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Abstract 

 Cough has the potential to be developed as a diagnostic tool; however, it has not yet been fully 

explored. Researchers have attempted to study cough in adults, but none of these studies involved 

paediatric populations younger than five years of age with respiratory diseases such as pneumonia. 

The study of automated wet/dry cough classifications in paediatric populations is not yet available 

either. At the moment, the identification of wet/dry cough is carried out manually by physicians. 

The results of this process are subjective and depend on the skills and experiences of the observers. 

Cough is one of the main symptoms of pneumonia, but the World Health Organization (WHO) only 

uses its existence for screening in pneumonia. An acoustic analysis of the pneumonia cough sounds 

for diagnosing this disease has not yet been explored. Further, quantitative study of cough analysis 

is still immature; physicians still have to identify and listen to the cough manually, which is a 

tedious and time-consuming task. An automated method capable of segmenting cough sound from 

recordings is urgently required.  

 This thesis proposes the development of innovative cough sound analysis based methods to 

address the problem of wet/dry cough classification, substituting the bronchodilator test in resource-

limited settings and segmenting cough from recordings automatically. In my approach, the cough 

samples were collected using non-contact sensors at a hospital in a developing country. All subjects 

included in this thesis are members of the paediatric population suffering from respiratory diseases 

such as pneumonia and asthma. 

 The supports for my work are the results from preliminary studies and the pathophysiology of 

respiratory diseases. The infections stimulate the excessive production of mucus in the airways. In 

pneumonia, the mucus also fills the alveoli and causes lung consolidation. The opening and closing 

of the collapsed alveoli/airways produce crackle sounds. I hypothesize that the vibration of mucus, 

the inflammation of airways, the lung consolidation, and the crackle sounds alter the acoustic of 

pneumonia cough sounds such that they are distinguishable from the coughs of other diseases such 

as asthma. 

 To capture the cough sound signatures, I extracted features such as non-Gaussianity score, Mel-

frequency cepstral coefficients, Shannon entropy, formant frequency, and zero crossing rates. These 

features were used for training classifiers to classify wet/dry coughs automatically, to differentiate 

pneumonia from asthma, and to segment cough from recordings. My results show that the proposed 

methods achieve high performance for the designed purposes. 
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 This thesis contributes to the development of a pioneering class of technology that addresses 

fundamental gaps in cough sound analysis. The non-contact technology for cough analysis is 

perfectly matched for children. In addition, it does not require elaborate sterilization process efforts. 

The automated wet/dry cough classification method facilitates objective cough assessment, and is 

useful for long-term wet/dry cough study. My cough based method for separating pneumonia and 

asthma can revolutionize the diagnosis of these diseases in limited-resource settings. The method 

can be developed into an affordable system for replacing the bronchodilator test. Further, my 

automated segmentation method has the potential to be developed as a cough counting device, as 

well as the front end of cough analysis systems.  

 For future work, my methods should be tested in a larger dataset to develop a robust system. 

The methods can be developed for smart phone application or deployed in a low cost embedded 

system. 
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1. Introduction 

Chapter 1 

Introduction  

Cough is common among children and can provide vital information on their airways. In this 

chapter, I describe the significance of cough analysis in diagnosing respiratory diseases in children, 

identify open research problems, and describe the research objectives and the contributions of this 

thesis.    

1.1. Background to the research 

 Cough is one of the top reasons for visits to physicians in the world. It contributes to around 30 

million and 1.4 million of total visits in United States and Australia, respectively [1, 2]. It is 

estimated that there are around 50 million cases of whooping cough alone per year, resulting in 

300,000 child mortalities annually around the world [3]. Persistent cough is associated with 

deprivation of quality of life [4, 5], as well as anxiety and depression [6, 7]. Consequently, cough 

imposes a substantial economic burden due to medical consultations and medication [8-10]. 

Cough is a defensive mechanism that aims to protect the respiratory system [11, 12]. It can be 

stimulated by accidental events such as foreign body inhalation or by mucus produced internally. 

Cough is also one of the main symptoms of respiratory disease [13], ranging from mild colds to 

pneumonia. It is assessed by physicians when handling patients with respiratory complaints [14, 

15], who seek information about its characteristics, quantity, and duration. 

Cough carries substantial information on the health of the airways and is significantly helpful to 

determine the aetiology of disease, as shown in several past research studies [16-19]. Korpás, 

Sadlonová, and Vrabec [16] reported that cough sounds from patients with airways inflammations 

were dominated by lower frequency components (peak frequency ≈ 250 Hz) compared to normal 

patients (peak frequency ≈ 600 Hz). Smith et al. [17] and Hiew et al. [18] showed that wheezing 

was prominent in asthma coughs. In their study, Knocikova et al. [19] attempted to use cough to 

separate respiratory diseases. They claimed the 85 to 90 percent of correct rates on classifying 

voluntary coughs from healthy, asthmatic and chronic obstructive pulmonary diseases (COPD) 
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patients using wavelet coefficients [19]. The results show the potential of cough to be developed as 

screening tools.  

Quantitative analysis of cough is not a mature field, particularly as clinicians have access to a 

limited number of basic tools with which to analyse cough. One of the main methods available to 

quantify cough is to count its frequency, that is, the number of coughs occurring in a given time unit 

[20, 21]. Knowing this information is useful to determine the severity of the cough and to assess the 

efficacy of treatments or new antitussive trials [22, 23]. The studies in [24, 25] reported that an 

increase in cough frequency correlated with inflammation of the airways. Long term monitoring of 

cough quantity enables the observation of the temporal pattern and duration of cough. The temporal 

information can be used to define the origin of cough. For example, high quantity of cough at night 

may indicate nocturnal asthma [26, 27], while increased cough after a meal may represent 

gastroesophageal reflux (GERD) [28, 29]. The duration of the coughs is also useful for diagnosis. 

Acute cough (cough lasting < 3 weeks) is associated with upper respiratory tract infections (URTI) 

[30], while chronic cough (cough lasting > 8 weeks) suggests lower respiratory tract infections 

(LRTI) [31].  

Several efforts have been made to develop automated cough counting devices [32-36]. 

However, none of these devices has been tested in the paediatric population; the majority of the 

devices were tested using voluntary coughs from adults. Recording coughs in the paediatric 

population poses greater challenges. Young children, unlike adults, are not capable of following 

instructions in order to reduce activities such as crying that may interfere with the cough signals. 

Moreover, they have difficulty coughing on demand. Further, contact sensors, which were used by 

the majority of these devices, may not suit application to younger children for comfort reasons. 

Contact sensors also require an intensive sterilization process, especially when used with infectious 

diseases. Intensity/waveform-shape based methods for detecting cough used by previous studies are 

unlikely to be optimal when implemented in children with respiratory diseases such as pneumonia. 

In these patients, the intensity/waveform-shape of the coughs can vary radically. Moreover, the 

physiology and origin of cough in children are different from adults [37] and, as such, methods 

developed for adults cannot be directly applied to children. 

The cough quantity can be observed manually [20]. The physician may listen to several 

episodes of cough or interview the patients and/or caretakers to obtain descriptions of the cough, as 

well as its influences on the quality of their life. Tools such as questionnaires [38-41], diaries [42], 

and scales [43] are used to document the long term information. However, the results of these 

measurements are subjective and depend on the skills, experiences, and vigilance of the observers 

[44-46]. Further, manual cough assessment is time consuming and a labour intensive process, 
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especially when working with long term data. Thus, there is an enormous need to facilitate 

automation on long time monitoring of chronic cough as well as acoustic studies of cough sounds, 

especially targeting the paediatric population.   

One of the highly useful cough characteristics in paediatric cough is wetness/dryness [47]. Wet 

cough indicates the presence of mucus. In children, it is more likely correlated with lower 

respiratory tract syndromes and neutrophilic inflammation as a response to bacterial infection [48]. 

It is considered a significant marker to serious diseases such as pneumonia, asthma, bronchiectasis, 

chronic bronchitis, and bronchiolitis [49]. In contrast, dry cough raises minimal concerns since it 

represents less serious underlying conditions. It is associated with habit, GERD, upper airway 

infections, post infections, or hypersensitivity of cough receptors [31, 50-52]. Technology for 

automated classification of cough into wet/dry classes can be highly useful, if available.  

