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Abstract.  

Beginning with the introduction of Fourier Transform NMR by Ernst and Anderson in 1966, 
time domain measurement of the impulse response (the free induction decay, FID) consisted of 
sampling the signal at a series of discrete intervals. For compatibility with the discrete Fourier 
transform (DFT), the intervals are kept uniform, and the Nyquist theorem dictates the largest value 
of the interval sufficient to avoid aliasing. With the proposal by Jeener of parametric sampling 
along an indirect time dimension, extension to multidimensional experiments employed the same 
sampling techniques used in one dimension, similarly subject to the Nyquist condition and suitable 
for processing via the discrete Fourier transform. The challenges of obtaining high-resolution 
spectral estimates from short data records using the DFT were already well understood, however. 
Despite techniques such as linear prediction extrapolation, the achievable resolution in the indirect 
dimensions is limited by practical constraints on measuring time. The advent of non-Fourier 
methods of spectrum analysis capable of processing nonuniformly sampled data has led to an 
explosion in the development of novel sampling strategies that avoid the limits on resolution and 
measurement time imposed by uniform sampling. The first part of this review discusses the many 
approaches to data sampling in multidimensional NMR, the second part highlights commonly used 
methods for signal processing of such data, and the review concludes with a discussion of other 
approaches to speeding up data acquisition in NMR. 
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1. Data sampling in NMR spectroscopy 

Beginning with the development of Fourier Transform NMR by Richard Ernst and Weston 
Anderson in 1966, the measurement of NMR spectra has principally involved the measurement of 
the free induction decay (FID) following the application of broad-band RF pulses to the sample.1 
The FID is measured at regular intervals, and the spectrum obtained by computing the discrete 
Fourier transform (DFT). The accuracy of the spectrum obtained by this approach depends critically 
on how the data is sampled. In multidimensional NMR experiments, the constraint of uniform 
sampling intervals imposed by the DFT incurs substantial burdens. The advent of non-Fourier 
methods of spectrum analysis that do not require data sampled at uniform intervals has enabled the 
development of a host of nonuniform sampling strategies that circumvent the problems associated 
with uniform sampling. Here, we review the fundamentals of sampling, both uniform and 
nonuniform, in one and multiple dimensions. We then survey nonuniform sampling methods that 
have been applied to multidimensional NMR, and consider prospects for new developments.  

 

1.1. Fundamentals: Sampling in One Dimension 

 Implicit in the definition of the complex discrete Fourier transform (DFT)  

  fn = 1
N

dk
k=0

N−1

∑ e
−2πikn

N

  (1)
 

is the periodicity of the spectrum, which can be seen by setting n to N in eq. (1). Thus the 
component at frequency n/N"t is equivalent to (and indistinguishable from) the components at 
(n/N"t) +/- (m/"t), m= 1, 2, … This periodicity makes it possible to consider the DFT spectrum as 
containing only positive frequencies, with zero frequency at one edge, or containing both positive 
and negative frequencies with zero frequency near (but not exactly at) the middle. The equivalence 
of frequencies in the DFT spectrum that differ by a multiple of 1/"t is a manifestation of the 
Nyquist sampling theorem, which states that in order to unambiguously determine the frequency of 
an oscillating signal from a set of uniformly spaced samples, the sampling interval must be at least 
1/"t. (For additional details of the DFT and its application in NMR, see Hoch and Stern2). 

In eq. (1) the data samples and DFT spectrum are both complex. Implicit in this formulation is 
that two orthogonal components of the signal are sampled at the same time, referred to as 
simultaneous quadrature detection. Most modern NMR spectrometers are capable of simultaneous 
quadrature detection, but early instruments had a single detector, so only a single component of the 
signal could be sampled at a time. With so-called single-phase detection, the sign of the frequency 
is indeterminate. Consequently the carrier frequency must be placed at one edge of the spectral 
region and the data must be sampled at 1/2"t to unambiguously determine the frequencies of signals 
spanning a bandwidth 1/"t.  

The detection of two orthogonal components permits the sign ambiguity to be resolved while 
sampling at a rate of 1/"t. This approach, called phase-sensitive or quadrature detection, enables the 
carrier to be placed at the center of the spectrum. Simultaneous quadrature detection was originally 
and for decades achieved by mixing a detected sinusoidal signal oscillating at a reference frequency 
and the same signal phase shifted by 90° degrees. The output of the phase-sensitive detector is two 
signals, differing in phase by 90°, containing frequency components of the original signal 
oscillating at the sum and difference of the reference frequency with the original frequencies. The 
sum frequencies were then typically filtered out using a low-pass filter. While quadrature detection 
enables the sign of frequencies to be determined unambiguously while sampling at 1/"t, it requires 
just as many data samples as single-phase detection since it samples the signal twice at each 
sampled interval, whereas single-phase detection samples one at each sampled interval. In modern 
spectrometers, simultaneous quadrature is eschewed in favor of very high-frequency single-phase 
sampling. The data are down-sampled, filtered, and processed to emulate the results of 



  

 4

simultaneous quadrature detection: a complex data record with the reference carrier frequency in 
the middle of the spectral range and an interval between samples corresponding to the chosen 
bandwidth (rather than the sampling interval of the very fast analog-to-digital converter). With 
some instruments the processing algorithms employed are considered proprietary and the raw 
primary are not saved, precluding the use of more modern signal processing algorithms or accurate 
correction of potential artifacts. 

Oversampling. The Nyquist theorem places a lower bound on the sampling rate, but what about 
sampling faster? It turns out that sampling faster than the reciprocal of the spectral width, called 
oversampling, can provide some benefits. One is that the oversampling increases the dynamic range, 
the ratio between the largest and smallest signals that can be detected.3,4 Analog-to-digital (A/D) 
converters employed in most NMR spectrometers represent the converted signal with fixed binary 
precision, e.g. 14 or 16 bits. A 16-bit A/D converter can represent signed integers between -32768 
and +32767. Oversampling by a factor of n effectively increases the dynamic range by √n. Another 
benefit of oversampling is that it prevents certain sources of noise that are NOT band-limited to the 
same extent as the systematic (NMR) signals from being aliased into the spectral window. 

How long should one sample? For signals that are stationary, that is their behavior doesn’t 
change with time, the longer you sample the better the sensitivity and accuracy. For normally-
distributed random noise, the signal-to-noise-ratio (SNR) improves with the square root of the 
number of samples. NMR signals are rarely stationary, however, and the signal envelope typically 
decays exponentially in time. For decaying signals, there invariably comes a time when collecting 
additional samples is counter-productive, because the amplitude of the signal has diminished below 
the amplitude of the noise, and additional sampling only serves to reduce SNR. The time 1.3/R2, 
where R2 is the decay rate of the signal, is the point of diminishing returns, beyond which additional 
data collection results in reduced sensitivity5. It makes sense to sample at least this long in order to 
optimize the sensitivity per unit time of an experiment. But limiting sampling to 1.3/R2 results in a 
compromise. That’s because the ability to distinguish signals that have similar frequencies increases 
the longer one samples. Intuitively this makes sense because the longer two signals with different 
frequencies evolve, the less synchronous their oscillations become. Thus resolution, the ability to 
distinguish closely-spaced frequency components, is largely related to the longest evolution time 
sampled. In general, however, determination of the optimal maximum evolution time involves 
tradeoffs that will depend on many factors, including sample characteristics and the nature of the 
experiment being performed. Some of these factors are considered below. 

1.2.Sampling in Multiple Dimensions 

While the FT-NMR experiment of Ernst and Anderson was the seminal development behind all 
of modern NMR spectroscopy, it wasn’t until 1971 that Jean Jeener proposed a strategy for 
parametric sampling of a virtual or indirect time dimension that formed the basis for modern 
multidimensional NMR6, including applications to magnetic resonance imaging (MRI). In the 
simplest realization, an indirect time dimension can be defined as the time between two RF pulses 
applied in an NMR experiment. The FID is recorded subsequent to the second pulse, and because it 
evolves in real time, its evolution is said to occur in the acquisition dimension. A single experiment 
can only be conducted using a given value of the time interval between pulses, but the indirect time 
dimension can be explored by repeating the experiment using different values of the time delay. 
When the values of the time delay are systematically varied using a fixed sampling interval, the 
resulting spectrum as a function of the time interval can be computed using the DFT along the 
columns of the two-dimensional data matrix, with rows corresponding to samples in the acquisition 
dimension and columns the indirect dimension. Generalization of the Jeener principle to an 
arbitrary number of dimensions is straightforward, limited only by the imagination of the 
spectroscopist and the ability of the spin system to maintain coherence over an increasingly lengthy 
sequence of RF pulses and indirect evolution times.  
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Quadrature detection in multiple dimensions. Left ambiguous in the discussion above of 
multidimensional NMR experiments is the problem of frequency sign discrimination in the indirect 
dimensions. Because the indirect dimensions are sampled parametrically, i.e. each indirect 
evolution time is sampled via a separate experiment, the possibility of simultaneous quadrature 
detection is not available. Quadrature detection in the indirect dimension of a two-dimensional 
experiment nonetheless can be accomplished by using two experiments for each indirect evolution 
time to determine two orthogonal responses. This approach was first described by States, Haberkorn, 
and Ruben, and is frequently referred to as the States method7. Alternatively, oversampling could be 
used by sampling at twice the Nyquist frequency while rotating the detector phase through 0°, 90°, 
180°, and 270°, an approach called time-proportional phase incrementation (TPPI)8. A hybrid 
approach is referred to as States-TPPI.9 Processing of States-TPPI sampling is performed using a 
complex DFT, just as for States sampling, while TPPI employs a real DFT. 

