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Abstract  

Accurate methods of latent heat flux quantification are essential for water management and 

for use in hydrological and meteorological models. Currently the effect of small lakes in most 

numerical weather prediction modelling systems is either entirely ignored or crudely 

parameterized. In order to test methods for modelling hourly latent heat flux from small water 

bodies, this study compares results from several modelling approaches to values measured by 

the eddy covariance method at an agricultural reservoir in southeast Queensland, Australia. 

Mass transfer estimates of LE calculated using the theoretical mass transfer model and using 

the Tanny et al. (2008) and Sacks et al. (1994) bulk transfer coefficients showed the best 

relationship with measured values under a range of meteorological conditions. The theoretical 

model showed the strongest correlation with measured values, while the Tanny et al. (2008) 

and Sacks et al. (1994) models had regression equation slopes with the closest proximity to 1. 

Latent heat fluxes estimated using the Granger and Hedstrom (2011) evaporation model, that 

was specifically developed for use at small reservoirs, showed a poor relationship with 

measured values, particularly in stable atmospheric conditions. The 1-dimensional 

hydrodynamics model, DYRESM, was used to obtain predictions of hourly latent heat flux 

without the use of water surface temperature measurements. DYRESM estimates of latent 

heat flux showed a slightly worse relationship with measured values than those predicted 

using the traditional mass transfer models (which used measurements of water surface 

temperature). However, DYRESM performed considerably better than the Granger and 

Hedstrom (2011) model.  

 

Keywords  

Latent heat flux, mass transfer, bulk transfer coefficients, water surface temperature. 
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1. Introduction 

Inland water bodies can vary greatly in spatial scale, from small irrigation reservoirs on farms 

to large lakes. According to Downing et al. (2006), 50 % of the total global continental 

surface area covered by water consists of small lakes and reservoirs (<1 km2). Global 

estimates of the number of small reservoirs and lakes is in the order of 300 million, with a 

total surface area of approximately 2.3 million km2 (approximately 1.5 % of the Earth’s 

continental surface area) (Downing et al., 2006). Despite the large number and importance of 

small lakes and reservoirs throughout the world, studies of water surface-atmosphere 

exchanges tend to be biased towards larger bodies of water (Rosenberry et al., 2007). Energy 

exchanges between the atmosphere and inland water bodies in the form of latent (LE) and 

sensible (H) heat fluxes can be ecologically and climatologically important at regional and 

global scales (Rouse et al., 2005; Long et al., 2007). However, the environmental factors that 

determine these exchanges, such as wind speed (u), humidity and atmospheric turbulence, 

can be substantially different over small water bodies than over larger lakes (Assouline et al., 

2008; Granger and Hedstrom, 2011).  

 

There have been occasional studies that have analysed direct measurements of LE from small 

reservoirs using the state of the art Eddy Covariance (EC) technique (e.g. Tanny et al., 2008, 

2011; Nordbo et al., 2011; McGloin et al., 2014a), while other studies have analysed 

estimates of LE derived using the scintillometry method (McJannet et al., 2011, 2013b). 

Although these methods are essential in understanding the processes controlling LE, their use 

is limited due to the expensive and complex nature of their operation, therefore effective 

modelling approaches are required. There have been some studies that have evaluated the 

performance of evaporation models at small reservoirs (i.e. Rosenberry et al., 2007; Tanny et 

al., 2008; McJannet et al., 2013a). However, most approaches have been limited to 



  

4 

 

quantifying daily (or greater) estimates of evaporation. Reliable estimates of surface heat 

fluxes are often necessary to correctly represent the effect that different surface types have on 

the regional climate (Chen and Dudhia, 2001). In order to accurately model processes such as 

diurnal variability in Atmospheric Boundary Layer (ABL) height and associated cloud and 

precipitation processes, it is essential that surface processes are simulated frequently enough 

to capture the influence the given processes have on the ABL (i.e. time-steps in the order of 

one hour) (Chen and Dudhia, 2001; Pielke, 2001; Pitman, 2003).  

 

Understanding the relationship between small lakes and the local climate is of particular 

interest for regions where there is a high density of such lakes (e.g., in permafrost, periglacial, 

and riverine landscapes) (MacKay et al., 2009). In these environments small water bodies can 

represent up to 10 % of the local land surface area (MacKay et al., 2009; Nordbo et al., 2011; 

Bouin et al., 2012). Although few studies have focused specifically on analysing the impact 

of small lakes on regional climates, authors such as MacKay et al. (2009), Balsamo et al. 

(2012) and Martynov et al. (2012) have indicated the potential importance of these water 

bodies in modifying the local climates of regions where they are abundant. Currently, the 

effect of small to medium size lakes in most numerical weather prediction (NWP) and 

climate modelling systems is either entirely ignored or crudely parameterized (Mironov et al., 

2010). However, with continuing improvements in the horizontal resolution of NWP systems 

such as the Weather Research and Forecasting model (WRF), it is likely that in the near 

future there will be the potential to effectively model the effects of small lakes on regional 

weather. However, this will require accurate parameterisations of water surface-atmosphere 

exchanges at sub-daily timesteps. 
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In this study three models were selected according to their potential to accurately model sub-

daily estimates of LE from a small reservoir. Model selection was limited by the need to use 

sub-daily inputs. For example, widely used methods like the energy balance or combination 

methods (such as the Priestly-Taylor (Priestly and Taylor, 1972) and Penman-Monteith 

(Monteith, 1965) methods) were not considered for use in this study because they require an 

estimate of the change in water body heat storage, which is notoriously difficult to quantify 

accurately at short time-steps. In addition, in order to allow researchers to replicate this 

study’s methodology in locations where available input data may be limited, it was decided to 

keep model complexity to a minimum. 

