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Abstract 

Although delivery of prompt and appropriate antimicrobial therapy is of paramount 

importance for critically ill patients, few data exist to guide what doses of antimicrobials 

should be used in critically ill patients. Presently available generic guidelines are derived 

from healthy young adults and are unlikely to be appropriate for critically ill patients due to 

the major physiological changes that occur. Altered physiology can result in significant 

changes in antimicrobial pharmacokinetics and greatly affect dosing requirements. There 

is limited guidance to determine therapeutic antimicrobial doses due to only limited 

pharmacokinetic data being available in these patients. Additionally, there will be great 

variance between patients because of differences in co-morbidities, the invasiveness of 

procedures and the disease status. Thus, it is very unlikely that a dose found to be 

effective in non-critically ill patients will be optimal for the majority of critically ill patients. 

Since available data do not appear to suitably guide dosing in these patient 

subpopulations, directed pharmacokinetic studies should be considered fundamental. 

Therefore, the principal aims of this thesis were to evaluate the appropriateness of 

standard doses in achieving pharmacokinetic/pharmacodynamic targets and clinical 

scenarios affecting this target in critically ill patients.  

Dynamic renal function is commonly seen in critically ill patients. For drugs cleared through 

the renal route; while decreasing renal function  trigger  reduced dosing, elevated renal 

function or augmented renal clearance should also trigger dosing increases. This is to 

avoid sub-therapeutic concentrations. However, due to scarce data available, this 

phenomenon has not been clearly described. This led to a study in this thesis, conducted 

in Malaysian intensive care units to describe this clinical scenario. It was found that almost 

half of the subjects recruited have augmented renal clearance. Significant bias and 

imprecision was demonstrated when comparing estimated Cockcroft-Gault creatinine 

clearance and measured urinary creatinine clearance with the bias being larger in 

augmented renal clearance patients and significant difference were found between this 

two methods. This study supports previous data that equation-based estimates of 

creatinine clearance are unreliable for use in critically ill patients. 
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As mentioned above, invasive procedures are one of the factors that could lead to 

physiological changes in critically ill patients. The insertion of surgical drains is an invasive 

procedure commonly undertaken for critically ill patients, particularly for those with 

abdominal disease. The complicated physiology of abdominal disease will therefore have 

a great influence on the pharmacokinetics of antimicrobials.  In doing this, structured 

reviews were carried out in this thesis to review all published literature available on beta-

lactam antimicrobials in this context. Our analysis has described significant 

pharmacokinetic variability for different beta-lactam antimicrobials in patients with intra-

abdominal disease and therefore, standard dosing may not be optimal when dealing with 

less susceptible pathogens. Additionally, possible antimicrobial clearance through surgical 

drains suggests a need for studies to be conducted in this area. Given this, a study to 

describe the pharmacokinetics of two commonly prescribed antimicrobials; meropenem 

and piperacillin, was conducted in critically ill patients with surgical drains. These two 

antimicrobials have shown altered pharmacokinetics and dosing modifications may be 

necessary if less susceptible pathogens are suspected. A linear correlation was found 

between antimicrobial clearance and the volume output of surgical drain fluid suggesting 

the additional doses should be used when the presence of high volume output of surgical 

drains is encountered.  

Resistant pathogens are one of the challenges in these patients and one of the 

increasingly important pathogens is multi-drug resistant A. baumanni. Treatment options 

are very limited, to either colistin or sulbactam combination antimicrobials. Therefore, it is 

vital to optimize all therapeutic options and ampicillin/sulbactam is  one of those limited 

options available. A review on the potential use of ampicillin/sulbactam in treating critically 

ill patients is described in this thesis. It was found that sulbactam has strong intrinsic 

activity against multi-drug resistant A. baumanni and current therapeutic challenges result 

partly from bacterial susceptibility and also from pharmacokinetic alterations.  

Administration of 4 hour infusion and combination therapy was found to be more likely to 

be effective in treating serious bacterial infection. Nevertheless, since this dosing was 

derived from pharmacokinetic studies conducted in non-critically ill patients, there is still a 

strong need of similar study to be carried out in critically ill patients. This led to a study in 

this thesis, conducted in a Malaysian intensive care unit to describe pharmacokinetics of 

ampicillin/sulbactam in critically ill patients at risk of multi-drug resistant A. baumanni 

infections. We found that the pharmacokinetics of ampicillin/sulbactam differs significantly 
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from that in healthy volunteers. Significant correlation was observed between ampicillin 

and sulbactam clearance and creatinine clearance. A significantly increased Vd was 

observed, which implies extensive distribution. These pharmacokinetic changes also 

manifested as inadequate trough concentrations which were observed in some of the 

studied subjects, which did not exceed the susceptibility breakpoint for A. baumannii.  

Findings from this study support the use of higher initial doses of ampicillin/sulbactam for 

those patients with a high Vd with adjustment of subsequent doses performed according to 

renal function. 

 

Keywords : antimicrobial; critically ill; pharmacokinetics; ampicillin/sulbactam; piperacillin; 

meropenem; surgical drains; augmented renal clearance. 
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1. Chapter 1 : Overview 

Management of severe infections in critically ill patients remains an ongoing challenge for 

physicians. Early and effective antimicrobial therapy is essential as critically ill patients are 

at a high risk of dying [1]. Antimicrobial therapy is defined to be inadequate if the empirical 

choices, doses and method of administration are not effective against the causative 

pathogen [1].   

Critically ill patients are also at risk of infection by resistant pathogens. Data from the 

worldwide bacterial surveillance program has shown higher resistance rates in intensive 

care unit isolates compared to non- intensive care unit isolates [2]. This surveillance 

reports a 4 – 16 fold higher minimum inhibitory concentrations (MIC)90 of gram negative 

bacilli against the studied antimicrobials [2]. The presence of resistant pathogens 

increases the likelihood of inappropriate antimicrobial therapy [3] both in terms of 

antimicrobial agent and dose, thereby exposing the patient to a higher risk of dying [4]. 

Most critically ill patients have significant co-morbidities prior to admission with the 

majority of admissions being non-elective; secondary to surgical procedures, 

cardiovascular complications and trauma [5]. These chronic illnesses; in combination with 

the acute pathology causing admission to the intensive care unit (e.g. surgical procedures, 

sepsis and/or trauma), cause a significantly unstable clinical status. The physiological 

changes that occur will also impact the pharmacokinetics (PK) of antimicrobials [6].  

PK describes the fate of a drug from the administration time up to elimination from the 

body. It is also used to describe the relationship between the dose and drug 

concentrations in plasma and at the target site. PK is also often studied in conjunction with 

pharmacodynamic (PD)s, the study of relationship between drug concentration and its 

therapeutic effect. Since PK describes how the body affects the fate of a drug; 

physiological changes of the critically ill patients will greatly cause significant changes in its 

PK properties. Therefore, standard dosing, which derives from PK data from healthy 

volunteers may not be optimal for critically ill patients. It follows that an individualized 

approach is required to ensure adequate therapy to increase the likelihood of clinical 

success [7]. However, this individualized approach requires dosing guidance for this 

specific group of patients. Since limited data is readily available, this approach can only be 

achieved by conducting research that describes the PK of the antimicrobial of interest in 

these patients. The antimicrobial use in critically ill patients will greatly improve by 

characterizing its PK and PD profile. 
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There are a number of clinical scenarios and problems encountered during clinical practice 

that are often left unanswered. Three clinical scenarios were chosen to be studied in this 

Thesis, as follows: 

Project 1 – Critically Ill Patients at Risk of Augmented Renal Clearance  

Antimicrobial clearance will greatly depend on the organ involved in the elimination 

process.  For renally excreted drugs, renal function will therefore determine its clearance. 

Often, prompt dose adjustment is required to avoid either toxicity; in decreasing renal 

function or sub-therapeutic concentrations; in elevated renal function. However, dosing 

guidance is readily more available for dose adjustment in decreasing renal function rather 

than elevated renal function. The primary purpose of this study is to establish the 

prevalence of augmented renal clearance in critically ill patients. A comparison between 

Cockcrof-Gault equations with measured urinary creatinine clearance will also be 

undertaken. 

Project 2 – Dosing of Meropenem and Piperacillin in Critically Ill Patients with Indwelling 

Surgical drains. 

Meropenem and piperacillin/tazobactam are commonly prescribed as empiric therapy in 

critically ill patients. It has been observed that those patients with indwelling surgical drains 

often had lower antimicrobial concentrations. This observation has raised concern as there 

are few data available to suggest that these surgical drains are associated with sub-

therapeutic concentrations, which may lead to impaired antimicrobial efficacy. Therefore, 

this study was conducted to characterize the PK profile of meropenem and piperacillin in 

patients with indwellling surgical drains  and to determine the magnitude and relative 

importance of clearance through this route. 

Project 3 – Dosing of Ampicillin/sulbactam in Critically Ill Patients at risk of Multi-drug 

resistant Acinetobacter baumannii infections 

Ampicillin/sulbactam is one of those limited antimicrobial options available to treat patients 

with multi-drug resistant A. baumannii infections, a particularly important pathogen in 

intensive care settings. Ampicillin is a time-dependent antimicrobial with its bacterial killing 

largely dependent on the time the free concentration is maintained above the minimum 

inhibitory concentrations during a dosing interval (fT>MIC). Sulbactam is probably best 
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described as an area under the concentration––time curve dependent drug where 

bacterial killing is associated with the area under the concentration––time curve, however, 

recent data have also suggested fT>MIC may be important for sulbactam. Most of the 

dosing recommendations of ampicillin/sulbactam for this particular pathogen were not 

derived from PK studies and for those available PK studies; it was not conducted in 

critically ill patients. Therefore, the optimal use of this antimicrobial in critically ill patients is 

still unknown. This study was conducted to characterize the PK profile of 

ampicillin/sulbactam in critically ill patients who are at risk of multi-drug resistant 

pathogens.  

Chapter 1 and 2 of this thesis will review the physiological changes in critically ill patients 

and its implication to PK of antimicrobials.  

Chapter 3 will discuss the prevalence and implications of augmented renal clearance 

infections in critically ill patients. This chapter will include a published manuscript on a 

study describing the prevalence of augmented renal clearance in a Malaysian intensive 

care unit.  

Chapter 4 will discuss the effect of intra-abdominal disease on PK of beta-lactam 

antimicrobials in critically ill patients. This chapter will include a published structured 

review of PK of beta-lactam antimicrobials in intra-abdominal disease, followed by a 

published manuscript on a study describing PK of meropenem and piperacillin in critically 

ill patients with indwelling surgical drains.  

Chapter 5 will discuss the potential use of ampicillin/sulbactam in treating infections in 

critically ill patients. This chapter will include a published  manuscript on a review of 

ampicillin/sulbactam and its potential use in critically ill patients, development of methods 

used for analysing  ampicillin/sulbactam in PK samples, followed by the study describing 

PK of ampicillin/sulbactam in critically ill patients at risk of multi-drug resistant A. 

baumannii infections.  

Chapter 6 of the thesis summarises the general discussion on the findings of this Thesis 

and directions for further research. 

All of these studies will help define appropriate dosing regimens for commonly used 

antimicrobials in patients at risk of developing multi-drug resistant infections (patients with 
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indwelling surgical drains and/or with augmented renal clearance), as well as in patients 

that already have such infections. Such dosing regimens can be used to optimize 

antimicrobial use and improve the likelihood of positive clinical outcomes in these 

challenging critically ill patients. 
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1.1 Aims 

The overall aim of this thesis is to improve the use of antimicrobials in critically ill patients. 

To achieve this, we firstly identify clinical scenarios that pose challenges in the use of 

antimicrobials in critically ill patients. Three clinical scenarios were identified: 

1. Critically ill patients at risk of augmented renal clearance 

2. Dosing of meropenem and piperacillin in critically ill patients with  indwelling surgical 

drains  

3. Dosing of ampicillin/sulbactam in critically ill patients with multi-drug resistant A. 

baumannii infections 

Each clinical scenario has its specific aims; as follows: 

1. Critically ill patients at risk of augmented renal clearance  

1.1. To describe the incidence of augmented renal clearance in patients admitted to the 

intensive care unit of Hospital Sungai Buloh, Malaysia 

1.2. To compare the prevalence of augmented renal clearance in Malaysian intensive 

care unit patients with other intensive care unit around the world 

1.3. To compare the estimated Cockcroft-Gault equation with measured urinary 

creatinine clearance to determine whether these two methods can be used 

interchangeably 

 

2. Dosing of meropenem and piperacillin in critically ill patients with indwelling surgical 

drains: 

2.1. To describe the pharmacokinetics of meropenem and piperacillin in critically ill 

patients with  indwelling surgical drains with a focus on the comparative drug 

clearance through the drains and the renal system 

2.2. To use the results from the primary aim to develop dosing recommendations for 

these drugs in these patients 
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3. Dosing of ampicillin/sulbactam in critically ill patients at risk of multi-drug resistant A. 

baumannii  infections: 

3.1. To study the pharmacokinetic of ampicillin/sulbactam in critically ill patients with 

multi-drug resistant A. baumannii  infections 

3.2. To use the results of the above study to develop dosing recommendations of 

ampicillin/sulbactam in these patients 
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2. Chapter 2: The Effect of The Altered Physiology of Critically Ill Patients on 

Pharmacokinetics 

In critically ill patients, the determination of an optimal dose of an antimicrobial is a 

complex process.  The factors contributing to this challenge are described in Figure 2.1. 

Therefore, an understanding of drug properties and pathophysiological changes and their 

effects on antimicrobial dosing is essential. For the purposes of this review, the 

pathophysiological changes in critical illness are divided into four main categories; fluid 

shifts, organ dysfunction, changes in protein binding and circulatory failure.   

2.1 Fluid shifts 

Accumulation of fluid in extravascular compartments such as the interstitial space, is a 

common phenomenon seen in critically ill patients. Since interstitial fluid is the site of most 

infections, it is an important site for the therapeutic activity of antimicrobials. Further to this, 

accumulation of fluid in the interstitial space may affect the therapeutic activity of 

antimicrobials. Increased capillary permeability, fluid retention, decreased oncotic pressure 

and endothelial damage [8] are among several mechanisms resulting in the accumulation 

of interstitial fluid. Several pathologies that may lead to fluid shift are discussed below. 

Factors causing fluid shifts 

Sepsis 

Sepsis causes an excessive production of inflammatory cytokines, which increase 

membrane permeability, resulting in vasodilatation and oedema. The end result is capillary 

leakage, leading to fluid movement from intravascular compartment into the extravascular 

compartment [9]. 

Acute kidney injury 

The incidence of acute kidney injury (AKI) among critically ill patients with sepsis is high 

[10]. Fluid therapy may be prescribed in the presence of AKI to provide adequate hydration 

and to prevent further kidney injury. However, if it is given too aggressively, it may lead to 

fluid overload, causing an increase in total body water [11]. 
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Hepatic failure 

Patients with hepatic dysfunction may develop ascites and oedema. These patients 

frequently have a reduced ability to excrete sodium, which leads to accumulation of 

sodium and water in the abdominal cavity. The end result is a larger volume of 

extracellular fluid [12].  

Fluid resuscitation 

Aggressive fluid resuscitation following septic shock can cause expansion of the 

extracellular fluid. Fluid resuscitation is rightly listed as one of the urgent treatment 

strategies in the Surviving Sepsis Campaign [13] which outlines appropriate sepsis 

treatments. Thus, it is likely that many septic shock patients will develop fluid expansion. 

Burns 

Physiological changes in burns patients are well known; with extensive capillary leakage 

together with intensive fluid resuscitation to compensate for the development of 

hypovolaemia, causing significant  movement of fluid from the intravascular to the 

extravascular compartment [14].  

Others 

Other pathologies that could cause an increase in extracellular fluid include pleural 

effusions, the presence of surgical drains and extracorporeal circuits although the effects 

of both are poorly described [15]. Pregnancy is also another condition which causes an 

increase in total body fluid [16].   
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2.2 Organ dysfunction 

Severe infection may cause organ dysfunction. In the context of the eliminating organs, 

decreased functionality may impair elimination of waste products from the body as well as 

decreased drug elimination [17]. 

Renal failure 

There are three mechanisms of drug elimination through the kidney; filtration, secretion 

and metabolism [18]. For many renally cleared drugs, filtration is considered to be the 

main mechanism. Thus, reduced renal blood flow in AKI patients may lead to reduction in 

glomerular filtration causing drug accumulation and potential drug toxicities.  

Liver failure  

Liver dysfunction in critically ill patients may result from infection, organ hypoperfusion and 

administration of hepatotoxic drugs [19]. As the liver is the major site of drug metabolism in 

the body, hepatic dysfunction can lead to accumulation of hepatically cleared 

antimicrobials [18].  

It has been reported that, for drugs subject to phase I metabolism (e.g. flucloxacillin and 

fluoroquinolones), which involves transformation of parent drug to a more hydrophilic 

metabolite, metabolism is only significantly affected when the liver‟s metabolic capacity is 

reduced by more than 90%. For drugs with phase II metabolism (e.g. tetracycline), which 

includes conjugation, this process is not capacity limited and will still occur in the presence 

of severe liver dysfunction [20].  

Cardiovascular dysfunction 

Reduced vascular resistance due to peripheral vasodilatation mediated by inflammation 

caused by infection can lead to decrease in cardiac after load and a consequent increase 

in cardiac output. In the presence of fluid loading, this increase in cardiac output can lead 

to augmented systemic perfusion [9]. However, as cardiac output approaches its limit, in 

line with the Frank Starling law, cardiac contractility will lessen, resulting in a decrease in 

cardiac output. Compensatory peripheral vasoconstriction will follow and reduce peripheral 

tissue perfusion and potentially drug distribution to those sites [8].  
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2.3 Changes in protein binding 

The incidence of hypoalbuminaemia is high among critically ill patients; reported as 40-

50% [21]. There are several mechanisms that can lead to hypoalbuminaemia; either due to 

decreased production, capillary leakage or increased elimination [19]. Sepsis is one of the 

physiological conditions that could cause albumin loss via capillary leakage.   

2.4 Circulatory failure  

Excessive production of inflammatory mediators in sepsis can be harmful and cause tissue 

injury, leading to the development of microcirculatory lesions and decreased tissue 

oxygenation. Diminished microcirculatory function may affect the delivery of antimicrobials 

to the interstitial fluid of tissue, which is the site of infection.  

Additionally, formation of an abscess as a result of activation of the coagulation and 

complement cascade, secondary to the inflammatory process will also be another 

important factor to be considered in this context. Antimicrobial penetration is impaired as a 

result of limited perfusion in the presence of fibrin clots and the abscess wall [22].  

Volume of distribution (Vd) and clearance (Cl) are the two most important PK parameters 

for drug dosing. These two PK parameters represent the distribution and elimination 

phases of drug disposition respectively.  Physiological changes in critically ill patients can 

cause changes in these PK parameters, which will require different doses to achieve the 

same drug concentrations seen in non-critically ill patients. The physiological changes 

affecting specific PK parameters are described in Figure 2.1. 

Figure 2.1 : Diagram illustrating pharmacokinetic parameters affected by physiological 

changes. 

 

 

Legend : 
Vd : Volume of Distribution 
Cl : Clearance 
MODS  : Multiple Organ Dysfunction Syndrome 
ARC  : Augmented Renal Clearance 
RRT  : Renal Replacement Therapy 
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2.5 Effect on Volume of Distribution 

The apparent volume of distribution (Vd) is a pharmacological term used to quantify the 

distribution of a drug between plasma and other body compartments after administration. It 

is defined as the theoretical volume in which the total amount of drug would need to be 

uniformly distributed to produce the observed blood concentration of a drug [23]. 

Hydrophilic antimicrobials (e.g. beta-lactams and aminoglycosides) are typically distributed 

into plasma and the interstitial fluid of tissues with little intracellular distribution whereas 

more lipophilic antimicrobials (e.g. quinolones) will have a larger Vd because of more 

extensive adipose tissue and intracellular distribution. Increments in Vd suggest more 

extensive drug distribution throughout the body. Physiological changes that could alter Vd 

are fluid shifts, hypoalbuminemia and obesity. 

Fluid shifts 

Accumulation of fluid in extravascular compartments such as the interstitial fluid, is a 

common phenomenon seen in critically ill patients. Increased capillary permeability, fluid 

retention, decreased oncotic pressure and endothelial damage [24] are among several 

mechanisms resulting in the accumulation of fluid at interstitial space. 

Hypoalbuminemia 

The reduced number of circulating albumin molecules in the presence of 

hypoalbuminaemia, results in a reduced number of drug binding sites. For highly protein-

bound drugs (e.g. cefoperazone 90%), this initially leads to a larger proportion of unbound 

drug in the plasma. However, the unbound drug then distributes into the extravascular 

compartment, eventually leading to decreased unbound drug concentrations in plasma. 

Since only the unbound or free drug is able to exert a pharmacological effect, a reduced 

unbound drug concentration may result in less effective concentrations in  plasma over 

time [19]. 

Obesity 

Lipophilic antimicrobials can cross the bi-lipid cell membrane and distribute intracellularly 

and these drugs are more likely to penetrate adipose tissue and therefore drug Vd is 

heavily dependent on the amount of adipose tissue present. Therefore, in the presence of 

excessive adipose tissue stores, such as in obesity, a significant increase in Vd of the 



12 

 

lipophilic antimicrobials is expected [25]. Examples of lipophilic antimicrobials include 

macrolides, fluoroquinolones and tigecycline.  