Sampling-limited regime. An implication of the Jeener strategy for multidimensional 
experiments is that the length of time required to conduct a multidimensional experiment is directly 
proportional to the total number of indirect time samples (times two for each indirect dimension if 
States or States-TPPI sampling is used). In experiments that permit the spin system to return close 
to equilibrium by waiting on the order of T1 before performing another experiment, sampling along 
the acquisition dimension effectively incurs no time cost. Sampling to the Rovnyak limit10 (1.3/R2, 
or 1.3×T2*) in the indirect dimensions, however, places a substantial burden on data collection, 
even for experiments on proteins with relatively short relaxation times. Thus a three dimensional 
experiment for a 20 kDa protein at 14 Tesla (600 MHz for 1H) exploring 13C and 15N frequencies in 
the indirect dimensions would require 2.6 days in order to sample to 1.3×T2* in both indirect 
dimensions. A comparable four-dimensional experiment with two 13C (aliphatic and carbonyl) and 
one 15N indirect dimensions would require 137 days. As a practical matter, multidimensional NMR 
experiments rarely exceed a week, as superconducting magnets typically require cryogen refill on a 
weekly basis. Thus, multidimensional experiments rarely achieve the full potential resolution 
afforded by superconducting magnets. The problem becomes more acute at very high magnetic 
fields. The time required for data collection in a multidimensional experiment to achieve fixed 
maximum evolution times in the indirect dimensions increases in proportion to the magnetic field 
raised to the power of the number of indirect dimensions. The same four-dimensional protein NMR 
experiment mentioned above but performed at 21.4 T (900 MHz for 1H), sampled to 1.3×T2*, 
would require about 320 days.  

By reducing the sampling requirements, nonuniform sampling (NUS) approaches have made it 
possible to conduct high-resolution 4D experiments that would be impractical using uniform 
sampling. In its most general form, NUS refers to any sampling scheme that does not employ a 
uniform sampling interval. The sampling can occur at completely arbitrary times, however the 
classes of NUS that have been mainly used in multidimensional NMR typically correspond either to 
a subset of the uniformly-spaced samples or to uniform sampling along radial vectors in time. These 
approaches are called on-grid and off-grid NUS, respectively, and are described in greater detail 
below. The most important characteristic of any NUS approach is that it enables sampling to long 
evolution times without requiring the number of samples overall that would be required by uniform 
sampling. 

While there are methods of spectrum analysis capable of super-resolution, that is, methods that 
can achieve resolution greater than 1/tmax, the most common ones, (e.g. linear prediction (LP) 
extrapolation) have substantial drawbacks. LP extrapolation and related parametric methods that 
assume exponential decay of the signal can exhibit subtle frequency bias when the signal decay 
deviates from the ideal11. This bias can have detrimental consequences for applications that require 
the determination of small frequency differences, such as determination of residual dipolar 
couplings (RDCs).  

Sensitivity-limited regime. While the majority of extant applications of NUS in 
multidimensional NMR have focused on achieving high resolution with lower sampling 
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requirements than those posed by uniform sampling, it is possible to utilize NUS to increase 
sensitivity per unit measuring time. This notion has not been without controversy, because the 
nonlinearities inherent in most of the methods of spectrum analysis employed with NUS complicate 
the validation of gains in SNR as true gains in sensitivity.12 A number of investigators have turned 
their attention to this problem, notably Wagner13 and colleagues and Rovnyak and colleagues.14,15 
Theoretical and empirical investigations of the attainable sensitivity improvements with NUS 
indicate that gains on the order of two-fold over uniform sampling for an equivalent time are 
achievable for exponentially decaying signals.5,14 This improvement at no time cost contrasts with 
the four-fold increase in signal averaging that would be required to achieve the same improvement 
in SNR. 

1.3.“DFT” of NUS data and point-spread functions. 

From the definition of the DFT, it is clear that the Fourier sum can be modified by evaluating 
the summand at arbitrary frequencies, rather than at uniformly spaced frequencies. Kozminksi and 
colleagues have proposed this approach for computing frequency spectra of NUS data16, however 
strictly speaking it no longer is properly called a Fourier transformation of the NUS data. Consider 
the special case where the summand in eq. 1 is evaluated for a subset of the normal regularly-
spaced time intervals. An important characteristic of the DFT is the orthogonality of the basis 
functions (the complex exponentials), 

e
−2πi(k−k ')n

N = 0,
n=0

N−1

∑   k ≠ k '    (2) 

 
When the summation is carried out over a subset of the time intervals, that is, some of the values of 
n indicated by the sum in eq. 2 are left out, the complex exponentials are no longer orthogonal. A 
consequence is that frequency components in the signal interfere with one another when the 
sampling is nonuniform (see also section 2.5.1).  

Consider now NUS data sampled at the same subset of uniformly spaced times, but 
supplemented by the value zero for those times from the uniformly-spaced set that are not sampled. 
Clearly the DFT can be applied to this zero-augmented data, but it is not the same as “applying the 
DFT to NUS data”. It is a subtle distinction, but an important one. What is frequently referred to as 
the DFT spectrum of NUS data is not the spectrum of the NUS data, but the spectrum of the zero-
augmented data. The differences between the DFT of the zero-augmented data and the spectrum of 
the signal are mainly the result of the choice of sampled times, and hence are called sampling 
artifacts. While the DFT of zero-augmented data is not the spectrum we seek, it can sometimes be a 
useful approximation if the sampled times are chosen carefully to diminish the sampling artifacts.  

The application of the DFT to NUS data has parallels in the problem of numerical quadrature on 
an irregular mesh, or evaluating an integral on a set of irregularly-spaced points17. The accuracy of 
the integral estimated from discrete samples is typically improved by judicious choice of the sample 
points, or pivots, and by weighting the value of the function being integrated at each of the pivots. 
For pivots (sampling schedules) that can be described analytically, the weights correspond to the 
Jacobian for the transformation between coordinate systems (as for the polar FT, discussed below). 
For sampling schemes that cannot be described analytically, for example those given with a random 
distribution, the Voronoi area (in two dimensions; the Voronoi volume in three dimensions, etc.) 
can be used to estimate the appropriate weights18. The Voronoi area is the area occupied by the set 
of points around each pivot that are closer to that pivot than to any other pivot in the NUS set. 

Under certain conditions the relationship between the DFT of the zero-augmented NUS data and 
the true spectrum has a particularly simple form. If the sampling is restricted to the uniformly-
spaced Nyquist grid (also referred to as the Cartesian sampling grid) and there exists a real-valued 
sampling function with the property that when it multiplies a uniformly sampled data vector, 
element-wise (i.e. the Hadamard product of the data and sampling vectors), resulting in the zero-
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augmented NUS data vector, then the DFT of the zero-augmented NUS data is the convolution of 
the DFT spectrum of the uniformly sampled data with the DFT of the sampling vector. The 
sampling vector, or sampling function, has the value 1 for times that are sampled and zero for times 
that are not sampled. The DFT of the sampling function is variously called the point-spread 
function (PSF), the impulse response, or the sampling spectrum.  

The PSF provides insight into the locations and magnitudes of sampling artifacts that result 
from NUS, and it can have an arbitrary number of dimensions, corresponding to the number of 
dimensions in which NUS is applied. The PSF typically consists of a main central component at 
zero frequency, with smaller non-zero frequency components. Because the PSF enters into the DFT 
of the zero-augmented spectrum through convolution, each non-zero frequency component of the 
PSF will give rise to a sampling artifact for each component in the signal spectrum, with positions 
relative to the signal components that are the same as the relationship of the satellite peaks in the 
PSF. The amplitudes of the sampling artifacts will be proportional to the amplitude of the signal 
component and the relative height of the satellite peaks in the PSF. Thus the largest sampling 
artifacts will arise from the largest-amplitude components of the signal spectrum. The effective 
dynamic range (ratio between the magnitude of the largest and smallest signal component that can 
be unambiguously identified) of the DFT spectrum of the zero-augmented data can be directly 
estimated from the PSF for a sampling scheme as the ratio between the amplitude of the largest 
non-zero frequency component to the amplitude of the zero-frequency component, called the peak-
to-sidelobe ratio (PSR).19 Note, however, that this does not account for interference between 
artifacts produced by signals at different frequencies. 

The simple relationship between the DFT spectrum of zero-augmented NUS data and the DFT 
spectrum of the corresponding uniformly-sampled data holds as long as all the quadrature 
components are sampled for a given set of indirect evolution times. If they are not all sampled, the 
sampling function is complex, and the relationship between the DFT of the NUS data, the DFT of 
the sampling function, and the true spectrum is no longer a simple convolution, but a set of 
convolutions19. 

1.4. Nonuniform sampling: A brief history 

The Accordion. It was recognized soon after the development of multidimensional NMR that 
one way to reduce sampling requirements in multidimensional NMR is to avoid collecting the entire 
Nyquist grid in the indirect time dimensions. The principal challenge to this idea was that methods 
for computing the multidimensional spectrum from nonuniformly sampled data were not widely 
available. In 1981 Bodenhausen and Ernst introduced a means of avoiding the sampling constraints 
associated with uniform parametric sampling of two indirect dimensions of three-dimensional 
experiments, while also avoiding the need to compute a multidimensional spectrum from an 
incomplete data matrix, by coupling the two indirect evolution times20. By incrementing the 
evolution times in concert, sampling occurs along a radial vector in t1-t2, with a slope given by the 
ratio of the increments applied along each dimension. This effectively creates an aggregate 
evolution time t = t1 + α*t2 that is sampled uniformly, and thus the DFT can be applied to determine 
the frequency spectrum. According to the projection - cross-section theorem21, this spectrum is the 
projection of the full t1-t2 spectrum onto a vector with angle α in the f1-f2 plane. Bodenhausen and 
Ernst referred to this as an “accordion” experiment. Although they did not propose reconstruction of 
the full f1-f2 spectrum from multiple projections, they did discuss the use of multiple projections for 
characterizing the corresponding f1-f2 spectrum, and thus the accordion experiment is the precursor 
to more recent radial sampling methods that are discussed below. Because the coupling of evolution 
times effectively combines dimensions, the accordion experiment is an example of a reduced 
dimensionality (RD) experiment (discussed below). 

Random sampling. The 3D accordion experiment has much lower sampling requirements 
because it avoids sampling the Cartesian grid of (t1,t2) values that must be sampled in order to 
utilize the DFT to compute the spectrum along both t1 and t2. A more general approach is to eschew 
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regular sampling altogether. A consequence of this approach is that one cannot utilize the DFT to 
compute the spectrum, so some alternative method capable of utilizing nonuniformly sampled data 
must be employed. In seminal work, Laue and collaborators introduced the use of maximum 
entropy (MaxEnt) reconstruction to compute the frequency spectrum from nonuniformly sampled 
data corresponding to a subset of samples from the Cartesian grid.22 While the combination of non-
uniform sampling and MaxEnt reconstruction provided high-resolution spectra with dramatic 
reductions in experiment time, the approach was not widely adopted, no doubt because neither 
MaxEnt reconstruction nor nonuniform sampling (NUS) was highly intuitive. Nevertheless, a small 
cadre of investigators continued to explore novel NUS schemes in conjunction with MaxEnt 
reconstruction throughout the 1990’s.  

