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Abstract 

Granules are large, self-supporting biofilms that form naturally in high-rate anaerobic 

treatment systems and are extremely important to reactor functionality. The biofilm structure 

has functional and phylogenetic layering, important both scientifically and to function. 

Fermenters, found on the surface of anaerobic granules, are associated with granule strength 

and uptake of the primary substrate. Compared to acetogens and methanogens, very limited 

work has been done on fermenters, particularly in granules. Due to their high diversity and 

difficulty in selective isolation, fermenters are best studied through culture-independent 

techniques. Until now, the microbial distribution could only be analysed through sectioning 

and microscopic analysis with fluorescent in situ hybridization. The whole granule could be 

analysed by DNA extraction and microbial community profiling methods but this did not 

provide spatial information. This thesis develops a method to remove microbes selectively 

from successive spatial layers through hydraulic shearing and demonstrates its application on 

anaerobic granules of three different types (collected from brewery, cannery and dairy 

wastewater treatment plants). Outer layers, in particular, could be selectively sheared as 

confirmed by FISH and TRFLP. Further analysis with 454 pyrosequencing showed that a 

shift in dominant population from presumptive fermenters (such as Bacteroidales and 

Anaerolinea) in outer layers to syntrophs (such as Syntrophomonas and Geobacter) in inner 

layers, with progressive changes through the depth. The method was further leveraged 

through covariance based deep metagenomic sequencing, with metagenomic analysis used so 

far to align phylogenetic information. This leveraged the shear based method to provide 

covariance information for the metagenomic analysis. Shear based phylogenetic and 

metagenomic aligned well internally and with cryosection-FISH analysis. Information 

provided could be used with more specific probes (particularly Bacteroidales and 

Anaerolinea) to confirm that these organisms were key fermenters and highly abundant in 

outer layers. This study indicated that fermenters were a relatively diverse but discrete 

population within the granule. Further analysis of the metagenomic information is required to 

identify roles of specific microbes. The phylogenetic approach was also used in a reactor 

study with different feeds (gelatine, glucose, VFA) to identify how the microbial population 

shifted during growth of fermenters. While physical strength was not influenced, the 
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dominant fermentative groups were strongly impacted by the feed matrix, and inner layer 

community less changed, but still substantially affected.  
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Chapter 1. Introduction 

This chapter develops the motivation for research and reviews current literature relevant to 

the project. This thesis aims to investigate the microbial community (especially the 

fermentative community) on anaerobic granules in terms of architecture and distribution, 

diversity and identity, and function. The literature review introduces background of anaerobic 

granules, reviews current and potential techniques for microbial study of anaerobic granules 

and identifies the knowledge gaps in the understanding of fermentative communities in 

anaerobic granules. Fundamental knowledge on microbial community gained in this thesis 

should expand understanding of anaerobic granules and provide opportunity for further 

enhancement.  

 

1.1 Research Motivation 

Anaerobic granules are the major functional elements in the widely applied wastewater 

treatment anaerobic digester unit operation - the Upflow Anaerobic Sludge Blanket reactor 

(UASB) and related variants such as Extended Granular Sludge Bed (EGSB) and Internal 

Circulation (IC) reactors. Functionality of anaerobic granules relies on physical properties 

including size, density and strength, as well as the microbial properties including microbial 

capability and spatial distribution. However, this technology has failed in cases where 

biomass is lost due to destruction of low strength granules. Due to its high efficiency, UASB 

technology is currently applied in brewery, cannery and dairy industries to treat wastewater 

consisting of soluble organic compounds. Attempts to apply this technology to other wastes 

treatment processes such as fatty wastewater, solid wastes treatments or manufacturers 

generally specify solids concentrations in the influent of <1000mg·L-1 have generally not 

succeeded.    

Anaerobic digestion (AD), in general, is applicable for the digestion of substrates with high 

solids concentration. Fermenters, grown on the surface of anaerobic granules, are responsible 

for the physical strength and initial steps of substrate digestion. Thus manipulating fermenters 

possibly provides an opportunity to enhance granule strength, boost the efficiency and/or 
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broaden the range of substrates anaerobic granules can process. As such, this thesis is 

focusing on investigate the microbial ecology of fermentative microbes with a view for 

enhancement in existing processes and future application of anaerobic granular processes. 

  

1.2 Anaerobic Digestion Process 

AD is a biological decomposition process that converts organic matter to methane and carbon 

dioxide in the absence of oxygen. AD can be implemented in a wide variety of technologies 

with low cost infrastructure and is relatively easy to operate and control. The final product of 

AD, biogas, typically contains 50-70percent methane (but may be higher depends on 

substrate and operational conditions) and 30-40percent carbon dioxide. Methane gas has an 

energy content of 55MJ·kg-1 (Lide, 1995). With one-third conversion efficiency of heat into 

electrical energy, the electricity generation is 5.1kWh·kg-1 CH4. Biogas is less harmful to the 

environment as it is derived from short cycle organics instead of fossil carbon, and hence 

does not contribute to global warming. It has the potential to be used for heat and energy 

generation instead of fossil fuel. AD relies on the cooperative and sequential action of a 

number of different microorganisms (Gujer and Zehnder, 1983). There are four major steps in 

AD as shown in Figure 1.1. 

 

Figure 1.1 Major conversion steps in anaerobic digestion of complex organic matter. 
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1.2.1 Hydrolysis  

Carbohydrates, proteins and lipids are the major organic components in solid wastes and 

high-strength wastewater. Hydrolysis is generally considered as a rate-limiting step for 

conversion of complex compounds and breaks down complex insoluble substrates to soluble 

form. As the first degradation step of complex substrates, hydrolysis is important but is 

generally not present in anaerobic granules. Anaerobic granules are normally applied to 

solubilised wastewater (such as brewery) where hydrolysis is not required. Applying UASB 

to complex organics requires hydrolytic capability to be introduced into anaerobic granules. 

In addition, as the hydrolysis of these molecules is facilitated by extra-cellular enzymes 

secreted by microorganisms, direct or close contact to substrate is favoured for hydrolysis. 

Fermenters, which are mainly identified on the surface of anaerobic granules, are the only 

potential candidates for hydrolysis (note they also utilise the hydrolysis products directly).  

 

1.2.1.1 Hydrolysis of cellulose 
The conversion of cellulose (C6H10O5)n, to glucose can be presented as Equation [1]: 

 C6H10O5 + H2O → C6H12O6                                                                                               [1] 

Anaerobic microorganisms which are able to actively hydrolyse crystalline cellulose 

generally belong to family Syntrophomonodaceae, Lachnospiraceae, Eubacteriaceae or 

Clostridiaceae (Garrity, 2001). They are able to produce a multi-enzyme complex. The 

complex combines a multiple catalytic domain with an optimized carbohydrate binding 

module with low specificity (Schwarz, 2001). Thus the complex is able to attack and cleave a 

large range of carbohydrate substrates. As the efficiency is boosted by the enzyme structure, 

excess production of individual enzyme can be avoided. Furthermore, as a strong bridging 

structure between microorganism and insoluble substrate, it also transports soluble hydrolysis 

products. In particular, Clostridia is able to produce cellulosome, in which the components of 

cellulosome strongly bond to each other by a dockerin domain (Tokatlidis et al., 1991). Most 

Clostridia which possess cellulosome system belong to Clostridium thermocellum (Sakka et 

al., 1994) or Clostridium aldrichii (Yang et al., 1990). Other than Clostridiales, there are only 

two strains reported to possess cellulosome, which are Thermobifida fusca (Irwin et al., 1998) 

and Fibrobacter succinogenes (Fields et al., 2000). Although none of aforementioned 

bacterium has ever been identified in anaerobic granules, the higher classification phylum 
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Firmicutes has been commonly found in anaerobic granules (Diaz et al., 2006; Tsushima et 

al., 2010, Nakasaki et al., 2013). 

 

1.2.1.2 Hydrolysis of Protein 
Proteins are natural polymers comprised of different amino acids joined by peptide bonds. 

The backbone of a protein is a repeating sequence of one nitrogen and two carbon atoms. The 

structure of protein can be fibrous or globular. Insoluble fibrous proteins are normally used as 

structural material such as collagens. Globular proteins are normally dissolved in water and 

mainly used for biological functions. Protein hydrolysis in anaerobic digestion is mainly 

carried by proteolytic bacteria mainly from the class Clostridia (McInerney, 1988). Proteases 

are the extracellular enzymes secreted to breakdown proteins. Most proteases found in 

Clostridium spp. are metallo proteases which typically contain an essential metal atom (e.g. 

zinc) and with pH optima in the neutral pH range of 6 to 8. Unlike the hydrolysis of 

carbohydrate, the rate of protein hydrolysis is slower and generally unaffected by the 

availability of hydrogen-utilising bacteria (Nagase and Matsuo, 1982). Proteases have been 

found in Clostridium histolyticum (Hu et al., 2002), Clostridium sporogenes (Allison and 

Macfarlane, 1990), Clostridium perfringens (Shimamoto et al., 2001) and Clostridium 

botulinum (Suzuki et al., 2009). In particular, Clostridium histolyticum is well known for the 

production of proteolytic enzymes such as collagenase and clostripain. Phylum Firmicutes 

were commonly found in anaerobic granules (Diaz et al., 2006; Tsushima et al., 2010, 

Nakasaki et al., 2013), thus the hydrolysis of either cellulose or protein can be potentially 

developed on anaerobic granules. 

 

1.2.2 Fermentation 

The products of hydrolysis are converted to volatile fatty acids (VFAs) (e.g. acetate, butyrate, 

lactate and propionate etc.) and alcohols (e.g. ethanol, methanol etc.) by fermentation. 

Examples of products from glucose fermentation are listed in Equations [2] to [7] in Table 

1.1.  

 

%

%
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Table 1.1 Possible products from glucose fermentation. 

Products Reaction  
Acetate, Propionate 3C6H12O6 →4CH3COO-+2CH3COO-+2HCO3

- +8H+ [2] 
Lactate C6H12O6→2CH3CHOHCOO-+2H+ [3] 
Ethanol C6H12O6+ 2H2O→2CH3CH2OH+2HCO3

-+2H+ [4] 
Ethanol, Acetate C6H12O6+3H2O→CH3CH2OH+CH3COO+2HCO3

++2H2 
+3H+ 

[5] 

Butyrate C6H12O6 +2H2O →CH3CH2CH2COO-+3H+ +2HCO3
-+2H2

 [6] 
Acetate C6H12O6+4H2O→2CH3COO-+4H++2HCO3

-+4H2 [7] 

 

Fermenters are widely spread across more than 20 phyla but are commonly from families of 

Streptococcaceae or Enterobacteriaceae and the genera of Bacteroides, Clostridium, 

Butyrivibrio, Eubacterium, Bfidobacterium, or Lactobacillus (Novaes, 1986). Fermentation 

rate is directly related to the substrate uptake rate. Recently, Kim et al. (2011) has reported 

that genus Aeromonas (capable for carbohydrate fermentation) and specie Clostridium 

sticklandii (utilizing specific amino acids) are common and abundant during the start-up of 

anaerobic mixed tank reactors, irrespective of difference in wastewater composition and 

suggested these two groups are numerically and functionally important.  

 

1.2.2.1 Fermentation of Glucose 
Fermentation has been extensively studied in pure culture and mixed culture systems (Kalia 

et al., 1994; Fabiano and Perego, 2002; Kleerebezem et al., 2008). Glucose is converted to 

pyruvate by glycolysis through Embden-Meyerhof-Parnas pathway or Entner-Doudoroff 

pathway (by archaea) (Rose et al., 1976) with key enzymes listed in Figure B1 of Appendix B. 

Under the action of different dehydrogenases, nicotinamide adenine dinucleotide (NADH) 

produced during glycolysis is re-oxidized to NAD+ and produces formate and hydrogen with 

the carbon being oxidised or reduced to butyrate, acetate, ethanol, propionate and lactate. 

Most pure culture fermentation studies have been conducted on genera Enterobacter 

(Fabiano and Perego, 2002), Bacillus (Kalia et al., 1994) and Clostridium. In mixed culture 

systems, Clostridium spp. has been reported as the dominant microorganism (Mizuno et al., 

2000; Lu et al., 2011). A recent study of glucose fermentation identified two distinct classes: 

Gammaproteobacteria and Bacteroidia, and three different genera of class Clostridia 

(Kleerebezem et al., 2008).  
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1.2.2.2 Fermentation of Amino Acids 
There are 20 amino acids commonly found in nature with varying molecular weight and 

structure. Amino acids are digested through two mechanisms: Stickland reactions and 

uncoupled oxidation. Stickland reactions are degradation of paired amino acids. One amino 

acid serves as electron donor and is oxidised to an organic acid and carbon dioxide. It also 

releases and produces hydrogen for reduction of the other amino acid. The other amino acid 

serves as electron acceptor and is reduced to an organic acid with the same chain length 

(Andreesen et al., 1989). Amino acids can be electron donors, acceptors or both (e.g., 

Leucine). Under a shortage of amino acid which can act as electron acceptor, uncoupled 

degradation may occur (Orlygsson et al., 1993). There is a shortfall of 10% acceptors in most 

amino acids (Nagase and Matsuo, 1982). Amino acid reactions are shown in Table B1 of 

Appendix B. Most Stickland reactions are facilitated by group I of genus Clostridium (e.g. 

Clostridium stiklandii) (Ramsay and Pullammanappallil, 2001; Fonknechten et al., 2010).  

For example, proline is the common amino acid utilised by all members of this group 

(Kenklies et al., 1999; Jackson et al., 2006). Some Clostridium spp. can only utilise specific 

amino acids, for example group IV Clostridium putrefaciens can only metabolise serine and 

threonine and group V Clostridium propionicum can only metabolise alanine, serine, 

threonine, cysteine and methionine. The classification of known anaerobic bacteria capable of 

degrading amino acid is shown in Table B2 of Appendix B.  

 

1.2.3 Acetogenesis 

Obligate hydrogen-producing acetogens convert ethanol and VFAs to acetate, hydrogen and 

carbon dioxide. Electrons from the anaerobic oxidation of these compounds are transferred to 

form hydrogen. Hydrogen formation is not favourable thermodynamically at 25°C and 1atm 

with positive Gibb’s free energy changes (Dolfing, 1988). Thus hydrogen partial pressure 

needs to be maintained at low level by hydrogen-utilising methanogens with electrons 

effectively transferred through the hydrogen as a mediator. For example, propionate 

oxidation to acetate is shown in Equation [8]: 

CH3CH2COO- + 3H2O↔CH3COO- + H+ + HCO3
- + 3H2                                                       [8] 

Propionate oxidation is thermodynamically favourable at hydrogen partial pressures below 

10-4atm.  Butyrate and ethanol oxidation is shown in Equation [9] and [10]: 
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CH3CH2CH2COO- + 2H2O↔2CH3COO- + 2H2 +H+                                                            [9] 

CH3CH2OH + 2H2O↔CH3COO- + H++2H2                                                                        [10] 

Equation [9] and [10] are favourable at hydrogen partial pressures of 10-3atm and 1atm for 

butyrate and ethanol respectively (Pohland, 1992). Anaerobic biofilms provide an 

environment for hydrogen-producing acetogens to grow in close proximity to hydrogen-

consuming methanogens and form a syntrophic relationship (Hungate, 1967). Methanogens 

consume hydrogen and keep the hydrogen partial pressure extremely low. This provides 

thermodynamically favourable conditions for acetogens to degrade the aforementioned 

organic compounds into acetate, H2 and CO2 (Dolfing, 1988). 

Homoacetogens can produce acetate from a mixture of H2/CO2 and from excess electrons 

derived from organics. Due to a high affinity of hydrogen utilisers, accumulation of H2 and 

CO2 is generally avoided in anaerobic digestion systems. Homoacetogens outcompete 

methanogens for H2 only at low temperatures (Kotsyurbenko et al., 1993) due to 

thermodynamic enhancements at low temperature (Kotsyurbenko et al., 1996). Model 

homoacetogens are Clostridium aceticum and Acetobacterium woodii isolated from sewage 

sludge (Novaes, 1986; Lay et al., 1998). 

 

1.2.4 Methanogenesis 

Methanogenesis occurs through three major pathways: acetotrophic/acetoclastic pathway, 

hydrogentrophic pathway, and methylotrophic pathway. Methanogens are obligate anaerobes 

and methanogenesis is considered to be the rate-limiting process in anaerobic treatment of 

soluble wastewater.  

The acetoclastic pathway is a major catabolic process contributing up to 72 percent of the 

total methane generation from acetate in anaerobic digestion (Gujer and Zehnder, 1983). It is 

favoured under mesophilic conditions and high concentration of acetate (Zinder & Koch, 

1984). Cleavage of acetate occurs via acetyl coenzyme pathway to produce methane as 

shown in Equation [11] followed by [12]: 

2 CH3CH2OH+ CO2↔2CH3COOH + CH4                                                                           [11] 

CH3COOH↔CH4 + CO2                                                                                                       [12] 
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The two most important genera of acetotrophic methanogens are Methanosarcina and 

Methanosaeta (Ferry, 1993). Based on microbial community analysis of 22 full-scale 

anaerobic digesters (Raskin et al., 1995), Methanosaeta was the dominant methanogen in 

these digesters.  

The hydrogentrophic pathway contributes up to 28 percent of the methane production in 

anaerobic treatment systems (Khanal, 2008). Hydrogen and carbon dioxide are utilised as a 

source of electrons and carbon by methanogens as described in Equation [13]: 

CO2 + 4H2↔CH4 + 2H2O                                                                                                      [13] 

Hydrogen-producing fermentative bacteria and hydrogen-producing acetogens are the main 

suppliers of hydrogen in anaerobic digestion systems. At high temperatures (50-65°C), high 

acetate concentrations and/or absence of Methanosaeta (Karakashev et al., 2006), H2 and 

CO2 are mainly produced by acetate oxidation. Hydrogen-utilising methanogens are mainly 

affiliated to the genera Methanospirillum, Methanobacterium and Methanogenium (Imachi et 

al., 2009). 

Methylotrophic pathways catabolise compounds that contain methyl groups, such as 

methanol, mono- , di- and trimethylamine, and dimethyl sulphide (Deppenmeier et al., 1996). 

An example with methanol is shown in Equation [14]: 

CH3OH + H2↔CH4 + H2O                                                                                                    [14] 

The ability to use formate for electron transfer was discovered in syntrophic butyrate-

degrading microorganisms and propionate-degrading microorganisms (Schink, 1997). Further 

studies identified that Syntrophobacter fumaroxidans can grow well on propionate when 

cultivated with methanogens which can use both hydrogen and formate as an electron donor 

while not grow with methanogens that use hydrogen only (Harmsen et al., 1998). Formate is 

chemically and thermodynamically similar to hydrogen with the reaction between the two 

mediated by an extracellular enzyme formate dehydrogenase, which catalyses both forward 

and reverse reactions, and maintains the two in equilibrium. Formate dehydrogenase-

encoding genes were also found in butyrate degrading bacteria Syntrophomonas wolfei 

(McInerney et al., 1981) and Syntrophus aciditrophicus (McInerney et al., 2007). 
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1.3 Anaerobic Digestion Technology 

Anaerobic digestion relies on a complex consortium of micro-organisms and therefore 

anaerobic processes are designed to retain this functional biomass as sludge while promoting 

growth and metabolism in the reactor. Thus the applicability, performance and economy of 

the system are closely related to Sludge Retention Time (SRT). For solid waste, hydrolysis 

becomes the rate-limiting step and a long SRT (>10d) is typically required for substrate 

degradation. The longer treatment time is sufficient for growth of anaerobic microbes and 

therefore dedicated biomass retention systems are often not required. Continuous mixed-

liquor reactors (such as a Continuous Stirred-Tank Reactor, CSTR) are most commonly 

applied for treatment of complex organic solids. In this reactor configuration, biomass is 

distributed evenly in the reactor by the mixing system and leaves the process as part of the 

treated effluent. SRT (which is equal to Hydraulic Retention Time, HRT, in CSTR) is 

typically in the range of 12 to 30d depending on substrate type and process conditions.  

A much shorter HRT (<1d) may be used to treat wastewater with highly soluble feeds 

depending on concentration, pH and other process conditions. A HRT of <1d is not sufficient 

for growth of slower growing anaerobic microorganisms, particularly acetoclastic 

methanogens. Therefore at such a short HRT, separated biomass retention is required. There 

are several high-rate anaerobic reactor configurations which allow this including the 

anaerobic filter (Young and Mccarty, 1969), the downflow stationary fixed-film reactor 

(Lomas et al., 1999), the UASB reactor (Lettinga and Pol, 1991), the fluidized-bed reactor 

(Tavoulareas, 1991), and the expanded-bed reactor (Verstraete et al., 2005). As it is relatively 

simple, economical and easy to operate, the UASB reactor has been widely employed. 

 

1.3.1 Upflow Anaerobic Sludge Blanket 

UASB was developed in the 1970s by Lettinga et al. (1980) to treat rapidly degradable 

wastewaters, mainly carbohydrate based. There are some applications of UASB to treat 

wastewater rich in protein but minimal applications for wastewaters rich in fats, oils and 

grease. Solids in the waste stream can disrupt the system (Finstein, 2010), with UASB 

treatment applicable to pre-solubilised wastewaters (Shooshtari et al., 2012). A simplified 

example configuration of a UASB reactor is shown in Figure 1.2. The reactor is fed from the 

base. Feed and gas production enable mixing. Microbes consume substrate in the sludge 
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blanket zone. A three phase separator at the top of the reactor avoids the loss of sludge, and 

SRT in excess of 200d with HRT as low as 6 hours can be achieved (Hulshoff-Pol et al., 

2004). Under these conditions, microorganisms spontaneously aggregate into larger particles 

(0.14mm to 5mm) called granules. Due to the high settling velocity of granules, high organic 

loading rates up to 50kg chemical oxygen demand (COD)·m-3·d-1 can be applied without the 

risk of losing biomass as long as the upflow velocity does not exceed 2m·h-1 (Hulshoff-Pol et 

al., 2004).  

 

 

Figure 1.2 Configuration of upflow anaerobic sludge blanket reactor. 

 

1.4 Anaerobic Granules 

Successful operation of UASB reactors relies on the physical properties of anaerobic granules. 

Anaerobic granules normally have a disc or spherical shape with size varying from 0.14mm 

to 5mm. Factors affecting granule structure include wastewater type, reactor design and 

operational conditions (Kosaric et al., 1990; Pereboom, 1994; Schmidt and Ahring, 1996). 

Compared to dispersed individual micro-organisms, granules have a slightly higher density 
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ranging from 1.00 to 1.05kg·m-3 than water (Dolfing, 1986), the settling velocity is much 

higher due to the increased diameter. Settling velocity is associated with early stage 

granulation (Husshoff-Pol et al., 2004) and is an important factor that determines the organic 

loading rate and height of the reactor to prevent overflow. Reported settling velocities are in 

the range of 18-100m·h-1 with the general value below 50m·h-1 (Hulshoff-Pol, 1989; Schmidt 

and Ahring, 1996).  