 

Each of the selected modelling techniques used in this study are based on the mass transfer 

model principle, where LE is determined as a function of u and the difference in humidity 

between the water surface and overlying air (Stull, 1988). The first of the selected modelling 

techniques in this study is the traditional mass transfer model, which simply determines LE 

using the )( as qqu −  function (where )( as qq −  is the difference between the specific 

humidities of the water surface and air) and a bulk transfer coefficient (CE). The second 

technique is a model developed by Granger and Hedstrom (2011) for the specific purpose of 

estimating sub-daily evaporation from small reservoirs. Both the traditional mass transfer and 

Granger and Hedstrom (2011) models require site-specific meteorological measurements and 

measurements of water surface temperature (Ts). However, in many cases over-water 

meteorological measurements and Ts measurements are unlikely to be available. Therefore, 

the third model tested was the one-dimensional hydrodynamics model known as DYRESM 

(Dynamic Reservoir Simulation Model) (Imberger and Patterson, 1981; Imerito, 2010a), 

which does not require user specification of Ts. DYRESM is used to predict the vertical 

distribution of temperature in water bodies at daily and sub-daily time-steps. It has been used 
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at a wide variety of water bodies with different morphologies and climates (e.g. Gal et al., 

2003; Perroud et al., 2009; Weinberger and Vetter, 2012). However, most applications of the 

model have been related to water body ecology or water quality rather than for the specific 

purpose of LE quantification. 

 

This study explores the potential to accurately model LE at hourly time steps from a small 

agricultural reservoir in southeast Queensland, Australia. Latent heat flux predictions made 

by the traditional mass transfer, Granger and Hedstrom (2011) and DYRESM models are 

assessed through comparison with measurements made on site using an EC system. 

Explanations for differences between measured and modelled results are provided and 

periods where model performance varied with changes in the ambient meteorological 

conditions are identified.  

 

2. Methods 

2.1 Study Site 

Field measurements were conducted at Logan’s Dam (27°34'25.93"S; 152°20'27.45"E; 

altitude 88 m), located approximately 75 km west of Brisbane in southeast Queensland, 

Australia. Note that “Logan’s Dam” refers to the water storage reservoir used in this study (in 

Australia it is common to refer to man-made reservoirs as “dams”). The reservoir wall is 

constructed of compacted earth and is roughly rectangular in shape with dimensions of 

approximately 480 m × 350 m. The reservoir has an approximate surface area of 0.17 km2, a 

storage capacity of 0.7 GL and a maximum depth of 6 m. The terrain surrounding Logan’s 

Dam is complex with the water body, forested areas (to the north, south and west), the 

reservoir wall and farm land all within a short distance of one another. For an image of 

Logan’s Dam and the location of some of the equipment described in the following sections 
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see Figure 1 in McGloin et al. (2014a). Note that previous micrometeorological studies at 

Logan’s Dam (i.e. McJannet et al., 2011; McJannet et al., 2013a; McJannet et al., 2013b; 

McGloin et al., 2014a; McGloin et al., 2014b) focused on analysing surface heat flux 

measurements and did not present any analysis involving methods for modelling sub-daily 

LE. 

 

A 47-year time series (1965-2011) of archived meteorological data from the nearest available 

Bureau of Meteorology (BOM) weather station (Gatton 040082), located approximately 3 km 

north of Logan’s Dam, was used to provide a long-term summary of the climatic conditions 

in the region. The mean maximum and minimum air temperatures (Ta), vapour pressure (ea) 

and u over the 47 year record were 26.8 °C, 13.2 °C, 1.64 kPa and 2.74 m s-1, respectively, 

while the mean annual rainfall was 781 mm. The region experiences a seasonal subtropical 

climate (Bureau of Meteorology, 2005) with the warmest and wettest weather during summer 

and the coolest and driest weather in winter. Two types of meteorological conditions 

characterise the climate of the study site. Moist easterly winds dominate for the majority of 

the year (especially in summer) and comparatively dry westerly winds dominate in winter, 

with transitional periods between.  

 

2.2 Equipment and Measurements 

2.2.1 Eddy Covariance 

The EC technique involves determination of surface heat fluxes using high frequency 

measurements of vertical wind velocity by a sonic anemometer and the density of scalars by 

an infrared gas analyser. For this study a full year of EC data, from 1 March 2010 to 28 

February 2011, was selected for analysis. The EC system setup included a sonic anemometer 

(CSAT-3, Campbell Scientific, Utah, USA) installed at a height of 2.4 m, an open-path H2O 
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and CO2 infrared gas analyser (CS7500, LiCor, Lincoln, USA) installed at a height of 2.4 m 

and a net radiometer (CNR1, Kipp & Zonen, Delft, Netherlands) installed at a height of 1.4 

m. The EC unit was located on a pontoon near the centre of the reservoir and supplied with 

power from mounted solar panels. The pontoon consisted of a square platform that had an 

approximate surface area of 2.5 m × 2.5 m, the platform was kept a float by four large drums 

and was held in position by 4 mooring lines.  

 

The EC unit was controlled by a CR3000 data logger (Campbell Scientific, Utah, USA) with 

measurements of LE (W m-2) and H (W m-2) calculated using 15-minute covariances of the 

turbulent components of vertical wind velocity (w’), water vapour density (ρw
’) and air 

temperature (Ta
’). For analysis in this study, hourly averages of the 15-minute values were 

used. Tilt error (Lee et al., 2005), frequency response (Massman, 2000) and Webb-Pearman-

Leuning (Webb et al., 1980) flux corrections were then performed in post-processing. All EC 

data recorded during rain events and obvious outliers were removed. Note that gaps in the EC 

LE measurements were not filled in this study. For more on the EC flux calculation, 

correction and quality control procedures used in this study see McGloin et al. (2014a). A 

detailed analysis of EC measurement footprints in McGloin et al. (2014a) suggested that in 

the majority of conditions the EC footprint was located within the reservoir boundaries. For 

example, cumulative footprints for southeasterly and westerly winds (most frequent wind 

directions), showed that the percentages of footprint originating from the reservoir surface 

during neutral atmospheric conditions were 92 % (SE) and 95 % (W), respectively.  

 

The short fetch of Logan’s Dam generally resulted in very small waves and very little 

pontoon motion. The wave conditions were significantly different from those typically 

observed at sea or large lakes, where extensive corrections for platform motion are 
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recommended (Edson et al., 1998).  Using the same pontoon and instrument configuration as 

this study to quantify surface energy exchanges over a coral reef, Wiebe et al. (2011) 

concluded that although wave induced motion was visible in the wind velocity spectra, the 

oscillation did not strongly influence the co-spectrum of the flux measurements. In addition, 

using a very similar instrumental set up, Eugster et al. (2003) concluded that there was no 

need for a special flux correction to eliminate traces of pontoon oscillation at a small 

reservoir similar to Logan’s Dam. 