Cough analysis can also help with differentially diagnosing respiratory diseases such as 

pneumonia [48]. Cough is a major symptom of pneumonia, a leading disease that contributes to 

around 1.3 million child deaths per year over the globe [53, 54]. The majority of pneumonia cases 

occur in low income countries where even the most basic diagnostic tools for diagnosing 

pneumonia such as x-ray are extremely rare. To manage childhood diseases including pneumonia, 

the World Health Organization WHO) has developed a guideline on Integrated Management of 

Childhood Illnesses (IMCI) [55]. Unfortunately, the IMCI guideline has poor specificity [56-58]. 

Other diseases such as asthma are often misdiagnosed as pneumonia, leading to unnecessary 

antibiotic treatments. This occurs because the symptoms used to screen in pneumonia (cough and 

rapid breathing) coexist in asthma [59, 60]. A recent study in Uganda [59] showed that 95 percent 

of 253 children with asthma syndrome received antibiotic treatments meant for pneumonia. These 

results are in line with a study in [61] where 46 percent of 200 children diagnosed with pneumonia 

(according to WHO criteria) actually had asthma. The excessive usage of antibiotics triggers 

bacterial resistance, and contributes to treatment failure rate as high as 22 percent in some regions 

[62]. Problems with differentiating pneumonia from asthma or other lower respiratory tract 

infections that do not need antibiotics have become a serious issue. 

Researchers have attempted to improve the specificity IMCI by augmenting extra symptoms, 

such as fever, nasal flaring, chest in-drawing, poor sleep, or cough lasting more than two days [63-

66]. There were improvements in specificities ranging from 20 to 90 percent, but these were at the 

cost of significant decline in sensitivity. The augmentation of symptoms also increases the 

complexity of the pneumonia diagnosis algorithm requiring trained clinicians for the 

implementation. In low-income countries, the lack of resources makes these approaches prohibitive 

to complete. 
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The updated WHO guideline recommends the bronchodilator test to separate asthma from 

pneumonia [67, 68]. Nevertheless, bronchodilators and their delivery systems (nebulizers and 

inhalers) are expensive, time consuming, and rare in remote areas. An alternative method for the 

bronchodilator test is urgently required.  

In this thesis, I address these issues while targeting the paediatric population. The methods 

developed in this thesis are intended to address some of the fundamental gaps in the field of cough 

sound analysis.  

Details of the objective of this thesis are presented in the following section. 

1.2. Research problems and objectives 

 The research objectives of this thesis are as follows: 

1. To develop an automated method to classify cough into wet/dry classes. 

Currently, to determine the wetness/dryness of the coughs, paediatricians manually listen to 

several voluntary/non-voluntary coughs. The results of this manual classification are subjective, 

dependent on the skill and experience of the paediatricians. In this thesis, an automated 

technology is developed to classify cough into wet/dry classes. 

2. To develop a cough sound based method for separating paediatric pneumonia from 

asthma. 

Separating pneumonia from asthma is a major problem in remote areas. The WHO 

guidelines call for a bronchodilator test, which is expensive and time consuming to administer 

in resource poor regions. A cough sound analysis based method is proposed in this thesis as a 

substitute for bronchodilators. This approach is unique and advantageous, as cough signal can 

be acquired using low cost, non-contact recorders. 

3. To develop a method to automatically segment cough sounds from recordings obtained 

in paediatric wards. 

Cough events can be obtained manually by listening to the recordings. However, the 

process is tedious and costly, especially when working with a large number of long duration 

recordings. In this thesis, an automated technique is developed to segment cough sounds from a 

continuous sound recording. 

1.3. Organization of the thesis 

 The remainder of the thesis is organized as follows: 
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Chapter 2: This chapter describes the respiratory system and respiratory diseases and provides a 

key section on paediatric pneumonia. Cough sound analysis is then presented to 

provide the foundation of this thesis. The chapter concludes with a brief discussion on 

the potential of cough as a diagnostic tool. 

Chapter 3: This chapter describes the data acquisition systems, protocol, inclusion, and data pre-

processing used in this thesis. 

Chapter 4: In this chapter, the development of automatic wet/dry cough classification in 

paediatric populations is described. The method is intended to facilitate objective 

wet/dry cough identification. 

Chapter 5: This chapter describes the development of a novel method for pneumonia/asthma 

classification. The method is proposed as the substitute for the bronchodilator test in 

resource-limited settings. 

Chapter 6: This chapter explains the development of automatic cough segmentation for paediatric 

populations. A combination of sound features is proposed to avoid dependency on 

intensity based features. The method is intended to address manual cough counting in 

the paediatric population, as well as front end of cough analysis system. 

Chapter 7: In this chapter, the studies presented in thesis are discussed, followed by suggestions 

for future research and a conclusion to the thesis. 

Bibliography  

Appendices 

1.4. Contribution of the thesis 

 The contributions of this thesis to the field of research consist of the development of novel 

methods for objective cough analysis. The contributions of this thesis are as follows: 

 Development of cough sound analysis methods in paediatric populations. All coughs used 

in this study were spontaneously obtained with non-contact sensors. This study is novel, as 

most existing studies on cough sound analysis include adult subjects with voluntary coughs. 

Methods developed for adults are not feasible with paediatric populations. 

 Development of a novel method for automated wet/dry coughs classification. This study is 

the first in this field, opening a new branch of research on cough analysis in paediatric 

populations. The method achieved high classification accuracy when compared to the work 

of two paediatricians, each of whom had more than 15 years of clinical experience. The 

method facilitates the objective classification of a wet/dry cough study over a longer period. 
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 Development of a novel method for discriminating pneumonia from asthma using cough 

sound analysis. The method can be used to support the existing WHO guideline in 

pneumonia management as a substitute for the bronchodilator test in resource-limited 

settings. 

 Development of an automated cough segmentation algorithm targeting paediatric 

populations. One of the novelties of the research is that the proposed method utilizes a 

combination of features instead of depending solely on the magnitude of the cough signal. 

This approach is beneficial in the paediatric population in terms of respiratory disease 

where the magnitude of cough sounds can vary widely. The method can be implemented as 

cough counting devices as well as the front end of cough sound analysis. 

An overview of the proposed methods is illustrated in Figure 1.1. 
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Figure 1.1: Overview of the methods carried in this thesis 

 



  

7 

 

2. Respiratory Systems and Cough Sound Analysis Based Diagnostics 

Chapter 2 

Respiratory Systems and Cough Sound 

Analysis Based Diagnostics 

Cough is one of the indications of respiratory disorders. In this chapter, I describe the overarching 

view of the respiratory system followed by a description of respiratory system infections. The 

description of cough and its diagnostic values are then presented to provide the foundation for this 

thesis. 

2.1. Respiratory system 

Respiration/breathing is one of the basic life functions of living organisms. In humans, the 

process is responsible for maintaining the exchange of oxygen and carbon dioxide, as well as to 

regulate blood acidity [69]. The breathing process is comprised of two processes: 

inspiration/inhalation and expiration/exhalation. 

 During inspiration, the skeletal muscles of the diaphragm, abdomen and rib cage contract, 

causing the chest to expand as air rich in oxygen flows into the nose, nasal cavity, pharynx, and 

larynx [70]. Air can also pass through the mouth instead of the nose. All these organs are usually 

called upper respiratory tract organs [71]. The nasal cavity serves several important functions. It has 

hairs and mucosa to filter airborne particles and to trap bacteria [72]. Cilia slowly move the trapped 

particles/bacteria in the mucosa to the pharynx, where it is swallowed and digested in stomach. This 

process protects the lungs from inhaled bacteria and foreign materials. The nasal cavity also adjusts 

the air to one’s body temperature and humidifies it [70]. In the larynx, there are vocal folds and a 

glottis for speech/sound production. The glottis also functions as a lid for larynx to protect the lungs 

from foods when swallowing [72]. 

From the larynx, the air passes through lower respiratory tract organs comprises of trachea, 

bronchi, and lungs [71]. A mucous membrane with hair-like cilia exists on the inner surface of 

trachea [72]. The cilia constantly clean the tract and carry foreign substances upward for 

swallowing or expectoration. As the conducting airways, trachea branch into the right and left main 

bronchi at the level of the sterna angle [73]. The main bronchi branches into the lobar bronchi and 
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then the segmental bronchi. The segmental bronchi continue to branch into the smallest bronchi 

called bronchioles. The bronchioles branch to terminal bronchioles, then to alveolar ducts, and 

finally terminate in a small collection of air sacs known as alveoli [73]. Alveoli have a thin, single 

layer of epithelium cells covered by a cobweb of pulmonary capillaries. This structure facilitates 

oxygen and carbon dioxide exchange through the diffusion process [72, 73]. 