Under shear forces, granules can split into smaller non-symmetrical particles. As the size of 

granules is reduced, the settling velocity is also reduced and may lead to subsequent washout 

of the biomass. Shear strength is a critical property to maintain stable operation of UASB. 

Batstone and Keller (2001) suggested that high shear strength comes from granules with high 

cell density such as cannery-grown granules.  

Most fermentative bacteria are tolerant to low pH due to their fermentative nature. For 

example, Anaerolinea requires a higher optimal pH range from 7.5-8.0 (Sekiguchi et al., 2003) 

and the growth is enhanced by co-cultivation with hydrogentrophic methanogens. Most 

methanogens prefer a pH range of 6.7 to 7.4. As the bicarbonate consumed by methanogens 

mitigates pH reduction caused by acid-producing bacteria (Liu and Tay, 2004), loss of 

methanogenic activity due to a low pH can lead to reactor souring. 

The microbial study of anaerobic granule should consider three aspects: microbial 

architecture, microbial identification/abundance and microbial function. 

 

1.4.1 Microbial Architecture  

The microbial architecture of anaerobic granules was first identified based on morphology, 

with distinct layers apparent in scanning electron microscopy (McLeod et al., 1990). The 

driving force for different structures is thought to be due to the rate limiting kinetic steps, 

which depend on the primary substrate (Fang et al., 1995). It was proposed that fed with 

complex sugar and starch, anaerobic granule displays a layered structure with different 

organisms dominating on each layer. In these studies (McLeod et al., 1990; Guiot et al., 1992; 

Fang et al., 1995), Methanosaeta and Methanosarcina were frequently found in the inner 

layer of anaerobic granules, other methanogens such as Methanococcales and 

Methanobacterium were found on both the surface and inner layers. Large variations in 
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bacterial morphology have been commonly identified on the surface of anaerobic granules, 

but morphology based identification has limited accuracy. 

A thin, presumed fermentative layer on the surface has been commonly observed with no 

association with archaea using Fluorescent In Situ Hybridization (FISH) (Harmsen et al., 

1996b; Sekiguchi et al., 1999; Batstone et al., 2004; Sun et al., 2009). The inner layers 

generally consist of presumed syntrophic bacteria, acetoclastic methanogens such as 

Methanosaeta, and other archaea. The centre of the granule is seen to be an inactive core, 

with no binding to any FISH probes.  

FISH analysis on methanogens has been extensively done. Diaz et al. (2003) found that 

Methanosaeta dominated in the inner layer under mixed VFAs substrate or low acetate 

concentration while Methanosarcina and members of Methanobacteriales dominated under 

high concentrations of acetate and formate respectively.  

Bacterial community is highly diverse compared to the archaeal community due to the 

multiple functions bacteria mediate. Harmsen et al, (1996a and 1996b) located a syntrophic 

propionate oxidizing bacterium related to Syntrophobacter wolinii in the middle layer of 

sucrose-fed and VFA-fed granules and genus Desulfobulbus on the surface of methanogenic 

granules. Similar results were identified from a study on mesophilic granules by Sekiguchi et 

al. (1999). Chloroflexi has been commonly identified on the outer layer of anaerobic granules 

from mesophilic and thermophilic UASB reactors treating carbohydrate (Yamada et al., 2005) 

or synthetic medium containing powdered skim milk (Satoh et al., 2007; Satoh et al., 2012). 

Recently, by investigating the anaerobic granules treating sucrose-based wastewater at low 

temperature, Tsushima et al (2010) also found that both Firmicutes and Chloroflexi 

accumulated on the thin outermost layer. Diaz et al. (2003) also concluded that microbial 

diversity in anaerobic granules increased with the complexity of the substrate.  

 

1.4.2 Microbial Community Identification and Abundance 

The microbial community of anaerobic granules consists of a large diverse bacterial 

community (including fermentative bacteria such as Bacteroidetes, Firmicutes and 

Chloroflexi, syntrophic bacteria such as Geobacter and Syntrophomonas) and a relative 

simple archaeal community (including mainly acetoclastic methanogens such as 

Methanosaeta and Methanosarcina, and hydrogen-utilising methanogens such as 
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Methanobacterium and Methanolinea). Microbial identification and abundance shift between 

different types of granules has been mainly analysed by either FISH quantification or 

polymerase chain reaction (PCR) based molecular analysis or the combination of both 

previously. 

Diaz et al. (2003) analysed granules grown on several different conditions by mainly FISH 

quantification and concluded that gram-positive bacteria dominated in all granules. In 2006, 

Diaz et al. also identified that Firmicutes was the dominant bacteria in anaerobic granules 

treating brewery wastewater. Both studies utilized a large set of group (phylum)-specific 

probes. However, the general distribution of bacteria and archaea was the only information 

provided with no further information on specific bacterial architecture determined. In a study 

on anaerobic granules treating ethanol, carbohydrates and protein respectively (Molina et al., 

2008), it was found that Methanosaetaceae was the dominant archaea in all three types of 

granules while Methanobacteriales also co-dominated in granules fed with carbohydrate and 

protein. 

Common PCR-based molecular techniques applied to anaerobic granules are denaturing 

gradient gel electrophoresis (DGGE), terminal restriction fragment length polymorphism 

(TRFLP) and clone libraries.  

• DGGE, based on different denaturation properties of 16S Ribosomal Ribo-Nucleic 

Acid (rRNA) fragments due to sequence variations, provides a genetic profile 

representing the microbial diversity and identification of specific bands by excising, 

amplification, and sequencing. For example, a DGGE band affiliated to 

Methanosarcina mazeii was only detected in winery-fed granules while a band that 

affiliated to Methanobacterium formicicum was only detected in brewery fed granules 

(Keyser et al., 2006).  

• TRFLP identifies populations based on the restriction site differences closest to a 

fluorescent labelled end of amplified 16S rRNA gene. It can monitor the composition 

of the community shift in response to changed conditions. Alternatively, TRFLP can 

be used in conjugation with clone library for in silico identification (Lu et al., 2011). 

The advantages of TRFLP include resolution power, as it allows gel-to-gel variation 

analysis, and suitability for routine analysis of large sample numbers, with 

reproducibility and potential for automatisation (Smalla et al., 2007). The drawback of 

TRFLP is that quantification is difficult. Absolute quantification data cannot be 
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obtained directly from TRFLP and relative quantification can be incorrect due to PCR 

bias. Thus other quantification methods such as FISH quantification or quantitative 

PCR should be applied to verify or correct results. 

• The 16S rRNA gene clone library is a popular technique for investigating 

phylogenetic diversity. A collection of Deoxyribo-Nucleic Acid (DNA) sequences, 

usually derived from PCR amplification, is inserted into a plasmid vector and cloned 

into a bacterial host cell (for example E.coli). As nearly full 16S rRNA gene can be 

sequenced from clone library, thus it can provide taxonomy identification to species 

level. Members of genus Bacillus and Pseudomonas have been commonly detected in 

16S rRNA clone libraries from different types of granules (Keyser et al., 2007). 

Hernon et al. (2006) conducted a study using 16S rRNA clone libraries on two lab-

scale UASB treating synthetic wastewater containing glucose and sucrose at 

mesophilic and thermophilic conditions respectively. They found that Bacteroidetes 

and Spirochaetes dominated in mesophilic while Clostridia were the only dominating 

class in thermophilic reactors. Alphaproteobacteria were identified in granules 

treating synthetic powdered skim milk wastewater as the most frequently detected 

clone, which were closely related to Sphingomonas rhizogenes (Satoh et al., 2007). 

Recently, members in Thermotogae, Synergistetes, Firmicutes, Chloroflexi and 

Proteobacteria were observed in anaerobic granules treating syrup wastewater 

(Nakasaki et al., 2013). There are numerous limitations associated with these 

techniques (Head et al., 1998) including the choice of extraction methods, PCR bias 

plasmid selectivity, and long preparation periods (normally a week for picking 100 

good quality clones in 16S rRNA clone library).  

 

1.4.3 Microbial Function 

Due to the difficulty in culturing, few microorganisms have been isolated from anaerobic 

granules. These are a group of filamentous bacteria including Anaerolinea thermophila 

(Sekiguchi et al., 2003) isolated from thermophilic UASB reactor treating soybean-curd 

manufacturing wastewater (Yamada et al., 2001). Anaerolinea thermolimosa was isolated 

from anaerobic granules treating wastewater from a factory producing shochu (Yamada et al., 

2006); Levilinea saccharolytica was isolated from anaerobic granules in a mesophilic UASB 

reactor treating wastewater from a sugar-processing plant and Leptolinea tardivitalis was 
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isolated from anaerobic granules treating artificial wastewater mainly composed of sucrose 

and VFAs. They are classified as sugar-fermenting bacteria due to the ability to utilize a 

limited range of carbohydrates. Other than these, study of microbial function on anaerobic 

granules heavily relies on predicted function from phylogenetic alignment to previously 

cultured microorganisms.  

The major drawback of all methods discussed so far is a lack of resolution power on rare 

species or even sub-dominated species. Many of these techniques are being replaced by more 

powerful next generation sequencing (NGS) techniques such as 16S rRNA pyrosequencing or 

metagenomic sequencing. For example, Rotaru et al., (2014) performed a metatranscriptomic 

analysis on anaerobic granules from a brewery UASB reactor. They identified Geobacter 

species expressed a large amount of genes for ethanol metabolism and extracellular electron 

transfer via electrically conductive pili. 

 

1.5 The Next Generation Sequencing Approach 

The properties of 16S rRNA (and 18S rRNA for eukaryotes), including its commonality with 

ribosomal RNA for complementary methods such as FISH and its characteristics in 

containing conserved and variable regions between species, make it favourable as a marker 

gene for microbial profiling (Pace, 1997). The recovery of marker gene sequences was 

conventionally done by cloning the PCR amplified fragments and sequencing each clone with 

capillary electrophoresis-based Sanger sequencing. NGS provides the opportunity to 

sequence small fragments in a parallel fashion with no cloning required. The ability to deeply 

sequence the community makes the detection of low abundance species possible and impacts 

on the interpretation of microbiological changes (Caporaso et al., 2012). There are several 

different platforms available for NGS (Shendure and Ji, 2008). Two most popular platforms: 

454 and Illumina platforms (otherwise known as Solexa) are reviewed here.  

 

1.5.1 Preparation for NGS 

NGS has strict limit on read length (400-600bp in the 454 platform and 200-500bp in the 

Illumina platform) due to decreased base read quality with increasing length. The purpose of 
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library preparation is to prepare sequencing DNA concentrate (at an appropriate molecular 

length). Despite the diverse in sequencing biochemistry as well as in array generation, the 

library preparation is conceptually similar. DNA fragmentation can be done by nebulization, 

sonication or enzymatic digestion. Nebulization refers to that DNA is mechanically sheared 

by compressed nitrogen or air to produce random fragmentation. Alternatively, DNA is 

subjected to ultrasonic waves which generate resonance vibration as shear force. Finally, 

enzymatic DNA digestion, which utilizes restriction enzymes to randomly chop DNA into 

fragments, is the most popular method due to its consistent performance and straightforward 

methodology (Knierim et al., 2011). Sequencing then can be performed on one end of single 

strand (Single read) or on each ends of double strands (conventional pair-end reads). The 

paired-end reads contain positional information, allowing reconstruction of the whole 

fragment compared with single read. Based on conventional paired-end method, another 

strategy (called mate-pair by Illumina) was developed by Hong (1981) to extend positional 

information to a longer range. The 5’ end and 3’ end of longer fragments (2-5kb) are joined 

by a linker to form a circular fragment. It is then enzymatically digested to produce a ditag 

containing sequences corresponding to both ends of the original fragment. The ditag is then 

sequenced as double strands by the pair-end method. This further adds the scaffold 

information. Furthermore, to enable the application of NGS on multiple samples in a single 

run, multiplexing has been used in which a barcode is added to the template fragments from 

each sample in both platforms to enable multiple samples to be sequenced in a single run 

(Parameswaran et al., 2007; Gloor et al., 2010). 

 

1.5.2 454 Pyrosequencing Platform 

454 sequencing technology was first tested on sequencing whole genomes of single 

microorganism (Margulies et al., 2005). The sequence-ready DNA fragments are attached to 

beads by emulsion PCR (Dressman et al., 2003) (Figure 1.3A). The DNA beads, which 

contain millions copies of a single DNA fragment on each, are transferred to PicoTiter Plate 

for sequencing. During sequencing, the four bases are targeted sequentially and always in the 

same order. Nucleotide base identification is achieved by capturing the light signal generated 

from pyrophosphate release during the binding of correct base complementary to the template 

(Ronaghi et al., 1996; Ronaghi et al., 1998, Figure 1.3C). 
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1.5.3 Illumina Platform 

The Illumina platform was originally invented by Turactii and colleages (Fedurco et al., 2006; 

Turactti et al., 2008). The throughput of Illumina can reach 50 times more than 454 

pyrosequencing in one run but with a shorter read length. In two years, this technique has 

greatly improved by upgrading the read length to above 100bp with HiSeq 2000 system 

(Kircher and Kelso, 2010). The sequence-ready DNA fragments are attached to flow cells 

directly by bridging PCR (Figure 1.3B). During sequencing, the four bases, attached to 

different fluorescent labels, are added to flow cells at the same time. Once the correct base 

binds to the first position of a fragment, the nucleotide label severs as terminator to prevent 

the binding at the following position (Figure 1.3D). After capturing the signal image, the 

nucleotide label is enzymatically cleaved and sequencing moved to the next position. 

Compared to pyrosequencing, which requires light signal imaging of each base at one 

position, Illumina uses one multiple fluorescent single images at each position and it leads to 

less time consumed and more data generated. However, the large raw reads normally end 

with low usability due to errors from low quality and mismatched barcode (Degnan and 

Ochman, 2012). 
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Figure 1.3 Comparing sequencing methods of 454 and Illumina platform. DNA fragments ligated to 
adaptor are attached to beads by emulsion PCR in 454 platform (A) or to follow cells by bridging PCR in 
Illumina platform (B). Base pairs are sequenced by light source generated from releasing of 
pyrophosphate in 454 platform (C) or by different fluorescent labelled dNTP (also acts as terminator) in 
Illumina platform (D) (modified from Sherdure and Li, 2008 and Marsh, 2007). 

%

1.5.4 Comparison of platforms 

Recent studies aim to identify the sequencing errors and artefacts specific to each NGS 

platform and develop algorithms that detect and correct these errors. High error rates in 

homopolymer regions caused by accumulated light intensity variance and up to 15% artificial 

amplification product have been reported in the 454 platform (Margulies et al., 2005; Quince 

et al., 2009). Systematic base calling biases due to non-stationary noise was identified with 

the Illumina platform (Erlich et al., 2008). In addition, sequencing quality variation at 

different tiles of the sequencing plate and increased single-base errors in association with 

GGC motifs were also observed (Dolan and Denver, 2008). This emphasises that NGS data 

should be carefully handled with incorporating appropriate algorithms into analysis.  
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Both platforms showed relative consistency with each other in terms of microbial profiling 

and whole genome sequencing. However, when it was used for resolving highly complex 

microbial composition on the 16S rRNA gene, shorter reads produced by Illumina platform, 

failed to be classified down to genus level due to their shorter length and higher error rates 

beyond 60bp (Claesson et al., 2010). Regarding to whole genome analysis, Luo et al., (2012) 

suggested that Illumina, and short-read sequencing, “may be a more appropriate method for 

metagenomic studies” by testing both methods on the same complex community DNA 

samples. They found that metagenomic data from 454 pyrosequencing contains large 

proportions of frameshift (insertions of deletions due to sequencing errors). To date, study on 

the microbial community of anaerobic granules using NGS is limited. Application of NGS to 

anaerobic granules should be capable for the detection of rare species due to its high 

resolution power and possibly provide potential functionalities.  

 

1.6 Research Gaps 

Archaea have been studied in terms of architecture and community identification and 

abundance due to the low diversity well developed molecular. However, bacteria, especially 

the fermentative bacteria, have not received substantial attention in either spatial distribution, 

community identification nor function studies. 

To date, spatial information, i.e. the position of particular organisms in the granules, has only 

been studied with FISH. The targeted phylogenetic groups are quite limited per analysis due 

to logistical considerations (e.g., number of fluorochromes that can be visualized 

simultaneously, availability, and cost of suitable probes), and for gross community 

composition estimates, the choice of probes tends to target broader groups such as domains or 

phyla (Kunin et al, 2008).  

PCR-based molecular sequencing is able to provide rapid high-resolution identification, but it 

can only be applied to the whole anaerobic granules. This can be used to compare the shifts 

between different granule sources. However, it fails to provide spatial distribution and 

possibly fails to detect sub-dominant microbes. Furthermore, identification based on FISH 

and identification from molecular techniques cannot be easily linked together, particularly 



20"|"P a g e "
%

since FISH is based on a-priori knowledge, while bulk methods do not allow spatial 

resolution. 

In contrast, molecular functional analysis has limited application on anaerobic granules to 

investigate the function of microbial community. Metagenomic analysis, which can provide 

the potential function of individual microorganisms, is a recent tool that can be applied to 

address this limitation. 

1.7 Research Objectives and Approach 

Based on the gap analysis above, key issues are investigation on microbial ecology of 

fermenters in anaerobic granules. This has been historically hampered by available tools to 

analyse and only limited depth of knowledge can be obtained. This thesis will address these 

gaps using a combined multidisciplinary approach that focuses on using next generation 

molecular technique to identify ecology and function of the fermentative community together 

with spatially orientated sampling of the granule. 

Objective 1. Granular layers separation. To develop a method utilizing hydraulic shearing 

to sequentially remove layers from mature granules. 

Approach: A shear method has been developed to remove microbes selectively from 

successive spatial layers through hydraulic shearing. The application has been demonstrated 

on three types of anaerobic granules collected from full-scale UASB reactor treating brewery, 

cannery and dairy wastewater. 

Objective 2. Microbial community analysis. To assess microbial community and identify 
the potential microbial function in anaerobic granules. 

Approach: Pyrosequencing was applied to successive granule layers obtained from objective 

1 to study the microbial ecology in anaerobic granules of linked spatial, microbial 

identification and abundance information. Based on the microbial analysis, key anaerobic 

granules (with simplest microbial structure) were selected for further metagenomic analysis 

to provide potential function of reconstructed individual microorganism’s sequences. 

Objective 3. Location and function of the community. To investigate the impact of 
fermentative function on microbial community and external properties of anaerobic granules. 
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Approach: Three lab-scale UASB reactors were operated at 35°C by feeding with synthetic 

wastewater containing VFAs, glucose and gelatin respectively. Fermentative layers 

developed from each reactor were analysed and compared by shear method and molecular 

analysis.    
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Chapter 2. Material and Methods 

2.1 Anaerobic Granules 

The shear method and subsequent microbial analysis was carried out on anaerobic granules 

collected from three industrial wastewater treatment plants (Chapter 3 and 4); and anaerobic 

granules collected from three lab-scale UASB reactors inoculated with industrial granules  

(Chapter 5). Research methodologies used in this thesis are described in this chapter. 

Anaerobic granules were collected from three full-scale industrial plants; two were UASB 

style reactors and one was a bulk volume fermenter (BVF, De Garie et al., 1987) treating 

industrial wastewater in south-east Queensland, Australia. The feedstock for the UASB plants 

are brewery and cannery wastewater. The feedstock for the bulk volume fermenter is 

cheese/butter processing wastewater. Detailed specification of these wastewater treatment 

plants are listed in Table 2.1. The granules collected from these full scale processes were 

referred as brewery granules, cannery granules and dairy granules respectively. Granules 

were transported at ambient for less than 2 hours (or send at 4°C by overnight freight for 

dairy granules) and stored at 4°C before further analysis. Influent of VFA and cannery 

granules were also collected from the wastewater plants and transported on ice for chemical 

analysis.  

Table 2.1 Specification of three industrial wastewater treatment plants. 

Type OLR 
(kgCOD·m-

3·d-1) 

HRT 
(D) 

Upflow 
velocity 
(m·h-1) 

Reactor 
Size (m3) 

Major 
Contents 

Gas 
production 
(m3·d-1·m-3) 

Brewery 
(UASB) 

9.1 0.3 0.5 580 Ethanol, Acetic 
acid and 

Propionic acid 

8.2 

Cannery 
(UASB) 

4.5 2 0.2 1200 Glucose, Acetic 
acid and Ethanol 

1.4 

Dairy  
(BVF) 

0.65 10 0.03 48000 Lactose, milk 
proteins and fats 

0.27 
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2.2 Reactor Studies 

Laboratory-scale reactors were used to grow differentiated granules as detailed in Chapter 5. 

Brewery granules studied in Chapter 4 were used as inoculum. Analysis from previous study 

(Chapter 4) demonstrated that there were minimal fermenters and none specifically on the 

surface of brewery granules. Granules were passed through a 200µm sieve as a pre-treatment 

prior to be used as inoculum. After sieving a minimum of 5 times, fines were discarded and 

approximately 100g granules (wet weight) with size >200µm were added to each reactor as 

inoculum.  

 

 

Figure 2.1 Lab-scale UASB reactor design (3 like reactors were used). 

 

The experiments were carried out in three glass lab-scale reactors (Figure 2.1), each with 

0.5L working volume, at mesophilic conditions (35°C) for approximately 60d. The three 

reactors were continuously fed with a common basal anaerobic medium and a separate 

synthetic carbon source. The dose rate of the carbon feedstock was controlled to achieve an 
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organic loading rate of 2gCOD·L-1·d-1. The synthetic wastewater was recirculated at 

100mL·min-1 to achieve an upflow velocity of 1.5m·h-1. The carbon source media for three 

reactors respectively were VFA (sodium acetate 1.73g·L-1, sodium propionate 0.57g·L-1 in 2L 

bottle), glucose (D-glucose 1.87 g·L-1 in 2L bottle), and protein (gelatine 1.27g·L-1 in 1L 

bottle). The carbon media was stored in an ice bath during the experiment. All solutions were 

prepared using a concentrate solution (10×) filtered through a 0.2µm syringe filter into 

autoclaved MilliQ water. Basal anaerobic medium (in g·L-1: NH4Cl, 200; NaCl, 20; 

MgCl2·6H2O, 20; CaCl2·3H2O, 0.24; K2HPO4·3H2O, 400; trace metal and selenite solution 

and vitamins) were prepared according to Bastidas-Oyanedel et al. (2010). The HRT was 

approximately 0.5d. The pH of each reactor was monitored by an online pH transmitter 

(Hanna, Australia) in the recycle circuit. The volume of biogas produced was measured using 

a tipping bucket style gas meter (2mL per tip) and recorded online.  
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2.3 Shearing  

Shear experiments were performed in a standard-geometry cell (1.3L, 120mm diameter) with 

a stainless steel 6 blade flat blade Rushton impeller (40mm diameter) as shown in Figure 2.2 

(Holland and Chapman, 1966). 

