ and Â = Ŷ we obtain a simple decay towards zero

in each case

d〈X̂〉 = −γ〈X̂〉dt (3.3)

d〈Ŷ 〉 = −γ〈Ŷ 〉dt . (3.4)

The thermal noise terms proportional to N enter when solving for the variances, the time-

derivatives of which are given by

dVA = d[〈Â2〉 − 〈Â〉2]
= d〈Â2〉 − 2〈Â〉d〈Â〉 − (d〈Â〉)2

dC = d[〈X̂Ŷ + Ŷ X̂〉/2 − 〈X̂〉〈Ŷ 〉] (3.5)

=
1

2
d〈X̂Ŷ +Ŷ X̂〉−〈X̂〉d〈Ŷ 〉−〈Ŷ 〉d〈X̂〉−d〈X̂〉d〈Ŷ 〉 .

The squared differential terms are used to account for stochastic increments, which will be used

later. Using the rule (dt)2 = 0, these terms disappear for the deterministic evolution here[84].

This leaves

dVX = −2γVX dt+ γ(2N + 1) dt (3.6)

and similarly for VY , while C = 0. Setting the left hand side to zero gives the steady-state

solution VX = VY = N + 1/2, as expected from our definition of N as the thermal phonon

number. If the initial variances of the system differ from this steady-state value, they will relax

back to it exponentially with a rate 2γ.
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3.3 Continuous measurement and estimation

In order to find the conditional variance, we need to include measurement into the model. A

continuous measurement can be treated as a series of measurements separated by a time dt.

Since the measurement doesn’t extract all of the information about the position at once, the

measurement result includes some noise.

Let us call the measurement result at each time dQX(t) for some classical variable X(t)

that evolves linearly. According to the above description, this should look like

dQX(t) = k〈X(t)〉dt+ dW (t) (3.7)

where k is some constant that increases with the fidelity of the measurement. The noise term

dW (t) is known as a Wiener increment, with a zero-mean Gaussian probability distribution

with constant variance[84]. At each time step, these increments are independent of each other,

so that over time W (t), the Wiener process, is a random walk. Eq. (3.7) therefore states

that if the entire measurement process is repeated many times, dQX(t) should on average be

proportional to the expectation value of X at each time. The noise that makes dQX differ from

X is known as the residual noise, or innovation.

If the mean value were a constant, that is 〈X(t)〉 = X0 for all times, then every dQX(t)

would be an independent estimate of X0, and a simple average of all measurement results would

be ideal. A total estimate Xest(t) can then be trivially formed as being proportional to the sum

of every result. That is,

Xest(t) =

∫ t

0

GdQX(τ) = GQX(t) , (3.8)

where G is some constant, known as a gain for reasons which will become clear. Substituting

in Eq. (3.7) with a constant mean value, we get

Xest(t) = G(ktX0 +W (t)) . (3.9)

The conditional variance can be thought of as the minimum mean-square difference between

the quadrature amplitude X and the observer’s best possible estimate Xest, or

VX(t) = 〈(X(t) −Xest(t))
2〉 . (3.10)

In this simplified example the optimisation is over the gain paramater G. It is easy to show

that in this case the optimum is G = 1/kt, leaving

VX(t) =
〈W 2(t)〉
k2t2

. (3.11)

The Wiener process W (t) is a random walk, so its variance increases with time. More precisely,

as defined it has a variance equal to the time t of the walk[84]. This leads finally to

VX(t) =
1

k2t
(3.12)
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That is, the accuracy of the estimate increases with the measurement time and with the param-

eter k that defines the fidelity of the measurement. This variance is equivalent to the square of

a basic standard error, where the result at each time step is treated as an independent trial.

In general, however, the observable to be estimated changes over time due to noise (such

as thermal noise) and/or internal dynamics. We are interested in real-time estimation of an

observable X, which is useful for control applications such as feedback cooling[85]. In this

case, noise in X makes recent measurement results more trustworthy than those further in the

past. In addition, estimates need to be updated to reflect the internal dynamics. Both of these

concerns can be accounted for by generalising Eq. (3.8)to have a time-dependent gain

Xest(t) =

∫ t

0

G(τ, t)dQX(τ) (3.13)

G(τ, t) now defines a filter function for the measurement results. Equivalently, the optimal

estimate can be modelled in a differential form as

dXest(t) = U(t)Xest(t) +K(t)dW (τ) (3.14)

In this case, all the linear dynamics governing X are given by U(t), while K(t) is known as the

Kalman gain. This form is easily generalised to multiple interacting observables, so that Xest(t)

and the residual noise W (t) are vectors, and U(t) and K(t) are matrices. In this general case,

K(t) is found to be proportional to the conditional covariance matrix[20]. As shown in the next

section, this allows the conditional variances and optimal filter to be solved in a straightforward

manner.

3.4 The stochastic master equation

In quantum mechanics, it is generally not natural to think of an observable having a “true”

value distinct from measurement result. Instead, we think of a wavefunction describing our

knowledge which is collapsed to a more localised state by the measurement. Fortunately, the

picture of an estimate provided by Equation (3.14) translates very well to the master equation

formalism, which describes one’s knowledge of a quantum system. The master equation can then

be extended so that the change in the density matrix at time t also depends on the measurement

outcome at that time, to reflect the new information. If, for instance, a position quadrature is

measured, the conditional variance in that quadrature is reduced while the conditional mean

is shifted according to the measurement result. Since this measurement is noisy, as explained

above, the resulting equation is therefore known as a stochastic master equation. An excellent

introduction to the topic in general is provided by Jacobs and Steck[86]. Here, I will explain the

formalism briefly, before applying it to a general position measurement in the rotating frame.

First we create a standard definition for a noisy measurement result of a quantum observable

X, after Equation (3.7), as

dQX(t) =
√

4ηµ〈X̂(t)〉dt+ dW (t) , (3.15)
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where η ≤ 1 is the quantum efficiency, µ is a parameter defining the strength of the measurement

and W is a Wiener process. Since white noise has units of s1/2[84], µ has units of Hz. The

efficiency is included to allow for a reduced conditioning if some of the backaction-inducing

measurement is lost.

The effect of a measurement of X̂ on an observable Â is modelled by adding the following

term to the master equation[87]

d〈Â〉meas =
√
ηµ〈H[X̂]Â〉 dW (t) (3.16)

The measurement superoperator is

H[X̂]Â = X̂Â+ ÂX̂† − 〈X̂ + X̂†〉〈Â〉 .

the expectation value of which is proportional to the covariance of Â and X̂. The interpretation

of Eq. (3.16) is then that the observable 〈Â〉 is updated according to the measurement noise,

scaled by an amount depending on the observable’s correlation with X̂ at that time. This

carries the implicit assumption that the estimate is optimal. The observable X̂, for example,

evolves as

d〈X̂〉meas =
√

4ηµVX(t)dW (t) (3.17)

This now resembles Equation (3.14), with the conditional variance VX in the Kalman gain as

expected. This simply states that if the conditional variance reduces over time, the observable

must be updated with less noise over time. Substituting Equation 3.15, this evolution can be

written in terms of the measurement record QX as

d〈X̂〉meas = −4ηµVX(t)〈X̂〉 +
√

4ηµVX(t)dQX(t) (3.18)

Here, a measurement-induced damping term is added to U(t), the internal dynamics of X̂. This

accounts for the fact that dQX is distributed about the expected value of X̂, as opposed to the

residual noise dW (t) which is distributed about zero.

If the conditional variance VX(t) is known, Equation (3.18) can be solved to find an optimal

filter for the measurement results. This variance can be found from the master equation, using

the definition in Equation (3.5). Now the final term in Equation (3.5) becomes relevant, due

to the Ito rule (dW )2 = dt[84]. This leads to

dVX,meas(t) = −4ηµV 2
X(t)dt (3.19)

which looks like a nonlinear damping that increases with the measurement strength and effi-

ciency. This is a standard result in control theory[20]. After including the internal dynamics

and noise of the system, this variance may then be solved. Where there are no internal dy-

namics, the above equation has the solution VX ∝ 1/t, consistent with the example in Section

3.3.

So far, this still looks like a classical measurement as described in section 3.3. The quantum

modification required in this picture is backaction noise, which exists independently of whether
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the measurement is used at all. This is modelled by adding a thermal-like noise to the master

equation (as in Section 3.2) proportional to the measurement rate µ. Putting together the

backaction terms, dissipative terms and conditioning terms, we can now model the entire system

for the specific cases of continuous position measurement and for backaction evasion.

3.5 Continuous position measurement of an oscillator

In this section and in following chapters, we assume a generalised position measurement that

does not affect the mechanical susceptibility. We will, however, use cavity optomechanics as

a simple prototypical system. In this case, a generalised position measurement is achieved by

driving the cavity on resonance rather than on the red or blue sidebands. On resonance, the

amplitude of the optical or microwave field is not modulated by small changes in the path

length. Instead, it is here that the phase of the field is most sensitive. A sensitive phase

measurement, such as a homodyne, can therefore be used to read out position fluctuations

while not affecting the mechanical susceptibility.

If the optical decay is faster than the mechanical dissipation (κ≫ γ, where κ is the cavity

linewidth), we can define the measurement rate µ as[46]

µ =
8g2

κ
, (3.20)

where g is the optomechanical coupling rate. This is given by

g = Gxzpf
√
n̄ (3.21)

where G is the single-photon optomechanical coupling in Hz/m, n̄ ≫ 1 is the mean photon

number and xzpf =
√

h̄/mωm is the RMS position due to zero-point motion. This parameter

µ can be interpreted as a coupling rate to a zero-temperature measurement bath, which can be

compared with the coupling rate to the thermal bath γ. The ratio µ/γ is generally referred to

as the co-operativity[88] which in addition to the temperature will be used to define the various

measurement regimes, as will be discussed in the next section.

This kind of position measurement can be decomposed into quadratures. We will refer to

the quadrature outputs (for example, from a lock-in amplifier with the position measurement as

input) as IX(t) and IY (t). We will limit our analysis to the regime µ≪ ωm in keeping with the

rotating wave approximation. The resulting master equation then resembles the well-studied

model of heterodyne detection used in optical and microwave systems[82]. Additionally, we

assume the measurement signal has no thermal fluctuations. An observer’s expected knowledge

of the observable A then evolves as[87]

d〈Â〉 = − i

h̄
〈[Â, H̃]〉 dt+ [2γN + µ]〈D[â†]Â〉 dt+ [2γ(N + 1) + µ]〈D[â]Â〉 dt (3.22)

+
√
ηµ〈H[X̂]Â〉 dW1 +

√
ηµ〈H[Ŷ ]Â〉 dW2 .
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where dW1 and dW2 are uncorrelated Wiener increments. These correspond to the residual

noise given the measurement results dQX = IX dt and dQY + IY dt so that[87]

dW1 = dQX −
√

4ηµ〈X̂〉dt (3.23)

dW2 = dQY −
√

4ηµ〈Ŷ 〉dt . (3.24)

The backaction Lindblad terms in Eq. (3.22) take the form of an increased temperature, which

can be written as an additional mean phonon occupation

NBA =
µ

2γ
(3.25)

For Ĥ = 0, both quadratures behave identically. The conditional mean value equation now

has additional terms representing the residual noise

d〈X̂〉 = −γ〈X̂〉 dt+
√

4ηµVX dW1 +
√

4ηµC dW2 (3.26)

d〈Ŷ 〉 = −γ〈Ŷ 〉 dt+
√

4ηµVY dW2 +
√

4ηµC dW1 . (3.27)

Notice that both equations contain both Wiener increments in the case of nonzero covariance

C.

The equations for the conditional variances are found again using Equations (3.5-3.5), mak-

ing use of the Ito rule to obtain

d

dt
VX = −2γVX + 2γ(N + 1/2 +NBA) − 4ηµ(V 2

X + C2) (3.28)

d

dt
VY = −2γVY + 2γ(N + 1/2 +NBA) − 4ηµ(V 2

Y + C2) (3.29)

d

dt
C = −2γC − 4ηµC(VX + VY ) , (3.30)

If the covariance is initially zero, it will remain so, simplifying the above to

d

dt
VX = −2γVX + 2γ(N + 1/2 +NBA) − 4ηµV 2

X (3.31)

and similarly for Y . The effect of the measurement is therefore a backaction term proportional

to µ, and a conditioning term in the form of a nonlinear damping of the variance. This is

a well-known equation in classical control theory[20]. The backaction term here is the only

modification required for validity in the quantum regime.

Initially — that is, when measurement begins — the conditional variances depend on an

assumption about the system. In most cases, this will be that the system is in thermal equi-

librium. Once measurement is turned on, the conditioning should reduce the variances until a

new equilibrium is reached. Taking the steady-state condition dVX = dVY = 0 and solving the

resulting quadratic equations, we get VX = VY = V0 where

V0 =
−γ +

√

γ2 + 4γηµ(2N + 1 +NBA)

4ηµ
(3.32)
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This is a monotonically decreasing function of µ, as expected. In other words, a stronger

measurement conditionally cools the oscillator to a lower effective temperature, even when

backaction is taken into account. Here we can define a ratio of mechanical signal to measurement

shot-noise

SNR = 2VTηµ/γ (3.33)

where the unconditional variance VT quantifies the unfiltered thermal noise and backaction

VT = N +NBA + 1/2 (3.34)

In the classical regime of large N , the SNR can be thought of as the ratio of mean-square

thermal displacement (δxT )2 to (δxγ)2 the square of the minimum distance resolvable over a

time ∆t ≈ 1/(4γ)[82]. For a shot-noise limited measurement, the SNR is therefore proportional

to the factor by which the mechanical peak exceeds the white noise floor, as is easily measured

by a spectrum analyser.

Eq. (3.32) can now be rewritten as

V0
VT

=

√
1 + 4SNR − 1

2SNR
(3.35)

Taking the limit SNR ≪ 1 in Eq. (3.35) produces the bad measurement regime, which can be

due to either weak coupling or inefficient detection of the signal post-interaction. In this limit,

V0 reduces to the unconditional variance VT as expected.

As SNR increases past unity so that 1/(2ηVT ) < µ/γ < 2VT , the thermal noise can be well

resolved and the conditional variance reduces towards the ground state. When µ/γ ≫ 2VT , the

back-action in SNR (proportional to (µ/γ)2) dominates and the strong measurement limit is

approached

V0(SNR → ∞) = 1/(2
√
η) (3.36)

So for perfect efficiency, backaction prevents a conditional variance below the ground state

variance of 1/2, as expected. Note that when 2VT = η = 1, the second regime (i.e. classical

measurement) disappears entirely.

3.5.1 Optimal filter

The conditional variances derived above characterise the error in the optimal estimate of the

position as a function of the measurement and thermal noises. If the optimal estimate is

used for feedback cooling, these variances would characterise the actual noise in the oscillator,

which can be confirmed by an independent measurement[67]. When using the proper stochastic

master equation, this principle is general to quantum and classical systems[89]. Even without

feedback, the conditional variances quantify an observer’s subjective knowledge of the position,

which holds significance in quantum mechanics. Namely, in the limit that the conditional

variance of X̂ approaches zero, the effect of the measurement alone according to an observer is

to project the oscillator into an eigenstate of X̂.
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In any practical setting, the conditional variance is meaningless without being able to cal-

culate this estimate from the measurement record. For example, feedback cooling requires an

estimate to be generated in real time to control a proportional force. In the case of continuous

position measurement of a high-Q oscillator, the estimate takes on a simple form. In the limit

of a perfect measurement, the optimal estimate at time t would simply be identical to the

measurement record at time t. If there is measurement noise, however, a filter must be applied

to make use of previous results and the memory of the oscillator. This filter is identical for

both quadratures of motion.

The X quadrature estimate Xest can be found by rewriting the expectation value 〈X̂〉 in

terms of the measurement record QX(t). Substituting the white noise residual, given by Eq.

(3.23) into the mean value evolution, given by Eq. (3.26) with C = 0

d〈X̂〉(t) = −(γ + 4ηµVX)〈X̂〉(t) dt+
√

4ηµVX dQX(t) (3.37)

Here, the evolution of the expectation value of X(t) is given in terms of the evolution of the

measurement record QX(t), rather than the white noise residual W1(t). This is compensated

by adding an effective damping term to the expectation value. Substituting the solution Eq.

(3.32) for VX into its first instance leads to the simple result

d〈X̂〉(t) = −γ
√

1 + 4SNR〈X̂〉(t) dt+
√

4ηµVX dQX(t) (3.38)

The above is a simple updating rule for the expectation value of X over one time increment.

The damping term, which increases with SNR, has the effect of erasing previous measurement

results after some amount of time that decreases with SNR. The current estimate at time t in

terms of the current and previous increments can be found by solving this differential equation.

This results in a filter of the same form as Eq. (3.13), namely

〈Xest(t)〉 =
√

4ηµVX

∫ t

0

e−Γ(t−τ)dQX(τ) . (3.39)

where

Γ = γ
√

1 + 4SNR (3.40)

is the filter bandwidth. This matches the oscillator linewidth for low SNR, making full use of

the memory of the oscillator. The filter begins to widen as SNR approaches unity, where the

thermal noise is resolved above the measurement noise.

As expected, the filter makes the most use of recent measurements and drops off exponen-

tially for previous results. Alternatively, this filter can be written as a convolution

〈Xest(t)〉 =
√

4ηµVX(QX(t) ∗ e−Γt) , (3.41)

Notably, at zero temperature and with perfect efficiency the bandwidth simplifies to

Γ = γ + 2µ . (3.42)
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3.6 Backaction evasion

The most common backaction evading techniques involve making position measurements that

are essentially periodic. In an optomechanical system, this can be achieved in the good-cavity

limit where ωm ≫ κ by sideband driving on both sides of the resonance. This technique effec-

tively modulates the intensity at 2ωm and hence produces a stroboscopic interaction with one

position quadrature. Using this method, by which the backaction only heats the unmeasured

quadrature, it follows that an arbitrarily sensitive measurement of the measured quadrature

is possible. This technique, first theoretically developed by Braginsky et al.[36], is the proto-

typical quantum non-demolition (QND) measurement of an oscillator — since joined by QND

protocols for energy[41] and atomic spin[90].

The conditional variances of a mechanical oscillator under backaction evasion have been

recently studied using a master equation formalism[46]. Here, we will reproduce this theory

using the same parameters as defined above for a continuous position measurement. This will

then allow a direct comparison between parametric amplification and backaction evasion in

Chapter 6.

The master equation can be written

d〈Â〉 = − i

h̄
〈[Â, H̃]〉 dt+ 2γD[â]Â〉 dt+

√
ηµ〈H[X̂]Â〉 dW1 (3.43)

+2γ(N +NBA)〈D[X̂]Â〉 dt+ 2γ(N +Nbad)〈D[Ŷ ]Â〉 dt ,

where NBA is defined as above, and Nbad < NBA is the spurious backaction heating of the X̂

quadrature due to imperfect QND measurement. This is a function of the cavity linewidth

κ and the measurement strength. In the resolved sideband regime, where κ ≪ ωm, this is

approximated to first order as[46]

Nbad =
NBA

32

(

κ

ωm

)2

. (3.44)

In the ideal good-cavity limit, Nbad = 0 and there is no backaction heating of the measured X̂

quadrature.

Computing the variance equations from the master equation gives

d

dt
VX = −2γVX + 2γ(N + 1/2 +Nbad) − 4ηµV 2

X (3.45)

d

dt
VY = −2γVY + 2γ(N + 1/2 +NBA) − 4ηµC2 (3.46)

d

dt
C = −2γC − 4ηµVXC , (3.47)

One can easily verify from Eq. (3.47) that the stationary conditional state has C = 0. The

solutions for the conditional variances are then

VX =
−γ +

√

γ2 + 4γηµ(2N + 2Nbad + 1)

4ηµ
(3.48)

VY = N +NBA + 1/2 = VT (3.49)
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The solution for VX is the same as Eq. (3.32) describing a continuous measurement, but with

a reduced backaction term. This allows VX to be squeezed below the ground-state variance at

the expense of extra noise in VY , which is unconditioned and hence increases monotonically

with µ.

Since Nbad is (like NBA) a linearly increasing function of µ, this term sets the lower limit to

VX in the strong measurement limit

VX(µ→ ∞) =

√

Nbad/NBA

2η
(3.50)

Therefore, quantum squeezing is possible for an efficient and strong backaction-evading mea-

surement in the good-cavity regime. Achieving all of these requirements at once is still ex-

perimentally difficult, owing primarily to measurement-induced instability as a limit to the

measurement rateµ[91]. The next chapter will introduce an alternative to backaction evasion,

while Chapter 6 will examine the possibility of quantum squeezing using only a weak measure-

ment.
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Chapter 4

Detuned mechanical parametric

amplification with classical

measurement

4.1 Introduction

Until now we have only considered one way in which oscillators can be excited. That is, by

applying direct, external forces. For example, a mother can excite a swing (and accordingly,

her child) by pushing her feet against the ground, accelerating the child’s mass into the air.

However, as every child knows, the mass can take over after one initial push. How can this

happen without needing to make contact with the ground?

The motions of a child aiming to go higher on a swing are, despite their intuitive simplicity,

a performance of nonlinear mechanics. The energy does not enter the system from a direct

force, but from the upward and downward shifting of the centre of the mass. Such a parametric

modulation can be used to increase the harmonic restoring force when it aids the existing

oscillation (that is, when moving toward the midpoint) and to decrease it when it does not

(when moving away). This modulation at twice the resonance frequency is the first-order

method of parametric amplification.

This technique is general to any harmonic oscillator. Notably, it has found widespread prac-

tical use in quantum optics[92, 93] before it did in mechanical systems, where until recently

it had remained a curiosity. In optics, the time-dependent parameter is generally the polaris-

ability of a dielectric crystal, modulated by a strong “pump” laser of twice the frequency of

the output signal beams. This kind of amplification can be applied to intracavity modes or to

the non-equilibrium case of travelling waves, the former being more analogous to the damped

mechanical oscillators we are studying.

A landmark paper by Rugar and Grütter[25] introduced parametric amplification to MEMS

oscillators by using a highly nonuniform electric field, a method which is still widely imple-
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mented in dielectric resonators[94, 95, 60]. In this case, an effective spring constant arises due

to the spatial dependence of the force Fext from the electric field.

keff = k0 + dFext/dx (4.1)

Modulating this force at twice the resonance frequency will not excite a high-Q oscillator di-

rectly due to the low susceptibility at this frequency. Instead, due to the nonzero dFext/dx, this

provides the required modulation of the spring constant for self-amplification. Other common

parametric techniques in MEMS and NEMS involve piezoelectric strain[56], dispersive coupling

to charge qubits[24] and Duffing nonlinearities[57]. In the context of electromechanics, this

amplification is generally used to circumvent measurement noise.