 

  Expiration occurs when the skeletal muscles of diaphragm, abdomen, and rib cage are relaxed 

[70], causing the chest to depress and the lung volume to decrease; as such, air containing carbon 

dioxide flows out in the opposite direction to the inspiration. Normally, expiration is a passive-

effortless activity [72]. However, expiratory can be active (forced expiration), where the muscles 

depress the rib cage, abdomen, and diaphragm to force air flows out from the lungs. This condition 

may occur due to respiratory system infections such as asthma where the airways are narrowed by 

spasms of the bronchioles; it can also occur in the case of pneumonia where excessive mucus fills 

the alveoli [74].  

 

Figure 2.1: Human respiratory system 
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The human respiratory system is illustrated in Fig 2.1. The right lung has three lobes and is 

bigger than left lung which only has two lobes [75]. The lungs are surrounded closely by two 

membranes known as the visceral pleura, which attaches to the lungs, and the parietal pleura, which 

attaches to the chest wall [76]. A thin layer of fluid presents between the two layers of pleura to 

lubricate the membranes and facilitate the frictionless motion of the lungs against the chest wall 

during breathing. The fluid also provides molecular cohesive forces that prevent the separation of 

the lungs from the chest wall under normal circumstances. This allows the lungs to follow the 

direction of the chest wall and diaphragm with breathing. 

2.2. Respiratory diseases 

 Respiratory system infection is a medical term referring to the impairment of the respiratory 

organs. Respiratory diseases can be caused by bacteria, viruses, fungi, pollutants, or genetic 

problems [77]. Based on the division of respiratory systems, there are two major respiratory system 

infections called upper respiratory tract infection (URTI) and lower respiratory tract infection 

(LRTI) [78]. URTI consists of common diseases in the population, including influenza, the 

common cold, pharyngitis, epiglottitis, sinusitis, and laryngitis; fortunately, the majority of diseases 

are self-limited and not life threatening. 

Normally, the lower respiratory tract below the larynx is sterile. However, infections can reach 

these parts by inhalation, aspiration, direct inoculation, or they can be blood borne [78]. The 

manifestations of LRTI include pneumonia, asthma, bronchitis, tuberculosis, or lung cancers. 

The main symptoms of respiratory system infections are widely varied, and include cough, rapid 

breathing, dyspnoea (shortness of breath), wheezing, haemoptysis, and chest pain [79, 80]. 

Associated symptoms that may accompany the main symptoms are anorexia, weight loss, pyrexia, 

and sweating. Hypoxemia is indicated by lethargy, malaise and confusion. Headaches, particularly 

on awakening in the morning, may represent the symptom of hypercapnia (a high level of carbon 

dioxide level in the blood) [81]. Oedema may indicate pulmonary heart disease, while snoring and 

daytime somnolence may indicate obstructive sleep apnoea syndrome. Voice hoarseness is usually 

manifested as inflammation in the vocal cords or laryngitis [81, 82]. 

2.3. Paediatric pneumonia 

 Pneumonia is a serious lower tract respiratory system infection and highly prevalent in the 

paediatric population [83]. This is the main disease contributing to the high mortality rate in the 

paediatric population, especially in children younger than five years old who live in low income 
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countries [83]. In this century, even a basic diagnostic tool such as x-ray is rarely available in the 

top level health facilities in these countries to establish the correct diagnosis. Thus, problems in 

pneumonia diagnosis have become a serious issue and it is crucial that this be addressed.  

This section will provide the background about pneumonia and pneumonia diagnosis problems 

as well as a discussion on cough sound analysis. The last sub-section summarises the preliminary 

works achievement, the gaps in the cough analysis field, and the proposed studies. 

 

 

2.3.1. Definition of pneumonia and its consequences 

 Pneumonia is defined as an acute infection/inflammatory disorder of the lung parenchyma 

(alveoli and area between alveoli/interstitial) [48]. The inflammation excites effusion where mucus 

(white blood cells, red blood cells, and fibrin) pour into the alveoli (see Figure 2.2). In the case of 

serious inflammation, the mucus may completely fill the alveoli; this condition is called alveolar 

consolidation [84]. The existence of mucus in the alveoli reduces the alveoli’s functionality to 

absorb oxygen and release the carbon dioxide, which causes hypoxemia (an abnormally low level of 

oxygen) and acidosis (increased acidity in blood) [84]. Inaccurate diagnosis and late treatment of 

pneumonia can lead to fatal consequences. 

Pneumonia is the major cause of morbidity and mortality in paediatric populations. A study by 

Walker et al. [53] showed that in 2010 there were around 120 million episodes of pneumonia in 

children younger than five years. It was estimated around 1.3 million children died due to 

Alveolus

Capillary 

Oxygen poor 

blood
Oxygen 

rich blood

O2CO2

O2 CO2

Mucus/fluid fills 

the airspaces of 

alveolus

Normal alveolus Pneumonia alveolus  

Figure 2.2: Illustration of alveolus in the normal condition and pneumonia. In pneumonia, 

oxygen is unable to reach the blood stream due to the mucus in the alveolus.  

 



  

11 

 

pneumonia in 2011 [53]. Around 97 percent of pneumonia cases occurred in low income countries 

and 74 percent of the cases occurred in South Asia and sub-Saharan regions [85]. 

 Paediatric pneumonia cases in industrialized countries are lower compared to low-income 

countries. The estimation of pneumonia incidence in European and American regions were 0.06 and 

0.10 episodes per child-year, respectively. In these regions, pneumonia causes for around 12 percent 

of children deaths [85].  

Pneumonia contributes to significant economic spending; annual costs incurred as a result of 

pneumonia were estimated at around €10.1 billion in Europe, $10 billion in the US, and $63 million 

in New Zealand [48, 86, 87]. The Australian Lung Foundation estimated that pneumonia created a 

cost burden of around $300-350 million a year in Australia [88]. The economic loss due to 

pneumonia in low income countries is unclear. However, the cost estimation for pneumonia 

treatment in these countries is enormous, as seen in Figure 2.3. 

 

 

2.3.2. The aetiology and epidemiology of pneumonia 

Pneumonia can be classified according to one of three pathogen types: i) bacterial pneumonia; 

ii) viral pneumonia; and iii) atypical pneumonia. Bacteria are the major cause of hospital-acquired 

pneumonia in children, accounting for around 50 percent of cases [89]. Streptococcus pneumoniae 

is the most common pathogen causing bacterial pneumonia in infants and children [89, 90] and 

 

Figure 2.3: Diseases contributing to the mortality of children less than 5 years of age. 

Pneumonia is the leading disease, accounting for 18 percent of total child deaths. 
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accounts for around 16 to 37 percent of the cases. Other bacteria that may cause pneumonia include 

Staphylococcus aureus, Klebsiella pneumonia, Legionella species, and Moraxella catarhalis. 

Respiratory syncytial virus (RSV) is the main pathogen that causes viral pneumonias. It 

contributes to around 14 to 40 percent of viral pneumonias [89]. Other types of viruses such as 

Parainfluenza, Influenza, and Adenovirus account for 15 to 20 percent, 8 to 27 percent, and 5 to 9 

percent of viral pneumonias [89] respectively. 

Atypical pneumonia refers to pneumonia caused by Mycoplasma pneumonia and Chlamydia 

pneumoniae and other rarer bacteria such as Chlamydia psittacci, Legionella pneumophilia and 

Coxiella burnetti [89]. Atypical pneumonia is commonly found in children older than five years 

[91]. Mycoplasma pneumonia accounted for 7 to 30 percent and 14 to 51 percent of atypical 

pneumonia in children aged 5 to 9 years and 10 to 16 years respectively. In the same age groups, the 

number of atypical pneumonia cases caused by Chlamydia pneumoniae was lower, ranging from 9 

to 13 percent and 14 to 35 percent, respectively [92, 93]. 