 

Figure 2.2 Shearing tank configuration. (Modified from Holland and Chapman, 1996). 

 

Anaerobic granules were first gently washed with MilliQ water over a 200µm sieve (stainless 

steel mesh) to remove the native fines. Approximately 10g (wet weight) sieved granules were 

added to 1L of phosphate buffered saline (PBS, 130mM sodium chloride, 10mM sodium 

phosphate buffer, pH 7.2) at the beginning of the shear experiment and sheared at either 

500rpm (brewery granules) or 1500rpm (cannery and dairy granules). Samples were collected 

after 5, 20, 90, 180, 270 and 360 minutes of shearing. At each sampling time, the contents of 

the cell were sieved through the 200µm sieve and rinsed with water gently to separate fines 

from remaining granules. Fines were centrifuged to collect a pellet. Granules on the sieve 
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were collected for further analysis. The remaining granules on the sieve were re-suspended in 

1L PBS and shearing continued. The shear strength was characterized according to the 

method developed by Pereboom (1997), which relates the growth of fines to shear rate 

squared as shown in Equation [15].  

!" !!!!!
!!

= !! ∙ !!                                                                                                               [15]
 

Where X0 is the total suspended solid (TSS) of granules at the beginning of each shear, XF is 

the TSS of fines generated after each shear, γ is the shear rate and KC is the characteristic 

shear coefficient. Fines were defined as particles smaller than 200µm and were collected 

through wet sieving.  

The sheared depth was estimated based on the following calculations. Firstly, the volume of 
all granules (V) in 1L PBS was calculated based on TSS, density and moisture of anaerobic 
granules measured as shown in Equation [16]. 

! = !""
!"#$#%&'×

!
!!!"#$%&'(                                                                                                       [16] 

Secondly, the volume sheared (Vi’) at each time point i was calculated based on the TSS 
measure from fines (TSSi’) as shown in Equation [17]. 

 !
!i′ = !""i!

!"#$#%&'×
!

!!!"#$%&'(                                                                                                      [17] 

Number of granules (N) in 1L 1 × PBS was estimated (as shown in Equation [18]) based on 
the volume of all granules obtained from Equation [16] and the average volume of all 
granules (Vaverage) obtained from granule size analysis (Section 2.1.1.4). 

!! = !
!average                                                                                                                                [18] 

At last shear depth (D) was calculated in Equation [20] based on volume sheared on each 
granule (Veach’ in Equation [19]) and average area of each granule (Aaverage) measured from 
granule image. 

!
!each′ = !

!                                                                                                                                 [19] 

! = !each!
!average                                                                                                                                 [20] 
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2.4 Analytical Methods 

2.4.1 Bulk Property Test 

2.4.1.1 Total Suspended Solid (TSS) 
TSS was analysed by method 2540D and R in the Standard Methods (APHA, 1992). 10mL to 

15mL (Vsample) samples were filtered through a pre-dried and weighed glass fibre filter paper 

(Wfilter). The sample was then dried at 103°C for 12 hours and weighed after that (Wfilter+sample). 

The total suspended solids (TSS) were calculated as Equation [21].  

!"" = !filter+sample!!filter

!"#$%&'                                                                                     [21] 

 

2.4.1.2 Density 
Granule density was measured similar to that used by Bhatti et al. (1995) by displacement of 

pre-weighted drained granules in Milli-Q water in a 2L volumetric flask. The 2L flask was 

filled with Milli-Q water to the 1L mark and the temperature was recorded. Drained granules 

were then added to the flask. The water was pipetted from the flask to a pre-weighed 

container until the level returned to the 1L mark. The water was weighed and the equivalent 

volume was calculated from temperature-volume tables. 

 

2.4.1.3 Drained Moisture 
Drained moisture was estimated as described below. Approximately 100mL granules were 

first spread on a 200µm sieve. After cleaning the reverse side of the sieve with paper towel, 

the sieve was placed in a pre-weighed crucible and weighed. The sample was dried at 103°C 

and drained moisture was estimated using similar methodology to Equation [21]. 

 

2.4.1.4 Granule Size 
Sieved granules (through 200µm sieve) were separated and placed in a flat glass dish on a 

white table. Granule images were taken by high resolution camera. Various characteristics 

such as surface area, length and width were analysed using Quantimet image analysis 

software (Leica, Australia). 
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2.4.2 Chemical Analysis 

Wastewater samples (10mL) were collected from each lab-scale UASB reactor 3 times per 

week for chemical analysis including glucose, VFAs, protein and COD concentration. 

 

2.4.2.1 High Performance Liquid Chromatography-UV 
VFAs and glucose were measured by High Performance Liquid Chromatography (HPLC), 

which consisted of auto-injector (SIL-10ADVP), degasser (DGU-14A), LC pump LC-

10ADVP), column oven (CTO-10ASVP), diode array detector (SPD-M10AVP), CLASS VP 

software and Shimadzu refractive index detector (RID-10A). Separation of the compounds 

was carried out on HPX-87H 300mm x 7.8mm ion exclusion column (Cat. No. 1240140, 

BioRad Aminex) by using 0.008N H2SO4 as the eluent at the flow rate of 0.4mL· min-1. Prior 

to analysis, 0.9 mL sample was filtered into 2mL gas chromatograph vial containing 0.1mL 

0.1% (v/v) azide.  

 

2.4.2.2 Protein Analysis 
Protein concentration of influent and effluent from lab-scale UASB fed with gelatine was 

measured by Bicinchoninic acid assay (BCA) (Smith et al., 1985). 0.1mL Liquid sample were 

mixed with 2mL prepared BCA working reagent from bicinchoninic acid assay kit (Sigma-

Aldrich, USA) in a clean glass tube. 2mL prepared BCA reagent contains 2mL reagent A 

(bicinchoninic acid, sodium carbonate, sodium tartrate, and sodium bicarbonate in 0.1 N 

NaOH) and 0.04mL reagent B (4% (w/v) copper (II) sulfate pentahydrate). The tube was then 

incubated at 37 °C for 60 minutes. Reading at absorbance of 562nm is recorded and the 

protein concentration is determined by comparison to a standard curve. 

 

2.4.2.3 Chemical Oxygen Demand (COD) 
COD of influent and effluent from 3 lab-scale reactors were measured using a Merck Method 

potassium di-chromate/sulphuric acid method based on Standard Methods 5220D (APHA, 

1998) with Merck Spectroquant® COD test kits (Cat No. 114540, ranging 10-150mgL-1 and 

Cat No. 114541, ranging 25-1500mgL-1). Each sample were diluted with Milli-Q water to 

bring the concentration in the range of 10-150mg·L-1 or 25-1500 mg·L-1. 1mL (for low range) 

or 3mL (for high range) diluted sample was added to a Merck Spectroquant® COD test cell, 
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where it is oxidised by sulphuric solution of potassium di-chromate and silver sulphate 

(catalyst). The tubes were incubated at 148°C for 2 hours. After cooling down, the 

concentration of Cr3+ was determined using spectrophotometer to reflect the COD 

concentration. Each COD measurement was carried out in triplicates. 

 

2.4.2.4 Gas Analysis 
Gas samples generated from each lab-scale UASB reactor were collected periodically using a 

precision gas tight syringe (SGE International Pty Ltd, Ringwood, Australia). A PerkinElmer 

AutoSystem gas chromatograph equipped with a thermal conductivity detector was used for 

measuring H2, CO2 and CH4. The gas chromatograph was equipped with an Alltech (#8011/2) 

stainless steel column maintained at 40°C. The injector, detector, and column were 

maintained at 75,100 and 40°C (APHA, 1998). High-purity N2 was used as carrier gas at a 

flow rate of 24.5mL·min-1 and a head pressure of 220kPa. Data were acquired and integrated 

using PerkinElmer GC Plus data station (Model 1022).  

 

2.4.3 Microscopic Analysis - Cryosection-FISH 

Granules were first fixed with 4% PFA overnight and then washed with PBS (130mM 

sodium chloride, 10mM sodium phosphate buffer, pH 7.2) and stored at 1:1 100% ethanol: 

PBS. 10-15 granules were placed in 15% sucrose for overnight, 3:1 15% sucrose : optimal 

cutting temperature compound (OCT) (Baxter Diagnostics, USA) for 2 d, 1:1 15% sucrose : 

OCT overnight, 1:3 15% sucrose : OCT for overnight and neat OCT for overnight (Batstone 

et al., 2004). Around 4-5 granules were transferred to a square mould and store at -20°C for 

overnight. The specimen was sliced on a Hyrax C60 cryostat machine (Zeiss, USA) with a 

knife temperature -19°C and specimen temperature -20°C to obtain a 5µm slice on Poly-L-

Lysine coated slide (Polysciences, USA). The slide was then dehydrated for 3 minutes in 

ethanol series 50%, 70% and 98% respectively. After drying, the slide was stored at room 

temperature. FISH was performed according to the protocol described by Amann et al. (1995). 

Details of oligonucleotide FISH probes used are listed in Table 2.2. The slides were then 

viewed under Zeiss Axioscope LSM510 confocal microscope (Zeiss, USA). 
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Table 2.2 Details of oligonucleotide probes used for cryosection-FISH. 

Target population(s) FISH probe-
fluorochrome 

Probe sequences(5’-3’) References 

Archaea ARC915-FITC GTG CTC CCC CGC 
CAA TTC CT  

(Stahl et al., 1991) 

Bacteria EUB338-Cy3 GCT GCC TCC CGT 
AGG AGT 

(Amann et al., 1990) 

 EUB338II-Cy3 GCA GCC ACC CGT 
AGG TGT 

(Daims et al., 1999) 

 EUB338III-Cy3 GCT GCC ACC CGT 
AGG TGT 

(Daims et al., 1999) 

Methanosaeta MX825-Cy3 TCG CAC CGT GGC 
CGA CAC CTA GC 

(Raskin et al., 1994) 

Methanococcales MC1109-Cy5 GCA ACA TAG GGC 
ACG GGT CT 

(Raskin et al., 1994) 

Methanobacteriales MB1174-Cy5 TAC CGT CGT CCA 
CTC CTT CCT C 

(Raskin et al., 1994) 

Methanomicrobiales MG1200-Cy5 CGG ATA ATT CGG 
GGC ATG CTG 

(Raskin et al., 1994) 

Anaerolinea CFX784-Cy3 ACC GGG GTC TCT 
AAT CCC 

(Bjornsson et al., 
2002) 

Bacteroidetes CFB1082-Cy3 TGG CAC TTA AGC 
CGA CAC 

(Weller et al., 2000) 

 CF319a-Cy3 TGG TCC GTG TCT 
CAG TAC 

(Manz et al., 1996) 

Candidatus 
Cloacamonas 

WWE1-Cy3 CTT CCT CTG CGT 
TGT TAC 

(Rakia et al., 2005) 

Geobacter GEO1a-Cy5 CTC ACG CAC TTC 
GGG ACC AG 

(Demaneche et al., 
2008) 

 GEO1b-Cy5 CTC ACG CAC TTC 
GGG ACC AA 

(Demaneche et al., 
2008) 
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2.4.4 Bulk Molecular Analysis 

2.4.4.1 DNA Extraction 
Genomic DNA was separately extracted from generated fines and residual granules (on the 

sieve) collected at each sampling time from shearing experiment with the Power Soil DNA 

isolation kit (Mo Bio, USA) according to manufacturer’s protocol with modification. 

Solution C1-C5, lysing matrix and spin filter tubes were provided by the kit. Generally, 0.3g 

sample was transferred to the cell lysing matrix tube supplied. Each tube was shaken on the 

bead beater instrument at speed 4,800rpm for 1 minute. The tubes were centrifuged at 

13,000× g, for 5 minutes. All the supernatants were transferred to a 2mL tubes containing 

300µL solution C2 and placed in 4°C for 5 minutes. After centrifuge at 13,000× g, for 2 

minutes, the supernatant was transferred to 2mL tubes containing 300µL solution C3 and 

placed in 4°C for 5 minutes. After centrifuging at 13,000× g, for 2 minutes, supernatant was 

transferred to 1mL binding matrix in 15mL falcon tubes. After mixing well, all liquid was 

filtered through the spin filter tube and washed with 500µL solution C5. 40µL RNAnase-free 

water was added to the spin filter with new catch tube. The tube was then incubated at 50°C 

for 5 minutes before the final centrifuge elution at 13,000× g for 1 minute.  

 

2.4.4.2 Terminal Restriction Fragment Length Polymorphism (TRFLP) 
Bacterial and archaeal 16S rRNA genes (>1kb) were amplified by PCR using bacteria-

specific primers 63F (5'-CAGGCCTAACACATGCAAGTC-3') with a fluorescent label on 

the 5’ end, and 1389R (5'-ACGGGCGGTGTGTACAAG-3') (Marchesi et al., 1998) and 

archaea-specific primers Arc8F (5’-TCCGGTTGATCCTGCC-3’) with a fluorescent label on 

the 5’ end, and 1492R (5’-GGCTACCTTGTTACGACTT-3’) (Smalla et al., 1993). The 

amplification protocol was based on that of Osborn et al. (2000) with adaptations. Each 50µL 

reaction contained 200µM each dNTP, 1× PCR buffer II (Applied Biosystems, USA), 3mM 

MgCl2, 400nM each primer, 0.05U AmpliTaq Gold DNA polymerase (Applied Biosystems, 

USA) and 15ng genomic DNA. The PCR program consisted of an initial denaturation step at 

95°C for 5 minutes, followed by 30 cycles of denaturation at 94°C for 1 minute, annealing at 

55°C for 1 minute and extension at 72°C for 2 minutes, with a final extension step at 72°C 

for 10 minutes. 

The PCR product was purified by QIAquick PCR purification kit (QIAGene, Australia) 

according to the manufacturer’s protocol. Restriction digestions were carried out with AluI 
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(5'-AG^CT-3') (Fermentas, Canada), MspI (5'-C^CGG-3') (Fermentas, Canada) for bacteria 

and AluI, MspI and HaeIII (5'-GG^CC-3') (Fermentas, Canada) for archaea. Each 31µL 

restriction enzyme digestion reaction contained 150ng purified PCR products, 0.32U 

restriction enzyme and 1× relevant buffer. Each digestion was performed in duplicate. 

Ethanol precipitation of the digestion product was then performed. Samples were analysed 

using capillary electrophoresis in a DNA sequencer utilizing the AB3730 platform at the 

Australian Genomic Research Facility (Glen Osmond, Australia). The resulting 

electropherograms were analysed by GeneMarker software (SoftGenetics, USA). TRFLP 

data was then normalized to allow comparison between samples and standardized to remove 

errors associated with differential sample loading (Sait et al., 2003). Small and un-

reproducible peaks were removed to reduce noise.  

 

2.4.4.3 Clone Library and TRFLP Identification 
Clone library was constructed to enable in silico TRFLP digestion on actual sequences from 

samples. As the archaeal community is relative simple, one archaeal 16S rRNA clone library 

was conducted on biomass collected from the whole brewery granules. Two bacterial 16S 

rRNA clone libraries were conducted on biomass collected from the whole brewery granules 

and the outer layer of brewery granules to increase the chance of picking fermenters. PCR 

was carried out with the same primers without fluorescent label and according to protocol 

described in TRFLP section (section 2.4.4.2). PCR products were cloned into the pGEM®-T 

Easy Vector (Promega, USA) through the ligation procedure described in the manufacturer’s 

manual. Vectors were then transformed into JM109 high efficiency competent cells (Promega, 

USA) to construct the clone libraries. Twenty clones were randomly picked from each clone 

library. Clones were sequenced with primers T7 (5'-TAA TAC GAC TCA CTA TAG GG-3') 

and SP6 (5'-TAT TTA GGT GAC ACT ATA G-3') (Pavco and Steege, 1991) with Sanger 

sequencing in Australian Genome Research Facility (Brisbane, Australia). Representative 

clone sequences were submitted to GenBank to obtain accession number. In silico TRFLP 

digestion and BLAST searches (Altschul et al., 1990) were performed on each clone in 

MEGA5 (Tamura et al., 2011). 
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2.4.4.4 Pyrosequencing and Result Analysis 
DNA from each sample (300ng) was provided to Australian Centre for Ecogenomics (ACE) 

in the University of Queensland (Australia) for pyrosequencing analysis. Each 50µL reaction 

contained 200µM each dNTP, 1× PCR buffer II (Applied Biosystems, USA), 3mM MgCl2, 

400nM each primer, 0.05U AmpliTaq Gold DNA polymerase (Applied Biosystems, USA) 

and 15ng genomic DNA. The PCR program consisted of an initial denaturation step at 95°C 

for 10 minutes, followed by 30 cycles of denaturation at 95°C for 30 seconds, annealing at 

55°C for 45 seconds and extension at 72°C for 1 minute and 30 seconds, with a final 

extension step at 72°C for 10 minutes. The primer used for pyrosequencing is 926F (5’-

AAACTYAAAKGAATTGACGG-3’) (Lane et al., 1985) and 1392R (5’-

ACGGGCGGTGTGTAC-3’) (Lane, 1991) with a Roche 454 GS FLX sequencer (Roche, 

Switzerland).  

Pyrosequencing results were then analysed through the ACE Pyrosequencing Pipeline 

(https://github.com/minillinim/APP) in a local implementation. Basically, the sequences 

reads were split according to the barcode in QIIME (Caporaso et al., 2010b). De-multiplexed 

sequences were then trimmed to 250bp length and de-noised by ACACIA (Bragg et al., 2012). 

Sequences with > 97% similarity was assigned to same operational taxonomic units (OTUs) 

by CD-HIT-OTU (Wu et al., 2011; Li et al., 2012) and aligned by Pynast (Caporaso et al., 

2010a). CD-HIT-OTU then grouped the OTUs with one base pair difference. OTUs with only 

1 read were considered as background noise and removed. The most abundant sequences in 

each OTU were chosen as representative sequences. Each sequence was then assigned to the 

taxonomy with BlastTaxonAssigner in QIIME through greengenes database (2013_5 release). 

Finally the non-normalized OTUs table and rarefaction curve were generated by QIIME. 

Normaliser (https://github.com/minillinim/Normaliser) was used to find a centroid 

normalized OTUs table by randomly pick subsets with defined number from non-normalised 

OTUs table for 1000 repeats. Heatmap was generated in R version 3.0.1 (R Development 

Core Team, 2012) by function “pheatmap” in package pheatmap (Kolde, 2013).  

 

2.4.4.5 Metagenomic Analysis 
DNA of each sample (1ng) was used to prepare the library using Nextera DNA sample prep 

kit (Illumina, USA) according to manufacturer’s protocol by ACE. The major library 

preparation is summarized in Figure 2.3. 
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Figure 2.3 Library preparations for Illumina sequencing, modified from 
http://res.illumina.com/documents/products/datasheets/datasheet_nextera_dna_sample_prep.pdf. 

 

Genomic DNA was fragmented enzymatically by the engineered transposome and blunted 

with adaptor that contains sequencing primer sites. Tagmented DNA was then amplified with 

provided primer containing both index (1 or 2 at each ends) and flow cell attachment site (P5 

or P7 at each end). The PCR program consisted of an initial heating at 72°C for 3 minutes, 

denaturation step at 95°C for 30 seconds, followed by 12 cycles of denaturation at 95°C for 

10 seconds, annealing at 55°C for 30 seconds and extension at 72°C for 30 seconds, with a 

final extension step at 72°C for 5 minutes. PCR products were then mixed with 1.8× AMPure 

beads. At magnet filed, PCR product (>100bp) bound to AMPure beads and separated from 

smaller fragments. Supernatant, along with small fragments, were removed and discarded. 

After washing with ethanol, long tagmented DNA fragments were eluted from AMPure beads 

(Figure 2.4). 
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Figure 2.4 AMPure beads purification modified from 
https://www.beckmancoulter.com/wsrportal/bibliography?docname=Protocol_000387v001.pdf.  

 

Cleaned DNA fragments (20µL) were then mixed with 45µL from library normalization 

solution (800µL well mixed library normalization beads plus 4.4mL library normalization 

additives). Equal amount DNA fragments were then separated in magnetic field and captured. 

5µL normalized DNA fragments from each sample were pooled together and mixed well. 

15µL from pooled DNA fragments were mixed with 120µL hybridization buffer and 

sequenced by HiSeq in Queensland Centre for Medical Genomics in the University of 

Queensland (Australia). 

Paired end de-multiplexed metagenomic data (provided from facility) were firstly process 

through SeqPrep (http://github.com/jstjohn/SeqPrep) to merge overlapping sequences into a 

single read according to the presence of adapters. Unable to be merged sequences were then 

trimmed to remove primer/adapter and filtered according to minimum quality of 10 and 

shortest length of 30bp by Nesoni (http://www.vicbioinformatics.com/software.nesoni.shtml). 

Merged sequences and quality controlled unmerged sequences were assembled using CLC 

workbench (Version 4.0, CLC bio) with default settings. Assembled sequences were mapped 

against the raw readings using BWA (http://bio-bwa.sourceforge.net/) with BWA-MEM 

algorithm.  
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Binning is the process to get the taxonomic diversity profile of a sample by classifying and 

clustering the reads (assembled contigs) into specific bins. Existing binning methods can be 

classified into taxonomy dependent and taxonomy independent.  

The major driving force for taxonomy dependent method is the extend of similarity of read 

with existing sequences from reference database such as NCBI 

(ftp://ftp.ncbi.nih.gov/blast/db/), PFAM (http://pfam.sanger.ac.uk/) or pre-computed models 

(constructed based on reference databases). The comparison can be done by aligning reads to 

sequences or Hidden Markov Models (HMMs) corresponding to known taxonomic groups 

(e.g. BLAST, Altschul et al., 1990), comparing the compositional properties such as GC 

percentage, codon usage and oligonucleotide usage pattern between reads and sequences or 

HMMs (e.g. Phylopythia, McHardy et al., 2007), or a combination of both approaches (e.g. 

SPHINX, Mohammed et al., 2011). The classification of taxonomy dependent heavily relies 

on the genomic reference. As the majority reads of metagenomic studies are originated from 

genomes of hitherto unknown organisms, they are classified as unassigned by this approach.  

The taxonomy independent category generates bins by utilising the properties of reads 

themselves without the need of reference database. These properties include the correlation 

between tetra-nucleotide usage patterns between reads (utilised by TETRA, Teeling et al., 

2004), frequencies of tetra-nucleotide (utilised by SOMs, Ultsch and Morchen, 2005) or 

frequencies of k-mers with various lengths (utilised by CompostBin, Chatterji et al., 2008). 