Parametric amplification has also seen recent application in superconducting microwave

resonators, where the nonlinear inductance of Josephson junctions[23, 96] or the resonators

themselves[97] can be used to modulate the resonance frequency. Such methods are useful

to amplify quantum signals above substantial thermal and measurement noises, which are

problematic at microwave frequencies.

4.2 Amplification, squeezing and threshold

Returning to the child-on-a-swing analogy, the amplification we described requires the modula-

tion to have the correct timing with respect to the motion. If the modulation were to be reversed

(i.e. the restoring force is increased when moving out from the centre), there would instead be

a damping of motion. In other words, the amplification is phase-sensitive. In the presence of

random fluctuations, a resonant parametric drive decreases the damping of fluctuations that

are in-phase with the drive, and increases the damping for those that are out-of-phase.

In Section 2.3, resonant parametric modulation was shown to break the quadrature sym-

metry of the zero-point motion, resulting in a squeezed state. This chapter will deal with the

similar effect on the thermal noise described in Section 3.2. Adding the influence of the para-

metric drive given by Eqs (2.42-2.43) to the intrinsic decay and adding input noise Xin and Yin

results in Langevin equations

dX = −(γ + χ)X dt+
√

2γdXin(t) (4.2)

dY = −(γ − χ)Y dt+
√

2γdYin(t) (4.3)

where χ, as defined in Section 2.3, characterises the strength of the parametric drive. For χ < γ,

there is an increased effective damping rate for X and a decreased rate for Y . When visualised

in quadrature phase space, the resulting equilibrium probability distribution is elliptical, which

we will call a “classically squeezed” distribution. This prediction was confirmed experimentally

by Rugar and Grütter for the thermal noise of a MEMS cantilever[25].

If the drive strength χ is increased, the squeezing becomes more pronounced, ultimately

reaching a threshold where the amplified quadrature’s damping becomes negative (χ > γ)
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and the oscillator becomes unstable. Specifically, the amplitude grows exponentially before

encountering an intrinsic limiting nonlinearity. This non-equilibrium phenomenon, known as

parametric resonance, exhibits interesting features such as bistability[94]. Just below threshold,

the damping of the orthogonal quadrature is double its original value, limiting steady-state

squeezing of the variance to 3dB for a time-domain average.

For χ < γ, these quadrature equations of motion can then be transformed to the frequency

domain and squared, giving the power spectral density as a Lorentzian filter of the input noises

〈X2(ω)〉 =
2γ〈X2

in(ω)〉
(γ + χ)2 + ω2

(4.4)

〈Y 2(ω)〉 =
2γ〈Y 2

in(ω)〉
(γ − χ)2 + ω2

(4.5)

Clearly, as the drive strength approaches threshold (χ → γ) the spectral density of the X

quadrature at resonance is reduced by a factor of four compared to with the drive off. Steady-

state squeezing close to this amount has been reported in the MEMS literature[25, 24] and

in intracavity optical parametric amplifiers[98], since in all cases this squeezing was measured

using only frequency components of the motion near the resonance. We will be working in the

time domain, for which the variance is effectively an integral over all frequency components.

Assuming the input noise is white, this is simply proportional to the integral of the Lorentzian

susceptibility. However, since this integral scales linearly with the effective linewidth γ + χ,

this time-domain variance only sees a maximum steady-state squeezing by a factor of two.

By virtue of the squeezing effect, parametric amplification has been used for preparation

of quantum squeezed states in atomic traps[7] and proposed for mechanical oscillators[26].

However, for squeezing below the quantum level to be possible in the steady-state, the 3dB limit

requires the thermal occupation to be less than the zero-point motion, implying that the mean

phonon occupation N < 1/2. To date, this condition has only been achieved using very high

frequency oscillators[99] or by using state-of-the-art optomechanical cooling techniques[43, 40].

Furthermore, since cooling to below the bath temperature decreases the effective Q-factor, a

stronger parametric drive would be required to reach threshold in most cases.

In the context of steady-state parametric amplification, recent work published after the work

in this thesis has shown that the 3dB limit can be surpassed by using active[100] or passive[101]

cooling to stabilise the amplified quadrature. Even in these cases, work to date on parametric

amplification has generally focused on the resonant modulation at 2ωm shown above. Resonant

parametric modulation is typically considered useful for either amplification or squeezing in

isolation, for the purposes of enhanced measurement or state preparation respectively. In the

remainder of this chapter, we will focus on the intersection of these two ideas. That is, using the

increased measurement fidelity of the amplified quadrature in order to enhance the squeezing

of the other without the use of a stabilisation technique. For this, we will need to derive a full

model that includes detuning of the parametric drive away from resonance. While the detuned

regime has been treated in optics, where non-equilibrium squeezing is applied to travelling
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waves[102], the work in this chapter is the first known analysis for a damped and monitored

oscillator in the steady-state.

4.3 Hamiltonian

The Hamiltonian for a resonant parametric drive (that is, at twice the frequency ωm) is given

by Eq. (2.35), which is followed by a transformation into the rotating frame. Only a simple

modification is required to add detuning to this model. Suppose that the spring constant is

modulated at a frequency 2ωd, where ωd = ωm − ∆. The full Hamiltonian is then

H̃ =
p̃2

2m
+
x̃2

2
[k0 − kr sin(ωdt+ 2θ)] (4.6)

= h̄ωm(ã†ã+ 1/2) − h̄χ(ã+ ã†)2 sin(2ωdt+ 2θ) (4.7)

where as before χ = ωmkr/(4k0) is approximately the peak-to-peak frequency modulation.

Note that this modulation is completely classical and noiseless, assuming technical noise can

be neglected. This differs from coupled harmonic modes, for example, where quantum noise is

introduced by the second mode.

For a high-Q oscillator, we can instead use as co-ordinates the quadratures X̂ and Ŷ . In

contrast to equation (2.16), we will make the rotating wave approximation at the frequency ωd,

so that the squeezing operation is stationary. This is done by separating the Hamiltonian into

parts H̃0 and H̃I where

H̃0 = h̄ωd(ã
†ã+ 1/2) (4.8)

and

H̃I = h̄∆(ã†ã+ 1/2) − h̄χ(ã+ ã†)2 sin(ωdt+ 2θ) (4.9)

In this case, the interaction Hamiltonian is transformed by making the substitution

ã→ â exp(−iωdt) (4.10)

This has no effect on the term proportional to ∆, and transforms the modulation term into a

squeezing operator. The Hamiltonian can then be written

Ĥ = h̄∆â†â+ ih̄
χ

2
(e2iθâ2 − e−2iθâ†2) . (4.11)

Since we chose a rotating frame with respect to the parametric drive, this Hamiltonian looks

like a resonance at ∆ with a stationary squeezing operator. Now in addition to χ, the detuning

∆ must also be much less than ωd for the rotating wave approximation to hold. Note that the

phase θ has no effect on the system dynamics but defines the squeezing axes with respect to

the chosen quadratures.
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Figure 4.1: Idealised schematic of a parametric drive applied to an optomechanical system.

The quadratures analysed in this chapter can be obtained by feeding a continuous position

measurement into a lock-in amplifier with reference frequency ωd.

4.4 Evolution of observables

Applying the master equation for continuous measurement introduced in Section 3.5 to the

quadratures X and Y with the above Hamiltonian gives the time domain evolution of the

expectation values

d〈X̂〉 = [−(γ+χ cos 2θ)〈X̂〉−(∆−χ sin 2θ)〈Ŷ 〉]dt+
√

4ηµVX dW1+
√

4ηµC dW2 (4.12)

d〈Ŷ 〉 = [−(γ−χ cos 2θ)〈Ŷ 〉+(∆+χ sin 2θ)〈X̂〉]dt+
√

4ηµC dW1+
√

4ηµVY dW2 (4.13)

Let us for now assume that the position is not localised through filtering the measurement

results by setting µ = 0. Additionally setting ∆ = θ = 0, this reproduces Eqs (4.2-4.3)

describing the familiar resonant parametric amplification. That is, an additional damping in

X and reduced damping in Y , both proportional to the drive strength χ.

The resonant case is restricted by the threshold requirement χ < γ. In general, however,

the system is stable if χ is below a threshold value

χth =
√

∆2 + γ2 . (4.14)

This shows that by introducing a dynamical coupling between amplified and damped quadra-

tures, the detuning enables a stronger parametric drive without self-oscillation. For |χ| < |∆|,
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the oscillator’s trajectories through X-Y phase space are elliptical

〈X̂(t)〉 =

[

X(0) cos(ωet) + Y (0)

√

∆ − χ

∆ + χ
sin(ωet)

]

e−γt (4.15)

〈Ŷ (t)〉 =

[

Y (0) cos(ωet) −X(0)

√

∆ + χ

∆ − χ
sin(ωet)

]

e−γt (4.16)

with frequency

ωe =
√

∆2 − χ2 . (4.17)

4.4.1 QND-like evolution

Detuning closer to threshold, the elliptical trajectories become slower and the amplification be-

comes more pronounced. In the case that χth > |χ| > |∆|, the frequency ωe becomes imaginary

and the above trajectories are given by damped hyperbolic functions. The intermediate special

case |∆| = |χ| is notable, since here one quadrature is unaffected by the drive. For example,

when ∆ = −χ and θ = π/4, the equations of motion are

d〈X̂〉 = −γ〈X̂〉dt (4.18)

d〈Ŷ 〉 = [−γ〈Ŷ 〉 + 2χ〈X̂〉]dt (4.19)

In this case, the squeezing and rotation operations conspire to produce simple coherent

dynamics analogous to that of a free particle: similar to momentum, the X̂ quadrature is a

constant of the motion, while similar to position, Ŷ grows at a rate determined by X̂. That

is, in the absence of external influences, (d/dt)Ŷ = χX̂. It follows trivially that while the X̂

quadrature is unaffected by the parametric driving, at long times (or low frequencies) the Ŷ

quadrature becomes an amplified version of X̂. This can be seen from the quantum Langevin

equations, which take the form

[

dX̂

dŶ

]

=

[

−γ 0

χ −γ

] [

X̂

Ŷ

]

dt+
√

2γ

[

dX̂in

dŶin

]

, (4.20)

where Xin, Yin describe the input noise from the mechanical bath. The above is easily solved in

the frequency domain as

X̂(ω) = X̂0(ω) (4.21)

Ŷ (ω) = Ŷ0(ω) +
2χ

γ − iω
X̂0(ω) , (4.22)

where

X̂0(ω) =
X̂in

γ − iω
(4.23)

Ŷ0(ω) =
Ŷin

γ − iω
(4.24)
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are the mechanical quadratures when χ = 0.

For low frequencies and large χ/γ, the detuned parametric drive causes Ŷ to become an

amplified version of X̂, whereas X̂ is completely unaffected by the parametric driving. The

situation is reminiscent of a quantum non-demolition measurement: the mechanical Ŷ quadra-

ture “measures” the X̂ quadrature, without any backaction disturbance. This concept will be

examined further in Section 6.3.

4.5 Unconditional steady-state

It has already been shown that in the presence of a below-threshold detuned parametric drive,

a coherent excitation of an oscillator will follow an asymmetric trajectory to the origin in our

chosen quadrature phase space. This influence applies in a similar way to the thermal noise.

That is, the unconditional covariance matrix will evolve towards an asymmetric steady-state.

The differential equations for these variances can be found from the master equation with the

condition µ = 0, producing

d

dt
VX = −2(γ+χ cos(2θ))VX − 2(∆−χ sin(2θ))C + 2γVT (4.25)

d

dt
VY = −2(γ−χ cos(2θ))VY + 2(∆+χ sin(2θ))C + 2γVT (4.26)

d

dt
C = −2γC − ∆(VY −VX) + χ sin(2θ)(VX+VY ) . (4.27)

where VT = N + 1/2. We will solve these equations in both the steady-state case where the

variances are stationary and in the case of a step response to the parametric drive.

Setting the left hand sides of Eqs (4.25-4.27) to zero results in the unconditional steady-

state variance, which would be inferred from a spectrum analysis over a time much longer than

any time scales in the dynamics. Applying detuning shifts the angle of the squeezing axes

significantly compared to the resonant case. In anticipation of this we set θ = π/4, which

without detuning will amplify fluctuations maximally along an axis rotated through an angle

π/4 from the Y quadrature (Note: this will henceforth be called the antisqueezing angle).

Solving Eqs (4.25-4.27) with these conditions results in

VXss =

(

1 − χ(∆ − χ)

γ2 + ∆2 − χ2

)

VT (4.28)

VY ss =

(

1 +
χ(∆ + χ)

γ2 + ∆2 − χ2

)

VT (4.29)

Css =
χγ

γ2 + ∆2 − χ2
VT . (4.30)

Interestingly, by going to the near-threshold detuning ∆ = χ ≫ γ, the antisqueezing axis is

close to Y as it would be for θ = ∆ = 0, while the X variance is unaffected.

The exact squeezing is characterized by finding the quadrature in the X−Y plane with the

smallest variance. Defining an arbitrary quadrature

X̂α = X̂ cosα− Ŷ sinα (4.31)
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Figure 4.2: Illustration of an unconditional trajectory in X-Y phase space with a conditional

uncertainty at a given time based on previous measurements (shaded ellipse). The angles

θ = π/4, α0 and α1 are defined between the Y axis and respective dotted lines.

so that

VXα = VX cos2 α + VY sin2 α− 2C cosα sinα . (4.32)

the maximally squeezed variance and its angle can be found by differentiating Vα with respect

to α. As long as VY > VX , the maximally squeezed and antisqueezed quadratures (V− and V+

respectively) become

V− =
1

2
[(VX + VY ) − (VY − VX) sec(2α0)] (4.33)

V+ =
1

2
[(VX + VY ) + (VY − VX) sec(2α0)] (4.34)

where

α0 =
1

2
tan−1

(

2C(t)

VY (t) − VX(t)

)

, (4.35)

is the antisqueezing angle (see Figure 4.2). Applying this to the steady-state solutions given

by Eqs (4.28-4.30) results in

Vss− =
VT

1 + χ/χth

(4.36)

Vss+ =
VT

1 − χ/χth

(4.37)

α0ss =
1

2
tan−1(

γ

∆
) , (4.38)

where the threshold value χth, given by Eq. (4.14) defines the maximum drive strength be-

fore the system self-oscillates. Therefore, for both detuned and resonant drives, a maximum

unconditional squeezing V−/VT of −3dB can be achieved in the time-domain.
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Figure 4.3: Step response of unconditional variances for ∆′ = 10 and χ′ = 9, where the pump

is switched on at t = 0. Above: Normalised variances for the X and Y quadratures (solid)

and actual squeezed and antisqueezed quadratures (dotted) vs time. Below: Covariance and

squeezing angle vs time.

It is interesting to note that the parameter χ/χth in general defines the amount of squeezing

and antisqueezing. Unlike the resonant case where χth = γ, in the highly detuned case χth ≈
∆. Therefore, when near threshold in the detuned case, the antisqueezed variance becomes

extremely sensitive to the frequency difference between the oscillator and the drive. For this

reason, detuned parametric amplification has been investigated in the context of precision

frequency sensing[103].

4.6 Unconditional transient variance

We can also consider the transient evolution of the variance from a symmetric thermal state

to the asymmetric steady-state value after a sudden turn-on of the parametric drive. In an

experiment, this time-evolution can be found by repeating the drive turn-on from the same

condition and calculating the variance V (t) over many runs for each time t. Differentiating

both sides of Eq. (4.27) with respect to time for η = 0 and θ = π/4 leads to a second-order

equation similar to Eq. (1.4) describing a damped harmonic oscillator with a constant applied

force
∂2C

∂t2
+ 4γ

∂C

∂t
+ 4(∆2 + γ2 − χ2)C = 4χγVT (4.39)

If the pump is turned on at t = 0 (where C = 0 for t < 0), the analytic solution to Eq.
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(4.39) is

C(t) = Css

(

1 − cos(2ωpt+ φ)

cos(φ)
e−2γt

)

(4.40)

where

φ =

∣

∣

∣

∣

∣

cos−1

(

γ
√

∆2 + γ2 − χ2

)∣

∣

∣

∣

∣

. (4.41)

In the regime ∆ > χ > γ, the covariance takes the form of an underdamped step response

with characteristic overshoot, as shown in Fig. 4.3. Substituting this solution into the X and

Y variance equations, the time-dependent variances are:

VX(t) = VXss + (VT − VXss)
sin(2ωpt+ φ)

sin(φ)
e−2γt (4.42)

VY (t) = VY ss + (VT − VY ss)
sin(2ωpt+ φ)

sin(φ)
e−2γt (4.43)

This results in a simple expression for the squeezing angle α0 as time evolves

α0(t) =
1

2
tan−1

γ(1 − cos(2ωpt+φ)

cosφ
e−2γt)

∆(1 − sin(2ωpt+φ)

sinφ
e−2γt)

(4.44)

This begins at π/4, oscillates periodically about tan−1(γ/∆)/2 = αss and approaches the latter

in the steady-state. As can be seen from Fig. 4.3, when following the maximally squeezed

quadrature, the squeezing ratio easily surpasses the steady-state limit of one half in the early

stage of the step response. At such short times, before the detuning takes effect, this behaviour

resembles the exponentially growing and shrinking variances produced by an above-threshold

resonant parametric drive. The difference in this case is that the variances are automatically

constrained by the detuning at long times to their steady-state values.

4.7 Conditional steady-state

Now it will be demonstrated that if µ > 0, unlike in the unconditional case, using a detuned

parametric drive enables a much greater degree of squeezing in the steady-state compared

to a resonant drive. This is because the squeezed quadrature can be inferred from previous

measurements of the amplified quadrature. In order to generalise this idea to the classical and

quantum regimes, the squeezing will first be examined relative to the bare conditional variance,

as given in terms of SNR by Eq. (3.35). The defining feature of the quantum regime is the

backaction term in the unconditional variance VT , which is negligible when µ/γ ≪ 2N+1. The

absolute variance in the quantum regime, where the backaction term needs to be taken into

account, will be examined in Chapter 6. The full variance equations are

d

dt
VX = −2(γ+χ cos(2θ))VX − 2(∆−χ sin(2θ))C + 2γVT − 4ηµ(V 2

X + C2) (4.45)

d

dt
VY = −2(γ−χ cos(2θ))VY + 2(∆+χ sin(2θ))C + 2γVT − 4ηµ(V 2

Y + C2) (4.46)

d

dt
C = −2γC − ∆(VY −VX) + χ sin(2θ)(VX+VY ) − 4ηµC(VX+VY ) . (4.47)
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Figure 4.4: Conditional variance normalised to thermal variance for N ≫ 1, for a quadrature

with no parametric drive (V0, dotted line) and in the squeezed quadrature with the drive

χ = 100γ and detuning at threshold (VXα, solid line). In this high temperature regime, the

conditioning is not limited by backaction when SNR ≫ 1

When performing position estimation, a detuned parametric drive results in an elliptical

Gaussian uncertainty. However, the antisqueezing angle of this distribution does not in general

correspond to α0, which defines the axis of the average elliptical trajectory. Figure 4.2 illustrates

this difference, where a parametric drive phase of π/4 results in an antisqueezing angle α1 for

the conditional variance.

In order to solve the variances for the maximally squeezed and antisqueezed quadratures, it

is convenient to define the pump phase θ as a function of SNR and pump parameters so that

the X quadrature is always maximally squeezed and the covariance vanishes. In order to work

in terms of the equivalent antisqueezing angle, we make the replacement θ = π/4 − α1 and set

C = 0, simplifying the equations above.1 Applying the steady-state condition and solving gives

VXα =

√

(γ + χ sin(2α1))2 + 4γ2SNR − γ − χ sin(2α1)

4ηµ
(4.48)

VY α =

√

(γ − χ sin(2α1))2 + 4γ2SNR − γ + χ sin(2α1)

4ηµ
(4.49)

cos(2α1) =
∆(VY − VX)

χ(VY + VX)
. (4.50)

We can see that setting ∆ = 0 reproduces the resonant case where α1 = π/4 and the

drive strength χ appears as modifications to the damping rate. The conditional variances may

be solved exactly by finding the antisqueezing angle α1 in terms of system parameters. The

1In an experimental situation, the pump phase would be kept constant, while the squeezing angle would be

found in post-processing. In keeping with this we call these optimal variances VXα and VY α.
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Figure 4.5: (Above) Antisqueezing angle α1 and (below) squeezing ratio VXα/V0 vs SNR. Light

curves are for a drive strength χ = 10γ while dark curves are for χ = 100γ. Solid lines are for

the pump detuning on threshold, while dashed lines indicate detuning away from threshold by

γ. Note that the squeezing disappears altogether in the strong measurement limit.

antisqueezing angle (derived in Appendix A) satisfies

cos 2α1 =
∆

χth





χ2
th+χ2+4γ2SNR−

√

(χ2
th−χ2)2+8(χ2

th+χ2)γ2SNR+16γ4SNR2

2χ2





1

2

(4.51)

Inserting this into Eqs (4.48-4.49) gives the squeezed and antisqueezed steady-state variances.

The squeezed variance, normalised by the thermal variance, is plotted in Fig. 4.4 along with

the undriven conditional variance V0 in the high temperature limit where backaction is negli-

gible. Here it can be seen that in comparison to the undriven case, the conditioning due to

measurement in the driven case begins at a lower SNR.

The ratio VXα/V0 illustrates the improvement in conditioning due to a detuned paramet-

ric drive as a function of SNR. Notably, since α1 does not depend on N , η and µ separately

but on their combined form SNR, this ratio has the same property. In other words, the ratio

VXα/V0 is temperature-independent. This conditional squeezing ratio starts at the uncondi-

tional squeezing (≈ 1/2), drops to a minimum near SNR ≈ 1, and approaches unity in the

strong measurement limit.

The degradation of the conditional squeezing for strong measurement occurs even in this

classical regime where backaction heating may be negligible. This can be seen by the squeezed

and antisqueezed variances given by Eqs (4.48-4.49) becoming independent of the parametric

drive as SNR → ∞. The effect of the parametric drive on the squeezed quadrature can be inter-
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preted as a signal boost due to the amplified quadrature, which is correlated by the detuning.

This is of greatest benefit near SNR ≈ 1 where the mechanical signal and measurement noises

are comparable and the conditional variance V0 is most sensitive to SNR. In other words, it is

here that conditioning the squeezed quadrature via the well-transduced amplified quadrature

is more efficient than direct conditioning. This is the key result of the thesis, and will be shown

in subsequent chapters to have significant implications for quantum measurement.