2.3.3. Risk factors 

 The prevalence of paediatric pneumonia increases in lower socioeconomic groups. Pneumonia 

correlates with malnutrition, low birth weight, and a lack of breastfeeding [94, 95]. The risk of 

pneumonia infections escalates in children with underlying diseases such as immunodeficiency 

disorders, measles, congenital heart diseases, neuromuscular disorder, and gastrointestinal disorder 

[96]. Environmental factors such as crowded homes, cigarette smoke, and indoor air pollution from 

cooking activities also increase the risk of pneumonia [97]. 

2.3.4. Symptom and diagnosis 

 The diagnosis of pneumonia can be established by determining the symptoms and the 

aetiology. Cough and/or high breathing rate are the common symptoms of pneumonia [55]. Other 

symptoms that may appear in pneumonia are high heart rate (tachycardia), malaise, chills, and fever 

as a response to infection [98]. Severe pneumonia is indicated by the existence of lower chest in-

drawing and blueness in skin due to hypoxemia [48].  

Crackles, defined as a discrete explosive non-musical discontinuous abnormal lung sounds, can 

be found through the auscultation of pneumonia subjects [99, 100]. The sounds are produced by the 

sudden opening or closing of collapsed airways and the movement of excessive mucus [101]. 

Wheezes, a continuous coarse whistling sound produced by the narrowing of the respiratory tracts, 

are likely to occur in viral pneumonia [102].  
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Chest x-ray is used to confirm consolidation due to pneumonia. The consolidation is indicated 

by an area of increased density (grey/white area) involving a small lung segment, a lobe, or a whole 

lung [84, 98]. Air bronchogram, defined as the phenomenon of air-filled bronchi being made visible 

by the opacification of surrounding alveoli, may appear when the consolidation intensifies [103]. 

The aetiology of pneumonia can be determined by bio-chemical testing of the samples from the 

subjects such as lung fluid/tissues, blood, sputum, or urine [48]. 

2.3.5. Challenges in pneumonia management 

Pneumonia is a dangerous threat for children, especially those who live in low income regions 

with limited access to health resources [104]. Fortunately, pneumonia is preventable and curable 

and there are several international organizations involved to fight this disease. The World Health 

Organization (WHO) and the United Nation International Children’s Emergency Fund (UNICEF) 

have developed programs for pneumonia management including raising awareness of pneumonia, 

preventing pneumonia, and diagnosing and treating pneumonia. In 2013, WHO and UNICEF 

initiated a new program called the integrated Global Action Plan for Pneumonia and Diarrhoea 

(GAPPD). One of the targets of the program is to reduce the victims of pneumonia to zero by 2025. 

Also participating in this effort are the Bill and Melinda Gates Foundation and PATH, two 

organizations that encourage innovations for vaccinations, medication, and diagnostic tools to make 

these resources accessible for people in remote areas. 

The invention of new pneumonia diagnostics tools is one of the great challenges in the 

management of paediatric pneumonia [105]. Currently, the diagnosis of pneumonia in resource-

limited settings relies on the guidelines developed by WHO and UNICEF, called the Integrated 

Management of Childhood Illness (IMCI) [55]. The implementation of IMCI revealed that asthma 

cases are often misdiagnosed as pneumonia [59, 60]. The updated WHO guideline recommends the 

bronchodilator test to separate asthma from pneumonia; however, the test is costly, time consuming 

and rarely available in remote areas. There is an urgent need to develop a novel method to substitute 

for the bronchodilator test in remote areas. 

2.4. A frame work for cough sound analysis 

Cough is a defence mechanism used by the body to clear the respiratory tract of foreign 

materials inhaled accidentally or produced internally by infections [13]. It can be produced 

voluntary but is usually involuntary by reflex. Cough can be stimulated by: chemical compounds 

(e.g. cigarette smoke); foreign body inhalation (e.g. food); organ defects (e.g. vascular 
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ring/congenital defect); temperature (e.g. cold dry air); and inflammation (e.g. excessive mucus in 

the airways due to respiratory system infections). In some cases, irritation of the airways without 

mucus can stimulate cough as well. Hyper-reactivity of irritant receptors on the respiratory tract 

mucosa due to inflammation or other pathologic process may enhance the cough reflex to react with 

mild irritation [98]. Cough can also be stimulated by irritation in the pleura and tympanic 

membranes [106]. 

The European Respiratory Journal (ERS) guidelines recommends two definitions of cough 

[107]: first, as a “three-phase expulsive motor act characterized by an inspiratory effort (inspiratory 

phase), followed by a forced expiratory effort against a closed glottis (compressive phase) and then 

by an opening of glottis and rapid expiratory airflow (expulsive phase) [108]; and second, as “a 

forced expulsive manoeuvre or manoeuvres against a closed glottis and associated with a 

characteristic sound or sounds”.  

Based on physiological considerations, Hotaling and Moynihan [13] defined cough as having 

four different phases: inspiratory, contractive, compressive, and expulsive. The inspiratory phase is 

initiated by breathing in and is terminated by the closure of the glottis. In the contractive phase, 

groups of respiratory muscles contract, leading to a marked elevation of alveolar, pleural, and 

subglottic airway pressures. In the expulsive phase, the glottis opens quickly, followed by a rapid 

exhalation of air under a large pressure gradient. The rapid movement of air expelled from the lung 

generates the cough sounds with contributions coming from different areas of the respiratory 

system, such as the narrowing airways, the vocal fold, and the mucus vibration [98, 109]. The 

cough sound, therefore, carries information about the nature of the infections. Moreover, in 

paediatric populations, the characteristics of cough suggest the aetiology of the diseases [110, 111].  

Previous studies have examined the acoustics of cough sounds [16, 112-114]. However, none of 

those studies explored the cough in paediatric populations. They focused heavily on the 

classification of cough and non-cough sounds [112-113], the acoustic sound analysis of cough from 

healthy subjects and ill subjects [16, 114], and on counting the number of coughs [32-36]. Only two 

studies [19, 115] attempted to explore the characteristics of cough sounds or to differentiate cough 

in different respiratory system infections. Thus, the potential of cough to be developed as a 

diagnostic tool has not been investigated thoroughly. 

2.5. Summary 

 The physiology of respiratory systems change as a result of respiratory system infections. 

Infection stimulates inflammation and the hyper-secretion of mucus in the airways or respiratory 
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organs and contributes to the wetness of the coughs. The wet/dry cough information is useful for 

differential diagnosis. In the paediatric population, it may indicate lower respiratory tract infection 

[110]. Currently, however, as there is no available method to identify wet/dry cough automatically, 

physicians must identify wet/dry cough manually. The results from the manually assessed wet/dry 

cough is subjective depend on the skills and experience of the physician. A novel method to 

automate the wet/dry cough identification process is required.   

In lower respiratory tract infections such as pneumonia, excessive mucus/fluid fills the alveoli 

and causes lung consolidation. The fluid filled alveoli reduce the normal capacity of the lung in 

breathing. Further, the sudden opening or closing of the alveoli collapsed by mucus creates crackle 

sounds. The lung consolidation, the reduced capacity of the lungs, the vibration of the mucus, and 

the crackles themselves all work together to alter the acoustics of pneumonia cough sounds. In 

contrast, the acoustics of cough in asthma is mostly affected by narrowed airways due to the spasm 

of bronchioles. This shows that the acoustics of cough carries information related to respiratory 

tract infections. The acoustic features of cough sounds can be extracted using signal processing and 

used to differentiate asthma from pneumonia.  

Despite the significance of cough in the diagnosis, the quantitative analysis of cough is still 

immature. Existing studies focus heavily on the development of cough counting devices. To obtain 

cough samples for analysis, health practitioners and researchers must segment the samples manually 

(determine the position, start and end of cough events), which is both tedious and time consuming. 

Therefore, an automated cough segmentation method is urgently needed.  

In this thesis, I address the problems of wet/dry cough classification, paediatric 

pneumonia/asthma separation, and cough segmentation from the recordings. I describe the 

development of the methods in Chapters 4, 5, and 6, respectively. In the following chapter, I 

describe the data acquisition techniques used in this thesis. 
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3. Research Data Acquisition 

Chapter 3 

Research Data Acquisition 

This chapter describes the clinical data acquisition systems and procedures for cough recordings in 

paediatric population. To the best of my knowledge, this study is the first effort to analyse the 

acoustics of non-voluntary cough sounds in paediatric populations with respiratory diseases. As 

such, a typical database is not yet available in the public domain. In this thesis, data acquisition is a 

substantial part of the work. The aim of data acquisition is to record high quality cough sounds such 

that all the sound features can be preserved. Data from the data acquisition were used to develop the 

methods of this thesis. 