2.6 Effect on Clearance 

CL is defined as the volume of blood cleared of drug per unit time. Where drug elimination 

is performed by multiple organ systems, CL refers to sum of CL contributed by each organ 

system[26]. Pathologies that can lead to changes in CL are discussed below. Pathologies 

that can lead to changes in CL are augmented renal clearance, organ dysfunction and 

renal replacement therapy. 

Augmented renal clearance 

An important phenomenon common to critically ill patients is that of enhanced renal 

elimination, also known as augmented renal clearance (ARC) [27]. Aggressive fluid 

loading that increases cardiac output, leads to increased systemic perfusion including 

renal blood flow and subsequent glomerular filtration[28]. This phenomenon can result in 

sub-therapeutic concentrations of drugs and put the patient at risk of treatment failure. 

Sub-therapeutic concentrations of antimicrobials could later lead to treatment failure and 

development of colonisation or infection by multi-drug resistant organisms [29]. Patients 

considered at risk of ARC include the young, trauma, postoperative, low Acute Physiology 

and Chronic Health Evaluation (APACHE II) scores, burns injury, pancreatitis, autoimmune 

disorders and ischemia.  

Organ dysfunction 

A decreased rate of elimination of antimicrobials due to organ dysfunction often leads to 

reduced CL, leading to drug accumulation and potential toxicity as discussed above. 

Renal replacement therapy 

Renal replacement therapy (RRT) is used to eliminate accumulated waste products, or 

fluid from patients with kidney dysfunction. There are numerous types and settings used 

for RRT and the implications of this has been reviewed in detail by Choi et al [30].  Suffice 

to say, different drug clearances occur in patients receiving different RRT and as such a 

guideline approach to dosing is problematic. It is suggested that individualized drug 

dosing, using sound PK and pharmacodynamic (PD) principles is essential for this 

particular group of patients [30]. 
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The dynamic nature of the clinical status of critically ill patients can result in frequent 

fluctuations in renal function and will require continuous evaluation for potential dose 

adjustment. 

2.7 Implications of altered pharmacokinetic of antimicrobials on bacterial killing 

The effectiveness of antimicrobial therapy is not straightforward due to the interrelationship 

between all the parameters involved. Correlation of the drug profile, PK with antimicrobial 

effect, PD, also known as PK/PD indices, has shown to be a predictive index in 

differentiating outcome with its magnitude.  

Pathophysiology changes can alter drug concentrations resulting in different antimicrobial 

efficacy to that anticipated based on PK from non-critically ill patients‟ studies. However, it 

will not change the antimicrobial activity measured by the minimum inhibition concentration 

(MIC), as it only measures growth inhibition in an artificial media [6]. However, for this 

reason, describing a PK profile can enable a rational dose change that can ensure optimal 

concentrations are achieved to enable maximal bacterial killing. Thus, the combination and 

integration of the PK profile of an antimicrobial with its MIC provides a robust description of 

its killing activity.  

Antimicrobials can be divided into three major classes on the basis of their PK/PD indices  

[31].  Concentration dependent antimicrobials (e.g. aminoglycosides) exhibit bacterial 

killing which increases as drug concentration increases and is closely associated with the 

peak concentration (Cmax)/MIC ratio and achieving a higher ratio has been advocated to 

maximize bacterial killing [32].  Administration of higher doses should be clinically useful 

when a bacteria with a higher MIC is present [33].  On the contrary, the killing of bacteria 

by time dependent antimicrobials (e.g. beta-lactams) increases within a relative narrow 

range of drug concentration and will depend largely on the time that the antimicrobial 

concentration is maintained above the MIC. Some in vitro data of the antimicrobial killing of 

Pseudomonas spp suggest increased activity [34] when concentrations are maintained at 

4–5×MIC . It follows therefore that the goal of a dosing regimen for time-dependent 

antimicrobials would be to optimize duration of exposure. The third group has properties 

consistent with both concentration and time dependent antimicrobials, and bacterial killing 

is associated with the ratio of the area under the concentration time curve (AUC), to MIC 

(AUC/MIC; e.g. fluoroquinolones and glycopeptides). The strong relationship between PK 

and PD means that a change in PK will affect the PK/PD index; therefore it may affect the 
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treatment outcome of the infection. Substantial evidence has shown that wide array of PKs 

variable could result in inadequate drug concentrations leading to different clinical 

responses for the same standard dosing. Since the drug concentration is a direct result of 

the dosage; this variation can be accounted for by modification of the dosing regimen as 

described in Figure 2.2. 

Figure 2.2 : Diagram illustrating the implications of pharmacokinetic parameters on dosing  
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3. Chapter 3 : Critically Ill Patients at Risk of Augmented Renal Clearance 

3.1 Sypnosis 

The aim of this chapter is to describe the incidence of augmented renal clearance among 

critically ill patients and to compare two different methods of assessment of renal function, 

measured and calculated creatinine clearance. This chapter include the study of the 

prevalence of augmented renal clearance among critically ill patients in Malaysian 

intensive care, which led to a published manuscript. 

3.2 Published manuscript `Selected Critically Ill Patients at Risk of Augmented 

Renal Clearance : Experience in Malaysian Intensive Care Unit’ 

The manuscript entitled, `Selected Criticaly Ill Patients at Risk of Augmented Renal 

Clearance : Experience in Malaysian Intensive Care Unit‟ has been accepted for 

publication by Anaesthesiology and Intensive Care, official journal of the Australian Society 

of Anaesthetists, Australian and New Zealand Society of Anaesthetists (2014, Volume 42, 

Issue 6). 

All data collection, data interpretation and drafting of the paper were undertaken by the 

PhD candidate, assisted by Dr Shanthi Ratnam and Dr Suresh Kumar. Dr Andrew Udy and 

Prof Jason Roberts assisted with the data analysis and data interpretation. Prof David 

Paterson and Prof Jeffrey Lipman oversaw all aspects of this chapter. 

The manuscript is presented a published; except figures and tables have been inserted 

into the text at slightly different positions. Also, the numbering of pages, figures and tables 

has been adjusted to fit the overall style of the Thesis. The references are found alongside 

the other reference of the Thesis, in the section `Bibliography‟. 
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Summary 

Augmented renal clearance (ARC) refers to increased solute elimination by the kidneys.  

ARC has considerable implications for altered drug concentrations. We aimed to describe 

the prevalence of ARC in a selected cohort of patients admitted to a Malaysian intensive 

care unit (ICU), and to compare measured urinary creatinine clearance with calculated 

Cockcroft-Gault creatinine clearances in this group. Patients with an expected ICU stay of 

> 24 hours plus an admission serum creatinine concentration < 120 µmol/L, were enrolled 

from May to July 2013. 24 hour urinary collections and serum creatinine concentrations 

were used to measure creatinine clearance. A total of 49 patients were included with a 

median age of 34 years. Most study participants were male and admitted after trauma and 

39% were found to have ARC. These patients were more commonly admitted emergently 

(P=0.03), although no other covariates were identified as predicting ARC, likely due to the 

inclusion criteria and the study being underpowered. Significant imprecision was 

demonstrated when comparing calculated Cockcroft-Gault creatinine clearance (CG Crcl) 

and measured creatinine clearance (Crcl).  Bias was larger in ARC patients, with CG Crcl 

being significantly lower than measured Crcl (P<0.01), and demonstrating poor correlation 

(rs=-0.04).  In conclusion, critically ill patients with „normal‟ serum creatinine concentrations 

have varied Crcl.  They are at risk of ARC, which may necessitate the need for 

individualized drug dosing. Furthermore, significant bias and imprecision between 

calculated and measured creatinine clearance exists, suggesting clinicians should 

carefully consider which method they employ in assessing renal function. 

Introduction 

The kidney is essential for maintaining water and electrolyte homeostasis in the body. It 

acts as a filter, allowing the „recycling‟ of extracellular fluid and excretion of waste 

products, through a combination of glomerular filtration, tubular reabsorption and tubular 

secretion [35]. The glomerular filtration rate (GFR) is the most widely accepted measure 

of renal function in both health and disease. It defines the rate at which plasma water is 

filtered by the kidney. In critical illness, determination of renal function informs several 

issues, including overall mortality and morbidity, optimization of drug dosing, and the 

initiation of renal replacement therapy.  It is widely accepted that many critically ill patients 

will develop acute kidney injury (AKI) due to many factors including sepsis, use of 

nephrotoxic agents and obstruction to urinary flow [36]. However, perhaps just as 

frequently [37], certain patients will manifest elevated renal function, or augmented renal 



18 

 

clearance (ARC) [38].  ARC often occurs in those who do not have renal impairment and 

have achieved adequate resuscitation during their intensive care unit (ICU) admission 

[39]. 

 

Mostly for convenience, ARC is defined by an elevated creatinine clearance (Crcl), which 

is used as a surrogate of GFR.  Values ≥ 130 ml/min/1.73m2 have been proposed as a 

useful threshold, given the association with low antibiotic concentrations when using 

standard doses [40], and inferior clinical outcomes [41]. However, this requires further 

validation, as the prevalence of ARC in ICU patients varies significantly (17.9% - 51.6%), 

depending on the definition employed, and case-mix studied [27, 37, 42, 43]. Patients 

considered to be at risk of ARC include young, admitted post -trauma, and postoperative 

patients, with low illness severity scores [44, 45]. Systemic inflammation (SIRS)[46], 

coupled with peripheral vasodilatation, increased cardiac output, and greater renal blood 

flow[44] are thought to be important mechanisms. Traumatic brain injured (TBI) patients 

receiving vasopressor therapy have also been noted to have an elevated Crcl [47]. 

 

The most accurate method of identifying ARC among critically ill patients is still 

controversial [39]. Commonly employed parameters, such as serum creatinine 

concentrations, may be misleading in the critically ill; as low values may be a reflection of 

reduced protein stores and malnourishment, rather than altered renal function.  Therefore, 

equations that only use serum creatinine concentrations to estimate glomerular filtration 

(such as The Modification of Diet in Renal Disease (MDRD) and Cockcroft-Gault (CG) 

Equation) have been demonstrated to be inaccurate in this setting [39, 48, 49].  

Consequently, measuring a timed urinary Crcl is probably the most pragmatic and reliable 

method, to identify ARC in the critical care setting [42, 43]. 

 

The primary aim of this study was to describe the prevalence of ARC in a selected cohort 

of critically ill patients admitted to the ICU of Hospital Sungai Buloh (HSB), Malaysia, over 

a two-month period. We also aimed to compare the prevalence of ARC in our cohort with 

previous reports from other ICUs, while attempting to identify clinical characteristics that 

may help identify these patients in a timely fashion. In addition, we also compared CG 

calculated creatinine clearance (CG Crcl) with measured urinary Crcl to determine whether 

these two methods can be used interchangeably. 
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Materials and Methods 

This prospective observational study was conducted in a 36 bed tertiary level, adult ICU of 

a 620-bed public hospital in Malaysia.  Ethics approval was obtained from Malaysian 

Medical Research Ethics Committee (NMRR ID NMRR-12-137-11118 S4RO). The 

requirement for individual informed consent was waived for this study.  

 

Patients were enrolled according to the following inclusion criteria, 1) admission to the 

ICU with expected length of stay >24 hours, 2) admission serum creatinine concentration 

<120 µmol/L), and 3) no history of chronic kidney disease (CKD), or renal replacement 

therapy (RRT).  Patients were excluded from the study if one or more of the following 

criteria were met; 1) absence of invasive haemodynamic monitoring as part of routine 

management, 2) absence of an indwelling urinary catheter (IDC) as part of routine 

management and 3) “Risk” stage of AKI (> 1.5 fold increase in serum creatinine from 

baseline or urine output <0.5 ml/kg/hr for >6 hrs prior to enrolment [50]. Our study cohort 

therefore represents a selected group of ICU patients; those without AKI, requiring 

invasive monitoring, and with an expected length of stay >24 hrs. 

 

Admission type was classified as “Elective” when a routine ICU bed was requested post-

operatively.  All other cases were treated as “Emergency admissions”.  Independently, all 

cases were also categorised as being trauma or non-trauma related. Additional 

demographic, therapeutic, and outcome data were collected while the patient was in the 

ICU, via the institutional computerized medical record system. Sequential organ failure 

assessment (SOFA) [51] scores were obtained from a national database (Malaysian 

Registry of Intensive Care). 

 

Crcl measurement  

A 24hr Crcl study was commenced within 24 hours of ICU admission. Serum creatinine 

concentrations obtained from routine morning blood samples were used to calculate Crcl.  

ARC was defined as >130 ml/min.  A CG Crcl was also calculated for comparison (CG = 

[(140-Age) x Weight(kg)/(Serum creatinine(mmol/L)x0.814] x 0.85 if female).  
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Statistical analysis 

For continuous variables, data are presented as the median and interquartile range [IQR].  

Qualitative variables are presented as frequencies and percentages. A Mann-Whitney U or 

Chi-square test was used to compare independent sub-groups, for continuous and 

categorical variables respectively. Comparisons between measured and estimated 

clearances utilised the Wilcoxon Sign Rank test, Spearman correlation (rs), linear 

regression, and Bland-Altman analysis. A P-value < 0.05 was considered statistically 

significant. All statistical analyses employed SPSS v.21.0 (SPSS Inc., Chicago, IL). 

 

Results 

A total of 49 eligible patients were included in this study, from 272 patients admitted to the 

ICU during the study period.  Figure 3.1 illustrates the common reasons for patients 

excluded from this study.  Demographic and clinical data of the 49 patients included in this 

study are presented in Table 3.1. The majority of participants were young (median age 34 

years), male, trauma patients. All trauma patients suffered TBI, and also underwent 

emergency surgery prior to ICU admission. Overall SOFA scores were found to be 

moderate in this cohort of patients (median [IQR] = 9 [6.0-10.0]). 

Figure 3.1: Study Enrolment and Patient Exclusion 
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Descriptive data analysis identified that 39% of patients in this study manifested ARC. 

Data were later separated into two categories, patients with ARC and without ARC, as 

displayed in Table 3.2. No significant differences were identified between the two groups, 

other than in admission type (elective versus emergency admission). Although patients 

manifesting ARC were more frequently trauma victims, this did not reach statistical 

significance (P=0.06). Data were also separated into four quartiles, based on the Crcl 

result.  The age of patients in each quartile is presented in Figure 3.2. The first and second 

quartiles show a wider distribution, as compared to the third and fourth quartiles. 
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Table 3.1 : Demographic, laboratory and illness severity data of all patients (n=49) 

 

Demographic data  Category n (%) Median 
 

IQR 

Age (years)   34 24-47 

Gender Male 37(75.5)   

Female 12(24.5)   

Weight (Kg)   61 56-67 

ICU LOS (days)   9 5-12 

Hospital LOS (days)   12 6-22 

Trauma Admission No 21(42.8)   

Yes 28 (57.2)   

Admission Type Elective 14 (28.6)   

Emergency 35 (71.4)   

ICU outcome Discharge 42(85.7)   
 Death 7(14.3)   
SOFA score   9 6-11 

Serum creatinine (µmol/L)   67 61-74 

Urinary creatinine (mmol/L)   6 4-9 

Crcl (ml/min)   116 86-155 

ARC Status ARC  19(38.8)   

 
 

Non-ARC 30(61.2)   

Vasopressor requirement  
(at the time of Crcl collection) 

Yes 32(65.3)   

No 17(34.7)   
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Table 3.2 : Comparison of patients with and without augmented renal clearance (ARC) 

Demographic data Category ARC (n=19) 
 
Median (IQR)/    N 
(%) 

Non-ARC(n=30) 
 
Median (IQR)/    N 
(%) 

P value 

Age (years)  35 (25-45) 34 (24-50) 0.51 
Gender Male 17 (89.5) 20 (66.7) 0.10 
 Female 2 (10.5) 10 (33.3)  
ICU LOS (days)  6 (3-19) 9 (6-12) 0.83 
Hospital LOS (days)  17 (5-25) 11 (7-21) 0.44 
SOFA Score  9 (7-10) 9 (6-11) 0.66 
Trauma Admission No 5 (26.3) 16 (53.3) 0.06 
 Yes 14 (73.7) 14 (46.7)  
Admission Type  Elective 2 (10.5) 12 (40.0) 0.03 
 Emergency 17 (89.5) 18 (60.0)  
ICU outcome Discharge 16 (84.2) 26 (86.7) 1.00 
 Death  3 (15.8) 4 (13.3)  
Serum creatinine (µmol/L)   66 (59-79) 66 (61-72) 0.33 
Crcl (ml/min)  173 (141-223) 91 (64-112) <0.01 
Vasopressors (during Crcl 
collection) 

Yes 
No 

11 (57.9) 
8 (42.1) 

21 (70.0) 
9 (30.0) 

0.39 
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Figure 3.2 : Distribution of age between quartiles which illustrate lower ages in those with 

higher creatinine clearance 
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Figure 3.3 : Linear regression of measured urinary creatinine clearance (urinary CrCL) 

and estimated glomerular filtration rate by Cockcrof-Gault equation for  a) ARC patients 

(n=19) and b)non-ARC patients (n=30) 
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Figure 3.4 : Comparison of measured urinary creatinine clearance (urinary CrCL) and 

estimated glomerular filtration rate by Cockcroft-Gault (CG CrCL) equation 

and for a) all studied cohort (n=49) and b) ARC patients (n=19) 
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Figure 3.5: Bland-Altman plot of Cockcroft-Gault (CG CrCL) equation and measured 

urinary creatinine clearance (urinary CrCL) for A) ARC patients (n=19) and B) 

Non-ARC patients (n=30) 
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Table 3.3 : Comparison of Cockcroft-Gault (CG CrCL) equation and measured urinary 

creatinine clearance (urinary CrCL) for all patients vs ARC patients  

 All ARC Non  ARC 

CG Clcr Clcr CG Clcr Clcr CG Clcr Clcr 
Median 120  116  120  173  117  91 
IQR  94-142  86-155  89-154  141-223  94-137  64-112 
rs (P-value) 0.24 (0.05)  -0.04 (0.44)   0.48 (<0.01)  

Bias (SD) 3.9 (58)  57 (54)  -30 (27)  
95% LOA -110-118  -50-164  -83-23  

 

Linear regression between CG Crcl and measured Crcl, for non-ARC and ARC patients, is 

presented in Figure 3.3. As illustrated, significantly worse correlation was observed in ARC 

patients (rs=-0.04, P=0.44) as compared to non-ARC patients (rs=0.48, P<0.01). 

Furthermore, in those patients with ARC, measured Crcl values were significantly higher 

(173 [141-223] ml/min) compared to CG Crcl (120 [89-154] ml/min), P<0.01) as illustrated 

in Figure 3.4.   Figure 3.5 compares the different methods using Bland-Altman analysis. 

For all patients, it yielded an average bias of 3.9 ml/min (58 ml/min) with broad limits of 

agreement, -110 ml/min to 118 ml/min. A larger bias was observed in the ARC sub-group; 

57 ml/min (54 ml/min), with similar limits of agreement; -50 ml/min to 164 ml/min.  All data 

are summarized in Table 3. 

Discussion 

To our knowledge, this is the first study examining the epidemiology of ARC in a selected 

cohort of Malaysian critical care patients.  Although 39% of study subjects manifested ARC 

on admission, the overall prevalence of this phenomenon in the wider Malaysian critical 

care population is likely to be lower, as only 18% of all admissions to the ICU were 

included over the study period (Figure 3.1).  ARC was more likely to occur in emergent 

ICU admissions (P=0.03) and possibly also in trauma patients (P=0.06).  Perhaps most 

significantly, poor agreement was noted between CG Crcl and measured Crcl in patients 

manifesting ARC, suggesting that clinicians should be cautious when using mathematical 

estimates of renal function in this setting.   

 

The reported prevalence of ARC from other studies range from 17.9% to 41.1% [27, 42, 

43], albeit with varying definitions employed.  Unlike this prior work; no significant 

differences were noted in demographic data between ARC and non-ARC patients in the 
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current study. Specifically, previous authors have observed ARC as a frequent finding in 

younger, male patients predominantly [27, 39, 45].  In our study cohort, this demographic 

was over represented, such that age and gender were not identified as discriminatory 

variables.   Although this is likely a reflection of our inclusion criteria, and subsequent small 

sample size, significant differences in critical care case mix in Malaysia may have also 

contributed.  Of note, stratification of data into quartiles did illustrate a trend towards 

younger age in those with higher Crcl (Figure 3.2).  

  

The association between ARC and emergent admission to the ICU, often in the setting of 

trauma, represents an observation consistent with previous data [36, 45, 52, 53]. It is also 

interesting to note that all trauma victims in our study suffered TBI, a previously reported 

risk factor for ARC [36, 47].  No significant differences were found for length of stay and 

ICU outcome between groups, although this study is significantly underpowered for such 

an observation. 

  

An additional major finding from this work is the poor relationship between CG Crcl and 

measured urinary Crcl in ARC patients, as illustrated in Figures 3.3 and 3.4.  Bland-Altman 

analysis confirms significant bias and imprecision in this sub-group (Figure 3.5).  A similar 

positive bias (between 17 ml/min to 39 ml/min), has been reported by others in this setting 

[42, 48, 54], while some have identified a negative bias [39, 43]. Importantly, the bias 

becomes significantly larger in patients exhibiting ARC, such that dose adjustment of 

renally excreted drugs is unlikely to be accurate on the basis of CG Crcl.  In this respect, it 

has been suggested that a measured Crcl represents a more accurate surrogate of GFR in 

the ICU setting [43]. 