At threshold, Eq. (4.51) reduces to

cos(2α1) =

√

χ2 − γ2

χ2

(

√

χ2 + γ2SNR − γ
√

SNR
)

. (4.52)

In the limit χ≫ γ and SNR = 1, the following approximation can then be made

χ sin(2α1) ≈ γ
√

2χ/γ . (4.53)

The amount of squeezing achievable relative to the undriven conditional variance V0 in this

limit is similarly proportional to
√

χ/γ. For the rotating wave approximation to remain valid,

as assumed by our theory, χ/γ must be less than the oscillator Q factor (i.e. χ≪ ωm).

4.8 Optimal filter

The conditional variances quantify the error of an optimal estimate filtered from the measure-

ment record. As done for a simple damped oscillator in Section 3.5.1, these filter can be derived

from the mean value equations. Unlike this previous derivation, the two quadrature estimates

in the presence of a parametric drive will require different filter parameters. The first step is

to rewrite the mean value equations (4.12-4.13) in terms of the measurement records QXα and

QY α rather than the white noise residuals dW1 and dW2. This results in additional damping

terms proportional to the measurement rate ηµ. As in the previous section, we will choose a

pump phase θ = π/4 − α1 and set C = 0. Substituting these values, Fourier transforming and

solving for 〈Xest(ω)〉 gives

〈Xαest(ω)〉 =
√

4ηµ
(γY − χ sin(2α1) + iω)VXαQXα(ω) − (∆ − χ cos(2α0))VY αQY α(ω)

∆2 − χ2 + γXγY + χ sin(2α1)(γY − γX) − ω2 + iω(γX + γY )
(4.54)

where the intrinsic and measurement-induced damping rates of the X and Y quadratures are

respectively combined as

γX = γ + 4ηµVXα (4.55)

γY = γ + 4ηµVY α . (4.56)

Increasing µ causes the optimal filters to widen as the ratio of mechanical signal to measurement

noise increases. These two bandwidths are equal in the bad measurement limit (where ηµ→ 0)

as well as the strong measurement limit (where VXα ≈ VY α), but vastly different near SNR ≈ 1
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Figure 4.6: (Above) Filter convolution frequency Ω and (below) filter bandwidth Γ, both nor-

malised to the intrinsic linewidth, plotted against SNR. The parametric drive parameters are

χ/γ = 10 and ∆/γ = 11.

if driven near threshold. We will limit ourselves to the regime ∆2 > χ2, where the general form

of the above solution in the time domain is

〈Xαest(t)〉 = gXXQXα(t) ∗
[

cos(Ωt+ φ)e−Γt
]

+ gXYQY α(t) ∗
[

sin(Ωt)e−Γt
]

, (4.57)

and similarly for the Y estimate

〈Yαest(t)〉 = gY YQY α(t) ∗
[

cos(Ωt− φ)e−Γt
]

+ gY XQXα(t) ∗
[

sin(Ωt)e−Γt
]

. (4.58)

The parameters are obtained from Eq. (4.54) and simplified in terms of α1 using relations

(4.50) and (A.2)

Ω =
√

∆2 − χ2 cos2(2α1)(1 + γ2/∆2) (4.59)

Γ =
1

2
(γX + γY )

= ∆ tan(2α1) (4.60)

φ = tan−1 χγ cos(2α1)

∆Ω
(4.61)

gXX = secφ
√

4ηµVXα (4.62)

gXY =
∆ − χ cos(2α1)

Ω

√

4ηµVY α (4.63)

gY Y = secφ
√

4ηµVY α (4.64)

gY X =
∆ + χ cos(2α1)

Ω

√

4ηµVXα . (4.65)

These expressions simplify in the SNR = 0 limit (where cos(2α1) = ∆/χth) to expected values

(e.g. Ω = ωe and Γ = γ). In the high SNR limit (where cos(2α1) = 0) the optimal filter has
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infinite bandwidth and is independent of the parametric drive, while the convolution frequency

is equal to the detuning. These limits are shown in Figure 4.6.

The measurement records for X and Y, upon applying these Lorentzian filters, form an

optimal estimate of the oscillator’s current position in phase space. In other words, the ampli-

tudes of the in-phase and out-of-phase fluctuations are known to within uncertainties defined

by VXα and VY α. By mixing the estimate back up to ωd and with the correct phase shift, an

appropriate feedback cooling signal is obtained. In this way, conditional squeezing is turned

into real squeezing[89].
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Chapter 5

Demonstration of enhanced

theromomechanical squeezing

5.1 Introduction

In the previous chapter, it was shown that a detuned parametric drive can improve the effective

steady-state localisation of one quadrature, as quantified by the conditional variance. This

improvement is, in principle, unlimited. This stands in contrast to the unconditional variance,

for which the single-quadrature improvement cannot exceed 3dB in the steady-state. The role of

the detuning is to induce correlations between the amplified and squeezed motional quadratures

while keeping the oscillator below threshold. Information encoded on the amplified quadrature

then allows the squeezed quadrature to be estimated with enhanced precision. The improvement

is optimised when the oscillator signal is comparable to the measurement noise.

This chapter summarises an experimental demonstration of the above idea using a con-

ventional AFM cantilever, monitored at room temperature by a fiber interferometer. Optimal

control techniques and parametric modulation were used to both break the 3dB limit for the

first time and achieve mechanical localisation exceeding the measurement sensitivity of the in-

terferometer by 6.2dB. These experiments were performed at room temperature, and as such

are far from the quantum regime. The enhanced localisation possible through such “thermome-

chanical squeezing” can, however, be useful in force measurement; for instance, by increasing

the dynamic range when signal distortion is introduced at large amplitudes[19, 104]; by broad-

ening the bandwidth in the squeezed quadrature[105]; and by enhancing the sensitivity to

pulsed forces with known timing[106, 107]. Furthermore, since the technique demonstrated

here applies equally to quantum zero-point noise, it provides a path towards precise quantum

control and robust quantum squeezing of mechanical oscillators at attainable temperatures and

in the absence of strong measurement.
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Figure 5.1: Simplified schematic of the experimental setup. The red path in the fiber-based

interferometer denotes the high-fidelity carrier signal while the green path denotes the low-

fidelity signal created by amplitude modulation (AM). PBS: polarising beam-splitter; FPC:

fiber polarisation controller. 3D rendering by Michael Taylor.

5.2 Experimental setup

The experimental setup, a simplified version of which is shown in Fig. 5.1, is based on a com-

monly used optical measurement of the mechanical element in a typical MEMS. The position of

a gold-coated AFM cantilever was monitored using a Mach-Zender interferometer in a balanced

homodyne configuration, with a fiber tip used to focus the optical field onto the cantilever. This

allowed a high-fidelity measurement of the thermal noise in the fundamental mode of the can-

tilever, which was used to characterise its motion and the accuracy of our estimation procedure.

A weak sideband was also created using an intensity modulation of the bright field, providing

a low-fidelity measurement with independent shot-noise characteristics which was used to per-

form position estimation. The fidelity of this measurement could be varied, allowing the study

of estimation techniques in the important regime where the signal level is comparable to the

measurement noise floor, i.e. where the signal-to-noise ratio SNR = VT/Vshot ≈ 1. Both high

and low-fidelity position measurements were fed into lock-in amplifiers along with frequency

references from signal generators. The mixed-down quadrature outputs were then fed into data

acquisition units for post-processing.

The cantilever was glued onto a piezoelectric transducer for direct excitation, and the lensed

fibre tip was mounted on a piezoelectric controller for accurate positioning with respect to the

cantilever. These were mounted inside a vacuum chamber kept at 0.01 − 0.02mbar throughout
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Figure 5.2: Full schematic of the experiment. The inset is a photograph of the cantilever

with the fiber and electrode in operational positions. FC: fiber coupler (50%), MZM: Mach-

Zender Modulator, PBS: polarising beam-splitter, DAQ: data acquisition unit, BPF: band

pass filter, LPF: low pass filter, BPD: balanced photodetector, PC: polarisation controller, PI:

proportional-integral controller. Schematic courtesy of George Brawley.

the experiment. The low pressure reduced the damping of the resonator and mitigated spurious

electrostatic effects. The final element of the experimental apparatus consisted of a sharp

electrode, used to electrostatically modify the spring constant of the cantilever. This was used

to both tune the resonance frequency via a DC voltage, and to apply the parametric drive

using an additional sinusoidal voltage. The signal generators, switches and data acquisition

units were synchronised using LabView software. The next two sections will detail the optical

and electromechanical components of the experiment, respectively.

5.2.1 Fiber interferometer

A Mach-Zender interferometer measures the relative phase shift between two optical paths —

generally, a signal path and a local oscillator (LO). This technique is widely used for position

measurement[108, 109], since the position of a mirror determines the phase of reflected light

at a fixed point in the optical path. As such, mirrors mounted on piezoelectric crystals are a
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Figure 5.3: Displacement noise spectrum around the fundamental cantilever resonance mea-

sured by the laser carrier (red) and by the sideband created with a 1Vpp modulation (green).

Dotted lines represent the respective shot-noise limited sensitivities of the measurements, while

the green band corresponds to the range of sensitivity available from the utilised sideband

intensities.

common way of achieving low-frequency phase modulation of light. When the signal path and

local oscillator are spatially mixed, the outgoing light intensity depends on the strengths and

relative phases of the two beams.

Balanced homodyne measurement is an optimal way to measure a single quadrature of light

— in this case, the phase quadrature — with minimal classical noise. This is done by making

the local oscillator beam much more intense than the signal beam, detecting both outputs of

the beam-splitter, and subtracting the outputs of the two detectors. This subtraction cancels

the constant amplitude quadrature, as well as the classical noise, of the local oscillator. Ideally,

the remaining noise is the white-noise of the quantum fluctuations of the light field, known as

shot-noise. By modifying the polarisation on each arm of the interferometer, the influence of

the signal phase on the outgoing phase quadrature can be maximised.

A shot-noise limited 780nm Titanium-Sapphire laser was used to perform the measurements.

The interferometer was implemented in-fibre using fibre-based couplers and polarisation con-

trollers. A lensed tip was used to focus the light onto the cantilever and to collimate the

reflected light. The position of the fiber tip with respect to the cantilever was optimised using

a piezoelectric controller to maximise the intensity of reflected light. The phase of the local

oscillator was stabilised using a proportional-integral (PI) controller. Typical local oscillator

power was 170µW per side at the homodyne detector, while typical reflected signal power was

0.5µW per side.

A weak sideband was created using a Mach-Zender amplitude modulator, providing the

independent low-fidelity measurement. This was achieved by using a DC voltage to set the
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intensity in the linear region of the sinusoidal response and adding a radio-frequency signal to

the input. To eliminate drift of the intensity of the outgoing fundamental mode, a PI controller

was used as the DC input. A 10 MHz modulation signal was used to create the sideband and

the amplitude of the modulation signal was used to set the intensity (and thus sensitivity)

of the sideband. This frequency was within the photodetector bandwidth of 100 MHz. The

high-fidelity position quadrature measurements were created by feeding the homodyne output

into a lock-in detector set to the reference frequency fd, so that it captured the fluctuations

around the fundamental laser mode. The low-fidelity quadrature measurements were created

using a separate lock-in amplifier set to fd + 10MHz, so that it captured the same fluctuations

in the weak sideband.

During the measurements, the sensitivity Sx of the interferometer was 90fm/
√

Hz, as shown

in Fig. 5.3. This value was found by reading off the height of a spectral peak from adding a

sinusoidal voltage to the interferometer’s phase shifter. This known phase shift is then related to

displacement by the laser wavelength. The measurement shot-noise for this signal Vshot = 4γS2
x,

where γ is the mode’s decay rate, was 60dB below the thermally-induced variance VT . The

sensitivity of the low-fidelity measurement could be varied between 25 and 1000pm/
√

Hz by

adjusting the optical modulation depth, as illustrated in Fig. 5.3. At room temperature, the

thermal noise signal lay within this region.

5.2.2 Capacitive parametric tuning and modulation

A dielectric inside a capacitor can experience a force if the surrounding electric field is nonuni-

form. If motion of the dielectric along a position axis x increases the stored energy E of the

capacitor, the force in this direction will be

Fx =
dE

dx
(5.1)

=
1

2

dC

dx
V 2 (5.2)

where C is the capacitance and V is the voltage across the plates. This is due to conservation

of energy. In the same fashion, a dielectric can experience a change in spring constant if the

electric field is highly nonuniform.

kr =
dFx

dx
(5.3)

=
1

2

d2C

dx2
V 2 (5.4)

Therefore, the intrinsic spring constant of an oscillator can be enhanced or reduced, depending

on geometry, by applying a voltage. This effect is commonly used for parametric modulation

in MEMS and NEMS systems[25, 60]. Separating this voltage into a large constant part VDC

and a smaller time-dependent part VAC(t), the approximation can be made

V 2(t) = (VDC + VAC(t))2 (5.5)

≈ V 2
DC + 2VDCVAC(t) (5.6)
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so that the additional spring constant varies linearly with the time-dependent voltage. A large

DC voltage also has the advantage of amplifying the effect of the time-dependent signal.

Figure 5.4: Spectrum of photodetector output with 0V (light) and 500V (dark) applied to the

electrode, with no direct excitation of the cantilever. The nonlinear capacitance causes a shift of

around 4kHz in the fundamental mode with little noticeable change in linewidth. The operating

frequency of the cantilever (12.5− 14.5kHz) is far from the other peaks in the spectrum, which

are due to laser noise. Apart from these technical peaks, the spectrum is dominated by the

thermal excitation of the mechanical mode.

A conventional acupuncture tip was used as an electrode to create a highly non-uniform

electric field near the free end of the AFM cantilever. The electrode tip was positioned around

20 microns from the cantilever end using a piezoelectric controller and fixed in place with non-

conductive epoxy resin to the same metal block as the cantilever. This mounting setup was

essential to minimise frequency fluctuations in the cantilever, which were extremely sensitive

to the distance between cantilever and electrode tip. For the same reason, a low-noise turbo-

molecular vacuum system was used in addition to the vibration-isolating optical bench. To

minimise frequency fluctuations due to electrical noise, band-pass filters and attenuators were

used for the AC parametric drive and piezoelectric mount.

A high voltage was applied to the cantilever with a stiffening effect on a majority of me-

chanical modes. Figures 5.4 and 5.5 show the effect of the DC voltage on the frequency and

Q-factor of the fundamental flexural mode used in the experiment. The damping rate of the

fundamental mode was around 2Hz in the absence of tuning, giving a Q-factor of approximately

5000. This Q-factor was maintained at all operating frequencies for the duration of the exper-

iment. At low voltages, the change in frequency is quadratic, since here the electrostatically
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Figure 5.5: Spectrum of fundamental flexural mechanical mode as a function of applied DC

voltage. At each voltage, a square pulse was applied to the piezo mount, exciting the oscillator

at all frequencies. The colour in each vertical strip corresponds to the Fourier transform of the

subsequent position measurement.

induced spring constant kr is small compared to the intrinsic spring constant k0 ≈ 0.06N/m, so

fm =
√

(k0 + kr)/meff (5.7)

≈ f0(1 + kr/2k0) (5.8)

≈ f0

(

1 +
1

4

d2C

dx2
V 2
DC/k0

)

(5.9)

while at higher voltages, kr is the dominant term and hence the frequency varies linearly with

VDC. The frequency-voltage dependence in Fig. 5.5 fits a value of d2C/dx2 ≈ 4.2×10−7Nm−1V−2

for the geometric nonlinearity. This is about a factor of 50 smaller than that obtained by Rugar

and Grütter[25] with a similar geometry, most likely due to a slight mis-alignment in one axis.

In the experiments detailed here, the spring constant of the fundamental flexural mode

was increased well above its intrinsic value k0 by applying between 450 and 650 volts to the

cantilever. A sinusoidal AC voltage from a signal generator was then applied to the electrode

to provide a parametric drive near 2fm. The effect of a resonant parametric drive on a coherent

excitation can be seen in Figure 5.6. The relative phase between a direct piezoelectric excitation

at fm and a parametric drive at 2fm was adjusted at various parametric drive amplitudes. The

gain shown is the ratio of the lock-in output with the parametric drive on to the amplitude with

the drive off, in the quadrature of the direct excitation. The maximum and minimum gains

are shown, corresponding to piezoelectric drive phases separated by 90 degrees. Threshold is
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Figure 5.6: Gain measurements taken with the cantilever tuned to 14.5kHz and a relative drive

phase of zero (red squares) and 90 degrees (blue squares). Solid lines are fits to a threshold

voltage of 0.92V. Deviation near threshold is due to very high sensitivity to cantilever frequency

and drive phase.

reached at 0.92V, close to the theoretical value of 1.2V expected from the geometric nonlinearity

and Q-factor.

5.3 Unconditional results

Initially, the results of Section 4.6 were reproduced by analysing the unconditional step-response

of the thermal noise in the cantilever to a parametric drive. To avoid any direct forces near

fm due to the sudden turn-on, the drive signal was fed through a band-pass filter near 2fm.

This increased the turn-on time from zero to approximately 2.5ms. The position measurement

was fed into a lock-in amplifier with a bandwidth much wider than the mechanical decay rate

γ, allowing the position dynamics around fm to be observed in a rotating frame at a nearby

reference frequency fd = fm+∆. Here, the DC voltage was set to 450V, shifting the fundamental

mode frequency from f0 = 9.6kHz to fm = 12.5kHz.

When driven on resonance (∆ = 0), and with a strength above the instability threshold

(χ > γ), thermomechanical squeezing can surpass 3dB while the orthogonal quadrature is

amplified indefinitely. Figure 5.7a shows the time-evolution of the maximally squeezed and

antisqueezed quadrature variances measured in this regime, with χ = 22.5Hz and γ = 2Hz.

Good agreement with theory is observed at short times (<20ms) with exponential growth of

the amplified quadrature and thermomechanical squeezing approaching 11dB in the orthogonal
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quadrature. However, the amplified quadrature saturates after approximately 35ms, where the

amplitude approaches the optical quarter-wavelength of 195nm and oscillations are no longer

confined to the linear portion of the interference fringe. Crucially, a side-effect of this mea-

surement nonlinearity is a severe degradation in observed squeezing well before saturation is

apparent. Such limits to dynamic range therefore preclude the generation of all but transient

squeezing above threshold. Nonetheless the strong squeezing observed reproduces the nonequi-

librium squeezing observed in trapped ions[7] for the first time in a micromechanical oscillator,

albeit in the classical regime. Transient squeezing of this kind could be useful in applications

where operation outside of equilibrium is acceptable, such as stroboscopic sensing[106].

By detuning the parametric drive off resonance, the oscillator phase undergoes a net rotation

with respect to the amplification axis, increasing the instability threshold according to Eq.

(4.14). Consequently for the drive strength used here (χ = 22.5Hz), the oscillator is unstable

for detunings below ∆ = 22.4Hz. When the detuning is increased further so that ∆ > χ,

the phase-space trajectories form stable elliptical orbits. The variances initially mirror this

oscillatory behaviour before relaxing to steady-state values in the long time limit, in quantitative

agreement with Eqs (4.40-4.44). The effect of increasing detuning on the transient statistics can

be seen in Fig. 5.7b, where a dramatic change from monotonic behaviour to clear oscillations in

the variance occurs at the threshold detuning. Notably, transient squeezing below 3dB is still

possible below threshold, owing to the rapid drive turn-on. The final steady-state variances

agree with Eqs (4.36-4.38), where the steady-state squeezed variance is fundamentally limited

to VT/2.

5.4 Conditional results

From the above observations, the benefit of a parametrically driven system in equilibrium

would appear to be limited to enhanced readout in one quadrature and 3dB reduced variance

in the other. However, as shown in Section 4.7, these phenomena can be combined to enhance

localisation using a weak measurement and optimal estimation. For an oscillator detuned so

that ∆ > χ and which has relaxed to the steady-state, the thermally excited oscillations will

alternate between amplified and squeezed quadratures before decaying. Since the dynamics

of the system are well known, a measurement of the amplified quadrature will provide some

capacity to estimate the squeezed quadrature at a later time. The squeezed quadrature therefore

obtains an effective sensitivity enhancement without amplifying its mechanical fluctuations.

This is useful for localising an oscillator where conditions such as cold environment, poor

measurement sensitivity or high oscillator frequency limit the SNR.

Steady-state estimation was performed with the cantilever tuned to 14.5kHz by a 650V bias

and with a variable sideband intensity to tune the SNR of the low-fidelity measurement. At

each SNR, simultaneous 45-second traces of the lock-in outputs X, Y, X̃, Ỹ were recorded using

a data acquisition unit (700 samples/sec) with no parametric drive applied to the cantilever.
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Figure 5.7: Evolution of the squeezed and antisqueezed quadratures with a continuous paramet-

ric drive of strength χ = 22.5Hz turned on at t = 0 and f0 = 12.5kHz. a) Normalised quadrature

variances vs time for an on-resonance drive (green) and for a below-threshold detuned drive

with ∆ = 38Hz (violet). Solid lines are theoretical fits, while points show experimental statis-

tics generated from 200 iterations of the drive turn-on. The dotted line represents the -3dB

steady-state squeezing limit. At each point in time, the quadratures are rotated so that the

covariance 〈XY 〉 − 〈X〉〈Y 〉 ≈ 0 over all iterations. A ring-up time of 2.5ms is chosen for the

parametric drive to minimise impulse forces on the cantilever. b) Theoretical (left) and ex-

perimental (right) variances as a function of detuning and time. Blue areas indicate squeezing

below 3dB.

Throughout the experiment, during these thermal measurements the oscillator resonance f0 was

kept within 5Hz of the lock-in reference frequency. Data acquisition was then repeated using

parametric drives of various detunings at the same SNR. This drive strength was χ = 57Hz

and the detuning ∆ was varied between approximately 62 and 64Hz. The lock-in reference
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Figure 5.8: Reducing variance via estimation. a) Typical phase-space trajectory over a short

time with a detuned parametric drive applied to the oscillator. The estimates {Xest, Yest}
at a given time are calculated by filtering the low-fidelity data, agreeing with a high-fidelity

measurement (blue curve) to within an uncertainty given by the yellow ellipse and localising the

oscillator to this phase space region. A feedback force Ffb confining the oscillator to near the

origin can be modelled by subtracting the estimates from the high-fidelity data. b) Quadrature

phase-space trajectories for 22.5 second samples obtained from high-fidelity measurement (blue)

and the residual after subtracting the estimate (yellow). The upper panels show the random-

walk pattern in the undriven case mixed down at the resonance frequency f0 = 14.5kHz for

weak (A), intermediate (B) and strong measurement (C). The lower panels show the elliptical

trajectories and residual noise for a parametric drive strength of χ = 57Hz detuned close to

threshold and using the same SNR as above.

frequency — now shifted by the parametric drive detuning ∆ — was kept phase-locked to the

drive voltage. A lock-in time constant of τc = 300µs was used so that the output oscillations

(limited in frequency to ∆) were contained within the output bandwidth. In order to keep the

mechanical frequency constant to within a 5Hz range, the DC voltage was adjusted slightly at

intervals of approximately ten minutes. This was required to compensate for gradual structural

deformation, most likely due to temperature and pressure changes.