The NUS explosion. Since the turn of the 21st century, there has been a great deal of effort to 
develop novel NUS strategies for multidimensional NMR. The growing interest in NUS is largely 
attributable to the development by Freeman and Kupče of a method employing back-projection 
reconstruction (BPR) to obtain three-dimensional spectra from a series of two-dimensional 
projections, in analogy with computer-aided tomography (CAT).23 Although connections between 
BPR and the approach of Laue et al.22 or RD and other radial sampling methods (e.g. G-Transform 
FT24) were not initially recognized, the connections were later demonstrated by using MaxEnt to 
reconstruct 3D spectra from a series of radially-sampled experiments25. The realization that all these 
fast methods of data collection and spectrum reconstruction belong to a larger class of NUS 
approaches ignited the search for optimal sampling strategies. Two persistent themes have been the 
importance of irregularity or randomness in the choice of sampling times to minimize sampling 
artifacts, and the importance of sampling more frequently when the signal is strong to bolster 
sensitivity. Approaches involving various analytic sampling schemes (triangular, concentric rings, 
spirals), as well as pseudo-random distributions (Poisson gap) have been described. These will be 
considered after first discussing some characteristics of NUS that all these approaches share. 

1.5. General aspects of nonuniform sampling 

On-grid vs. off-grid sampling. NUS schemes are sometimes characterized as on-grid or off-grid. 
Schemes that sample a subset of the evolution times normally sampled using uniform sampling at 
the Nyquist rate (or faster) are called on-grid. In schemes such as radial, spiral or concentric ring, 
the samples do not fall on the same Cartesian grid (see also Fig 6). As pointed out by Bretthorst,26,27 
however, one can define a Cartesian grid with spacing determined by the precision with which 
evolution times are specified. Alternatively, “off grid” sampling schemes can be approximated by 
“aliasing” (this time in the computer graphics sense) the evolution times onto a Nyquist grid, 
without greatly impacting the sampling artifacts.25 

Bandwidth and aliasing. Bretthorst was the first to carefully consider the implications of NUS 
for bandwidth and aliasing27,28. Among the major points Bretthorst raises is that sampling artifacts 
accompanying NUS can be viewed as aliases. Consider the special case of sampling every other 
point of the Nyquist grid. This would effectively reduce the spectral window and result in perfect 
aliases such that a given signal would appear at its true frequency and again at a frequency shifted 
by the effective bandwidth (both with the same amplitude). If the sample points are now distributed 
in a progressively more random distribution, the intensity of the aliased peak is reduced whilst 
lower amplitude artifacts appear at different frequencies, making it possible to distinguish which of 
the two initial signals is the true signal and which is the aliasing artifact.  

Since sampling artifacts are aliases, then they can be diminished by increasing the effective 
bandwidth. One way to do this is to decrease the greatest common divisor (GCD) of the sampled 
times.29 The GCD need not correspond to the spacing of the underlying grid. Introducing 
irregularity is one way to decrease the GCD to the size of the grid, and this helps to explain the 
usefulness of randomness for reducing artifacts from nonuniform sampling schemes.  

Another way to increase the effective bandwidth is to sample from an oversampled grid. We 
discussed earlier that oversampling can benefit uniform sampling approaches by increasing the 
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signal is weak, would similarly improve SNR. They applied an exponential bias to match the decay 
rate of the signal envelope; we refer to this as envelope-matched sampling (EMS). Generalizations 
of the approach to sine-modulated signals, where the signal is small at the beginning, and constant-
time experiments, where the signal envelope does not decay, were described by Schmieder et al.32,33 
In principal EMS can be adapted to finer and finer details of the signal, for example if frequencies 
are know a priori (see beat-matched sampling below).  

Triangular. Somewhat analogous to the rationale behind exponentially-biased sampling, Delsuc 
and colleagues employed triangular sampling in two time dimensions to capture the strongest part 
of a two-dimensional signal34. The approach is easily generalized to arbitrary dimension. 

Radial. Radial sampling results when the incrementation of evolution times is coupled, and is 
the approach employed by GFT24, RD35, and BPR23 methods. When a multidimensional spectrum is 
computed from a set of radial samples (e.g. BPR, radial FT36, MaxEnt), the radial sampling vectors 
are chosen to span orientations from 0° to 90° at regular intervals (0°, 45° and 90° for 3 projections 
etc.). When the multidimensional spectrum is not reconstructed, but instead the individual one-
dimensional spectra (corresponding to projected cross sections through the multidimensional 
spectrum) are analyzed separately, the sampling angles are sometimes determined using a 
knowledge-based approach (HIFI, APSY37,38). Prior knowledge about chemical shift distributions in 
proteins is employed to sequentially select radial vectors to minimize the likelihood of overlap in 
the projected cross-section. 

Concentric rings. Coggins and Zhou introduced the concept of concentric ring sampling (CRS), 
and showed that radial sampling is a special case of CRS36. They showed that the DFT could be 
adapted to CRS (and radial sampling) by changing to polar coordinates from Cartesian coordinates 
(essentially by introducing the Jacobian for the coordinate transformation as the weighting factor). 
Optimized CRS that linearly increases the number of samples in a ring as the radius increases and 
incorporates randomness was shown to provide resolution comparable to uniform sampling for the 
same measurement time, but with fewer sampling artifacts than radial sampling. Coggins and Zhou 
also showed that the discrete polar FT is equivalent to weighted back-projection reconstruction.39 

Beat-matched sampling. The concept of matching the sampling density to the signal envelope, 
in order to sample most frequently when the signal is strong and less frequently when it is weak, 
can be extended to match finer details of the signal. For example, a signal containing two strong 
frequency components will exhibit beats in the time domain signal separated by the reciprocal of 
the frequency difference between the components. As the signal becomes more complex, with more 
frequency components, more beats will occur, corresponding to frequency differences between the 
various components. If one knows a priori the expected frequencies of the signal components, one 
can predict the locations of the beats (and nulls), and tailor the sampling accordingly. The procedure 
is entirely analogous to EMS, except that the sampling density is matched to the fine detail of 
predicted time-domain data, not just the signal envelope. We refer to this approach as beat-matched 
sampling (BMS). Possible applications where the frequencies are known include relaxation 
experiments, and multidimensional experiments in which scout scans or complementary 
experiments provide knowledge of the frequencies. In practice, BMS sampling schedules appear 
similar to EMS (e.g. exponentially biased) schedules, however they tend to be less robust, as small 
difference in noise level or small frequency shifts can have pronounced effects on the locations of 
beats or nulls in the signal40. 

Poisson gap sampling. It has been suggested that the distribution of the gaps in a sampling 
schedule is also important,41,42 which has led to the development of schedules optimized to be 
random yet with a non-Gaussian distributions. In Poisson gap sampling this is achieved by adapting 
an idea employed in computer graphics, where objects are distributed randomly whilst avoiding 
long gaps between objects. Similar distributions can be generated using other approaches, for 
example quasi-random (e.g. Sobolev) sequences43. A particularly useful property of Poisson gap 
sampling schedules is that they show less variation when randomly selecting schedules from the 
Poisson distribution than other sampling schemes. A potential weakness of Poisson gap sampling, 
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however, is that the minimum distance between samples must not be too small, otherwise aliasing 
can become significant. 

Burst sampling. In burst or burst-mode sampling, short high-rate bursts are separated by 
stretches with no sampling. It effectively minimizes the number of large gaps, while ensuring that 
samples are spaced at the minimal spacing when sub-sampling from a grid. Burst sampling has 
found application in commercial spectrum analyzers and communications gear. In contrast to 
Poisson gap sampling, burst sampling ensures that most samples are separated by the grid spacing 
to suppress aliasing29. 

Nonuniform averaging. The concept of biasing the sampling distribution to mirror the expected 
signal envelope (e.g. EMS or BMS) can be applied to uniform sampling by varying the amount of 
signal averaging performed for each sample. This can be useful in contexts where a significant 
number of transients must be averaged to obtain sufficient sensitivity.  An early application of this 
idea to NMR employed uniform sampling with nonuniform averaging, and computed the 
multidimensional DFT spectrum after first normalizing each FID by dividing by the number of 
transients summed at each indirect evolution time44. Although the results of this approach are 
qualitatively reasonable provided that the SNR is not too low, a flaw in the approach is that noise 
will not be properly weighted. A solution is to employ a method where appropriate statistical 
weights can be applied to each FID, e.g. MaxEnt or maximum likelihood reconstruction45. More 
generally, the idea of nonuniform averaging can also be applied to NUS. 

Random phase detection. We’ve seen how NUS artifacts are a manifestation of aliasing, and 
how randomization can mitigate the extent of aliasing. There is another context in which aliasing 
appears in NMR, and that is determining the signs of frequency components (i.e. the direction of 
rotation of the magnetization). As discussed earlier the approach widely used in NMR to resolve 
this ambiguity is to simultaneously detect two orthogonal phases (simultaneous quadrature 
detection). Single-phase detection using uniform sampling with random quadrature phase (random 
phase detection, RPD) is able to resolve the frequency sign ambiguity without oversampling, as 
shown in Fig. 246. This results in a factor of two reduction in the number of samples required, 
compared to quadrature or TPPI detection methods, for each indirect dimension of a 
multidimensional experiment. For experiments not employing quadrature or TPPI detection, it 
provides a factor of two increase in resolution for each dimension. 

 

 
Figure 2. Two-dimensional cross-sections from a four-dimensional N,C-NOESY spectrum, obtained 
from (A) uniformly sampled hypercomplex (States-Haberkorn-Ruben) data, (B) real values only in 
the indirect dimensions, and (C) using random phase detection. One-dimensional cross-sections at 
the frequencies depicted by colored lines crossing the contour plots are depicted at the top. 
Reprinted with permission from Maciejewski et al. (2011).46  

 
Optimal sampling? Any sampling scheme, whether uniform or nonuniform, can be 

characterized by its effective bandwidth, dynamic range, resolution, sensitivity, and number of 
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simultaneously. For example, minimizing the total number of samples (and thus the experiment 
time) invariably increases the magnitudes of sampling artifacts. Furthermore, a sampling scheme 
that is optimal for one signal will not necessarily be optimal for a signal containing frequency 
components with different characteristics. Thus the design of efficient sampling schemes involves 
tradeoffs. Simply put, no single NUS scheme will be best suited for all experiments. However, if a 
particular metric for quantifying the quality of a sampling scheme is defined it is possible to 
optimize a given sampling scheme by random search methods.47,48 Peak-to-sidelobe (PSR) ratio (the 
ratio of the intensity of the zero-frequency to the intensity of the largest non-zero frequency 
component) of the PSF is one useful metric.49 While a high PSR correlates with low amplitude 
sampling artifacts it does not reflect the overall distribution of artifacts.14 Thus the challenge 
remains to define such a metric for spectral quality that would be universally applicable. 