 

Although our study did not attempt to quantify the clinical implications of ARC, the 

observation that approximately two out of five participants in this study manifested this 

phenomenon, represents an important consideration in drug dose selection, particularly 

antibiotics. While decreasing renal function is a common trigger for dose reduction of 

renally cleared agents, ARC should also trigger increased dosing to avoid sub-therapeutic 

concentrations [55] .  Failure to consider this in dose selection may increase the likelihood 

of treatment failure [56], or promote colonisation and infection by multi-drug resistant 

organisms.  In this context, several studies have demonstrated that beta-lactam 
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antibiotics are more rapidly cleared in septic patients without organ dysfunction, resulting 

in sub-therapeutic levels, and associated poor clinical outcomes [37, 40, 57, 58].  

As a consequence of sub-therapeutic level, a selection pressure may occur leading to 

emergence of resistance pathogens as suggested by pre-clinical data [59]. Indeed, this 

might be one of the reasons for why there is a high prevalence of resistant pathogens in 

the intensive care unit. Available evidence of the relationship between antibiotic resistance 

and under-dosing been extensively reviewed by Roberts et al [29]. The main parameter 

related to this emerging area of research, include : 

 Mutant Prevention Concentrations (MPC); drug concentrations require to prevent 

emergence of mutations; 

 Mutant Selection Window (MSW); selection of resistant mutants if antibiotic 

concentrations falls between MIC and MPC 

 

Since ARC is commonly seen among ICU patients, the likelihood of standard antibiotic 

doses not exceeding the MPC and remaining within the MSW is high. This result in a 

mutant selection pressure; leading to the emergence of antibiotic resistant pathogens. It is 

highly plausible that underdosing of antibiotics in patients with ARC could be one of the 

possible causes of high prevalence of resistant pathogen in these settings. 

 

Applying the results of our study suggests that significantly altered dosing may be required 

for patients with ARC.  Our data describing the range of Crcl that can be observed in the 

critically ill serves as an important reminder that a simple „one dose fits all‟ approach for 

renally cleared drugs in patients without renal dysfunction; is likely to be grossly flawed. 

Such variation in Crcl between critically ill patients supports an individualized drug dosing 

approach that may not be necessary in a ward environment. To this end, therapeutic drug 

monitoring has been strongly advocated as a tool for optimised dosing of antibiotics in 

critically ill patients [27]. 

 

We wish to acknowledge the following limitations of this work.  Only 18% of patients 

admitted to the ICU over the study period were enrolled (Figure 1).  Rapid clinical turnover 

(resulting in a shorter expected length of stay), and a high percentage of patients with co-

morbid disease pre-disposing to the development of AKI appeared to be the key factors 

contributing to the low rate of patient enrolment.  As such, a post-hoc power analysis 
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suggests that this study has only 80% power to detect a difference in incidence in risk 

factors between 20% and 60% or 40% and 80% (with a higher prevalence in the ARC 

group), if we assume P<0.05 is statistically significant.  In addition, even though a 

measured Crcl is considered a reliable method of assessing renal function, it is not a gold 

standard measurement of GFR28.  Furthermore, we have only examined a single Crcl per 

patient, and as such, we cannot confirm how common ARC would be in our patients in the 

whole ICU stay.  

 

In conclusion, in a selected population of critically ill patients without AKI requiring invasive 

monitoring, admitted to a Malaysian intensive care unit with an expected length of stay 

greater than 24 hrs, ARC was identified in a significant proportion of patients.  This 

represents an important finding, as ARC is a key predictor of sub-therapeutic drug 

concentrations, such that these patients are at risk of inadequate drug exposure. 

 

Patients admitted emergently appeared to be at particular risk, although unlike prior 

studies, there was no significant difference in age and gender between ARC and non-ARC 

patients. Significant bias and imprecision was also noted between CG Crcl and measured 

urinary Crcl, in this setting, suggesting that clinicians should be cautious in modifying 

dosing on the basis of mathematical estimates of creatinine clearance from plasma 

creatinine concentrations alone. 
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3.3 Conclusion 

This chapter has described the risk of augmented renal clearance amongst critically ill 

patients in a Malaysian intensive care unit. Nearly half of the studied cohort had ARC, 

demonstrating that ARC is a common phenomenon in critically ill patients. The presence of 

ARC appeared to be more prominent in post-severe trauma and those that had undergone 

emergency surgery and so these could both be considered predictors of the presence of 

ARC. Significant bias resulted from comparison between measured and calculated 

creatinine clearance in patients with ARC. This result suggests that measured creatinine 

clearance should be considered for routine use in the ICU setting to detect the presence of 

ARC. The implications of this study in context of previous PK studies demonstrating the 

relationship between antimicrobial clearance and creatinine clearance is that many ICU 

patients are likely to require non-standard doses to ensure achievement of target 

concentrations. Without dose modification, a poor outcome from treatment is likely. This 

effect has been reported recently in the discontinuation of clinical trials due to inferior 

outcomes for younger patients with higher renal clearances for whom dose modification 

was not carried out. Identifying patients at risk of ARC should be considered important for 

improving antimicrobial use in critically ill patients. 
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4. Chapter 4 : Pharmacokinetics of Beta-Lactam Antibiotics in Intra-Abdominal 

Disease in Critically Ill Patients 

4.1 Synopsis 

The aim of this chapter is to explore available PK studies of beta lactam antimicrobials in 

intra-abdominal disease. The consequent effect on antimicrobial PK and dose adjustment 

will be discussed in this review to serve as a guide on therapeutic prescription to the 

physicians. From this review, possible antimicrobial clearance through surgical drains 

suggests a need for further studies on this topic. Therefore, this chapter will also include 

the prospective study of the PK of meropenem and piperacillin in critically ill patients with 

surgical drains. The methods used in analysing meropenem and piperacillin in PK samples 

will be incorporated in the published manuscript of findings of this study. Additionally, the 

appropriateness of standard doses in achieving PK/PD targets in critically ill patients will 

be evaluated in this chapter.  

4.2 Published manuscript entitled `Pharmacokinetics of Beta-Lactam Antibiotics 

in Intra-Abdominal Disease : A Structured Review’ 

The manuscript entitled, “Pharmacokinetics of Beta-Lactam Antibiotics in Intra-Abdominal 

Disease: A Structured Review” has been accepted for publication by Surgical Infections 

(2012; 13(1) 9-17). 

The co-authors contributed to the manuscript as follows: All literature reviews, data 

collection and interpretation was performed by the PhD candidate, Syamhanin Adnan with 

assistance from Prof Jason Roberts under the supervision of Prof David Paterson and Prof 

Jeffrey Lipman. The PhD candidate, Syamhanin Adnan, took the leading role in 

manuscript preparation and writing. Other co-authors, Dr Michael Rudd, Dr Suresh Kumar 

and Janice Li had also assisted with the draft. 

The manuscript is presented as published, except figures and tables have been inserted 

into the text at slightly different positions. Also, the numbering of pages, figures and tables 

has been adjusted to fit the overall style of the Thesis. The references could be found in 

the section of `Bilibiography‟. 



34 

 

“Pharmacokinetics of Beta-Lactam Antibiotics in Patients with Intra-abdominal 
Disease: A Structured Review” 

Syamhanin Adnan, 1, 2 David L. Paterson, 2, 3Jeffrey Lipman, 1, 4Suresh Kumar,  7 Janice Li, 

8 Michael Rudd, 1,9 Jason A. Roberts 1, 4-6 

1Burns, Trauma and Critical Care Research Centre, The University of Queensland, 
Brisbane, Australia, 2University of Queensland Centre for Clinical Research, The 
University of Queensland, Brisbane, Australia, 3Department of Infectious Diseases, Royal 
Brisbane and Women‟s Hospital, Brisbane, Australia, 4Department of Intensive Care, 
Royal Brisbane and Women‟s Hospital, Brisbane, Australia, 5Pharmacy Department, Royal 
Brisbane and Women‟s Hospital, Brisbane, Australia, 6School of Pharmacy and Medical 
Sciences, University of South Australia, Adelaide, Australia, 7Department of Medicine,  
Hospital Sungai Buloh, Sungai Buloh, Selangor Malaysia, 8School of Pharmacy, University 
of Queensland, Brisbane, Australia, 9Department of Surgery, Royal Brisbane and 
Women‟s Hospital, Brisbane, Australia 
 
Keywords: antibiotics, critically ill, intra-abdominal infection, pharmacokinetics, 
pharmacodynamic 

Address for correspondence: 
Syamhanin Adnan  
Burns Trauma and Critical Care Research Centre  
Level 3 Ned Hanlon Building 
Royal Brisbane and Women‟s Hospital  
Butterfield St 
Brisbane Queensland Australia 4029 
Phone no : + 61 (7) 3346 4932  

Fax : + 61 (7) 3365 5192 

Email address : s.adnan@uq.edu.au  

mailto:s.adnan@uq.edu.au


35 

 

Abstract 

Background and Purpose : The objective of this structured review is to critically analyze 

the findings of pharmacokinetic studies of antibiotics in patients with intra-abdominal 

disease, that is, intra-abdominal infection (IAI) or previous abdominal surgery and 

determine the requirements for dosage modification in this patient population.  

Methods : Data were identified by structured review of PubMed from February 1983 to 

February 2011. All 14 articles reviewed described antibiotic pharmacokinetics in patients 

with intra-abdominal disease.  

Results : Antibiotic classes included carbapenems, penicillins, cephalosporins and 

monobactams. Possible physiological changes that can occur in these patients include 

development of abscesses, perforation, or ischemia of the bowel as well as intra-

abdominal hypertension.  These disorders may cause changes in antibiotic 

pharmacokinetics including increased volume of distribution and faster drug clearance, 

both resulting in lower antibiotic concentrations. High inter-individual pharmacokinetic 

variability was common to each of the studies.  

Conclusion: Most of the available data demonstrates that drug volume of distribution can 

be increased significantly in the presence of intra-abdominal disease. Drug clearance is 

likely to vary in line with renal or hepatic function. Thus, dose optimization is important to 

prevent development of antibiotic resistance or therapeutic failure. However, further 

research is necessary to determine the clinical outcome of individualized dosing on the 

basis of pharmacokinetic/pharmacodynamic studies.  

Introduction 

Managing sepsis in critically ill patients remains a great challenge for clinicians. The 

incidence of sepsis in such patients has been reported as approximately 10% with a 

population incidence of 1/ 1000 [60]. Complicated intra-abdominal infection (IAI) is a 

frequent cause of sepsis and is the second most frequent cause of infectious mortality in 

the intensive care unit (ICU) [61]. The treatment of complicated IAI consists of both source 

control and antibiotic therapy, as outlined by both the Surgical Infection Society and the 

Infectious Disease Society of America [62]. This guideline recommends the use of 

antibiotics at optimal doses so as to maximize efficacy, minimize toxicity and reduce 

antibiotic resistance. Patients with complicated IAI are also at risk of infections by resistant 
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pathogens [63] and therefore the importance of appropriate selection, timing of 

administration and dose adjustment of the antibiotic is paramount [64, 65]. Multiple factors 

may contribute to the selection of a resistant pathogen, but achieving optimal drug 

exposure is likely to be a key factor for minimizing its occurrence [66].  

Determination of optimal antibiotic doses based on the basis of pharmacokinetic/ 

pharmacodynamic (PK/PD) principles  correlates the antibiotic concentration in the body 

(i.e. PK) with its ability to kill, or inhibit growth, of the pathogen (i.e. PD) [67].  Optimal 

antibiotic doses will result in therapeutic concentrations at the focus of infection to ensure 

organism eradication.  This approach is likely to improve clinical outcomes, especially in 

critically ill patients, who are at high risk of developing severe infections and dying [7, 68, 

69].  However, penetration of the antibiotic to the site of infection can be hindered by 

various factors, including the patient‟s underlying co-morbidities, immune function status, 

renal and liver function status and concomitant drug use [70].  These factors can be more 

profound in critically ill patients due to pathophysiological changes, as described in detail 

in a review article by Roberts and Lipman [32]. Numerous studies have been conducted to 

describe the pharmacokinetics of antibiotics in IAI, although we are unaware of any 

structured reviews on this topic. The aim of this structured review is to critically analyze the 

PK studies on beta-lactam antibiotics used in patients with intra-abdominal disease 

including patients with IAI and after abdominal surgery.  

Search Strategy and Selection Criteria 

Data for this review were identified by structured review of PubMed (February 1983 to 

February 2011).  Keywords used included `pharmacokinetic‟, `pharmacodynamic‟ `beta-

lactam antibiotics‟, `critically ill‟, `intra-abdominal‟ and „infection‟. Twenty-four papers were 

identified, ten articles were reviews and were excluded because they were guideline 

documents only, discussing antibiotic choice and general management of IAI. Articles 

discussing PK studies of patients undergoing peritoneal dialysis were excluded, as this 

group is likely to have significantly different values. All papers reviewed were written in the 

English language and described antibiotic pharmacokinetics in patients with intra-

abdominal disease. The studies used for this systematic review are summarized in Table 

3.1 and are listed according to antibiotic class. This review also includes a paper by 

Wittman and Schassan [71] which studied eight beta-lactam antibiotics in patients post-

abdominal surgery although this paper is not listed in Table 3.1 because it only reports 
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matching serum and peritoneal fluid concentrations but does not  describe relevant PK 

parameters. The PK data available from healthy volunteers were also included for each 

antibiotic for comparison. 

General Concept 

Antibiotics can be divided into three major classes on the basis of their bacterial-killing 

properties [72].  Concentration dependent antibiotics (e.g. aminoglycosides) exhibit 

bacterial killing that correlates with the peak concentration during a dosing interval (Cmax). 

Achieving a higher ratio of Cmax to the minimum inhibitory concentration (MIC) of the 

infecting pathogen (Cmax/MIC ratio) has been advocated to maximize killing.  

Administration of higher doses should result in a higher ratio. This may be clinically useful 

when a higher MIC is present [33].  On the contrary, the killing of bacteria by time 

dependent antibiotics (e.g. beta-lactams) will depend largely on the time that the antibiotic 

concentration is maintained above the MIC, preferably at least 40 – 60% of the dosing 

interval.  Some data on the killing of Pseudomonas spp suggest greater activity [34] when 

concentrations are maintained at 4–5×MIC [72]. The third group of antibiotic has PK/PD 

properties consistent with both concentration and time dependent antibiotics, and bacterial 

killing is associated with the ratio of the area under the concentration time curve (AUC), to 

MIC (AUC/MIC; e.g. fluoroquinolones and glycopeptides). The strong relationship between 

PK and PK/PD means that a change in PK may affect the treatment outcome. It follows 

that an understanding of the pathophysiology of IAI and its effect on PK is necessary to 

determine the need for altered dosing. 
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Relation between physiological alterations in patients with intra-abdominal disease 

and pharmacokinetics  

Intra-abdominal infections (IAIs) are categorized as either complicated or uncomplicated, 

depending on the extent of infection [73]. From clinical point of view, the infectious process 

involved in complicated IAI extends beyond the organ that is the source of infection and 

causes localised or diffuse peritonitis, depending on the ability of the host to contain the 

process within a part of the abdominal cavity [73]. Pathologic changes that could occur 

during IAI include the development of abscesses, perforation and ischemia of the bowel. 

These may lead to intra-abdominal hypertension as well as significant physiologic changes 

such as hypotension and tachycardia.   IAI could also develop as a complication of an 

invasive procedure (i.e. abdominal surgery). Varied IAI rates have been reported, but in 

the presence of  intra-abdominal surgical packing, infection rates can be as high as 70% 

[74].  Similar physiologic changes could also occur in these patients secondary to higher 

level of anti-diuretic hormone (ADH) as response to the trauma of surgery. Higher 

concentrations of  ADH eventually lead to fluid retention in the intra-abdominal cavity [75].   

Pharmacokinetics - Changes in distribution 

Fluid expansion 

Antibiotic transfer from intravascular to interstitial space is diffusion driven; either through 

pores or transcellularly, depending on the chemical properties of the drug. Small polar 

hydrophilic molecules will move through fenestrated capillary pores and more lipophilic 

substances pass directly through the endothelial wall [76]. For hydrophilic antibiotics (e.g. 

aminoglycosides, glycopeptides and beta-lactams), distribution is typically limited to the 

plasma and the interstitial fluid of tissues due to limited extravascular permeability, and the 

concentrations are in equilibrium during steady state. Thus, any changes in interstitial fluid 

will alter the distribution of hydrophilic antibiotics. This is commonly seen when systemic 

pathologies such as the systemic inflammatory response syndrome (SIRS) or sepsis 

(defined as SIRS in the presence of infection) are present. In IAI, local increases in fluid 

volumes within the peritoneal cavity will occur secondary to fluid shifts from the 

intravascular space to the interstitial space as a result of capillary leak associate with 

sepsis [13]; fluid therapy for restoration of intravascular volume [62] and inflammatory fluid 

collections can lead to increased fluid volumes within the peritoneal cavity. Furthermore, 

gut pathology such as ileus can develop from the development of increased intra-luminal 
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pressure, . This local inflammation contributes to systemic `third spacing‟ effects. Each of 

these factors will effectively increase the volume of distribution (Vd) of a hydrophilic 

antibiotic, leading to a dilutional effect, as illustrated schematically in Figure 4.1.  For 

lipophilic antibiotics (e.g. fluoroquinolones), which have a large Vd because of their 

intracellular penetration, fluid expansion is unlikely to cause significant changes in plasma 

or interstitial fluid concentrations [77].  
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Impaired penetration - abdominal abscess 

Another challenge in the management of IAIs is the formation of an abscess. This may 

result from an immune defence mechanism causing the release of macrophages and 

neutrophils into the peritoneal cavity, as well as activation of the coagulation and 

complement cascades. Bacteria remain viable, as the abscess environment is not 

conducive to antibiotic cavity.  Antibiotic penetration is impaired as a result of limited 

perfusion in the presence of fibrin clots and the abscess wall [22]. The acidic environment 

of the abscess [78] may cause therapeutic failure of aminoglycosides,  with in vitro studies 

demonstrating a reduced bactericidal effect.   In vitro studies have shown that at pH 5.5, 

amikacin and netilmicin had practically no bactericidal effect on P. aeruginosa[79].  

Even though an abscess may be managed with antibiotic therapy alone, it has been 

reported that patients with both larger intra-abdominal abscesses (>6.5cm) and pyrexia, 

have an increased likelihood of antibiotic failure and therefore drainage, or other source 

control is required [80]. 

Pharmacokinetics - Changes in clearance 

Organ dysfunction 

As discussed above, patients with a large intra-abdominal fluid volume are at risk of intra-

abdominal hypertension (IAH) [81]. The pressure within the abdomen is normally 

atmospheric (<7 mm Hg) or sub-atmospheric (i.e., negative), but the presence of some 

form of intra-abdominal pathology may increase the pressure in the abdominal 

compartment.  Hypoperfusion of the gastrointestinal tract is reported at or above an intra-

abdominal pressure (IAP) of 12 mmHg [82]. IAH reduces abdominal wall blood flow 

because of  the higher arteriolar and venous resistance, which will lead to intestinal 

mucosal hypoperfusion and ischemia. Persistent IAH could later result in development of 

multiple organ dysfunction; for example, it could cause hepatic and gastrointestinal effects 

by impairing lymphatic flow and produce renal dysfunction as a result of decreased 

glomerular filtration rate [83]. Thus, IAH can lead to development of multiple organ 

dysfunction syndrome (MODS) and it has been reported that the incidence of MODS is as 

high as 90% as compared to 31.5% in patients without acute compartment syndrome 

secondary to IAH [81]. In the presence of MODS, antibiotic doses may need to be adjusted 
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to minimize the likelihood of drug accumulation and toxicity if the affected organ is 

responsible for antibiotic elimination [17, 84]. 

Clearance by abdominal surgical drains 

It has been suggested that the presence of indwelling surgical drains are a frequently 

overlooked cause of antibiotic loss in critically ill patients [7, 85]. However, most studies 

documenting presence of antibiotics in drain fluid were for the main purpose of 

understanding drug penetration to specific sites. Thus, these studies provide little 

information about the extent of drug loss from these drains or the PK characteristics of 

drugs in patients with indwelling surgical drains or if the PK differs from patients without 

drains. 

Specific antibiotic classes 

The studies are grouped together according to antibiotic classes and are discussed below. 

Data were available from patients with IAI and also from patients who had undergone 

abdominal surgery; where possible, the results are compared (see Table 4.1). 
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Table 4.1 : Studies describing pharmacokinetic of beta-lactam antibiotics in patients with intra-abdominal disease.  