The major drawback of these methods is the requirement of reads with sufficient length 

(>800bp). Abundance of reads is first utilised in recent published method called 

AbundanceBin which groups the reads with identical or similar abundance into bin and can 

handle short sequences such as 75bp (Wu and Ye, 2011). GroopM expanded this approach to 

utilising the abundance variance of species between samples, which are related in manners of 

time point or spatial positions etc. A manuscript is under preparation by the developer with 

detailed instruction for GroopM.  

Binning was then performed with GroopM (http://minillinim.github.io/GroopM/) to group 

sequence reads with similar variation through different samples and generate a bin for each 

group. Bins were checked against marker genes against to 111 HMMs (Dupont et al., 2012) 

using checkM (https://github.com/Ecogenomics/CheckM) for completeness (whether all 

marker genes are presented) and contaminations (whether single marker genes presented 

more than once).  



37"|"P a g e "
%

High quality bins (with >70% completeness and <10% contamination) were then translated to 

protein sequences using PhylogeneticM (https://github.com/Ecogenomics/PhylogeneticM) 

and used to generate phylogenetic tree by FastTree (Price et al., 2009; Price et al., 2010). 

OTUs were picked and assigned from raw reads of each sample against greengenes 16S 

database (2013_5 release, 97% similarity) by QIIME (Caporaso et al., 2010b). 

 

2.4.5 Statistical Analysis 

NGS technologies generate large data sets across a broad range of species. By utilising 

various statistical analyses, these data sets can be evaluated to provide concise information 

about the relationship between samples. The statistical analysis listed here was done on 

pyrotag sequencing, and metagenomic data. 

 

2.4.5.1 Principle Component Analysis (PCA)  
PCA is an Eigen analysis-based method that allows visualisation of the differences between 

samples in reduced dimensions (Chatfield & Collins, 1980). Briefly, PCA relies on Eigen 

decomposition of the Euclidian covariance matrix, which extracts both Eigenvalues 

(indicating contribution to variance of each principal component), as well as the Eigenvectors 

(indicating sample or site contribution to each principal component). The Eigenvector matrix 

can be thought as a projection or rotation of the original matrix and retains the same total 

variance. Eigenvectors (principal components) are sorted according to the eigenvalue 

(proportion of variance). The top 2 (sometimes 3) components are used to plot the ordination 

of samples as well as the direction of variable factors. The maximum variance is then 

expressed in minimum dimensions. However, PCA only analyses Euclidean covariance 

between samples. For microbial community data, many samples have closely related but 

different OTUs and this generates zeros in the covariance matrix. It is repeatedly argued that 

this distance measurement is inappropriate for raw species abundance data as null abundance 

can induce paradox (Orloci, 1978), which counts the null abundance as positive covariance 

samples. To overcome this, the community data is first transformed to relative abundance 

before calculating Euclidean distance as shown in Equation [22]. 

!!ij = !ij
!i+                                                                                                                                [22] 
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Where y’ij is the relative abundance, yij is the raw reads of sequences in individual species, 

and !i+ is the total reads of all species in one sample. This transformation does not give 

extra weight on rare species and able to predict the differences based on the most abundant 

species. To enable the prediction based on the whole communities, species data can be further 

transformed as square root of Equation [22]. This is known as Hellinger transformation 

(Legendre and Gallagher, 2001) and highly recommended with species datasets. In this thesis, 

community data is analysed with both transformations on normalised OTUs table. The 

transferred dataset was imported into R, version 3.0.1 (R Development Core Team, 2012) to 

generate principle component analysis using Euclidean distance with function “rda” in 

package vegan (Oksanen et al., 2013). Graphs were produced with the function “biplot”. In 

addition, PCA should be used to predict the variance, i.e. the abundance shift between 

samples, rather than ordinations, i.e. the cluster of samples based on the community data. 

This is because moderate or high beta diversity (which is normally seen in community data) 

can induce a horseshoe effect that twists the second axis and produces possible false 

ordination. 

 

2.4.5.2 Multi-Dimensional Scaling (MDS)  
MDS is classified as metric MDS (normally known as Principle coordination analysis 

(PCoA)) and non-metric MDS (NMDS). PCoA is an upgrade version of PCA as any distance 

measurement can be used (Borg and Groenen, 2005). It then reflects the maximum variance 

base on eigen-analysis of distance matrix in a low dimension space. While NMDS uses 

different approach, it is a projection of sample ordination from high dimension to a certain 

plane with defined number of dimensions based on the rank order of differences between 

samples. Thus it has following features: 1. Two apart points mean they are different but does 

not reflect the distance between them, 2. Unlike PCA or PCoA, in which the dimensions 

(eigenvectors) are uncorrelated, in NMDS the plot of low dimension is not a projection from 

a high dimension solution. There is no proportion of variation explained by each axis, as they 

are not eigenvectors. Instead, it uses the value called stress to evaluate the difference between 

predictions from the rank system and distance matrix.  The flexibility of choice on different 

distance measurements gives advantage on MDS, for example, Bray Curtis dissimilarity 

measurements. It is commonly used for ecological studies over years due to the ability to 

distinguish two samples that have numerous zeros (Bray and Curtis, 1957). It is calculated as 

Equation [23]. 
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!jk = 100 1− !ij!!ik!
!!!

!ij!!ik!
!!!

                                                                                                      [23] 

Where Sjk is the similarity between two samples j and k, yij(k) as the abundance of species i in 

sample j (or k) of the community data set. The difference between samples is an absolute 

value. More important, as the similarity is expressed as a proportion of difference on the total 

abundance, the null abundance produces no effect on the similarity. However, transformation 

to relative abundance is also necessary to avoid extreme high values in the data sets. The 

transformed normalized OTUs table was imported into R, version 3.0.1 (R Development 

Core Team, 2012) to generate NMDS using Bray-Curtis dissimilarity method with function 

metaMDS in Package vegan (version 2.0-9) (Oksanen et al., 2013). 

 

2.4.5.3 Ternary Plots  
Ternary plots were originally used to graph the genotype frequencies of populations. It is 

recently used to show the shared and unique OTUs in pyrosequencing analysis on different 

samples (Pires et al., 2012; Bulgarelli et al., 2012). For example, Wilhelm et al., (2013) 

reported that glacier ice contributed only marginally to the microorganism in the stream water 

and benthic biofilm community as there are less commonality between glacier ice and later 

two samples. In this thesis, we applied ternary plots to distinguish the similarity and 

specificity of microbial community between different types of anaerobic granules. Only the 

OTUs present in all three types of granules were kept and imported into R. Ternary plots 

were constructed on pyrosequencing data with function ternaryplot in package “ggtern” 

(version 1.0.3.1) (Hamiton, 2014). Relative abundance (after normalization between samples) 

of each OTU in each sample is plotted as the proportion to the total abundance of that OTU in 

all three samples. The coordination of each species P (a,b,c) where a, b, c are the transformed 

proportion in each sample is P (b+c/2,c 3/2). The size of the points is enlarged according to 

the proportion of relative abundance of that species in all samples to the sum of relative 

abundance of all species in all samples.  

In this thesis, the factors differentiating shared layers of granules and different types of 

granules are examined by PCA. The ordination of samples is obtained from NMDS, which 

reflects the similarity in a more accurate way. Community variation between different types 

of granules is focused by ternary plot. 
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Chapter 3. Shearing of Biofilms Enables 

Selective Layer Based Microbial Sampling and 

Analysis 

3.1 Introduction 

The UASB reactor (Lettinga et al., 1980) is one of the most widely applied reactor designs 

for anaerobic digestion of readily degradable wastewaters. In a UASB, functional 

microorganisms, including fermenters, acetogens and methanogens, aggregate into granules 

of 0.5–3 mm which have a high sedimentation velocity and are therefore resistant to wash out 

under high hydraulic load. They are essentially a self-supporting biofilm, with observable 

layering (Fang et al., 1995; Guiot et al., 1992) depending on feedstock. Microbial identity is 

known to be important in determining reactor performance (Karakashev et al., 2005). 

To date, the spatial information, i.e. the position of particular organisms within the granules, 

has only been studied with fluorescent in situ hybridization (FISH). However, this is highly 

dependent on the choice of probes, and the response of each organism to the FISH process. It 

is also limited to phylogenetic analysis based on 16S genes or similar, with limited 

opportunity for analysis of functional genes or metagenomics.  

Small particles from the exterior of granules, or fines, can result when shear stress is applied. 

When this occurs in a UASB reactor, it can reduce the quality of reactor effluent. The granule 

shear strength is defined as the quantitative production rates of fines normalized by shear rate 

and can be useful to predict sensitivity to shear. Granule strength also has practical 

implications for effluent quality (Ghangrekar et al., 1996). Shear strength can be determined 

by an abrasion experiment designed by Pereboom (1997). The shear strength of granules 

appears related to the feed type, and possibly divalent cation availability. For example, simple 

substrates such as acetate (Fang et al., 1994) and mixed organic acids (Batstone and Keller, 

2001) produce granules that have low shear strength and complex substrates, such as 

carbohydrate (Batstone et al., 2004) produce granules with higher shear strength. High 

calcium granules had very high shear strength (Batstone et al., 2002). Using abrasion 

modified version of this technique and information about a granule type’s shear strength, it 
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may also be possible to sequentially remove granule layers, potentially allowing phylogenetic 

and functional characterization of each layer. 

In order to sequentially remove layers from mature granules from full-scale UASB reactors, a 

modified version of Pereboom’s shear strength measurement (Pereboom, 1997) was 

developed and evaluated by applying community profiling methods to successive biofilm 

layers. 

 

3.2 Results 

Most brewery and cannery granules were dark coloured with a smooth surface. The largest 

granule, brewery granules, had diameter ranging from 1.1-2.8mm (average 2±0.8mm), and 

with an oval or angular shape. Most cannery granules were spherical with diameter ranging 

from 0.5-0.8mm (average 0.6±0.2mm). Larger cannery granules had similar shape with 

brewery granules and smaller particles were possibly broken granules. Dairy granules were 

yellowish, and spherical with rough surface. Most dairy granules had diameters from 0.4-

1.2mm (average 0.8±0.3mm). Particles measured above this size were observed as large 

aggregates of dairy granules and it was hard to separate the aggregate without damaging 

individual granules.  
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Figure 3.1 Estimation of characteristic abrasion coefficient (KC). KC for granules from full-scale reactors 
with different feedstock, including brewery, cannery and dairy were estimated according to the method 
described in materials and methods section.  A lower KC equates to a weaker granule. Brewery granules 
were sheared at 500 rpm, both carbohydrate and dairy granules were sheared at 1500 rpm. 

 

The fines generated versus shear rate squared (γ2) is shown in Figure 3.1. A lower KC 

(characteristic shear coefficient from Equation [15] in Chapter 2), equates to a weaker 

granule (i.e., faster generation of fines). Cannery and dairy granule strengths were 

comparable (protein was slightly weaker), while brewery granules were far weaker. The 

amount of solids measured, together with the measured density allowed calculation of depth 

sheared as shown in Table 3.1.  
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Table 3.1 Shear depth (µm) of three types of anaerobic granules at each time point. Shearing was done at 
500 rpm (brewery granules) and 1500 rpm (dairy and cannery granules). 

Time (Minutes) Depth (µm) 

Brewery Dairy Cannery 

5 14 9 5 

20 24 28 16 

60 58 53 42 

180 117 79 72 

270 196 98 86 

360 N/A 127 99 
 

Shearing was successful as demonstrated by FISH analysis of pre-sheared and post-sheared 

anaerobic granules. Bacteria, as shown in red in Figure 3.2, formed a distinct layer on the 

surface of cannery (Figure 3.2A), brewery (Figure 3.2C) and dairy granules (Figure 3.2E). 

This layer is completely removed as seen on cannery granules after 270 minutes shearing 

(Figure 3.2B), brewery granules after 5 minutes shearing (Figure 3.2D) and dairy granules 

after 180 minutes shearing (Figure 3.2F).  
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Figure 3.2 FISH images of the cannery granules before (A) and after (B) shearing, brewery granules 
before (C) and after (D) shearing and dairy granules before (E) and after (F) shearing. Bacteria are 
shown in red and form a distinct layer on the surface of cannery granules. This layer is completely 
removed after shearing. Methanosaeta (MX825) is shown in yellow. Methanococcales (MC1109), 
Methanobacteriales (MB1174) and Methanobacteriales (MG1200) are shown in cyan.  Other Archaea 
(ARC915) are shown in green. Bacteria (EUBmix) are shown in red. 
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Based on in silico digestion of clone sequences from clone libraries, a number of TRFLP 

peaks were identified (Table 3.2).  

 

Table 3.2 In silico and in vitro TRFLP peaks comparison. 

Putative identification 
GenBank Accession 

Number 

In silico In vitro 

AluI MspI AluI MspI 

Methanosaeta KC502890;KC502891 178 284 178 283 

Methanolinea KC502892;KC502893 188 129 189 126 

Geobacter KC502887 36 128 N/A 124 

Syntrophomonas KC502886 41 253 N/A 254 

Anaerolinea AP012029 201 485 205 471,479 

Bacteroidetes KC502888;KC502889 171 56,108 170 108 

  

Quantitative analysis clearly shows progressive variation of TRFLP peaks through different 

layers (Figure 3.3A, B & C). Particular organisms were evident in outer but not inner layers, 

including members of the Bacteroidetes and the Anaerolinea (referred to as Anaerolinea1 in 

Figure 3.3) in cannery granules (Figure 3.3A), MspI 126 and other members of the 

Anaerolinea (referred to as Anaerolinea2 in Figure 3.3) in both brewery (Figure 3.3B) and 

dairy granules (Figure 3.3C). This is clearly shown in Figure 3.3D. As an example of this 

trend, the abundance of Anaerolinea2 peak in the outer layer was seven times the size of the 

one in whole granules. On the other hand, members of the Syntrophomonas and Geobacter 

presented in inner layers in cannery (Figure 3.3A) and brewery granules (Figure 3.3B). There 

were 14, 10 and 16 additional peaks detected from layer samples than the one from whole 

cannery, brewery and dairy granules respectively. 
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Figure 3.3 Relative abundance of different bacterial groups in outer, middle and inner layers of cannery granules (A), brewery granules (B) and dairy granules (C) 
as revealed by TRFLP. Peaks that were identified by BLAST searches and in silico TRFLP digestion of cloned 16S rRNA genes are labelled with their affiliated 
organism and other peaks are labelled with the peak number from enzyme digestion with MspI. The relative abundance of specific peaks can be greatly enhanced 
in individual layers compared to the average abundance detected in the whole granule (D). 
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3.3 Discussion 

3.3.1Granule strength is variable  

The granule strengths were highly variable as previously reported (Batstone and Keller, 

2001). This is largely related to feedstock, with rapidly degradable primary substrates such as 

sugars resulting in dense and high-strength outer layers (Batstone et al., 2004). The 

importance of this is that the method as presented cannot be applied using fixed times and 

shear rates, as the amount sheared depth depends strongly on the granule strength (note that 

Figure 5.1 is a log relationship). However, the method does inherently return shear strength, 

and we recommend shearing initially at lower rates and shorter times to collect outer layers 

and characterize the shear strength, and to conduct additional tests at a higher shear rate as 

necessary. 

 

3.3.2 Shearing combines the depth of microbial community profiling with localization capability  

Compared with traditional microbial community profiling study, this method was able to 

analyse DNA from specific layers with a sub-millimetre resolution and detect the major 

microorganism on each layer. Applying FISH ideally requires a level of prior community 

knowledge, particularly where the system is phylogenetically diverse, where the population 

carrying out a specific function is relatively merged or where a single function has a diverse 

phylogeny. Anaerobic granules are a good example of this, with a high level of diversity, 

particularly amongst the fermenters (Werner et al., 2011). Without spatial enrichment, FISH 

hunting (i.e. systematically testing FISH probes based on clone library information) can be 

extremely time consuming and unproductive. However, when a particular organism is found 

to be enriched in an outer layer, it is an obvious fermentative candidate, and probes can be 

designed preferentially against that organism, making it more likely to result in a successful 

identification. Furthermore, the quality of DNA recovered from shearing is relatively good, 

as the shear force is relatively gentle compared to subsequent DNA extraction. We observed 

additional TRFLP peaks in the outer layer that were not found in whole granule samples. This 

is because in whole granules, organisms at relatively high abundance in the outer layer are 

not detected due to their far lower abundance in the granules as a whole. This spatial 

selection of organisms could also be used in conjunction with other community profiling 
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methods such as clone libraries and pyrosequencing, even where several thousand OTUs are 

identified. The localization by FISH and by shearing, in combination with microbial 

community profiling methods offers the possibility to assess the impact of factors influencing 

community profiling analysis such as PCR bias. We also believe it may be possible to extract 

whole live organisms in order to conduct further live culture analysis, including substrate 

screening, and enzymatic/proteomic analysis. 

 

3.3.3 Complexity of outer layer 

The outer layer has been regarded as being mainly fermentative (Batstone et al., 2004; 

Sekiguchi et al., 1999) in function. The results support it, with the presumptive fermenters, 

such as Bacteroidetes and Anaerolinea, found in granules with cannery and dairy wastewater. 

Importantly, the brewery granules were dominated by syntrophs such as Geobacter (ethanol), 

and Syntrophobacter (propionate). While the results support the findings from previous 

studies that the outer layers are dominated by fermenters, and additionally show that the outer 

layers are not dominated by a single population, but are quite complex. Microbial community 

profiling methods are the only way to attain the phylogenetic depth needed to identify and 

analyse communities at this depth. TRFLP was used here in order to readily assess the 3 

whole granules samples and 17 sheared samples generated in this study, to demonstrate 

profiling through the depth of granules and hence demonstrate the utility of the method. 

However, future approaches would be to construct clone libraries or 16S pyrosequencing on 

individual layers, and fully characterize the community. This could be then followed by 

generation and application of FISH probes to confirm localization and suggest relationships 

between different organisms.  
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Chapter 4. Ecology of Anaerobic Granules 

4.1 Introduction  

Upflow Anaerobic Sludge Blanket (UASB) reactors are a high rate anaerobic technology 

commonly applied to treat wastewater from a range of industries. A key requirement of this 

technology is the formation of anaerobic granules containing microorganisms which convert 

the organic matter in the wastewater into methane and carbon dioxide through a series of 

complex biological reactions including interactions between multiple functional groups. 

Maintaining anaerobic granules and therefore maintaining stable operation of the process 

may be improved through increased understanding of microbial properties including 

community identification, spatial distribution and metabolic function.  

Anaerobic granules are a key and readily observable form of large and layered biofilms. The 

structure of anaerobic granules has been generally regarded as a consequence of substrate, 

with functional distribution of primary substrate fermentation, oxidation of organic acids and 

alcohols, and methane production from acetate and H2/CO2. %

Microbial community identification has been studied using PCR-based molecular techniques, 

particularly targeting 16S rRNA, on anaerobic granules degrading terephthalate (Wu et al., 

2001), treating brewery wastewater (Chan et al., 2001, Diaz et al., 2006), municipal 

wastewater (Zhang et al., 2005), and paper mill wastewater (Roest et al., 2005). However, 

previous microbial identification studies lack spatial resolution, as sequencing based 

microbial analysis can only be applied to whole granules. This continues to limit fundamental 

understanding of anaerobic granules including the functional role of specific microorganisms. 

The distribution of functional groups can possibly guide links between microorganisms and 

physical properties of the granules thus provide opportunity for granules modification to 

shorten the reactor start up time and stability, and improve granule strength.  
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In order to improve the fundamental understanding of anaerobic granules by analysing and 

comparing the microbial community composition and spatial distribution within granules 

treating different industrial wastewaters, 454 pyrosequencing and metagenomic shotgun 

sequencing were applied to the anaerobic granule sheared in Chapter 3. To our knowledge, 

this is the first study providing high resolution in vivo evidence for spatial distribution and 

dominant organisms in anaerobic granules treating different kinds of wastewater. 
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4.2 Results 

Pyrosequencing recovered 134,407 reads and grouped into 651 OTUs from total of 22 

samples produced by shearing of three types of granules. There were 50,372 reads (average 

7,196 reads ± 4762 standard deviation) across 5 layers and core of brewery granules grouped 

into 312 OTUs, 41,472 reads (average 5,184 reads ± 2503 standard deviation) across 6 layers 

and core of cannery granules grouped into 292 OTUs, and 42,562 reads (average 5,320 reads 

± 3102 standard deviation) across 6 layers and core of dairy granules grouped into 263 OTUs. 

 

4.2.1 Microbial Community of the Three Granules 

Results according to cryosection-FISH and layered-pyrosequencing are shown in Figure 4.1 

(bacterial) and 4.2 (archaeal). Brewery and cannery granules had similar bacterial niches 

consisted of Bacteroidales, Anaerolinea, Geobacter, Syntrophomonas and SHA-114 with 

unique OTUs affiliated to Candidatus Cloacamonas and Propionicimonas in each granule 

respectively. Bacterial dominance shifted from Bacteroidales.1/Candidatus Cloacamonas in 

the outer layer to Geobacter/Syntrophomonas in the inner layers of brewery granules. 

Geobacter and Syntrophomonas were detected at low abundance in cannery and dairy 

granules. Unique OTUs, such as Phycisphaerae and MAT-CR-H3-D11, were found in dairy 

granules within > 1% relative abundance community. The archaeal communities in brewery 

and dairy granules were relatively simple and dominated by Methanosaeta and Methanolinea 

respectively. Other methanogens such as Methanoregula arose in cannery granules.     

There is broad agreement between microbial measurements using phylogenetic analysis and 

FISH with specific probes. Candidatus Cloacamonas dominated in the outer layers of 

brewery granules by pyrosequencing (Figure 4.1) and were also detected in larger amount 

underneath the boarder of brewery granules by FISH (Figure 4.1A1). Geobacter were 

detected in the inner layers of brewery granules by pyrosequencing (Figure 4.1A) and FISH 

(Figure 4.1A2). Bacteroidales.3 was the dominant microbes in the outer layers of cannery 

granules and mainly detected on the surface of cannery granules by FISH (Figure 4.1B2). 

Other microbes detected at high abundance in the outer layers of cannery granules were 

Anaerolinea.1, Anaerolinea.2 and Propionicimonas. Anaerolinea were found in the middle 

layers of cannery granules by FISH (Figure 4.1B1). Methanosaeta, as a major archaeal OTU, 
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was evenly distributed in brewery granules (Figure 4.2A and A1) and gradually increased 

from outer layer towards the core in cannery granules (Figure 4.2B and B1). The abundance 

of Methanobacterium and Methanolinea accounted for a small proportion of the population in 

brewery granules, but the relative abundance of Methanobacterium rose up to 25% in each 

layer of cannery granules and Methanolinea became the dominant one in protein granule. 

Their growth was shown as closely associated with bacteria by FISH (Figure 4.2A2 and C1). 

Anaerolinea.1 was the only common OTU detected in all granules. It accounted for a small 

proportion of brewery granules (0.8-2.2% of bacterial community). The abundance increased 

to 10% in cannery granules and Anaerolinea.1 became the dominant OTU in dairy granules 

(30-60% of bacterial community).  