In both driven and undriven cases, optimal estimates of the time series Xαest(t) and Yαest(t)

were generated in post-processing by minimizing the respective conditional variances over the

filter parameters. The estimates were produced by convolving the low-fidelity quadrature mea-

surements with a filter function (truncated to 22.5 seconds), and the conditional variances

VXα = 〈(Xα −Xαest)
2〉 and VY α = 〈(Yα − Yαest)

2〉 were then calculated over the second half of

the data. The optimum conditional variances were then found by minimising computationally

over all filter parameters. This optimisation process is detailed in Appendix B.

The filter function in both driven and undriven cases, using Eqs (4.57-4.58), has the general
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Figure 5.9: Typical time-traces of three lock-in outputs with a detuned parametric drive,

and an optimal residual Xres after subtracting the optimal estimate from the high-fidelity

measurement X. This optimal estimate is calculated from both low-fidelity measurements X̃

and Ỹ , corresponding to the squeezed and amplified quadratures, respectively. Notably, the two

quadratures are highly correlated, and the amplified quadrature is less prone to measurement

noise.

form
[

Xα,est

Yα,est

]

= H(t) ∗
[

X̃α(t)

Ỹα(t)

]

, (5.10)

with the optimal filter matrix H(t) taking the general form

H(t) =

[

g1 cos(Ωt− φ) g2 sin(Ωt)

g3 sin(Ωt) g4 cos(Ωt+ φ)

]

e−Γt . (5.11)

where gn, Ω, and φ are positive real numbers. This filter function, in the parametrically driven

case, assumes that χ < ∆ and that the quadratures are rotated by an angle α such that

Xα −Xαest is maximally squeezed.

In the undriven case, the filter is simplified by the restrictions gn = g0 (for all n), and

α = φ = 0. Here, the rotation frequency Ω0 is kept to account for drifts in f0. The remaining

parameters Γ and g0 are functions of SNR.

Phase-space Brownian trajectories {X, Y } determined from the high-fidelity measurement

are plotted in Fig. 5.8b, along with corresponding residual noise {X−Xest, Y−Yest} after applying

the optimised filter to the low-fidelity measurements in the low, intermediate and high SNR
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regimes. As expected, when no parametric drive is applied, the quadratures of motion have

equal uncertainty, determined by the optimal conditional variance i.e. VX = VY = V0. As the

thermal signal increases towards the noise floor (SNR approaches 1) the conditional variances

drop sharply as expected. At maximum sideband intensity, the RMS uncertainty in both

quadratures is reduced from the thermal value of 240pm to 60pm, corresponding to an effective

temperature decrease from 300K to 19K. The dependence of this conditional variance on SNR

fits theory well, as shown in Figure 5.10.

Figure 5.10: Conditional variance V0 (dark squares) and conditional squeezed variance Vα (light

squares), normalised to the thermal variance VT , as a function of SNR.

With the drive turned on, the high-fidelity measurement shows unconditional thermome-

chanical squeezing close to, but not surpassing, the 3dB limit. Critically, elliptical trajectories

can be observed, establishing the correlations required for our estimation protocol between

squeezed and antisqueezed quadratures. These correlations can also be clearly seen in Figure

5.9. After subtracting the optimal estimate, the residual noise is maximally squeezed at an an-

gle α that increases with SNR. The variance VXα of this quadrature decreases monotonically as

the measurement improves, and is shown in Figure 5.10. As expected, the conditional variance

drops earlier than for the undriven case. Eventually, in the high SNR limit, the measurement

bandwidth is greater than the rate of any coherent dynamics and the residual noise becomes

independent of amplification.

The squeezing ratio VXα/V0 determined from this analysis is shown in Fig. 5.11 as a function

of SNR, agreeing well with theory. As expected, the variances reproduce the unconditional

squeezing in the weak measurement limit and the parametric drive has no effect in the strong

measurement limit. However, in the intermediate regime where SNR ≈ 1 there is a distinct
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Figure 5.11: Steady-state squeezing using optimal estimation. Squeezing ratios are plotted

against SNR for ∆ = 63Hz (left) and against detuning for SNR ≈ 1 (right). Blue points show

the squeezing ratio, with theoretical fits shown as solid lines. Dotted red curves are fits to the

squeezing without estimation, limited to 1/2, with shaded bands to represent the experimental

error margin. Labels A-C indicate the datapoints used to generate the trajectories in Figure

5.8.

minimum, allowing enhanced localisation and breaking the 3dB limit by a significant factor.

As can be seen in Fig. 5.11 (right), the squeezing can be improved further by adjusting the

detuning closer to threshold, with a maximum thermomechanical squeezing of 6.2dB achieved.

These results can be understood by the fact that the effective increased sensitivity due to the

parametric drive is of greatest benefit near the noise floor and with maximal amplification of

the orthogonal quadrature. Since the maximum squeezing is proportional to
√

χ/γ, it can be

enhanced by increasing the parametric drive strength, subject to the condition χ ≪ f0. In

principle, this allows arbitrary suppression of one quadrature of motion, exceeding the usual

limit for control systems defined by the measurement precision.

5.5 Discussion

A significant practical challenge in using a very strong parametric drive was presented by

the frequency drift of the cantilever. Since a very large DC voltage was used to maximise

the parametric drive, the mechanical frequency became extremely dependent on the relative

positions of the cantilever and electrode. As shown in Appendix B, this led to a need for

constant manual fine-tuning of the DC voltage over experimental runs. However, modern

MEMS and NEMS are generally fabricated with electrodes defined on the same chip as the

oscillator[60, 110, 56, 24]. In these devices, however, a challenge is presented in choosing a

geometry so that a DC voltage does not degrade the oscillator Q[111].

For applications requiring confinement in addition to localisation, optimal estimates must

be calculated in real-time in order to be fed back as a damping force. This can be achieved
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57Hz,γ = 2.6Hz and ∆ = 63Hz. Circles indicate parameters obtained from post-processing.

by using the well-defined filter parameters in Section 4.8. The filter parameters obtained by

experimental optimisation, shown in Figure 5.12, agree reasonably well with these theoretical

estimates, yet are more likely to converge to consistent values in the higher-fidelity regime.

While the rotation frequency Ω and bandwidth Γ agree well with theory, there is an unknown

systematic error in the optimal gains. The error in the optimal squeezing angle α at high SNR

can be attributed to a very shallow minimum in this regime.

Although demonstrated with thermal fluctuations, our technique applies in the same man-

ner to the zero-point motion of an oscillator, with the maximum reduction in conditional

variance VXα/V0 independent of temperature. The effect of the quantum modification at low

temperatures—known as backaction noise—is instead to limit the initial conditional variance

V0 to be no lower than the ground state variance. Therefore our approach could enable strong

quantum squeezing and ultra-precise quantum control[89]. Experiments with sensitivity near

the standard quantum limit (where SNR ≈ 1 at zero temperature) have been recently performed
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with mechanical oscillators[91, 39]. While purely measurement-based schemes exist to create

mechanical squeezed states[46], significant squeezing requires high measurement strength and

efficiency such that SNR ≫ (2Nth + 1)2. This regime is yet to be demonstrated in mechanical

oscillators.

In principle, the technique we have demonstrated can be easily ported to state-of-the-art

mechanical devices. Nanoelectromechanical systems are commonly integrated with a parametric

drive and can be pre-cooled to near the ground state[112]. Such emerging systems are therefore

good candidates for quantum squeezing below the zero-point motion using our technique, even

without significant advances in transduction.

We have observed parametric thermomechanical squeezing of a micromechanical oscillator

exceeding 3dB for the first time, both transient and in equilibrium, with the latter break-

ing a well-known limit for parametrically driven systems. This result demonstrates that the

3dB limit to steady-state parametric squeezing is not fundamental, and facilitates the wider

use of thermomechanical squeezing in control and sensing applications. The combination of

parametric driving, measurement and estimation sheds light on the important interface be-

tween quantum measurement and control that is being approached most notably in opto- and

electromechanical systems. The techniques introduced, if applied in conjunction with state-of-

the-art readout techniques and high quality oscillators, also open the door for the engineering

of nonclassical states of mesoscopic mechanical systems. More broadly, our results demonstrate

that combining oscillator nonlinearity with control can both overcome fundamental limitations

on parametric processes, as well as localise mechanical motion beyond constraints imposed by

the measurement sensitivity.
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Chapter 6

QND measurement and quantum

squeezing via parametric amplification

6.1 Introduction

Unlike classical systems, the strength of any continuous measurement of a quantum system

plays an important role in its dynamics, with the optimal strength depending on the application.

Many uses are being found for weak measurement[77], while quantum non-demolition (QND)

techniques such as back-action evasion work best in the strong measurement limit[46, 49]. In

other cases, such as gravity-wave detectors, measurement strength near the standard quantum

limit is preferred[35].

For preparation and measurement of quantum states, backaction evasion in the strong mea-

surement regime is a widely sought-after goal[46, 91, 113, 114]. The purpose of backaction

evasion is to provide better resolution in a quantum measurement without adding noise to the

observable being measured. If the conditional variance is below that of the zero-point motion, a

squeezed state can be created. While parametric amplification is also widely known as a means

to improve resolution, this generally comes at the cost of disturbing the measured observable.

In the previous two chapters, it was shown and demonstrated experimentally that detuned

mechanical parametric amplification may improve the effective resolution of a quadrature of

motion without increasing its variance. In general, this is due to a mutual dynamical coupling

between the amplified and squeezed quadratures. In this chapter, this scheme will be examined

in the regime of low temperature and measurement sensitivity near the level of the zero-point

motion, such that backaction noise becomes important. The in-principle unlimited improvement

in conditional variance of a quadrature, shown in Chapters 4 and 5, may then result in a

squeezed state.

Notably, the special case encountered in Section 4.4.1, where one quadrature is not disturbed

at all by the parametric drive, becomes significant in a quantum context. In this case, the

undisturbed quadrature can be considered a QND observable. Therefore, it can be shown
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that it is possible to equate a weak measurement of the oscillator to a strong but imperfect

backaction evading measurement. This allows us to quantify the effectiveness of DMPA as

a QND measurement, and hence directly compare DMPA to one-mode backaction evading

protocols as used in cavity optomechanics[46, 115, 48], as well as a more recently studied two-

mode version[114].

In this chapter, an effective measurement strength is derived in the QND case, aiding the

comparison between parametric QND scheme and backaction evading measurement. It is then

shown that in the regime where the oscillator is localised well below the zero-point motion,

the effective measurement strength scales linearly with the parametric drive strength. Hence,

conditional quantum squeezing of the mechanical state with weak or inefficient measurement,

or in the optomechanical bad cavity regime, is made possible with parametric driving. In

addition it is shown that, in contrast to backaction evasion, approaching the limit of perfect

squeezing does not degrade the purity. Furthermore, the purity scales more favourably with

the measurement efficiency and is therefore more robust to measurement loss.

Finally, since quantum squeezing is ultimately limited by the temperature of the oscillator, it

is natural to ask whether combining DMPA with resolved sideband cooling allows an increased

amount of squeezing. To that end, a master equation that includes resolved sideband cooling

is introduced and the potential of this system for producing squeezed states in the good cavity

limit is examined in Section 6.4.

Figure 6.1: Conditional variance normalised to thermal variance N+1/2, for a quadrature with

no parametric drive (V0, dotted lines) and in the squeezed quadrature with the drive χ = 100γ

and detuning at threshold (VXα, solid lines). Initial phonon numbers are N = 100 (light),

N = 1 (medium) and N = 0 (dark). Perfect efficiency is assumed. The increase in squeezed

variance at high SNR and low temperature demonstrates the effect of back-action on quantum

squeezing.
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Figure 6.2: Colour plot of the ratio of squeezed variance to ground-state variance for χ = ∆ =

100γ and η = 1. A ratio less than unity indicates quantum squeezing. The dashed line indicates

µ/γ = N + 1/2, beyond which back-action is dominant.

6.2 Quantum squeezing

Firstly, the results of Chapter 4 are transported to the quantum regime by simply considering

the absolute variance, rather than the variance relative to the undriven conditional variance

V0. In this case, backaction needs to be taken into account. Figure 6.1 shows the variance

normalised to the thermal variance N + 1/2 for three values of N , with a detuned parametric

drive at threshold. In the weak measurement limit, the limiting 3dB of relative squeezing is

produced.

As the SNR approaches the intermediate measurement regime, the squeezed conditional

variance VXα starts to significantly reduce at a lower SNR than the bare conditional variance

V0, justifying a description of an enhanced effective measurement strength. Finally, in the

high SNR limit, the conditional variance in each case asymptotes to the ground state level

due to backaction. At high temperatures, the backaction is negligible and the limit of this

ratio is essentially zero as in Fig. 4.4. However, at low temperatures, the backaction makes

up a significant part of VT and the ground-state limit is noticeable. Notably, this ground-state

limit is clearly approached from below in the parametrically driven case. Note that the strong

measurement limit is also where the undriven conditional variance V0 “catches up” to the driven

conditional variance. However, as discussed previously, this is unrelated to backaction. This

can be seen by the ratio VXα/V0 considered in Chapters 4-5, which even without backaction

approaches unity in the strong measurement limit.

At an initial ground state, the optimal regime SNR ≈ 1 is only on the cusp of the back-
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Figure 6.3: Optimal quantum squeezing generated by DMPA with χ/γ = 50 (a,c) and by BAE

(b,d). VXα is shown as a function of µ/γ and N in (a,b) for η = 1, and as a function of µ/γ

and η in (c,d) for N = 0. Shaded areas denote squeezing below the zero-point motion (light)

and the standard 3dB MPA limit (dark).

action dominated regime (assuming the efficiency is near unity). To fully illustrate the effect of

the parametric drive and estimation at low temperature, VXα is plotted for various µ and low

values of N in Figure 6.2. Squeezing of the conditional variance below the zero-point motion is

achieved when VXα < Vg = 0.5, which is possible even from relatively high initial temperatures

or with inefficient detection. The appearance of an optimum measurement strength µ at low

temperature is in stark contrast with the best possible squeezing using a resonant drive, which

degrades steadily from a minimum 0.5Vg at µ = 0 to 0.73Vg at µ = γ.

Even more notably, this scheme vastly outperforms back-action evasion in this parameter

regime. The absolute variance VXα is shown in Fig. 6.3 for χ/γ = 50, compared to that

achievable by ideal BAE (where Nbad = 0 [46]). For this drive strength, the DMPA method

produces squeezing for N < 5 at µ/γ ≈ 1. At this measurement strength, a BAE scheme would

require N < 0.5. The dependence on efficiency η is similar to that for backaction evasion,

as in both cases decreasing η has a similar effect to decreasing µ. Importantly, by choosing

DMPA over BAE, the need for an often impractical modulation of the measurement strength

is eliminated.

Unconditional squeezing can be achieved by using a linear feedback force (e.g. from a sep-

arate electrode) to stabilize the mean values[89]. This relies on high mechanical Q so that the
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delay in converting momentum feedback into physical displacement can be neglected. While

DMPA with feedback is more complicated than squeezing by above-threshold resonant para-

metric driving and feedback stabilisation[100], verification of squeezing can take place on a

much shorter timescale. In this sense, DMPA is similar in essence to backaction evasion, as will

now be discussed in detail.

6.3 QND measurement via parametric driving

As shown above, the squeezing due to DMPA is maximised at the instability threshold |∆th| =
√

χ2 − γ2, where the quadratures are mutually coupled in hyperbolic trajectories. In Section

4.4.1, it was shown that near this threshold is a case where one quadrature is unaffected by

the parametric drive. For example, one obtains extremely simple dynamics in the case where

∆ = −χ, as the Hamiltonian takes the form

H̃ = − h̄χ
2

(X̂2 + 1) . (6.1)

Since X̂ commutes with the Hamiltonian, it is a constant of motion (but is subject to damping

and noise from the bath). The Ŷ quadrature, on the other hand, evolves with a time-derivative

proportional to χX̂. As shown by Eqs (4.21-4.22), Ŷ approaches an amplified, but filtered,

version of X̂ for a large value of χ. This means that a standard continuous position measurement

effectively becomes an efficient QND measurement of X̂. Since this special case resembles

backaction evasion, an analogous effective measurement strength can be defined. Due to the

simplified dynamics, simple analytic solutions for the conditional variances and purity can also

be obtained. Later, the respective roles of the parametric drive and measurement are clarified

using the general solution for the effective measurement strength.

6.3.1 Effective measurement strength

Inserting the Hamiltonian given by Eq. (6.1) into the master equation (3.22), the conditional

variances undergo a somewhat simplified evolution

d

dt
VX = −2γVX + 2γ(N + 1/2 +NBA) − 4ηµ(V 2

X + C2) (6.2)

d

dt
VY = −2γVY + 4χC + 2γ(N + 1/2 +NBA) − 4ηµ(V 2

Y + C2) (6.3)

d

dt
C = −2γC + 2χVX − 4ηµC(VX + VY ) , (6.4)

Note that in this section, we are interested in the undisturbed quadrature X rather than

the maximally squeezed quadrature Xα. Therefore we do not make any rotations, keeping the

covariance C at a finite value. Solving for the stationary value of the covariance, we obtain

C =
χ

γ + 2ηµ(VX + VY )
VX ≡ gVX . (6.5)
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Unlike the BAE case, here the stationary value of C is non-zero. We now use this result to

eliminate C from the steady-state equation of motion for VX , obtaining

0 = −2γVX + 2γ(N + 1/2 +Nbad,eff) − 4ηµeff(VX , VY )V 2
X , (6.6)

where we have described the effective measurement strength:

µeff(VX , VY ) = µ

(

1 +
C2

V 2
X

)

(6.7)

= µ(1 + g2) , (6.8)

and introduced an effective bad-cavity parameter

Nbad,eff = µ/(2γ) . (6.9)

Comparing against Eq. (3.45) describing backaction evasion, we see that Eq. (6.6) is now

of the same form. For a large measurement enhancement (g ≫ 1), there is a strong similarity

to a near-ideal QND measurement of the X quadrature in that the measurement conditioning

parameter µeff is enhanced far above µ without a coinciding increase in the backaction heating

Nbad,eff , which is independent of g. When g ≫ 1, detuned parametric amplification in the

bad cavity regime is therefore equivalent to a strong back-action evading measurement in the

resolved sideband regime κ < ωm. In this case, the spurious heating of the meaurement given

by Eq. (6.9) can be written

Nbad,eff =
NBA,eff

1 + g2
. (6.10)

where NBA,eff = µeff/(2γ). Equating this to the BAE spurious heating given by Eq. (3.44)

produces an equivalent cavity linewidth

κ =
4
√

2ωm
√

g2 + 1
(6.11)

Therefore the limit g ≫ 1 is equivalent to the good cavity limit, and the equivalent linewidth

here scales inversely to g.

Equation (6.5), while not an explicit solution, provides some insight into the behaviour of

g = C/VX in various regimes. In the complete absence of measurement (µ= 0), the coherent

amplification alone determines the covariance so that g = χ′ (where from here onward χ′ denotes

the dimensionless ratio χ/γ, equalling unity at the self-oscillation threshold of a non-detuned

parametric amplifier). The measurement strength is therefore simply enhanced by a factor of

1 + χ′2, which is the ratio of unconditional Y and X variances. As the measurement strength

is increased, the ratio g is attenuated by the conditioning of the quadratures. This can be seen

in Eq. (6.5), where even though increasing µ reduces VX and VY , the product µ(VX + VY ) is a

monotonically increasing function of µ. This attenuation of g reflects the fact that the damping

effect of the position measurement on the covariance counteracts the coherent amplification due
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to the parametric drive. In the limit of a perfect measurement (µ/γ → ∞), g approaches zero

and the parametric drive becomes irrelevant.

A bandwidth picture provides a useful heuristic explanation for the form of Eq. (6.5), as

follows. The measurement conditioning terms ηµVX and ηµVY in this equation also appear

in Eqs (6.2) and (6.3), where they may be understood as damping rates in addition to the

intrinsic rate γ. Accordingly, the conditioning associated with a position measurement makes

use of information gathered over time-scales 1/(ηµVX) and 1/(ηµVY ). However, the effective

amplification dynamics are only significant on timescales longer than the mechanical decay

time, given by 1/γ. This is shown by Eq. (4.21), where the additional term in Ŷ (ω) decays for

|ω| ≫ γ. Therefore, for sufficiently short measurement timescales the amplification is effectively

frozen out and plays no role in the conditioning.1 This explains the appearance of the rates

ηµVX and ηµVY as attenuating terms in the measurement gain given by Eq. (6.5).

6.3.2 Strong driving limit

Since Eq. (6.5) is an implicit equation, the net effect of the parametric drive and measurement in

the regime where the measurement is significant (2ηµ(VY +VX) ≫ γ) is not immediately clear.

For instance, increasing χ′ will further increase the amplified variance VY , while increasing the

measurement strength µ will condition VY to a smaller value. The situation simplifies in the

case of a strong parametric drive (χ′ ≫ 1), such that the squeezing is strong and VY ≫ VX .

The net heating of VY is then found by keeping only the µVY term in the denominator of Eq.

(6.5) so that

C ≈ χVX/2ηµVY , (6.12)

and substituting this into Eq. (6.3). A cubic equation is then obtained for VY in the steady-

state, with the solution

VY ≈
(

χ

ηµ

)2/3(
VX
2

)1/3

. (6.13)

Inserting this back into Eq. (6.12), and then into Eq. (6.2) using the steady-state condition

gives an equation for VX that can be solved

0 = −2γVX + 2γ(N + 1/2 +NBA) − 4ηµV 2
X − (4χ2ηµ)1/3V

4/3
X . (6.14)

We can see that the extra conditioning term due to the covariance is now proportional to V
4/3
X .

That is, in the regime where the measurement and parametric drive are both significant, the

overall effect of the conditioning via the Y quadrature lies between that of damping (linear in

VX) and that of direct conditioning (quadratic in VX).