 

2.2.2 Floating and Land-Based Weather Stations 

A separate floating weather station platform was positioned in a central location on the 

reservoir (note that from now on this weather station is referred to as the floating weather 

station). Equipment on the platform included a net radiometer (CNR1, Kipp & Zonen, Delft, 

The Netherlands) installed at a height of 1.2 m, an anemometer (014A, MetOne, Oregon, 

USA) installed at a height of 2.4 m and a temperature and humidity sensor (CS215, Campbell 

Scientific, Utah, USA) installed at a height of 2.5 m. The net radiometer provided 

measurements of net radiation (Rn) (W m-2) and estimates of water surface skin temperature 

(Tskin) (°C), while the anemometer provided measurements of u (m s-1) and the temperature 

and humidity sensor provided measurements of Ta (°C) and ea (kPa), respectively. Note that 

Tskin values were calculated using net radiometer measurements of upwelling long-wave 

radiation. Measurements of the temperature profile in the reservoir were given by a 

thermistor chain (Precision Measurement Engineering, California, USA) suspended below 

the floating platform, with water temperature measurements made at 0.3 m increments from 

0.1 m to 4.3 m deep (note that only the measurements at 0.1 m deep were used in this study). 

Weather stations were also positioned on each of the four reservoir walls, with each station 

consisting of a tipping bucket rain gauge (TB3, Hydrological Services, Sydney, Australia), a 
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2D Windsonic installed at a height of 2 m (Gill, Hampshire, England) and a CS215 

temperature and humidity sensor (Campbell Scientific, Utah, USA) installed at a height of 2 

m.  

 

2.2.3 Pumped Inflows and Outflows 

Refilling of Logan’s Dam occurred through two large 800 mm diameter pipes. Two 

distribution pipes, one with a diameter of 200 mm and the other with a diameter of 250 mm, 

were used for withdrawing water to irrigate crops. The distribution pipes were fitted with 

high accuracy (±0.2%) flow meters (Magflow Mag5100W, Siemens, Victoria, Australia) and 

transmitters (Mag6000, Siemens, Victoria, Australia) to determine total outflow. Only the 

commencement and cessation of pumped inflow events were recorded because of potential 

errors associated with measuring the large volumes of water that flowed through the inflow 

pipes. Between March 2010 and February 2011 there were just two occasions when water 

was pumped into the reservoir (lasting a combined total of 14 days), while withdrawal events 

were reasonably frequent. 

 

2.3 Evaporation Models 

2.3.1 Traditional Mass Transfer 

Evaporation from a water surface can be calculated using the traditional mass transfer model 

given by:  

 )( asE qquCE −= ρ  (1) 

where E is evaporation (kg m-2 s-1),  is air density (kg m-3) and qs and qa are the specific 

humidities (kg kg-1) of the water surface and air, respectively. Note that E values were 

converted to LE (W m-2). In order to account for the effects of surface roughness and 

atmospheric stability, equation 1 also requires a bulk transfer coefficient, CE. An approximate 
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constant site-specific CE value can be derived empirically by plotting EC measurements of LE 

against )( as qqu −ρ and then forcing the regression line through the origin. Site-specific CE 

values can also be estimated as a function of u using direct measurements of u, LE and 

)( as qq − , as outlined in Tanny et al (2008).  

 

Since most researchers will not have access to EC measurements of LE, we decided to test 

traditional mass transfer methods that are completely independent of EC measurements. One 

approach is to use an empirically-derived constant site-specific CE value from a previous 

study. A problem with this approach is that there is a lot of variation in the CE values from 

different studies; hence it is not always obvious which value is most appropriate for a 

particular field site. Therefore, a range of CE values from studies over open-water are 

compared in this study (see Table 1). Note that it is standard practice to express CE for a 

measurement height of 10 m (Sene et al., 1991). Therefore, Table 1 shows CE values for the 

measurement heights given in each study and after they have been adjusted using the 

logarithmic wind profile formula for a measurement height of 10 m. 

 

Table 1: Bulk transfer coefficients that are tested in this study. 
Study CE Measurement 

height (m) 
CE (adjusted for 
a measurement 
height of 10 m) 

Site 

Brutsaert (1982) (is also the 
value used in the DYRESM 
model (see section 2.3.3)) 

 

1.30×10-3 10.0 1.30×10-3 Various oceans and lakes 

Sacks et al. (1994) 1.88×10-3 2.0  1.62×10-3 Lake Barco, Florida, USA 
(0.11 km2) 

 
Rosenberry et al. (2007) 1.64×10-3 2.0 1.41×10-3 Mirror Lake, New 

Hampshire, USA (0.15 km2) 
 

Tanny et al. (2008) 1.88×10-3 2.9 1.67×10-3 Eshkol reservoir, north 
Israel (1 km2) 
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Bulk transfer coefficients can also be estimated theoretically using the approach described in 

Brutsaert (1982), where CE is defined as: 

 
)()ln(

0

22

L

z

z

z

Cdk
C

sv

v

E

ψ−

=  
(2) 

where z is the measurement height (2.4 m), k is the Von Karman constant (0.41), vz0  is the 

scalar roughness length (m), )(
L

z
svψ  is the universal stability function for water vapour and 

Cd is the drag coefficient. The universal stability function for water vapour was calculated 

using the relationships for stable and unstable conditions described in Brutsaert (1982). Note 

that to keep model results independent of EC measurements, the stability of the atmosphere 

was assessed in this study using the Bulk Richardson number (Stull, 1988): 

 2Tu

Tzg
RB

∆
=  (3) 

where ∆T (K) is the difference in temperature between the water surface and instrumentation 

and g/T is the buoyancy parameter. The Bulk Richardson numbers were then converted into 

stability parameter (z/L) values using the formula proposed by Andreas and Murphy (1986). 