Antibiotic class Reference Patient 
population 

Samples CL (L/hour) Vd (L) AUC plasma 
(mg.h/L) 

AUC PF 
(mg.h/L) 

AUC ratio 

Carbapenem         
Meropenem Bedikian et al 

(1994)[86]  
Intra-abdominal 
infection (n=12) 

Plasma samples at 
steady state 

18. 9 ± 4.3  
 

Vss: 26.7 ± 6.9 
 

57.5 ± 20.1  
 

Not available Not available 

 
Karjagin et al 
(2008)[87]  

 
Severe peritonitis 
and septic shock 
(n=6) 

 
Plasma and peritoneal 
fluid. AUC from 
simulate profile of 
3g/day 
 

 
6.7 ± 4.2 
 

 
Vss: 23.8 ± 4.9 
 

 
 625 
 

 
491 
 

 
0.78  

 Nilsson-Ehle 
et 
al(1991)[88]  

Healthy volunteers 
(n=8) 
 

Plasma samples after 
single dose  

11.3  ± 1.7 
 

Vss: 12.5 ± 1.5 
 

77.5 ± 11.5 Not available Not available 

Imipenem 
 

Ikawa et al 
(2008)

a
 [89] 

Patients post 
laparatomy (n=10) 
 

Plasma and peritoneal 
fluid after single dose 
 

Total :46.8 
 

Total:14.3 
 

59.0 ± 15.7   41.01 ± 6.13  0.82 ± 0.06 

  
Nilsson-Ehle 
et 
al(1991)[88]  

 
Healthy volunteers 
(n=8) 
 

 
Plasma samples after 
single dose  

 
11.0 ± 1.5 

 
Vss: 14.4 ± 1.2 
 

 
94.4 ± 12.0 

 
Not available 

 
Not available 

Doripenem Ikawa et al 
(2007)[90] 

Patients post 
abdominal surgery 
(n=10) 

Plasma samples after 
single dose  

8.6 ± 1.1 Vss: 8.56 ± 1.14 
 

59.3 ± 7.2  49.3 ± 6.5  0.4 ± 0.3 

         
 Cirillo et al 

(2009)[91]  
Healthy volunteers 
(n=48) 

Plasma samples after 
single dose 

13.0 – 14.6 
 

Vss:14.4 – 18.0 35.6 – 78.8 
 

Not available 
 

Not available 
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Antibiotic class Reference Patient 
population 

Samples CL (L/hour) Vd (L) AUC plasma 
(mg.h/L) 

AUC PF 
(mg.h/L) 

AUC ratio 

Biapenem Ikawa et al 
(2008)[92]  
 

19 patients post 
abdominal surgery 
 

Plasma and peritoneal 
fluid after single dose   
 

8.11 ± 5.7
b
  

 
Total:16.4 
 

Not available Not available Not available 

Ertapenem
c
 Arrigucci et 

al, (2009)[93]  
Patients post 
abdominal surgery 
(n=21) 

Plasma and peritoneal 
samples taken at 
different times from 
three different groups 

Not available Not available Not available Not available Not available 

 
 

 
Majumdar et 
al (2002)[94]  

 
Healthy volunteers 
(n=16) 

 
Plasma samples after 
single dose of 1gm 

 
1.7  ± 0.2 
 

 
Vss :8.2± 1.5 

 

572.1 ± 68.6 
 
Not available 

 
Not available 

Amino-
penicilln 

        

Piperacillin/ 
tazobactam 

Li et al 
(2005)[95]  

Patients with 
complicated intra-
abdominal 
infection 
(n=56) 

26 in continuous 
infusion (CI) 
30 in intermittent 
infusion (IT) 

CI                                                                     
15.9 ±5.7  
IT 
13.7±4.3        
 
 

CI :                                                              
22.2±4.5  
IT 
22.4±6.2     
 
 

Not available Not available Not available 

 Sorgel and 
Kinzig 
(1994)[96]  

Healthy volunteers 
(n=33) 

Plasma samples after 
single dose  

13.1 – 16.7 
 

Vss :11.9-18.8 121 – 294 Not available Not available 
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Antibiotic class 
 
 

Reference Patient 
population 

Samples CL (L/hour) Vd (L) AUC plasma 
(mg.h/L) 
 

AUC PF 
(mg.h/L) 

AUC ratio 
 

Cephalosporins         
Ceftazidime Bujik et al 

(2002)[97]  
Patients with 
severe intra-
abdominal 
infections (n=13). 
9 received 
continuous 
infusion (CI) and 4 
received 
intermittent bolus 
(IB) 

Plasma and peritoneal 
exudates 

CI : 
4.1(Day 2) 
4.2 (Day 4)     
 
IB 
5.1 (Day 2)  
4.0 (Day 4 ) 
  
 

IB 
21 (Day2) 
14 (Day 4)  
 

CI  
1131(Day 2) 
1098(Day 4) 
 
IB : 
1064 (Day 2) 
1166 (Day 4) 
 
 

CI 
522 (Day 2) 
637 (Day 4) 
 
IB : 
 316 (Day 2) 
 346 (Day 4) 

CI : 
0.56 (Day 2) 
0.35 (Day 4) 
 
IB : 
0.64 (Day 2) 
0.35 (Day 4) 

  
Heim-
Duthoy et 
al (1988) 
[98] 

 
Patient post 
abdominal surgery 
(n=11) 

 
Plasma samples on 
D2 of ceftazidime 

 
7.0 ± 2.8  
 

 
Vss :21.0 ± 
7.0 

 
340.4 ± 277.0  

 
Not available 

 
Not available 

  
Sommers 
DK (1983) 
[99] 

 
Healthy volunteers 
(n=24) 

 
Plasma samples after 
single dose 

 
5.8 – 6.9 

 
11.0 – 13.3 

 
153 - 178  

 
Not available 

 
Not available 

Cefotiam Ikawa et al
a
 

(2008)[100]  
Patient post 
abdominal surgery 
(n= 8) 
 

Plasma and peritoneal 
fluid after single dose 

 Total :16.5 Total :11.6 
 

101.1 ± 26.7   
 

86.5 ± 22.6 0.9 ± 0.2 

Cefozopran Ikawa et al
a
 

(2007)[101] 
Post abdominal 
surgery patient 
(n=10) 

Plasma and peritoneal 
samples obtained after 
first dose. 

Total :20.5 Total :15.1 
 

189.9 ± 32.0   
 

174.1 ± 36.0 0.9 ± 0.1 

         
b
This study reports CL as 0.036 x creatinine clearance (CLcr) + 4.88 with Clcr reported as 89.9 ± 22.3.

c
This study only reports Cmax or random concentration and 

cannot be contrasted against the other studies. The authors reported tissue: plasma ratio of 46.7 ± 25.3 at 1h ± 15 min, 56.4 ± 24.1 at 2h± 15min and 83.1± 46.6 at 
3h ± 15 min. All the PK studies identified report PK parameter from either non-compartmental or compartmental analysis. All PK data are presented with 
standardized unit of measurement and whenever necessary, conversion was carried out. For PK data reported by body weight, body weight of 70 kg was used in the 
re-calculating. 
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Carbapenems 

Meropenem is the only carbapenem that has had its PK studied in patients with IAI, with 

data on intra-abdominal penetration of other carbapenems coming from abdominal surgery 

patients. Bedikian et al [86] compared the pharmacokinetics of meropenem in patients with 

IAI and healthy volunteers [88], and observed that the Vd in these patients had doubled, 

the AUC was 25% lower, and the clearance (CL) twice as high as in healthy volunteers. 

However, since patients with organ impairment, life-threatening infection, septic shock and 

immunodeficiency and long term therapy were excluded, this study may not reflect the 

likely spectrum of critically ill patients that may be encountered. The Vd is likely to remain 

augmented, although CL values may be significantly lower in some patients. Unfortunately, 

this study did not confirm antibiotic penetration into the peritoneal fluid (the site of 

infection). Karjagin et al [87] also studied meropenem but described a reduced CL with a 

similar Vd to that reported by Bedikian et al.  Further PD analysis using PK simulations, 

suggest that a dose of 3g/day produces an AUC ratio of peritoneal fluid to plasma of 0.78 

and achieves concentrations that exceed an MIC of 4 µg/mL, for both plasma and 

peritoneal fluid for 87% of the dosing interval. Since the majority of infections are localized 

in extracellular fluid [76], doses that can achieve a high ratio of peritoneal fluid to plasma 

ratio are most likely to attain therapeutic antibiotic concentrations in treatment of IAI. 

Other studies on carbapenems which include imipenem, doripenem, biapenem and 

ertapenem were performed in patients who had undergone abdominal surgery. Imipenem-

cilastin [89] showed peritoneal : plasma AUC similar to that of doripenem [90], 0.82 and 

0.84 respectively.  No ratio is available for biapenem[92] and ertapenem [93] (see Table 

1). 

The PK data from compartmental analysis for carbapenems which have been studied have 

shown that imipenem had the highest total CL compared with doripenem and biapenem. 

Both imipenem-cilastin and doripenem have higher total CLs in these patients than in 

healthy volunteers [102, 103]. Compartmental analysis also revealed elevated distribution 

clearances from the central to the peritoneal compartment which may indicate good 

peritoneal penetration or high fluid volumes in the peritoneal compartment. Available 

imipenem-cilastin data suggest that the minimum dosage required to attain at least 80% 

probability  of bactericidal activity at MICs of 1, 2, 4, 8 and 16 µg/mL are 500mg IV q12h, 

1000mg q12h, 1000mg q 8h and 1000mg q6h, respectively [89]. For doripenem, the 
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percentage of drug concentration that exceeds the MIC (fT>MIC) is slightly greater in 

peritoneal exudate than in serum [90], however, these differences are unlikely to mandate 

different dosing. Confounding the interpretation of the ertapenem PK study is the sampling 

times, with only random serum concentrations reported [93]. As such comparison with 

other studies is not possible. The great extent of protein binding of ertapenem (~95%), 

would also necessitate the measurement of unbound (pharmacologically active) 

concentrations, which was not done [93]. 

Penicillins 

Piperacillin and mezlocillin are the only two penicillins that have been studied. The first 

study on piperacillin was as part of a randomized clinical trial comparing continuous 

infusion (CI) and intermittent infusion (II) of piperacillin (co-formulated with tazobactam) in 

hospitalized patients with complicated IAI [95]. No difference in relevant PK parameters 

was found between the two infusion methods.  When compared with healthy volunteer 

data [104], the Vd was two times greater, with CL largely unchanged. However, no 

samples were obtained from the peritoneal fluid and therefore, this study did not confirm 

antibiotic penetration into that fluid. In another study by Wittman and Schassan [71] in post 

abdominal surgery patients, serial serum and peritoneal fluid concentrations were reported 

at different time intervals for eight beta lactams. No Cmax and AUC data were provided. 

However, the peritoneal fluid concentrations were reported at 2 h and the ratio of the 

peritoneal fluid: plasma concentration 2 h after administration was 0.83 and 0.74 for 

piperacillin and mezlocilin, respectively.  

Cephalosporins 

Five cephalosporin antibiotics have been studied, although only two studies were 

conducted in patients with IAI [97, 105]. The first study [97] was a non-randomized study 

and compared the PK of CI with II administration of ceftazidime.  The differences in PK 

parameters of Vd and CL within the two groups were not statistically significant , but the 

AUC value in peritoneal exudates was higher in the CI group, and this difference was 

statistically significant on Day 2. The peritoneal exudate: plasma AUC ratio was higher in 

CI group (56% - 64%) than in the II group (33-35%) but this difference was not statistically 

significant. Other data have shown that the AUC ratio of peritoneal exudates to plasma 

decreases over time (~0.6 on Day 2 and ~0.3 day 4). The low ratio may have resulted from 
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dilution of the peritoneal fluid as a result of continuous lavage, which resulted in rapid 

peritoneal ceftazidime clearance. However, drainage clearance was reported to be minor 

at 1% on Day 2 and 0.6% on Day 5, whereas the total ceftazidime CL was almost half than 

that reported in healthy volunteers [99] (see Table 1).   

A study with cefoperazone (co-formulated with sulbactam) [105] described a half life 3.9 

times that observed in healthy volunteers [106] because of a 50% larger Vd and a 43% 

lower CL. However, analysis of unbound concentrations was not undertaken in this study, 

which would have been significantly more relevant, as cefoperazone is highly protein 

bound (95%).  Further, no samples were obtained from peritoneal fluid, which would have 

been indicative of antibiotic effects at the site of infection. Other studies [71, 100, 101, 107] 

have been performed in patients after abdominal surgery. In these studies, the AUC ratio 

of peritoneal exudate: plasma was ~90% for each of cefepime, cefozopran and cefotiam 

respectively (cefozopran and cefotiam are only available at certain countries, e.g. China 

and Japan). Very high CL values of these drugs were observed.  

For cefepime, 3-hour infusion of 1g q8h and 2g q12h achieved fT>MIC above 85% for an 

MIC of 4µg/mL in peritoneal fluid [107]. The MIC data were derived from susceptibility 

surveillances of surgical infections from 4 major types of bacteria that cause post-operative 

IAIs: Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Enterobacter 

cloacae. Higher CL and lower AUC values were noted than in healthy volunteers [108]. A 

regimen of 1g every 8 hour for cefotiam achieved a fT>MIC above 80%, based on MIC data 

derived from local susceptibility surveillances of surgical infections. No pharmacodynamic 

analysis is available for cefozopran.  In a study by Wittman and Schassan [71], the 

concentration ratio of peritoneal fluid to plasma at 2 hours is 0.86 for cefuroxime, 0.85 for 

ceftazidime, 0.74 for cefoperazone, 0.71 for moxalactam and 1.40 for both cefoxitin and 

cefotaxime. Both cefoxitin and cefotaxime had an unusual ratio that probably reflects rapid 

achievement of therapeutic concentrations in peritoneal fluid although the duration of 

persistence of these concentrations remains unknown.  
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Summary of PK data 

The PK studies including IAI patients consistently show higher Vd values than in healthy 

volunteers except for cefoperazone [105]. The increment of Vd, was twice as high for both 

meropenem [86, 87] and piperacillin [95] and 20% higher for ceftazidime [97]. Despite 

these PK differences in healthy volunteers, because of the high susceptibility of the 

majority of pathogens causing IAI, a loading dose in response to this increased Vd would 

be required only on suspicion of a less susceptible bacterium (e.g. Pseudomonas 

aeruginosa)[63].  

On the contrary, PK studies including post abdominal surgery patients have shown lower 

Vd values, indicating more rapid clearance than in healthy volunteers. Specifically, CL was 

four times greater for imipenem-cilastin [89], three times higher for cefepime [107] and two 

times greater for doripenem [90]. The increased CL associated with post-operative state 

suggests the need for more frequent dosing of beta-lactam antibiotics. 

Approaches to dosing antibiotic in IAI 

The importance of dose optimization of antibiotics in treating infection has been highlighted 

by various studies [33, 109-112]. For critically ill patients with complicated IAI, optimizing 

antibiotic therapy is challenging. Dosing guidance from the product insert is obtained from 

well-controlled clinical trials in patients who are not critically ill and so does not account for 

the complex pathophysiology of these patients [113, 114]. As is evidenced above, 

antibiotic concentrations at the infection site and drug clearance can be variable between 

antibiotics. Major changes of these parameters will affect antibiotic concentrations and 

therefore bacterial killing. Changes in distribution through volume expansion may cause a 

dilution effect to hydrophilic antibiotics, thereby necessitating larger doses, as shown in 

those PK studies involved patients with IAI; higher Vd values were noted than in healthy 

volunteers [86, 87, 95]. There is a lack of data on the presence and effect of impaired 

penetration and possible antibiotic clearance through surgical drains, suggesting that 

further studies be should be conducted.  As discussed above, the prescription of 

antibiotics that attain a higher peritoneal fluid: plasma ratio is suggested for this patient 

population, although such data are not readily available from all the studies reviewed. 

Where data suggest that antibiotic penetration into the peritoneum may be low, higher 

empiric doses to increase peritoneal fluid concentrations should be considered. 

Nevertheless, as studies describing antibiotic PK at the site of IAI are limited, more 
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research should be undertaken to determine whether individualized dosing based on 

PK/PD does in fact improve clinical outcome. However, when susceptibility data is 

available, standard doses are likely to be sufficient because many bacteria causing IAI are 

highly susceptible, and PD targets are still achieved in the peritoneal fluid. Other factors, 

such as the presence of hypoalbuminemia [17, 19] and impaired or augmented renal 

function [115-117], phenomena commonly seen in critically ill patients, also may lead to 

changes in plasma concentrations for antibiotics [118].  

Conclusion 

There are marked changes in PK parameters of antibiotics in patients with intra-abdominal 

disease. The majority of these alterations may lead to decreases in antibiotic 

concentrations and therefore, dosage individualization or the development of revised 

evidence-based dosing guidelines is required for these patients. The variability and 

unpredictability of PK in patients with IAI disease may support monitoring of blood 

antibiotic concentrations to guide dosing. Such dose optimization should be considered 

important, as absence of appropriate dosing adjustment can lead to antibiotic resistance, 

therapeutic failure or both. In this context, the data from PK studies in this review can 

enable clinician to tailor dosing in this patient population. We suggest further research to 

determine the clinical outcomes of patient-specific dosing.  
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4.3 Published manuscript “Pharmacokinetics of Meropenem and 

Piperacillin/Tazobactam in Critically Ill Patients with Indwelling Surgical 

drains” 

The manuscript entitled, “Pharmacokinetics of Meropenem and Piperacillin/Tazobactam in 

Critically Ill Patients with Indwelling Surgical drains” has been accepted for publication by 

International Journal of Antimicrobial Agents (2013; 42(1):90-3). 

Patient recruitment and consent were assisted by Prof Jason Roberts. Sample collection 

and analysis were undertaken by the PhD candidate and Janice Li, with assistance from 

research staff of Burns, Trauma and Critical Care Research Centre. Dr Steven Wallis 

assisted with the bio-analysis of the samples. Prof Jason Roberts assisted with the data 

analysis and interpretation. Dr Michael Rudd assisted with the data interpretation, Prof 

David Paterson and Prof Jeffrey Lipman oversaw all aspects of this chapter. 

The manuscript is presented as published; except figures and tables have been inserted 

into the text at slightly different positions. Also, the numbering of pages, figures and tables 

has been adjusted to fit the overall style of the Thesis. The references are found alongside 

the other reference of the Thesis, in the section `Bibliography‟. 
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Abstract 

Meropenem and piperacillin are two commonly prescribed antibiotics in critically ill surgical 

patients. To date the pharmacokinetics of these antibiotics in the presence of indwelling 

abdominal surgical drains is poorly defined. This was a prospective pharmacokinetic study 

of meropenem and piperacillin. Serial plasma, urine and surgical drains fluid samples were 

collected over one dosing interval of antibiotic treatment in ten patients, meropenem (n=5) 

and piperacillin (n=5). Drug concentrations were measured using a validated high 

performance liquid chromatography assay. Median (inter quartile range) pharmacokinetic 

parameters estimates for meropenem were as follows: area under concentration-time 

curve (AUC): 128.7 mg.h/L (95.3-176.7mg h/L), clearance (CL): 5.7 L/h (5.1-10.5L/h), 

volume of distribution (Vd): 0.41L/kg (0.35-0.56l/kg), AUC ratio (drain: plasma): 0.2 (0.1-

0.2) and calculated antibiotic clearance via surgical drains: 3.8% (2.8-5.4%). For 

piperacillin, unbound pharmacokinetics results are as follows; AUC: 344.3 mg.h/L (341.1-

348.4 mg.h/L), CL: 13.1 L/h (12.9-13.9 L/h), Vd: 0.63 L/kg (0.38-1.28 L/kg), AUC ratio 

(drain: plasma) : 0.2 (0.2-0.3) and calculated antibiotic clearance via surgical drains for 

piperacillin is 8.2 % (3.3-14.0 %). A linear correlation was present between the percentage 

of antibiotic cleared through the drain and the volume of surgical drains fluid output for 

meropenem (r2=0.89, P=0.05) and piperacillin (r2=0.63, P=0.20). Meropenem and 

piperacillin have altered pharmacokinetics in critically ill patients with indwelling surgical 

drains. We propose that only when very high drain fluid output is present (> 1000 mL/day) 

would an additional dose of antibiotic be necessary. 

Introduction 

Meropenem and piperacillin/tazobactam (TZP) are commonly prescribed for postoperative 

infections in critically ill patients. Surgical drains may be inserted for either therapeutic, 

prophylactic or decompressive drainage of excess air or fluid, or to monitor production of 

wound exudate post-surgery [119].  

During clinical practice at our tertiary referral Intensive Care Unit (ICU), we have observed 

that critically ill patients with indwelling surgical drains have lower plasma concentrations 

of antibiotics than other comparable patients [7]. There are few data available to suggest 

whether these surgical drains are associated with sub-therapeutic concentrations, which 

may lead to impaired antibiotic efficacy. Most of the studies documenting the 

concentrations of antibiotics in intra-abdominal and pleural fluid, primarily described 
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antibiotic penetration and do not examine whether these surgical drains are a mechanism 

for increased drug clearance. There are also limited data on the time-course profile of both 

meropenem and piperacillin in patients with surgical drains. This lack of data limits the 

ability to predict dosing requirements for such patients [120-122]. 

The importance of achieving adequate antibiotic concentrations at the site of infection is 

well recognised, with sub-therapeutic concentrations hypothesized to be associated with 

therapeutic failure [123]. However, measurement of drug concentrations at the site of 

infection is often not feasible, and plasma drug concentrations remain an important 

surrogate.   

The target exposure for antibiotics is guided by the minimum inhibitory concentration (MIC) 

of the target bacterial pathogen. For beta-lactam antibiotics, bacterial killing depends 

largely on the time the free (or unbound) antibiotic concentration remains above the MIC, 

i.e. ƒT>MIC.  The specific percentage of the dosing interval differs between beta-lactam 

classes; 40% for carbapenems, 50% for cephalosporins and 60-70% for penicillins [124]. 

The primary aim of this project was to describe the pharmacokinetics (PK) of both 

meropenem and piperacillin in critically ill patients with indwelling surgical drains with a 

focus on describing drug clearance through the drains.  