1A rigorous approach to this argument is given in Appendix C.2 by the filter width parameter used to obtain

the optimal position estimate from the measurement results.
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In the strong driving limit, VX becomes small enough that the terms proportional to VX

and V 2
X in Eq. (6.14) can be neglected, yielding the simple solution

VX ≈
[

(2N + 2NBA + 1)3

4χ′2ηµ/γ

]1/4

. (6.15)

Since NBA is proportional to the measurement strength µ, there is clearly an optimum value of

µ that minimises VX , located around where this backaction term becomes important. Differen-

tiating to find the optimal measurement strength in this limit yields

µopt(χ
′ → ∞) = γ(N + 1/2) , (6.16)

which corresponds to the backaction noise equalling half of the original noise in the oscillator.

This trade-off between conditioning and backaction is in contrast to backaction evasion, where

the conditional variance of the measured quadrature decreases monotonically with µ, even with

spurious heating. Interestingly, this trade-off resembles that encountered in ultra-sensitive force

measurement, with the standard quantum limit residing in the same measurement regime.

Substituting this optimal measurement strength back into Eq. (6.15) leaves

VX ≈ 33/4

2η1/4

√

2N + 1

χ′
, (6.17)

Therefore, arbitrarily strong quantum squeezing of the X quadrature is possible if χ′ ≫ 2N+1.

In this limit, the X quadrature is closely aligned with the optimally squeezed quadrature

considered in section 6.2. This can be compared with the variance obtained for backaction

evasion in the strong measurement regime (where µ/γ ≫ 1)

VX ≈ 1

η1/2

√

2N + 1

µ/γ
. (6.18)

Notably, the DMPA scheme is clearly more suited to a sub-optimal efficiency η, consistent with

the numerical analysis in Section 6.2. This is especially relevant to nanomechanical systems,

where even the best state-of-the-art optomechanical devices have loss factors of the order of

10%[116].

6.3.3 Squeezing comparison

We can now easily see that setting µ to near the backaction-dominated regime allows the

equivalent QND measurement strength µeff to be deeply within it. Measurement of the proxy

Ŷ quadrature can therefore be used to condition the X̂ quadrature to below the level of the

zero-point motion. This can be shown in the general case by using numerical solutions to Eqs

(6.2-6.4). Figure 6.4 shows the minimum parametric drive strength required to achieve a fixed

level of quantum squeezing using the optimum measurement rate µopt, as well as the purity

of the final conditional state. The required measurement strength and achievable purity for
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Figure 6.4: Comparison of purity and key parameters for ideal backaction evasion (light, dashed

lines) and optimal detuned parametric amplification (solid lines) in the quantum squeezing

regime VX < 0.5. For DMPA, the measurement strength µ (middle panel) is optimised to

minimise the squeezed variance for each parametric drive strength χ/γ (lower panel). In both

cases, the set parameters are an efficiency of η = 1 and the mean thermal phonon occupation

of N = 10.

backaction evasion are shown for comparison. In the limit of strong squeezing, the parametric

drive takes over the measurement’s role in backaction evasion, while the optimal measurement

strength approaches the constant given by Eq. (6.16) as expected. For low temperatures,

this is currently an experimentally feasible parameter, with recent electromechanical[117] and

optomechanical[115, 48] experiments demonstrating backaction noise exceeding zero-point and

thermal fluctuations (µ > 2µopt).

With the measurement strength optimised, the squeezing is limited only by the normalised

parametric drive strength χ′. As in the rest of this thesis, the rotating wave approximation

forces the restriction χ′ ≪ Q, where Q = ωm/γ. Experimental limits on χ′ are also set by the

linear response range of the resonator, since the antisqueezed quadrature has variance exceeding

the thermal variance by a factor of 1 + χ′2. Finally, the condition ∆ = ±χ requires precise

frequency control of both the resonator and parametric modulation to avoid the instability
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threshold |∆th| =
√

χ2 − γ2, which becomes closer with increasing χ′. Therefore, environmental

influences on the oscillator frequency such as temperature fluctuations are detrimental in the

strong driving regime, as is also the case for backaction evading protocols[113].

6.3.4 Purity comparison

So far in this analysis, the parallels between DMPA and backaction evasion have been demon-

strated for the dynamics and statistics of the X̂ quadrature. It is interesting to note that these

parallels do not extend to the orthogonal Ŷ quadrature, which is amplified and conditioned in

the DMPA scheme rather than heated. The variance of the Ŷ quadrature is relevant to future

quantum applications, many of which rely on a pure or almost-pure squeezed Gaussian state

as a building block, as discussed in Section 2.2. To illustrate the difference between the two

schemes considered, we compare the quantity P = V 2
g /(VXVY −C2), which reaches a maximum

value of one for a pure state.

For a backaction evading measurement, the purity can be obtained from the solutions of

(3.45-3.47)

PBAE =
η

1 + γ(2N + 1)/µ

2
√

1 + 4ηµ(2N + 2Nbad + 1)/γ − 1
. (6.19)

In the ideal good cavity limit Nbad = 0 and for a strong measurement ηµ′ ≫ 2N + 1, the

backaction causes a decrease in purity towards zero as µ is increased

PBAE(ηµ/γ ≫ 2N + 1) ≈
√

ηγ

µ(2N + 1)
. (6.20)

In contrast to the above, the purity of the steady-state conditional state after applying a

detuned parametric drive with the QND condition |∆| = χ and µ 6= 0 can be derived from the

general solutions (see C.1), and written as

PDMPA =
η

1 + γ(2N + 1)/µ

(

1 +
2

χ′/g − 1

)

. (6.21)

In the limit of weak measurement, this purity approaches a very small value due to the am-

plification of the Y quadrature. However, with an intermediate measurement strength, the

conditioning of the Y quadrature allows for a higher purity than the equivalent backaction

evading measurement. Since χ′/g − 1 is always positive, it is possible to assign a lower bound

from the above that is independent of the parametric drive

PDMPA >
η

1 + γ(2N + 1)/µ
. (6.22)

In the strong measurement limit this lower bound on the purity approaches η, in contrast

to Eq. (6.19) where the purity approaches zero for backaction evading measurement. This

difference is attributed to the fact that in the DMPA scheme, both quadratures are conditioned

by the measurement. Therefore, even though the Ŷ variance is amplified, this quadrature is
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still kept confined by a nonlinear conditioning term. In contrast, backaction evasion heats the

unmeasured Ŷ quadrature, causing VY to increase linearly with µ′.

If we consider the optimal measurement strength µopt that minimises VX with a fixed para-

metric drive χ, the purity is reduced from the maximum of η. This purity is plotted in Figure

6.4 for a squeezed X̂ variance (i.e. VX < 1/2), where it is compared with the backaction evad-

ing case. It can be clearly seen that while the purity deteriorates as squeezing improves for

backaction evasion, the DMPA purity approaches the lower bound of η/3 (since in this limit

µopt/γ → N + 1/2 and χ′ ≫ g). Furthermore, a compromise can be made by increasing the

measurement strength beyond the optimal level, reducing the strength of QND squeezing of

the X quadrature in return for higher state purity. This preservation of purity in the strong

squeezing limit is in stark contrast to conventional QND quadrature measurement of an oscil-

lator and other methods for steady-state mechanical squeezing. One notable recent proposal

using dissipative optomechanics results in purity scaling more favourably than for backaction

evasion[118], however in this case the purity also degrades in the strong squeezing limit.

6.3.5 General solution for effective measurement strength

Some additional light can be shed on the parallel between DMPA and backaction evasion by

quantifying the effective measurement enhancement µeff/µ. This was found to be equal to

(1 + χ′2) in the limit of no measurement, and reduced to unity in the strong measurement

limit. It is between these two limits, where weak measurement and strong parametric driving

work in concert, that our scheme finds utility in QND measurement. This intermediate regime

— described above for the limit of strong driving — will now be examined in detail. Making

use of already derived exact solutions to Eqns (6.2-6.4), we can explicitly find µeff in terms of

experimental parameters. This also allows direct comparisons to be made with state-of-the art

backaction evasion experiments.

The ratio µeff/µ, quantifying the ratio of conditioning measurement to backaction-inducing

measurement, is given by (see Appendix C.1)

µeff

µ
=

2(1 + χ′2)

1 +
√

(1 + 4SNR)2 + 16χ′2SNR − 4SNR
, (6.23)

where SNR = ηµ(2N + 2NBA + 1)/γ defines the signal-to-noise ratio with which the combined

thermal and back-action driven motion can be resolved over the measurement noise in the

absence of driving. Since NBA ∝ µ, the inclusion of backaction means that in the limit NBA ≫
N + 1/2, the SNR becomes quadratic in µ rather than linear.

As SNR is increased, the effective measurement enhancement given by Eq. (6.23) passes

through three regimes, as illustrated in Figure 6.5 for three values of χ′. For a strong drive

(χ′ ≫ 1), these regimes have simple, well-defined boundaries. The weak measurement limit,

where the enhancement is maximised, ends when SNR ≈ χ′−2. Beyond this is an intermediate

region of nonzero but reduced gain, where the term χ′2SNR is dominant in the denominator
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Figure 6.5: Effective enhancement of the measurement strength as a function of the combined

parameter SNR/χ′2. For each trace, χ′ is kept constant. The far-left limit corresponds to

the weak-measurement limit, where the maximum enhancement is determined by χ′. On the

far right, in the strong measurement limit, the enhancement disappears. In the intermediate

region, the gradient is approximately −1/2, indicating a linear increase of µeff with χ.

of Eq. (6.23). This corresponds to the amplified Ŷ quadrature being well transduced above

the measurement noise. Comparing to Eq. (6.5), this is also where the term µVY becomes

important and the effective measurement ceases to be dominated by the coherent parametric

drive. Finally, when SNR exceeds χ′2, the direct measurement of the X quadrature is more

efficient than the proxy measurement and µeff/µ approaches 1.

To utilise the full performance of the DMPA-based backaction evasion scheme, the effective

measurement strength µeff must be large compared to γ, while the spurious heating NBA must be

weak compared to the thermal noise. It is in the aforementioned intermediate regime that this

occurs and the level of quantum squeezing is optimised. When χ′ ≫ 1 this regime corresponds

to an SNR of order unity, signifying that the thermal motion is barely transduced without the

aid of the parametric drive. We can then simplify Eq. (6.23) to

µeff

µ
≈ χ′

2
√

SNR
. (6.24)

We see that in this intermediate regime, the enhancement is linear with χ′, as is also seen in

Figure 6.5. This linear enhancement is in contrast to the weak measurement limit, where the

enhancement scales as χ′2. Substituting the above expression into Eq. (6.6) and solving in the

limit χ′ ≫ 1, we get

VX ≈ SNR3/4

√
2χ′ηµ/γ

, (6.25)

in exact agreement with Eq. (6.15).
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6.4 Resolved sideband cooling

Up to this point we have only considered optomechanical systems as ultra-sensitive transducers

of position fluctuations. It is natural to ask whether there is any advantage in using a detuned

parametric drive in conjunction with the near-ubiquitous optomechanical technique of sideband

cooling. The resonant driving case of this has been analysed previously, albeit with a focus on

the cavity output spectrum[119].

We can model sideband cooling by extending the master equation to include a cavity bath.

This is done by adiabatically eliminating the cavity[83], and results in the back-action terms

in equation (3.22) being replaced by terms analogous to those for the thermal bath. The

deterministic part of the master equation is then

〈d〈Â〉〉 = − i

h̄
〈[Â, H̃]〉 dt+ 2γN〈D[â†]Â〉 dt+ 2γ(N + 1)〈D[â]Â〉 dt (6.26)

+2γCNC〈D[â†]Â〉 dt+ 2γC(NC + 1)〈D[â]Â〉 dt ,

where the general forms of the optical damping γC and effective cavity temperature NC are

given in [120] as Γopt and n̄O
M respectively. Taking the limit of large cavity loss κ ≫ ωm and

zero cavity detuning, the back-action noise γC(2NC + 1) from the master equation is equal to

µ as we have defined in Eq. (3.20) so our approach is consistent with Ref. [120].

On the red sideband (i.e. cavity detuning equal to −ωm) and in the good cavity limit,

the cavity temperature NC approaches zero and all photons detected are a product of phonon

absorption. Consequently, only downgoing transitions appear in the measurement terms of

the master equation. In this regime, adiabatic elimination can be performed on the stochastic

master equation for the coupled cavity-oscillator system as in Ref. [85]. The resulting stochastic

master equation for the oscillator alone is then equivalent to heterodyne detection of a cavity

output[87] and has the form

d〈Â〉 = − i

h̄
〈[Â, H̃]〉 dt+ [2γN ]〈D[â†]Â〉 dt+ [2γ(N + 1) + µ]〈D[â]Â〉 dt (6.27)

+
√

ηµ/2〈H[â]Â〉 dW1 +
√

ηµ/2〈H[iâ]Â〉 dW2 .

In this case, the Wiener processes are

dW1 = dQX −√
ηµ〈X̂〉dt (6.28)

dW2 = dQY −√
ηµ〈Ŷ 〉dt . (6.29)

This master equation leads to variance equations by the same method as in Chapter 3. Letting

θ = π/4

d

dt
VX = −(2γ + µ)(VX − 1/2) − 2(∆ − χ)C + 2Nγ − ηµ[(VX − 1/2)2 + C2] (6.30)

d

dt
VY = −(2γ + µ)(VY − 1/2) + 2(∆ + χ)C + 2Nγ − ηµ[(VY − 1/2)2 + C2] (6.31)

d

dt
C = −(2γ + µ)C − ∆(VY − VX) + χ(VX + VY ) − ηµC(VX + VY − 1) . (6.32)
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Figure 6.6: Squeezed conditional variance for an inefficient detector (η = 0.1), normalised to

the ground state variance, in the (left) normal and (right) ideal resolved sideband regime. In

both cases, χ = 100γ and detuning from threshold is γ.

Compared to the standard continuous measurement derived earlier, the additional terms pro-

portional to µ here are an unconditional linear damping as well as an offset in the conditioning

term, such that all measurement terms disappear for a symmetric pure state VX = VY = 1/2

with C = 0. The threshold condition is now dependent on µ

χRSB
th =

√

(γ + µ/2)2 + ∆2 , (6.33)

and the unconditional variance with no parametric drive is

VT =
2γ

2γ + µ
N +

1

2
, (6.34)

as in [120]. For perfect efficiency, the linear optical damping terms vanish since

−µ(VX − 1/2) − µ(VX − 1/2)2 = −µV 2
X + µ/4 , (6.35)

leaving variance equations that are identical to Eqs (4.25-4.27) apart from an expected factor

of 4 in measurement strength[39]. However, for η ≪ 1, resolved sideband cooling offers a

qualitative difference since a pure state is always approached in the strong measurement limit.

Without cooling, this limiting variance increases by a factor of 1/
√
η.

These differences are small, however, in the important regime around µ ≈ γ. This is

shown in Figure 6.6, using numerical solutions to the steady-state variance equations. With

resolved sideband cooling, the squeezing extends further into the back-action dominated region

µ > γ, however the maximum squeezing is unchanged. Outside the good cavity limit, the

cavity bath temperature increases and the result can be expected to be worse. Therefore, while

resolved sideband cooling aids in resolving zero-point fluctuations in the presence of detector

inefficiency, the requirement of strong measurement precludes it from being significantly useful

in the context of parametric squeezing. Sideband cooling is, however, quite compatible with
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backaction evasion-based squeezing schemes as they both operate best in the (would-be) back-

action dominated regime and can both be implemented using similar techniques[91]. This

combination, known as reservoir engineering, is analysed in Ref. [118].
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Chapter 7

Mechanical entanglement via detuned

parametric amplification

7.1 Introduction

Observing quantum entanglement between massive objects has been a long-standing milestone

in exploring the quantum to classical transition[2, 6], constructing hybrid quantum information

systems[69, 30, 76] and sensing forces with ultrahigh precision[121]. This goal has prompted

interest in the scaling-up of matter-wave interferometers[122, 123], in levitating microparticles[9]

and in arrays of mechanical oscillators[44, 124], among other research. Optomechanical systems,

in which mechanical oscillators are coupled to optical or microwave fields, are well known as a

promising basis for observing macroscopic entanglement in a wide variety of architectures[120,

34].

The advantage of optomechanics lies in the ability to effectively transduce mechanical mo-

tion; using backaction evading methods[36], in principle one can achieve precision beyond the

level of the quantum zero-point motion[46]. Measurement with sub-zero point precision is only

possible for one quadrature of motion, at the expense of degraded sensitivity in the other, due to

Heisenberg’s uncertainty principle. Such “quantum squeezing” of a quadrature, when applied to

collective observables of two or more oscillators, yields quantum entanglement between the oscil-

lators. Recently, the theory of optomechanical back-action evasion, which allows measurement-

based squeezing, has been expanded to two-mode systems[114], providing a route to mechani-

cal entanglement. In addition, entanglement can be achieved via dispersive[125, 126, 127] and

dissipative[128, 129] interactions with cavity fields, including the use of squeezed and entangled

fields[130, 131, 132]. However, while feasible in principle, purely optomechanical entanglement

is difficult to achieve in practice due to the requirement of strong and efficient coupling to the

optical or microwave field.

In parallel to developments in optomechanics, the fabrication of arrays of electromechan-

ical resonators has developed to an extent that multi-mode coupling can now be precisely
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controlled[62, 61]. Theoretical work shows that modulation of these couplings, which re-

duces fluctuations in certain collective quadratures of motion, is also sufficient for the cre-

ation of entanglement[133, 134], thus providing a simple and accessible alternative to purely

measurement-based schemes. In this previous work, appreciable entanglement could not be

sustained for steady-state operation, as is also the case for resonant parametric squeezing of a

single oscillator[135].

In Chapter 6, it was shown that with the aid of weak continuous measurement, detuning

a parametric drive from resonance allows strong steady-state squeezing of an oscillator. Here,

we show that the same principle can be applied generally to coupled oscillators in at least

two feasible scenarios, allowing strong two-mode entanglement. The first scheme involves a

modulation of the coupling between the oscillators, while the second combines a constant linear

coupling with single-mode parametric drives. Since only weak continuous measurement is

required, the oscillators can be monitored individually without spurious back-action noise,

thereby avoiding the need for restrictive measurement setups that couple only to the collective

variables of interest. Additionally, the inbuilt parametric tunability of the oscillators in our

scheme relaxes the engineering requirements for the physical device. Finally, we show that the

entanglement generated by our scheme can be achieved with realistic experimental parameters,

and compare this to back-action evading methods[114], making use of Duan’s inseparability

criterion[78].

7.2 Model one: Modulated coupling

Here, we consider a simple detuning of a previously proposed mechanical two-mode squeezing

scheme[133] involving a modulated position-position coupling. Consider two oscillators with

identical resonance frequency ωm, which have a controlled time-dependent coupling between

them as shown in Figure 7.1(a). If the coupling is sinusoidally modulated about zero at a

frequency 2ωd, the Hamiltonian can be written

H̃ =
1

2m
(p̃21 + p̃22) +

mω2
m

2
(x̃21 + x̃22) + gx̃1x̃2 cos(2ωdt) , (7.1)

where the half-modulation frequency ωd = ωm − ∆. We focus on a modulation frequency near

2ωm, such that ∆ ≪ ωm. The rotating wave approximation is made in a very similar way as

in Section 4.3 for a single-mode detuned drive. In this case, the annihilation operators ã and b̃
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Figure 7.1: Two approaches to achieving entanglement of mechanical oscillators. Each approach

is idealised as a coupled mass-on-spring system, with time-dependent modulations at frequency

2ωd of (a) the intermodal coupling kc or (b) the spring constants k1 and k2. Below are plots

of the noise spectra of the mechanical modes in the absence of parametric driving. In (a) the

mechanical modes of the two masses are degenerate while in (b) there is normal-mode splitting.

In addition, the relation between ωd and the detuning parameters ∆ and Γ are indicated.

satisfy
√

meffωm

h̄
x̃1 = (ã+ ã†)/

√
2 (7.2a)

√

1

h̄meffωm

p̃1 = −i(ã− ã†)/
√

2 (7.2b)

√

meffωm

h̄
x̃2 = (b̃+ b̃†)/

√
2 (7.2c)

√

1

h̄meffωm

p̃2 = −i(b̃− b̃†)/
√

2 (7.2d)

Using a rotating frame at ωm − ∆, the transformed operators â and b̂ are

â = âe−iωd (7.3)

b̂ = b̂e−iωd (7.4)

The interaction Hamiltonian becomes

ĤI = h̄∆(â†â+ b̂†b̂+ 1) + h̄χ(âb̂+ â†b̂†) (7.5)

=
h̄∆

2
(X̂2

1 +Ŷ 2
1 +X̂2

2 +Ŷ 2
2 ) + h̄χ(X̂1X̂2−Ŷ1Ŷ2) ,

where χ = g/2mωm and the single-mode quadrature operators are defined as

X̂1 = (â+ â†)/
√

2 (7.6a)

Ŷ1 = −i(â− â†)/
√

2 (7.6b)

X̂2 = (b̂+ b̂†)/
√

2 (7.6c)

Ŷ2 = −i(b̂− b̂†)/
√

2 (7.6d)
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We can see that the terms proportional to the parameter χ constitute a two-mode squeezing

operation, well-known in quantum optics[136]. In the resonant case ∆ = 0, this two-mode

squeezing results in amplification of two collective quadratures of motion and squeezing of the

other two. When the rate of this process exceeds the damping rate of the system (i.e. χ > γ),

the amplification causes exponential growth of the mechanical oscillations, leading to delete-

rious mechanical and measurement nonlinearities. Tian et al. overcome this by following the

squeezing process with a second modulation to swap the fluctuations between quadratures[133].

Here, we instead consider the steady-state behaviour in the more general case where ∆ 6= 0.