 

The expression of vz0  for a smooth water surface is given by equation 4 (Brutsaert, 1982):  

 
*

0 624.0
u

v
z v =  (4) 

where *u  is the friction velocity (m s-1) and v the kinematic viscosity of air (m2 s-1). Equation 

5 defines Cd for open-water surfaces (Brutsaert, 1982): 
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where mz0  is the momentum roughness length (m) and )(
L

z
mψ  is the universal stability 

function for momentum. The universal stability function for momentum was calculated using 

the relationships for stable and unstable conditions described in Paulson (1970).  

 

Friction velocity values for open-water were calculated in this study using the following 

equation (Stull, 1988): 

 )()ln(
0
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L

z

z

z
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m

m
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=  
(6) 

where the value for mz0  was derived using the Zilitinkevich (1969) equation for estimating 

mz0  over open-water: 
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where g is the gravitational constant, 1c  is 0.48 and 2c  is 81.1. An initial *u  value was 

calculated using a roughness length value of 0.0001 m, this value was then substituted into 

equation 7 and the resulting solution was fed back into equation 6. This iterative procedure 

was continued until a stable solution for mz0  was obtained.   

 

2.3.2 Granger and Hedstrom 

Granger and Hedstrom (2011) presented a simple model for estimating hourly LE from small 

lakes: 

 auLE =  (8) 

where 

 )()( assa eenTTmba −+−+=  (9) 
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Parameters include u (m s-1), vapour pressure difference between the water surface and air, 

es-ea (kPa), and temperature difference, Ta-Ts (°C). Note that Granger and Hedstrom (2011) 

found that LE was substantially suppressed when conditions were stable (Ta>Ts) and 

enhanced when conditions were unstable (Ta<Ts). The coefficients b, m and n are given by  

 

Xn

Xm

Xb

0011.0256.20

)ln(420.0584.4

0008.0395.3

−=

+−=

+=

 (10) 

in stable conditions, and 

 

Xn

Xm

Xb

0008.0525.26

)ln(0904.0758.1

0002.0373.2

−=

+−=

+=

 (11) 

in unstable conditions, where X (m) is the upwind fetch (distance from upwind shore). 

 

2.3.3 DYRESM 

DYRESM (v4.0) was developed by the Centre for Water Research at the University of 

Western Australia, to predict the vertical distribution of temperature, salinity and density in 

lakes and reservoirs (Imberger and Patterson, 1981; Imerito, 2010a). The model is based on 

the Lagrangian layer scheme, where the lake is modelled by a series of uniform horizontal 

layers. Layer thickness changes as layers combine, expand, contract, divide and move up and 

down as they are affected by the physical processes represented in the model (Imerito, 2010a; 

Etemad-Shahidi et al., 2010). Layer mixing occurs when the turbulent kinetic energy in the 

topmost horizontal layer exceeds a potential energy threshold. The kinetic energy is produced 

by convection, wind stirring and shearing (Imerito, 2010a). A fundamental assumption of 

DYRESM is that horizontal variations in lake density are weak and that the restoring force of 

stratification is greater than the disturbing force of the wind (Imerito, 2010a). 
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As input data, DYRESM requires the lake geometry, daily or sub-daily meteorological data, 

daily inflows (m3 d-1) (and inflow water temperature), daily outflows (m3 d-1), an initial water 

temperature profile (from which DYRESM obtains the initial water depth) and the light 

extinction coefficient (=1.0 in this analysis). The data requirements are described in detail in 

Imerito (2010b). Required meteorological data consists of u (m s-1), ea (hPa), Ta (°C), 

incident short-wave radiation (W m-2), rainfall (mm) and either the net long-wave radiation 

(W m-2), incident long-wave radiation (W m-2) or fraction of cloud cover (value ranging from 

0 to 1). In order to accurately predict water temperatures, DYRESM needs to account for 

surface cooling caused by evaporation. Therefore, DYRESM uses the water temperature in 

the uppermost water layer and equation 1 (with a fixed CE value of 1.3×10-3 for a 

measurement height of 10 m) to estimate LE at each time-step.  

 

2.4 Model Sources of Data 

Model estimates of LE were calculated at hourly time-steps between 1 March 2010 and 28 

February 2011. Measurements for the traditional mass transfer models consisted of 

measurements of u and qa taken from the floating weather station, while qs values were 

calculated using Tskin estimates from the net radiometer on the floating weather station. Note 

that for the purposes of this study “traditional mass transfer model” refers to any model that 

calculates LE values using equation 1 and Tskin estimates from the net radiometer. All of the 

measurements required to perform the stability corrections and to estimate mz0  and *u  for the 

theoretical mass transfer model, were also taken from the floating weather station. For the 

mass transfer calculations made using each of the bulk transfer coefficients listed in Table 1, 

u values measured at a height of 2.4 m on the floating weather station were converted to a 

height of 10 m using the logarithmic wind profile formula. 
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The Granger and Hedstrom (2011) model requires over-land measurements of Ta and ea and 

over-water measurements of Ts, es and u (at a height of 2 m). Measurements of u made at the 

floating weather station were converted to a height of 2 m using the logarithmic wind profile 

formula, while Tskin values from the floating weather station were used to represent Ts (from 

which es values were calculated). Over-land meteorological measurements were taken from 

the weather stations positioned on the reservoir walls. In order to obtain the upwind over-land 

meteorological conditions the weather station data selected was dependent on the wind 

direction. During easterly winds (0-180°) over-land measurements of Ta and ea were taken 

from the easterly weather station at a height of 2 m, while during westerly winds over-land 

measurements of Ta and ea were taken from the westerly weather station. Note that X values 

of 220 m and 224 m were used to represent the distance from the floating weather station to 

the upwind edge of the reservoir during easterly and westerly winds. 

 

As DYRESM does not require Ts specification it provides an opportunity to run the model in 

two modes which reflect the potential availability of data at a given site. The first mode 

represents a highly instrumented site, where all the required variables are measured directly, 

while the second represents the more commonly experienced data sparse environment, where 

nearby meteorological measurements made over land are all that is available. For the highly 

instrumented scenario u, Ta, and ea values were all taken from the floating weather station, 

while upwind land-based weather station measurements were used for the data limited 

scenario. Both scenarios used incident short-wave radiation from the floating net radiometer. 