3.1. Data acquisition systems 

The cough recording system consisted of a low-noise microphone with a cardioids beam pattern 

(Model NT3, Rode®, Sydney, Australia), followed by a pre-amplifier and an A/D converter (Model 

Mobile Pre-USB, M-Audio®, CA, USA). The output of the Mobile Pre-USB was connected to the 

USB port of a laptop computer. The nominal distance from the microphones to the subjects’ mouths 

was 50 cm with a possible variation in actual distance from 40 to 100 cm due to subject movement. 

The sampling rate was set at fs = 44.1 k samples/s with a 16-bit resolution to obtain the best sound 

quality. The data was acquired in the natural hospital environment, without modifying it in any way, 

other than placing the sound recording system by the bed (see Figure 3.1). The duration of 

recording for each subject varied from 1 to 6 hours, depending on the situation or condition of the 

patients. 

3.2. Protocols 

The data for this work were recorded at Sardjito Hospital, Yogyakarta, Indonesia, from 

paediatric patients admitted with respiratory complaints. Table 3.1 shows the inclusion and 

exclusion criterion for the subject’s recruitment. The inclusion criteria used in the recruitment was 

patients with at least two of the following symptoms: cough, sputum, breathlessness, and 

temperature higher than 37.5°C. I excluded patients with advanced disease where recovery is not 
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expected, such as those with lung cancer, or diseases with droplet precautions such as tuberculosis, 

and patients undergoing ventilation treatment. 

The recordings were started after paediatricians had examined the subjects, initial treatment had 

begun, and informed consent had been completed. The diagnoses of disease were established based 

on clinical examination and were supported by laboratory test results (e.g. chest x-ray, blood test, 

C-reactive protein (CRP), etc.). The research protocol for this study received ethics clearances from 

Sardjito Hospital and The University of Queensland, Australia. 

 

 

 

 

Figure 3.1: Data acquisition systems set up 

 

Table 3.1: Inclusion and exclusion criteria used in the study. 

Inclusion criteria Exclusion criteria 

- Symptoms of respiratory tract infection , at 

least 2 of the following: cough, sputum, 

breathlessness, and temperature >37.5° 

- Informed consent complete                                  

- Advanced disease where recovery is not 

expected. 

- Droplet precautions 

- Having non-invasive ventilation treatment 

- No informed consent 
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3.3. Database 

There are two types of data obtained from the data acquisition: first, cough sound recordings 

saved as regular wave files (*.wav); and, second, clinical diagnostic information pertinent to the 

study. In all circumstances, the data is de-identified by removing the identification details (e.g. 

name, address) before transferring it from the hospital site. 

In each recording, cough events were manually identified and marked. To define the beginning 

and end of cough segments, the scorer listened carefully to the sounds and simultaneously looked at 

the time domain waveform displayed on the computer screen. The criterion of the cough events 

selections were: first, the cough signals did not overlap with other sounds; and, second, the cough 

signals were not clipped. To listen to and display the sound signal I used Adobe Audition software. 

3.4. Data modelling and pre-processing 

The sound recordings obtained from the data acquisition process contain several components. In 

this thesis, the sound recordings are modelled in mathematic equations to describe their 

components. The mathematical equations are also used to illustrate the changes in the sound 

recording components after the application of signal processing. The notations of the mathematic 

equations are used consistently in the development of the methods in thesis. 

Let s[n] be the discrete time sound recording. The expression of the signal s[n] is given as 

follows: 

][][][][ 21 nbnbnsns y                (3-1) 

where sy[n] is the audio sound signals, b1[n] represents the low frequency noise in the measurement 

(e.g. noise coming from the vibration of microphone’s stands/leads) while b2[n] is the Gaussian 

noise (mostly high frequency). The audio signal sy[n] is comprised of cough sound signals scg[n] 

and non-cough sound signals snc[n], as given in (3-2). 

][][][ nsnsns nccgy                (3-2) 

To reduce the noise, s[n] was processed through two different filters: a High Pass Filter (HPF), 

and a Power Spectral Subtractions (PSS) filter. The HPF was implemented in the first stage to 

reduce the low frequency noise b1[n]. It was designed with a cut-off frequency of fc = 10 Hz. In the 

second stage, the PSS filter was employed to reduce the Gaussian noise b2[n] [116]. After the HPF 

and PSS filters, the estimate ŝ[n] of the recording s[n] is given by: 
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][ˆ][ˆ nsns y                 (3-3 ) 

where ŝy[n] represents the estimates of audio sound signals comprised of estimates of cough sounds 

ŝcg[n]  and non-cough sounds ŝnc[n], respectively. Therefore, Equation (3-3) can be re-written as 

follows: 

][ˆ][ˆ][ˆ nsnsns nccg                (3-4 ) 

 

 

 

Figure 3.2: Illustration of the noise reduction process in time domain (figure A, B and C) and 

frequency domain (figure D, E and F). HPF = High Pass Filter and PSS = Power Spectral 

Subtraction filter. 
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Figure 3.2 illustrates the effect of HPF and PSS filters to remove the noise components from the 

raw signal. From the frequency spectra (Fig 3.2(D)) of the raw signal in Fig 3.2(A), it can be seen 

that the raw signal contains low frequency interference (< 10 Hz) as well as 50 Hz interference. The 

signal to noise ratio (SNR) is defined as SNR= 20log10(|Signal Magnitude|/|Noise Magnitude|) dB. 

From the figure, it can be seen that the SNR of the raw signal in this example is very poor (< 6 dB). 

Figures 3.2(B) and 3.2(C) show the output signal ŝ[n] after the application of HPF and PSS 

filters. Their frequency spectra are shown in Fig 3.2(E) and Fig 3.2(F), respectively. According to 

these figures, the designed filters reduce the low frequency interference (< 10 Hz) and 50 Hz 

interference significantly. The SNR of the filtered signal ŝ[n] increased to > 17 dB. 

In the next chapters, I describe the development of the method for wet/dry cough identification 

using the cough from the filtered sound signal ŝ[n]. 
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4. Automatic Identification of Wet/Dry Cough in Paediatric Patients 

Chapter 4 

Automatic Identification of Wet/Dry Cough 

in Paediatric Patients 

Cough can be classified as wet or dry cough. This is a clinically useful classification in paediatric 

populations, where wet cough is more likely to be indicative of lower respiratory tract bacterial 

infections. Considerable experience is needed to classify coughs accurately into the two categories 

in actual clinical practice. In this chapter, I propose a method for classifying coughs into wet and 

dry classes.  The method is objective, fully automated, and has the potential to be used in long term 

cough monitoring applications.  

4.1. Introduction 

 Cough can be categorized as wet or dry, based on its acoustic quality. Cough is characterized as 

wet when the sounds carry features indicative of mucus; in the absence of perceivable wetness, they 

are called dry. Medically, there are different reasons for wet and dry coughs and their identification 

aids in the differential diagnosis of diseases such as bronchiectasis, asthma, chronic bronchitis and 

bronchiolitis [49]. Often, the wet/dry classification is used in epidemiological studies [117, 118] and 

clinical research [49, 119]. In children, wet cough is generally associated with lower respiratory 

tract bacterial infections [119]. Diseases such as asthma and post-infections can cause dry cough. In 

some cases, the presence of dry cough as perceived by a clinician indicates an early stage of the 

disease, which may later become wet cough as the disease progresses, leading to more secretions in 

airway. 

Currently, cough quality is evaluated by clinicians either by asking the patient or the patient’s 

caretakers to describe their cough during clinical assessment or by asking them to cough and 

listening to the cough. However, while doing so significant temporal information about the 

frequency of coughs and variation in wetness of the cough is lost, information that may be useful in 

making a differential diagnosis and assessing the efficacy of the treatment. In addition to this, the 

manual evaluation of the wetness of a cough is a subjective process and the outcome depends on the 

experience of clinicians [17, 120]. The process also suffers from the difficulties inherent in 
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discerning, via coughs, low-levels of mucus in airways; even trained clinicians underscore wet 

coughs as confirmed by bronchoscopic findings [49].  

