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Abstract 

Aim Improving the understanding of the drivers of forest fragmentation is fundamental to 

mitigating the consequences of anthropogenic fragmentation for biodiversity. Moreover, the 

impacts of fragmentation on biodiversity depend on the spatial scale at which fragmentation 

occurs. Therefore, understanding how the effect of land use on fragmentation patterns varies 

across scales is critical to ensure that fragmentation is managed at scales relevant to the 

ecology of target species or land management. Here, we quantified the influence of land use 

on patterns of forest fragmentation at different scales using Queensland, Australia, as a case 

study. 

Location North-eastern Australia. 

Methods We combined fractal analysis with piecewise linear regression to measure patterns 

of forest fragmentation across a range of scales, in 5309 landscapes of ~ 50 km2, with 

different proportions of cropping and grazing land uses. A significant change in 

fragmentation patterns occurred at approximately 1 km2. We used beta regression to quantify 

the impact of land use on the degree of fragmentation at scales finer and coarser than 1 km2. 

Results Grazing land use tended to create more fragmented forest patterns than cropping land 

use. This difference was more pronounced at coarser than finer scales.  

Main conclusions Our finding suggests that the land use where prioritizing conservation 

actions, such as revegetation and retention of forest patches, depends on the scale at which 

we measure fragmentation. This information contributes to reducing the risk of mismatches 

between the scale of fragmentation management and the scale at which we measure 

fragmentation, often dictated by the scale of species’ movements or the scale of land 

management. Our finding also improves our capacity to discern between fragmentation 
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patterns typical of land-sharing and land-sparing conservation strategies, as spatial scale 

varies, thus aiding in implementing land sparing and land sharing at scales relevant to 

biodiversity conservation and land management. 
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Introduction 

Forest fragmentation, that is the breaking apart of forest as opposed to the reduction in 

amount (forest loss), is a key component of global change. Fragmentation is a primary 

consequence of processes of land-use change, such as agricultural intensification, logging and 

urban development, and, at the same time, is a main cause of modification of natural 

landscapes (Foley et al., 2005; Fischer & Lindenmayer, 2007). Quantifying the impact of 

land use on the degree of disaggregation of forest cover over large geographical extents 

(“macroecological” fragmentation patterns; Brown, 1995) is necessary to understand the 

drivers of forest fragmentation (Mertens & Lambin, 1997; Geist & Lambin, 2001; Lambin et 

al., 2003), which is a fundamental issue for conservation (Sala et al., 2000). Moreover, the 

impact of land use on fragmentation may vary with spatial scale (Ewers & Laurance, 2006), 

with important consequences for biodiversity (Cattarino et al., 2013). Therefore, identifying 

the land use drivers of forest fragmentation at different scales is crucial for biodiversity 

conservation. However, currently there is little understanding of how land use drives 

macroecological patterns of forest fragmentation, and how this effect varies with spatial 

scale, despite a recognition that land use is a major driver of fragmentation (Riitters et al., 

2002; Ewers & Laurance, 2006). 

The impact of land use on patterns of forest fragmentation depends on the spatial 

scale, or resolution, of the fragmentation pattern, because different land uses create different 

fragmentation patterns at different scales. For example, urban development and smallholder-

based agriculture create forest patterns that are more fragmented at fine than coarse scales 

(Ewers & Laurance, 2006; Girvetz et al., 2008), while clearing of large blocks of vegetation 

for large-scale farming tends to create forest patterns that are more fragmented at coarse than 

fine scales (Fearnside, 2005). Quantifying the impact of different land uses on patterns of 

forest fragmentation at different scales is important to identify the drivers of fragmentation at 
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each scale, and therefore the conservation management actions that need to be implemented 

to reduce fragmentation at each scale. For instance, better farm-level management practices 

and land tenure reforms can be employed to reduce fine-scale fragmentation, while broader 

mechanisms, such as elimination of subsidies for large-scale clearing, would be more suited 

to target coarse-scale fragmentation (Fearnside, 2005; Ewers & Laurance, 2006). Identifying 