Materials and methods 

This was a prospective open labelled PK study conducted at Intensive Care Unit, Royal 

Brisbane and Women‟s Hospital, Brisbane, Queensland, Australia. Critically ill patients 

who met the following criteria were eligible for inclusion: a) written informed consent had 

been obtained from the patient or his/her substitute decision maker; b) presence of at least 

one indwelling surgical drains actively producing fluid (defined as >10mL in the preceding 

6 hours); c) clinical indication for meropenem or piperacillin/TZP therapy; and d) an intra-

arterial catheter in situ (for the purposes of blood sampling). Patients were excluded from 

the study if one or more of the following criteria were met: a) renal impairment (defined as 

plasma creatinine concentration > 170 mol/L), b) pregnancy or c) admission following 

burns injury.  
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Antibiotic administration and sample collection 

All samples were collected over a single dosing interval. Standard doses were 

administered (1 gm intravenous every 8 h for meropenem and 4.5 gm intravenous every 6 

h for piperacillin/TZP). Blood samples were drawn at seven time points. For meropenem, 

this was at 0 (pre-dose), 0.5 (end of infusion), 1, 1.5, 2, 4, and 8 hours post dose. For 

piperacillin/TZP, this was at 0 (pre-dose), 0.5 (end of infusion), 1, 1.5, 2, 4 and 6 hours 

post dose. Surgical drains fluid was collected from the indwelling surgical drains every 

hour during the dosing interval. Urine samples were collected from indwelling urinary 

catheters every hour during the dosing interval.   

All samples were immediately placed in polypropylene tubes on ice and were centrifuged 

at 3000 rpm for 10 minutes within 4 hours of collection. The plasma and supernatant were 

removed; aliquots of the plasma were placed into labelled polypropylene screw-cap cryo-

vials and stored at -80ºC until assay.  

Assay 

Meropenem and piperacillin in plasma, surgical drains fluid and urine were measured by 

high performance liquid chromatography with ultraviolet detection (HPLC-UV) on a 

Shimadzu Prominence instrument.  All samples were assayed alongside calibration 

standards and quality controls prepared by spiking drug into matching drug-free biological 

matrix (surgical drains fluid samples were treated as plasma samples as they are both 

proteinaceous matrices and no drug-free drain fluid was available).  Assays were validated 

and conducted using criteria from the FDA guidance on bioanalysis [125]. 

To measure unbound piperacillin concentrations, the unbound fraction was obtained by 

ultrafiltration of plasma at 37°C using Merck Millipore Centrifree® 30 KDa MWCO 

centrifugal filter units for 5 minutes at 1410 ×g, so that only 15-40% of the plasma volume 

was filtered to prevent perturbation of the binding equilibrium. Unbound concentrations 

were not measured for meropenem as plasma protein binding is only 2%, which we 

considered not significant. 

The precision and accuracy of the methods were validated to be within 6% (total 

meropenem in plasma/surgical drains fluid from 0.2 to 50 mg/L), 3% (meropenem in urine 

from 10-2000 mg/L), 10% (total piperacillin in plasma/surgical drains fluid from 0.5-500 
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µg/mL), 6% (unbound piperacillin in plasma from 1-500 mg/L), and 6% (piperacillin in urine 

from 100 to 40,000 mg/L) at low, medium and high concentrations of the calibration range. 

Pharmacokinetic Analysis 

A non-compartmental PK analysis was performed to describe the disposition of 

meropenem and piperacillin in critically ill patients with indwelling surgical drains. The Cmax 

was the observed maximum concentration at the end of infusion and trough 

concentration(Cmin) was the observed minimum concentration prior to drug administration. 

The area under the concentration-time curve (AUC) from 0 to 8 hour for meropenem and 

from 0 to 6 hour for piperacillin was calculated using the trapezoidal rule. The AUC 

extrapolated to infinity (AUC0-∞) was calculated using AUC and the elimination rate 

constant (kel). The kel was calculated as the negative slope of the non-weighted squares 

curve fit of the final 3 sampling points during the elimination phase. The percentage of 

antibiotic cleared through the surgical drains was calculated with the following equation: = 

(Cdrain (total)/Volume drain (total))/dose where Cdrain is the concentration in the drain. Clearance 

(CL) was calculated as dose/AUC0-∞. The volume of distribution (Vd) was calculated as CL/ 

kel. Half-life was calculated at 0.693/ kel. 

Statistical Analysis 

Statistical analysis was performed using Graphpad Prism version 5.0 (GraphPad Software 

Inc., La Jolla, CA).  Linear regression on the percentage of antibiotic clearance through the 

surgical drains and the volume of surgical drains fluid output was performed. P-values 

<0.05 were considered significant. 

Results 

Ten patients were included in this study; meropenem (n=5) and piperacillin/TZP (n=5). The 

mean (SD) age was 69 (+ 15) years, weight 75 (+ 23) kg, APACHE II Score 11 (+ 2), 

SOFA Score 3 + 2. Five (50%) of the patients were male; nine patients had intra-

abdominal drains whilst the other patient had a left leg drain because of severe lower limb 

trauma. 

Figure 4.2 displays the concentration-time profile for meropenem and piperacillin both in 

plasma and drain fluid. Both plasma and drain concentrations of meropenem were above 

the European Committee on Antimicrobial Susceptibility Testing (EUCAST) MIC 

breakpoint of Pseudomonas aeruginosa, 2mg/L, but this was not achieved for the 
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piperacillin breakpoint, (16mg/L) [126]. However, the observed concentrations were above 

the EUCAST MIC breakpoint for Enterobacteriaceae spp, for both drugs (2mg/L for 

meropenem and 8 mg/L for piperacillin) [126].  

Table 4.2 gives the PK parameters for meropenem and piperacillin. These data are 

compared with published data from healthy volunteers [127, 128]. Both drugs show a 

larger Vd in the studied patients compared to the healthy volunteers. CL of meropenem is 

50% lower than healthy volunteers but CL is only slightly lower for piperacillin. The 

estimated percentage of antibiotic cleared through the surgical drains whilst not clinically 

significant; was still notable (3.8% and 8.2% for both meropenem and piperacillin, 

respectively).  

Linear regression analyses of the percentage of antibiotic cleared through the surgical 

drains and the volume of surgical drains fluid, are shown in Figure 4.3. Correlations were 

observed for meropenem (r2=0.89; P=0.05) and piperacillin (r2=0.63; P=0.20). Note that 

this analysis was performed with only 4 of the 5 subjects for both meropenem and 

piperacillin with the remaining patients having inadequate drain fluid volumes for assay 

and surgical drains AUC calculation. 
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Figure 4.2: Time concentration profile of meropenem and piperacillin in critically ill patients 

with indwelling surgical drains. The brown lines represent plasma concentrations, the dark 

green lines are surgical drains fluid concentrations and the dashed green line is the 

EUCAST MIC breakpoint for P. aeruginosa (16mg/L) 
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Figure 4.3: Linear regression analysis showing relationship between meropenem drain 

clearance and output volume of surgical drains (r2=0.89; P=0.05) and piperacillin drain 

clearance and output of surgical drains (r2=0.63; P=0.20). 
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Table 4.2: Pharmacokinetic parameters of meropenem and piperacilin in critically ill patients with indwelling surgical drains compared 

with healthy volunteers 

Pharmacokinetic parameter Patients with surgical drains Healthy volunteers [127, 

128]  

 

 

Meropenem Piperacillin (Unbound) Meropenem Piperacillin 

 

 

 

 

Half-life (h) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.18 (3.05-4.66) 1.85 (1.34-2.19) 0.98 0.98 

Clearance (L/h) 5.7 (5.1-10.5) 13.1 (12.9-13.2) 11.3 12.1 

Volume of distribution (L/kg) 0.41 (0.35-0.56) 0.63 (0.38-1.28) 0.17 0.21 

AUC (plasma)(mg.h/L) 128.7 (95.3-176.7) 344.3 (341.1-348.4) 77.5 253.0 

AUC (drain fluid)(mg.h/L) 19.6 (13.5-26.0) NA NA NA 

AUC drain : AUC plasma 0.2 (0.1-0.2) NA NA NA 

Antibiotic clearance via drain (%) 3.8 (2.8-5.4) NA NA  
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Discussion 

The present study describes the PK of meropenem and piperacillin in critically ill patients 

with indwelling surgical drains. The AUC in plasma for both drugs was found to be larger 

than that reported in healthy volunteers [127, 128]. For the comparative AUC in drain fluid, 

a lower AUC was shown than in plasma (78% and 75% lower for meropenem and 

piperacillin, respectively). Rapid clearance through the surgical drains could explain this 

difference. Similar trends have been observed in other studies [120-122]. The antibiotic 

concentrations in the surgical drains fluid exceed the MIC of most common pathogens of 

intra-abdominal infections, although these concentrations may not be sufficient for higher 

MIC organisms such as P. aeruginosa [129].  

The increased Vd of both meropenem and piperacillin suggests extensive distribution but 

also the potential for lower than expected concentrations, thereby increasing the risk of 

therapeutic failure [130]. Indeed, these data are in keeping with the pathophysiological 

changes encountered in the critically ill, which in the context of the majority of patients 

studied here who had intra-abdominal pathology, the presence of a capillary leak 

syndrome, will lead to a larger Vd and longer half-life [131].  

Interestingly, the increased Vd was present with an increased AUC which is an unusual 

finding. We would consider that the use of a non-compartmental PK analysis as opposed 

to a more mechanistic compartmental approach may be the reason for this.  If a two 

compartment models were used, it may have better characterised the effect of the 

peripheral compartment. Nevertheless, when comparing the meropenem patients with 

non-critically ill patients that underwent elective abdominal surgery without surgical 

drainage, the AUC in the patients in this study were 34% lower than the comparators 

[132].  

PK studies of both meropenem and piperacillin/TZP, in patients with complicated intra-

abdominal infections have also shown increased Vd and support the current findings [120-

122]. The majority of patients in our study had intra-abdominal infections and the 

pathophysiological changes in these critically ill patients has been recently reviewed [131]. 

Fluid expansion due to an increase in fluid volume within the peritoneal cavity is the main 

factor that leads to wider drug distribution. Fluid shifts from a capillary leak syndrome often 
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require fluid administration to maintain intravascular volume. At a tissue level, fluid 

accumulation from the capillary leak syndrome can result in increased Vd of the antibiotic. 

An increase in Vd suggests that a higher initial dose is required to rapidly achieve 

therapeutic concentrations [130]. However, the magnitude of such a dose adjustment is 

yet to be defined although dose-adjustment using beta-lactam therapeutic drug monitoring 

could be considered useful in these settings [7].   

The lower total CL shown for meropenem is likely due to a decreased glomerular filtration 

rate (GFR) which could be expected with these older patients. This is despite the GFR 

measured using the Cockcroft-Gault Equation, being within normal range. However, this 

equation may not be appropriate for use in ICU patients and so the reliability of this result 

could be questioned. Thus, it remains unknown why the meropenem cohort had a lower 

CL than that described in the comparator healthy volunteers. 

Neither antibiotic displayed high drain fluid concentrations. Compared to plasma 

concentrations, the AUC ratio of drain fluid concentrations was 0.2 (0.1-0.2) and 0.2 (0.2-

0.3) for meropenem and piperacillin, respectively. In fact, the plasma concentrations for 

piperacillin were also rarely above the MIC breakpoint for P. aeruginosa, which may 

support altered dosing approaches if this pathogen is suspected (Figure 4.2). As such, the 

present data shows a correlation between antibiotic clearance through the drain and the 

volume of surgical drains output. However, they also suggests that only in the presence of 

very high fluid output drains (>1000 mL/day) would supplemental doses of antibiotic would 

be necessary.  

Although this study is limited by the small patient numbers which could not provide 

definitive dosing guidance, the pharmacokinetic variability described emphasises the effect 

of changes in Vd  and CL owing to pathophysiological changes. Dosing for the individual 

patient tailored to the altered physiology is strongly recommended. 

Conclusion 

This study has shown that patients with indwelling surgical drains receiving either 

meropenem or piperacillin/TZP have a greatly increased Vd compared with healthy 

volunteers. This increased Vd is likely to be due to the inflammatory pathology at the site of 

the drain as well as other pathophysiological changes commonly seen in critically ill 

patients. Therefore, this data appears to support the need for larger initial antibiotic doses 
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in these patients, although the magnitude of such increased doses is yet to be defined. We 

would also propose that other ongoing higher antibiotic dosing in these patients would only 

be required in the presence of high output drains (>1000 mL/day). Clearly more data is 

required to determine how to optimize dosing in critically ill patients with indwelling surgical 

drains to prevent under-exposure of antibiotics and potential therapeutic failure or the 

development of bacterial resistance. 
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4.4 Conclusion on pharmacokinetics of beta-Lactam antibiotics in intra-

abdominal disease in critically ill patients 

This chapter has described the available data from PK studies of beta-lactam 

antimicrobials in intra-abdominal disease. Together, these studies demonstrate highly 

variable antimicrobial concentrations at the infection site as well as variable drug 

clearance.  Studies including IAI patients consistently show extensive drug distribution 

suggesting that an initial higher dose may be required when a less susceptible pathogen is 

suspected in causing IAI.  Conversely, in abdominal surgery patients, prolonged drug 

clearance was evident and less frequent dosing may be necessary. Although achieving a 

high peritoneal fluid: plasma ratio is preferred for antimicrobials in patients with intra-

abdominal disease; this data is not readily available for all antimicrobials included in the 

review. There is also data available of suggesting some level of impaired antimicrobial 

penetration as well as possible drug clearance through surgical drains.  The PK study on 

two commonly prescribed antimicrobials, meropenem and piperacillin, in critically ill 

patients with indwelling surgical drains in this chapter has shown marked PK alterations, 

which could be due to the inflammatory pathology in these patients. This PK alteration 

could lead to therapeutic failure from low antimicrobial concentrations and dosing 

modifications are recommended, particularly if less susceptible pathogens are suspected. 

Additionally, a linear correlation was shown between antimicrobial clearance and the 

volume of surgical drain fluid produced. Thus, additional dosing may also be considered 

when high volumes of surgical drains fluid are produced. In conclusion, inappropriateness 

of standard dosing of both meropenem and piperacillin, in critically ill patients with 

indwelling surgical drains, is a possibility that is likely to require non-standard dosing to 

ensure therapeutic concentrations are achieved. 
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5. Chapter 5: The Potential Use of Ampicillin/Sulbactam in Treating Infections in 

Critically Ill Patients 

5.1 Synopsis 

The aim of this chapter is to describe the potential use of ampicillin/sulbactam in treating 

infections in critically ill patients. In this chapter, this antibiotic was reviewed from several 

aspects, such as pharmacology, microbiology, pharmacodynamic, pharmacokinetic and 

dosing modalities, which led to a published manuscript of this review. An additional 

chapter of the potential use of ampicillin/sulbactam as combination therapy against MDR 

Acinetobacter baumannii (MDR-Ab) was also included in this review. We found that PK 

studies are required to better define the necessary doses of ampicillin/sulbactam in 

critically ill patients. This chapter  also includes the study of PK of ampicillin/sulbactam in 

critically ill patients at risk of MDR-Ab infections. The chromatographic methods used in 

analysing  ampicillin/sulbactam in PK samples will be described, followed by findings of the 

PK study. Additionally, the appropriateness of standard doses of ampicillin/sulbactam in 

achieving PK/PD targets in critically ill patients at risk of MDR-Ab infections will also be 

evaluated. 

5.2 Published manuscript entitled, “Ampicillin/Sulbactam : Its Potential Use in 

Treating Infections in Critically Ill Patients” 

The manuscript entitled, “Ampicillin/Sulbactam : Its Potential Use in Treating Infections in 

Critically Ill Patients has been accepted for publication by International Journal of 

Antimicrobial Agents (2013; 42(5):384-9). 

All data collection, data interpretation and drafting of the paper were undertaken by the 

PhD candidate, Syamhanin Adnan, assisted by Dr Shanthi Ratnam and Dr Suresh Kumar. 

Prof Jason Roberts assisted with the data collection and data interpretation. Prof David 

Paterson and Prof Jeffrey Lipman oversaw all aspects of this chapter.  

The manuscript is presented as published; except figures and tables have been inserted 

into the text at slightly different positions. Also, the numbering of pages, figures and tables 

has been adjusted to fit the overall style of the Thesis. The references are found alongside 

the other reference of the Thesis, in the section `Bibliography‟. 
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Abstract 

The purpose of this paper was to review the potential utility of ampicillin/sulbactam  as a 

therapy for serious infections in critically ill patients. Data for this review were identified by 

searches of PubMed and of the reference lists of the included articles. We found that 

ampicillin/sulbactam appears to have a number of characteristics that support its use in the 

treatment of serious infections in critically ill patients. Ampicillin/sulbactam demonstrates 

extensive penetration into many infection sites, supporting its use in a wide range of 

infection types. Microbiologically, sulbactam has strong intrinsic antibiotic activity against 

multidrug-resistant (MDR) bacteria, including Acinetobacter baumannii, which supports its 

use for the treatment of infections mediated by this pathogen. Of some concern, there 

have been reports showing a decline in susceptibility of some bacteria to 

ampicillin/sulbactam. As such, use of lower doses (4/2 g/day), particularly for MDR A. 

baumannii, has been linked with a 30% reduced success rate in critically ill patients. The 

therapeutic challenges for ensuring achievement of optimal dosing of  ampicillin/sulbactam 

do not however, result partly from bacterial susceptibility but also from the pharmacokinetic 

alterations common to -lactam agents in critical illness. These pharmacokinetic  changes 

are likely to reduce the ability of standard dosing to achieve the concentrations observed in 

non-critically ill patients. Optimisation of therapy may be more likely with the use of higher 

doses, administration by 4-h infusion or by combination therapy, particularly for the 

treatment of infections caused by MDR pathogens. 

Introduction 

Ampicillin/sulbactam  is a -lactam/-lactamase inhibitor combination, licensed for 

parenteral use, which was developed to overcome resistance to ampicillin. It is approved 

by the US Food and Drug Administration (FDA) for skin and skin-structure infections, intra-

abdominal infections (IAIs) and gynaecological infections. It can also be used for other 

infections caused by ampicillin-susceptible bacteria [133]. However, in recent years there 

has been an increasing amount of surveillance data reporting decreased susceptibility to 

ampicillin/sulbactam in Escherichia coli [134]. Since E. coli is one of the most common 

pathogens causing IAIs, ampicillin/sulbactam is probably not a good option in treating IAIs 

in patients at risk of having ampicillin/sulbactam-resistant strains of E. coli [135]. 

A few clinical outcome studies have been undertaken that demonstrate the utility of  

ampicillin/sulbactam for treating resistant pathogens such as multidrug-resistant (MDR) 
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Acinetobacter baumannii [136, 137]. Optimised dosing strategies are of paramount 

importance in an era of limited antibiotic options and a diminishing antibiotic development 

pipeline [138]. Antibiotic therapy is defined to be inappropriate if the empirical drug 

selection, dose and method of administration are not effective against the causative 

pathogen [139]. The presence of MDR pathogens will increase the likelihood of 

inappropriate antibiotic therapy both in terms of drug choice and dose. In addition, bacteria 

such as MDR A. baumannii are particularly problematic given their capacity to survive 

environmentally on inanimate objects for extended periods of time [140, 141]. 

Management of infections in critically ill patients becomes more complicated given their 

acute pathology as well as the presence of pre-existing co-morbidities. The complicated 

physiological changes that occur in the critically ill can present a significant challenge to 

clinicians for procuring effective antibiotic doses because of dramatic changes in PK(PK)s 

[142]. The additional wide variability of PKs is likely to cause different antibiotic 

concentrations to those observed in non-critically ill patients. Thus, the use of standard 

dosing could yield different clinical effects in critically ill patients. Since drug concentrations 

are a direct result of the dosage administered, these variations can be overcome by 

appropriate modification of the dosing regimen[26]. Dose optimisation of antibiotics has 

become a key factor for improving the probability of a favourable outcome in critically ill 

patients. 

The objective of this paper was to review the potential utility of  ampicillin/sulbactam as a 

therapy for infections in critically ill patients. 

Search Strategy 

Data for this review were identified by searches of PubMed (1987 to July 2013) as well as 

references from relevant articles. Studies including information relating to bacterial 

susceptibility, PKs, pharmacodynamics, and efficacy or failure of ampicillin/sulbactam in 

the treatment of critically ill patients were included. Forty papers were found to be relevant, 

with twelve papers excluded because they discussed oral sultamicillin, contained only 

animal model data, were case studies or were not written in English. 
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Antibiotic characteristics of ampicillin/sulbactam 

Pharmacology 

Ampicillin/sulbactam a combination of a -lactam/-lactamase inhibitor with an extended 

spectrum of antibiotic activity. Ampicillin works by binding to penicillin-binding proteins 

(PBPs) and inhibiting bacterial cell wall synthesis, causing disruption of the bacterial cell 

wall and ultimately resulting in bacterial cell death. However, resistant pathogens may 

produce -lactamase enzymes that can hydrolyse ampicillin. This activity is inhibited by 

the presence of sulbactam through reversible formation of an acyl-enzyme intermediate 

[143]. Sulbactam is also capable of bindings to the PBP of Bacteroides fragilis and 

Acinetobacter spp. even when it is administered alone [144]. In vitro studies have reported 

clinically relevant activity of sulbactam against Acinetobacter spp., making it distinctive 

from other -lactamase inhibitors (e.g. tazobactam and clavulanic acid) [145]. 

Microbiology 

Ampicillin/sulbactam exhibits a broader spectrum of antibiotic activity than ampicillin alone 

as a result of a synergistic effect with sulbactam. Inhibition of -lactamases by sulbactam 

enables ampicillin to remain active in the presence of -lactamases and effective against 

Gram-positive bacteria that commonly cause respiratory tract infections and skin and soft-

tissue infections, e.g. meticillin/oxacillin-susceptible Staphylococcus aureus, Streptococcus 

pneumoniae, Streptococcus pyogenes and Streptococcus viridans [146-148]. However, 

ampicillin/sulbactam is not effective against meticillin-resistant S. aureus (MRSA) and 

coagulase-negative staphylococci, even though it may appear to be active in vitro [149]. 