Researchers have rarely attempted to develop technology for the automated, objective 

classification of cough into wet/dry categories. To the best of my knowledge, only two prior works 

exist in this area [121, 122]. Murata [121] argued that cough sound frequencies can be used to 

discriminate between wet and dry coughs. Chatrzarrin et al. [122] proposed peaks of the energy 

envelop and spectral features of the cough sound for the same purpose. These studies opened up a 

new branch of research in respiratory sound analysis, despite being limited to a descriptive study of 

some characteristic features of coughs. No definitive classification algorithm or results were 

presented for wet/dry differentiation. The amount of data analysed was fairly limited as well, with 

only 30 cough samples from 10 subjects (5 healthy and 5 bronchitis patients) and a total of 16 

coughs in their dataset, making the interpretation of the results difficult.  

All previous research used cough sounds from adult subjects only and adopted techniques that 

used duration, magnitude, and frequency features to characterize cough into dry/wet categories. 

Cough in adults is different in many ways; while wet cough is the term used with children, 

‘productive cough’ is the term used for adults, as they are able to expectorate airway secretions. 

Further, the same amount of secretions in a large airway (i.e. in adults) would biologically produce 

a different sound in a small airway (i.e. in children). Further, production of cough sound is a 

complex physiological process involving several anatomical structures in the upper and lower 

system. Its acoustic properties vary significantly [114] with individual differences, age, gender 

[123] and the state of the airways is a significant factor as well [16]. In disease, cough sound 

characteristics may change, making it necessary to develop robust methods to identify 

wetness/dryness. Intensity and duration dependent methods will not be sufficient to capture the rich 

information hidden in cough sounds. 

Cough can be a symptom of serious diseases such as childhood pneumonia which kills more 

than a million children in the world [53]. The clinical community recognizes the important of cough 

in assessing the health of children. However, researchers have rarely attempted to develop 

objective, automated cough analysis systems for children. In particular, no prior work exists in the 

area of wet/dry classification. Cough assessment technology developed for adults cannot be 

extrapolated for children [37]. There is an urgent need to develop an automated objective cough 

assessment method for children. 

In this chapter, these issues are addressed and an automated objective classification model is 

proposed to categorize cough sounds into wet and dry classes. The method uses first, second, and 

third order statistical features (e.g. formant frequencies, Mel-cepstrum, non-Gaussianity, and 
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bispectrum etc.) of the cough sounds. A linear regression model was used as classifier to 

differentiate wet cough from dry cough using the computed features. 

This research on wet/dry cough identification involving paediatric populations is the first effort 

in this field. The method can be used to assists paediatricians to determine the cough characteristics 

objectively and has the potential to be developed for long term cough monitoring. It can be used to 

study the pattern of wet/dry coughs and to assess the effectiveness of a medication. 

4.2. Material and method 

 Figure 4.1 shows the block diagram of the automated cough classification algorithm proposed 

in this study. It is divided into three stages: (A) the creation of a cough sound database and 

classification into wet/dry classes by an expert scorer; (B) the design of an automatic classifier; (C) 

testing the classifier on a prospective cough sound dataset. Details of the method are described in 

Sections 4.2.1 to 4.2.3. 
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expert human scoring

Cough sounds segmentation from 

recordings
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(C)  Testing on selected LRM
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Figure 4.1: Block diagram of the proposed method for wet/dry cough sound classification. 
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4.2.1. Cough sound data and classification into wet or dry by expert human 

scorers  

 Let Ŋ be the number of patients whose sound recording is used in this study and Ç be the total 

number of cough events from Ŋ patients. The Ŋ patients with Ç cough events were divided into two 

datasets: first, MDD (model design dataset); and second, PSD (prospective study dataset). The 

patients were divided into MDD and PSD based on the order of presentation to the hospital 

respiratory clinic. Patients in datasets MDD and PSD were mutually exclusive. 

MDD – consisted of Ç1 cough events from Ŋ1 patients. Cough events from this dataset were 

used to design the optimal model.  

PSD – consisted of Ç2 cough events from Ŋ2 patients. Cough events from this dataset were 

used to test the designed model. Cough events from PSD were blind to the model design process. 

Two expert scorers with 15 to 20 years of experience in paediatric respiratory diseases then 

scored the cough events from the two datasets into two classes, wet or dry. Scorers were blinded to 

the subject’s history and diagnosis. This manual classification is considered the reference standard 

against which the automatic classification results are compared. 

4.2.2. Design of cough sound classifier 

To design a system for automatic classification of cough sounds, cough events from MDD were 

used. Let MDD1 be the subset of MDD containing those cough events on which both scorers agreed 

on the class of cough sounds. Let Ç11 be the cough events in MDD1. The cough events in MDD1 

were used to design the automatic classifier model. This is a three step process.   

[Step 1] Cough event Feature matrix computation: In this step, feature vector containing ‘F’ 

mathematical features is computed from each of the Ç11 cough events and a cough event feature 

matrix ‘MMDD1’ of size, Ç11  F was formed. To compute ‘F’ features from a cough event, the 

following below steps were used:  

(i) Let x denotes a discrete time sound signal from a cough event ŝcg[n].  

(ii) Segment x into ‘ν’ equal size non-overlapping sub-segments. Let xk  represent the k
th

 sub-

segment of x, where k = 1, 2, 3.  

(iii) Compute the following features for each sub-segment and form a feature vector containing 

F features: bispectrum score (BSS), non-Gaussianity score (NGS), formant frequencies 

(FF), pitch (P), log energy (LogE), zero crossing rate (ZCR), kurtosis (Kurt), and twelve 
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Mel-frequency cepstral coefficients (MFCCs). The details of these features are explained 

in Appendix A1. 

(iv) Repeat steps (i) through (iii) for all Ç11 cough events and form a cough event feature 

matrix MMDD1 of size Ç11  F. 

[Step 2] Automatic classifier design: In this study, a Logistic-regression model (LRM) is used 

as the pattern classifier. LRM is a generalized linear model, which uses several independent 

predictors to estimate the probability of a categorical event (dependent variable). In this work, the 

dependent variable Y is assumed to be equal to “one” (Y=1) for wet cough and “zero” (Y=0) for 

dry cough. A model is derived using a regression function to estimate the probability Y=1 (i.e. that 

a cough event belongs to the category of ‘wet cough’) given the independent variables (i.e. F 

features) as follows: 
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Fb fffz   ...22110            (4-2) 

In (4-1) and (4-2) f1, f2,…, fF are the elements of feature vector (independent variables), 0 is 

called the intercept and 1, 2 and so on are called the regression coefficients of independent 

variables. The Receiver-Operating Curve (ROC) analysis was used to select the optimal decision 

threshold θ from Y (that the cough is wet if Y is above θ, otherwise dry). 

The data in matrix MMDD1 (Ç11 observations from F independent variables) was used and the 

leave-1-out cross validation (LOV) technique was adopted for LRM design. As the name suggests, 

the LOV technique involves using data from all cough events except one to train the model and one 

cough event to validate the model. This process was systematically repeated Ç11 times such that 

each cough event in MDD1 was used as the validation data once. This resulted in ŁÇ11 number of 

LRMs. 

To evaluate the performance of the designed ŁÇ11, performance measures such as: sensitivity; 

specificity; accuracy; positive predicted value (PPV); negative predicted value (NPV); and Cohen’s 

Kappa (κ) statistic were computed. The interpretation κ values are given in Appendix A2. 

The design logistic regression model (LRM) is for: 

(i). Feature Selection: Feature selection is a technique for selecting a sub-set of relevant 

features in order to build a robust learning model. Theoretically, optimal feature selection 

requires an exhaustive search of all possible subsets of features. However, to do so for a 

large number of features are computationally intensive and impractical. Therefore, a p-

value was used to search for a satisfactory set of features. In LRM design, a p-value is 
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computed for each feature along with an indication of how significantly that feature 

contributed to the development of the model. Important features have low p-value. This 

property of LRM was used to select a reasonable combination of features (independent 

variables with low p-value) that facilitate the classification in the model during the training 

phase. The mean p-value is computed for ‘F’ features over Ç11 LRMs. The features are 

selected with a mean p-value of less than pths. Let FB be the sub-set of the selected features 

from F. 

(ii). Robust LRM design: A matrix is created that is M'MDD1 of size Ç11  Fs from MMDD1. 