The use of nonuniform sampling in all its guises is transforming the practice of 
multidimensional NMR, most importantly by lifting the sampling-limited barrier to obtaining the 
potential resolution in indirect dimensions afforded by ultra high-field magnets. Nonuniform 
sampling is also beginning to have tremendous impact in magnetic resonance imaging, where even 
small reductions in the time required to collect an image can have tremendous clinical impact. For 
all of the successes using NUS, our understanding of how to design optimal sampling schemes 
remains incomplete. A major limitation is that we lack a comprehensive theory able to predict the 
performance of a given NUS scheme a priori. This in turn is related to the absence of a consensus 
on performance metrics, i.e., measures of spectral quality. Ask any three NMR spectroscopists to 
quantify the quality of a spectrum and you are likely to get three different answers. Further 
advances in NUS will be enabled by the development of robust, shared metrics. An additional 
hurdle has been the absence of a common set of test or reference data, which is necessary for 
critical comparison of competing approaches. Once shared metrics and reference data are 
established, we anticipate rapid additional improvements in the design and application of NUS to 
multidimensional NMR spectroscopy. 

2. Signal processing methods in NMR spectroscopy 

In the first part we discussed how different sampling strategies can lead to vastly different spectral 
representations. But what about the influence of the methods used to process the NUS data? Ever 
since the introduction of FT-NMR in the mid 1960s NMR spectroscopists have been investigating 
methods of accurately and efficiently transforming the measured time series data into a frequency 
spectrum.1 Early efforts were aimed at overcoming some of the shortcomings inherent in the DFT 
and achieving efficient computation and robust application to noisy signals.50 The introduction of 
two-dimensional (2D) NMR in the 1970s introduced a separate problem, as these experiments were 
very time-consuming.51 Research was therefore focused on reducing the number of time samples 
required in 2D experiments, resulting in approaches that could speed up data acquisition by a factor 
of 2-4 (see Hoch et al.52 and references therein). The poor SNR achievable at the time proved a 
severe limitation to further progress. In the 1990s, however, several key advances resulted in a 
dramatic boost in the sensitivity of multidimensional NMR experiments at the same time that 
isotopic labelling of proteins resulted in the design of 3D and 4D experiments with unprecedented 
sensitivity.53,54 These 3D and 4D experiments had some very important properties: (1) They were 
often very sparse, meaning that spectra consisting of tens or hundreds of thousands of data values 
only contained a few hundred up to a few thousand signals; (2) The available sensitivity was in 
many cases much higher than that required to produce an accurate spectral representation. These 
two conditions resulted in a situation where data acquisition was limited by the required resolution 
rather than sensitivity, a reversal of earlier conditions. Thus, since the turn of the millennium there 
has been an explosion of methods attempting to use the improved SNR to produce accurate 
multidimensional spectra of NMR signals.25,55,56 Considering that the number of signal and post-
processing techniques employed in multidimensional NMR has nearly doubled in less than 10 years 
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than one sinusoid. The chorus of spins represented can be resolved into its components by 
converting the time-domain response into a spectral representation, indicating the amount of energy 
contained in the signal as a function of frequency. The use of FT for this conversion is so intimately 
associated with the development of modern pulsed NMR that the technique as a whole is often 
labelled FT-NMR.1 Although the application of the continuous FT to time domain data theoretically 
produces an accurate frequency domain spectrum, its application is impractical. Instead, the 
continuous NMR signal is sampled at discrete time intervals at a fixed rate. The discrete Fourier 
transform (DFT) can be applied to this data to obtain a frequency spectrum. The DFT is, however, 
only an approximation of the continuous FT, and the accuracy of the result depends on how well the 
approximation is satisfied. The two main differences between the FT and the DFT, and hence the 
sources of errors when applying the DFT, are the discrete sampling and the finite data length.52 
Sampling less frequently than mandated by the Nyquist criterion leads to the appearance of signals 
in the spectrum at incorrect frequencies, referred to as aliasing or folding (see also section 1.1).29 
Short data records (i.e. too few samples) leads to poor digital resolution of the frequency domain 
spectrum and can result in baseline distortions. The digital frequency resolution can be increased 
through “zero filling”, which involves adding zeroes to the end of the time domain data. This 
operation invariably results in a discontinuity of the time domain data, which in turn results in the 
appearance of additional unwanted signals in the spectrum, commonly referred to as truncation 
artifacts or sinc wiggles. To resolve this problem one must either collect longer datasets, or multiply 
the FID with a “window” or “apodization” function that smoothly reduces the amplitude of the 
signal near the end of the data record. While this improves digital resolution and reduces truncation 
artifacts, it also results in line broadening.  

This act of balancing sensitivity and resolution provides much of the motivation behind signal 
processing of NMR data. Ultimately the aim is to resolve signals with similar frequencies without 
introducing artifacts that could mask weaker signals. In 1D NMR experiments one can often collect 
a very long data record to improve resolution, but this is not true for multidimensional (nD) NMR 
experiments, because of the parametric manner in which the additional indirect dimensions are 
sampled. As can be appreciated from the above, adding a time point in the indirect dimension of a 
two-dimensional experiment requires the acquisition of an additional one-dimensional dataset. By 
extension, adding another time point to the second indirect dimension of a three-dimensional 
experiment requires the acquisition of another two-dimensional experiment (each 2D plane is a time 
point along the third dimension). Thus, overcoming the inability of the DFT to provide high-
resolution spectra from short data records becomes more burdensome with each added dimension.  

2.2. Accelerating multidimensional NMR experiments 

Multidimensional NMR experiments are essential for resolving individual nuclear resonances for 
complex biomolecules, and are so ubiquitous that any advance in speeding up the traditionally slow 
process of acquiring multidimensional NMR data would impact the whole field. It is therefore not 
surprising that the problem has been attacked by a multitude of novel experimental and 
computational methods. The need for speed in NMR has become even more urgent recently with 
the advent of genetic and biochemical tools that enable high-throughput production of biomolecules 
for structural analysis. In particular, the global effort toward structural genomics has led to new 
technological developments in the past decade.57 

The approaches taken to speed up multidimensional NMR experiments can be broadly 
categorised in two main groups: (i) methods that employ signal processing methods capable of high 
resolution using short or incomplete data records and (ii) methods that employ alternatives to time 
evolution along indirect time dimensions to elicit multidimensional correlations. Those in group (i) 
typically utilize novel post-acquisition processing methods and these will be covered in Sections 
2.3-2.5, whereas those in group (ii) involve more dramatic changes to the pulse sequence and/or the 
hardware and these will be covered in Section 3. Group (i) is where the majority of recent work has 
been done to overcome the time-barrier imposed by the DFT (Figure 4). The signal processing 



  

 15

methods in group (i) can be further categorized according to the sampling regimens that they are 
compatible with. Typically, the least restrictive processing methods are capable of producing 
spectra from any type of data record, and include methods such as MaxEnt reconstruction (red in 
Figure 4). Methods that restrict the sampling method can be further split into those that are 
applicable to traditional uniformly-sampled data, including extrapolation methods such as linear 
prediction (black in Figure 4), and those that are not. The final category of processing methods 
utilise non-uniform sampling but with a deterministic or coherent distribution of samples in the time 
domain (green in Figure 4). Such data can either be directly used to produce a multidimensional 
spectrum, or each component (e.g. radial projection) can be analysed using post-processing methods 
to generate information about the position of the signals in the multidimensional spectrum (the 
latter are underlined in Figure 4). Typically methods in the first two groups sample on a grid 
defined by the Nyquist condition, whilst the deterministic sampling methods sample outside this 
grid (see also Figure 6). In addition, signal processing methods can be characterized as parametric 
(italic in Figure 4) or nonparametric, depending on whether or not they model the signal and 
estimate the spectrum by refining parameters of the model.  

The division according to sampling strategy shown in Figure 4 reveals that methods for 
speeding up data acquisition applicable to uniform Nyquist sampling are frequently (but not always) 
parametric (italic). Conversely those applicable to NUS data are commonly non-parametric. 
Furthermore it can be seen that most methods applicable to radially sampled data are post-
processing methods (underlined).  
 

 
Figure 4. Relationships among different methods used for speeding up NMR data acquisition. 
Processing methods are categorised based on the type of data they are applicable to. The dotted 
line indicates that the methods appropriate for non-deterministic sampling are also applicable to 
the other types of sampling, whereas the converse is not true. Parametric methods are italicised and 
post-processing methods are underlined. 
 

2.3. Uniform (Nyquist) Sampling  

The methods in this section are generally only applicable to conventional uniform or Nyquist 
sampling. These methods can all be considered as extrapolating the time domain NMR signal 
beyond the measured interval. The resulting extended data record can then be zero-filled and 
Fourier transformed to produce high-resolution spectra, or the spectrum can be reconstructed from 
the parameters fitted to the model. The assumption common to most of these methods is that the 
signal d can be described as a sum of exponentially decaying sinusoids: 
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dk = Aje

iφ j( )
j=1

L

∑ e
−k∆t

τ j e2πik∆tω j     (3) 

where L is the number of sinusoids, , ,  and  are the amplitude, phase, decay time, and 
frequency respectively, of the jth sinusoid sampled at a time k∆t, with ∆t the sampling interval 
determined by the Nyquist condition. Signals that decay exponentially have Lorentzian lineshapes. 
Under certain circumstances some of the parameters in eq. 3 may be known a priori, simplifying 
the problem of fitting eq. 3 to measured data. An example is data acquired in constant-time 
experiments, where the signal decay is known (i.e. there is no decay). There is no analytical method 
for fitting the parameters in eq. 3. Most methods rely on matrix approaches to determine best-fit 
values in a least-squares sense. Although there are many different approaches to fitting the 
parameters, the common reliance on the model described by eq. 3 means that the different 
approaches frequently have similar behaviour. A common feature of methods based on eq. 3, which 
does not explicitly account for noise, is that they become unreliable when the data is very noisy or 
the noise is not randomly distributed. 
 