The incident long-wave radiation was also taken from the net radiometer for the highly 

instrumented scenario, while for the data limited scenario incident long-wave radiation was 

estimated using the methodology presented by Sridhar and Elliott (2002).   
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A bathymetric survey of Logan’s Dam was undertaken by G.L. Irrigation Pty Ltd. using a 

dual frequency GPS (NovAtel RTK, NovAtel Inc., Alberta, Canada) (note that this survey 

was performed immediately after the reservoir was constructed and before it was filled). The 

bathymetry data was used to estimate the reservoir geometry for the highly instrumented 

scenario. For the data limited scenario, the reservoir was assumed to be a box with 

dimensions of 480 m × 350 m × 6.0 m. For the highly instrumented scenario, daily outflow 

volumes were taken from the flow meters positioned on each of the outflow pipes, while the 

model was stopped during each of the inflow events and restarted with updated water profile 

data. For the data limited scenario, daily outflows were assumed to be equal to the average 

daily volume of water pumped out of Logan’s Dam (approximately 850 ML), while it was 

assumed that the reservoir was initially filled to capacity but with no further inflows during 

the year. Measured initial temperature profiles were used for the highly instrumented 

scenario. For the data limited scenario Ta was used as the initial water temperature at all 

depths within the reservoir. This required the model to run for a spin-up period until the 

influence of the initial temperature profile was no longer observed in the model output. 

Therefore, for the data limited scenario, DYRESM was run for a spin-up period of one month 

(February 2010). Table 2 summarises the sources of data for the DYRESM highly 

instrumented and data limited scenarios. 

 

 

 

 

 

 

 



  

18 

 

Table 2: Sources of data for DYRESM scenarios. 
Method Meteorological data Reservoir 

geometry 
Inflows/outflows Initial profile 

Highly 
instrumented 

scenario  

Over-water measurements. 
Incident short-wave and 
long-wave radiation data 

taken from net radiometer. 

Bathymetric 
survey data. 

Model stopped 
during inflows. 

Direct 
measurements of 

outflows. 
 

Measured 

Data limited 
scenario  

Over-land measurements. 
Incident shortwave 

radiation data taken from 
net radiometer. Modelled 

incident long-wave 
radiation. 

Assumed to 
have box 

dimensions. 

Constant outflow 
rate. No inflows. 

Air temperature 
used as the initial 
water temperature 

at all depths. 
Model spin-up 
period of one 

month. 
 

3. Results  

3.1 Model Comparisons with Measurements 

Model performance was tested by performing regression analysis between EC measurements 

of hourly LE and values from the various modelling techniques (Table 3). The regression 

equation for theoretical mass transfer LE values against EC LE values had a slope that was 

less than 1, indicating that the model tended to underestimate LE. However, the correlation 

(R2) between theoretical mass transfer LE values and measured LE values was the strongest 

of the models tested and the theoretical mass transfer model also had the lowest Root Mean 

Square Error (RMSE) (Figure 1a and Table 3).  
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Table 3: Summary of regression analysis comparing LE measurements with values predicted 
by the various modelling techniques. Note that all p-values for the regression analysis were ≈ 
0.00. 

Method R2 slope y-intercept RMSE (W m-2) 
Theoretical mass transfer 0.86 0.74 7.11 26.44 

 
Brutsaert (1982) mass 

transfer 

 
0.83 

 
0.79 

 
-3.65 

 
31.87 

 
Sacks et al. (1994) mass 

transfer 

 
0.83 

 
0.98 

 
-4.54 

 
26.65 

 
Rosenberry et al. (2007) 

mass transfer 

 
0.83 

 
0.85 

 
-3.96 

 
28.77 

 
Tanny et al. (2008) mass 

transfer 

 
0.83 

 
1.02 

 
-4.71 

 
27.10 

 
Granger and Hedstrom 

(2011) 

 
0.59 

 
0.48 

 
5.98 

 
51.26 

 
Highly instrumented 
DYRESM scenario 

 
0.78 

 
1.07 

 
2.81 

 
34.19 

 
Data limited DYRESM 

scenario 

 
0.70 

 
1.07 

 
3.04 

 
42.18 

 

Latent heat flux values modelled using the various constant site-specific CE values listed in 

Table 1 showed slightly worse correlations with EC values than the theoretical mass transfer 

model. This is most likely related to the influence of atmospheric stability and variable 

roughness length, which are accounted for in the theoretical model but not in the other 

traditional mass transfer methods. The slopes of the regression equations for the Tanny et al. 

(2008) and Sacks et al. (1994) mass transfer models showed the closest proximity to 1 of all 

the models tested (Figure 1b and Table 3). In addition, both the Tanny et al. (2008) and Sacks 

et al. (1994) models had RMSE values that were only slightly greater than the value for the 

theoretical mass transfer model. The Rosenberry et al. (2007) and Brutsaert (1982) mass 

transfer models model had regression equation slopes that were less than 1, while the models 

ranked fourth and fifth in terms of RMSE value, respectively.  
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Latent heat fluxes modelled using Granger and Hedstrom’s (2011) model showed a poor 

relationship with measured values. The slope of the regression equation for the Granger and 

Hedstrom (2011) model was much less than 1, while it had the lowest R2 value and the 

highest RMSE value of the models tested in this study. The regression equations for both 

DYRESM scenarios were very similar, with the slopes of the equations showing a reasonably 

close proximity to 1, while the R2 values were lower than the values found for the traditional 

mass transfer models. As expected the LE estimates of the highly instrumented scenario 

showed a stronger correlation with measured results and had a lower RMSE value than LE 

values estimated using the data limited scenario. The RMSE values for the highly 

instrumented and data limited scenarios were the sixth and seventh lowest of the models 

tested, respectively.  

 

3.2 Variations in Model Performance 

In this section diurnal variations in model performance are analysed (Figure 2a and Table 4). 

Mean theoretical mass transfer LE values were constantly less than mean EC values, with 

greatest differences in the early afternoon when EC LE typically reached its peak (Figure 2a). 