In the bacterial community, there were three major trends identified regarding shifts in 

relative abundance. First trend referred to gradually decreasing relative abundance from outer 

layers to inner layers. This trend was observed on most dominant OTUs such as 3 groups of 

Bacteroidales (in all granules), genus Candidatus Cloacamonas and Anaerolinea in brewery 

granules (Figure 4.1A); Propionicimonas and Anaerolinea.2 in cannery granules (Figure 

4.1B); and Phycisphaerae, Bacteroidales.3, MAT-CR-H3-D11 and Candidatus Cloacamonas 

in dairy granules (Figure 4.1C). The opposite trend i.e. gradually increasing from outer layers 

to inner layers, were found on OTUs affiliated to genus Geobacter and Syntrophomonas in 

both brewery and cannery granules (Figure 4.1A and B); and Anaerolinea.1 in dairy granules 

(Figure 4.1C). Lastly, some OTUs distributed evenly. For example, SHA-114 in brewery 

granules (Figure 4.1A) and Anaerolinea.1 in cannery granules (Figure 4.1B) showed no 

progressive changes. 
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Figure 4.1 Relative abundance of bacterial community in each layer of brewery granules (A), cannery granules (B) and dairy granules (C) and FISH analysis on 
detecting Candidatus Cloacamonas (WWE1) in yellow (A1) and Geobacter (GEO1) in cyan (A2) in brewery granules, Anaerolinea (CFX784) in yellow (B1) and 
Bacteroidetes (CF1082, CF319a) in cannery granules (B2). Archaea (ARC915) is shown in green, other bacteria (EUBmix) is shown in red in all FISH pictures. 
OTUs with >1% in any sample are filled with colour or pattern. Major bacteria are labelled with affiliated taxonomy. Other OTUs (<1%) are shown as blank and 
presented as appropriate position in the donut chart.  
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Figure 4.2 Relative abundance of archaea community in each layer of brewery granules (A), cannery granules (B) and dairy granules (C) and FISH analysis on 
detecting Methanosaeta (MX825) in yellow, Methanolinea (MG1200), Methanobacterium (MB1174) in cyan in brewery granules (A1 & A2), cannery granules (B1 & 
B2) and dairy granules (C1). Bacteria (EUBmix) are shown in red and other archaea (ARC915) are shown in green. OTUs with >1% in any sample are filled with 
colour or pattern. Major archaea are labelled with affiliated taxonomy. Other OTUs (<1%) are shown as blank and presented as appropriate position in the donut 
chart. 
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Regarding both archaeal and bacterial community, PCA analysis (Figure C1-C3 in Appendix 

C) showed that layers of granules could be divided into outer regions and inner regions 

according to PC1 (the most differences explained). The outer layer (first layer sample) was 

always located far away from others with respect to PC1 and PC2. The major differentiation 

factors were bacteria (presumed fermenters) dominated in the outer region while other 

bacteria (presumed acetogens) and archaea (methanogens) dominated in the inner region. In 

brewery granules (Figure C1), this outer region referred to 0-24µm from the granule surface 

with differentiation factors including dominant OTUs affiliated to Candidatus Cloacamonas, 

Bacteroidales.1 and Bacteroidales.2 in the outer region and dominant OTUs affiliated to 

Methanosaeta, Geobacter and Syntrophomonas in the inner region (PC1 41% of total 

variance). The 0-14µm and 14-24µm were differentiated by Methanolinea accumulating in 

outer layers (0-14µm according to PC2 with 16% explained). The outer region of cannery 

granules (Figure C2) consisted of three layers (0-42µm) with accumulation of OTUs 

affiliated to Bacteroidales.2, Anaerolinea.1, Propionicimonas and Methanoregula. The major 

factor driving the differentiation of inner region was the accumulation of Methanosaeta (PC1 

54% explained). Due to the accumulation of SHA-114/Bacteroidales.2 in 5-16µm and 

accumulation of Methanoregula in 0-5µm, the three outer layers were further separated (PC2 

14% explained). Differentiation in dairy granules (Figure C3) were mainly driving by 

accumulation of bacteria including Syntrophus, Phyhcisphaerae, Ruminococcaceae and 

Thermoplasmata in the outer region (0-53µm) and the accumulation of Methanolinea in the 

inner region (PC1 30% explained). The outer layers were further separated due to the 

accumulation of Anaerolinea.1 in 28-53µm, and low abundance OTUs accumulated in 9-

28µm (PC2 19% explained).   

 

4.2.2 Variation in Microbial Community across Different Granules 

 A ternary plot that indicates degree of commonality for microorganism within three types of 

granules is shown in Figure 4.3. To simplify, bacterial OTUs have been grouped at the 

phylum level and archaeal OTUs have been grouped order level except Methanosaeta (as it is 

the only genus detected in order Methanosarcinales). Granules were strongly differentiated 

with the cannery and brewery granules dominated by Methanosaeta, and Methanobacteriales, 

and the dairy granules dominated by Methanomicrobiales. 
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Figure 4.3 Ternary plot shows the distribution of bacterial (blue) and archaeal (red) OTUs with >1% 
average abundance among the tested granules based on pyrosequencing results. Size of each point was 
adjusted regarding to the average abundance of each microorganism in three types of granules.  

 

Most high-abundance bacterial phyla were shared between all three types of granules to some 

extent. In particular, fully shared by all granules were Bacteroidetes (average 

abundance >10%), and Spirochaetes (average abundance 5-10%). Proteobacteria (>10%) 

and AC1 (5-10%) were shared between brewery and cannery granules while Chloroflexi 

(>10%) was shared between cannery and dairy granules. Phylum Firmicutes and 

Actinobacteria were respectively found in brewery and cannery granules with average 

abundance of 1-5%, while they were rarely or not detected in dairy granules. There were 

unique OTUs detected in dairy granules only including Thermotogae, FCPU426 and Hyd24-

12 as classified by greengenes. 

A PCA biplot of the three granules with key phylogenetic classifications is shown in Figure 

4.4. Layers are shown as different sized rings and the whole granules are shown as filled 

circles. The major predictor in differentiating profile is granule source, rather than 

subsamples (layers). The major differentiation is between brewery/cannery and dairy 
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granules along PC1 (57%), with the dairy granule dominated by unique OTUs compared to 

brewery/cannery, including Methanolinea and Anaerolinea.1. Interestingly, differentiation 

was due to both archaeal and bacterial communities. 

Methanosaeta dominated in both brewery and cannery granules with more 

Methanobacterium presenting in cannery granules. Emergence of Methanoregula 

differentiated the outer layers from the whole cannery granules according to PCA. Cannery 

and brewery granules were differentiated along PC2 (20%), with differentiation mainly due 

to the bacterial community. Brewery granules consisted mainly of genera Candidatus 

Cloacamonas, Syntrophomonas and Bacteroidales.1, while genera Propionicimonas, 

Baccteroidales.2 and Anaerolinea.2 presented in cannery granules especially in the outer 

layers. The main differentiation factor between dairy granules and others was due to the 

dominance of Methanolinea and sub-dominance of Anaerolinea.1. 

The spread within samples was also important. The only granules that had strong variation 

between layers were the cannery granules, indicating a strongly layered structure in line with 

the previous section and FISH results. This also indicated that differentiation between 

cannery and brewery granules was driven by the outer layer community, with samples at the 

furthest vertical extent being from the outer layer. Furthermore, the whole cannery granule 

sample (the red filled circle in Figure 4.4) was completely dominated by inner layer 

community, as it was located closely to the inner layers. This suggested that the outer layer 

community, especially the presumptively fermentative outer bacterial layer, could only be 

properly analysed by shearing as its abundance was very small in the whole granules.  
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Figure 4.4 PCA analysis of pyrosequencing data on three types of anaerobic granules based on OTUs. Types of granules are distinguished by colour. Layer samples 
from outer to inner are distinguished by size of rings (larger as outer layer). Whole granules and the core are represented as filled colour circle and black circle 
respectively. 



59#|#P a g e #
%

4.2.3 Metagenomic Analysis of Brewery Granules 

Metagenomic analysis on the brewery granules was performed to (a) identify whether layer 

based (spatial) sampling would provide sufficient covariance based information (b) validate 

the pyrosequencing information, and (c) provide metagenomic information for further 

processing and functional analysis that is not applied to the full extent in this thesis due to 

time constraints. All three of these objectives are discussed further in this section. 

 

4.2.3.1 Metagenomic Analysis on the Whole Genome  
Metagenomic analysis on brewery granules identified total 378,718 contiguous sequences in 

0.8Giga base pairs. They were clustered into bins based on PCA analysis of tetra-nucleotide 

signature (indicated by colour of each point and used as the bottom plane of Figure 4.5) and 

the normalised abundance (used to calculate the Euclidean distance as vertical axis in Figure 

4.5). In total, 1 archaeal bin and 23 bacterial bins with high quality (>70% completeness and 

<10% contamination) were recovered from metagenomic analysis. Identification includes 

genus Methanosaeta, genus Anaerolinea and Caldilinea in phylum Chloroflexi (4 bins), 

phylum Proteobacteria (5bins) and Bacteroidetes (5bins) etc. (Figure 4.6). These include the 

key fermentative candidates identified through pyrosequencing. Identified bins with high to 

moderate abundance are shown in Figure 4.6. Bins, which were classified as Methanosaeta 

concilii (Bin953), Syntrophomonas wolfei (Bin168), Geobacter (Bin77) and Candidatus 

Cloacamonas acidodaminovorans (Bin58) had high abundance through all layers. Other high 

quality bins with moderate abundance are affiliated to phylum Chloroflexi (Bin 1086 & 138), 

Bacteroidetes (Bin190) and Proteobacteria (Bin 22 & 194).  
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Figure 4.5 Major bins recovered from Metagenomic analysis. Bins are coloured according to K-mer and located based on PCA analysis between samples (PC1 and 
PC2 as X,Y axis) and the average abundance of all samples (as Z axis).  
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Figure 4.6 Phylogenetic tree generated based on protein sequences of good quality bins (labelled with bin number) from metagenomic data by FastTree. Bootstrap 
value at the branches indicates the confidence level with 100 replicates.
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4.2.3.2 16S rRNA Gene Analysis from Metagenomic Data  
16S rRNA analysis from metagenomic data retrieved 8,736 OTUs from total 152,618 reads 

from layered samples of brewery granule. Analysis of NMDS on layers from both 

pyrosequencing and metagenomic analysis generated less than 0.03 stress (Figure 4.7) 

indicating an excellent representation in 2 dimensions. Both NMDS plots showed that the 

outer layer was differentiated from the inner layers, whole granules and the core. This trend 

became clear when analysing the metagenomic result with high richness. In fact, the species 

distribution in NMDS formed a triangle shape with one corner (left top corner) affiliated with 

the outer layer and one corner (right top corner) affiliated to inner layers, the whole granule 

and the core. The formation of the corner is due to unique OTUs in those samples, and 

progressive differentiation across the different layers. The distance between the corner and 

sample, indicates that unique OTUs present at low abundance. There were 83 and 2,737 

OTUs detected in the outer layer only with pyrosequencing and metagenomic analysis 

respectively. These unique OTUs had abundance in metagenomic analysis ranging from less 

than 0.001% to maximum 0.5% and were widely spread through around 50 different phyla 

including Bacteroidetes, Firmicutes, Proteobacteria etc. and recently discovered phyla 

including OD1, OP1, TM7 etc.. The diversity of the outer layer was the highest in all granules 

(compared to subsequent layers) (Figure 4.8) with a Shannon index of 4 and 10 from 

pyrosequencing and metagenomic analysis respectively. The OTUs in the outer layer are 

unique compared with the whole granule community; there were 2,564 OTUs (data not 

shown) detected in the outer layer only, presented as spread dots at the top left corner of 

Figure 4.7A. The distribution of OTUs became denser in the region of all other layers which 

indicates that these OTUs including Methanosaeta, Geobacter etc., were shared among 

deeper layers but also dominated whole granule samples. 
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Figure 4.7 NMDS analysis of 16S rRNA from A) illumina shotgun metagenomic analysis and B) 454 pyrosequencing. OTUs are labelled as grey “+” in both graphes. 
Layer samples from outer to inner are distinguished by size of rings (larger as outer layer). Whole granules and the core are represented as filled circle and black 
circle respectively. 
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Figure 4.8 Rarefaction of each sample from metagenomic analysis on Brewery granules. Most OTUs are observed in the outer layer sample (14µm) than other 
samples after normalization. 
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PCA analysis based on pyrosequencing and metagenomic 16S rRNA gene data are shown in 

Figure 4.9. The proportion explained by first two PCs is similar between both methods and 

indicates that key differences are due to low richness of pyrosequencing. Major OTUs, which 

were consistently differentiated between outer layer and other samples, remained the same. 

Outer layers, which contained more Bacteroidales and Candidatus Cloacamonas, shifted to 

the left hand side and inner layers, which contained more Methanosaeta and Geobacter, 

shifted towards right hand side (Figure 4.9). These include key organisms decreasing in 

abundance towards the core such as Candidatus Cloacamonas and Bacteroidales, and those 

following an opposite trend such as Geobacter and Syntrophomonas (Figure 4.10). With 

higher sequencing effect, the dominance of Anaerolinea was found which was not identified 

by pyrosequencing.  
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Figure 4.9 PCA analysis of 16S rRNA from A) illumina shotgun metagenomics and B) 454 pyrosequencing. Major differentiation OTUs are labelled with taxonomy. 
Layer samples from outer to inner are distinguished by size of rings (larger as outer layer). Whole granules and the core are represented as filled circle and black 
circle respectively. 
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Figure 4.10 Major bacteria trend retrieved from 16S rRNA analysis of Metagenomic data. Representative OTUs are labelled with classification. The relative 
abundances of major bacteria are plotted according to the layers (indicated by different colours).  
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4.3 Discussion 

4.3.1 Microbial Architecture  

The traditional microbial architecture model (Guiot et al., 1992; Fang, 1995) of discrete 

communities in different layers can only be seen in brewery granules as a shift between two 

groups of presumed acetogens Bacteroidales/Candidatus Cloacamonas, and 

Syntrophomonas/Geobacter. The bacterial community was dominated by presumed 

fermenters in cannery and dairy granules, but with strong differentiation of the outer layers 

mainly in the cannery granules. Acetogenesis and methanogenesis appeared to be generally 

collocated through the whole granules rather than in sequential layers observed previously 

(Harmsen et al., 1996b; Batstone et al., 2004).  

To illustrate general architecture and function, functionality and microorganism distribution 

is proposed in Figures 4.12 (and elsewhere in this discussion), where the x-dimension 

represents relative abundance (segregated into major phylogenetic or presumptive functional 

classifications), and the y-dimension represents granule depth. 
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4.3.1.1 Brewery Granules 

 

Figure 4.11 Proposed functionality and microorganism distribution in brewery granules. Arrows 
indicated the directions of substrate uptake and digestion products. Vertical dimension refers to depth. 
Horizontal dimension for each shape refers to relative abundance.  

 

Methanosaeta dominated through the whole brewery granules (Figure 4.11). This archaea has 

high affinity to acetate (Berger et al., 2012) and is able to produce methane through 

acetoclastic methanogenesis. This indicates that acetate is supplied from both the bulk as well 

as by-products from acetogenesis (to the inner layers) carried out by two groups. The first 

group, which consisted of Bacteroidales.1, Bacteroidales.2 and Candidatus Cloacamonas, 

was the main presumptive acetogen found on the outer layer. Based on in silico proteome 

study done by Pelletier et al. (2008), Candidatus Cloacamonas is able to gain energy from 

fermenting amino acid, sugar and certain aliphatic carboxylic acid (succinate, lactate and 

acetate), and also has the oxidative propionate degradation pathway to acetate and CO2 under 

low H2 pressure (Schink, 1997, Pelletier et al., 2008).  

Bacteroidales is a highly diverse bacteria group in terms of phenotype and function. 

Commonly, they are recognised as a hydrolytic fermenter of carbohydrates in anaerobic 

habitats (Thomas et al., 2011; Rismani-Yazdi et al., 2013). Filamentous Bacteroidetes was 
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found in activated sludge and has the ability to take up glucose and propionate under aerobic 

conditions (Kragelund et al., 2008). Proteiniphilum acetatigenes belong to order 

Bacteroidales were isolated from propionate-degrading tri-cultures, consisting of 

Syntrophobacter and Methanobacterium, from a UASB treating brewery wastewater (Chen 

and Dong, 2005). It was proved that this specie is responsible for pyruvate and accelerates 

propionate degradation rate. Bacteroidales was more likely related to VFAs (except acetate) 

degradation as the major component in substrate of brewery granules were propionate, 

ethanol and acetate.  

These organisms were completely replaced by another presumed acetogenic group including 

Geobacter and Syntrophomonas in the inner layers. This shift is possibly due to a shift in 

affinity with these organisms more able to degrade at lower concentrations, a focus on 

thermodynamically more limited substrates such as propionate, or better engagement with 

hydrogentrophic methanogens (e.g. propionate and butyrate, Pind et al., 2002). Both 

microorganisms appear to be associated with Methanobacterium (Figure 4.2A & A2) as 

hydrogen utilizer and possibly with Methanosaeta as acetoclastic methanogen throughout the 

granules. Geobacter is known to carry out oxidation of organic compounds to CO2 (Nakasaki 

et al., 2013), and as anodic electro-active microbe in microbial fuel cells (Jia et al., 2013). A 

novel direct interspecies electron transfer was also discovered between Geobacter and 

Methanosaeta from anaerobic granules incubated in the lab-scale digesters fed with brewery 

wastewater (Morita et al., 2011; Rotaru et al., 2014). This supports its capability as a 

specialist in engagement with methanogenic electron accepting archaea. Other hydrogen-

utilizing methanogens accounted for a small portion of the whole community possibly due to 

the low amount of H2/CO2 produced from acetogenesis.  

High abundance of Syntrophomonas was generally detected with higher archaeal abundance 

in anaerobic reactors (Regueiro et al., 2012), engaging in obligate syntrophic propionate 

oxidation (Talbot et al., 2008). Syntrophomonas was also detected with high abundance in 

anaerobic sludge treating slaughterhouse wastewater with high fats level (Cammarota et al., 

2013) and thought to be the major anaerobic bacterium oxidising butyrate and long-chain 

fatty acids to acetate and hydrogen through β-oxidation (Pereira et al., 2002).  
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4.3.1.2 Cannery Granules 
Degradation of glucose (Figure 4.12) may follow a series of pathways including production 

of a mixture of organic acids by a mixed population of Anaerolinea and Bacteroidales 

(Sekiguchi et al., 2003); production of acetate and propionate by sub-dominant 

Propionicimonas (Akasaka et al., 2003); or production of acetate and lactate by 

Bacteroidales.3 (Keyser et al., 2007). These microbes mainly accumulated in the outer layers 

of cannery granules (Figure C8 in appendix). 

 

 

Figure 4.12 Proposed functionality and microorganism distribution in cannery granules. Arrows 
indicated the directions of substrate uptake and digestion products. Dotted arrow lines indicate the 
products from presumed acetogens. Vertical dimension refers to depth. Horizontal dimension for each 
shape refers to relative abundance.  

 

Anaerolinea was first isolated from thermophilic granular sludge in an UASB reactor treating 

fried soybean-curd manufacturing wastewater (Sekiguchi et al., 2001). Growth of 

Anaerolinea is slow, but can be significantly stimulated by co-cultivation with 

hydrogentrophic methanogen (Sekiguchi et al., 2003). Carbohydrates are the favoured 

substrate with production of acetate, other VFAs and H2/CO2 (Ariesyady et al., 2007). Genus 
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Propionicimonas was detected in anaerobic sludge from a full-scale UASB reactor treating 

domestic wastewater (De Lucena et al., 2011) and identified as a major glucose-fermenting 

bacterium in a full-scale enhanced biological phosphorus removal plant by stable isotope 

probing (Nielen et al., 2012). The key species in this genus are Propionicimonas paludicola 

isolated from plant residues in irrigated rice-field soil (Akasaka et al., 2003) and 

Propioniciclava tarda isolated from a methanogenic reactor treating waste from cattle farms 

(Sugawara et al., 2011). Both species grow at an optimum of 35°C and produce acetate and 

propionate from glucose.  

Geobacter and Syntrophomonas were distributed evenly through the layers of cannery 

granules. They are possibly the major acetogens and producing acetate for Methanosaeta and 

H2/CO2 for hydrogen-utilizing methanogens. The archaeal community shifted to a co-

dominance of Methanosaeta and hydrogen-utilizing methanogens including 

Methanobacterium and Methanoregula with a higher relative proportion of hydrogentrophic 

methanogens:acetogens compared to the brewery granules. This is likely related to the H2 

flux from glucose, which provides a more diverse and abundant hydrogen utilising 

methanogenic community as compared to the brewery granules (where H2 is only derived 

from acetogenesis). Methanobacterium and Methanoregula are hydrogentrophic 

methanogens. Some Methanobacterium (such as Methanobacterium congolense etc.) can 

only utilize H2/CO2 (Cuzin et al., 2001), while others in both genus (such as 

Methanobacterium formicicum, Methanoregula boonei) can utilize formate as well (Schauer 

& Ferry, 1982; Brauer et al., 2010). They are fed by both fermentation of glucose and further 

acetogenesis throughout the granules. 

 

4.3.1.3 Dairy Granules 
As the waste was milk based, the feed for dairy granules was a mixture of protein (largely 

milk proteins such as casein), and milk sugars, particularly lactose. Anaerolinea.1 dominated 

the bacterial community throughout the depth (Figure 4.13). Sekiguchi et al. (2003) also 

reported that with casamino acid or tryptone, weak growth of Anaerolinea can be observed. 

However, the high relative abundance of Anaerolinea.1 may suggest that the growth relies on 

its favoured substrate – carbohydrate rather than protein.  

Genus Phycisphaerae contains the only specie Phycisphaera mikurensis isolated from a 

marine alga. The degradation of proteins such as starch, casein or gelatine is not observed 
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with this specie and only carbohydrates such as glucose or fructose are utilized. Bacteroidales 

was also an abundant bacterium, particularly growing on the outside. Abundance of 

Bacteroidales was found to be increased when casein were added to a biogas reactor treating 

manure (Kampmann et al., 2012). Bacteroidetes also dominated the microbial community 

during the digestion of bovine serum albumin in anaerobic reactors with synthetic wastewater 

(Tang et al., 2005). This suggests these organisms can ferment protein under anaerobic 

conditions.  

 

 

Figure 4.13 Proposed functionality and microorganism distribution in dairy granules. Arrows indicated 
the directions of substrate uptake and digestion products. Dotted arrow lines indicate the production 
from presumed acetogens. Vertical dimension refers to depth. Horizontal dimension for each shape refers 
to relative abundance.  