We define the quadratures as those of the two natural collective modes x+ = (x1 + x2)/
√

2

and x− = (x1 − x2)/
√

2, namely

X̂+ = (X̂1 + X̂2)/
√

2 (7.7a)

X̂− = (X̂1 − X̂2)/
√

2 (7.7b)

Ŷ+ = (Ŷ1 + Ŷ2)/
√

2 (7.7c)

Ŷ− = (Ŷ1 − Ŷ2)/
√

2 . (7.7d)

The two non-zero commutators between these operators are

[X̂+, Ŷ+] = [X̂−, Ŷ−] = i . (7.8)

In these collective variables, the Hamiltonian can be factorised as

H̃ =
h̄(∆ + χ)

2
(X̂2

+ + Ŷ 2
−) +

h̄(∆ − χ)

2
(X̂2

− + Ŷ 2
+) . (7.9)

With equal dissipation for both oscillators at rate γ, the equations of motion are













dX̂+

dX̂−

dŶ+

dŶ−
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−γ 0 −χ+∆ 0

0 −γ 0 χ+∆

−χ−∆ 0 −γ 0

0 χ−∆ 0 −γ

























X̂+

X̂−

Ŷ+

Ŷ−













dt+
√

2γ













dX̂+in(t)

dX̂−in(t)

dŶ+in(t)

dŶ−in(t)













. (7.10)

It is easy to see that the four collective quadratures can be sorted into their non-commuting

pairs, with the two pairs independent of each other

[

dX̂±

dŶ±

]

=

[

−γ ∆∓χ
−∆∓χ −γ

][

X̂±

Ŷ±

]

dt+
√

2γ

[

dX̂±in(t)

dŶ±in(t)

]

(7.11)

It is important to note that the independence of each pair of quadratures requires the two

oscillators ωm to have identical resonance frequencies and damping rates γ. While the reso-

nance frequencies in this scheme can be made equal by using an optical spring[120] or capacitive

tuning[25, 60] on individual oscillators, the individual damping rates are more difficult to engi-

neer. Unequal frequencies or damping rates would be expected to degrade entanglement, the

analysis of which would require the solution to the full 10-element covariance matrix in the case
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of modulated coupling. The constant coupling scheme below is more naturally robust to these

experimental imperfections, as will be further discussed in Section 7.7.

The system we have described remains below threshold and therefore convergent as long as

χ < χth where χth =
√

γ2 + ∆2. That is, χ can be made much larger than γ as long as the

absolute detuning follows suit.

To see the utility of a large detuning, consider the simple case ∆ = ±χ. For example,

setting ∆ = χ gives

ĤI = h̄χ(X̂2
+ + Ŷ 2

−) . (7.12)

This Hamiltonian is similar to a quantum non-demolition (QND) measurement in that in the

absence of damping, X̂+ and Ŷ− are constants of the motion. This is analogous to the scenario

discussed in Section 6.3 for a single continuously measured oscillator, which was shown to

correspond to backaction evading measurement. As can be verified from Eq. (7.11), the quasi-

QND variables X̂+ and Ŷ− are now only influenced by dissipation. However, a time-dependent

signal — such as thermal noise — in X̂+ or Ŷ− will appear in the subsequent evolution of non-

QND observables Ŷ+ and X̂−, respectively. For values of χ much greater than γ, these signals

will appear strongly amplified. Weak measurements of Ŷ+ and X̂− then provide enhanced

effective measurements of the quasi-QND observables X̂+ and Ŷ−. The result is that one can

strongly condition the latter quadratures without the backaction of a strong measurement. The

enhanced collective measurement described above also occurs in the general case |∆| 6= χ, albeit

without the simplified QND dynamics, and is most pronounced at the slightly lower detuning

where χ ≈ χth.

7.3 Collective-mode measurement and entanglement

For ideal continuous variable entanglement, it is necessary for two collective quadratures of

the two oscillators to be localised to below the zero-point motion. In principle, two commut-

ing collective quadratures can be measured without backaction, implying that this two-mode

squeezing can be achieved by a strong measurement. However, achieving such an ideal non-local

measurement is difficult without complex measurement techniques. For example, the variable

x̃1 − x̃2 can be measured by using the two oscillators as the end-mirrors of an optomechanical

cavity. However, this configuration only yields information about the quadratures X̂− and Ŷ−,

which do not commute and hence cannot be squeezed. The measurement of only two com-

muting collective observables is the task of two-mode backaction evasion[114], which will be

discussed later.

Detuned parametric driving provides an alternative solution to this problem by making

sub-zero point collective fluctuations accessible to weak measurement. This is possible due

to correlations between the squeezed and amplified collective quadratures, with the specific

dynamics shown in the previous section. With only weak measurement, the position of each
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oscillator can be independently and continuously monitored without significant backaction,

eliminating the need for specialised measurement techniques. Instead, collective quadratures

can be localised to below the zero point level by conditioning on the classical measurement

records. In other words, while a squeezed quadrature (for exampleX+) has its own measurement

record dominated by measurement noise, an accurate estimate of X+ can be filtered from the

fluctuations of its amplified pair Y+, which can be well transduced. In this sense, detuned

parametric amplification with weak measurement conditioning is an alternative to two-mode

backaction evading measurement.

7.4 Conditional variances

The conditional variance quantifies the error in the optimal estimate of an observable when

past measurements are taken into account. As in previous chapters, the effects of measurement

as well as thermal noise are modelled using a stochastic master equation. Let us assume the

two oscillator positions x1 and x2 are measured independently. All four collective quadratures

will then experience the same rate of back-action and conditioning, quantified by the parameter

µ. The master equation is therefore obtained by duplicating the single-mode master equation

given by Eq. (3.22). An observable Â will then evolve as

d〈Â〉 = − i

h̄
〈[Â, H̃]〉 dt+ [2γN + µ]〈D[â† + b̂†]Â〉 dt+ [2γ(N + 1) + µ]〈D[â+ b̂]Â〉 dt

+
√
ηµ(〈H[X̂+]Â〉 dW1+〈H[Ŷ+]Â〉 dW2+〈H[X̂−]Â〉 dW3+〈H[Ŷ−]Â〉 dW4) .(7.13)

Here, the Lindblad superoperators for the two oscillators are combined for compactness, which

is possible due to linearity. As before, the evolution of the conditional variances is obtained by

inserting linear and quadratic observables into the master equation. In the steady state, the

only non-zero covariances are those between X̂+ and Ŷ+ and between X̂− and Ŷ−. This leaves

two independent sets of three equations, written in collated form as

dVX±

dt
= −2γVX± − 2(∆∓χ)C± + 2γVT −4ηµ(V 2

X±+C2
±)

dVY±

dt
= −2γVY± + 2(∆±χ)C± + 2γVT −4ηµ(V 2

Y±+C2
±)

dC±

dt
= −2γC± ± ∆(VX±−VY±) ± χ(VX±+VY±) − 4ηµC±(VX±+VY±) , (7.14)

where as before VT = N + 1/2 + µ/2γ. Remarkably, each of these sets is identical to the three

variance equations in the one-mode detuned parametric amplification theory, with steady-state

solutions already derived in Chapter 4. This means that the amount of conditional two-mode

squeezing generated by a coupling rate modulation of χ is the same as the single mode squeezing

available using a spring constant modulation of χ. The maximum squeezing appears at some

angle α in the X+, Y+ plane, and at 90 degrees to this angle in the X−, Y− plane. That is,

Qα+ = X+ cosα + Y+ sinα (7.15)

Qα− = Y− cosα−X− sinα (7.16)
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Figure 7.2: Separability S as a function of measurement strength in the case of symmetric

damping rates (solid lines); and using the constant-coupling method with a damping asymmetry

γD = 0.5γS (dashed lines). Light and dark curves indicate normalised drive strengths χ/γ of 25

and 50, respectively, while the mean phonon occupation N is 5 and efficiency η is unity. The

dot-dashed curve represents the minimum separability using two-mode backaction evasion.

We will denote the variances of these optimal quadratures as Vα+ and Vα−, respectively.

The necessary and sufficient conditions for entanglement of bipartite Gaussian states are

discussed in Section 2.4. Here, we quantify the entanglement using the product form for sepa-

rability

SP = 2
√

Vα+Vα− , (7.17)

In general, a separability SP below unity as defined above is a sufficient condition for entangle-

ment. This requires the geometric mean of the quadrature variances Vα+ and Vα−
to be below

the level of the zero-point motion. Inserting the single-mode solution for Vα given by Eq. (4.48),

we find

SP =

√

(γ+χ sin(2α))2+4γ2SNR−γ−χ sin(2α)

2ηµ
, (7.18)

where the signal to noise ratio is given by Eq. (3.33) and the squeezing angle α is given by Eq.

(4.51).

Similar to our previous results for single-mode squeezing, entanglement is easily achiev-

able for a low mean phonon occupation N , detuning situated near threshold (χth ≈ χ) and

with a moderate measurement strength, as shown by Figure 7.2. In the strong measurement

regime, backaction causes the µ2 term in SNR to dominate and the entanglement to disappear

as expected. With a moderate measurement strength, the parametric drive boosts the effective

measurement into this regime without adding backaction. When χ ≫ γ, the optimal condi-

tioning occurs near µ ≈ γ(N + 1/2), with the separability S scaling as
√

γ/χ. In contrast,
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backaction evasion can only produce entanglement in the strong and efficient measurement

regime ηµ≫ γ, as shown in Figure 7.2.

By combining measurement conditioning and unitary coupling, this scheme hybridises two

approaches to entanglement generation. In contrast to purely parametric-based proposals such

as Ref. [133], the entanglement can be made arbitrarily strong with the system remaining in

the steady-state. Unlike purely measurement-based proposals, independent weak continuous

measurements of the two oscillators are sufficient to generate entanglement between them. This

can be confirmed by reconstructing the conditional covariance matrix from the measurement

record. Entanglement can also be independently verified via direct tomography of the mechan-

ical states, using strong projective measurements on the individual oscillators[137] and analysis

of correlations. Even with this verification step, at no stage does a collective mechanical mode

need to be measured directly.

7.5 Model two: constant coupling

An equivalent scenario, resulting in the same variance equations, can arise from constant linear

coupling between two oscillators, with degenerate parametric drives applied individually to each

oscillator on resonance (∆ = 0). In this case, as illustrated by Figure 7.1(b), effective detunings

for the collective variables are provided by the normal-mode splitting, which is equal to twice

the coupling rate Γ. The Hamiltonian is given by

H̃ =
1

2m
(p̃21 + p̃22) +

Γ

mωm

x̃1x̃2 +
mωm

2
[x̃21(ωm+2χ sin 2ωmt)+x̃22(ωm+2χ sin 2ωmt)]

Going into a rotating frame at ωm, assuming Γ ≪ ωm

ĤI = h̄Γ(â†b̂+ âb̂†) − ih̄χ

2
(â2 − â†2 + b̂2 − b̂†2) (7.19)

= h̄Γ(X̂1X̂2+Ŷ1Ŷ2)+
h̄χ

2
(X̂1Ŷ1+Ŷ1X̂1+X̂2Ŷ2+Ŷ2X̂2)

which factorises as

ĤI =
h̄(χ+Γ)

2
(Û1V̂2+V̂2Û1)+

h̄(χ−Γ)

2
(Û2V̂1+V̂1Û2) , (7.20)

where the new collective quadratures are defined as

Û1 = (X̂1 + Ŷ2)/
√

2 (7.21a)

Û2 = (X̂1 − Ŷ2)/
√

2 (7.21b)

V̂1 = (Ŷ1 − X̂2)/
√

2 (7.21c)

V̂2 = (Ŷ1 + X̂2)/
√

2 . (7.21d)

As in the first model, we consider the independent monitoring of both oscillators, allowing

these observables to be constructed trivially via lock-in techniques. It should be noted that
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the times at which the X̂ and Ŷ quadratures reflect the true position differ by a quarter of an

oscillator cycle. However, in the case of high-Q oscillators such that Q ≫ N , a quarter-cycle

is insufficient time for thermal perturbations to influence the oscillators and therefore can be

presumed to have little practical effect on entanglement.

The two non-zero commutators between the four new operators are

[Û1, V̂1] = [Û2, V̂2] = i , (7.22)

so that with damping, the mean evolution of the four quadratures is given by













dÛ1
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−γ χ−Γ 0 0

χ+Γ −γ 0 0
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dÛ1in(t)

dÛ2in(t)
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dV̂2in(t)













. (7.23)

This immediately resembles Eq. (7.11) for the case of two-mode squeezing via modulated

coupling, but with the detuning ∆ replaced by half of the normal-mode splitting Γ. This

method is analogous to the generation of two-mode squeezing of light by coupling two single

squeezed modes on a beam-splitter[71]. Again choosing the simplified case χ = Γ, we find that

V̂1 is a proxy observable for V̂2 and Û2 is a proxy observable for Û1. The variance equations

are likewise identical to those in the modulated coupling case. Notably, unlike the previous

method, in this case the dynamical coupling due to the parametric drive is between commuting

pairs of observables, that is

[U1, U2] = [V1, V2] = 0 . (7.24)

Therefore, these pairs of observables both qualify as quantum mechanics-free subsystems, a

topic of recent interest[138].

7.6 Comparison with measurement-based scheme

Creating two-mode entanglement using parametric amplification and weak measurement avoids

the difficult problem of achieving a strong measurement of the commuting quadratures X̂+ and

Ŷ− without also measuring the orthogonal quadratures X̂− and Ŷ+. As described in Section 7.3,

any measurement of the latter quadratures would introduce backaction to (and thus prevent

squeezing of) the former. Methods to overcome this backaction using measurement alone gen-

erally involve a time-dependent modulation of coupling to the transducer. A recent proposal

for this kind of cavity optomechanics-based backaction evasion[114] involves using oscillators

of differing frequency, such that the quadrature Ŷ− is measured via dynamic coupling with the

single transduced collective quadrature X̂+. Although the analysis in that work assumes the

good-cavity limit, ideal for one-mode backaction evasion[46], spurious heating still arises when

the dynamic coupling is too slow. That is, the frequency difference Ω = (ωb − ωa)/2 must be

much larger than the mechanical decay rate for both quadratures to be measured efficiently.
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The methods we have outlined here, by contrast, allow strong transduction of two com-

muting collective quadratures below the level of the zero-point motion, with no extra spurious

heating arising from the degeneracy of the oscillators. Instead, the backaction heating is a

decreasing function of the parametric drive strength. While in principle Ω/γ can be made

very large in the measurement-based scheme by using different sized oscillators, in practice this

would lead to asymmetries in the damping and measurement rates and hence further experi-

mental difficulties. In allowing the use of similar oscillators, a parametric amplification scheme

for mechanical entanglement offers a significant experimental advantage. In addition, while

asymmetry in the measurement coupling must be compensated for in two-mode backaction

evasion[114], both of the above methods can be used in the weak measurement regime where

unequal backaction noise is less critical. Furthermore, the above methods can be used out-

side the good-cavity regime of optomechanics, whereas this regime is necessary for two-mode

backaction evasion.

7.7 Damping asymmetry

To this point the two methods proposed here differ only in experimental implementation. The

constant coupling method has the advantage that the ability to tune the individual resonance

frequencies is already assumed, and can be achieved by a constant offset of the parametric

drive. A more important distinction of the constant coupling method, however, is that it is also

robust to unequal damping rates for the two oscillators, a common experimental scenario that

cannot otherwise be easily corrected. While the two-mode squeezing method requires equal

damping rates γ1 = γ2 = γ to keep the two pairs of quadratures independent of each other, this

is not required for the constant coupling method. Instead, the damping asymmetry modifies

only the effective parametric drive rate. This can be shown by the more general form of Eq.

(7.23)
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, (7.25)

where

χ1 = χ− (γ1 − γ2)/2 (7.26)

χ2 = χ+ (γ1 − γ2)/2 (7.27)

γ = (γ1 + γ2)/2 . (7.28)

Therefore, an increased effective rate χ2 drives the squeezing in one pair of quadratures, while

in the other pair the rate is decreased to χ1. At first glance this would appear to have little

effect on the separability, since to first order the loss of squeezing in Û1 would be made up for
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by increased squeezing in V̂2. However, the fact that all quadratures share an effective detuning

rate Γ implies that when V̂1, V̂2 are at the instability threshold (i.e. optimally squeezed), the

pair Û1, Û2 are bound to be further away from it due to a weaker effective parametric drive. For

a strong parametric drive, this asymmetry has a modest effect, as shown for a 50% difference

in damping rates in Figure 7.2.

7.8 Experimental outlook and conclusion

We have provided two routes to robust mechanical entanglement, neither of which rely on be-

ing in the deeply backaction-dominated regime, being in the optomechanical good-cavity limit,

or on temporally modulated measurement coupling. Instead, by using simple parametric pro-

cesses to create amplified proxy observables, weak or inefficient measurement is sufficient to

strongly condition collective quadratures, thus avoiding the need for collective backaction evad-

ing measurements. Methods to continually alternate the sign of intermodal coupling between

oscillators, as required by the modulated coupling scheme, have been outlined for electronic

resonators[133], but are difficult to extend to multiple mechanical modes. In contrast, the key

technique required for the constant-coupling method (single-mode parametric amplification) is

well developed in micromechanical and nanomechanical systems[25, 60, 24]. In such devices,

intrinsic intermodal coupling through the substrate is substantial, fulfilling the second require-

ment of this scheme. An example of such a device, recently demonstrated by Okamoto et al.[61],

has an intrinsic coupling rate Γ exceeding the damping rate by a factor of around 400, while

the piezoelectric strain is sufficient to parametrically drive well above threshold by at least a

factor of 100. For such devices to achieve quantum entanglement using the constant coupling

method would require significant improvements in measurement sensitivity, as well as increased

mode frequency to reduce the mean phonon occupation. The recent experimental work by

Bochmann et al.[31], in which a high-frequency mechanical resonator has both piezoelectric

and optomechanical coupling, appears to be very promising in this respect. By extending such

technology to multiple oscillators, steady-state entanglement of massive objects could be well

within reach.
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Chapter 8

Quantum state tomography with

continuous measurement

8.1 Introduction

So far, this thesis has focused on creating quantum mechanical states of mechanical resonators.

A complementary goal is the verification of these states. Often, these two goals are satisfied at

the same time. For example, in the case of the steady-state protocols described earlier, mea-

surement both creates and verifies the statistics of the squeezed Gaussian states. However, for

more complex quantum states, measurement is not involved and can indeed be detrimental. For

example, it is well known that a superposition of two distinct quantum states is destroyed by a

measurement that can distinguish between them. Similarly, an energy eigenstate is incompat-

ible with position measurement. This limitation is significant for mechanical oscillators, since

it is very difficult to sensitively measure observables other than position. In such cases, verifi-

cation of the characteristics of the state generally involves a methodical measurement process

known as tomography.

Quantum state tomography is vital in experimental settings, even if the state was created

by a trusted party. In the same way that one test-drives a car in various likely conditions to

make sure it has been manufactured correctly for its purpose, tomography is a test-drive in the

relevant phase-space of the prepared quantum state. For a harmonic oscillator, as in optics,

this is the quadrature phase space introduced in Chapter 2.

The Wigner function describes a quasi-probability distribution over the quadrature phase

space. This two-dimensional distribution is put together from one-dimensional distributions

(known as marginals) in the same way that a 3D scan of the brain is put together from multiple

2D scans. Unlike a regular probability distribution, the Wigner function can display negativity

as a signature of nonclassicality. As a rule of thumb, negativity is restricted to regions smaller

than the ground-state variance (that is, σXσY for the state |0〉). Therefore, features in the 1D

marginals that are smaller than the width of the ground-state must be able to be resolved in
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order to reproduce Wigner negativity.

In quantum optics, homodyne measurement is a standard and effective tool for perform-

ing tomography on light in a cavity[139]. This is done by repeatedly preparing the state and

measuring one field quadrature to build up a marginal distribution. This is repeated for many

quadratures and common inverse transforms are used to reproduce a Wigner function[140, 141].

This is a difficult problem, since noise and experimental imperfections lead to discrepancies be-

tween the prepared and reconstructed states. Specifically, added noise decreases the resolution

of the marginals, making it more difficult to verify that a nonclassical state existed. Various

estimation techniques exist to optimise the reconstruction in these cases[141].

Even with the prospect of nonclassical mechanical states becoming within reach, the problem

of verification of these states has received little attention. One recent paper proposes the use

of strong optical pulses with certain timings to build up quadrature statistics[137], a method

akin to backaction evasion. Another couples the resonator to an atom as an ancilla quantum

system[142]. Numerous other methods are possible, as evidenced by the numerous proposals

for measuring the motional states of trapped ions[143].

In keeping with the spirit of the thesis, this chapter will investigate the potential of resonant

parametric amplification and weak continuous measurement for mechanical tomography of an

independently prepared state. Since parametric modulation provides noiseless amplification of

one quadrature, one would expect this to be well suited to tomographic reconstruction. The

challenge here is to accurately model the state’s evolution during this process, and to optimally

use the measurement to predict the initial state. This idea is akin to a recent tomography

proposal for trapped nanoparticles, where the dynamics are modified to make the evolution

highly dependent on the initial state[144].

In order to perform this analysis, the theory of linear quantum trajectories developed in

quantum optics[145] will be applied to a continuous position measurement. Instead of the

master equation approach used in previous chapters, this approach involves the use of a linear

stochastic Schrödinger equation (SSE). The SSE equivalent of the master equation used in

previous chapters is discussed in Section 8.3, and the evolution of a coherent state is derived in

Section 8.4.

Due to the linearity of the SSE, this method enables an extension to non-Gaussian states

as superpositions of coherent states. As shown in Section 8.5, all results for coherent states

apply to arbitrary quantum states. Such states are most naturally represented by a phase-space

distribution known as a Q-function. The effect of the thermal and measurement noise is to limit

the resolution of this Q-function.

Similarly to previous chapters, the expected coherent-state evolution is used in Section 8.6

to derive a filter function for the measurement and an associated variance to represent the

estimate error. Unlike previous chapters, this estimate refers to the state at the beginning

of measurement, rather than the present time. This filter can then be used to reconstruct a

phase-space distribution for the initial state, with a resolution given in terms of the estimate
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error.

While backaction limits the accuracy of a continuous measurement and precludes nonclassi-

cal state verification on its own, above-threshold parametric pre-amplification can easily bring

the resolution to the level required for quantum state tomography. Initial analytic derivations

provide an upper bound on the estimate error in this case, supported by numerical simulations.

It is shown that for a strong enough drive, the coherent amplification of the initial position

overcomes the subsequent thermal and zero-point noise entering the oscillator.

8.2 Linear quantum trajectories

The stochastic master equation introduced in Chapter 3 describes the evolution of the ensemble

of states that makes up the density matrix. The stochastic part of the equation models the

noise inherent to the measurement of the system, while the deterministic part describes the

average effect of the unobserved processes such as thermal noise. For Gaussian states, only

the evolution of the means and variances are required, which can be calculated easily from a

density matrix representation. For non-Gaussian states, the full basis of quantum states must

be used, making both numerical and analytic calculations more difficult.