2.3.1. LP and related methods 
Linear prediction (LP) extrapolation extends the measured data by assuming that the signal can be 
described at any time as a linear combination of past values:  

 dk = ajdk− j
j=1

m

∑      (4) 

where a sample (dk) in the time series can be predicted using m past values (dk-j) given a set of aj 
weights. This turns out to be equivalent to modelling the signal as a sum of exponential sinusoids 
58,59. Appropriate choice of the number of coefficients m (referred to as the order) and their values, 
aj (referred to as LP coefficients), is not a trivial matter, in particular since NMR data in addition to 
sinusoids include noise and other imperfections that render eq. 4 only approximate. Functions that 
obey eq. 4 are called autoregressive and include the class of signals described by eq. 3. Importantly, 
the coefficients aj are related to the parameters of eq. 3. Thus, instead of using the LP equations to 
explicitly extrapolate the FID, it is possible to use the LP coefficients to solve for the parameters of 
the corresponding model. The zeroes of the characteristic polynomial formed from the LP 
coefficients yield the frequencies and decay rates.2 By using nonlinear fitting against the measured 
data, the remaining parameters (amplitudes and phases) can be determined. The result is a table of 
peak data, rather than a spectrum. A number of closely related methods (HSVD60, LPSVD61, 
LPQRD62) employ this approach, and have been shown to be especially useful for signals with a 
modest number of resonances. These approaches obviate the need for subsequent analysis 
employing a peak picker (these and other related methods are discussed in detail elsewhere 52,58). 

Using methods such as LPSVD that explicitly compute the parameters of eq. 3, the spectrum 
can be computed from the model. In LP extrapolation, only the weights aj are determined, and the 
FID is explicitly extrapolated beyond the measured interval using eq. 4. The spectrum is obtained 
by conventional FT of the numerically extrapolated FID. This lessens the need to window the data 
so that it has very small values near the end of the measured interval to avoid truncation artifacts, 
and thus also avoids the concomitant line broadening. 

In practice, the value of m is determined by the user, bounded by ½ the available number of data 
samples. The “correct” value is never known a priori, and depends not only on the number of 
expected sinusoids but also on the noise level. Since the coefficients aj are approximate and the 
measured signal contains random noise (which can’t be extrapolated), the prediction error will 
always increase as the length of the predicted interval increases.  Consequently, a conservative and 
common practice is to limit extrapolation to a doubling of the length of the measured data. The 
value of m is chosen to be significantly less than the number of measured samples yet larger than 

A j φ j τ j ω j
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the number of expected signals 63. Values of m smaller than the number of sinusoids leads to bias 
and inaccurate predictions, whereas values of m that are too large can result in false peaks.  

Another use of LP in NMR data processing is backward LP extrapolation, when the initial data 
points have been corrupted or cannot be measured.64 In these cases the corrupt or missing 
information can lead to severe baseline distortion or phase errors. Finally, if the data has a known 
phase (e.g. sinusoidal or cosinusoidal), it is possible to apply “mirror image LP” in which the 
number of “measured” samples is doubled by reflection (with or without sign inversion, depending 
on the phase) resulting in substantially improved numerical stability of the LP extrapolation 64.  
 
2.3.2. Maximum Likelihood and Bayesian Analysis 
While LP methods explicitly assume an autoregressive model for the signal, they implicitly are 
consistent with modelling the signal as a sum of decaying sinusoids. Hybrid parametric LP methods 
generally compute the LP expansion coefficients as a first step, and then use these to compute the 
model parameters (amplitudes, phases, frequencies, decay rates). Maximum likelihood and 
Bayesian methods take a more direct approach to computing the model parameters. Also, the need 
for a priori estimation of the number of signals with LP methods makes them poorly suited for 
unsupervised processing. The approach taken by the maximum likelihood method (MLM) 26,45,65,66 
and Bayesian analysis (BA) 26,67 is to determine the number of sinusoids in the model using 
statistical methods. Broadly speaking, by assuming that NMR signals follow the form of eq. 3 they 
attempt to find a set of parameters that define a model that when subtracted from the experimental 
data leaves only random noise. MLM and BA differ mainly in the criterion used to determine the 
best model. In MLM the aim is to maximize the likelihood that the signal was generated by a 
system with the parameters given by the model. In BA, the posterior probability that the model is 
correct, which includes the likelihood as well as a priori probability, is maximized. Depending on 
the nature of the assumed prior probability distribution, the results of MLM and BA can be quite 
similar, if not identical. We refer the reader to the work of Bretthorst26 for detailed derivations of 
the two approaches. However, a broad overview of MLM helps to illuminate the differences 
between LP methods and MLM or BA. 

In the MLM implementation described by Chylla and Markley45, the measured data is zero-
filled (and possibly augmented with zeroes to replace missing samples from the Nyquist grid) and 
subjected to FT. In the frequency domain a peak picker identifies the signal having the maximum 
amplitude, and the parameters describing this signal (amplitude, phase, frequency, and decay rate) 
are determined by least-squares. The model described by eq. 1 is then populated with a single 
sinusoid with the determined parameters, and the time-domain signal corresponding to the model is 
subtracted from the measured data. The residual is then subjected to FT, and the peak picker again 
finds the largest magnitude signal and its parameters are estimated. Another sinusoid with the 
parameters for this signal is added to the model, and the time-domain signal for the new model is 
subtracted from the zero-filled/augmented data. This procedure is repeated until the residual is 
indistinguishable from noise. A number of statistical tests have been employed as stopping criteria 
(for determining the number of sinusoids in the model), including the Akaike Information Criterion 
(AIC) and minimum description length (MDL).45 
 
2.3.3. Filter Diagonalization Method  
Another method used in NMR data processing capable of super-resolution is the filter 
diagonalization method (FDM), which was first introduced to NMR by Mandelstahm and Taylor.68 
The FDM method was initially applied to quantum dynamics, where the problem of solving eq. 3 is 
also of interest. The basic idea behind FDM is to recast eq. 3 into a problem of diagonalizing small 
matrices. The filtering refers to breaking up the spectrum into small pieces to reduce the 
computational burden; the algorithm constructs a matrix where the off-diagonal elements represent 
the interference between resonances. Diagonalizing this matrix allows one to extract the parameters 
of eq. 3. We refer the reader to the review by Mandelshtam for details.69 One of the advantages of 
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FDM is that all the available data in a multidimensional experiment is used to derive the parameters 
in eq. 3. For example, if a 2D spectrum has N data points in the direct dimension and M points in 
the indirect dimension, N × M points are used to solve the linear equations of FDM (generating a 
N × N matrix). As long as N × M is large enough, accurate spectral estimates and parameters can be 
obtained. In theory a value of M = 2 should be enough to derive an accurate 2D spectrum having k 
signals, so long as N × M is larger than 3k. Unfortunately, this is only true for data of very high SNR 
and where the frequencies of signal components are not overlapped. The resolving power of FDM 
is very sensitive to both noise and overlap and much of the current development of FDM is focused 
on improving the stability of the method for noisy data and in finding efficient methods for 
removing spurious peaks. Like other parametric methods, the output of FDM is a list of the 
parameters describing the spectrum, rather than a spectrum. The spectrum can be generated as in 
BA by using the output parameter values to construct an FID which is then subjected to DFT. 
Alternatively, the closely-related regularized resolvent transform (RRT) can be used, which, using 
the principles of FDM, performs a transform resulting in a frequency domain spectrum.69 In 
situations where the assumptions of the method (shared by FDM and RRT alike) are not realized 
the resulting parameters or the spectral estimate can include spurious peaks or baseline distortions. 
This method has not achieved wide penetration, but is finding interesting applications to sampling-
limited experiments such as diffusion-ordered spectroscopy (DOSY)70, and holds considerable 
promise. 
 

2.4. Radially Sampled Data  

The utility of radial sampling derives from the projection - cross-section theorem 71, which 
states that Fourier transformation of data collected along a radial time vector with a given angle in 
the t1-t2 plane is equivalent to the projection of the 2D spectrum onto a frequency-domain vector 
with the same angle. Most spectroscopists are familiar with looking at orthogonal projections of 
multidimensional experiments (onto a frequency axis) to assess spectral quality, since these 
projections are equivalent to simply running a 2D experiment without incrementing the missing 
(orthogonal) dimension. 
2.4.1. Reduced Dimensionality 

The first RD experiment was the accordion experiment introduced by Bodenhausen and Ernst in 
1981.20,72 In this approach a 3D experiment was reduced to two dimensions by coupling the 
evolution of the two indirect dimensions. In the original accordion experiment one indirect 
dimension represented chemical shift evolution while the second indirect dimension encoded a 
mixing time designed to measure chemical exchange. Although this experiment established the 
foundation for all future RD experiments, most of which deal exclusively with chemical shift 
evolution, its utility for measuring relaxation rates and other applications is still being 
developed.73,74 Even though it was clear from the initial description of the accordion experiment 
that the method was applicable to any 3D experiment, it was nearly a decade before it was applied 
to an experiment where both indirect dimensions represented chemical shifts.35,75 This application 
emerged as a consequence of newly-developed methods for isotopic labelling of proteins that 
enabled multinuclear, multidimensional experiments, with reasonable sensitivity, for sequential 
resonance assignment and structure determination of proteins. The acquisition of two coupled 
frequency dimensions, however, introduces some difficulties. The main problem is that the two 
dimensions are mixed and must somehow be deconvoluted before any useful information can be 
extracted.  