Furthermore, it does not add any clinical advantage over other antibiotics for the treatment 

of Groups A, B, C and G streptococci as these particular pathogens do not produce any -

lactamases [149]. Ampicillin/sulbactam may be useful for treating -lactamase-producing 

enterococcal isolates, although high doses or altered administration techniques such as 

continuous infusion would be required [150]. 

Gram-negative bacteria that are susceptible to ampicillin/sulbactam include the -

lactamase-producing and non--lactamase-producing Gram-negative bacteria such as 

Haemophilus influenzae, Moraxella catarrhalis and Neisseria gonorrhoeae. However, it 

has limited activity against Pseudomonas aeruginosa and Enterobacteriaceae that 

produce extended spectrum -lactamases (ESBLs) [151-153]. In a recent surveillance 
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study of Gram-negative bacteria in IAIs, a declining susceptibility of E. coli towards 

ampicillin/sulbactam was demonstrated [134]. Similar findings were seen in other 

surveillance data on E. coli bloodstream infections [154]. Exposure to penicillins, including 

ampicillin/sulbactam, is considered the only significant independent risk factor associated 

with the emergence of ampicillin/sulbactam-resistant E. coli [155]. It follows that  

ampicillin/sulbactam may be problematic for those patients at risk of infections mediated 

by ESBL-producing organisms [135]. Furthermore, suboptimal outcomes in a study of 

ventilator-associated pneumonia (VAP) in trauma patients suggest that  

ampicillin/sulbactam is associated with decreased susceptibly for common pathogens 

associated with VAP, although A. baumannii was not among the common pathogens in 

this study [156]. A list of studies comparing the effectiveness of  ampicillin/sulbactam with 

its comparators were discussed in detail in a review article by Lode [146]. 

Despite limited activity against most Gram-negative pathogens, in vivo and in vitro studies 

conducted during the development of sulbactam demonstrated a strong affinity for a PBP 

of A. baumannii [143]. Recent evidence suggests that low inhibitory concentrations of 

ampicillin/sulbactam for PBP3 may contribute to the effectiveness of this combination 

against A. baumannii [157]. Nevertheless, increasing rates of bacterial resistance of A. 

baumannii towards  ampicillin/sulbactam have been documented in several recent 

surveillance reports, which are of concern [146, 158]. 

Similar to other -lactam/-lactamase inhibitors combinations,  ampicillin/sulbactam also 

displays an inoculum effect, with an increasing bacterial load associated with significant 

increases in the minimum inhibitory concentration (MIC) of the pathogen [159]. 

Pharmacodynamics 

Ampicillin is a time-dependent antibiotic with its bacterial killing largely dependent on the 

time the free concentration is maintained above the MIC during a dosing interval (fT>MIC). 

The duration of exposure will therefore determine the rate and extent of bacterial killing. In 

vivo and in vitro studies have shown that the penicillin group of antibiotics require 50–60% 

fT>MIC for maximum bactericidal activity [160]. This suggests that prolonged ampicillin 

concentrations will be more likely to result in therapeutic success. However, when 

ampicillin is administered as co-formulation for sulbactam, bacterial re-growth has been 

reported when sulbactam levels fall below „critical‟ concentrations [161]. Therefore, like 
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other -lactamase inhibitors, sulbactam is probably best described as an AUC-dependent 

drug where bacterial killing is associated with the area under the concentration––time 

curve (AUC) [162]. To date, there are no studies measuring the importance of antibiotic 

exposure with development of resistance to ampicillin/sulbactam but, like other antibiotics, 

underdosing may lead to resistance [163]. 

Pharmacokinetics 

Ampicillin and sulbactam have similar PK profiles that appear unaffected by co-

administration of each other. The PK observed in healthy volunteers contrasts that 

observed in various other patient populations is described in Table 5.1 [164], where the 

variability of key PK parameters is clearly shown. 
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Table 5.1 : Pharmacokinetic parameters of ampicillin/sulbactam in various populations 

Reference Study population Samples Antibiotic Cmax (mg/L) AUC0– (mgh/L) t1/2 (h) Vd CLtotal (L/h) CLrenal (L/h) 

L L/kg 

Foulds et al., 1985 
[164] 

Healthy volunteers n = 40 Ampicillin 120 N/A 1.1 – 0.2 17.6 ± 3.5 14.2 ± 3.7 

Sulbactam 60 N/A 1.0 – 0.2 15.7 ± 3.5 15.7 ± 3.4 

Blum et al., 1989 [165] 

 

 

 

Renal disease n = 4;  

CLCr = 21.8 ± 9.9 mL/min 

Ampicillin N/A 379.7 ± 59.6 3.3 ± 1.9 – 0.3 ± 0.1 89.7 ± 16.5 39.4 ± 23.6 

Sulbactam N/A 262.2 ± 77.3 3.7 ± 2.1 – 0.2 ± 0.1 69.3 ± 26.2 34.2 ± 22.3 

Haemodialysis n = 4; CLCr = 2.7 ± 3.4 mL/min Ampicillin N/A 1654.8 ± 1170.2 17.4 ± 8.0 – 0.4 ± 0.1 31 ± 21 0.4 ± 0.6 

Sulbactam N/A 432.2 ± 206.3 13.4 ± 7.4 – 0.6 ± 0.2 45.3 ± 19.5 0.5 ± 0.6 

Yokoyama et al., 2012 
[166] 

Post-surgical patients n = 40; cardiovascular surgery Ampicillin N/A N/A 1.3 ± 0.9 13.2 ± 3.1 0.2 8.5 ± 3.3 N/A 

Sulbactam N/A N/A 1.3 ± 0.6 14.6 ± 3.2 0.2 8.8 ± 3.3 N/A 

Meyers et al., 1991 
[167] 

Healthy elderly n = 8; 65–85 years old Ampicillin 112.4 ± 34.3 182 ± 57.8 1.3 ± 0.3 26.3 ± 8.8 0.3 198 ± 55.6 71.5 ± 28.3 

Sulbactam 59 ± 20 110.4 ± 32.7 1.6 ± 0.3 23.5 ± 7.7 0.3 162.7 ± 46.2 66 ± 24.5 

Nahata et al., 1999 
[168] 

Paediatric patients n = 10; 1–6 years old Ampicillin 200 ± 118 179 ± 79.2 0.7 ± 0.1 – 0.3 ± 0.2 5.1 ± 2.4 N/A 

Sulbactam 102 ± 64 90.5 ± 42.8 0.7 ± 0.1 – 0.3 ± 0.2 5.1 ± 2.4 N/A 

Rohde et al., 1997 
[169] 

ICU patients with CVVHD n = 4 Sulbactam N/A N/A 6.0 ± 0.8 19.0 ± 5.1 0.2 45.0 ± 7.9 5.0 ± 5.2 
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Distribution 

Ampicillin and sulbactam are hydrophilic antibiotics and have a volume of distribution 

(Vd) consistent with the volume of extracellular body water, and both have a similar 

Vd (0.2 L/kg) in healthy volunteers. Patients on haemodialysis, elderly patients as 

well as paediatric patients show a slightly increased Vd (Table 5.1) [167-169]. 

Pathophysiological changes associated with critical illness are also likely to increase 

the Vd of hydrophilic drugs and, as such, larger doses may be required to rapidly 

achieve target concentrations in these circumstances [24, 170]. 

Both ampicillin and sulbactam exhibit high concentrations in cerebrospinal fluid 

(CSF), exceeding the MIC of important bacterial pathogens, particularly in the 

presence of inflamed meninges [171-173]. Both concentrations have shown a strong 

correlation; however, these concentrations decline rapidly 7 h after dosing [172]. 

Conventional sulbactam dosing (administered as 2/1 g of ampicillin/sulbactam every 

6 h) has been suggested to be appropriate for achieving adequate penetration 

across the blood–brain barrier, depending on the degree of meningeal inflammation 

and the susceptibility of the organism [172, 174]. Similarly, favourable penetration 

resulting in therapeutic exposure has been shown for other sites including costal 

cartilage, middle ear fluid, peritoneal fluid, intestinal mucosa, prostatic and 

appendicular tissue, sputum and peritonsillar abscess pus [165, 175]. For infections 

involving the lower respiratory system, particularly VAP, achieving effective epithelial 

lining fluid concentrations of antibiotics can be challenging for some therapies [176, 

177], although ampicillin/sulbactam appears to penetrate well [178, 179]. Adequate 

concentrations in abdominal tissues against common pathogens, i.e. S. aureus, E. 

coli and B. fragilis, have also been reported for  ampicillin/sulbactam [180]. Both 

agents have moderate protein binding (38% for sulbactam and 28% for  ampicillin). 

Metabolism and elimination 

The half-life of  ampicillin is ca. 1 h, whether alone or in combination with sulbactam, 

with elimination primarily by the urinary system (75% excreted unchanged in the 

urine) [164]. Tubular secretion is considered a significant process for elimination as 

well, given that the half-life of  ampicillin is prolonged with co-administration with 

probenecid [143]. Only a small amount is excreted through the biliary system; in the 
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presence of normal liver function, it was estimated to be ca. 0.2% of the sulbactam 

dose and 2.8% of the  ampicillin dose [143]. Based on these data, the common 

dosing frequency for ampicillin/sulbactam is every 6–8 h. PK data have shown 

prolonged clearance in the elderly [167], renal disease patients [165] and critically ill 

patients on renal replacement therapy [169]. In contrast, reduced clearance was 

shown in paediatric [168] and post-operative patients [166] (refer to Table 4.1). Thus, 

adjustment in dosing frequency may be required in these patient subtypes. 

Dosing modalities 

Given the potential for variations in function of the eliminating organs, dose 

adjustment will be required at times to optimise antibiotic exposure in critically ill 

patients. Data from healthy volunteers have been used to procure the current 

approved ampicillin/sulbactam dosing regimens whereby 6-hourly dosing is 

suggested for severe infections [143]. Further to this, the manufacturer has 

recommended that the daily sulbactam dose does not exceed 4 g/day. More 

recently, a PK/pharmacodynamic (PK/PD) modelling study of sulbactam using PK 

data from healthy volunteers has advocated a regimen of 3 g of sulbactam every 8 h 

as a 4-h infusion as necessary to achieve optimal antibiotic exposures for less 

susceptible pathogens [181]. However, this study may not be confidently 

extrapolated to critically ill patients considering the PK variations common to these 

patients as well as the frequently higher MICs of bacterial pathogens. At this time, 

the relevant PK/PD studies to define the necessary doses for use in critically ill 

patients remain elusive.  

The PK parameters of principal importance for optimal dosing are Vd and clearance, 

as described in Fig. 2.2. Both of these parameters can be greatly affected by critical 

illness-driven physiological changes, as shown in Fig. 2.1. Of caution to routinely 

increasing   ampicillin/sulbactam doses, high doses of this combination product may 

occasionally cause elevated liver enzymes, anaemia, thrombocytopenia and 

leukopenia, and most of the toxicity data regarding sulbactam is related to its use in 

combination with ampicillin. Attainment of high CSF concentrations of -lactams may 

also result in neurological adverse effects, including seizures [182]. 
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Scenarios requiring altered dosage 

Changes in renal function 

The renal system provides the major elimination pathways for  ampicillin and 

sulbactam and therefore changes in renal function will in turn greatly affect its 

clearance. A strong relationship between ampicillin and sulbactam clearance and 

creatinine clearance was shown in a PK study involving patients prescribed 

ampicillin/sulbactam for surgical prophylaxis [166]. This high renal clearance means 

that a prolonged half-life can be expected in renal failure patients to the extent that 

only once-daily dosing is required for those undergoing maintenance haemodialysis 

[165]. However, there is a paucity of data for dosing in continuous renal replacement 

therapies [183]. 

Another important phenomenon common to critically ill patients is that of enhanced 

renal elimination of drugs, a phenomenon known as augmented renal clearance 

(ARC) [142, 184]. Enhanced renal elimination of solutes will also increase clearance 

of renally cleared antibiotics, reducing their concentration and jeopardising their 

therapeutic effect [26]. Although very little data exist describing the effect of ARC on 

ampicillin/sulbactam, a recent study has demonstrated a significant correlation 

between ARC and subtherapeutic unbound plasma trough concentrations of various 

other -lactam antibiotics in critically ill patients [185]. The dynamic nature of the 

renal function of critically ill patients could result in frequent fluctuations in dosing 

requirements for ampicillin/sulbactam and this will require repeated clinical 

evaluation for potential dose adjustment. 

Changes in distribution 

Given its hydrophilic nature, the fluid shifts that commonly occur in critically ill 

patients are likely to lead to an increase in the Vd of drugs such as  

ampicillin/sulbactam. Common causes of fluid shifts include sepsis, fluid 

resuscitation, hepatic failure, burns and hypoalbuminaemia. This increased Vd can 

lead to low drug concentrations and potential therapeutic failure [26]. Little data is 

presently available for ampicillin/sulbactam to quantify these potential changes in 

critically ill patients. 
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Monotherapy of ampicillin/sulbactam for treatment of multi-drug resistant 

Acinetobacter baumanni 

The intrinsic activity of sulbactam against A. baumannii means that unlike most 

infections for which it is used to treat, sulbactam is the active agent in the  

ampicillin/sulbactam co-formulation [186]. Of the available studies undertaken to 

determine the optimum dose of ampicillin/sulbactam for treating this resistant 

pathogen, most are clinical studies that trial one fixed dose versus another fixed 

dose and are not necessarily based on data from PK studies. This should be 

considered problematic as there is little data supporting the doses that are chosen 

and, potentially, none of them may be optimal. 

For those studies involving susceptible A. baumannii in non-critically ill patients, 

doses of 2–4 g/day of sulbactam had been shown to have a favourable response 

rate (ca. 90%) [187-190]. However, when the same dose was used in studies 

involving critically ill patients with more resistant strains of A. baumannii, the success 

rate was lower, with only 68% of patients improving on therapy [136]. Higher doses 

(up to 12 g/day) have also been studied in similar settings and have shown similar 

success rates to those achieved with colistin therapy [191]. Another study comparing 

ampicillin/sulbactam with imipenem/cilastatin in the treatment of VAP showed similar 

efficacy in both groups although the doses used were not reported [192]. 

A review article [193] has listed the studies reporting ampicillin/sulbactam treatment 

of resistant A. baumannii and described clinical improvement rates of 46–75% with 

doses of between 6 g/day and 9 g/day. For this reason, papers by Koulenti and Rello 

[194] and Urban et al. [195] suggest that doses of ≥6 g/day are required for 

treatment for infections by MDR A. baumannii. 

The available data do not adequately define the appropriate dose of 

ampicillin/sulbactam for treatment of resistant pathogens in critically ill patients 

because the PKs of these compounds have not been well defined. 
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Combination therapy with ampicillin/sulbactam for treatment of multi-drug 

resistant Acinetobacter baumanni 

Combination therapies are supported mostly by in vitro and in vivo studies. These 

studies can define potential additive, synergistic or even antagonistic effects, 

although the significance of these combinations should always be evaluated clinically 

[196]. 

In vitro synergism towards MDR A. baumannii of ampicillin/sulbactam and 

meropenem, imipenem, fosfomycin, rifampicin and colistin has been shown [197-

204]. Triple combination therapy of meropenem, sulbactam and colistin has 

consistently shown very high levels of synergy [197, 198]. Other combination 

therapies, without  ampicillin/sulbactam, have also shown high levels of synergy 

against MDR A. baumannii, including colistin with a carbapenem [197]. Other 

combination therapies do have effects that are as strong as the above combinations, 

i.e. imipenem with tigecycline, amikacin or ciprofloxacin [198, 199]. 

In vivo murine studies have shown good results with rifampicin-based combination 

therapy [201, 202, 204]. Higher clinical success rates with combination therapy for 

MDR A. baumannii infections were shown in a recent study by Santimaleeworagun 

et al. [205]. Most patients received either sulbactam co-formulated with 

cefoperazone or fosfomycin as combination therapy, with success rates of 60.3% 

and 81.0% for monotherapy and combination therapy groups, respectively (P = 

0.04). In multivariate analysis, renal impairment [Odd Ratio (OR) = 8.9, 95% 

confidence interval (CI) 1.2–39.5], bloodstream infection (OR = 6.4, 95% CI 1.2–

33.7) and an inappropriate antimicrobial regimen (OR = 0.0, 95% CI 0.0–0.1) were 

independent predictors of treatment failure. 

Conclusion 

Serious bacterial infections that are caused by poorly susceptible organisms are a 

great challenge in the management of critically ill patients. Indeed, in most countries 

the treatment options for these patients are very limited.  Ampicillin/sulbactam may 

be a useful agent for treating some of these MDR infections, in particular MDR A. 

baumannii, because of its good tissue penetration, good safety profile and availability 

in most countries. However, despite its safety and efficacy, ampicillin/sulbactam 
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suffers from several drawbacks; surveillance data have shown declining 

susceptibility of ampicillin/sulbactam for several common pathogens encountered 

among critically ill patients. There are many factors that could contribute to this 

scenario, including potential antibiotic under dosing. Limited PK/PD data in critically 

ill patients makes it difficult to predict its optimum doses that should be used to 

increase the likelihood of therapeutic success. This should be considered an 

important part of the optimal use of ampicillin/sulbactam, as clinical studies have 

shown inferior outcomes when lower doses are compared with higher doses. 
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5.3 Submitted  manuscript `Simultaneous determination of Ampicillin and 

Sulbactam in human plasma and urine by UHPLC-MS/MS’ 

The manuscript entitled, `Simultaneous determination of Ampicillin and Sulbactam in 

human plasma and urine by UHPLC-MS/MS` is to describe the materials and 

method used for the sample analyses of ampicillin/sulbactam used throughout this 

Thesis. Ultra high performance liquid chromatography analysis was developed to 

determine ampicillin/sulbactam concentrations in plasma and urine samples.  

All data collection, data interpretation and drafting of the paper were undertaken by 

Dr Steven Wallis, assisted by the PhD candidate, Syamhanin Adnan, Jenny Lisette 

Ordóñez Meija and  Suzanne Parker. Prof Jason Roberts, Prof David Paterson and 

Prof Jeffrey Lipman oversaw all aspects of this chapter.  

The manuscript is presented as submitted; except figures and tables have been 

inserted into the text at slightly different positions. Also, the numbering of pages, 

figures and tables has been adjusted to fit the overall style of the Thesis. The 

references are found alongside the other reference of the Thesis, in the section 

`Bibliography‟. 
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Abstract 

A rapid, sensitive, and simple method for simultaneous analysis of ampicillin and 

sulbactam in human plasma and urine was developed and validated.  Plasma 

samples were treated with acetonitrile and dichloromethane to remove proteins and 

lipid soluble components, whilst urine was diluted.  Separations were by ultra high 

performance liquid chromatography  on a C18 column with a formic acid – 

acetonitrile gradient.   Ampicillin and the internal standard (cefotaxime) were 

detected in positive mode and sulbactam in negative mode by tandem mass 

spectrometry.  The calibration range for ampicillin was 1 to 200 µg/mL in plasma and 

25 to 5000 µg/mL in urine, whilst for sulbactam is was 0.5 to 100 µg/mL and 125 to 

2500 µg/mL, respectively.  The method has been used in a pharmacokinetic study of 

co-formulated ampicillin and sulbactam in critically ill patients. 

Introduction 

Ampicillin is a beta-lactam antibiotic that binds to penicillin-binding proteins (PBPs) 

and inhibits bacterial cell wall synthesis, causing disruption of the bacterial cell wall 

and subsequently, bacterial cell death.  However, resistant pathogens may produce 

-lactamase enzymes that can hydrolyse  ampicillin and reduce its efficacy.   

Sulbactam has weak antibacterial activity, but is an effective beta-lactamase 

inhibitor. When co-administered with  ampicillin, sulbactam extends the spectrum of 

activity to  ampicillin-resistant gram negative and gram-positive bacteria [206].  

Ampicillin/sulbactam is β–lactam/β-lactamase inhibitor antibiotic that is co-formulated 

in a 1:2 ratio to maximize effectiveness. It is used for skin and skin-structure 

infections, intra-abdominal infections, gynaecological infections and other infections 

caused by  ampicillin-susceptible bacteria. 

Ampicillin/sulbactam has been of recent interest as one of the limited options 

available for the treatment of multi-drug resistant A. baumannii (MDR-Ab) [207].  

However, the dose used has not been based on pharmacokinetic (PK) studies and  

to perform such investigation, it is necessary to measure both drug concentrations in 

plasma and urine, preferably simultaneously [207].   
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The analysis of ampicillin in plasma has been achieved by high performance liquid 

chromatography (HPLC) with [208, 209] and without [210, 211] derivatisation.  

Ampicillin has also been measured in urine [212].  In recent years, published 

methods for analysis of multiple antibiotics in plasma by ultra high performance liquid 

chromatography-mass spectrometry (UHPLC)/mass spectrometry (UHPLC-MS/MS) 

and high performance liquid chromatography-ultra-violet (HPLC-UV) have included 

ampicillin, although without analysis of sulbactam [213-218].  Sulbactam has been 

measured in plasma alone and with antibiotics other than ampicillin [219-222]. 

Methods for simultaneous analysis of ampicillin and sulbactam have been presented 

for quantification in bovine milk by UHPLC-MS/MS [223] and in pharmaceutical 

formulations by HPLC-UV [224, 225].  The authors could find only one method for 

simultaneous analysis of  ampicillin and sulbactam in human plasma and/or urine 

[226]; Cazorla-Reyes‟ method, which was recently published and measures 

ampicillin and sulbactam with 19 other analytes in plasma and urine.  The aim of this 

work was to produce a reliable, quick and sensitive method for simultaneous 

measurement of ampicillin and sulbactam (structures in Figure 4.1) in plasma and 

urine suitable for use in a clinical PK study. 