the scale at which to implement different land use policies is important to ensure that the 

scale at which fragmentation is managed matches the scale of relevant ecological processes, 

such as the scale of species dispersal, or the scale of land management (e.g., local or regional 

administrative boundaries) (Pelosi et al., 2010; Dudaniec et al., 2013). This is a critical issue 

for conservation because fragmentation at different scales has different effects for 

biodiversity (Cattarino et al., 2013). Although previous studies have measured forest 

fragmentation at different scales (Ewers & Laurance, 2006), the relative effect of different 

land uses in driving fragmentation patterns simultaneously at different scales remains largely 

unexplored. 

Understanding the link between land use and scale-dependent fragmentation is 

important for implementing conservation strategies at scales relevant to the ecology of 

species and land management. Two contrasting conservation strategies, i.e. land sharing and 

land sparing, have been proposed to reconcile biodiversity conservation with agricultural land 

use (Green et al., 2005). While land sparing consists of intensively farming agricultural land 

and setting aside land for conservation, land sharing integrates agricultural production and 

conservation on the same land by farming a larger area of land at a lower intensity (Green et 

al., 2005). Driven by different land uses, the two strategies create different fragmentation 

patterns, which represent the extremes in a continuum of fragmentation degrees. While land 

sparing tends to create less fragmented patterns, by physically separating agricultural land 

(e.g. crops) from land for conservation, land sharing creates more fragmented patterns, by 
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subdividing the landscape into a heterogeneous mix of different land uses (e.g. crops, pasture 

and forest) (Fischer et al., 2008). Land sharing and land sparing can also be implemented at 

different scales. Matching the scale at which land sharing and land sparing are implemented 

with the scale at which species move, or at which land-use management is conducted, is 

important for achieving effective outcomes for biodiversity conservation and land 

management (Phalan et al., 2011). However, avoiding scale mismatches requires first 

understanding whether land sparing becomes land sharing, or vice versa, as scale varies 

(Phalan et al., 2011). Following the Fischer’s framework, this involves quantifying whether 

land use drives changes in the degree of fragmentation across scales. While scale is becoming 

an important aspect of the land sparing/land sharing debate (Phalan et al., 2011; Chandler et 

al., 2013), how different land uses drive land-sharing and land-sparing patterns at different 

scales has received relatively little attention. 

In this study, we address the question: to what extent does land use drive patterns of 

forest fragmentation and how does this effect vary across spatial scales? To answer this 

question, we conducted a multi-scale analysis of forest fragmentation for Queensland, 

Australia. The region, which covers an area of 1.1 million km2, has undergone extensive 

deforestation since European settlement of Australia (Seabrook et al., 2006; McAlpine et al., 

2009). We adopted a regression-based approach derived from fractal geometry (Mandelbrot, 

1983) to quantify how patterns of forest fragmentation at different scales vary with the 

proportion of different land uses. We show that the impact of land use on patterns of forest 

fragmentation depends on the scale at which we measure fragmentation. This suggests that 

the land use where to prioritize conservation actions depends on the scale at which we are 

interested in measuring fragmentation, such as the scale at which species of conservation 

move or the scale at which of land management is conducted. This information helps to 
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improve our capacity to match the scale at which to manage fragmentation with the scale 

relevant to biodiversity conservation or land management. 

 

Materials and Methods 

 

Study region 

We focused on seven Queensland bioregions of the Interim Biogeographic 

Regionalisation for Australia (IBRA) (Thackway & Cresswell, 1995): Brigalow Belt North, 

Brigalow Belt South, Central Mackay Coast, Desert Uplands, Mulga Lands, South Eastern 

Queensland and Wet Tropics (Fig. 1). The bioregions cover an area of c. 72 million ha. The 

climate ranges from tropical to subtropical and semiarid, with rainfall concentrated in the 

north and central part (Sattler & Williams, 1999). The main vegetation communities include 

rainforest species in the north and woodland of Eucalyptus and Acacia spp. in the southern 

part (Sattler & Williams, 1999). Extensive clearing of native vegetation has occurred in these 

regions, especially in the central and southern part (e.g., Brigalow Belt), due to cropping and 

cattle and sheep grazing (Department of Environment and Resource Management, 2010). 