 

Abundance of Candidatus Cloacamonas was relatively low throughout the dairy granules. It 

was reported that Candidatus Cloacamonas can ferment lysine (Pelletier et al., 2008). 

Through a metagenomic study on anaerobic digester of a municipal treatment plant, Perret et 

al., (2011) proposed Candidatus Cloacamonas ferments lysine through a variant route 
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involving 3-aminobutyryl-CoA aminotransferase. Thus Candidatus Cloacamonas is possibly 

associated to acetogenesis of amino acid. 

Syntrophobacter was the only acetogen detected in dairy granules and presented at low 

abundance. Members of Syntrophobacter are generally recognized as propionate oxidizer by 

the methylmalonyl CoA pathway (Houwen et al., 1990; Plugge et al., 1993). Syntrophobacter 

sulfatireducens was also isolated from two mesophilic UASB treating brewery and bean curd 

wastewater respectively (Chen et al., 2005) and identified as a propionate oxidizing 

syntrophic bacterium.   

Interestingly, the dominant methanogen in dairy granules was Methanolinea instead of 

Methanosaeta. This is a major issue, since it indicates a major proportion of the methane is 

coming from hydrogen rather than acetate. One possibility could be promotion of acetate 

oxidation through increased ammonia levels (inhibiting the growth of Methanosaeta, Calli et 

al., 2005; Karakashev et al., 2005) while retaining hydrogentrophs, but ammonia levels here 

are relatively low (<1000 mgN·L-1), and the dominance of hydrogentrophs may be due to 

different factors that may require more directed analysis to investigate. 

 

4.3.1.4 Comparison to Previous Analysis 
As identified in the introduction, previous analysis of methanogenic and acetogenic 

communities based on cryosection-FISH identified fermenters in the outer layer are thought 

to degrade organic compound in primary substrates and produce VFAs and H2 etc. that are 

consumed by syntrophic bacteria and methanogens in the inner layers. Acetoclastic 

methanogens and syntrophs dominate the inner layer while the outer layer comprises a 

diverse array of fermentative bacteria (Harmsen et al., 1996, Sekiguchi et al., 1999, Batstone 

et al., 2004). The core may be inactive depending on the size of the granule, and structure 

may become more homogeneous where the primary substrate is slowly degradable (Batstone 

et al., 2004). 

This chapter extends this microbial architecture analysis with high-resolution molecular 

analysis on separated layers of anaerobic granules. With FISH on cryosectioned granules, an 

inactive core without binding to any probes was commonly observed in all granules (e.g. 

Figure 4.2B2). Within the regions observed, micro-colonies of Methanosaeta were 

commonly found inside the granules as described by Sekiguchi et al., (1999). A distinct 
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bacterial outer layer can be distinguished on cannery and dairy granules but not on brewery 

granules. Similar result was reported by Batstone et al., (2004). However, the presence of 

archaea (e.g. Methanosaeta in Figure 4.2B1 or Methanolinea in Figure 4.2C1) on the outer 

layer can be observed under high magnification. 

Based on the identification from pyrosequencing results, FISH probes can be identified to 

target dominant bacteria (especially the presumed fermenters) including Candidatus 

Cloacamonas and Bacteroidales/Anaerolinea. The dominance of these microbes in the outer 

layers can be observed which were also shown in molecular analysis. Similar result was only 

reported by Sekiguchi et al., (1999) and Sekiguchi et al., (2001) on Chloroflexi detected on 

the surface of thermophilic methanogenic granules fed with sucrose and low-molecular-

weight fatty acids and treating fried soybean curd-manufacturing wastewater.  

The molecular analysis on separated successive layers explores the microbial architecture 

under high resolution and shows that methanogens dominating the anaerobic granules. 

Fermentation, acetogenesis and methanogenesis may happen parallel with some functions 

dominating over others in specific layers. Bacterial community is much diverse and whether 

shifts between two groups of presumed acetogens (e.g. from Bacteroidales and Candidatus 

Cloacamonas to Geobacter and Syntrophomonas in brewery granules) or dominated by 

presumed fermenters (e.g. Anaerolinea in cannery and dairy granules) with other 

microorganisms (such as Bacteroidales.3 and Phycisphaerae) varying between different 

layers. The presumed fermenters penetrate deep in the granules with complex substrate (e.g. 

carbohydrate or protein). 

 

4.3.2 Microbial Differences across Granules 

Apart from structural differences, the main differences in community between the different 

granules were generally within major phyla, and mainly differentiation in the bacterial (and 

presumptively fermenters) community. Between cannery and dairy granules, carbohydrate 

consumers such as Anaerolinea in phylum Chloroflexi are shared due to the presence of 

carbohydrate in both substrates. Between brewery and cannery granules, the shared phyla are 

mainly presumed acetogens including Geobacter in Proteobacteria and Syntrophomonas in 

Firmicutes, as the acetogenesis of VFAs are the major process in both granules. Phylum 

Bacteroidetes is shared between all granules due to their highly diverse capability. It is 
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important to note that Bacteroidetes presents consistently in the outer layers, indicating that 

they occupy a niche as primary fermenters. This is consistent with previous observations of 

granules from highly loaded food processing treatment systems (Narihiro et al., 2009). Novel 

unique phyla were frequently observed in the granules examined. However all unique phyla 

are uncultured (e.g. FCPU426 in dairy granules), and thus their actual ecophysiology remains 

unknown. 

   

4.3.3 Comparison of Pyrosequencing and Metagenomic 16S rRNA Analysis 

In the metagenomic analysis, 16S rRNA gene reads accounted for less than 0.01% of total 

reads. It generated 3 times more reads but identified 30 times more unique OTUs compared 

to pyrosequencing. The relative abundance of most dominant OTUs, which affiliated to 

Methanosaeta, dropped from 47-60% (pyrosequencing) to 5-7% (metagenomic). However, 

the dominance of Methanosaeta through the whole brewery granules remained. It may 

suggest that Methanosaeta were overestimated by pyrosequencing, indicating possible PCR 

bias affecting pyrosequencing. The opposite result was observed by Pinto et al., (2012), with 

Archaea being under-represented against bacteria by separated bacterial and archaeal primers 

targeting V3-V5 region. The primers used in this thesis target V8 region and are universal 

(although there could be base-pairing exceptions in one or more lineages (Hugenholtz and 

Goebel, 2001)). Due to the higher sequence conservation in V8 region (Youssef et al., 2009), 

dominant OTUs can results a higher relative abundance (Engelbrektson et al., 2010). Despite 

this possible bias, the overall analysis, including microbial architecture shifts in terms of 

abundance of major microbes and major factors differentiating layers remains, validating the 

outcomes from pyrosequencing analysis.     

Although the metagenomic analysis provided a deeper view on the microbial community than 

pyrosequencing and had minimum bias from PCR, there are several drawbacks or concerns 

on 16S rRNA analysis from metagenomic analysis. 

First of all, pyrosequencing generates above 250bp per read. All pyrosequencing reads 

trimmed to 250bp for consistency prior to taxonomic analysis. However, the average read 

length in metagenomic analysis with Illumina platform is around 100bp, which is still 

appropriate for accurate taxonomy characterization (Liu et al., 2007). Read length can 
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possibly extended by newer platform (Hiseq 2500 produce 2x150bp) or merging paired-end 

reads (Rodrigue et al., 2010).  

Metagenomic 16S rRNA reads comes from random regions of the 16S rRNA gene. Since 

each region of the 16S rRNA gene has different evolutionary rates (Hills and Dixon, 1991), 

reads from different regions (one from conserved and one from variable region) of the same 

16S rRNA gene may be classified as different taxonomy. It was noted that, within the top 10 

OTUs, 1 OTU in pyrosequencing analysis but 4 different OTUs in metagenomic 16S analysis 

were classified as Methanosaeta. It is possible that these OTUs affiliated to the same 

Methanosaeta if the 4 OTUs in metagenomic 16S analysis came from different region of 16S 

gene. In addition, the OTUs picking of metagenomic 16S analysis was done with closed 

reference databases that novel microorganism are ignored. Programs, such as EMIRGE 

(Miller et al., 2011) or Amplishot (https://github.com/ctSkennerton/Amplishot), are 

developed to extract specific region from metagenomics or even de novo reconstruct the 

whole 16S rRNA genome.  
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Chapter 5.  Impact of Primary Substrate Type 

on Development and Structure of Acidogen 

Layer on UASB Granules 

5.1 Introduction 

Anaerobic granules are macroscopic self-supporting biofilms that occur in high-rate 

anaerobic reactors. The microbial community structure of anaerobic granules consists of three 

major groups: fermenters, acetogens and methanogens. These microorganisms, due to their 

functional and substrate specificity, are spatially differentiated in anaerobic biofilms, 

including granules. Fermenters are key groups that carry out fermentative conversion of 

primary soluble substrates. The speed of the primary fermentation has been identified as a 

controlling factor in determining overall structure (Batstone et al., 2004). Fermenters are the 

major microbial clades presenting on the surface of the granule (Sekiguchi et al., 1999; 

Batstone et al., 2004; Satoh et al., 2007), and hence determining surface properties such as 

shear strength, microscopic texture, and density (Forster, 1991; Quarmby and Forster, 1995). 

A better understanding of the fermentative community offers the potential to enhance granule 

strength, density, functionality, and activity.  

Compared to methanogens and acetogens, very limited work has been done on fermenters, 

particularly in granules (Sundh et al., 2003; Chackhiani et al., 2004). Functionality of 

fermenters (in terms of substrate capability) is diverse, due to the broad range of complex 

mono- and polymers, and phylogeny is also broad. Bacteria from the phyla Chloroflexi 

(Sekiguchi et al., 2003), Firmicutes (Song & Dong, 2008) and Proteobacteria (Ramons et al., 

2010) were commonly identified from anaerobic granules and presumed as fermentative 

bacteria based on alignment to previous known fermenters. The microbial ecology of 

fermenters was thought to be closely related to the substrate content (Batstone et al., 2004). 

Satoh et al. (2012) monitored the distribution of radio-labelled substrate by beta-imaging and 

chemical profile by microsensor on single granules and concluded that Chloroflexi and 

Smithellla spp. are responsible for glucose fermentation and propionate oxidation 

respectively on granules grown on skim powdered milk. Due to the difference in operating 
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parameters (such as reactor volume, HRT or inoculum) and granule properties (strength and 

community), comparative studies have not been widely done.  

This chapter aims to investigate the influence of differential formation of fermenters on 

community structure and particularly shear strength in a highly controlled comparative 

manner. Fermentative layers were grown on granules collected from the brewery digester (i.e., 

with a largely acetogenic functionality) by feeding synthetic carbohydrate and protein 

medium respectively and characterised by the combination of shear method (developed in 

Chapter 3), pyrosequencing and FISH.  

 

5.2 Results 

5.2.1 Reactor Performance 

The reactors were operated for 52 d with relatively continuous feed during this period.  They 

were cleaned on day 12 and day 46 to remove biofilm from the reactor wall that was causing 

volume and substrate loss. There was high COD load due to failure of the medium feed pump 

tube on day 25 (i.e. only substrate, not media was fed on that day). All three reactors received 

an average of 2gCOD·L-1·d-1 for other times and achieved high COD removal (>90%). 

Further details and operational results are summarised in Table D1-D3.  
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Figure 5.1 COD feed and effluent concentrations, and COD removal of A) control reactor, B) glucose 
reactor and C) gelatine reactor.   

 

5.2.2 Shearing 

All granules were black with a smooth surface. Granules were not significantly different in 

size, with an average diameter of 0.14mm for control granules with standard deviation of 

0.03; 0.13mm for cannery granules with standard deviation of 0.03; and 0.15mm for gelatine 

granules with standard deviation of 0.02. The fines generated versus shear rate squared (γ2) is 

shown in Figure 5.2. A lower (more negative) KC, equates to a weaker granule (i.e., faster 

generation of fines). Gelatine granules was the slightly weaker (with lowest Kc=-5E-07s2) 
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than other types of granules (with Kc=-4E-07s2). The amount of solids measured, together 

with the measured density allowed calculation of depth sheared as shown in Table 5.1. 

Granules did not have significantly different strengths (p=0.47) based on ANCOVA of all 

data (mixed categorical-continuous ANCOVA against shear rate and granule source). 

 

 

Figure 5.2 Estimation of characteristic abrasion coefficient (KC). KC for granules from lab-scale reactors 
with different feedstock, including glucose, gelatine and control were estimated according to the method 
described in materials and methods section. A lower KC equates to a weaker granule.  

 

Table 5.1 Shear depth (µm) of three types of anaerobic granules at each time point. Shearing was done at 
1500 rpm. 

Time (minutes)  Depth (µm) 

Control Glucose Gelatine 

5 4 4 6 

20 13 10 15 

60 26 20 27 

180 51 43 57 

270 73 59 86 
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5.2.3 Shift in Microbial Community – Outer Layers 

A PCA plot demonstrating shift in population across layers and granules is shown in Figure 

5.3. The largest shifts were the outer layers in glucose (blue dashed circle) and gelatine 

(green dashed circle) granules indicating that quantitatively distinguishable outer layers for 

gelatine and glucose granules were developed, particularly associated with 3-4 key OTUs in 

each case.  

 

 

Figure 5.3 PCA biplot based on OTUs recovered to illustrate the differences between inoculum, harvested 
granules and sheared layers of each type of granules. Different types of granules were separated by 
colour. Layer samples from outer to inner were distinguished by size of rings (larger as outer layer). 
Whole granules were represented as filled colour circle and black circle respectively. Microorganisms 
were separated by colour based on the presumed functionality. 

 

Layers from the control granules clustered with the initial inoculum sample due to the 

dominance by archaea including OTUs affiliated to Methanosaeta and Methanobacterium. 

The major factor differentiating glucose granules, especially those on the outer layer (0-10µm) 

were OTUs classified as genus Pleomorphomonas, Propionicimonas and order Bacteroidales 

(referred to Bacteroidales.2 in Figure 5.3 and Figure C5). The layers from gelatine granules 
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formed two clusters. The outer layer group contained 0-27µm regions dominated by OTUs 

identified as family Holophagaceae (Figure C6) and order Synergistales. The inner layer 

group was mainly differentiated from other granules by OTUs affiliated to genus 

Syntrophomonas, Anaerolinea and one species in order Bacteroidales (refer to 

Bacteroidales.1 in Figure 5.3). 
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Figure 5.4 Ternary plots show the distribution of presumed fermenters (green circle), presumed 
acetogens (blue circle) and methanogens (red circle) among the whole granules samples (A) and the outer 
layer samples (B) of stimulated granules and control based on pyrosequencing results. Size of each point 
was adjusted regarding to the average abundance of each microorganism in three types of granules. 
OTUs with average abundance lower than 1% in three samples were excluded. 

%
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Within the microbial community of whole granules (Figure 5.4A), the shared OTUs among 

granules were mainly presumed acetogens or methanogens such as high average abundance 

OTUs (>10%) affiliated to Syntrophomonas, Geobacter, Bacteroidales.1, Methanosaeta and 

Methanolinea among all granules, low average abundance OTUs (1-5%) affiliated to 

Anaerolinaceae between control and glucose granules, Syntrophaceae between glucose and 

gelatine granules or Syntrophobacter and Thermoplasmata between control and gelatine 

granules. The only presumed fermenters can be predicted within the bacterial community of 

whole granules were the unique OTU in glucose granules affiliated to Pleomorphomonas. 

Differences of presumed fermenters can only be seen by examining the microbial community 

in the outer layers of granules (Figure 5.4B). The outer layers of glucose and gelatine 

granules contained a large group of highly differentiated organisms. Specifically, 

Holophagaceae dominated the outer layer of gelatine granules and genus Pleomorphomonas 

dominated the outer layer of glucose granules. Methanogens shared among three granules 

remained. Presumed acetogens with medium average abundance (5-10%) including 

Bacteroidales.1, Syntrophobacter and Syntrophomonas, were detected in the outer layer of 

control granules. OTUs with low average abundance (1-5%) affiliated to Geobacter 

(presumed acetogen) and Candidatus Cloacamonas (presumed fermenter) shared between 

control/glucose granules and control/gelatine granules respectively. 

Microscopic images, and alignment to layer based pyrosequencing are shown in Figure 5.5. 

This also demonstrates microscopically the absence of a bacterial outer layer on inoculum 

granules and control granules as shown in Figure 5.5A1 and 5.5B1. In comparison, bacterial 

layers (shown in red) were found on both glucose granules (Figure 5.5C1) and gelatine 

granules (Figure 5.5D1) but with quite different morphology. Bacteria formed a thin layer in 

glucose, while they were in discrete colonies on the surface of gelatine granules. The 

distinguishable bacterial community shift from outer to inner layers of granules can be seen 

in both glucose and gelatine granules based on pyrosequencing results. Those decreasing in 

abundance from outer towards core were OTUs affiliated to family Holophagaceae in 

gelatine granules (Figure 5.5D2) and OTUs affiliated to order Bacteroidales (refer to 

Bacteroidales.2) and genus Pleomorphomonas in glucose granules (Figure 5.5D2). OTUs 

classified as genus Geobacter, Syntrophomonas, order Bacteroidales (refer to Bacteroidales.1 

in Figure 5.5C2 and 5.5D2) and phylum AC1 were found mainly in the inner layer of both 

granules. The bacterial community of control granules was relatively simple with few 

bacteria dominating through whole granules including OTUs closely related to genus 
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Geobacter, Syntrophobacter, Syntrophomonas, class Anaerolineae, order Bacteroidales (refer 

to Bacteroidales.1 in Figure 5.5B2) and phylum AC1. The archaeal community was much 

simpler with Methanosaeta and Methanobacterium distributed evenly through each granule 

(Figure 5.6). More PCA analyses on individual type of granules are shown in the Appendix 

(Figure C4-C6). 
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Figure 5.5 Cryosection FISH image shows the distribution of archaea (ARC916) in green, Methanosaeta (MX826) in yellow and bacteria (EUBmix) in red (image set 
1) and relative abundance of bacterial community shift (graph set 2) and archaeal community shift (graph set 3) of inoculum (image set A), control granules (image 
set B), glucose granules (image set C) and gelatine granules (image set D).   
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5.3 Discussion 

5.3.1 Development of Fermentative Layer 

Microbial community differentiation among the outer layer of control and stimulated 

granules was mainly driven by the primary substrate. Both PCA and ternary plot on bacterial 

community of outer layer indicated that unique fermentative layers were developed on the 

surface of granules including major bacterial OTUs in genus Pleomorphomonas when fed 

with glucose and family Holophagaceae when fed with gelatine. Neither microbes were seen 

(in substantial numbers) in either the inoculum or in previous chapters in this thesis. The 

inner layers of stimulated granules were not affected substantially by the substrate. Acetogens 

and methanogens, including key OTUs affiliated to Syntrophomonas, Methanosaeta and 

Methanobacterium, dominated the inner layer of all three granules and seemed largely 

derived from the inoculum. Kovacik et al., (2010) found that with short term perturbations 

(substrate change from complex to simple feedstock), the microbial diversity of anaerobic 

granules is mainly related to changes in bacterial community while Methanosaeta and 

Methanobacterium remain as dominant archaea with a shift in abundance. However, the 

results strongly contrast with those in Chapter 4. The archaeal community was replaced with 

Methanolinea in dairy granules, and Methanobacterium and Methanoregula (to a lesser 

extent) in carbohydrate fed granules. This indicates that the top level fermentative community 

changes relatively rapidly, while the lower level community and possibly overall granule 

structure change on a longer time scale. 

The physical properties of the granule, in terms of size distribution, granule strength, were 

not significantly impacted by the fermentative layer. This possibly indicates that physical and 

geometric characteristics, rather than those derived from the microbial community are more 

important. As an example, these granules were also not subject to hydrodynamic forces that 

may result in bulk properties such as surface texture (smoothness) and shear strength 

(Picioreanu et al., 2000; Nor-Anuar et al., 2012). In contrast, with a relatively thin and young 

fermentative layer formed, the effects on properties may be not strong enough to be detected.  
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5.3.2 Microbial Community within Granules 

The microbial architecture of control granules was the same as the inoculum as previously 

analysed in Chapter 4 (separate sample from the same reactor) (Figure 4.12 in Chapter 4). 

Acetate is supplied from feedstock and via acetogenesis of propionate to be utilised by the 

dominant Methanosaeta (Figure 5.6A). Growth of Methanosaeta is normally favourable 

under low acetate concentrations due to the high substrate competition pressure from 

Methanosarcina under high acetate concentrations (Qu et al., 2009). However, Methanosaeta 

was always found as a dominant methanogen in anaerobic digesters (Regueriro et al., 2012). 

Van Haandel et al., (2013) also found the accumulation of Methanosaeta in COD overloading 

UASB reactors as Methanosaeta may be more readily incorporated granules then 

Methanosarcina due to their filamentous structure. Methanosaeta are also favoured in 

granules and biofilms due to the concentration of acetate which is lower in-biofilm than the 

bulk as of biomass, which means in-biofilm acetate concentrations are lower than the bulk 

due to localised reaction exceeding diffusion (Batstone et al., 2004; 2006). Methanosaeta was 

commonly found in anaerobic digesters (Griffin et al., 1998) and anaerobic granules 

(McLeod et al., 1990; Harmsen et al., 1996b) and considered as a methanogen that uses only 

acetate. Many species were cultured in genus Methanosaeta including Methanosaeta concilli 

from sewage sludge (Patel and Sprott, 1990), Methanosaeta thermophilia (Kamagata et al., 

1992) and Methanosaeta harundinacea from UASB treating beer-manufacturing wastewater 

(Ma et al., 2006) and were intensively studied (Smith and Ingram-Smith, 2007, Barber et al., 

2011).  
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Figure 5.6 Proposed functionality and microorganism distribution in (A) control and (B) stimulated 
granules fed with glucose and gelatine respectively. Arrows indicated the directions of substrate uptake 
and digestion products. Vertical dimension refers to depth. Horizontal dimension for each shape refers to 
relative abundance. Glucose and gelatine are break down by presumed fermenters to produce VFAs. By 
presumed acetogens, VFAs are converted to acetate and H2/CO2 which in turn to be utilized by 
methanogens. 
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The bacterial community of control granules shifted from Bacteroidales.1/Syntrophobacter 

accumulated in the outer layer to Geobacter/Syntrophomonas in the inner layer. Both 

Bacteroidales.1/Syntrophobacter and Geobacter/Syntrophomonas are presumed acetogens 

indicating this function is distributed throughout the granules, but the role is filled by 

different consortia. This was also seen in the source industrial granules (refer to Brewery 

granules in Chapter 4). Bacteroidales and Syntrophobacter are known as propionate oxidizer 

(Kragelund et al., 2008; Shigematsu et al., 2006) and produce acetate plus H2/CO2 via the 

randomizing methyl-malonyl-coenzyme A pathway. The production of acetate and butyrate 

from propionate degradation through a dis-mutating pathway (Lens et al., 1996; Tholozan et 

al., 1990) has been identified in Smithella of family Syntrophaceae, which distributes evenly 

through the whole granules with low abundance. By tracing radioactive labelled propionate, 

Gan et al. (2012) proposed that under methanogenic condition, Geobacter contributes to 

propionate degradation and acetate production. The ability to degrade propionate and butyrate 

in genus Geobacter was also reported in several pure cultures (Coates et al., 2001; Aklujkar 

2009). Syntrophomonas are well known butyrate oxidizer (Liu et al., 2011; Muller et al., 

2010) via beta-oxidation pathway (Schink, 1997; McInerney et al., 2007). A membrane-

bound protein complex (Schmidt et al., 2013) was recently found involved in reversed 

electron transport to overcome the redox potential difference in Syntrophomonas. The 

abundance shift between Bacteroidales.1/Syntrophobacter and Geobacter/Syntrophomonas is 

possibly due to the production of butyrate from propionate by Syntrophaceae, since butyrate 

is the only substrate for Syntrophomonas, or due to the syntrophic association between 

Syntrophobacter and methanogens outcompeting with association between 

Syntrophomonas/Geobacter and methanogens as butyrate oxidation is energetically 

unfavourable. 