Figure 5.1: Structure of two analytes and IS. (A)  Ampicillin; (B) Sulbactam; (C) 

Cefotaxime 

 

(A) (B) 

(C) 
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Materials and methods 

Chemicals and Reagents 

Ampicillin was sourced from Aspen (St Leonards, Australia), sulbactam from Sigma 

Chemical Co (St Louis, USA) and cefotaxime from Hospira (Melbourne, Australia). 

Acetonitrile was gradient grade (Merck, Darmstadt, Germany), while 

dichloromethane (Merck, Darmstadt, Germany) and formic acid (Ajax, Taren Point, 

Australia) were analytical grade.  Distilled, deionised water was sourced from a 

Permutit system (Hartford, UK). Blank plasma was sourced from the blood bank and 

urine from volunteers. 

Chromatography 

UHPLC analysis was performed on a Shimadzu Nexera system equipped with dual 

pumps, autosampler with a sample compartment set to 5°C, and column oven set to 

40°C.  The column was a Shimadzu Shim-pack XR-ODS III (2.0 x 75 mm, 1.6 µm) 

with a Phenomenex C18 SecurityGuard ULTRA pre-column.  The mobile phase was 

a gradient of solution A (0.1% formic acid in water) and solution B (0.1% formic acid 

in acetonitrile) as per Table 5.2.  The mobile phase was delivered at 0.3 mL/min and 

generated a backpressure of approximately 5700 psi.  A post-column valve directed 

mobile phase eluent to either waste or a Shimadzu 8040 triple quadrupole mass 

spectrometer. A volume of 0.2 µL was injected and the run time was 4.5 min. 

Table 5.2: Time program for gradient elution 

Time from injection (min) Composition of mobile phase 

0.0 to 0.5 7.5% B 
0.5 to 1.3 7.5% B to 95% B 
1.3 to 3.0 95% B 
3.0 to 3.4 95% B to 7.5% B 
3.4 to 4.5 7.5% B 
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Mass Spectrometry 

The Shimadzu 8040 was fitted with an electrospray ionisation source operated with a 

nebulising gas (N2) flow of 3 L/min, drying gas (N2) flow of 15 L/min, heat block 

temperature of 400°C and a desolvation line temperature of 250°C.  Ampicillin and 

the internal standard (cefotaxime) were measured by positive mode multiple reaction 

monitoring (MRM), whilst sulbactam was measured in negative mode.  The mass 

spectrometry settings are presented in Table 5.3. A 50 ms dwell time was used.  The 

collision gas was argon.  A reference ion was monitored for peak purity in addition to 

the target ion used for quantitation. 

Table 5.3: Mass Spectrometry Settings 

Analyte Ampicillin Cefotaxime Sulbactam 

Ion type Target Reference Target Reference Target Reference 

Parent Ion 350 350 456.2 456.2 232.3 232.3 

Daughter Ion 106.1 192 125 156 187.9 139.95 

Q1 Pre Bias 
(V) 

-30 -24 -30 -30 23 23 

CE (V) -21 -17 -45 -21 10 13 

Q3 Pre Bias 
(V) 

-20 -20 -24 -17 18 26 

 

Solutions 

Aqueous calibration standard stocks with combined ampicillin/sulbactam 

concentrations (in µg/mL) of 200/100, 100/50 and 50/25 were prepared and stored at 

-80°C.  On the day of assay these stocks were serially diluted ten-fold with water to 

ampicillin/sulbactam concentrations of 20/10, 10/5, 5/2.5, 2/1 and 1/0.5 µg/mL.  A 

separate set of ampicillin/sulbactam stocks, were prepared at 3000/1500, 600/300 

and 60/30 µg/mL in water for quality control (QC) preparation.  These stocks were 

diluted with blank plasma or blank diluted urine to quality control (QC) 

ampicillin/sulbactam concentrations of 150/75, 30/15 and 3/1.5 µg/mL, and aliquots 

stored at -80°C.   
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Sample Preparation 

Samples were analysed in batches comprising standards, a blank and double blank, 

duplicate QCs and clinical samples.   For plasma analysis, 100 µL of water (or 

calibration solution for standards), 100 µL of plasma (blank plasma for standards and 

blanks) and 100 µL of internal standard (100 µg/mL cefotaxime in water, or merely 

water for the double blank) were combined in a microfuge tube.  Acetonitrile (400 µL) 

was added to precipitate proteins, followed by vortex mixing and centrifugation (5 

min at 12000 rpm).  Supernatant (500 µL) was transferred to a clean microfuge tube 

and 500 µL of dichloromethane added to partition the acetonitrile and lipid-soluble 

components, followed by vortex mixing and centrifugation (5 min at 12000 rpm).  A 

50 µL aliquot of the aqueous supernatant was transferred to an autosampler vial for 

analysis.   

For urine analysis, 40 µL of urine sample was initially diluted with 960 µL of water.  

Then 100 µL of calibration standard, QC, diluted urine sample or blank was 

combined with 100 µL of internal standard (100 µg/mL cefotaxime in water, or merely 

water for the double blank).  Following vortex mixing and centrifugation to settle any 

particulate matter, a 50 µL aliquot was transferred to an autosampler vial for 

analysis. 

Validation 

The method performance was validated separately for plasma and urine in 

accordance with the US Food Drug and Administration (FDA) guidance for industry 

on bioanalysis [125]. Linearity was assessed over 3 calibration curves, with the 

acceptance criterion for individual standards being within ±15% of nominal.  Lower 

limit of quantification (LLOQ) was assessed by analysis of 5 replicates of the lowest 

calibrator with precision and accuracy criteria of being within ±20%. Matrix effects 

were assessed by quantifying  ampicillin and Sulbactam at spiked at high, low and 

blank concentrations in 5 separate batches of matrix, with the criteria of precision 

and accuracy within ±15% and a blank signal of <20% of the LLOQ peak area.  

Precision and accuracy of the assay were assessed both intra-batch and inter-batch 

with 5 replicates at each QC level with criteria of ±15%.  Stability was validated in 

terms of aqueous stock storage at -80°C, long term sample storage at -80°C, and 
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three freeze-thaw cycles.  Recovery was assessed for the plasma method by 

comparing  ampicillin, sulbactam and cefotaxime areas spiked pre-extraction with 

those obtained when spiked post-extraction. Precision was calculated as the 

percentage relative standard deviation (% RSD, being SD/mean as a percentage) 

and accuracy was calculated as the mean/nominal concentrations as a percentage. 

 Application 

The method was used to measure concentrations of ampicillin and sulbactam in 

plasma and urine from critically ill patients at the Intensive Care Unit, Hospital 

Sungai Buloh, Malaysia. The study was approved by the ethics committee and 

informed consent was obtained from the patient or his/her substitute decision maker. 

Results and Discussion 

Mass Spectrometry 

For all three analytes the molecular ion was formed in abundance and was used as 

parent ion, albeit the sulbactam parent was in negative mode whereas  ampicillin 

and cefotaxime were formed in positive mode.  Positive ion multiple reaction 

monitoring (MRM) of sulbactam was significantly poorer than negative ion. Two 

daughter ions were monitored for each parent; one ion was monitored as a reference 

ion with relative intensity for reference/target of 40%, 100% and 40% for  ampicillin, 

sulbactam and cefotaxime, respectively. Ions were selected manually from precursor 

and product ion scans, and software-directed auto-optimisation routines conducted 

to confirm the absence of more preferable MRMs and to optimise voltages. 

Chromatography 

Chromatography for samples in plasma and urine are shown in Fig 5.2 and 5.3, 

respectively.  Various gradient conditions were trialled to achieve the 

chromatography. Sufficient retention of the analytes was achieved so that the 

diverter valve could be used to send the poorly retained fraction of the injection to 

waste before directing the analyte-containing eluent into the MS for measurement.  

The pressure generated in the gradient (5700 psi) was modest for a UHPLC 

application and flow rate could have been increased, however the run time was 

suitable for our purposes and so was not pushed further for shorter analyses. 
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Figure 5.2: Chromatograms of ampicillin and sulbactam extracted from plasma. 

Depicted are a drug-free urine blank (A); a LLOQ calibration standard at 

ampicillin/sulbactam concentration of 0.5/1 µg/mL; an incurred sample containing 

ampicillin/sulbactam at 130/63 µg/mL 
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Figure 5.3: Chromatograms of ampicillin and sulbactam from urine samples. 

Depicted are a drug free urine blank (A), a calibration standard at 

ampicillin/sulbactam concentration of 0.5/1 µg/mL (B); an incurred urine sample at 

ampicillin/sulbactam concentration of 668/438 µg/mL 
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Sample Preparation 

Protein precipitation is a quick, easy and cheap method of plasma sample 

preparation.  However, crashing out the proteins still leaves a significant proportion 

of plasma components in the supernatant, including phospholipids.  The 

dichloromethane wash, whereby an equal volume of dichloromethane is added to 

supernatant, partitions the acetonitrile and lipid soluble components away from the 

aqueous phase to produce a cleaner and more concentrated extract for injection.   

Urine samples were diluted 25-fold to bring concentrations to the range that matches 

the plasma assay. Hence, the QCs at 150/75, 30/15 and 3/1.5 µg/mL represent 

sample concentrations of 3750/1875, 750/375 and 75/37.5 µg/mL and the calibration 

range covers undiluted urine concentrations of 25/12.5 to 5000/2500 µg/mL. 

Validation 

A straight line linear regression with a 1/concentration2 weighting provided an 

adequate calibration equation with no indication of a quadratic relationship within the 

concentration range. The mean slope and intercept of the 3 calibration curves, mean 

regression coefficient (r2) and the maximum % deviation (inaccuracy) of the 

calibrators of all 3 calibration curves are presented in Table 5.4. 

Table 5.4: Calibration curve linearity validation results 

 Plasma Urine 

 Equation r
2
 Maximum 

% deviation 
Equation r

2
 Maximum 

% 
Deviation 

Ampicillin y = 0.0363x -
0.0004 

0.9971 7.0% y = 0.0278x 
+0.0010 

0.9979 10.6% 

Sulbactam y = 0.0034x 
+0.0001 

0.9925 13.3% y = 0.0035x 
+0.0001 

0.9952 10.6% 

 
The precision and accuracy of the plasma and urine assays at the LLOQ, as well as 

within and between batches at the QC levels, are presented in Tables 5.5 and 5.6 for 

Ampicillin and sulbactam.  The acceptance criteria were met in all cases. 
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Table 5.5 : LLOQ, inter-and intra-batch precision and accuracy for ampicillin in 

plasma and urine 

 Plasma Urine 

 Mean (SD) 
(µg/mL) 

Precision 
(%) 

Accuracy 
(%) 

Mean (SD) 
(µg/mL) 

Precision 
(%) 

Accuracy 
(%) 

LLOQ 0.98 (0.02) 2.4 97.8 0.95 (0.04) 4.4 94.6 
Intra-
batch 

3.12 (0.21) 6.6 104.0 3.05 (0.12) 3.8 101.6 
30.8 (1.4) 4.6 102.6 30.5 (1.3) 4.3 101.7 

149 (8) 5.0 99.1 154 (5) 3.0 102.8 
Inter-
batch 

2.97 (0.07) 2.5 98.8 2.95 (0.06) 2.0 98.3 
28.8 (1.2) 4.0 95.8 29.9 (1.0) 3.3 99.8 

144 (6) 3.9 95.8 150 (8) 5.2 99.9 

 
Table 5.6 : LLOQ, inter-and intra-batch precision and accuracy for sulbactam in 

plasma and urine 

 Plasma Urine 

 Mean (SD) 
(µg/mL) 

Precision 
(%) 

Accuracy 
(%) 

Mean (SD) 
(µg/mL) 

Precision 
(%) 

Accuracy 
(%) 

LLOQ 0.524 (0.054) 10.3 104.7 0.536 (0.054) 10.1 107.1 
Intra-
batch 

1.49 (0.06) 4.3 99.2 1.45 (0.04) 3.1 96.5 
15.1 (0.4) 2.8 100.4 14.8 (0.2) 1.2 98.5 
80.3 (4.5) 5.6 107.0 74.5(1.1) 1.5 99.4 

Inter-
batch 

1.45 (0.05) 3.5 96.6 1.47 (0.04) 2.6 97.8 
15.7 (0.8) 5.3 104.3 14.8 (0.2) 1.2 99.0 
74.9 (4.6) 6.2 99.8 76.1 (2.1) 2.8 101.4 

 

The matrix testing indicated that the precision and accuracy of the assays were 

acceptable across multiple batches of matrix, as depicted in Table 5.7. 
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Table 5.7 : Matrix testing for ampicillin and sulbactam in plasma and urine 

 Plasma Urine 

 Mean ( SD) 
(µg/mL) 

Precision 
(%) 

Accuracy 
(%) 

Mean ( SD) 
(µg/mL) 

Precision 
(%) 

Accuracy 
(%) 

Low 
Ampicillin 

0.97 (0.02) 1.8 97.2 10.08 (0.40) 3.9 100.8 

High 
Ampicillin 

98.4 (2.6) 2.6 98.4 48.8 (1.0) 2.0 97.6 

Low 
sulbactam 

-
a
 -

a
 -

a
 4.39 (0.35) 7.9 87.8 

High 
sulbactam 

49.5 (0.9) 1.9 99.0 23.8 (0.6) 2.7 95.0 

 

a Not quantified at this concentration. 

Validation revealed adequate recoveries for ampicillin (59.5%), sulbactam (70.1%) 

and cefotaxime (60.0%) from plasma.  The performance of the method was not 

adversely affected by the less than complete recovery as demonstrated by there 

being sufficient signal at the LLOQ and acceptable precision and accuracy 

validation. 

The specificity testing of the methods showed negligible change in peak area for 

Ampicillin or sulbactam in the presence of cefepime, ceftazidime, piperacillin, 

tazobactam, amoxicillin, ciprofloxacin, fluconazole, meropenem, ceftriaxone, 

doripenem and vancomycin. 

Ampicillin and sulbactam met stability criteria under the storage conditions tested.  

Aqueous stocks stored at -80C for 6 weeks demonstrated a %deviation of -7.5% for 

ampicillin and +6.1% for sulbactam.  Plasma and urine QCs stored at -80C for 6 

weeks, and that underwent 3 freeze-thaw cycles prior to assays met stability criteria 

of 10% in the majority of cases, except for sulbactam in urine at the lowest QC level 

(within 12%) (Tables 5.8 and 5.9). 

 

 

 

 



92 

 

Table 5.8 : Stability validation results for ampicillin in plasma and urine 

 Plasma Urine 

 Mean (SD) 
(µg/mL) 

Precision 
(%) 

Accuracy 
(%) 

Mean (SD) 
(µg/mL) 

Precision 
(%) 

Accuracy 
(%) 

3x 
FT 

2.86 (0.02) 0.7 95.4 3.16(0.23) 7.1 105.3 
28.1 (0.8) 2.7 93.6 30.0 (0.6) 1.9 100.0 

140 (4) 2.5 93.6 150 (13) 8.7 99.8 
LTS 2.86 (0.16) 5.5 95.2 2.89 (0.03) 1.1 96.4 

28.0 (0.6) 2.0 93.3 29.9 (1.6) 5.3 99.7 
146 (3) 2.1 97.6 151 (6) 4.0 100.7 

 
3x FT: Three freeze-thaw cycles; LTS: long term storage for 6 weeks at -80°C 

Table 5.9 : Stability validation results for sulbactam in plasma and urine 

 Plasma Urine 

 Mean (SD) 
(µg/mL) 

Precision 
(%) 

Accuracy 
(%) 

Mean (SD) 
(µg/mL) 

Precision 
(%) 

Accuracy 
(%) 

3x 
FT

a
 

1.47 (0.05) 3.1 98.0 1.32 (0.06) 4.4 88.2 
15.6 (0.8) 4.8 104.0 15.4 (0.6) 3.9 102.7 
74.8 (0.9) 1.1 99.7 75.4 (3.8) 5.0 100.6 

LTS
b
 1.46 (0.05) 3.1 97.3 1.49 (0.17) 11.5 99.1 

14.7 (1.0) 7.1 98.0 14.2 (0.5) 3.5 94.9 
66.9 (2.0) 3.0 89.2 -

c
 -

c
 -

c
 

 
a Three freeze-thaw cycles; b long term storage for 6 weeks at -80°C; c Not quantified 

at this concentration. 

 Application 

This method has been successfully applied to a 10-patient clinical trial with 70 

plasma and 9 urine samples.  A representative plasma concentration – time profile is 

presented in Fig 4; the samples were collected from a 54.3 kg, 33 year old male on 

receiving his seventh dose of 2 g ampicillin / 1 g sulbactam (four hourly intravenous 

administration).  The concentration in urine collected over the 6-hour sampling period 

was 668 µg/mL ampicillin and 438 µg/mL sulbactam. 
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Figure 5.4 : Plasma concentration-time plot for ampicillin (circles, solid line) and 

sulbactam (crosses, dotted line) in a patient. 

Conclusion 

The method presented here is the only method yet published for exclusive, optimised 

measurement of ampicillin and sulbactam in plasma and urine.  The assay 

performance is accurate and precise, with sufficient sensitivity, quick and easy 

sample preparation, and robust instrumental analysis.  It has been demonstrated to 

be suitable for PK study applications and could be used where therapeutically-

relevant concentrations require measurement. 
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5.4 Submitted manuscript `Pharmacokinetics of Ampicillin/Sulbactam in 

Critically Ill Patients at Risk of Multi-Drug Resistant Acinetobacter 

baumannii Infections’ 

The manuscript entitled, `Pharmacokinetics of Ampicillin/Sulbactam in Critically Ill 

Patients at Risk of Multi-Drug Resistant Acinetobacter baumannii Infections‟ is to 

describe the PK study of ampicillin/sulbactam in critically ill patients at risk of MDR A. 

baumannii infections..  

All data collection, data interpretation and drafting of the paper were undertaken by 

the PhD candidate, Syamhanin Adnan, assisted by Dr Shanthi Ratnam and Dr 

Suresh Kumar. Dr Steven Wallis assisted with bio-analysis of the PK samples. Prof 

Jason Roberts assisted with the data analysis and data interpretation. Prof David 

Paterson and Prof Jeffrey Lipman oversaw all aspects of this paper.  

The manuscript is presented as submitted; except figures and tables have been 

inserted into the text at slightly different positions. Also, the numbering of pages, 

figures and tables has been adjusted to fit the overall style of the Thesis. The 

references are found alongside the other reference of the Thesis, in the section 

`Bibliography‟. 
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Abstract 

Ampicillin/sulbactam is one of the few antibiotic options available for treatment of 

multi-drug resistant Acinetobacter baumannii.  The aim of this study is to describe 

the pharmacokinetics of  ampicillin/sulbactam in critically ill patients at risk of multi-

drug resistant A. baumannii infections. Serial plasma samples were collected over at 

least one dosing interval. Drug concentrations were measured using validated 

chromatographic method. Nine patients, (8 male, 1 female) were recruited in this 

study with median age of 33 years. The median (inter quartile range) 

pharmacokinetic parameter estimates for  ampicillin were: area under concentration-

time curve for dosing interval (AUC): 195.7 (78.1-490.5) mg.h/L, clearance (CL): 10.2 

(5.5-25.6) L/h, volume of distribution (Vd): 0.6 (0.4-0.7) L/kg. For sulbactam, the 

pharmacokinetic parameter estimates were: AUC: 108.1 (43.8-430.0) mg.h/L, CL: 

9.2 (2.4-22.8) L/h, Vd: 0.5 (0.3-0.6) L/kg. The median estimate for drug clearance 

was also found to be 72% lower for ampicillin and 54% lower for sulbactam 

compared to data from healthy volunteers. Both ampicillin and sulbactam clearance 

was correlated with creatinine clearance (r2=0.9; P=0.001 and r2=0.8; P=0.0003 

respectively). Two thirds of patients did not have sulbactam concentrations 

exceeding target concentrations (4mg/L) throughout the dosing interval.  Higher 

initial doses for those patients with a high Vd and adjustment of subsequent doses in 

accordance with renal function should be considered to optimize dosing in these 

challenging patients.  