 

Conceptual Framework 

We developed a conceptual framework for how land use drives patterns of forest 

fragmentation at different scales (Fig. 2). When the effect of land use is the same across 

scales (null hypothesis), similar patterns of fragmentation occur at different scales in different 

land uses, e.g., fragmentation may be higher in grazing than in cropping land use, with 

similar degrees of fragmentation at different scales in each land use (Fig. 2(a)). However, 
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when the effect of land use varies across scales, patterns of fragmentation may vary across 

scales in different land uses, e.g., fragmentation may be higher in grazing than in cropping 

land use to a greater extent at the fine than at the coarse scale (Fig. 2(b)). We test this 

hypothesis against the null hypothesis using fractal theory and piecewise regression (see 

below). 

 

Land cover mapping 

We subdivided the study bioregions into 7 × 7 km square landscapes (n = 14,678) and 

calculated the amount of forest cover in each landscape. We selected a landscape size of 

around 5,000 ha to make sure we would capture the effect of processes operating within 

individual agricultural properties (average size 7,000 ha; Seabrook et al., 2008) on 

fragmentation patterns, as vegetation clearing in Australia occurs mainly within properties 

(Seabrook et al., 2007, 2008). Forest cover data for the year 2009 was derived from the 

Statewide Landcover and Trees Study (SLATS), derived from Landsat Thematic Mapper 

(TM) and Enhanced Thematic Mapper Plus (ETM+) satellite imagery (pixel size 30 meters) 

(Department of Environment and Resource Management, 2010). SLATS has mapped woody 

Foliage Projected Cover (FPC) data over the entire State of Queensland between years 1999 

and 2009. For our analysis, we only considered values of FPC greater than 11% as forest, 

which according to the Kyoto Protocol corresponds to the definition of forest cover (i.e. trees 

and shrubs above 2 m and approximately 20% canopy cover) (Kitchen et al., 2010). 

For each landscape, we calculated the proportion of each pixel occupied by cropping 

and grazing, which are the major drivers of forest fragmentation in Queensland (Department 

of Environment and Resource Management, 2010). Land use data, in the form of a raster 

layer (pixel size 1000 meters), were obtained from the Land Use of Australia, Version 4, 



9 
 

2005-06 (Australian Bureau of Agricultural and Resource Economics and Sciences, 2010). 

As clearing of vegetation might not be representative in nature reserves, we excluded them 

from the analysis. At the end of the mapping process, a total of 12,134 landscapes (7 × 7 km) 

were identified (Table 1).  

 

Measure of forest fragmentation 

We used fractal geometry (Mandelbrot, 1983) to measure patterns of forest 

fragmentation at different scales. Fractal geometry has been widely used to model the spatial 

heterogeneity of resource distributions in real landscapes (Milne, 1992; Palmer, 1992; With, 

1997). We define p(m,L) as the probability of finding m forest pixels in a squared window of 

size L. According to fractal theory, when the degree of forest fragmentation is the same 

across scales, the slope of the log-log regression line of the expectation of p(m,L), measured 

over a range of scales (i.e. resolutions), versus scale, is constant (Milne, 1992). The steeper 

the slope, the more fragmented is the forest pattern. However, when the degree of 

fragmentation changes across scales, the slope of the log-log regression line varies along the 

line. The change in slope is often assumed to occur as a threshold, or breakpoint. The number 

of breakpoints reflects the number of times the degree of fragmentation varies across scales. 

We can interpret the location of the breakpoint(s) (Bp) as the scale at which there is a 

transition between the degree of fragmentation at fine scales (slope before the breakpoint) 

and the degree of fragmentation at coarser scales (slope after the breakpoint). 