In contrast with acetogens and methanogens in which were the same in the glucose and 

gelatine fed granules, fermentative communities changed dramatically. The two key 

presumptive fermenters developed on stimulated granules were OTUs affiliated to genus 

Pleomorphomonas and family Holophagaceae (Figure 5.6B) in glucose and gelatine granules 

respectively.  

Family Methylocystaceae has been most commonly identified as a key methanotroph 

(Bowman, 2006). However, genus Pleomorphomonas does not cluster (Xie and Yokota, 2006) 

with known methanotrophs such as genus Methylobacterium (Dedysh et al., 2004). The most 

closely related to the two identified OTUs is Pleomorphomonas koreensis (Figure 5.7) which 
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is a rod-shape nitrogen-fixing bacterium isolated from contaminated culture of the 

phototrophic bacterium Rhodopseudomonas palustris. Acids are produced from fermenting 

glucose by Pleomorphomonas koreensis (Im et al., 2006). 
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Figure 5.7 Phylogenetic tree of major archaea OTUs generated in Fasttree. Tetratrichomonas undula was 
set as out group.  

 

Pleomorphomonas was not detected from previous studied cannery granules (refer to 

carbohydrate granule in Chapter 4) fed with large amounts of sugar, where the more 

commonly observed Bacteroidales and Anaerolinea occupied the fermentative niche. 

Pleomorphomonas completely displaced other acetogens in the outer layer and was not 

present in inner layers but as stated above, the deeper community appeared to be the same as 

control granules which consists of presumed acetogens including Bacteroidales.1, 

Syntrophobacter with AC1, Geobacter and Syntrophomonas dominating. Phylum AC1 were 

first found in anaerobic marine sediment (Dhillon et al., 2003). The function of AC1 in 

methanogenic bioreactors remains unclear. As AC1 was frequently detected at high 

abundance in anaerobic granules treating brewery wastewater (Werner et al., 2011), it may 

possibly contribute to VFAs degradation and has been classified as presumed acetogens in 

this thesis. In industrial anaerobic granules treating similar types of wastewater, fermenters 
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penetrated to a much deeper extent (Figure 4.13 in Chapter 4). This is possible due to the 

relatively short timeline for growth, and possibly persistence of fermentative DNA in deeper 

layers.  

Within the gelatine granules, Holophagaceae was detected with a similar shift in abundance 

as Pleomorphomonas in glucose granules. Family Holophagaceae were first identified by 

Fukunaga et al. (2008), which contains two genera Holophaga and Geothrix. The most 

affiliated organism to the OTU found in the gelatine granules is Holophaga foetida, isolated 

from a black anoxic freshwater mud sample (Liesack et al., 1994). It utilises methoxylated 

aromatic compounds to produce acetate through Phloroglucinol pathway. Pyruvate can also 

be oxidised to acetyl-CoA (and hence acetyl-CoA derived products such as butyrate, acetate, 

and ethanol). Geothrix is a strictly anaerobic chemo-organotroph that oxidises acetate with Fe 

(III) as electron acceptors (Coates et al., 1999). The type specie Geothrix fermentans can also 

use propionate, palmitate, lactate, fumarate or succinate as alternative electron donors, and 

can ferment citrate and fumarate in the absence of electron acceptors. There is hence no 

functional precedent for gelatine degradation in either related species.  

Functionally, gelatine is hydrolysed by gelatinase (Malla et al., 2008) to amino acid and then 

degraded to produce acetate (Figure 5.7B), other VFAs and H2/CO2 by presumed fermenters. 

Gelatinase, as extracellular metallo- endopeptidase or metalloproteinase, are expressed in 

serveral bacteria including Pseudomonas aeruginosa, Staphylococcus aureus, Clostridium 

perfringens (Baldassi et al., 2002), Serratia marcescens and Bacillus species (Balan et al., 

2012). Whether Holophagaceae is hydrolytic or fermentative remained unclear due to that 

Holophagaceae was not previously identified in anaerobic granules. Evidence is strong that it 

is responsible for gelatine degradation, based both on location and differentiation from 

control granules. Synergistales (belong to phylum Synergistes) was found in a wide range of 

anaerobic habitats including rumen environment (Allison et al., 1992) and anaerobic digester 

treating proteinaceous waste (Ito et al., 2011; Delbes et al., 2001). Compared to all other 

bacterial genomes, highest average proportion of amino acid transport and metabolism genes 

were found in phylum Synergistes (Hugenholtz et al., 2009) thus amino acid fermentation 

may be a common feature within this group. To data, the first and only completed genome 

sequence in Synergistes, Thermanaerovibrio acidaminovorans, was isolated from anaerobic 

granules of sugar refinery UASB and found to carry out decarboxylation of succinate to 

propionate, a number of amino acid fermentation as well as carbohydrate fermentation 

(Chovatia et al., 2009). Acetogenesis was still carried out by the same acetogens group, 
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including Geobacter, Syntrophomonas and AC1 found in control granules. Syntrophobacter, 

as the main acetogen found in dairy granules (in Chapter 4), was not found in substantial 

amounts in gelatine granules. The drop in relative abundance of Methanosaeta is possibly due 

to the inhibition of NH4 produced during amino acid degradation. Similar change in 

abundance of Methanosaeta was seen in Chapter 4 (though it was replaced by Methanolinea).  
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Chapter 6.  Discussions, Conclusions and 

Future Directions 

The microbial community (specially the fermentative community) in different types of 

industrial granules were characterised in terms of not only the phylogenetic identification and 

shifts between different types of granules but also spatial distribution and shifts in relative 

abundance within each type of granules. The shifts in fermentative communities 

corresponding to substrate change were also examined in a controlled manner. This 

knowledge may now be applied to optimise existing granular processes or manipulate the 

composition of anaerobic granules to expand the functional capability (Guiot et al., 2002, 

Zhou et al., 2011) or boost granule properties such as strength or settling velocity (Macias 

and Carvajal, 2012). The following chapter reiterates the major findings on the characteristics 

of anaerobic granules, discusses concerns raised in this thesis and suggests recommendation 

for future research.  

 

6.1 Shear Method 

6.1.1 Applications of Shear Method 

The shear method was developed to sequentially isolate successive layers of microorganisms 

within anaerobic granules and allow the application of molecular techniques to spatial layers 

separately rather than the whole granules. It provides the opportunity for community profiling 

on each layer of anaerobic granules and also provides additional spatial distribution 

information. This is the first time the microbial architecture and identification has been 

explored at such high resolution. Microbiology studies in anaerobic granules are no longer 

limited to whole granule molecular analysis and limited localization of FISH, which requires 

a prior knowledge, but have expanded to examine the shift in abundance through spatial 

layers and the localization of whole community. With additional information, it was found 

that the microbial architectures of industrial granules from processes fed different types of 

wastewater, are similar to results previously identified, but that particularly the fermentative 

community is substantially richer (in terms of both diversity and relative abundance) than 

previously identified using FISH (Harmsen et al., 1996; Batstone et al., 2004). The shear 



97"|"P a g e "
%

method also successfully monitored the shift of fermenters on anaerobic granules under 

substrate change. An additional application of the shear method was developed in that it 

allowed development of covariance information for deep metagenomic sequencing which is 

the first time that covariance based analysis has been done on the layers of brewery granules. 

Normally it needs to be effected from multiple samples differentiated in either time (Fang et 

al., 2013) or space (Albertsen et al., 2013). 

The application of the shear method can be extended to other systems including different 

types of anaerobic granules (fed on complex substrates), aerobic granules (to investigate the 

distribution of phosphate-accumulating organisms (Lemaire et al., 2008)), biofilms (such as 

the electrodes of a microbial fuel cell (Rabaey et al., 2007) or a sewer pipe (Satoh et al., 

2009)). The technique may also be applied using a time series approach to investigate 

layering during the formation of granules or biofilms.  

The shear method can also be used as an enrichment method for microorganisms of interests 

(particularly those forming in discrete layers such as fermenters). The results from this thesis 

showed that fermenters were found in the extracted outer layers of granules at a much higher 

relative abundance (up to 10-fold increase) than detected when examining the whole granules, 

this was due to the disproportionate dominance of fermenters in this outer layer, and possibly 

PCR bias (Pinto et al., 2012) favouring methanogens which were more concentrated in the 

granule core (see Chapter 4). The shear method enables the fermenters to be harvested at 

enriched levels. When considering potential applications for enrichment, Yamada et al. (2011) 

found that uncultivated microbes belonging to candidate bacterial phylum KSB3 are 

associated with filamentous bulking in mesophilic UASBs and have been observed on the 

surface of bulking granules. The method developed in this thesis could be used to selectively 

extract these organisms for bulk nucleic acid analysis.  

There is strong potential to combine the shear method with advanced metagenomic analysis 

techniques such as the GroopM method for genomic binning. GroopM generally requires at 

least 3 related samples, to recover the full genome of dominant microorganisms, and in this 

thesis, sufficient covariance information was extracted from a single sample that was 

processes into spatial layers. Brewery granules were split into 5 layers for metagenomic 

analysis and resulted in high quality bins on Anaerolinea (70% completeness, 1.8% 

contamination) and Caldilinea (90% completeness, 3.6% contamination). This level of 
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sequencing of fermenters has only previously been achieved by culture-dependent technique 

(Sekiguchi et al., 2009). 

However, there are also limitations to the shear method, future development can address 

these limitations including: 

1. Physical contamination. Granule sieving is performed prior to shear to ensure 

consistent initial granule size; and again at multiple time points during the shear 

method to separate the sheared layers (fines) and residual granules. Selection of sieve 

size is critical for this process as smaller granules may pass through the sieve and 

contaminant the fines. The effect of this possible contamination on molecular analysis 

is not clear, as it may be just a small portion compared to the layer samples. 

2. Estimated vs absolute shear depth. The shear depth is estimated by measuring the 

mass of fines removed during shearing, rather than direct measurement of granule size 

after shear. The estimated depth can be used for microbial architecture construction. 

However, as the shear depth is not measured directly, the microbial layer information 

is difficult to compare with other depth-related information such as measurements 

from micro-sensors embedded in the granules or FISH quantification with absolute 

depth. 

 

6.1.2 Future Directions 

To overcome concerns with physical contamination, as well as variation in shear depth, 

granules may be selected by settling velocity prior to shear. Similar approach has been used 

to illustrate settling property of granular sludge (Nor-Anuar et al., 2007). The concept is size 

based stokes separation of granules. A separation rig, as shown in Figure 6.1 can be used to 

separate faster settling granules (larger mature granules) from slower settling granules 

(smaller young granules) and fines. This can be an iterative process with multiple treatments 

used to improve separation by shear method.  
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Figure 6.1 Sketch for granule separation by settling velocity. 

 

Modification of shear method based on core sampling (Stone, 1991) and cryosectioning 

(Batstone et al., 2004) is proposed here. The objective of using a core sample is to reduce the 

complexity from a 3 dimensional granule to a 2 dimensional core as shown in Figure 6.2A 

using sampling tools (Abegg et al., 2008) or trimming the embedded sample by cryosection. 

The core can then be sliced vertically by cryosection to obtain layers from each granule 

(Figure 6.2B). Both molecular techniques and FISH can then be used to examine the layers. 
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Figure 6.2 Granule core cryosectioning. A granule core sample is cut off from whole granules to reduce 
the layer difference to 2 dimensions (A). After embedding, it is cryosectioned vertically to separate the 
layers (B).  

 

The advantages of examining a granule core sample over layers separated using the shear 

method are: (i) the slide thickness is consistent and can be controlled on a Cryostat machine, 

thus the absolute depth of each slide can be predicted based on slide thickness; (ii) the 

cryosection core method is based on assessment of an individual granule, this would reduce 

interference from smaller granules and prevent uncertainty due to variation between granules. 

In addition, multichannel moulds can be used to enable a large number of samples to be 

sectioned at the same time. It may allow analysis of the variation between granules and 

determine the representative populations within large reactors containing many granules. A 

variation of cryosection core technique has been applied successfully to sewer biofilms 

(unpublished) at the AWMC, UQ (Australia) and the technique allowed for pyrosequencing 

analysis on different layers within the biofilms.  
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6.2 Microbial Ecology  

6.2.1 Influence of Substrate on Microbial Community Composition 

A major outcome from this thesis is the determination that fermentative communities are far 

more complex than previously believed based on whole granule analysis (Keyser et al., 2006; 

Narihiro et al., 2009), FISH (Diaz et al., 2003; Batstone et al., 2004), and combined culture-

based analysis and FISH (Sekiguchi et al., 2001; Yamada et al., 2007). Five OTUs detected in 

the outer layers are common to all types of granules investigated in this thesis (Figure 6.3). It 

is unknown as to whether these are synergistic or competitive; the latter is likely, and it is 

important to understand why stable complex communities could exist where there is strong 

competition. Bacteroidales was a key organism, which is diverse and the two key OTUs may 

have different functional contributions. Bacteroidales.1 showed the highest relative 

abundance in the brewery granules (in Chapter 4) and possibly carried out acetogenesis as the 

substrate consisted mainly of propionate, ethanol, and acetate. Bacteroidales.2 was the 

dominant group in cannery granules (refer to cannery granules in Chapter 4), and likely 

important for sugar fermentation. However Bacteroidales.2 was not found in granules 

stimulated with glucose feed, indicating it may dominate in a more complex environment 

compared to the simple system in laboratory reactor.  

 

 

Figure 6.3 Relative abundance of common 5 OTUs present on the outer layer of all granules studied in 
this thesis. 
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According to spatial distribution, relative abundance and phylogenetic information, a draft 

relationship between substrate, organism and the location of each functional group is 

proposed in Figure 6.4. Fermentation likely occurs in the outer layer of granules, as this is the 

location that provides direct access to the more complex substrate and where key 

fermentative candidates are (based on relative phylogeny and differentiation from control in 

Chapter 5). In contrast, acetogenesis and methanogenesis are carried out by key and limited 

organisms (mostly known) distributed throughout the granules. The syntrophic relationship 

between acetogens and methanogens is well established in AD (Talbot et al., 2008; Gan et al., 

2012). Geobacter and Syntrophomonas appear to be key VFA consuming/acetate producing 

microorganisms as they are associated with a high relative abundance of the acetoclastic 

methanogen, Methanosaeta, as well as the obligate syntrophic partner which may be 

Methanobacterium or Methanolinea. Syntrophobacter is the only presumed acetogen 

identified in the dairy granules, likely degrading propionate. The methanogenic community in 

the dairy granules shifted from Methanobacterium to Methanolinea. This is likely due to the 

lower affinities for H2 by Methanolinea compared to Methanobacterium (Sakai et al., 2009) 

and is consistent with expectations that fermentation of proteins will result in a lower 

hydrogen concentration due to coupling of oxidation/reduction reactions through Stickland 

pairing (Ramsay and Pullammanappallil, 2001). 

 

 

Figure 6.4 Proposed microbial functions and spatial distribution in anaerobic granules treating different 
substrate. 
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6.2.2 Relationship between Trophic Groups at Varying Granule Depth  

In this thesis, the results showed that different trophic groups vary in relative abundance at 

different locations through whole granules (especially the industrial granules). The distinct 

shifts between fermenters and acetogens from outer to inner layers were only observed on 

brewery granules and the granules stimulated in the lab-scale UASBs (fed with low substrate 

loading rates). Compared to the traditionally proposed layer structure (Guiot et al., 1992; 

Fang, 1995), the microbial architecture was different with methanogens dominating through 

whole granules while other trophic groups were found to accumulate in the layers most 

suitable in terms of food source. A very important difference not traditionally observed using 

any previous method (including FISH) was the presence of acetoclastic methanogens such as 

Methanosaeta in the outer layers.  

The accumulation of each microorganism has been analysed by a heatmap which shows the 

top 20 most abundance OTUs scaled and centred by each OTU. The accumulation is based on 

changes in an individual OTU relative to the same OTU at different layers and is not based 

on the relative abundance of the OTU within the population (i.e. not relative to other OTUs). 

Methanosaeta generally accumulated in the inner layers of granules (Figure C8, C9 & 6.5). 

As acetoclastic methanogenesis is generally favoured at high acetate concentrations (Zinder 

and Koch, 1984), it is likely that the acetate concentration is also high in this zone. 

Additionally, Methanosaeta accumulated in the outer layer of the control granules where 

acetate was a major component of the raw substrate (control granules in Figure C). This 

supports the conclusion that Methanosaeta accumulates in zones where acetate is available in 

abundance.  
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Figure 6.5 Heatmap shows the accumulation trend of each “top 20” OTU in gelatin granule through 
different layers. Accumulation trend reflects the relative abundance scaled and centered within range -1.5 
to 1.5 of each OTU and indicates the abundance change of each OTU in different layers. Depth of each 
layer is labelled on the bottom of heatmap and the taxonomy of each OTU is labelled by the side of 
heatmap. 

 

The heatmap shows a number of key features;  

(a) Presumptive fermenters including Holophagaceae, Porphyromonadaceae and 

Clostridiaceae accumulate strongly in the outer layers (20µm). This was previously 

known from proportional analysis. 

(b) Methanogens accumulate in mainly the inner layer (>57µm), but also in an outer zone. 

(c) Presumptive syntrophs accumulate in a specific zone (27µm), which mainly excludes 

methanogens. 
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The last two observations were not readily seen in the proportional OTU analysis shown in 

Chapter 5, and only become evident once shifts are assessed as in the heatmap. The likely 

reasoning is that particularly syntrophs concentrate in layers immediately adjacent to 

fermenters where there are higher concentrations of organic acids; particularly those can be 

degraded without obligate electron transfer to a hydrogen utiliser (e.g., propionate to butyrate 

or ethanol). The depth of the acetogenic zone may be related to the fermentation rate of the 

raw substrate, e.g. gelatin may be degraded faster than glucose (Flotats et al., 2006; Garcia-

Heras, 2003), therefore lead to a fast accumulation of organic acid. As a result the acetogen 

zone is found at 27µm in gelatin fed granules (Figure 6.5) compared to 43µm in glucose fed 

granules (Figure C10). Methanogens in the outer layer likely utilise acetate from both the 

bulk liquid and from fermenters in the granule, but methanogens in the centre mainly receive 

acetate and hydrogen from acetogens, including products from the outer layers that diffuse 

into the centre of the granule and products generated locally from oxidising propionate and 

butyrate in syntrophic associations. 

Strong positive correlation between bacteria and archaea is found in the outer layers (upper 

levels of the acetogenic zone, Figure 6.6) in granules examined except cannery granules. This 

is possibly due to the growth of archaea in the outer layer of cannery granules being 

independent of acetogens, with substrate instead coming from fermentation or the bulk liquid. 

Methanosaeta links to presumed acetogens such as Geobacter and Syntrophomonas etc. in 

brewery granules but to only presumed fermenters such as Candidatus Cloacamonas in dairy 

granules, or Holophagaceae in gelatin granules. Such relationship is also observed with FISH, 

which shows the archaea grow in a close association with bacteria in the outer layer (Figure 

6.7). This may suggest that Methanosaeta relies on acetate produced by acetogenesis under 

simple substrate (VFAs) but by fermentation under complex substrate (carbohydrate or 

protein). Methanobacterium and Methanolinea are also linked to presumed fermenters 

Anaerolinea/Bacteroidales in glucose granules due to the production of H2/CO2 from glucose 

hydrolysis (Sekiguchi et al., 2003; Thomas et al., 2011; Rismani-Yazdi et al., 2013). The 

correlation between bacteria and archaea in the inner layers (on the inside of acetogenic zone) 

may be more difficult due to that archaea are possibly related to multiple bacteria from 

different trophic groups and acetate and H2/CO2 are produced from fermentation and 

acetogenesis. 
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Figure 6.6 Strong positive correlation (p>0.8) between major archaea and bacteria (linked) based on the 
relative abundance in the outer layers (upper levels of the acetogenic zone). The relationships of different 
granules are indicated by colour codes. 

 

 

Figure 6.7 Methanosaeta and other archaea grow in association with bacteria on the outer layer of gelatin 
granules. Methanosaeta (MX825) are shown in yellow, Bacteria (EUB338mix) are shown in red, and other 
archaea (ARC915) are shown in green.  
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6.2.3 Further Directions 

Recommended research on microbial ecology of anaerobic granules will focus on 

investigating the microbial relationships using functional analysis which has not been 

possible applied to the full extent in this thesis due to time limitations. 

Although some fermenters were identified based on a combination of location, relative 

abundance and phylogenetic information obtained from NGS analysis in conjunction with the 

shear method, the function of many bacterial OTUs is presumed or remains unknown. Due to 

the success of the shear method, bacteria can be harvested at high abundance in specific 

layers thus it provides an opportunity to culture and isolate microorganism from anaerobic 

granules (for example 3 groups of order Bacteroidales mentioned in Chapter 4 and Chapter 5). 

Furthermore, comprehensive functional studies can be carried on cultured microorganism and 

possibly lead to novel application depending on the function. 

Due to time constraints, metagenomic analysis of brewery anaerobic granules (Chapter 4) 

was reported directly after genomic binning. Further data processing including checking for 

assembly errors on high re, gene prediction to identify protein and RNA sequencing coded on 

the sample DNA, as well as functional annotation by comparing the predicted gene to 

existing, previously annotated sequence (Kunin et al., 2008) is still to be done. This is 

expected to identify the potential functions of the bacterial groups identified in the brewery 

granules to support the functional hypotheses in Section 6.2. 

Additionally, the shear method can be applied to granules for meta-transcriptomic or meta-

proteomic analyses (Vanwonterghem et al., 2014). This would require an additional step of 

preserving mRNA in the granules and hence make the shearing exercise much more 

complicated, but would allow detailed functional analysis including comparisons of active 

genes versus the complete functional potential of the whole granule, specific layers or 

individual microbes.   