97 

 

Introduction  

Ampicillin/sulbactam is β–lactam/β-lactamase inhibitor antibiotic that was co-

formulated to maximize its effectiveness. It is used for skin and skin-structure 

infections, intra-abdominal infections, gynaecological infections and other infections 

caused by ampicillin-susceptible bacteria [133]. Sulbactam has been shown to have 

intrinsic activity against Acinetobacter baumannii and it is one of the limited options 

available for the treatment of multi-drug resistant A. baumannii (MDR-Ab) [144]. In 

Malaysian ICU, MDR-Ab has been reported to be the most common isolate 

associated with ventilator associated pneumonia [227]. For MDR-Ab, susceptibility is 

mostly limited to only sulbactam-combination antibiotics and colistin [141]. Of 

concern, a recent review had also highlighted the decreasing trend in susceptibility of 

sulbactam-combination antibiotics and in some  countries, which has also been 

observed in Malaysia [228]. In some countries, colistin may be the only option 

available for MDR-Ab [229]. More recently, a retrospective study was conducted to  

compare monotherapy of colistin and combination therapy of colistin/sulbactam with 

promising results for the combination of colistin/sulbactam [230]. Furthermore, 

another retrospective study also emphasises the utility of sulbactam in this context 

and compared colistin and ampicillin/sulbactam for MDR-Ab and showed similar 

clinical responses between therapies [231].  Both of these studies have used high 

doses of sulbactam; between 3g – 4g per day. However, the dose used has not been 

based on pharmacokinetic (PK) studies and an enhanced understanding of  

ampicillin/sulbactam PK may help procure better dosing for these patients. The 

target exposure for antibiotics is guided by the minimum inhibitory concentration 

(MIC) of the target bacterial pathogen.  Ampicillin is a time-dependent antibiotic 

(fT>MIC) whereas the pharmacodynamic of sulbactam is not as well characterised but 

has been considered to be dependent on the ratio of the area under curve (AUC) to 

MIC, i.e. AUC/MIC [160, 161]. Emerging data suggests that fT>MIC may also be 

important for sulbactam [181, 232] . According to the Clinical and Laboratory 

Standards Institute (CLSI), the equivalent MIC breakpoints for ampicillin/sulbactam 

for susceptible, intermediate and resistant A. baumannii are 8/4 mg/L, 16/8 mg/L and 

32/16 mg/L, respectively. Since sulbactam is a bacteriostatic agent, it is 

recommended for use as high doses; which of course, can increase the risk of 

toxicity. Empiric therapy with high doses of ampicillin/sulbactam, is common in 



98 

 

countries where there is a high risk of MDR-Ab. To date, we are unaware of any 

studies describing the PKs of  ampicillin/sulbactam in critically ill patients. A recent 

review of the dose recommendations from other patient groups has proposed that 

doses between 4g – 12g/day may be required for critically ill patients [233]. The aim 

of this study is to describe the PKs of ampicillin/sulbactam in critically ill patients at 

risk of MDR-Ab infections. 

Materials and methods 

This was a prospective open labelled PK study conducted at Intensive Care Unit, 

Hospital Sungai Buloh. Critically ill patients who met the following criteria were 

eligible for inclusion: a) written informed consent had been obtained from the patient 

or his/her substitute decision maker; b) clinical indication for ampicillin/sulbactam 

therapy; c) 18 years old or above and d) an intra-arterial catheter in situ (for the 

purposes of blood sampling). Patients were excluded from the study if one or more 

of the following criteria were met: a) renal replacement therapy and b) history of 

allergy to study antibiotics and expected antibiotic cessation within 24 h of 

identification of expected sampling.  

Antibiotic administration and sample collection 

All samples were collected over a single dosing interval. Standard doses, in 

accordance to local practice (2g/1gm intravenous (i.v) every 4 h) were administered. 

Blood samples were drawn at five time points, this was at 0 (pre-dose), 1.0 (end of 

infusion), 2, 3 and 4 hours post dose. All samples were immediately placed in 

polypropylene tubes on ice and were centrifuged at 3000 rpm for 10 minutes within 4 

hours of collection. The plasma and supernatant were removed; aliquots of the 

plasma were placed into labelled polypropylene screw-cap cryo-vials and stored at -

80°C until assay. All samples were sent frozen on dry ice from Hospital Sungai 

Buloh, Malaysia to Burns, Trauma and Critical Care Research Centre, The University 

of Queensland, Australia where they were stored at -80°C until assay.   
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Data collection 

Data were collected while the patient was in the ICU, from the patient medical record 

obtained through computerized system. Data collected included the following: a) 

relevant medical history, b) demographic data, c) antibiotic therapy details, d) SOFA 

(Sequential Organ Failure Assessment) score [51] and f) blood biochemistry. 

Creatinine clearance was calculated using the Cockcroft-Gault equation [234]. 

Assay 

Ultra high performance liquid chromatography analysis with reverse phase 

chromatography was performed on a Shimadzu Nexera system. Ampicillin and 

sulbactam in plasma were measured using a Shimadzu 8040 triple Quadruple mass 

spectrometer. Ampicillin was measured by positive mode MRM, whilst sulbactam 

was measured in negative mode.  

All samples were assayed alongside calibration standards and quality controls 

prepared by spiking drug into matching drug-free biological matrix.  Assays were 

validated and conducted using criteria from the US Food and Drug Administration 

guidance on bioanalysis [125]. 

The precision and accuracy of the methods were validated to be within 7% in plasma 

at low, medium and high concentrations of the calibration range. Range of linearity is 

1-200 µg/mL for ampicillin and 0.5-100 µg/mL for sulbactam. 

PK Analysis 

A non-compartmental PK analysis was performed to describe the disposition of 

ampicillin and sulbactam. The Cmax was the observed maximum concentration at the 

end of infusion and trough concentration (Cmin) was the observed minimum 

concentration prior to drug administration. The area under the concentration-time 

curve (AUC) from 0 to 4 hours was calculated using the trapezoidal rule. The AUC 

extrapolated to infinity (AUC0-∞) was calculated using AUC and the elimination rate 

constant (kel). The kel was calculated as the negative slope of the non-weighted 

squares curve fit of the final 2 sampling points during the elimination phase. 

Clearance (CL) was calculated as dose/AUC0-∞. The volume of distribution (Vd) was 
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calculated as CL/ kel. Half-life was calculated at 0.693/kel. All data are presented as 

median (inter quartile range (IQR)). 

Statistical Analysis 

Statistical analysis was performed using Graphpad Prism version 5.0 (GraphPad 

Software Inc., La Jolla, CA).  Linear regression describing the relationship between 

drug clearance and creatinine clearance as well as volume of distribution with body 

weight was performed. P-values <0.05 were considered significant. 

Results 

Nine patients, (8 male, 1 female) were recruited for this study. Demographic and 

clinical data are presented in Table 5.10. A wide range of age and renal function was 

observed in this cohort with median age of 33 (IQR : 23-62) years and median 

creatinine clearance of 119 (IQR : 76-150) mL/min. The median body weight was 61 

(IQR : 54-67) kg and Sequential Organ Failure Assessment (SOFA) score was 3.5 

(3.0-5.0). One third of the patients in this study were above 60 years old, with 

creatinine clearance less than 100 mL/min.  Moreover, 55% (n=5) of the studied 

patients also displayed an elevated creatinine clearance (>130mL/min). PK 

parameter estimates for both ampicillin and sulbactam contrasted against published 

data from healthy volunteers [173] are shown in Table 5.11.  Compared to healthy 

volunteers‟ data, both study drugs had a prolonged half-life and a reduced CL which 

was 72% and 54% lower for both  ampicillin and sulbactam, respectively. The PK 

parameter estimates for both drugs, as shown in Table 4.3, were widely variable. 

The Vd was found to be 50% larger for ampicillin and 60% larger for sulbactam.  

Figure 5.5 displays the concentration-time profile for ampicillin and sulbactam in 

plasma compared to relevant MIC values. The percentage of patients that did not 

achieve 100% fT>MIC for sulbactam at 4 mg/L, 8mg/L and 16 mg/L on the first 

sampling occasion were 66%, 78% and 78%, respectively. Linear regression 

analyses of antibiotic clearance and creatinine clearance are shown in Figure 5.6. 

Significant correlations with creatinine clearance were observed for both ampicillin 

(r2=0.9; P=0.001) and sulbactam (r2=0.8; P=0.0003). For Vd, correlations with body 

weight, were not statistically significant for either  ampicillin (r2=0.2, P=0.15) or 

sulbactam (r2=0.2,P=0.2).  
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Table 5.10 : Demographic and clinical data of included patients 

Parameter   Median (IQR) 

Age (years)  33 (23-62) 

Weight (kg)  61 (54-67) 
SOFA  3 (3-5) 
Creatinine clearance (mL/min)  119 (76-150) 
Serum creatinine concentration (µmol/L) 52 (51-65) 

 

Table 5.11 : Pharmacokinetic parameter estimates of ampicillin and sulbactam in critically ill patients at risk of multi-drug resistant 

Acinetobacter baumannii infections compared to published healthy volunteer data. Data presented either as median (Inter Quartile 

Range) or mean (Standard Deviation). 

Pharmacokinetic parameter ICU patients at risk of Acinetobacter 
baumannii infections  

 

Healthy volunteers 
[164]

 

 Ampicillin Sulbactam Ampicillin Sulbactam 

Half-life (h) 2.1 (0.9-4.0) 2.2 (0.9-5.2) 1.1 1.0 

Clearance (L/h) 10.2 (5.5-25.6) 9.3 (2.4-22.8) 17.6 ± 3.5 14.2 ± 3.7 

Volume of distribution (L/kg) 0.6 (0.4-0.7) 0.5 (0.3-0.6) 0.2 0.2 

Area under curve 0-4 h (mg.h/L) 121.0 (73-204.7) 67.4 (39.1-111.5) NA NA 

Maximum concentration (mg/L) 58.0 (42.7-103.6) 35.4 (22.4-53.8) 120 60 

Minimum concentration (mg/L) 8.0 (3.4-51.7) 3.7 (1.7-27.2) NA NA 
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Figure 5.5 : Ampicillin (top panel) and sulbactam (low panel) concentration-time 

profile. The clinical and Laboratory Standards Institute susceptibility breakpoints for 

ampicillin/sulbactam against A. baumannii are shown as dotted lines. For sulbactam, 

minimum inhibitory concentrations 4mg/L is susceptible, 8mg/L is intermediate and 

16mg/L is the resistant breakpoint. 

 

 

 

 

 

 

T im e  a fte r  a d m in is tr a tio n  (h o u r s )P
la

s
m

a
 a

m
p

ic
il

li
n

 c
o

n
c

e
n

tr
a

ti
o

n
 (

m
g

/L
)

0 1 2 3 4 5

1

1 0

1 0 0

1 0 0 0

T im e  a fte r  a d m in is tra t io n  (h o u r s )

P
la

s
m

a
 s

u
lb

a
c

ta
m

 c
o

n
c

e
n

tr
a

ti
o

n
 (

m
g

/L
)

0 1 2 3 4 5

1

1 0

1 0 0

 

MIC  = 16mg/L 

MIC = 8mg/L 

MIC  = 4mg/L 

MIC  = 8mg/L 



103 

 

Figure 5.6a : The relationship between creatinine clearance and ampicillin clearance. 

The solid line is the line of linear regression (r2=0.9, P=0.001) 

 

 

 

Figure 5.6(b) : The relationship between creatinine clearance and sulbactam 

clearance. The solid line is the line of linear regression (r2=0.8, P=0.0003) 
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Discussion 

To the best of our knowledge, this is the first PK study of ampicillin/sulbactam in 

critically ill patients. We have has shown significant differences in PK parameters of  

ampicillin/sulbactam between critically ill patients, at risk of A. baumannii infections, 

compared with healthy volunteers‟. The renal function of this studied cohort shows 

marked variability although this is not unexpected; given that  severity of illness may 

differ significantly among critically ill patients. 

The reduced drug clearance shown in this study was due to the fact that some of the 

studied patients manifested elevated serum creatinine concentrations indicative of 

acute kidney injury. We observed a significant correlation between drug clearance 

and creatinine clearance (P=0.001) as has been previously shown for many renally 

cleared antibiotics. These findings suggest that that there is a risk of excessive drug 

concentrations with decreased renal function and vice versa; and inadequate drug 

concentrations with increased renal function. This was clearly seen in this study; high 

doses of ampicillin/sulbactam  (2g/1g every 4 hours) resulted in concentrations 

greater than 50 mg/L of ampicillin for those subjects with decreased creatinine 

clearance, and greater than 20 mg/L for sulbactam. Similarly, for those subjects with 

an elevated creatinine clearance (>130mL/min), trough concentrations were found to 

be low, less than 10 mg/L to  ampicillin and less than 5 mg/L for sulbactam. This 

data support dose adjustment of ampicillin/sulbactam according to the renal function 

to avoid potential toxicity.  

Elevated renal clearance, also known as augmented renal clearance (ARC) has 

considerable consequences for altered antimicrobial concentrations and often occurs 

in those who do not have renal impairment and have received adequate fluid 

resuscitation during their intensive care unit (ICU) admission [185]. ARC is more 

prominent in young traumatized and postoperative patients and those with low illness 

severity scores [45]. However, since the creatinine clearance in this study was 

estimated using the Cockcroft-Gault equation [234], which has been reported to have 

significant bias and imprecision compared to a measured urinary creatinine 

clearance, this equation may not have been able to identify ARC patients [43] and 

thus should be considered a limitation of this study. 
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The increased Vd of both study drugs implies extensive distribution out of the blood 

stream and the potential for lower than expected concentrations; at least in the initial 

phase of therapy. Indeed, inadequate trough concentrations were observed in some 

of the studied subjects, which did not exceed the susceptibility breakpoint for  A. 

baumanni, thereby increasing the risk of therapeutic failure. It was also observed that 

there is no significant correlation of Vd with body weight, a possible explanation for 

this is because of the molecular characteristics of  ampicillin and sulbactam.  

Ampicillin and sulbactam are hydrophilic antibiotics which are typically distributed 

into plasma and the interstitial fluid of tissues with poor penetration into adipose 

tissues [143]. Therefore, changes in Vd for these antibiotics are not dramatically 

affected by variations in body weight but are greatly affected by fluid shifts in 

extravascular compartments [235, 236]. Fluid expansion is a common phenomenon 

seen in critically ill patients and can lead to inadequate drug concentrations, as 

clearly shown in this study [142]. Therefore, this study would support giving higher 

initial doses for those patients with a high Vd and adjustment of subsequent doses in 

accordance to renal function [237]. 

There are some limitations of this study we wish to declare, firstly the small sample 

size may mean that not all the likely PK variability in the critically ill population has 

been captured in this cohort. The measurement of renal function using the Cockcroft-

Gault equation may not be accurate for patients with unstable serum creatinine 

concentrations. Finally, the generally low body weight of the included patients may 

mean that some PK observations may not be indicative of the PKs of higher weight 

and obese patients. 

Conclusion 

The wide variability in PKs seen between subjects in this study and its significant 

differences from those observed in healthy volunteer data, illustrate the potential 

problems with current dose recommendations. This study has shown a wide range of 

drug exposures including inadequate  ampicillin and sulbactam exposures which 

increases the likelihood of sub-optimal patent outcomes. Dose modifications based 

on estimates of renal function are particularly important in critically ill patients. 
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5.5 Conclusion on ampicillin/sulbactam: its potential use in treating 

infections in critically ill patients 

This chapter has described the characteristics of ampicillin/sulbactam and its 

potential use in treating infections in critically ill patients. From this chapter, 

ampicillin/sulbactam is shown to have extensive tissue penetration making it a 

suitable antibiotic choice for many infection sites. It also has intrinsic activity against 

A. baumannii; an increasingly important pathogen in intensive care settings. 

Nevertheless, decreasing susceptibility of pathogens to ampicillin/sulbactam limits its 

use. Dose recommendations are also variable and not evidence-based, ranging from 

4g/day – 12g/day.  For those available PK studies; none were conducted in critically 

ill patients and therefore, PK studies to define the necessary doses of 

ampicillin/sulbactam in these patients are an important next step to ensure better use 

this valuable drug combination in this patient population. Our subsequent PK study 

has shown that there are significant differences in the PK of ampicillin/sulbactam 

between critically ill patients with healthy volunteers with wide variability of PK 

parameter estimates common to the critically ill. In our study, almost two thirds of 

patients did not have sulbactam concentrations exceeding target concentrations 

throughout the dosing interval. We also observed a significant correlation between 

drug clearance with creatinine clearance. We therefore propose that higher initial 

doses of ampicillin/sulbactam should be used for those patients likely to have 

increased volumes of distribution, whilst dosage adjustment according to renal 

function is also strongly suggested. 
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6. Summary and direction for future research 

The importance of antimicrobial treatment of critically ill patients with severe 

infections is undeniable. The main objective of this Thesis is to improve the use of 

antimicrobials in common clinical scenarios encountered by critically ill patients, 

particularly for hospitals that commonly have patients admitted with trauma and 

infectious diseases. Chapter 1 describes the challenges associated with three 

different clinical scenarios. 

Critically ill patients are a special patient population with marked changes in their 

physiology and this is the main reason why standard antimicrobial doses are unable 

to produce consistent therapeutic responses. These physiological changes 

discussed in detail in Chapter 2. Four principle physiological changes that affect 

antimicrobial PK are fluid shifts, organ dysfunction, changes in protein binding and 

circulatory failure. Sepsis, AKI, hepatic failure, fluid resuscitation and burns are 

among factors that could lead to fluid shifts in critically ill patients. All these changes 

can affect the two PK parameters that define dosing requirements, Vd and Cl. 

Changes in Vd could cause changes in PK particularly during the initial phase of 

treatment with changes in Cl having implications for the later phase of treatment. 

These changes may affect the likelihood of achieving adequate drug concentrations 

and subsequently, require changes in drug dosing. 

Elevation of renal clearance, also known as ARC, is one of the physiological 

changes that may occur in critically ill patients and this was described in Chapter 3. 

This Chapter of the Thesis looks into the incidence of elevated renal clearance in 

Malaysian critically ill patients. The study included in this Thesis has shown that ARC 

is common in ICU patients. It was observed that nearly half of the recruited patients 

had ARC, with most patients being male, admitted post trauma and having 

undergone emergency surgery. Convenient bedside methods to identify these 

patients are required. Significant imprecision was demonstrated when comparing 

estimated Cockcroft-Gault creatinine clearance and a measured urinary creatinine 

clearance, with a larger bias in ARC patients. It follows that those patients at risk of 

ARC require more careful evaluation of their kidney function; with accurate 

determination only possible at this stage using a measured creatinine clearance. The 
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present study did not describe the relationship between ARC and sub-therapeutic 

drug concentrations and whether this correlates with a negative patient outcome. It is 

proposed that this aspect be further examined in future studies. 

For this reason, PK studies conducted in critically ill patients are required to describe 

drug behaviour and therefore, to provide guidance for more accurate dosing that 

improves the likelihood of positive clinical outcomes for critically ill patients.  

IAI is one of the common infections among critically ill patients, especially in trauma 

centre hospitals. Chapter 4 of this Thesis addresses this topic, which includes a 

published manuscript that reviews all PK studies of beta-lactam antibiotics used in 

intra-abdominal disease. In this review, higher Vd values were shown for most beta-

lactam antibiotics in IAI patients, twice as high for both meropenem and piperacillin 

and 20% higher for ceftazidime. Higher Cl were observed for post abdominal surgery 

patients, four times greater for imipenem-cilastin, three times higher for cefepime 

and two times greater for doripenem. A higher initial dose would be required for less 

susceptible pathogens in the management of IAI. For beta-lactams, more frequent 

dosing would be indicated for post-operative patients. The possibility of drug 

clearance through surgical drain in IAI patients was also highlighted in this review, 

which has led to a published PK study, conducted in this patient group.  

Surgical drains are a fairly common procedure for critically ill patients, especially for 

patients with intra-abdominal pathologies, like IAI. This invasive procedure, together 

with the intra-abdominal disease, as discussed above, can cause marked changes in 

the patient‟s physiological condition and therefore, will lead to changes to 

antimicrobial PK. A study conducted in this Thesis in these patients has shown that 

the standard doses of the studied drugs (1 gm IV 8 hourly for meropenem and 4.5 

gm IV every 6 hourly for piperacillin/TZP) have extensive drug distribution and larger 

doses are recommended to avoid low drug concentrations. This study has also found 

that the amount of the drug cleared through the surgical drains correlates with the 

volume of output of inflammatory fluid through the surgical drains. Therefore, in the 

presence of a larger volume of drain fluids, exceeding 1000 mL per day, 

supplemental antimicrobial doses should be considered. However, this study could 
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not specify the magnitude of the supplemental dose to be given and this is 

suggested as an important area of future research. 

Chapter 5 of this Thesis also looked into the potential use of ampicillin/sulbactam in 

critically ill patients, particularly for those at risk of infection by the resistant 

pathogen, MDR-Ab. This chapter includes a published review of 

ampicillin/sulbactam; specifically on its use in critically ill patients. Various doses 

have been studied and standard doses, 2-4g/day of sulbactam, used in non-critically 

ill patients, have shown lower success rates when used in critically ill patients. 

Higher doses, up to 12g/day of sulbactam, have been shown to have similar 

outcomes compared to colistin.  The available PK studies for this particular drug 

support a dosing regimen of 3g of sulbactam given as a 4 hour infusion, 8 hourly in 

order to achieve optimal exposure for less susceptible pathogens. However, this PK 

study was not conducted in critically ill patients and the absence of PK studies on 

ampicillin/sulbactam involving critically ill patients, together with the challenges in 

managing resistant pathogens does not permit this particular antimicrobial to be 

used optimally. Therefore, a PK study was carried out in this Thesis, on the standard 

doses used locally in Malaysian intensive care, 3g ampicillin/sulbactam IV 4 hourly. 

PK analysis has shown marked PK variability, which is significantly different to that 

reported in healthy volunteers. A significant correlation was found between drug 

clearance and creatinine clearance in this study supporting dosing that is adjusted to 

the patient's renal function. Higher drug concentrations were observed in patients 

with decreased renal function and vice versa; low concentrations were seen in 

patients with elevated renal function. Therefore, it is suggested that renally impaired 

patients should be given lower doses than are currently used. Patients with ARC 

require higher than maximum doses.  For those patients that had received excessive 

fluid resuscitation, larger doses may be needed during the initial phase of the 

treatment. However, due to several drawbacks in this study, more specific dosing 

guidelines are not able to be produced. This dosing guideline could probably be 

made available if a study with larger sample size is carried out and a population PK 

analysis is performed which would be the natural next step for research in this area. 
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