We constructed a probability distribution of the mean amount of forest in a landscape 

p(m,L), by counting the total number of forest pixels, m, in a moving squared window of 

length L centred on each forest pixel of our sample landscapes. The probabilities satisfy the 

condition, 
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 � 𝑝(𝑚, 𝐿) = 1
𝑁(𝐿)

𝑚=1

 (1)  

which ensures that the sum of the probabilities of finding m forest pixels in a window of 

length L was 1, where N(L) is the number of different m values obtained for windows of size 

L. Measurement of p(m,L) provides a statistic that describes the aggregation of forest cover in 

a patch mosaic (Milne, 1992). In order to minimize landscape boundary effects, we treated a 

landscape as a torus, where the bottom row adjoins the top row and the right most column 

adjoins the left most column (With et al., 1997). 

The expectation, M(L), of p(m,L) was then calculated as follows: 

 𝑀(𝐿) =  � 𝑚 𝑝(𝑚, 𝐿)
𝑁(𝐿)

𝑚=1

 (2)  

Based on a general property of fractal objects (Mandelbrot, 1983), the expected average 

amount of forest, M(L), varies with the length of the squared window, L, through the power-

law relationship DkLLM =)( , where k is a constant and D is the fractal dimension of the 

land-cover pattern, which represents the degree of forest fragmentation. The value of D, 

which ranges from 1 to 2, increases as the degree of fragmentation increases (Milne, 1992). 

We selected 100 values of L, ranging from 1 to 280 pixels, where L = 280 corresponded to 

the size of a landscape. 

For each landscape, we calculated the expectation, M(L), for each value of L. To 

reduce computational time, we calculated M(L) for a random sample of 10% of the total 

number of forest pixels in each landscape. The analysis was run for all landscapes in each 

bioregion. However, for those bioregions with a large number of landscapes (> 1000), a 
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random sample of 1000 landscapes was selected, limiting the analysis to a total of 5,309 

landscapes. 

 

Statistical analysis 

For each landscape, we modelled the mean M(L) as a function of window length L. To 

investigate whether forest fragmentation varied across scales, we tested for the existence of 

breakpoints in the log-log regression line using linear and piecewise regression. We fitted two 

alternative regression models: (1) a ‘null’ model - linear regression (McCullagh & Nelder, 

1989), which refers to the case where there is no difference in patterns of fragmentation 

across scales; and (2) a ‘threshold’ model - piecewise regression (Muggeo, 2003) - which 

refers to the case where different patterns of fragmentation occurs at different scales. To 

assess the significance of a breakpoint, we fitted threshold models for a number of 

breakpoints ranging from 1 to 10. For each model, we then calculated the Akaike’s 

information criterion (AIC) and selected the model with the lowest AIC as the most 

parsimonious one, based on an information-theoretic approach (Burnham & Anderson, 2002). 

A preliminary inspection revealed that the threshold model with one breakpoint received very 

strong support, relative to the null model and the threshold models with more than one 

breakpoint (Table 2). We assumed that different degrees of fragmentation occurred at coarse 

and fine spatial scales (i.e., coarse-scale and fine-scale fragmentation) in landscapes for 

which the threshold model was the most parsimonious one. For those models, we estimated 

the location of the breakpoint and the fractal dimension of the forest patterns at either side of 

the breakpoint. 

We then applied beta regression models to quantify the effect of land use in driving 

patterns of forest fragmentation at coarse and fine scales. Beta regression is a common 
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approach to model variables bounded in the 0-1 range, such as proportions or rates (Ferrari & 

Cribari-Neto, 2004). We built two separate models and fitted them to the degree of coarse-

scale and fine-scale fragmentation, which were treated as dependent variables. A value of 1 

was subtracted from the raw values of the dependent variables (bounded between 1 and 2) to 

fit the 0-1 range of the beta regression models. In order to include land use as an independent 

variable, we first tested whether the proportion of cropping and grazing land use were 

correlated using a Spearman’s correlation. The proportion of cropping land use was found to 

be negatively correlated to the proportion of grazing land use (r = - 0.57). We therefore 

interpreted the effect of cropping on patterns of fragmentation at different scales to be the 

inverse of the effect of grazing (g), and discarded the proportion of cropping land use from 

the models to reduce colinearity. We also controlled for the effect of the amount of forest 

cover (Gardner et al., 1987), by including the amount of forest cover (p) as an independent 

variable in the models. We fitted the following model: 

 logit(𝜇𝑖) =  β′X𝑖 
(3)  

where µi is the degree of coarse-scale or fine-scale fragmentation in landscape i, β is a vector 

of regression coefficients and Xi is a vector of independent variables. For each dependent 

variable, we constructed a set of five competing models using combinations of all 

explanatory variables.  