Matrix M'MDD1 is a cough event feature matrix with only selected features FB from Ç11 

cough events in MDD1. Using M'MDD1 and adopting LOV, Ç11 LRMs are retrained. 

[Step 3] Selecting a good model from ŁƇ11 LRMs: From ŁÇ11 LRMs, one model was selected as 

the best using the K-mean clustering algorithm [124] to test on prospective study dataset PSD. In 

the K-mean clustering algorithm, the target is to divide y data points in z-dimensional space into K 

clusters, so that within the cluster sum of squared distance from the centroid is minimized. 

The problem at hand was how to select a good model from the available ŁÇ11 models. To do so, 

ŁÇ11 models were divided in d-dimensional space into K = 2 clusters, that is, a high performance 

model cluster and a low-performance model cluster. A space dimension d was set equal to model 

parameters plus three performance measures (sensitivity, specificity and kappa). Then, from the 

cluster of the high performance models, the model that had the lowest mean square error value with 

respect to the centroid was selected. Let  represent the selected LRM and θ is the corresponding 

probability decision threshold (the value is determined using ROC curves such that the classifier 

performance is maximized). Once  is chosen, all the parameters of the model are fixed and use it 

for classifying cough sounds in the prospective dataset PSD. 

4.2.3. Testing of selected LRM  

Following the procedure described in Section 4.2.2 [Step 1] and using the cough events from the 

dataset PSD, the cough event feature matrix MPSD of size Ç2  F is computed. Ç2 is the total cough 

events in PSD and ‘U’ is the number of feature vectors. M'PSD from MPSD is formed by selecting 

only robust FB features. The selected LRM  is used to classify data in M'PSD into the classes of wet 

or dry. The decision process of the wet/dry class from the output of  is as follows: 

Let the output of the  to a given cough input be Y. Then, the cough is classified as wet if Y ≥θ 

or dry otherwise.  
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The results of automatic classification by  are compared with that of the expert scorers and the 

performance measures described in Section 4.2.2 [Step 2] are computed. 

4.3. Results on automatic wet/dry cough classification 

4.3.1. Cough sound datasets and agreement between expert scorers 

 This study uses sound recording data from Ŋ = 78 patients (41 males and 37 females). The 

mean age of the subjects was 2 years and 11 months. The age range of the subjects varied from 1 

month to 15 years and they presented with diseases such as asthma, pneumonia, bronchitis and 

rhinopharyngitis. Table 4.1 gives the demographic and clinical details of the patients. 

From Ŋ = 78 patients, a total of Ç = 536 cough events were analysed. On average, seven cough 

events per patients were analysed (minimum = 2 and maximum = 13). The dataset MDD has Ç1 = 

385 cough events from Ŋ1 = 60 patients, while dataset PSD has Ç2 = 151 cough events from Ŋ2 = 

18 patients. 

 

Table 4.2 shows the contingency table between two scorers in classifying cough sounds from 

MDD and PSD, into the two classes of wet and dry. In dataset MDD, out of 385 cough events, 

scorers agreed Ç11 = 310 times (80.5%) on the classes of cough events which were used to form the 

Table 4.1: Demographic and clinical details of the subjects 

GENDER 
Male 41 

Female 37 

AGE 

Neonatal 2 

< 12 months 31 

< 60 months 29 

>= 60 months 16 

DIAGNOSIS 

Pneumonia 34 

Pneumonia + other 21 

Bronchitis 8 

Asthma 3 

Rhinopharyngitis 5 

Asthma + Rhinopharyngitis 1 

Others 6 
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subset MDD1. In dataset PSD, they agreed 117 times out of 151 (77.5%). The Kappa agreement 

between Scorer 1 and Scorer 2 is 0.55 for MDD and 0.54 for PSD. Of the 310 cough events in 

MDD1, 82 belonged to the wet class and 228 belonged to the dry class. The MDD1 cough events 

were then used to design LRM models described in Section 4.2.2. 

 

  

4.3.2. Cough sound characteristics in the databases 

 The mean duration of dry cough in MDD1 was 26077 ms (computed using 228 dry coughs) 

and that of wet cough was 23854 ms (computed using 82 wet coughs). Figure 4.2 shows a typical 

example of the dry cough waveform and wet cough waveform from two patients, ids #35 & #38 

respectively. The cough sound waveforms were generally clean with high signal to noise ratio 

(SNR). The mean SNR for MDD1 was 15.25.5 dB (maximum = 28.65 dB and minimum = 2.9 

dB); the mean SNR for PSD was 18.64.5 dB (maximum = 27.8 dB and minimum = 11.1 dB). 

Figure 4.3 shows the histogram of SNR for the cough sound in MDD1 and PSD. 

Table 4.2: Contingency table between human scorers for classifying coughs into wet/dry.  

κ = 0.56 and % agreement = 80.5% for MDD and κ = 0.54 and % agreement = 77.5 for PSD. 

Dataset MDD Dataset PSD 

 

Scorer 1 

 

Scorer 1 

WET DRY  WET DRY  

S
co

re
r 

2
 

WET 82 55 60% 

S
co

re
r 

2
 

WET 47 23 67% 

DRY 20 228 92% DRY 11 70 86.4% 

 80.4% 80.6% 310  81% 75.3% 117 
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Figure 4.2: Typical examples of dry cough waveform and wet cough waveform from two 

patients, ids #35 & #38 respectively in the MDD dataset. Each cough segment is divided into ν 

(ν =3) sub-segments. 
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Figure 4.3: Histogram of signal to noise ratio (SNR) for the cough sound in MDD1 and PSD. 

The mean SNR for the cough sounds in MDD1 was 15.2±5.5 dB (maximum = 28.65 dB and 

minimum 2.9 dB) and that for PSD was 18.6±4.5 dB (maximum 27.8 dB and minimum = 11.1 

dB). 
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 Figure 4.2 exhibits the cough signals with the start and end markers. Following the method 

given in Section 4.2.2 [Step 1], the feature matrix MMDD1 was computed. The value ν = 3 was used 

to divide each cough segment into three sub-segments. In the literature, clinicians and scientists 

alike have described cough sounds as consisting of three phases: an initial opening burst, followed 

by noisy airflow, and, finally, by glottal closure [125, 126]. It has been shown that these phases 

carry different significant information specific to the quality of cough, wet or dry. On this basis, 

each cough segment was divided into three sub-segments. Setting ν=3 led to a feature vector F of 

length 66 consisting of following features (ν  12 MFCC) + (ν  4 FF) + ([ν  [BGS, NGS, P, LogE, 

ZCR, Kurt]). From Ç11 = 310 cough events and F = 66 features, cough event feature matrix MMDD1 

was created. 

4.3.3. Automatic classification using LRM   

Feature Matrix and LRM performance during training stage: Following LOV technique, ŁÇ11= 

310 LRMs were designed. The mean training sensitivity and specificity for the 310 LRMs were 

92±1% and 93±0.5% respectively. Validation sensitivity and specificity for these models were 62% 

and 84% respectively. Table 4.3–(A) gives the detailed classification results when all the F=66 

features were used to train the LRMs. 

Following the process described in Section 4.2.2 [Step 2] and using pths = 0.06, ps = 31 features 

was selected. Figure 4.4 shows the mean p-value associated with F=66 features computed over 

Ç11=310 LRMs. All the features which have mean p-values of less than pths = 0.06 were selected. 

The selected features were one each from the Bispectrum score, kurtosis, and number of zero-

crossings, two each from the non-Gaussianity score and log-energy, five from formant frequencies, 

and 19 from Mel-frequency cepstral coefficients. Table 4.4 gives details of the feature selected for 

designing the final LRM. According to this table, MFCC based features were the most dominant. 

Out of 31 selected features, 19 features were contributed from different MFCCs components. After 

MFCCs, formant frequencies made the second most dominant contribution with five features. 

Moreover, except for fourth formant frequency and pitch based features, which were completely 

omitted, all other features contributed with features from at least one sub-segment towards the 

building of the final LRM model. 
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Table 4.3: LRM performances before and after the feature selection. Statistics provided in 

the table are mean  standard deviation. A 95% confidence interval for the mean of the 

training dataset is provided at bottom. For Scorer 1 and Scorer 2, the sample size is Ç1 = 385 

cough events from Ŋ1 = 60 patients in dataset MDD. Out of 385 cough events, scorers had a 

wet/dry consensus on Ç11=310 cough events. 