Since the joint evolution linearly combines the two dimensions, the corresponding frequencies 
are also linearly “mixed”. The number of resonances observed in the lower dimensionality spectrum 
depends on the number of linked dimensions. Thus, if two dimensions are linked, the RD spectrum 
will contain two peaks per resonance of the higher dimensionality spectrum, whereas if three 
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object. The accuracy of the reconstruction improves as the number of projections is increased. An 
important connection is that filtered BPR (fBPR) has been shown to be equivalent to radial FT.78 In 
fBPR a ramp function (an apodization function ranging from 0!1 from the beginning of the FID to 
the end) is applied to each projection prior to adding it to the higher dimensional spectrum. The 
fBPR procedure drastically reduces the weight of the high SNR portion of the FID (the beginning 
where the filter values are low). This helps because the data at short evolution times is greatly 
oversampled if a very large number of projections are accumulated (this in itself can lead to 
excessive line-broadening if fBPR is not applied). The method has the advantage that the chemical 
shifts no longer need to be deconvoluted but can instead be directly extracted from the 
reconstructed spectrum. The major disadvantage is that as the spectral complexity and dynamic 
range increase, small features may be masked by strong ridges from projections of other peaks or by 
accidental intersections that cause false peaks to appear. Several methods have been developed to 
ameliorate the problems associated with these artifacts . These all attempt to remove the sampling 
related “ridge” artifacts in the BPR spectrum, and include the simple lowest value algorithm and the 
CLEAN algorithm.79 Each has strengths and weaknesses, but there is currently no consensus on the 
best approach to post-processing of BPR spectra. 
 
2.4.4. Post-Processing of Projections 
RD, GFT and BPR stimulated interest in fast acquisition techniques in multidimensional NMR and 
established the experimental framework for many other approaches to processing such data. The 
rising interest was in part due to the impressive results that were demonstrated, but another factor is 
that the analogy to computer-aided tomography (made explicit by BPR) provided a clear heuristic 
framework for understanding precisely how NUS works. Another factor was the increased demand 
for efficient NMR data collection imposed by structural genomics initiatives and by the advent of 
ultra-high magnetic fields (where the sampling problem is exacerbated by the shorter sampling 
interval imposed by greater shift dispersion). Thus, soon after the initial findings of Szyperski, 
Kupče, Freeman and colleagues were reported, a number of new methodologies were proposed for 
enhancing coupled-evolution approaches. 
PRODECOMP: The PRODECOMP (projection decomposition) method was introduced as a 
method for analysing GFT-type spectra, but instead of using least squares to extract the correct 
chemical shifts from the chemical shift multiplets, PRODECOMP employs multiway-
decomposition (MDD, described in Section 2.5.7) to disentangle the projected spectra into separate 
resonances 80.  
APSY: APSY (automated projection spectroscopy)38 is a method used to directly analyse projection 
data, rather than reconstruct the full dimensionality spectrum. APSY uses the information from the 
projection angle to interpret the peak information in the projected spectrum. Datasets for a number 
of projection angles are acquired and the projected spectra are analysed to generate a peak list for 
each projection angle. Since the projection angles are known, the true peak frequency can be 
determined in the higher dimensionality spectrum. Thus, even though the peak position will change 
in each projection spectrum the calculated true frequencies can show that the peak represents the 
same position in the “full” spectrum. The algorithm then calculates how many intersections are 
present in the spectrum (see also Figure 5 for illustration of an intersection), by comparing the peak 
position in the various projections after translation to the higher dimensional object. It then ranks 
the number of intersections (which are multidimensional peak candidates) and removes the peak 
with the highest rank (most intersections), removing with it all of the contributing peaks from the 
lower dimensional projections (i.e. from the peak lists). This has two effects, one of which is the 
desired effect of eliminating artifacts by removing any artifactual peaks that are coincident with the 
position of a real peak to produce accidental intersections. Conversely, the procedure may also 
remove support for a real peak if it is truly overlapped in several dimensions. The procedure is 
repeated, removing a real peak at each iteration, until the number of intersections at the remaining 
highest ranked peak candidate falls below a user defined threshold. The list of peaks that have been 
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Figure 7. Comparison of spectra obtained with uniform sampling (A and B) and nonuniform 
sampling (C and D). In C the spectrum was computed using maximum entropy reconstruction, 
using the same number of samples employed in B. In D the spectrum was computed using nuDFT 
(FT in which samples not collected are set to zero). Reproduced from Hoch et al.49 with permission 
from the PCCP Owner Societies.  
 

2.5.2. Lagrange Interpolation  

A completely different approach to spectral estimation for nonuniformly sampled data is to attempt 
to approximate what the data would have looked like if it had been sampled uniformly, using the 
information obtained from a set of nonuniformly sampled data; the DFT can then be applied to the 
modified dataset. One way to do this is to fit a continuous function to the nonuniformly sampled 
data, then interpolate using this function to estimate the data values at uniform intervals. Marion 
and colleagues83 described the use of Lagrange interpolation to perform this re-sampling onto a 
regular grid. In contrast to LP, where the data is extrapolated beyond the measured interval, only 
short stretches of data must be reconstructed and the errors therefore do not propagate in the same 
way they do in LP extrapolation. Another feature of the method is that since the Nyquist grid can be 
defined post-acquisition one can avoid some of the problems of aliasing when spectral windows are 
set inappropriately.  
2.5.3. Multidimensional FT 
More recently, a method called multidimensional FT (MFT)16 was proposed which involves 
computation of Fourier-like sums on an arbitrary mesh, possibly including weights. When applied 
to NUS data corresponding to a subset of uniformly sampled data, the sums can be evaluated using 
the FFT (with elements not sampled set to zero); otherwise the sums are computed by brute-force 
summation.  Unfortunately the name is something of a misnomer, as it is not truly a Fourier 
transformation of NUS data. Whether the time domain samples are selected from a uniform grid or 
are collected off-grid, the orthogonality condition that applies to the Fourier basis on a complete, 
uniform grid is not satisfied, and so the NUS artifacts that result can be viewed as interference 
between frequency components. When NUS is restricted to a uniform grid, the artifacts correspond 
to convolution of the FT of the sampling function (possibly including weights) with the uniformly-
sampled FT spectrum. Because no attempt is made to deconvolve the sampling artifacts, this 
approach works best when the NUS scheme is carefully constructed to minimize the artifacts. 

MFT contrasts with regular DFT processing where the FT sums are evaluated one dimension at 
a time. The method was initially proposed for processing of projection data and shown to be 
equivalent to the inverse Radon Transform. However, the method is more general than this and its 
real strength is that it allows for a small spectral window to be reconstructed in cases where a very 
large spectral window has been acquired. As was discovered for Lagrange interpolation, and 
explained more generally by Bretthorst84, the effect of increasing the spectral window (i.e. reducing 
the distance between sample points) when sampling non-uniformly is to push sampling-related 
artifacts to very high frequencies. For multidimensional data the very large spectral windows would 
eventually produce very large datasets if high digital resolution were to be maintained. MFT would 
therefore aid in accessing only regions of interest with high resolution. The method relies heavily 
on the assumption that the sampling related artifacts are reduced to such an extent as to not interfere 
with the signal components, and can therefore be ignored. On the other hand, sampling at time 
points other than those stipulated by the Nyquist condition invariably results in oversampling (e.g. 
see Figure 7 of Mobli & Hoch30). For time equivalent sampling from an exponentially decaying 
distribution, oversampling in turn leads to line broadening and then one must assume that limited 
signal overlap is present in the higher dimensional object being reconstructed. 
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2.5.4. CLEAN  
In contrast to the DFT of nonuniformly sampled data, there are a number of methods that attempt to 
deconvolve the sampling spectrum to arrive at a more accurate spectral estimate. One such method, 
known as CLEAN, takes a heuristic, iterative approach to deconvolving the PSF from the spectral 
estimate.79,82 The algorithm begins by identifying the largest peak in the spectrum and attempts to 
deconvolve all artifacts associated with that peak. It does this by: (i) fitting the peak to some 
function (generally a Lorentzian line shape); (ii) creating a mock FID containing only the modelled 
peak but having the same spectral properties as the original spectrum (e.g. spectral window etc); 
(iii) discarding the points in the FID that do not exist in the sampling schedule; (iv) applying the 
Fourier transform; and (v) subtracting the resulting spectrum from the experimental spectrum.  
Following this procedure the peak and its associated artifacts are identified and removed, and the 
operation is repeated until a pre-determined threshold is reached (note the similarity to the 
procedures used in APSY and MLM). The major problem with this approach is that each peak must 
be accurately identified, modelled and removed from the data individually; errors in this process 
can propagate reconstruction artifacts. The algorithm requires a user-defined threshold for 
determining the level at which remaining peaks are not significant. Extensions to the heuristic ideas 
underlying CLEAN have led to improvements in the ability to suppress NUS artifacts85 (Figure 8), 
but the ad hoc nature of the approach remains an obstacle to deeper understanding of why the 
method works, what the possible failure modes are, or how to improve on the method. The SCRUB 
method used in the right-most panel of Fig. 8 differs from the original iterative subtractive CLEAN 
algorithm by grouping peaks and keeping track of the location of signal peaks from prior iterations, 
enabling the threshold to achieve lower values closer to the intrinsic noise level.85 

 
Figure 8. Comparison of DFT, CLEAN, and CLEAN with SCRUB post-processing applied to NUS 
data. Reprinted with permission from Coggins et al. (2012).85 
 
2.5.5. Maximum Entropy Reconstruction 
Maximum entropy reconstruction (MaxEnt) was first introduced to NMR signal processing in the 
early 1980s.86 MaxEnt reconstruction treats signal processing as an inverse problem. Starting with a 
trial frequency spectrum, a mock data set is generated via the inverse FT; the resulting time series is 
then compared to the empirically measured data. The trial spectrum is iteratively improved by 
applying constraints in both the frequency and time domains. In the frequency domain the 
constraint is to maximize the entropy, a measure of the absence of information (details of the 
entropy functional and the iterative algorithm are given in 2,87). In the time domain the mock data is 
constrained to minimize the difference from the experimental data.  The level of agreement between 
the mock FID and the measured data is generally determined by the user, but to avoid over-fitting it 
should be comparable to the noise level in the measured data. Following this principle the selection 
of reconstruction parameters can be made automatically, based on the noise level and trial 
reconstructions.88,89  

Since the algorithm works in an inverse manner, sampling the FID is uncoupled from the mock 
FID, and computation of the level of agreement can be restricted to sample times in common 
between the experimental and mock FIDs. Thus MaxEnt readily supports essentially arbitrary 
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nonuniform sampling, provided that the samples fall on the Nyquist grid corresponding to the mock 
FID. Another important consequence of the inverse nature of the algorithm is that one can use it to 
perform deconvolution in a very stable manner. In contrast to linear methods where the FID is 
divided by a convolution kernel, using MaxEnt one multiplies the mock FID by the kernel prior to 
comparison with the experimental FID, thus avoiding divide-by-zero instabilities or noise 
amplification. This approach can be used to deconvolve unwanted J modulation (to achieve virtual 
decoupling) or signal decay (to achieve line narrowing).87,90 

The reduction in sampling artifacts by MaxEnt (see Figure 7) is in part due to the nonlinearity of 
the entropy functional. This nonlinearity is not without disadvantages. While the nonlinearity can be 
minimized by appropriate choice of reconstruction parameters or compensated by calibration91,92, 
the nonlinearity means that MaxEnt should only be applied to the last dimension to be sequentially 
processed in a multidimensional dataset, so as not to compound nonlinearities. Thus, in order to 
process two indirect dimensions (for example in a 3D experiment) using MaxEnt, the algorithm 
should be applied to both dimensions simultaneously. In principle MaxEnt can be applied to data 
with arbitrary dimensionality, but so far the largest number of dimensions that have been 
simultaneously reconstructed using MaxEnt is three (the three indirect dimensions of a 4D 
spectrum).93 Though not insignificant, the computational demands of MaxEnt are easily amenable 
to parallelization, for example using a loosely-coupled cluster. MaxEnt reconstruction in one or two 
dimensions simultaneously can be readily performed using a laptop computer. 
 