For each dependent variable, model comparison was conducted using an information-

theoretic approach (Burnham & Anderson, 2002). We calculated good-ness of fit of each 

model using the R2. To reduce model selection bias, we calculated model average parameter 

estimates, and the unconditional standard error of each estimate, from all the fitted models. 

We also estimated the relative importance of each explanatory variable by ranking them 

according to the sum of the Akaike weights (Σwi) of the models where the variable occurred. 
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The larger the sum of the Akaike weights, the higher the importance of each variable is 

relative to the other variables. All statistical analyses were conducted using R version 2.14.0 

(R Development Core Team, 2013).  

 

Results 

In most of the landscapes, forest fragmentation was higher at fine than coarser scales 

(Fig. 3). This was more evident for lower than higher amounts of forest cover (p < 0.5) and 

for grazing than cropping land use. The average value of the degree of coarse-scale 

fragmentation (D1 = 1.798 ± 0.009) was significantly different from the average value of the 

degree of fine-scale fragmentation (D2 =1.892 ± 0.005) (Mann-Whitney-Wilcoxon Test, W = 

130, P = 0.015) (Table 2). The average value of the breakpoint location was 3.608 ± 0.045 

(Table 2), which corresponded to c. 100 ha (1 km2). 

The amount of forest cover and the proportion of grazing land use were both included 

in the most parsimonious model for coarse-scale fragmentation (AIC = -350.8; R2= 0.71; 

Table 3). However, the second best model also included the interaction between the amount 

of forest cover and the proportion of grazing (ΔAIC = 1.9). The sum of the Akaike weights 

showed that the amount of forest cover and the proportion of grazing were considerably more 

influential than their interaction in affecting coarse-scale fragmentation (Fig. 4). The most 

parsimonious model for fine-scale fragmentation included the amount of forest cover, the 

proportion of grazing and their interaction (AIC = -224.2; R2= 0.84; Table 4). The sum of the 

Akaike weights showed that the amount of forest cover and the proportion of grazing were 

more influential than their interaction in affecting both coarse-scale and fine-scale 

fragmentation (Fig. 4). 



14 
 

The model-averaged coefficients showed that as the proportion of grazing land use 

increased, forest fragmentation increased (Fig. 5). The coefficients also indicated that, as the 

proportion of cropping land use increased, forest fragmentation declined, due to the negative 

correlation between cropping and grazing land use. However, as the proportion of grazing 

land use increased, forest fragmentation increased more at coarser than at finer scales. 

Moreover, as the amount of forest cover increased, increasing the proportion of grazing land 

use reduced forest fragmentation. However, this effect was greater at coarser than at finer 

scales.  

 

Discussion 

Our study contributes to improving the understanding of the drivers of scale-

dependent land-use change in human-modified landscapes (Lambin et al., 2003; Ewers & 

Laurance, 2006). We found that land use is a more important driver of fragmentation at 

coarse spatial scales than at fine scales. Our findings suggest that the choice of land use 

where prioritizing conservation actions, such as revegetation and retention of forest patches, 

to reduce forest fragmentation, depends on the scale at which we measure fragmentation 

patterns. This information may improve our ability to match the scale at which fragmentation 

is managed with the scale relevant to ecology of species of conservation concern or existing 

land management (Pelosi et al., 2010). This is crucial for conservation because fragmentation 

at different scales has different effects on biodiversity (Cattarino et al., 2013). Our study also 

improves the capacity to discern between fragmentation patterns typical of different 

conservation strategies, i.e., land sharing or land sparing, across different scales. This may aid 

in implementing land sharing and land sparing at scales relevant to biodiversity conservation 

and land management. 
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Drivers of fragmentation at different scales  