Mean Granger and Hedstrom (2011) LE values were also constantly less than mean EC 

values, with very large differences observed during the middle of the day. Best agreement 

(highest R2 and lowest RMSE) between EC LE measurements and Granger and Hedstrom 

(2011) estimates occurred during night-time (1800-0600) (Table 4). Mean Tanny et al. (2008) 

mass transfer LE results were less than mean EC values during the majority of the day and 

night, with periods of greater modelled LE during the afternoon (Figure 2a and Table 4). 

Mean DYRESM LE values were predominantly greater than mean EC values, with the 

exception of the late morning (0600-1200), when modelled LE tended to be slightly less. The 
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worst relationship between EC LE measurements and DYRESM estimates was observed 

during the late afternoon/early evening (1500-1800) (Figure 2a and Table 4). 

 

Seasonal variations in model performance were also analysed (Figure 2b and Table 5). 

Differences between mean EC LE measurements and theoretical mass transfer LE estimates 

were greatest in summer; however this was most likely because of the greater magnitude of 

LE in summer. The regression equations and R2 values for EC LE measurements against 

theoretical mass transfer estimates were similar in each season (Table 5). In contrast, there 

was a particularly poor agreement between hourly EC LE measurements and Granger and 

Hedstrom (2011) estimates during winter (very low R2 and high RMSE) (Table 5). Tanny et 

al. (2008) LE mass transfer estimates tended to be greater than EC values during winter and 

less than EC values during summer (Figure 2b and Table 5). Mean DYRESM LE values 

calculated using the highly instrumented and data limited scenarios were greater than EC 

measurements in every season except spring, when data limited DYRESM scenario estimates 

tended to be slightly less than measured values. Greatest differences between DYRESM LE 

estimates and measured values occurred in autumn (Figure 2b).  
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Table 4: Summary of regression analysis comparing EC LE measurements with values predicted by the various modelling techniques during 
specific 6-hour time blocks. Note that all p-values for the regression analysis were ≈ 0.00. 

Method   0000 -
0600 

   0600 -
1200 

   1200 -
1800 

   1800 -
0000 

 

 R2 Slope y-
intercept 

RMSE 
(W m-2) 

R2 Slope y-
intercept 

RMSE 
(W m-2) 

R2 Slope y-
intercept 

RMSE 
(W m-2) 

R2 Slope y-
intercept 

RMSE 
(W m-2) 

Theoretical mass 
transfer 

0.80 0.63 13.86 20.35 0.88 0.73 6.72 27.93 0.85 0.80 1.05 33.25 0.81 0.71 10.29 20.87 

Tanny et al. (2008) 
mass transfer 

0.80 0.79 -0.93 21.56 0.85 1.01 -9.43 25.71 0.78 0.99 14.76 35.85 0.76 0.86 1.70 22.60 

Granger and Hedstrom 
(2011) 

0.77 0.70 5.74 22.06 0.69 0.49 -1.78 59.01 0.61 0.51 -6.04 74.47 0.76 0.69 4.69 26.22 

Highly instrumented 
DYRESM scenario 

0.83 1.02 6.04 20.04 0.81 1.12 -12.61 32.05 0.69 1.03 17.09 49.40 0.77 1.03 7.02 25.29 

Data limited 
DYRESM scenario 

0.64 0.96 9.45 30.39 0.72 1.08 -12.27 38.91 0.60 1.03 17.08 58.15 0.74 1.21 -0.05 34.47 

 

Table 5: Summary of regression analysis comparing EC LE measurements with values predicted by the various modelling techniques in each 
season. Note that all p-values for the regression analysis were ≈ 0.00. 

Method   Autumn    Winter    Spring    Summer  
 R2 Slope y-

intercept 
RMSE 
(W m-2) 

R2 Slope y-
intercept 

RMSE 
(W m-2) 

R2 Slope y-
intercept 

RMSE 
(W m-2) 

R2 Slope y-
intercept 

RMSE 
(W m-2) 

Theoretical mass 
transfer 

0.85 0.74 12.45 21.13 0.86 0.80 4.03 16.85 0.90 0.76 5.48 23.70 0.86 0.75 2.10 36.33 

Tanny et al. (2008) 
mass transfer 

0.83 1.11 -4.72 25.74 0.85 1.20 -5.10 22.91 0.86 1.05 -7.90 24.54 0.84 1.02 -19.05 33.42 

Granger and Hedstrom 
(2011) 

0.56 0.43 14.48 42.80 0.06 0.19 17.16 52.85 0.74 0.56 2.77 44.26 0.68 0.50 2.90 65.60 

Highly instrumented 
DYRESM scenario 

0.76 1.13 4.73 35.42 0.83 1.19 -2.52 24.56 0.80 1.08 -0.43 31.50 0.76 1.05 1.01 39.80 

Data limited 
DYRESM scenario 

0.74 1.19 5.44 41.20 0.62 1.00 8.71 32.95 0.69 0.97 2.18 36.56 0.69 1.14 -6.25 52.91 
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3.3 Bulk Transfer Coefficient Analysis 

Plotting EC LE measurements against )( as qqu −ρ and then forcing the regression line 

through the origin gives an approximate constant CE value that is specific to Logan’s Dam of 

2.00 × 10-3 (for a measurement height of 2.4 m). Adjusting this value for a measurement 

height of 10 m gives a CE value of 1.76× 10-3. Typically, turbulent exchanges of LE are 

promoted during unstable conditions (Ts>Ta) and suppressed during stable conditions (Ta>Ts). 

Repeating the analysis above for unstable and stable atmospheric conditions resulted in 

constant CE values (for a measurement height of 10 m) of 2.07 × 10-3 for unstable conditions 

and 1.50 × 10-3 for stable conditions, respectively.  