2.5.6. Forward maximum entropy and maximum entropy interpolation. 
MaxEnt reconstruction is a nonlinear method, and the nature and extent of the nonlinearity depends 
on the data. This presents challenges for quantitative applications, for example quantifying nuclear 
Overhauser effects or relaxation rates. One approach is to generate a calibration curve by adding 
synthetic signals spanning a range of amplitudes to the experimental data. Alternatively, the 
parameters controlling MaxEnt reconstruction can be adjusted to minimize the nonlinearity. 
Constraining the inverse DFT in the MaxEnt reconstruction to more tightly match the measured 
data reduces the nonlinearity. Hyberts and Wagner proposed taking this approach to its logical 
extreme for NUS data, devising an algorithm called Forward Maximum Entropy (FM) that uses the 
entropy to regularize the reconstruction so that the inverse DFT exactly matches the measured data 
for those samples collected.91 In essence the entropy is used only to determine the values of 
“missing” data not sampled by the NUS scheme. The results are highly linear, and suitable for 
quantitative applications. The power of FM is readily apparent from Fig. 9, which compares two-
dimensional cross sections from 3D HNCO spectra using 1250 samples in the indirect dimensions 
sampled uniformly and processed using the DFT (left), and sampled nonuniformly and processed 
using FM (right).94 

 
Figure 9. Comparison of a spectrum obtained using uniform sampling and conventional DFT 
processing (left) with a spectrum obtained using the same number of samples in the indirect 
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dimension (the same experiment time) using NUS and FM processing (right). Adapted from Fig. 1 
of Hyberts et al. (2014)94. Reprinted with permission. 
 

Because no constraint is used to enforce agreement between the inverse DFT of the FM 
spectrum with the measured data, orthogonality of the gradients for the entropy and the constraint 
cannot be used as a convergence criterion. Instead convergence is assumed when the step size 
becomes sufficiently small. As with many fixed-point methods (see IST, below), this can result in 
false convergence, if the step size becomes too small before the optimum is reached. Polenova and 
colleagues devised a similar strategy, maximum entropy interpolation (MINT)15, that employs 
conventional MaxEnt codes while setting the constraint parameter to a small value, much smaller 
than the estimated noise. Similar to FM, MINT yields highly linear spectra from NUS data, suitable 
for quantitative analysis, but takes advantage of highly efficient and robust MaxEnt code, ensuring 
both uniqueness of the solution and convergence.  
 
2.5.7. Iterative Thresholding, Minimum l1-norm, and Compressed Sensing. 
MaxEnt reconstruction uses a regularization functional – the entropy – to produce smooth spectral 
estimates with minimal artifacts. A number of different approaches to spectrum estimation that on 
the surface appear quite dissimilar have in common a reliance (either implicit or explicit) on a 
regularization functional that shares some of the properties of the entropy. The functional these 
approaches have in common is the l1-norm, or the sum of the absolute magnitudes of the elements 
of the spectrum. Regularizing spectral estimates by minimizing the l1-norm (note the sign difference 
from the entropy) is a characteristic of a class of fixed-point methods that use iterative thresholding, 
first applied to image processing problems95, in which spectral (image) values below a threshold are 
set to zero (hard thresholding) or scaled down (soft thresholding). Though the connection to the l1-
norm is not obvious, it was shown that iterative soft thresholding with replacement minimizes the 
l1-norm.96 More explicit uses of l1-minimization have become popular due to a remarkable theorem 
due to Logan97 that states that the spectrum of a signal can be perfectly recovered from an 
incomplete and noisy set of samples - provided that the signal is bandlimited, the noise is below 
some threshold, and the spectrum to be recovered is sparse (i.e has few nonzero elements) - by 
minimizing the l1-norm.  

The concept behind iterative thresholding methods, which have a rich history in the field of 
image processing95,98, is simple: starting with time domain data (which falls on a Nyquist grid), set 
the values for points not sampled to zero, then compute the DFT. In the frequency domain, choose a 
threshold that is below the value of the largest peak in the resulting trial spectrum, and scale down 
(iterative soft thresholding, or IST) values above the threshold by subtracting the threshold from 
their values, or set to zero99 all spectral values below this threshold (hard thresholding). Then 
compute the inverse DFT of the thresholded spectral estimate. These methods are called fixed-point 
methods because in general the same operation is repeatedly applied to the data until the changes 
become small, lowering the value of the threshold with each iteration. While iterative thresholding 
methods mainly have been developed ad hoc, formal results are possible for soft (but not hard) 
thresholding: the fixed point of soft thresholding minimizes the l1-norm of the spectrum100. IST is 
thus closely related to the compressed sensing approach (which explicitly seeks to minimize the l1-
norm) recently applied in magnetic resonance imaging and subsequently to NMR.47,101,102 A 
problem frequently encountered with fixed-point methods is that the step size with each iteration 
can become vanishingly small before the result has minimal l1-norm.96 The choice of thresholding 
schedule can impact the convergence rate, for good or ill. Although utilitarian rules-of-thumb have 
been offered94, there appears to be little evidence to support the existence of an optimal or universal 
thresholding schedule. 

A more fundamental question posed by compressed sensing and IST is whether the l1-norm 
functional is well-suited for regularizing NMR spectra. The assumptions attending Logan’s 
Theorem are that the signal is band-limited, sparse, and contains bounded noise. Lorentzian 
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lineshapes, however, are not band-limited: their tails extend to infinite frequency (or wrap around in 
the case of the DFT). Furthermore, in contrast to MRI, where signals are typically confined to a 
single voxel in the image, NMR signals usually span multiple frequency values. Thus NMR spectra 
may not fully satisfy the requirements for robust recovery from sparse data. Anecdotal evidence that 
calls the suitability of the l1-norm into question is shown in Fig. 11.96 The top panel (A) show a one-
dimensional spectrum computed using l1-norm minimization, the bottom panel (B) shows the 
spectrum computed from the same data using MaxEnt reconstruction. Both are constrained to match 
the input time-domain data, with the same level of agreement. The peaks highlighted by the red 
oval correspond to a single synthetic exponentially-decaying sinusoid added to the experimental 
data. MaxEnt reconstruction correctly returns a single peak, while the l1-norm spectrum yields 
artifactual splitting of the single Lorenztian. It has been suggested that this is a result of IST-based 
methods not being suitable for extrapolation of the signal, i.e. where the time-domain data 
corresponding to the reconstructed spectrum contains data beyond the last experimentally-sampled 
data point.103 This further restricts the design of sampling schedules where low sampling density at 
long evolution times may result in such instabilities.103 Other features of IST (l1-norm) spectra that 
remain unexplained include non-Gaussian noise distributions, which are for example readily 
apparent in Fig. 11.94 Similar non-Gaussian noise distributions can arise with MaxEnt 
reconstruction when the parameter def is too small.2 Fundamentally the differences between IST 
and MaxEnt spectra are a manifestation of nonlinearities inherent in these non-Fourier methods, 
which can depend not only on the methods themselves but also the nature of the signals to which 
they are applied. While this remains an active area of research, it is bears emphasizing that error 
analysis is important when utilizing non-Fourier methods of spectrum analysis. 

 
Figure 10. Spectra computed from uniformly sampled data using IST (A) and MaxEnt (B). A 

single exponentially decaying sinusoid was added to the experimental time-domain data, with a 
frequency indicated by the red oval. Reprinted with permission from Fig. 3D in Stern et al.96. 

 

 
Figure 11. IST spectral reconstruction from NUS data illustrating the non-Gaussian (spiky) 

noise distribution. Adapted from Fig. 3 of Hyberts et al. (2014)94. Reprinted with permission. 
 
 
2.5.8. Spectroscopy by Integration of Frequency and Time information. 
A predecessor to IST was a class of iterative hard thresholding algorithms devised for image 
processing by Papoulis98, Jansson104,105, van Cittert95, and others. The basic idea is to iteratively 

A

B
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update an image (or spectral estimate) by suppressing information in “black” regions of the image 
(or blank regions of the spectrum) while replacing values in the conjugate Fourier domain with 
empirical data. Herzfeld and colleagues applied this idea to spectrum analysis by iteratively 
thresholding parts of the spectrum that are believed to be “blank”.106 While the results can be 
dramatic, the use of hard limits to the thresholded region makes it difficult to derive formal results 
that would elucidate the nature of the solution. As with other fixed-point methods, detecting 
premature convergence can be problematic. Because Lorentzian peaks are not bounded, “leakage” 
into the thresholded regions is a potential source of artifacts or bias. 
 