The evolution of an open quantum system can be equivalently modelled by a stochastic

Schrödinger equation. Like the conventional Schrödinger equation, a SSE provides the evolution

of a pure quantum state, as opposed to a density matrix. Unlike the conventional Schrödinger

equation, the evolution is not deterministic and includes random processes to model coupling

to the environment. Each instance of these processes is known as a trajectory. This approach

was initially developed to speed up numerical calculations[146], but is also useful to obtain

insight into quantum behaviour at the fundamental level[87, 147].

Here, I will use a linear form of the SSE to derive the evolution of a coherent mechanical

state under the influence of continuous measurement and dissipation. The error in the best

estimate of an initial state given the measurement record is derived. Since we are using coherent

states and a linear equation, this can be generalised to arbitrary initial states.

8.3 The stochastic Schrödinger equation

We consider an oscillator in the rotating frame at its resonance frequency, with a generalised

position measurement of rate µ and coupled with rate γ to a thermal bath as in Section 3.

We will assume perfect efficiency for the sake of simplicity.1 The stochastic influences of the

bath can be separated into one zero-point noise process ξ(t) and one thermal noise process ζ(t),

both being complex. The measurement records are given by W1(t) and W2(t) for the X̂ and Ŷ

1Inefficiency can be modelled as an addition to the thermal phonon occupation. Letting the effective mea-

surement rate equal µ = ηµ0 then Nmeas = (1− η)µ0/2γ.

103



quadratures, respectively. All of these are Wiener processes, subject to the Ito rules

dζ∗dζ = Ndt (8.1)

dξ∗dξ = dt (8.2)

(dW1)
2 = dt (8.3)

(dW2)
2 = dt (8.4)

Note that dζ(t) is not a unit white noise, but is scaled by the temperature. The linear SSE can

be written as

|ψ(t+ dt)〉 = [1 − i

h̄
H dt+

√

2γa dξ(t) +
√

2γ(a†dζ − a dζ∗) +
√
µ(X̂ dW1 + Ŷ dW2)

−γa†a dt −Nγ(a†a+ aa†) dt− µ

2
(X̂2 + Ŷ 2)dt]|ψ(t)〉 (8.5)

The zero-point noise operator is purely dissipative, and is modelled in the same way as hetero-

dyne measurement[145]. The thermal noise operator takes the form of an infinitesimal random

displacement[148]. Finally, the measurement operators follow the generalisation of linear tra-

jectories by Jacobs and Knight[147]. Combining dW1 and dW2 as

dZ = (dW1 + idW2)/
√

2 (8.6)

we can see that the stochastic measurement terms can be written â† dZ + â dZ∗, which differs

from the thermal noise by a change in sign.

Rewriting Eq. (8.5) as

|ψ(t+ dt)〉 = [1 + θ̂(t)]|ψ(t)〉 (8.7)

the density matrix evolves as

dρ(t) = [1 + θ̂(t)]ρ(t)[1 + θ̂†(t)] − ρ(t) = θ̂(t)ρ+ ρθ̂†(t) + θ̂(t)ρθ̂†(t) (8.8)

Evaluating the right hand side, applying the Ito rules and throwing away the “lost” terms

proportional to dξ and dζ gives the stochastic master equation. It is easy to check that this

exactly reproduces Eq. (3.22), the master equation used in previous chapters, except for the

mean values 〈X̂〉 and 〈Ŷ 〉 in the latter, which would require a nonlinear SSE. The consequence

of this absence is that the state does not remain normalised during its evolution, and that the

norm 〈ψ(t)|ψ(t)〉 is therefore trajectory-dependent. One consequence of this is that expectation

values for a particular trajectory must be normalised by 〈ψ(t)|ψ(t)〉. A second consequence is

that the norm must be used to detemine the probability of this trajectory. The advantage of

this approach, however, is that the evolution of a given state (for example, a coherent state)

will also apply to an arbitrary superposition of coherent states, due to the linearity of Eq. (8.5).

8.4 Coherent state evolution

Since we are in the rotating frame with no deterministic unitary evolution, we can set Ĥ = 0.

Now, if we assume an initial coherent state |ψ(0)〉 = |α(0)〉, this will remain coherent for all
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times due to only first-order terms in a† in Eq. (8.5).2 To show this, we can factorise Eq. (8.5),

making use of the displacement operator

D[g]|α〉 = exp[ga† − g∗a]|α〉 = exp[(gα∗ − g∗α)/2]|α + g〉 (8.9)

This factorisation takes the form

|ψ(t+dt)〉 = D[
√

2γdζ] D[
√
µdZ] exp[2

√
µadZ∗] exp[

√

2γadξ] exp[−(γ+2µ)a†adt]|ψ(t)〉 (8.10)

which can be easily checked by Taylor expanding all terms to second order and using the Ito

rules for the complex increments. Now let

|ψ(t)〉 = ef(t)|α(t)〉 (8.11)

such that the norm of the state can be written

〈ψ(t)|ψ(t)〉 = ef(t)+f∗(t) (8.12)

Performing the operations in Eq. (8.10) will allow the time-evolution of f(t) and α(t) to be

found. Since the state remains coherent, this means

|ψ(t+ dt)〉 = ef(t)+df(t)|α(t) + dα(t)〉 (8.13)

The increments df and dα can be found by substituting the state |α〉 into Eq. (8.10) and

evaluating one exponential operator at a time. The rightmost operator has the effect

exp[−Γa†a dt]|α〉 = exp[−Γ|α|2 dt]|α(1 − Γ dt)〉 (8.14)

and the next two terms simply use the coherent state property a|α〉 = α|α〉. These are finally

followed by the displacement operators, leaving

dα(t) = −(γ + 2µ)α(t) dt+
√

2γdζ +
√
µdZ (8.15)

df(t) = −(γ + 2µ)|α(t)|2dt+
√

2γ

[

α(t)dξ+
1

2
(α∗(t)dζ−α(t)dζ∗)

]

+

√
µ

2
(3α(t)dZ∗+α∗(t)dZ)

(8.16)

Note that the thermal noise ζ(t) only directly contributes to the imaginary part of f(t), adding

noise to the overall phase of the state. The coherent displacement α(t) follows a zero-mean

Ornstein-Uhlenbeck process, with the solution

α(t) =

[

α0 +
√
µ

∫ t

0

eΓ0τdZ(τ) +
√

2γ

∫ t

0

eΓ0τdζ(τ)

]

e−Γ0t (8.17)

= [α0 + α1(Z, t) + α2(ζ, t)]e
−Γ0t (8.18)

so the coherent state amplitude exhibits the statistics of 2D Brownian motion, as expected.

The damping rate Γ0 = γ + 2µ notably includes the measurement strength.

2This analysis can also be performed with a†2 terms — such as from squeezing Hamiltonians — following

the method of Goetsch and Graham[149].
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8.5 Optimal estimation of an initial state

Above, the evolution of the coherent state displacement α(t) of a mechanical oscillator is given

as a function of its environmental stochastic influences, as well as the evolution of the state’s

prefactor exp[f(t)] based on these same processes and the displacement. Of these noisy pro-

cesses, however, only that representing the measurement Z(t) is known. This is in contrast to

an optical cavity where, if the outgoing light is detected with perfect efficiency, a quantum-

limited estimate of the initial state can be produced by waiting for all of the light to leave the

cavity[145]. In terms of our parameters, this situation would be equivalent to µ≫ γ(2N + 1).

Ultimately, we would like to find the likelihood of a proposed initial state |ψ(0)〉, in the

presence of unknown stochastic processes ξ(t), ζ(t), given a measurement record Z(t). This can

be expressed in terms of Bayesian probability as

P (ψ(0)|Z) =
P (Z|ψ(0))P (ψ(0))

P (Z)
(8.19)

=
P (ψ(0))

P (Z)
Eξ,ζ [〈ψ(t)|ψ(t)〉] (8.20)

=
P (ψ(0))

P (Z)
Eξ,ζ [exp(f(ξ, ζ, Z) + f ∗(ξ, ζ, Z))] (8.21)

where the expectation is over all unravellings of ξ and ζ[150].

At first, we will only assume that |ψ(0)〉 is a coherent state. The normalisation above is

then simply the integral over all coherent states, so that

P (α(0)|Z) =
Eξ,ζ [〈ψ(t)|ψ(t)〉]

∫

Eξ[〈ψ(t)|ψ(t)〉] d2α0

(8.22)

Given that we know the evolution of f(t) given an initial coherent state, the above probability

can be calculated by performing a simple integral. A Gaussian distribution is expected, with a

width depending in some way on µ, γ and N and time. This will be derived in the next section.

8.5.1 Q-function

An arbitrary density matrix can be represented in the coherent state basis by a Q-function.

Q(α, ρ) =
1

π
〈α|ρ|α〉 (8.23)

which is non-negative and equivalent to a Gaussian-convolved Wigner function3. Given an

initial coherent state

ρ0 = |α0〉〈α0| (8.24)

the Q-function is

Q(α, ρ0) =
1

π
|〈α|α0〉|2 (8.25)

=
1

π
exp(−|α− α0|2) (8.26)

3In principle, a Q-function can be deconvolved back into a Wigner function[141]
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which is a Gaussian distribution of variance 1/2 about α0.

Preparing this initial state and letting the system evolve for some time t, the entire mea-

surement record Z until time t can be turned into an estimate αest(Z) of α0. By repeating this

measurement, a probabability distribution can be built up. This Gaussian distribution would

resemble the Q-function above, but due to the imperfect measurement, would have an increased

variance, which we will call σ2(t). We can represent this “smearing” of the distribution by a

convolution of the initial Q-function

P (α0|Z(t)) =
1

πσ2
C

∫∫

d2α′ exp

(−|α′ − αest(Z)|2
2σ2

C(t)

)

|〈α0|α′〉|2 (8.27)

=
1

2πσ2
exp

(−|α0 − αest(Z)|2
2σ2(t)

)

(8.28)

Since the convolution adds the variance of the Q-function, it is easy to show that that the

variance of the convolution function is

σ2
C(t) = σ2(t) − 1/2 (8.29)

That is, the convolution applied to the initial Q-function approaches a delta function in the

limit of a perfect measurement where σ2 = 1/2.

8.5.2 POVM element

By making use of a probability operator-valued measure (POVM), we can show that the process

of estimating an initial coherent state also applies to a general Q-function, and results in a

similar convolution to that in Eq. (8.27). Let us assume again an initial coherent state

ρ0 = |α0〉〈α0| (8.30)

Along with an estimate αest(Z), the measurement record can also be used to reconstruct the

corresponding POVM element Ŵ (Z). This operator defines the effect of the measurement and

noise processes, such that its expectation value gives the probability of the time-series Z(t)

occuring for an initial state |α0〉

P (αest(Z)|α0) = Tr[Ŵ (Z)ρ0] (8.31)

= Tr[Ŵ (Z)|α0〉〈α0|] (8.32)

= 〈α0|Ŵ (Z)|α0〉 (8.33)

By Bayes’ theorem, this function should be equivalent to the Gaussian distribution in the right

hand side of Eq. (8.28), to within a constant factor. It is easily shown that by defining Ŵ as

Ŵ =
1

2πσ2
exp[−(a† − α∗

est)(a− αest)/2σ
2] (8.34)

then Taylor expanding and putting in normal order, the resulting distribution is

P (αest(Z)|α0) = 〈α0|Ŵ |α0〉 =
1

2πσ2
exp

(−|α0 − αest|2
2σ2

)

(8.35)
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which agrees with Eq. (8.28) as intended. Therefore, the overall influence of the stochastic

operators over time on the probability distribution, conditional on the measurement record

Z(t), can be uniquely represented by the operator Ŵ .

8.5.3 Generalisation to an arbitrary initial state

Due to the fact that we are using a linear SSE, the POVM operator Ŵ can be applied to an

arbitrary pure initial state |ψ(0)〉. Let this be a sum of coherent states

|ψ(0)〉 =
∑

i

ci |αi〉 (8.36)

where each ci is a complex number, so after some time

|ψ(t)〉 =
∑

i

cie
fi(t) |αi(t)〉 (8.37)

where each αi and fi evolve together according to the solution of the SSE.

The idea that Ŵ as defined in Eq. (8.34) can be applied to an arbitrary state can be directly

validated by a consistency check. Applying the Born rule, and again using the normally ordered

Taylor expansion of Ŵ , we get

P (αest(Z)|ψ(0)) = 〈ψ(0)|Ŵ |ψ(0)〉 (8.38)

=
1

2πσ2

∑

i,j

c∗i cj〈αi|exp[−(a† − α∗
est)(a− αest)/2σ

2]|αj〉 (8.39)

=
1

2πσ2

∑

i,j

c∗i cj〈αi|αj〉 exp

[

(α∗
i − α∗

est)(αj − αest)

2σ2

]

(8.40)

While this expression is complicated, we can show that applying the convolution in (8.27)

to a general initial Q-function results in the same distribution. Beginning with the conjecture

P (ψ(0)|Z(t)) =
1

2σ2
C

∫∫

d2α′ exp

(−|α′ − αest(Z)|2
2σ2

C(t)

)

Q(α′, |ψ(0)〉〈ψ(0)|) (8.41)

=
1

2πσ2
C

∫∫

d2α′ exp

(−|α′ − αest(Z)|2
2σ2

C(t)

)

|〈ψ(0)|α′〉|2 (8.42)

Expanding out the square of the inner product |〈ψ(0)|α′〉|2 and using the relation

〈αi|α′〉〈α′|αj〉 = 〈αi|αj〉 exp[−(α′ − αj)(α
′∗ − α∗

i )] (8.43)

we get

P (ψ(0)|Z(t)) =
1

2πσ2
C

∫∫

d2α′ exp

(−|α′ − αest(Z)|2
2σ2

C(t)

)

∑

i,j

c∗i cj〈αi|α′〉〈α′|αj〉 (8.44)

=
1

2πσ2
C

∑

i,j

c∗i cj〈αi|αj〉
∫∫

d2α′ exp

(−|α′−αest(Z)|2
2σ2

C(t)

)

exp[−(α′−αj)(α
′∗−α∗

i )]
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Separating out each α in the integral into real and imaginary parts, and using the formula for

a Fourier-transformed Gaussian
∫ ∞

−∞

exp

(−(x− µ)2

2σ2

)

exp(itx) = exp(iµt− σ2t2/2) (8.45)

we obtain Eq. (8.40), thus confirming the conjecture.

In summary, there exists a filter to produce an optimal estimate αest of an initial dis-

placement α0 using the measurement record Z. This filter can also be used for an arbitrary

superposition of coherent states to populate a phase-space distribution over many trials. The

resulting distribution will be the original Q-function of the state convolved with a Gaussian of

width σC .

8.6 Optimal estimate and variance

The task now is to find the parameters in the POVM element given by σ(t) and αest(Z). The

first of these is influenced by the amount of lost information, while the second should depend

also on the system dynamics. Recalling Eq. (8.16) for an initial coherent state

〈ψ(t)|ψ(t)〉 = exp(2Re[f(α(0), ξ, Z)]) (8.46)

= exp

(∫ t

0

−2Γ0|α(τ, Z)|2+4
√
µRe[α(τ)dZ∗(τ)]+2

√

2γRe[α(τ)dξ(τ)]

)

(8.47)

Interestingly, this exponential can be expressed as the result of a geometric Brownian motion

d〈ψ(t)|ψ(t)〉 =
(

4
√
µRe[α(t)dZ∗(t)] + 2

√

2γRe[α(t)dξ(t)]
)

〈ψ(t)|ψ(t)〉 (8.48)

It can be seen above that the norm is influenced by the zero-point noise ξ(t) as well as indi-

rectly by the thermal noise ζ(t) via the coherent state displacement α(t). Since the displacement

is not affected by the zero-point noise, the expectation over ξ can be written

Eξ[〈ψ(t)|ψ(t)〉] = exp

(∫ t

0

−2Γ0|α(τ, Z)|2 + 4
√
µRe[α(τ)dZ∗(τ)]

)

×Eξ

[

exp

(

√

2γ

∫ t

0

2Re[α(τ)dξ(τ)]

)]

(8.49)

Since α(t) is independent of ξ, this final integral is normally distributed, so its exponential is

log-normally distributed. Denoting this exponent by F (α, ξ), this then has the property

Eξ

[

eF (α,ξ)
]

= exp

(

Eξ[F (α, ξ)] +
1

2
Eξ[F

2(α, ξ)]

)

(8.50)

Here the mean of F is zero, while its variance can be computed by separating the coherent

state amplitude into quadratures α = (X + iY )/
√

2 and the zero-point noise into 1D Wiener
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processes dξ = (dξX + idξY )/
√

2, and then making use of the Ito isometry.

1

2
Eξ[F

2(α, ξ)] = γEξ

[

(∫ t

0

α(τ)dξ + α∗(τ)dξ∗
)2
]

(8.51)

= γEξ

[

(∫ t

0

X(τ)dξX

)2

+

(∫ t

0

Y (τ)dξY

)2
]

(8.52)

= γEξ

[∫ t

0

X2(τ) + Y 2(τ)dτ

]

(8.53)

= 2γ

∫ t

0

|α(τ)|2dτ (8.54)

Substituting this back into Eq. (8.49) and taking the expectation over ζ leaves

Eξ,ζ [〈ψ(t)|ψ(t)〉] = Eζ

[

exp

(∫ t

0

−4µ|α(τ)|2 dτ + 4
√
µRe[α(τ)dZ∗(τ)]

)]

(8.55)

8.6.1 Zero temperature

Let us first set ζ(t) = 0. In this case, no further averaging is needed. Separating into quadra-

tures gives

Eξ[〈ψ(t)|ψ(t)〉] = exp

(∫ t

0

−2µ(X2(τ) + Y 2(τ))dτ + 2
√
µ(X(τ)dW1(τ) + Y (τ)dW2(τ))

)

(8.56)

Now, separating each of the quadrature components into the initial parts (X0,Y0) and measure-

ment residual parts (X1,Y1) as given by Eq. (8.18), the integral will contain terms linear and

quadratic in both X0 and Y0. This can therefore be written

Eξ[〈ψ(t)|ψ(t)〉] = exp

(−(X0 −Xest)
2

2σ2
+GX

)

exp

(−(Y0 − Yest)
2

2σ2
+GY

)

(8.57)

where GX and GY are terms independent of X0 and Y0. After normalising by an integral over

initial states, these extraneous terms disappear and we are left with the simple 2D Gaussian

(where αest = (Xest + iYest)/
√

2)

P (α0|Z) =
1

πσ2
exp

(−|α(0) − αest|2
2σ2

)

(8.58)

The parameters of the distribution can be found by integrating Eq. (8.56), giving

Xest(t) =
Γ0

1 − e−2Γ0t

∫ t

0

1√
µ

dW1(τ)e−Γ0τ − 2

(√
µ

∫ τ

0

dW1(s)e
Γ0(s−2τ)

)

dτ (8.59)

Yest(t) =
Γ0

1 − e−2Γ0t

∫ t

0

1√
µ

dW2(τ)e−Γ0τ − 2

(√
µ

∫ τ

0

dW2(s)e
Γ0(s−2τ)

)

dτ (8.60)

σ2(t) =
Γ0

2µ(1 − e−2Γ0t)
(8.61)

We can see that the variance of the distribution reduces from infinity at t = 0, converging at

t≫ 1/Γ0 to

σ2(t→ ∞) = 1 +
γ

2µ
(8.62)
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Subtracting off the ground state variance of 1/2 gives the excess variance

σ2
C(t→ ∞) =

1

2
+

γ

2µ
(8.63)

As shown in Section 8.5, this defines the smallest feature size of the initial state’s Q-function

that can be resolved in the reconstructed distribution without performing a deconvolution.

This excess still includes a minimum variance (where µ ≫ γ) of 1/2 due to the fact that both

quadratures are being detected[145]. The second term above quantifies the additional noise

due to bath dissipation. In contrast, the steady-state conditional variance from the stochastic

master equation is simply 1/2 for perfect efficiency and zero temperature. Therefore, an initial

quantum state is fundamentally hard to image in the weak measurement limit.

The estimates can be rearranged into the form

Xest(t) = 2σ2(t)
√
µ

∫ t

0

[(1 − β0)e
−Γ0τ + β0e

Γ0(τ−2t)]dW1(τ) (8.64)

Yest(t) = 2σ2(t)
√
µ

∫ t

0

[(1 − β0)e
−Γ0τ + β0e

Γ0(τ−2t)]dW2(τ) (8.65)

where

β0 =
µ

Γ0

=
µ

γ + 2µ
(8.66)

The first term is simply a weighted average of early of the early results following an exponential

decay from t = 0. The second term is weighted towards late time results, and becomes more

dominant as the measurement improves (µ ≫ γ) as long as the total measurement time t is

not much longer than 1/Γ0. This term can be interpreted as compensating for the lack of

measurement results in the case that the bandwidth of the measurement is too large. Notably,

the filter decay rate Γ0 matches that derived from the master equation at zero temperature

given by Eq. (3.42).

8.6.2 Finite temperature

At nonzero temperature, a more difficult task is presented by the thermal noise in α(t), which

must be averaged over. While Eq. (8.55) resembles the characteristic function of an integrated

squared Ornstein-Uhlenbeck process, which has been treated previously[151, 152], the presence

of an extra stochastic integral complicates matters. Heuristically, we can expect the presence

of thermal noise to increase the estimate error as well as shorten the time constant of the

filter. This is somewhat justified by behaviour of the optimal filter when estimating the current

position, as derived in Section 3.5.1 using the stochastic master equation. In the case of perfect

efficiency, this is given by

ΓSME =
√

Γ2
0 + 8µγN (8.67)

That is, the filter becomes wider as the measurement begins to pick up thermal fluctuations.

It is a simpler matter to find the estimate error σ2 in the presence of thermal noise. Upon

examining Eq. (8.55), the expectation value should be Gaussian distributed — that is, the
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resulting exponent should be quadratic in X0 and Y0. However, the coefficient 1/2σ2 of these

quadratic terms should be independent of the problematic term that is linear in α. Therefore

setting Z(t) = 0 for all times, while not providing the estimates Xest and Yest, will still produce

the correct variance. Separating the resulting equation into quadratures leaves

Eξ,ζ [〈ψ(t)|ψ(t)〉] = EX2

[

exp

(

−2µ

∫ t

0

(X0 +X2(t))
2e−2Γ0τ dτ

)]

(8.68)

×EY 2

[

exp

(

−2µ

∫ t

0

(Y0 + Y2(t))
2e−2Γ0τ dτ

)]

Each of these integrals is of a squared Ornstein-Uhlenbeck process with initial displacement

X0 and decay rate Γ0. The expectation value of this function has been derived[152, 151], with

the conditional solution in our parameters given by

EX2

[

exp

(

−2µ

∫ t

0

(X0 +X2(t))
2e−2Γ0τ dτ

)]

= f(t)exp

[ −2µX2
0

Γ0(1 + λ coth(λΓ0t))

]

(8.69)

where

λ =
√

1 + 8µγN/Γ2
0 (8.70)

The hyperbolic function above captures the effect of the error reducing from infinity at t = 0

to a steady-state value after some time. Notably the rate associated with this process is

λΓ0 =
√

Γ2
0 + 8µγN (8.71)

This agrees precisely with the filter width ΓSME derived from the stochastic master equation,

given by Eq. (8.67), further justifying its use.