 

Site-specific CE values can also be estimated empirically using a wind function derived from 

direct measurements of LE, u and )( as qq − , as outlined in Tanny et al (2008). The resulting 

empirical wind function for Logan’s Dam was CE=1.5×10-3+1.6×10-3/u. Figure 3 shows the 

relationship between CE values calculated theoretically and those calculated using the 

empirical wind function. Best agreement between theoretically and empirically derived CE 

values occurred in low wind speeds (in unstable atmospheric conditions), while theoretical CE 

values were underestimated in moderate-high wind speeds (>2 m s-1) (in stable and neutral 

atmospheric conditions) (Figure 3). It is clear that for wind speeds below 3 m s-1, CE tended 

to decrease with increasing u, while for wind speeds above 3 m s-1, CE showed little 

dependence on u. Other studies such as Ikebuchi et al. (1988), Sene et al. (1991) and Tanny et 

al. (2008) have made similar observations.  

 

3.4 Water Surface Temperature Analysis 

As noted earlier one of the key differences between DYRESM and the other models used is 

that water temperature does not need to be specified. However, this means that the model 
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needs to predict Ts accurately to produce reliable LE estimates. Comparisons were made 

between thermistor chain measurements of water temperature at a depth of 0.1 m (T0.1m), Tskin 

estimates from the CNR1 sensor on the floating weather station and DYRESM Ts estimates 

(temperature in uppermost water layer) for the highly instrumented and data limited scenarios 

(Figure 4). The data limited DYRESM scenario tended to overestimate Ts, while results from 

the highly instrumented scenario generally showed a very strong relationship with T0.1m 

measurements. Regression analysis between hourly T0.1m measurements and Ts values 

predicted by the highly instrumented and data limited DYRESM scenarios for the entire 

measurement period, resulted in the following equations; sDYRESMT =1.10 mT 1.0 -2.15, R2=0.97 

with RMSE=0.97 °C and sDYRESMT =1.15 mT 1.0 -2.20, R2=0.96 with RMSE=1.68 °C. Estimates 

of Tskin were substantially lower than T0.1m measurements and DYRESM Ts estimates during 

the majority of the day, particularly at night-time (Figure 4). Best agreement between Tskin 

and T0.1m occurred during the late morning/early afternoon (0900-1500). The regression 

equation for hourly T0.1m measurements against Tskin values for the entire measurement period 

was; mT 1.0 =0.87 skinT + 4.15, R2=0.93 with RMSE=2.11 °C.  

 

4. Discussion 

A strong correlation was found between EC LE measurements and traditional mass transfer 

predictions, this was the result of the very strong relationship between LE and u(es-ea) at 

Logan’s Dam (see McGloin et al., 2014a). Studies at a variety of other water bodies (e.g. 

Sene et al., 1991; Blanken et al., 2000; Blanken et al., 2003; Nordbo et al., 2011) have not 

reported such a strong relationship between LE and u(es-ea). In section 3.3 it was shown that 

theoretically derived CE values were underestimated in moderate to high wind speeds. This 

may explain why theoretical mass transfer underestimation of LE appeared to be greatest in 

the early afternoon when highest wind speeds were frequently observed. A potential 
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explanation for the underestimation of the theoretical CE values in this study is that the 

selection of open-water parameterisations for *u  and mz0  may not have been appropriate. In 

McGloin et al. (2014a) it was found that *u  measurements above Logan’s Dam were similar 

to those measured upwind of the reservoir, suggesting that the primary source of turbulence 

measured above the reservoir was the result of interaction between airflow and land-based 

terrain. Hence, defining representative *u  and mz0  values for small water storages may be 

problematic because of the complex nature of the airflow and wave formations that exist in 

such environments. More research is needed in this area.  

 

The constant CE site specific value found in this study (1.76× 10-3 for a measurement height 

of 10 m) is similar to the site-specific values found in Sacks et al. (1994) and Tanny et al. 

(2008), while it is greater than the values found by Brutsaert (1982) and Rosenberry et al. 

(2007). In section 3.3 it was found that atmospheric stability played an important role in 

determining CE values, where turbulent exchanges of LE were promoted during unstable 

conditions and suppressed during stable conditions. At Logan’s Dam the atmosphere 

immediately above the reservoir tended to be unstable for the majority of the day and night, 

with short periods of stable conditions in the afternoon when strong winds brought warm dry 

air over the reservoir surface (for more detailed analysis on diurnal variations in some of the 

meteorological variables at Logan’s Dam see McJannet et al. (2013b) and McGloin et al. 

(2014b)). This explains why the Tanny et al. (2008) model, which did not account for the 

influence of atmospheric stability, tended to underestimate LE during the morning, evening 

and night, and overestimate LE during the afternoon 

 

An important variable in Granger and Hedstrom’s (2011) model is the difference in 

temperature between the air and water surface.  As already discussed, there is evidence to 



  

26 

 

suggest that unstable conditions promoted turbulent exchanges of LE and that stable 

conditions suppressed exchanges of LE at Logan’s Dam. However, the importance of stability 

on LE at Logan’s Dam does not appear to be as important as results found in Granger and 

Hedstrom (2011). Granger and Hedstrom (2011) found that the relationship between LE and 

Ts-Ta (R
2=0.20) was stronger than the relationship between LE and es-ea (R2=0.11) at their 

field site (small lake in northern Canada). This is not the case at Logan’s Dam where the 

relationship between EC LE and es-ea (R
2=0.33) is substantially stronger than the relationship 

with Ts-Ta (negative regression line slope with R2=0.11).  

 

The Granger and Hedstrom (2011) model may have overestimated the importance of stability 

and underestimated the significance of es-ea when determining LE at Logan’s Dam. This was 

particularly obvious during periods of stable conditions in the early afternoon, when Ts-Ta 

was negative, es-ea was large and positive and the relationship between EC LE measurements 

and Granger and Hedstrom (2011) estimates was worst. Periods of strongly stable conditions 

were most frequent during winter, possibly explaining why the relationship between EC LE 

values and Granger and Hedstrom (2011) estimates was so much worse during winter. 

 

The main reason why LE estimates from the highly instrumented DYRESM scenario showed 

a stronger correlation with measured results than estimates from the data limited scenario was 

due to differences between the over-land and over-water meteorological measurements. 

Over-land measurements of u and ea tended to be slightly less than over-water measurements, 

while over-land measurements of Ta and modelled incident longwave radiation tended to be 

slightly greater. The higher Ta and longwave radiation values resulted in the greater Ts values 

predicted by the data limited scenario. However, the overestimates of Ts were counteracted by 
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the lower u and ea measurements, resulting in the similar magnitude of the LE values 

predicted by the two DYRESM scenarios.  