2.5.9. MDD 
Multi-dimensional decomposition (MDD) was introduced to NMR as three-way decomposition and 
has also been referred to as multi-way decomposition.56 MDD is related to methods such as 
factorial analysis, principal component analysis (PCA) and singular value decomposition (SVD). 
The aim is to find a set of one-dimensional vectors that best describe the experimental data (Eq. 5). 
The assumption is that the multidimensional signal (in either the time or frequency domain) can be 
described as a sum of the vector outer products of independent one-dimensional “shapes”, e.g. for 
three dimensions: 

 Si, j,k = AmF1i
m ⊗ F2 j

m ⊗ F3k
m + ei, j,k

m=1

R

∑   (5) 

Here S is the measured signal at coordinates (i, j, k), e is the noise component at those coordinates, 
and A is a diagonal matrix containing the intensity of each signal component. F1-F3 are the 
normalized one-dimensional vectors describing each component (often referred to as shapes) along 
each of three dimensions, but the method can be extended to any dimensionality greater than 2. The 
vectors may be either in the time or frequency domain or a mixture (i.e. the decomposition can be 
applied to a mixed time-frequency data, e.g. an interferogram). From the above it should therefore 
be possible to describe the data using R!(i+j+k–2) values (the sum of the lengths of the three one-
dimensional vectors, less 2 because one value belongs to all thee vectors) and, so long as the size of 
the measured dataset is much larger than this value, the data is over-determined and can therefore 
be solved using a least squares approach. In practice the number of expected signals, R, is a user-
defined parameter, which in essence sets the noise threshold. Furthermore, a parameter λ is defined 
that penalizes large amplitude components, ensuring that large amplitude components that cancel 
out are not kept. The results are not very sensitive to the value of R, so long as it is set to a value 
slightly larger than the expected number of peaks. Regularization via λ is important in cases where 
the data suffers from low SNR or in strongly overlapped regions 107. A feature of this method is that 
even if some values of S are unknown, but sufficient information is available, the vectors F1-F3 can 
still be calculated. These components will be complete and can be used to reconstruct a complete 
dataset. The method can therefore be applied to NUS data. There is, however, an inherent limitation 
on the amount of data that can be omitted before the least squares problem becomes intractable. To 
improve on this limitation, the algorithm has recently been extended to assume that the time domain 
signal has autoregressive properties, i.e. to assume Lorentzian lineshapes.108 Removing a variable 
reduces the number of unknowns, allowing for larger portions of the data to be omitted, but as 
always this is only true if the assumption is correct (see also Section 2.3). This new implementation 
of the method is referred to as recursive MDD (rMDD).109 
 
2.5.10. Covariance NMR  
Covariance NMR was introduced as alternative to spectral analysis (e.g. FT) for identifying 
coherences in the indirect dimension of 2D NMR experiments.110 It has subsequently been 
expanded as a general approach for correlating any experiments that have certain symmetry 
properties.110 The method in its simplest form uses the fact that processing of 2D spectra involves 
FT of one dimension, which produces a set of 1D datasets all in the frequency dimension along the 
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first dimension but representing different time points along the second dimension. The modulation 
of each signal is dependent on its correlated partners. Instead of applying the FT along the second 
dimension, one can simply ask which frequencies are modulated in a correlated way. A correlation 
is then calculated for each pair of frequencies; this has the important property that, since the result 
is a matrix containing correlation information between every frequency pair, the indirect frequency 
dimension has the same digital resolution as the direct dimension, regardless of how many time 
increments were actually acquired along the indirect dimension. If the operation is, for example, 
performed on a singled 1D spectrum the result is a 2D spectrum with correlations between all 
frequencies that contain a signal. The number of samples acquired in the indirect dimensions does 
therefore not affect the apparent resolution of the spectrum, instead as additional samples are 
collected in the indirect dimension the intensity of the “false” correlations will be reduced in 
relation to those at “true” correlations. One of the interesting properties of this treatment of NMR 
data is that the data does not need to be uniformly sampled, and NUS data can be used. Indeed, the 
data may be modulated by any variable that affects correlations. Recent extensions to the original 
method enable application to heteronuclear correlations (and thus unsymmetrical spectra) through 
indirect covariance.111 This extension, however, requires the correlation of two (or more) two-
dimensional spectra that have one dimension in common, e.g. a 1H-13C HSQC and a 1H-1H TOCSY. 
In this example one would be able to extract correlations describing all protons in each carbon spin 
system. This requires additional filtering and spectral manipulation as it is prone to false positives 
and requires the input spectra to match well (i.e. it assumes negligible chemical shift differences 
due to pulse sequence-dependent sample heating, etc.).111 
 

3. Non-Jeener Experimental Methods For Speeding up Data Acquisition  

All the experimental methods for performing multidimensional experiments discussed thus far elicit 
coherences by parametric sampling of the indirect dimensions – repeating a one-dimensional 
experiment while varying delays (the parameters) corresponding to the indirect dimensions – still 
adhering to the Jeener paradigm employed by conventional uniform-sampling multidimensional FT 
methods, but using NUS for the parametric sampling of the indirect dimensions. These methods can 
all be applied to existing NMR pulse sequences with little or no change to the pulse program. 
However, alternative approaches to speeding up multidimensional NMR have also emerged that do 
not exploit NUS. Some fundamentally change the way coherences in dimensions beyond the 
acquisition are elicited. Most of these methods involve significant changes to pulse sequences or 
even to the spectrometer hardware. Some of the methods can be combined with the NUS methods 
described above to enable further increases in speed.  
 

3.1. Hadamard spectroscopy.  

 
The idea of Hadamard spectroscopy112 is to use a set of frequency-selective pulses to excite only 
those parts of the frequency domain that contain signals of interest. In some sense this resembles the 
continuous-wave method used in early NMR spectrometers. In practice multiple discrete 
frequencies are irradiated in the same experiment and the frequencies are encoded by a Hadamard 
matrix in which the phase of the pulses is varied (not unlike the G-matrix). In this manner each 
individual frequency is given a different phase. This spectrum will be highly distorted due to the 
variable pulse phases. However, if the procedure is repeated n times so that the phases of all 
individual frequencies are varied in such a way that each can uniquely be identified, the resulting n 
spectra can be combined to produce a conventional spectrum. The matrix is decoded using the 
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Hadamard matrix (which contains the relevant information regarding the phase of each component 
in each experiment) to reveal individual frequency components. 
 

3.2. Single scan NMR 

Conventional multidimensional NMR experiments subject the entire sample to the same 
manipulations by RF or magnetic field gradient pulses. In single scan experiments, pulsed field 
gradients are used to physically divide the sample into spatially-distinct subsets that are subjected to 
different evolution times.113 Provided that there are sufficient spins in each subset of the sample to 
elicit a detectable response, this permits parametric sampling of one or more indirect dimensions in 
space, rather than time. In this way a complete 2D dataset can be acquired in a single scan. As 
spectrometers continue to improve in sensitivity, we anticipate that these methods will find 
increasing application. 
 

3.3. SOFAST 

Band-Selective Optimized Flip-Angle Short-Transient (SOFAST)114 experiments (later also 
referred to as BEST experiments115) speed data acquisition by reducing the relaxation delay 
required in most NMR experiments. The relaxation delay is used to restore the spin system to 
equilibrium prior to repeating the experiment (whether for collecting multiple transients, or during 
parametric sampling of an indirect dimension). The relaxation delay is often a second or longer, and 
is thus the most time-consuming step in most multidimensional experiments. SOFAST exploits two 
concepts in reducing the relaxation delay. The first is the fact that the less the spins are perturbed 
the less time it will take for them to be restored to their equilibrium state. For a given relaxation 
delay, there is an optimal tip angle that will elicit the largest time-averaged signal-to-noise ratio; 
this angle is referred to as the Ernst angle.50 Second, if a source of non-perturbed 1H spins is present 
during the observation of (other) 1H spins, in large molecules (outside the extreme narrowing 
region) these will serve to efficiently relax the spins under observation due to cross-relaxation 
(NOE effect). This effect is more pronounced for larger proteins due to spin diffusion. For proteins 
the aliphatic protons can be used as the source of unperturbed spins by applying shaped pulses in 
the low-field NH region. Combining these two principles, the SOFAST technique is able to reduce 
the relaxation delay by an order of magnitude, allowing more parametric sampling of the data in a 
given time. SOFAST and BEST approaches are compatible with NUS.29,116  
 

3.4. Conclusions & outlook 

The confluence of improvements in magnets, probes, and computational power has contributed to 
an explosion of novel approaches for reducing the time required to obtain multidimensional NMR 
spectra through non-uniform sampling. 

NUS provides a means by which the precious (and expensive) instrument time dedicated to 
acquiring multidimensional NMR spectra can be tailored for the sample conditions and the required 
information. In the sampling limited regime where high-sensitivity is available (high-sample 
concentration, cryogenic probe etc.) the spectroscopist can through NUS dramatically reduce the 
experiment time compared to achieving the same resolution using traditional sampling. Evidence 
from the literature shows that NUS can in extreme cases be used to acquire 4D spectra by sampling 
less than 1% of a time-domain, which would require months of acquisition time using traditional 
sampling93. In the sensitivity-limited regime where low SNR poses difficulties in uncovering 
important correlations (e.g. due to poor solubility of samples at high-concentrations) NUS can be 
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used to improve the SNR per unit time compared to traditional sampling, instead of reducing 
experiment time. 
  Regardless of the sampling regime, the gains that can be achieved employing NUS are 
closely tied to the ability of the method of spectrum analysis employed to suppress sampling 
artifacts. It is therefore not surprising to find that researchers have intensely investigated a multitude 
of novel methods for processing NUS data. Each new method (over 10 in the past decade) 
introduces new terminology, concepts, and acronyms, which unfortunately has contributed to poor 
penetration of some of the new methods. The situation is exacerbated by the relative dearth of 
quantitative comparisons of competing methods, so it is the joint responsibility of spectroscopists 
and method developers to ensure that these methods are critically compared through application to 
real-world problems. Thus far, most of these methods have been applied mainly to highly sensitive 
experiments on protein samples with relatively high concentrations of 1–3 mM. Most proteins 
cannot be concentrated to anywhere near such levels, and the known favourable properties of 
ubiquitin hardly make this a challenging benchmark sample.  

If trends of the past decade hold, then the development of still more methods can be anticipated. 
To assess the utility of any new method for NMR data acquisition and processing two fundamental 
questions must be addressed: when does the method break down (i.e. due spectral crowding or low 
signal-to-noise ratio) and how does the method break down (i.e. what is the nature of any artifacts, 
and how accurate is the method in terms of false positives, false negatives, and amplitude and 
frequency?). While there have been some notable attempts to address these questions for the 
methods described here, there is still much to learn. The qualitative comparisons offered here serve 
as a prelude to more quantitative critical comparisons that remain sorely needed.  
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Highlights 
 

* We describe the history and recent development of non-uniform sampling (NUS) strategies in 
NMR spectroscopy 
* We discuss various methods that have been developed to process NUS data 
* We compare different sampling and processing methods and discuss common fundamental 
principles 

 
 