The thermal noise, as expected, leads to an increased final variance in the conditional

probability, while also causing a faster convergence. The final error is

σ2(t→ ∞) =

(

γ

4µ
+

1

2

)

(

1 +

√

1 +
8µγN

(γ + 2µ)2

)

(8.72)

Subtracting the ground state variance of 1/2 and rearranging produces

σ2
C = V0 +

γ

2µ
(8.73)

where V0 is the conditional variance from the master equation given by Eq. (3.32). In the low

SNR limit Nµ/γ ≪ 1, this becomes

σ2
C ≈ 1

2
+

γ

2µ
+N (8.74)

or, an addition of N to the zero-temperature case.

The conjecture for the filter bandwidth is backed up by numerical simulations performed

using the Quantum Optics Toolbox[153]. The SSE given by Eq. (8.5) was simulated 10000
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Figure 8.1: Optimal estimate variance (upper panel) and optimal filter width Γ (lower panel)

as a function of temperature for µ = γ = 1. Simulations were performed over one decay time,

using 10000 trajectories for each temperature with only an early-time filter (β = 0). Solid lines

are the analytic solutions for the same parameters given by Eqs (8.72) and (8.67) respectively.

times, using the measured record Z(t) in each case to form an estimate Xest of an initial

coherent state using various filter decays Γ for a simplified filter

Xest(t) = A

∫ t

0

e−ΓτdW (τ) (8.75)

where A is a constant found by optimisation. Although it is likely that the correct filter is of

a similar form to Equation (8.64), here we have set the long-time filter parameter β to zero for

simplicity.

The variance of Xest over all trajectories was computed for each Γ to find the minimum

variance and corresponding filter width. Figure 8.1 shows these optimal parameters for various

mean phonon occupations N , showing good agreement with the above analytic solutions. It

is assumed that slight systematic error is due to the non-optimal restriction β = 0 for the

long-time weighting.

8.7 Parametric amplification

While resonant parametric amplification (without feedback) has limited use in steady-state

quantum measurement and control, as discussed in Chapter 4, it is well suited to non-steady-
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state applications. Tomography of a state prepared at a particular time is one such example.

Increased resolution of one quadrature is especially suitable for quantum-state tomography,

which requires accurate single-quadrature marginals to be built up. Since steady-state operation

is not required, a parametric drive far above threshold can be used to amplify the state unitarily

in a short time compared to noise processes.

To model the effect of a parametric drive, the resonant squeezing Hamiltonian

Ĥ = ih̄
χ

2
(e2iθâ2 − e−2iθâ†2) (8.76)

can be inserted into the SSE given by Eq. (8.5). This results in an initial coherent state

evolving into a squeezed coherent state. Linear quantum trajectories have been analysed for

squeezed states[149, 145], but are difficult to solve analytically in the presence of multiple

stochastic processes. In this section, we will use two alternative methods to build upon the

above intuition.

8.7.1 Amplification with measurement: numerical results

It is easy to show through simulations that non-stationary amplification of a quadrature with

simultaneous measurement results in improved resolution. Using a Quantum Optics Toolbox

simulation of the SSE given by Eq. (8.5) with the above Hamiltonian, the stochastic squeezed

state evolution can be solved numerically. A filter of the same form as Eq. (8.64) is applied

to the X quadrature measurement record W1(t), varying the filter width Γ and the long-time

weighting β. An estimate is produced for each combination of parameters from each trajectory,

and the mean and variance of the estimates over all trajectories are then calculated.

Figure 8.2 shows the normalised variance for a measurement strength near the standard

quantum limit, comparing the amplified, squeezed and undriven cases. Notably, the long-time

weighting β has little effect on the estimate error. In the case where the X quadrature is

amplified, the optimal variance is reduced along with the optimal filter width. When θ is set

so that the X quadrature is squeezed, the opposite occurs. The behaviour of the optimal filter

is consistent with the qualitative picture of reduced and increased effective damping rates for

the amplified and squeezed quadratures, respectively.

8.7.2 Parametric preamplification

Here we consider a two step process. First, one quadrature is parametrically amplified well

above threshold and without measurement until a time t1. Second, the drive is turned off and

the oscillator is measured continuously as in the last section. The first step can be modelled with

ensemble averages, using the mean and variance of X(t1) to determine the signal-to-noise for

an estimate of X(0). Then, up to some normalisation, the probability distribution conditioned

on a measurement record Z is

P (X(0)|Z) = A

∫ ∞

−∞

P (X(0)|X(t1))P (X(t1)|Z) dX(t1) (8.77)
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Figure 8.2: Normalised variance Var(Xest)/〈Xest〉2 plotted against filter parameters, using 200

simulated trajectories over one decay time, with a measurement strength µ = γ. The central

panel is for no parametric drive and is consistent with the theoretical optimal variance of

σ2 = 1.5. The left and right panels are for X being antisqueezed and squeezed respectively,

with χ = 2γ.

where A is some constant. Both of these probabilities are Gaussian distributed, and the first

can be computed using the ensemble average. The mean value evolution is found using the

squeezing Hamiltonian (8.76) in the Lindblad equation (3.1), with the solution

〈X(t)〉 = 〈X(0)〉e(χ−γ)t (8.78)

= 〈X(0)G(t)〉 (8.79)

while the variance is found in the same way, with the solution

VX(t) =
γ(N + 1/2)

χ− γ
(G2(t) − 1) + VX(0)G2(t) (8.80)

The probability distribution is then

P (X(0)|X(t1)) = exp

(

(X0 −X(t1)/G
2(t1)

2VX(t1)/G2(t1)

)

(8.81)

so that the excess variance, if the amplification time t1 is sufficiently long, is

VX(t1)

G2(t1)
− VX(0) =

γ(N + 1/2)

χ− γ
(8.82)

The measurement step introduces the error σ2(t − t1) as given by (8.72), but this error is

for estimating the amplified signal X(t1) and is therefore rescaled by G(t1). Therefore, after

the convolution in Eq. (8.77), the final variance of the estimate is

Vest(t) =
σ2(t− t1) + VX(t1)

G2(t1)
− VX(0) (8.83)

Although σ2 blows up in the weak measurement limit, this can be made negligable by making

the amplification time t1 very long. The excess variance can then be made as small as that in

Eq. (8.82), which beats the heterodyne limit when χ > 2γ(N+1). This condition corresponds to
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fluctuations being amplified faster than new fluctuations can be introduced, and is remarkably

similar to that required for quantum squeezing via DMPA, as derived in Section 6.3. The error

can be reduced further, as shown in the previous section, by using the measurement results

during the amplification. Therefore, the above expression sets an upper bound on the error of

the optimal estimate, which will be derived in future work.

The work in this chapter lays some important foundations towards tomography of mechan-

ical states by extending some common ideas from quantum optics to the mechanical regime.

The stochastic Schrödinger equation, while more complex than the optical case, does not com-

pletely inhibit rigorous analytic solutions. The use of this technique for optimal posterior

estimation under various kinds of unitary evolution, including parametric amplification, holds

great promise for the verification of quantum states in mechanical systems.
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Chapter 9

Conclusions and future work

Measurement and control are not separable concepts — they intersect in many ways, in both

classical and quantum regimes. Often, they are mutually exclusive goals. For example, am-

plification aids measurement of an observable while increasing its uncertainty after the fact,

making precise control more difficult. Because of this, parametric amplification of an oscillator

has generally been studied in the context of either measurement or control in isolation. For

example, the reviews by Clerk et al.[21] and Blencowe[26] analysed parametric amplification of

quadratures on resonance with an oscillator in the quantum regime. In this case, the squeezing

effect can be used to prepare a quantum state of the oscillator at very low temperatures, while

the amplification effect can be used to overcome measurement noise.

In quantum mechanics, where the act of measurement prepares states, measurement and

control can be viewed as two sides of the same coin. The purest manifestation of this is quantum

non-demolition measurement, in which the measurement does not add noise to the observable.

Backaction evasion is the application of this idea to the continuous measurement of an oscillator.

This stands in stark contrast to resonant parametric amplification, where either measurement

or control is the focus, but not both.

This thesis has extended the application of parametric amplification of a mechanical oscil-

lator in two ways. Firstly, it has examined the more complex dynamics of an oscillator that

is not resonant with a parametric drive. In this case, the roles of measurement and control

become mixed. A quadrature of motion can be simultaneously measured and localised with

better precision by amplifying the dynamically linked orthogonal quadrature. The idea of using

dynamically linked observables is not new in quantum measurement, and has been applied to

coupled optical modes[154]. The major consequence of this result is that arbitrarily squeezed

conditional mechanical states can be prepared in the steady-state without the use of strong

measurement or feedback. This goal was previously considered out of reach due to the below-

threshold requirements of a resonant parametric drive. A detuned parametric drive can be used

as a replacement for strong and efficient backaction evading measurement, and in a special case

the two are equivalent. Furthermore, extending these dynamics to coupled oscillators achieves

effective collective-mode measurement and thus quantum entanglement.
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These results present more options for experimentalists wishing to achieve steady-state

squeezing or entanglement in mechanical oscillators. Specifically, they are relevant for ex-

perimentalists working with electromechanical or hybrid systems, as an alternative to purely

measurement-based techniques. For theorists, the results also pave the way for further ex-

ploration of coherent dynamics in the quantum measurement framework set by the stochastic

master equation formalism.

The second extended application presented here is above-threshold parametric amplification

for state tomography. The property of noiseless amplification is useful out-of-equilibrium in an

oscillator in a similar way as for travelling waves in optics. In this case, the parallels between

tomography based on parametric amplification and on strong stroboscopic measurement are

clear. Here, an upper bound has been derived for the minimum possible error in the recon-

structed Q-function in the presence of a parametric drive, and the groundwork has been laid for

an exact solution. This sets a clear path for further theoretical study, both in finding a solution

for the error and in deconvolution techniques to reconstruct the Q-function. Once these are

addressed, this scheme could prove very useful in electromechanical systems in which quantum

state preparation will soon be possible, but verification may still be challenging.

Finally, it is worth asking what other forms a parametric drive could take. In this thesis,

a classical drive was implicitly considered by adding a sinusoidal term to the oscillator spring

constant. It is also possible to achieve the same effect using a second oscillatory mode with

quadratic position coupling to the first. One idealisation of this arrangement is a mass-spring

system with an additional sideways degree of freedom, such that it also behaves as a pendulum.

Since the pendulum frequency depends on its length, the pendulum mode forms a parametric

coupling with the mass-spring mode. This applies with equal validity to bulk oscillators, in

which frequency pulling due to the mean-square vibration of an orthogonal mode has already

been demonstrated[155, 156]. Nonlinear intermodal coupling opens up the possibility of squared

position measurement[49, 41] via linear position measurement of a coupled mode, as well as

parametric amplification in a regime analogous to the “depleted pump” regime in quantum

optics[157]. A combination of these phenomena can be examined in a similar master equation

framework to that presented here.
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Izo Abram, Alexios Beveratos, Rémy Braive, Isabelle Sagnes, and Isabelle Robert-Philip.

Towards the experimental demonstration of quantum radiation pressure noise. Comptes

Rendus Physique, 12(9–10):826–836, 2011.

[48] J. Suh, A. J. Weinstein, C. U. Lei, E. E. Wollman, S. K. Steinke, P. Meystre, A. A. Clerk,

and K. C. Schwab. Mechanically detecting and avoiding the quantum fluctuations of a

microwave field. Science, 344(6189):1262–1265, 2014.

[49] A A Gangat, T M Stace, and G J Milburn. Phonon number quantum jumps in an

optomechanical system. New J. Phys., 13(4):043024, 2011.

[50] Michael R. Vanner. Selective linear or quadratic optomechanical coupling via measure-

ment. Phys. Rev. X, 1:021011, 2011.

122



[51] S Basiri-Esfahani, U Akram, and G J Milburn. Phonon number measurements using

single photon opto-mechanics. New Journal of Physics, 14(8):085017, 2012.

[52] Shimon Kolkowitz, Ania C. Bleszynski Jayich, Quirin P. Unterreithmeier, Steven D. Ben-

nett, Peter Rabl, J. G. E. Harris, and Mikhail D. Lukin. Coherent sensing of a mechanical

resonator with a single-spin qubit. Science, 335(6076):1603–1606, 2012.

[53] Robert G. Knobel and Andrew N. Cleland. Nanometre-scale displacement sensing using

a single electron transistor. Nature, 424(6946):291–293, 2003.

[54] A. N. Cleland, J. S. Aldridge, D. C. Driscoll, and A. C. Gossard. Nanomechanical dis-

placement sensing using a quantum point contact. Applied Physics Letters, 81(9), 2002.

[55] Yuma Okazaki, Imran Mahboob, Koji Onomitsu, Satoshi Sasaki, and Hiroshi Yamaguchi.

Quantum point contact displacement transducer for a mechanical resonator at sub-kelvin

temperatures. Applied Physics Letters, 103(19):–, 2013.

[56] I. Mahboob and H. Yamaguchi. Bit storage and bit flip operations in an electromechanical

oscillator. Nat. Nano., 3:275–279, 2008.

[57] R. Almog, S. Zaitsev, O. Shtempluck, and E. Buks. Noise squeezing in a nanomechanical

duffing resonator. Phys. Rev. Lett., 98(7):078103, 2007.
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Appendix A

Derivation of conditional squeezing

angle

With the steady-state and C = 0 conditions, the quadratic equations (4.45-4.46) can be ex-

pressed as

2ηµV 2
Y α + (γ − χ sin(2α1))VY α = 2ηµV 2

Xα + (γ + χ sin(2α1))VXα = γVT . (A.1)

Rearranging the first equality and using Eq. (4.50) gives a new equation for the antisqueezing

angle

2ηµ(VXα + VY α) = ∆ tan(2α1) − γ , (A.2)

which as expected, reduces to the unconditional result Eq. (4.38) when ηµ = 0. We would

like a form in terms of system parameters only, for which we can rearrange Eq. (A.1) again to

remove α1, leaving a relation between the two quadratures

4VY αVXα

(

ηµ+
γ

VY α + VXα

)

= γVT . (A.3)

Using Eqs (4.50), (A.2) and (A.3), we can obtain an expression containing only a function of

α1, the thermal variance VT and other parameters. The general form of α1 is now the solution

to the equation
(

∆2 tan2(2α1) − γ2
)

(

1 − χ2

∆2
cos2(2α1)

)

= 8ηµγVT , (A.4)

or written in terms of SNR,

∆2 tan2(2α1) − χ2 sin2(2α1) +
χ2γ2

∆2
cos2(2α1) = γ2(1 + 4SNR) . (A.5)

From examining the above, we see that the antisqueezing angle increases from the uncondi-

tional angle α0 at SNR = 0 up to π/4 in the limit SNR ≫ 1. We can solve analytically by

multiplying through by cos2(2α1) and transforming sine to cosine, then solving a quadratic

equation, resulting in

cos 2α1 =
∆

χth





χ2
th+χ2+4γ2SNR−

√

(χ2
th−χ2)2+8(χ2

th+χ2)γ2SNR+16γ4SNR2

2χ2





1

2

(A.6)
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Appendix B

Post-processing of steady-state

measurements
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Figure B.1: Unconditional variances of steady-state data with increasing SNR of the low-fidelity

measurement. Black circles indicate data taken with the parametric drive off, while different

coloured circles indicate a different nominally detuned drive. The top panel is the variance of the

maximally amplified quadrature, while the middle panel contains the undriven and maximally

squeezed variances. The bottom panel is the undriven variance of the low-fidelity data, with

solid lines used to fit the SNR to the square of the modulation voltage.

Figure B.1 shows the unconditional variances of the data (that is, the variances of the
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unfiltered data) taken during the steady-state measurements. At each SNR of the low-fidelity

measurement, the lock-in outputs are recorded once in the absence of driving, and three times

with the parametric drive on, with detunings 1Hz apart. Multiple detunings were used to

account for frequency drift away from threshold during the measurements. The DC voltage

was tuned periodically to bring the cantilever frequency back towards threshold, as can be seen

in Fig. B.1. While the detunings in the figure are clearly only nominal, the real detuning could

be inferred from the convolution frequency Ω in the previous undriven case. Detunings nearest

to a frequency of ∆ = 63Hz were then chosen, corresponding to an amplified variance of 10.5VT .

The shaded bands in Figure 5.11 reflect the resulting uncertainty in detuning.

The SNR could be determined from the variance of the low-fidelity lock-in measurements.

Monotonicity was preserved by fitting this variance as VX̃ = βV 2
mod +Vshot, where Vmod was the

peak-to-peak modulation voltage used to produce the sideband. Two fits were used to account

for the re-locking and realignment after the relative fibre position and hence reflected optical

power drifted overnight.

Each set of four time traces from the lock-in amplifier outputs was processed in the following

way.

1. Import datasets and adjust scales to correspond to mV.

2. In the undriven case, rotate the low-fidelity quadratures to maximise the correlation

with the high-fidelity quadratures. In the driven case, rotate each set of quadratures to

maximise the Y quadrature variance.

3. Calculate filter parameter estimates based on the undriven SNR = Var(X̃)/Vshot − 1 and

estimated drive parameters, using the results of Section 4.8.

4. Divide each time series into 21 windows of 1500 points.

5. For each adjacent pair of windows, run MATLAB optimisation function fminsearch to

minimise the residual variance over the second window. The estimate is calculated by

convolving the signal (two window lengths) with the filter function truncated to one

window length. In the driven case, the variance is optimised over g1, g2,Γ,Ω, ψ, α, where

α is a quadrature rotation angle and the other parameters are defined in Eq. (5.11). In

the undriven case, the same filter is used, with the restrictions φ = 0 and g1 = g2. All

parameters except gi are constrained to a finite range using sigmoid functions.

6. If fminsearch converges for at least one pair of windows, average the parameters obtained

over all converged window pairs.

7. Repeat step 5 for the entire waveforms to calculate the conditional variance

8. If the optimisation over the entire waveforms converged, repeat step 5 for the Y quadra-

ture, keeping α fixed.
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The resulting conditional variances, using the detuning closest to 63Hz for each SNR, are

shown in Figures 5.10 and 5.11, in good agreement with theory, as are the optimised filter

parameters shown in Figure 5.12.
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Appendix C

Effective QND measurement

C.1 Derivation of effective measurement strength and

purity

The general solution for the conditional variances VXα, VY α when the quadrature phase space

is optimally rotated is given in Section 4.7. We can use these solutions, including the squeezing

angle α to re-obtain VX and C, and thus calculate g.

VX =
1

2
(VY α + VXα) − 1

2
(VY α − VXα) cos(2α) (C.1)

VY =
1

2
(VY α + VXα) +

1

2
(VY α − VXα) cos(2α) (C.2)

C =
1

2
(VY α − VXα) sin(2α) (C.3)

Substituting ∆ = χ into Eq. (4.50) so that

VY α + VXα =
VY α − VXα

cos(2α)
(C.4)

we end up, via simple trigonometry, with

g =
C

VX
= cot(2α) (C.5)

so
µeff

µ
= 1 + g2 =

1

sin2(2α)
(C.6)

An explicit general solution for cos(2α) is given by Eq. (4.51). The effective measurement

strength is then easily derived as

µeff

µ
=

2(1 + χ′2)

1 +
√

(1 + 4SNR)2 + 16χ′2SNR − 4SNR
(C.7)

where χ′ = χ/γ is the normalised parametric drive strength and SNR = ηµ(2N + 2NBA + 1)/γ

defines the signal-to-noise ratio for the thermal noise.
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Equation (C.5) can also be used to find a simple expression for the state purity. Substituting

this into Eq. (A.2) with ∆ = χ gives

2ηµ(VXα + VY α) = χ/g − γ , (C.8)

Now substituting this into Eq. (A.3) and rearranging produces

1

4VXαVY α

=
η

1 + γ(2N + 1)/µ

(

1 +
2

χ′/g − 1

)

. (C.9)

The left hand side of the above equation is equal to the purity, since by definition the covariance

of the optimal quadratures Xα and Yα is zero.

C.2 Effective filter width

The relevant timescale of a measurement can be illustrated by the filter parameters — specifi-

cally, the filter width — that produce the optimal position estimates from the noisy time-series

measurements. These parameters are found by Fourier transforming and solving the conditional

equations of motion, then transforming back to the time domain. The exponential decay that

specifies the filter width contains the rate

Γ = γ + 2ηµ(VX + VY ) (C.10)

This sum of variances is identical to that for the optimal quadratures (see Eqs (C.1-C.2)) and

so Eq. (C.8) can be used to give
Γ

γ
=
χ′

g
(C.11)

The filter width then blows up as g deviates from χ′ and approaches 0. This effect exactly

coincides with the enhancement factor µeff/µ dropping from 1 + χ′2 back to 1, and the ampli-

fication becoming redundant. After some algebra, the filter width can be rewritten in terms of

experimental parameters as

Γ

γ
=

√

(1 + 4SNR +
√

(1 + 4SNR)2 + 16χ′2SNR)/2 (C.12)

We can see that when χ′ = 0, the standard expression is recovered

Γ

γ
=

√
1 + 4SNR (C.13)

If instead, we let it be non-zero but restrict ourselves to the ultraweak measurement case in

which the amplified peak is still obscured under the measurement noise (SNR(1 + χ′2) ≪ 1

where χ′ ≫ 1), we can expand the inner square root to give

Γ

γ
≈
√

1 + 4SNR(1 + χ′2) (C.14)
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which has exactly the same form, but with SNR effectively enhanced by the amplification factor.

However, as this approximation breaks down, the filter widens more slowly as a function of this

enhanced SNR. In the opposite limit SNR(1 + χ′2) ≫ 1, we obtain

Γ

γ
≈ 4

√

χ′2SNR (C.15)

This is due to the fact that the unconditional Y spectrum only contains a filtered version of the

X spectrum (as given by Eq. (4.21)), and hence contains the most accurate X information within

a narrow band around the peak. As this peak rises above the noise floor, the measurement

fidelity does not scale in the same way as for a direct, high-fidelity measurement of the X

quadrature.
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