 

In section 3.4 it was shown that DYRESM surface layer temperature results showed very 

close agreement with T0.1m measurements, but that they were typically greater than Tskin 

estimates. Previous studies have found that a temperature gradient across the molecular 

boundary layer (top few micrometres of water surface) exists at the air-water interface, such 

that Tskin is systematically cooler (typically by a few tenths of a degree) than the water several 

centimetres below (Robinson et al., 1984; Wick et al., 1996; Horrocks et al., 2003). Water 

skin temperature values derived from CNR1 measurements of upwelling long-wave radiation 

are representative of the temperature of the top few micrometres of the water surface (Donlon 

et al., 2002). Therefore, it is generally accepted that water surface-atmosphere exchanges can 

be best described using net radiometer or infrared thermometer measurements of Tskin at the 

air-water interface (Monteith, 1981; Garbe et al., 2007; Minnett et al., 2011), rather than 

using temperature measurements made just below the interface within the water body itself. 

 

If we assume that Tskin values are more representative of the “real” situation at the air-water 

interface than T0.1m measurements, then the reason for the overestimation of DYRESM 

estimates of LE for both scenarios becomes clearer, as an overestimation in Ts by DYRESM 

will also result in an overestimation of LE. The difference in Tskin values and DYRESM Ts 

estimates was particularly evident when the water surface was undergoing substantial cooling 

via low/negative Rn and positive LE and H values. This explains why DYRESM 

overestimated LE at night-time, when LE and H were positive and Rn was negative. Best 

agreement between Tskin values and DYRESM Ts estimates was during the late morning/early 

afternoon, possibly because the strong winds at this time of the day caused mixing of surface 
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waters (Wick et al., 1996). However, DYRESM still overestimated LE during the afternoon. 

This is most likely because, like the Tanny et al. (2008) mass transfer model, DYRESM did 

not account for atmospheric stability. Note that DYRESM estimates of LE would have been 

overestimated by more had the fixed CE value used in DYRESM been the same as the site-

specific value found in this study. 

 

If minor improvements are made to the traditional mass transfer and DYRESM models, such 

as determining representative CE values and obtaining accurate estimates of Tskin, then there is 

the potential to use these parameterisations in numerical weather prediction systems (such as 

WRF) to model the effects small lakes have on regional weather. The results of such a study 

could be important in providing a better understanding of cloud and precipitation processes in 

areas where small lakes and/or water storages are numerous. Results from the data limited 

DYRESM scenario are particularly encouraging for LE estimation in areas where over-water 

observations of meteorological data and surface water temperature are not available. The 

results of studies such as this one could also be used to improve sub-daily estimations of Ts 

(important implications for water quality and ecology) in hydrological models by using 

reservoir size and representative CE values, allowing for more accurate predictions of LE (and 

surface cooling). There is also the potential to use DYRESM to test evaporation reduction 

measures such as monolayers. DYRESM is independent of any measurements made within 

the water body and hence is capable of providing an estimate of what evporation would have 

been if the monolayer was not present, these results could then be compared with direct EC 

measurements to get an estimate of evaporation reduction. 

 

5. Conclusion 
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Comparisons between hourly EC LE measurements and estimates modelled using a variety of 

methods were made at a small reservoir in southeast Queensland, Australia. A year of EC LE 

measurements, over-water meteorological measurements, over-land meteorological 

measurements and water temperature measurements were used in the analysis. Overall, mass 

transfer estimates of LE by the theoretical mass transfer model and the Tanny et al. (2008) 

and Sacks et al. (1994) models showed the best relationship with measured values under a 

range of meteorological conditions. The theoretical mass transfer model showed the strongest 

correlation with measured values, while the Tanny et al. (2008) and Sacks et al. (1994) 

models had regression equation slopes with the closest proximity to 1. Granger and Hedstrom 

(2011) model estimates of LE showed the worst relationship with measured values, 

particularly in stable atmospheric conditions when the model appeared to overestimate the 

impact that stability had on LE. The highly instrumented and data limited DYRESM model 

scenarios performed considerably better than the Granger and Hedstrom (2011) model but 

worse than the traditional mass transfer models. Both the highly instrumented and data 

limited DYRESM scenarios tended to overestimate LE as a result of overestimating Ts. If 

minor improvements are made to the traditional mass transfer and DYRESM models then 

there is the potential to use these parameterisations for many applications, including 

modelling the effects small lakes have on regional weather.  
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Figure 1: Relationship between hourly EC LE measurements and values modelled using a) 

the theoretical mass transfer model and b) the Tanny et al. (2008) mass transfer model. The 

solid lines indicate the regression equations and the dashed lines represent the 1:1 lines. 

 

Figure 2: a) Diurnal and b) seasonal variation in the difference between mean modelled and 

measured LE values. Note that only the best performing method from Table 1 is included (i.e. 

Tanny et al. (2008)). The data presented consists of the difference between mean modelled 

and measured LE values during specific 3-hour time blocks and each season. Mean LE values 

were calculated using hourly measurements/predictions from the entire measurement period 

(note that for fair comparison averages were constructed using data that was restricted to 

periods when hourly LE values from EC and each modelling technique were available). The 

mean EC LE values for each time block/season are also included at the bottom of each figure. 

 

Figure 3: Theoretical CE values against wind speed and values derived using the empirical 

wind function (CE=1.5×10-3+1.6×10-3/u). 

 

Figure 4:  Diurnal variation in mean T0.1m, Tskin and DYRESM estimates of Ts. Averages 

consist of the mean temperature values during 3-hour time blocks and were calculated using 

hourly temperature measurements/predictions from the entire measurement period. 
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Highlights 

 

• Various modelling techniques were used to estimate sub-daily latent heat fluxes. 

• The field site was a small reservoir in southeast Queensland, Australia.  

• The theoretical mass transfer model was the best performing model in this study.  

• The Granger and Hedstrom model performed the worst.  

• Estimates by the DYRESM model tended to be greater than measured values.  

 

 

 

 

 