There are many environmental and process factors that may have contributed to the 

accumulation of microorganisms in specific layers (Davey & O’Toole, 2000). In this thesis 

the chemical distribution through the anaerobic granules (e.g. the accumulation of raw 

substrate, VFA or other intermediates) was assumed as a major contributing factor. To verify 

this assumption, detailed chemical analysis throughout different granules layers is required. 

This may be achieved using microsensor to detect VFAs, pH or dissolved gases in anaerobic 
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granules (Satoh et al., 2007, 2012). The chemical shift between layers can also provide 

additional support information for study of microbial architecture. This is also an extremely 

complicated procedure, requiring immobilisation of the granule in an anaerobic environment 

which can be accessed by microsensor (including the entire stepping motor apparatus). 

 

6.3 Bio-stimulation of Anaerobic Granules 

6.3.1 Microbial Community Affected by Substrate  

16S rRNA analysis from pyrosequencing and metagenomics showed that the microbial 

community on the outer layer of anaerobic granules is diverse with many OTUs present at 

low abundance. This thesis illustrated that anaerobic granules would adapt to a substrate shift 

with a new community (in the case of stimulated granules), relatively narrow community. 

This is the first controlled comparative study on the fermentative community of anaerobic 

granules. OTUs affiliated to genus Pleomorphomonas, which is capable of glucose 

fermentation (Im et al., 2006), and Holophagaceae, which possibly contributes to gelatin 

degradation, emerged and dominated the bacterial community of anaerobic granules fed with 

glucose and gelatin respectively.  

6.3.2 Compared to Industrial Granules  

Interestingly the microbial community shift was limited to the fermenters, with only slightly 

changes in the relative abundance of acetogens and methanogens. The impact of substrate on 

the fermentative community is likely due to the diverse metabolic pathways available to 

degrade different complex substrates and the selection of specialized microbes (Kovacik et al., 

2010; Zhou et al., 2011). This phenomenon is less likely to impact acetogens and 

methanogens as they grow on a limited range of intermediate products rather than the raw 

substrate. As seen from the field granules (Chapter 4), different reactors with different feeds 

did have different deeper communities but this may be partly due to reactor design and 

operational aspects with the designs of all three reactors being different. 

Under low organic loading rate (2kgCOD·L-1·d-1) compared to industrial organic loading rate 

(Batstone et al., 2004), the amount of fermenters stimulated is relatively low comparing to 

industrial high strength granules (such as cannery granules). The low amount and diversity of 

fermenters obtained on stimulated granules may be related to the low organic loading rate 
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(Cardinali-Rezende et al., 2013) and to the substrate type (Kovacik et al., 2010) or simply to 

stimulation time. Furthermore, physical properties such as granular strength and size are not 

affected by biostimulation due to the thin fermentative layer formed. 

6.3.3 Further Directions 

The possibility of enhance physical properties of anaerobic granules is a key direction. As the 

major microorganism located on the surface of anaerobic granules, fermenters are associated 

to surface properties such as shear strength, microscopic texture, and density (Forster, 1991; 

Quarmby and Forster, 1995). It was proposed that especially the filamentous bacteria (such as 

Anaerolinea, Sekiguchi et al., 2003) might be responsible for the preservation of granules 

structure (Uemura and Harada, 1993). In this thesis, biostimulation was applied to neutral 

granules with little or no fermentative layer, and it was found that the fermentative 

community did not significantly influence the shear strength. Future work could include 

longer stimulation time, higher organic loading rate and from low complexity to high 

complexity substrate (e.g. acetate to glucose to starch to cellulose), or possibly even to 

develop granules from crushed seed rather than a neutral granule. A future step may be to 

apply biostimulation to granules with an existing fermentative layer to treat wastewater with 

a different composition. This approach may allow granules with desired physical properties 

to be transferred and adapted to a new process. This work, suggests microbial community is 

highly associated to substrate type. If Anaerolinea is replaced by other microbes due to 

substrate change, property of high strength currently in cannery granules may not remain in 

stimulated granules. Alternatively, if the results indicating strength is independent of primary 

substrate type, it may be possible to achieve higher strength in poor strength granules using 

other means. 

The stimulation experiment in this thesis illustrated new OTUs (rare species in base granules) 

can be stimulated to replace predominant OTUs in response to substrate change. By finishing 

the functional annotation on metagenomic analysis (future direction under section 6.2.3), the 

potential function of microorganisms (such as hydrolysis function) in anaerobic granules with 

little fermentative functionality (brewery granule) will be studied. If genes encoding 

hydrolysis present in the existing microbial community, it may provide opportunity to utilize 

anaerobic granules to treat more complex substrates which require hydrolysis. 

Microorganism with suitable functionality may be stimulated with corresponding substrate 

(Zhou et al., 2011) similar as the experiment carried out in this thesis. Alternatively, 
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exogenously grown microorganisms (pure culture or mixed culture) with known hydrolysis 

function may be introduced into UASB and test whether they can survive and incorporate 

into anaerobic granules (Guiot et al., 2002; Lanthier et al., 2002).  

6.4 Conclusions 

The results presented in this thesis investigated the microbial ecology of fermentative 

microbes in industrial and lab-scale anaerobic granules and elucidated the influence of 

fermentative layer. It provides fundamental understanding as well as appropriate methods for 

future microbial studies on anaerobic granules. Suggested future directions include an 

improved shear method, functional analysis and extended stimulation experiments. This 

should contribute to the understanding of anaerobic granules and offer possible opportunity to 

enhance this technology.  Conclusions have been drawn as follows. 

6.4.1 Shear method enables selective layer based microbial sampling and analysis 

Microbes were successfully removed from spatial layers through hydraulic shearing. 

Molecular analysis can be applied to removed layers from anaerobic granules and provide 

spatial distributions which consents FISH analysis or potential function information from 

meta’omics analysis. Furthermore, this method may contribute to culture isolation or 

enzymatic/proteomic studies if whole live organisms or RNA/protein can be extracted. 

6.4.2 Bacterial community in anaerobic granules are diverse and complex 

The bacterial community shared between granules fed with different substrates is common to 

a substantial extent, but dominated by different groups. Based on the spatial distribution and 

molecular identification, microbes can be assigned to different functional groups. 

Fermentation, acetogenesis and methanogenesis may happen in parallel with some functions 

dominating over others in specific layers, particularly the outer layer.  

6.4.3 Minor influences of fermenter layers on granule properties were observed. 

In a controlled comparative lab-scale experiment, presumed fermentative layers were 

successfully stimulated on the surface of brewery granules with no disturbances on 

acetogenic and methanogenic community. The little or no impact on physical properties may 

be due to low organic loading rate or short operation period, or may be due to the fact that 

phylogeny has limited impact on bulk properties.  
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Appendix B. Anaerobic Digestion  

Figure B1. Embden-Meyerhof-Parnas pathway (EMP pathway) of glycolysis. 
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Table B1. Stoichiometric equations for major amino acid degradation pathway. 

C6H13O2N (Leu) + 2 H2O                    C5H10O2 (3-methylbutyrate) + NH3 + CO2 + 2H2 +ATP 
C6H13O2N (Leu) + H2                          C6H12O2 (4-methylvalerate) + NH3  

C6H13O2N (Ile) + 2 H2O                      C5H10O2 (2-methylbutyrate) + NH3 + CO2 + 2H2 +ATP 

C5H11O2N (Val) + 2 H2O                     C4H8O2 (3-methylpropionate) + NH3 + CO2 + 2H2 +ATP 

C9H11O2N (Phe) + 2 H2O                    C8H8O2 (phenylacetate) + NH3 + CO2 + 2H2 +ATP 
C9H11O2N (Phe) + H2                          C9H10O2 (phenylpropanate) + NH3  
C9H11O2N (Phe) + 2 H2O                    C6H6 (phenol) +C2H4O2 (acetate) + NH3 + CO2 + H2 +ATP 

C9H11O3N (Tyr) + 2 H2O                     C8H8O3 (hydroxyphenyl acetate) + NH3 + CO2 + 2H2 +ATP 
C9H11O3N (Tyr) + H2                           C9H10O3 (hydroxyphenyl propionate) + NH3  
C9H11O3N (Tyr) + 2 H2O                     C6H6 (cresol) + C2H4O2 (acetate) + NH3 + CO2 + H2 +ATP 

C11H12O2N2 (Trp) + 2 H2O                  C10H9O2N (indole acetate) + NH3 + CO2 + 2H2 +ATP 
C11H12O2N2 (Trp) + H2                        C11H11O2N (indole propionate) + NH3  
C11H12O2N2 (Trp) + 2 H2O                  C8H7N (indole) + C2H4O2 (acetate) + NH3 + CO2 + H2 +ATP 

C2H5O2N  (Gly) + H2O                         C2H4O2 (acetate) + NH3  
C2H5O2N (Gly) + ½ H2O                      ¾ C2H4O2 (acetate) + NH3 + ½ CO2 + ¼ ATP 

C3H7O2N (Ala) + 2 H2O                       C2H4O2 (acetate) + NH3 + CO2 + 2H2 +ATP 

C3H6O2N S (Cys) + 2 H2O                    C2H4O2 (acetate) + NH3 + CO2 + H2S + ½ H2 +ATP 

C5H12O2NS (Met) + 2 H2O                  C3H6O2 (propionate) + NH3 + CO2 + CH4S + H2 +ATP 

C3H7O3N (Ser) + H2O                          C2H4O2 (acetate) + NH3 + CO2 + H2 +ATP 

C4H9O3N (Thr) + H2O                          C3H6O2 (propionate) + NH3 + CO2 + H2 +ATP 
C4H9O3N (Thr) + H2O                          2 C2H4O2 (acetate) + NH3  
C4H9O3N (Thr) + H2                             C2H4O2 (acetate) + ½ C4H8O2 (butyrate) + NH3 +ATP 

C4H7O4N (Asp) + 2 H2O                      C2H4O2 (acetate) + NH3 + 2 CO2 + 2 H2 +2 ATP 

C5H9O4N (Glu) + H2O                          C2H4O2 (acetate) + ½ C4H8O2 (butyrate) + NH3 + CO2 + 2 
ATP 
C5H9O4N (Glu) + 2 H2O                       2 C2H4O2 (acetate) + NH3 + CO2 + H2 +2 ATP 

C6H9O2N3 (His) + 4 H2O                      CH3ON (formamide) + C2H4O2 (acetate) + ½ C4H8O2 
(butyrate)  

+ 2 NH3 + CO2 + 2 ATP 
C6H9O2N3 (His) + 5 H2O                      CH3ON (formamide) + C2H4O2 (acetate) + 2 NH3 + CO2 + 

H2 + 2 ATP 

C6H14O2N4 (Arg) + 6 H2O                    2 C2H4O2 (acetate) + 4 NH3 + 2 CO2 + 3 H2 + 2 ATP 
C6H14O2N4 (Arg) + 3 H2O                    ½ C2H4O2 (acetate) + ½ C3H6O2 (propionate)  
                    + H2                                                                   + ½ C5H10O2 (valerate) + 4 NH3 + CO2 + 

2 ATP 
C5H9O2N (Pro) + H2O + H2                  ½ C2H4O2 (acetate) + ½ C3H6O2 (propionate)  
                                                                                               + ½ C5H10O2 (valerate) + 4 NH3 + CO2 + 

ATP 
C6H14O2N2 (Lys) + 2 H2O                    C2H4O2 (acetate) + C4H8O2 (butyrate) + 2 NH3 + ATP 
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Table B2. Classification of anaerobic bacteria which degrade amino acid.  
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Appendix C. Statistical Analysis on Pyrosequencing.  

 

Figure C1. PCA analysis on pyrosequencing data from layers of brewery granules. 
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Figure C2. PCA analysis on pyrosequencing data from layers of cannery granules. 
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Figure C3. PCA analysis on pyrosequencing data from layers of dairy granules. 
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Figure C4. PCA analysis on pyrosequencing data from layers of control granules. 
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Figure C5. PCA analysis on pyrosequencing data from layers of glucose granules. 
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Figure C6. PCA analysis on pyrosequencing data from layers of gelatin granules. 
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Figure C7. Heatmap analysis on top 20 OTUs of pyrosequencing data from layers of brewery granules. 
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Figure C8. Heatmap analysis on top 20 OTUs of pyrosequencing data from layers of cannery granules. 
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Figure C9. Heatmap analysis on top 20 OTUs of pyrosequencing data from layers of dairy granules. 
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Figure C10. Heatmap analysis on top 20 OTUs of pyrosequencing data from layers of glucose granules. 
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Appendix D. Chemical analysis of lab-scale UASB operation. 

 

Table D1. Chemical analysis of  lab-scale UASB fed with acetic acid and propionic acid (control granules).  

 

Days%
Operating Volume TCOD sCOD Acetic0acid Propionic0acid Volume TCOD sCOD Acetic0acid Propionic0acid Volume H2 CH4 CO2

L mg·L=1 mg·L=1 mg·L=1 mg·L=1 L mg·L=1 mg·L=1 mg·L=1 mg·L=1 L % % %
0
1 0.500 0 0 0.50 0.00 0.00 0.000
3 0.303 195 114 0.00 0.00 0.21 24.00 18.00 0.00 0.00 0.000
4 0.398 1079 1055 648.58 229.20 0.32 35.00 22.00 0.00 0.00 0.000 0.2765 0.6778 0
5 0.593 1025 1027 603.86 217.35 0.53 44.00 17.00 0.00 0.00 0.000 0.1332 49.6035 2.2482
6 0.688 997 1006 571.77 206.01 0.58 52.00 16.00 1.21 0.00 0.000 0 73.2973 0
11 =0.713 1262 1227 638.54 282.55 0.62 121.00 20.00 1.63 0.00 0.112 0 72.6402 0
12 0.689 1208 1215 618.92 273.13 0.62 40.00 18.00 0.82 0.00 0.136 0 70.6774 2.3559
13 0.869 1214 1096 628.88 269.89 0.78 23.00 6.00 0.00 0.00 0.212 0.05 70.5576 0.8217
16 0.588 881 853 542.99 182.30 0.58 104.00 22.00 0.00 0.00 0.072 0 30.5729 4.6016
17 0.561 1027 961 624.18 209.72 0.33 44.00 15.00 1.52 0.00 0.224 0.0088 35.585 0
23 0.663 1184 1182 712.91 247.20 0.60 60.00 20.00 1.99 0.00 0.140 0 68.9859 0
24 0.614 1140 1168 682.99 239.90 0.57 50.00 20.33 1.88 0.00 0.032 0 69.9309 0
26 3.246 1029 1030 622.64 219.69 0.63 35.00 10.00 2.43 0.00 0.100 0.7939 71.9274 5.5038
28 1.603 961 964 0.78 123.00 15.00 0.148
32 0.872 978 1085 0.84 79.00 14.00 0.192 0 74.2094 0
34 1.192 1018 1013 0.86 39.00 15.00 0.176 0 76.2507 0
47 0.545 827 793 1.81 112.00 9.00 0.168 0 43.3952 3.4877
48 0.379 895 1212 0.14 62.00 3.00 0.196 0 48.6517 1.8429
49 0.576 1802 1811 0.18 36.00 8.00 0.248 0 47.6664 0
50 0.436 1511 1972 0.08 51.00 10.00 0.260 0 45.6159 1.4587
51 0.713 1005 1693 0.25 52.00 15.00 0.336 0 54.3881 1.5895
52 0.362 1179 1845 0.08 52.00 16.00 0.344 0 54.5317 1.5589

Effluent BiogasFEED
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Table D2. Chemical analysis of lab-scale UASB fed with glucose (glucose granules). 

  

Days%
Operati
ng Volume' TCOD sCOD

Glucose Acetic'acid
Volume TCOD sCOD

Glucose Acetic'acid Propionic'acid
Volume H2 CH4 CO2

L mg·L>1 mg·L>1 mg·L>1 mg·L>1 L mg·L>1 mg·L>1 mg·L>1 mg·L>1 mg·L>1 L % % %
0
1 0.50 1128.33 1081.67 897.46 0.00 0.50 52.00 32.00 0.00 0.34 0.00 0.134 0.5966 25.749 13.9426
3 0.29 1114.00 1129.67 875.81 3.93 0.27 61.00 40.00 0.00 0.85 0.00 0.002
4 0.39 1339.00 1266.00 1038.94 3.81 0.31 41.00 28.00 0.00 0.00 0.00 0.008 0.082 36.0014 5.6132
5 0.29 728.33 150.00 72.85 0.00 0.26 32.67 27.00 0.00 0.00 0.00 0.008 0.0927 29.797 4.5988
6 0.53 1198.00 1093.00 837.91 36.02 0.50 41.33 30.00 0.00 0.00 0.00 0.000 0.0666 37.5413 6.7163
11 0.56 1164.00 1160.67 992.98 0.00 0.54 46.33 26.00 0.00 0.00 0.00 0.064 0 43.9503 10.9915
12 >0.15 1334.00 1307.00 1072.73 0.00 0.48 38.00 21.00 0.00 0.44 0.00 0.044 0.0572 46.2062 10.25
13 0.57 1374.67 1257.67 1058.38 0.00 0.47 27.00 10.00 0.00 0.00 0.00 0.024 0.0533 43.7534 8.8221
16 0.44 1228.33 1291.00 1138.62 0.00 0.38 40.00 25.00 0.00 2.72 0.46 0.002 0 66.9909 7.0536
17 0.41 1290.00 1231.33 1035.88 0.00 0.16 39.00 19.00 0.00 0.00 0.00 0.160 0.1132 6.4709 3.0308
23 0.73 1191.67 1274.33 957.49 21.67 0.69 144.00 81.00 0.00 0.00 0.00 0.146 1.275 57.5176 17.8273
24 0.77 1173.67 1219.67 964.75 0.00 0.68 0.00 0.00 0.00 40.08 3.73 0.090 0.3476 56.5925 17.2513
26 1.96 1126.33 1190.00 996.91 0.97 0.82 0.00 306.00 0.00 91.61 11.37 0.116 3.2311 38.7325 15.6218
28 1.60 1119.33 1174.33 0.77 86.00 36.00 0.00 169.37 29.01 0.196
32 0.88 1112.33 1127.33 0.83 666.00 477.00 0.042 2.9292 51.1814 11.723
34 1.21 1185.67 1152.67 0.77 923.33 582.00 0.034 2.1864 36.9693 10.7074
36 0.63 516.33 543.00 0.60 220.50 116.00 0.004 0 18.1722 7.7295
37 0.57 558.00 523.33 0.68 144.00 68.00 0.078 0.0714 35.9797 10.5095
38 0.65 1145.00 1260.67 0.71 165.00 113.00 0.186 0.3005 51.0316 12.3056
39 0.50 660.00 847.00 0.53 222.00 110.00 0.286 0.8156 59.0849 12.9284
40 0.86 523.00 536.67 0.94 186.00 57.00 0.400 0.2565 61.5449 1.515
41 0.49 745.33 745.33 0.54 143.00 63.00 0.470 0.0845 63.4572 12.0411

Effluent BiogasFEED
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Table D3. Chemical analysis of lab-scale UASB fed with gelatine (gelatine granules). 

(

(

(

 

Days%
Operating Volume' TCOD sCOD TKN NH3 TP TProtein sProtein Volume TCOD sCOD TKN NH3 TP Tprotein sProtein Volume H2 CH4 CO2

L mg!L;1 mg!L;1 mg!L;1'N mg!L;1'N mg!L;1'P ug!ml;1 ug!ml;1 L mg!L;1 mg!L;1 mg!L;1'N mg!L;1'N mg!L;1'P ug!ml;1 ug!ml;1 L % % %
0
1 0.500 1576.33 1932.67 0.22 5.81 0.00 103 39 0.500 202 40 0.65 6.91 3.63 96 87 0.022 0.105 55.824 10.294
3 0.634 1044.33 982.00 0.21 0.00 0.00 580 575 0.676 106 13 0.39 1.78 0.00 31 31 0.098 0.269 60.126 18.431
4 0.836 957.67 859.00 0.00 0.00 0.00 606 560 0.845 75 24 0.58 3.53 1.37 94 52 0.126 0.000 69.106 8.064
5 0.659 931.67 870.00 0.00 0.02 0.00 596 564 0.600 70 23 0.36 2.73 0.00 76 36 0.330 0.077 56.768 6.897
6 0.779 214.00 149.00 0.00 0.00 0.00 148 100 0.868 53 28 0.00 1.97 0.00 98 58 0.110 0.000 71.351 7.864
11 0.827 997.00 930.00 0.00 0.00 0.00 834 774 0.884 107 44 0.00 0.00 0.00 93 44 0.126 0.000 67.827 8.313
12 0.769 1039.67 1004.67 0.00 1.60 0.00 829 789 0.920 119 49 0.00 1.61 0.00 132 62 0.140 0.044 67.133 8.237
13 0.957 120.33 1012.67 0.00 0.00 0.00 840 664 0.970 99 0 0.00 1.77 0.79 31 31 0.124 0.000 66.744 8.207
16 0.774 1009.00 953.33 0.00 0.00 0.00 765 758 0.790 99 33 0.00 2.79 0.95 132 47 0.140 0.004 70.139 0.000
17 0.678 1003.00 968.00 0.00 16.57 0.00 866 841 0.557 66 29 0.00 2.50 0.00 91 59 0.074 0.000 38.467 5.778
23 0.698 1108.67 1096.00 0.00 0.00 0.00 639 607 0.736 99 43 0.00 2.72 0.83 94 49 0.186 0.150 49.207 8.533
24 0.841 1077.00 1031.67 0.00 26.20 7.19 691 668 0.819 69 24 0.00 5.24 0.00 99 42 0.136 0.000 56.511 8.211
26 2.029 1080.67 1023.67 0.00 0.00 0.00 648 620 0.858 68 23 0.00 2.49 0.96 101 39 0.156 0.000 53.672 7.871
28 1.675 1093.67 1049.00 0.00 0.00 0.00 780 718 0.851 129 23 0.00 3.01 2.00 156 38 0.142
32 0.972 1118.33 1071.33 699 550 0.952 122 26 149 44 0.202 0.000 71.649 8.827
34 1.298 1102.33 1052.33 744 749 0.985 68 26 89 97 0.100 0.000 67.352 8.407
47 0.691 954.00 942.00 888 848 0.675 168 30 581 66 0.148 0 38.6903 5.0172
48 0.654 1035.00 1015.00 666 650 0.837 105 22 126 31 0.296 0 64.0452 7.5251
49 0.706 1340.67 1390.67 694 756 1.013 132 23 165 52 0.414 0 61.7716 8.6893
50 0.650 1047.67 927.33 699 701 0.818 129 25 216 79 0.574 0.0473 68.3155 8.1466
51 0.835 1031.33 968.67 774 775 1.097 118 28 113 31 0.726 0 66.7782 7.9546
52 0.578 1291.33 968.67 916 733 0.770 66 27 31 31 0.796 0 71.6418 8.0886
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