In our study, grazing and cropping land use drive different fragmentation patterns at 

fine and coarse scales. Since a transition between fragmentation patterns at fine and coarse 

scales occurred at approximately 100 ha (1 km2), which is much smaller than the average 

property size in Queensland, i.e., 7,000 ha (Seabrook et al., 2008), our finding suggests that 

different drivers of native vegetation clearing determine different fragmentation patterns 

between and within agricultural fields, in landscapes modified by different land uses. For 

example, Seabrook et al. (2007) found that cleared areas within agricultural properties were 

clustered around particular landscape features (e.g. riparian vegetation) and vegetation classes 

(e.g. dry eucalypt forests), which are indicators of high soil productivity. This may explain 

why, at coarse scales, cropping creates less fragmented patterns than grazing, as clustering of 

vegetation clearing in areas of high soil fertility determines more the physical separation of 

agricultural land (e.g., crop fields) from remnant vegetation in cropping than in grazing land 

use. 

At finer scales, such as within individual agricultural fields, the processes driving 

clearing of vegetation in cropping and grazing land uses are different than at coarser scales. 

The intense removal of standing native vegetation within agricultural fields, through the use 

of agricultural machinery for crop cultivation and irrigation (e.g., ploughing, sowing, 

harvesting, irrigation systems) creates less fragmented patterns than grazing, as remnant 

vegetation tends to be clumped in linear strips and patches between cropped areas (Maron & 

Fitzsimons, 2007; Smith et al., 2013). On the other hand, clearing of isolated vegetation 

patches is less intense within grazing properties, where all vegetation within a production 

area is not necessarily removed and regrowth vegetation is common (Fensham, 1997; Smith 

et al., 2013), thus creating more fragmented forest patterns than in cropping properties.  
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Interestingly, the breakpoint location we found here is smaller than reported by Ewers 

and Laurance (2006) for the Brazilian Amazon (~ 1,200 ha). Therefore, the scale at which 

there is a transition between the impacts of different drivers of fragmentation is coarser in 

Brazil than in Australia. This may be due to different socio-economic factors. In Brazil, 

large-scale clearing mainly for cattle ranching is a major source of deforestation, and is a 

legacy of poor environmental policies and government subsidies (Fearnside, 2005). The low 

fertility of forest soils has also forced farmers to clear large areas of land to maintain 

productivity. Moreover, agricultural properties are larger, on average, than 10,000 ha, which 

makes coarse-scale fragmentation patterns sensitive to macroeconomic factors, such as 

interest rates and land prices (Walker et al., 2000; Fearnside, 2001). In Queensland, on the 

other hand, clearing tends to be more localized, as a result of stronger vegetation management 

policies and occurring more on fertile than infertile soil, and is driven also by finer scale 

mechanisms, such as smaller property size and individual land holder’s response to 

vegetation management policies (McAlpine et al., 2002; Seabrook et al., 2007, 2008). These 

differences suggest that the scales at which different processes of land use change drives 

different fragmentation patterns are also different in different regions. 

 

Approach and limitations  

We recognize three main caveats in our modelling approach. First, we assume that the 

land uses did not change over the period of time when the clearing occurred, as the patterns 

of fragmentation measured here reflect the cumulative effects of past clearing processes and 

not necessarily the effect of current clearing processes. Land uses may have changed over the 

time when clearing determined the observed fragmentation patterns, thus causing a potential 

scale mismatch between the time when the clearing occurred and the time when the land use 
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data were acquired (2005-2006). Nevertheless, since most of the clearing occurred recently 

and in a relatively short period of time (1990-2004) (Department of Environment and 

Resource Management, 2010), we believe our results are still robust, because land uses may 

have not changed considerably over the time when most of the clearing occurred.   

Second, we assumed the transition between the degree of fragmentation at different 

scales to be abrupt, i.e., it exhibited a threshold. A range of statistical models, including 

polynomial regressions and generalized additive models (Hastie & Tibshirani, 1990), could 

be used to capture the non-linear behaviour of the relationship between the expected average 

amount of forest M(L) and the value of scale L. However, our aim was not to understand the 

nature of the transition, but rather to assess whether there was any significant change in 

patterns of fragmentation at different scales. 

Finally, although forest fragmentation is a scale-dependent process, it is possible that 

we failed to detect patterns at very fine scales due to the coarse resolution of our thematic 

maps (30 meters). For example, processes of land-use change, such as infrastructure 

development and agricultural intensification, cause the removal of individual trees and small 

vegetation patches within agricultural fields (Maron & Fitzsimons, 2007), that we may have 

not captured in our analysis. Therefore, the coarse resolution of vegetation data may have 

contributed to the weaker effect of land use on fragmentation patterns at finer than coarser 

scales. Future research may benefit from the use of land cover maps derived from higher-

resolution satellite imagery (e.g., SPOT, Worldview, Lidar), which may aid identifying finer 

patterns of fragmentation and their drivers of change. 

 

Implications for conservation and land management 
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The different scale-dependent effect of land use on patterns of forest fragmentation 

suggests that the choice of land use where to implement conservation actions to reduce 

fragmentation depends on the scale at which fragmentation is measured. For example, if 

fragmentation is measured at coarse scales, conservation should promote revegetation and 

habitat restoration across multiple agricultural fields, or small properties (Smith et al., 2013), 

on grazing land use more than on cropping land use. If fragmentation is measured at fine 

scales, management may still need to target grazing more than cropping by incentivizing best 

farm management practices within properties, such as retention of patches of vegetation and 

scattered paddock trees (Harper et al., 2012). However, the need for conservation actions 

targeting grazing may be higher at coarser than finer scales, as the difference between the 

impacts of different land uses on fragmentation patterns is smaller at finer than at coarser 

scales. Thus, our findings are likely to be relevant for conservation of species moving large 

distances, as they are particularly affected by coarse-scale fragmentation (Cattarino et al., 

2013), and in the case of management across multiple planning units, such as local 

government areas (Dudaniec et al., 2013). 

Our study advances our capacity to discern between the forest patterns typical of land-

sharing and land-sparing conservation strategies, as spatial scale varies. This may aid in 

identifying the land use where to implement agricultural policies to achieve land sparing and 

land sharing at different spatial scales (Phalan et al., 2011). For example, at coarse scales, 

forest patterns are more like land sharing (high fragmentation) in grazing than in cropping 

land use, and more like land sparing (low fragmentation) in cropping than in grazing land 

use. This suggest that, at coarse scales, agricultural policies to implement land sharing should 

be applied to grazing rather than cropping land use, as we found higher fragmentation in 

grazing than in cropping. This would involve adoption of sustainable farming practices, e.g., 

fencing, rotational grazing and favouring native perennial ground cover (Dorrough et al., 
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2007). However, in order to implement land sparing, cropping land use would be a more 

suitable target of policies and legislative mechanisms than grazing land use, due to the lower 

fragmentation we found in cropping than in grazing land use. This could be achieved through 

protection of large patches of intact vegetation and planned yield intensification (Fischer et 

al., 2008). The need to prioritize implementation of different policies in different land uses is 

likely to be smaller at finer than at coarser scales, as a consequence of the smaller effect of 

land use on fragmentation patterns. By identifying the land use where agricultural policies 

should be implemented to move from the pattern typical of a strategy to the actual strategy, at 

different scales, our study provides guidelines for implementing land sparing vs. land sharing 

at scales relevant to species ecology or land management. 
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Table 1 Number of landscapes in each 

bioregion. 

Bioregion No. of Landscapes 

Brigalow Belt South 3,903 

Brigalow Belt North 2,008 

SEQ 1,055 

Mackay Central Coast 174 

Wet Tropics 135 

Mulga Land 3,638 

Desert Uplands 1,221 

Total 12,134 
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Table 2 Total number of fitted models, proportion of threshold models with one breakpoint that had better fit (based 

on AIC values ) than the other models (null model and threshold models with more than one breakpoint), average 

values of coarse-scale (D1) and fine-scale (D2) fragmentation, and breakpoint location (Bp), with Standard Error (SE), 

for each bioregion. 

Bioregion Total models 
Best threshold 

models 
D1 (SE) D2 (SE) Bp (SE) 

Brigalow Belt South 1000 0.989 1.700 (0.007) 1.863 (0.006) 3.684 (0.033) 

Brigalow Belt North 1000 0.996 1.780 (0.006) 1.858 (0.004) 3.763 (0.029) 

South East Queensland 1000 0.994 1.908 (0.004) 1.900 (0.003) 3.715 (0.033) 

Mackay Central Coast 174 0.994 1.815 (0.013) 1.937 (0.005) 3.480 (0.075) 

Wet Tropics 135 0.993 1.726 (0.018) 1.935 (0.005) 3.391 (0.076) 

Mulga Land 1000 0.982 1.815 (0.005) 1.873 (0.005) 3.844 (0.031) 

Desert Uplands 1000 0.988 1.843 (0.007) 1.879 (0.004) 3.379 (0.037) 
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Table 3 Summary of beta-regression models (model rank and variables, Akaike’s information 

criterion (AIC) values, delta AIC, AIC weights and R2 goodness of fit) of coarse-scale 

fragmentation, as a function of the amount of forest cover (p), the proportion of grazing land 

use (g), and their interaction (pg). 

Model rank Variables AIC ΔAIC AIC weight (wi) R2 

1 p + g -350.8 0.0 0.673 0.71 

2 p + g + pg -348.9 1.9 0.259 0.71 

3 p -346.2 4.6 0.067 0.71 

4 g -59.6 291.2 0.000 0.00 

5 only intercept  -58.7 292.2 0.000 0.00 
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Table 4 Summary of beta-regression models (model rank and variables, Akaike’s 

information criterion (AIC) values, delta AIC, AIC weights and R2 goodness of fit) of 

fine-scale fragmentation, as a function of the amount of forest cover (p), the proportion of 

grazing land use (g), and their interaction (pg). 

Model rank Variables AIC ΔAIC AIC weight (wi) R2 

1 p + g + pg -224.2 0.0 0.539 0.84 

2 p + g -223.9 0.3 0.459 0.81 

3 p -212.3 11.9 0.001 0.85 

4 g -14.5 209.7 0.000 0.03 

5 only intercept  -16.3 207.9 0.000 0.00 
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Figure 1 Study region in Queensland, north-eastern Australia. 

Figure 2 Conceptual framework of how land uses drive patterns of forest fragmentation at 

different scales. The diagram shows different spatial configurations of forest cover at coarse 

(large grey quadrats) and fine (small grey quadrats) scales, in cropping and grazing land use. 

When the effect of land use is the same across scales (null hypothesis), similar patterns of 

fragmentation occurs at different scales in different land uses (Fig. 2a). However, when the 

effect of land use varies across scales, patterns of fragmentation may vary across scales in 

different land uses (Fig. 2b). 

Figure 3 Bar chart showing the average degree of coarse-scale and fine-scale fragmentation 

(± 1 Standard Error), in landscapes with different dominant land uses, for different amounts 

of forest cover (p). The term “cropping” indicates landscapes with a higher proportion of 

cropping land use than grazing land use, and vice versa for “grazing”.  

Figure 4 Relative importance of the explanatory variables, for the models for fine-scale and 

coarse-scale fragmentation, based on the sum of the Akaike weights (Σwi) of the models 

where the variable occurred. 

Figure 5 Coefficient averages from beta regression models explaining variations in the degree 

of fragmentation at the coarse scale and the degree of fragmentation at the fine scale, as a 

function of the amount of forest cover, the proportion of grazing land use and their 

interaction. 
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