  Sensitivity Specificity Accuracy PPV NPV K 

(A) When all the features were used to develop LRM 

Consensus 

of scorer 1 

& scorer 2 

Training 91.760.68 

[91.69-

91.84] 

92.650.45 

[92.6-92.7] 

92.450.5 

[92.36-

92.47] 

81.801 

[81.68-

81.91] 

96.900.3 

[96.87-

96.93] 

0.81250.1 

[0.8112-

0.8138] 

Validation 62 84 78 59 86 0.46 

 

Scorer 1 

wet/dry 

class 

Training 

87.150.95 

[86.9-87.4] 

87.490.89 

[87.26-

87.72] 

87.400.90 

[87.17-

87.63] 

71.531.84 

[71-72] 

94.970.40 

[94.87-

95.07] 

0.69770.02 

[0.69-0.70] 

Validation 53 78 71 47 82 0.3 

 

Scorer 2 

wet/dry 

class 

Training 

81.961.01 

[81.7-

82.23] 

82.240.97 

[81.98-

82.49] 

82.140.98 

[81.89-

82.4] 

71.831.37 

[71.48-

72.19] 

89.180.78 

[88.98-

89.38] 

0.62240.01 

[0.6173-

0.6276] 

Validation 45 67 59 43 69 0.12 

 

(B) When selected all the features were used to develop LRM 

Consensus 

of scorer 1 

& scorer 2 

Training 

87.360.61 

[87.29-

87.43] 

87.820.43 

[87.77-

87.87] 

87.700.46 

[87.65-

87.75] 

72.070.87 

[71.98-

72.17] 

95.070.25 

[95.05-

95.10] 

0.70410.01 

[0.7029-

0.7053] 

Validation 81 83 82 63 92 0.58 

 

Scorer 1 

wet/dry 

class 

Training 

82.750.57 

[82.60-

82.89] 

83.060.52 

[82.92-

83.19] 

82.980.52 

[82.84-

83.11] 

63.781.18 

[63.47-

64.08] 

93.030.27 

[92.96-

93.10] 

0.600.01 

[0.59-0.60] 

Validation 76 79 78 57 90 0.5 

 

Scorer 2 

wet/dry 

class 

Training 

75.660.57 

[7.5.51-

75.81] 

75.920.58 

[75.77-

76.07] 

75.830.57 

[75.68-

75.98] 

63.440.96 

[63.19-

63.69] 

84.950.61 

[84.79-

85.11] 

0.490.01 

[0.4916-

0.4975] 

Validation 72 73 72 59 82 0.43 
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When only selected features FB were used to re-train LRMs, mean training sensitivity and 

specificity were recorded as 87±1% and 88±% respectively, while validation sensitivity and 

specificity were 81% and 83%. The validation kappa agreement between the LRM and scorers was 

0.46 when all the features were used to train LRM; this increased to 0.58 when only selected 

features were used. Table 4.3(B) gives the detailed training and validation results after feature 

selection. 

Selection of LRM (): From ŁÇ11 = 310 designed LRMs using data from MDD1, the optimal 

model  was selected using the K-mean clustering method as discussed in Section 4.2.2 [Step 3]. 

Models were clustered into two groups, a high performance model and a low performance model 

based on model parameters and performance measures. Of 310 models, 202 were clustered in the 

high performance model group, while 108 were in the low performance model group. LRM model 

#26 has the lowest mean square error value with respect to the centroid of the high performance 

models. This model  was chosen and all its parameters were fixed for future use.  was tested on 

the prospective dataset PSD. 

Performance of  on the prospective dataset PSD: Table 4.5 gives the classification results of  

against expert scorers. For Scorer 1, the wet/dry classification was used as the reference standard, 

and  had the sensitivity of 77.5%, the specificity of 76%, and a kappa agreement of 0.47. For 

 

Figure 4.4: Mean p-value and standard deviation error bar, associated with F=66 features 

computer over 310 trained LRMs. The p-value indicates the associated significance level of a 

feature in the developing model. 
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Scorer 2, the results were sensitivity 75%, specificity 64%, and kappa 0.31%. When model  was 

tested on only those events, in which Scorer 1 and Scorer 2 agreed on classification (117 cough 

events), sensitivity jumped to 84% and the kappa value went up to 0.51. Table 4.6 shows the 

contingency table. 

 

LRM results when matched for Age and Gender:  Table 4.7 shows the performance of the LRM 

on MDD1 and PSD when matched for age and gender. Due to the limited availability of data, only 

four divisions were considered: (i) male with age <= 60 months; (ii) female with age <= 60 months; 

(iii) male with age > 60 months; and (iv) female with age > 60 months. According to this table 

during the model designing stage, no significant difference was seen in the model validation 

performance across four divisions, as compared to when no division was considered, as seen in 

Tables 4.3 and 4.7(A). Similarly with the prospective dataset PSD, the selected model  performed 

well across all divisions (Tables 4.5 and 4.7(B)), except in the third division (males with age > 60) 

where performance was very poor. 

Table 4.4: F = 66 features were computed from each cough segment by using ν = 3 at Section 

4.2.2 [Step 1]. ‘’ indicates that feature was selected for designing the final model at Section 

4.2.2 [Step 2]. 

Features 
BSG NGS FF1 FF2 FF3 FF4 

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 

Selected                   

Features 
Pitch LogE Kurt ZCR MFCC0 MFCC1 

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 

Selected                   

Features 
MFCC2 MFCC3 MFCC4 MFCC5 MFCC6 MFCC7 

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 

Selected                   

Features 
MFCC8 MFCC9 MFCC10 MFCC11   

1 2 3 1 2 3 1 2 3 1 2 3       

Selected                   
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Table 4.5: Performance of  on dataset PSD (prospective study dataset). 

 against individual scorer when tested on all the cough events (151) from DS2  

 Sensitivity Specificity Accuracy PPV NPV κ 

Scorer 1 77.5% 76% 76% 54% 90% 0.47 

Scorer 2 75% 64% 67% 43% 87% 0.31 

 tested on only those events when both Scorer 1 and Scorer 2 agreed on class 

 84% 76% 78% 55% 93% 0.51 

 

Table 4.6: Contingency table for selected LRM tested on dataset PSD.  

κ = 0.51. W = Wet, nW = not Wet. 

 
Scorers  

W nW  

L
R

M
 

W 26 21 55% 

nW 5 65 93% 

 84% 76% 78% 
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Table 4.7: LRM validation results for the dataset MDD1 and the prospective dataset PSD with 

age and gender matched. 

(A)  

Validation results for dataset MDD1. All the features were used to train the LRM 

 Sensitivity Specificity Accuracy PPV NPV κ 

Age <=60 months, Male (#121 

cough events) 
59% 83% 76% 57% 84% 0.41 

Age <=60 months, Female 

(#145 cough events) 
58% 88% 80% 63% 85% 0.47 

Age >60 months, Male (#20 

cough events) 
89% 64% 75% 67% 87.5% 0.51 

Age >60 months, Female 

(#24 cough events) 
100% 83% 83% 20% 100% 0.28 

Validation results for dataset MDD1. Selected features were used to train the LRM 

 Sensitivity Specificity Accuracy PPV NPV κ 

Age <=60 months, Male (#121 

cough events) 
73.5% 78% 77% 57% 88% 0.47 

Age <=60 months, Female 

(#145 cough events) 
84% 87% 86% 70% 94% 0.67 

Age >60 months, Male (#20 

cough events) 
89% 64% 75% 67% 87.5% 0.51 

Age >60 months, Female 

(#24 cough events) 
100% 91% 92% 33% 100% 0.47 

(B)  

Prospective Study dataset PSD 

 Sensitivity Specificity Accuracy PPV NPV κ 

Age <=60 months, Male (#36 

cough events) 
92% 87.5% 89% 78.5% 95% 0.76 

Age <=60 months, Female 

(#27 cough events) 
87.5% 95% 92.5% 87.5% 95% 0.82 

Age >60 months, Male (#30 

cough events) 
50% 54% 53% 14% 87.5% 0.02 

Age >60 months, Female 

(#24 cough events) 
86% 71% 75% 54.5% 92% 0.48 
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4.4. Discussion  

This study proposes an automated method to classify cough sounds into wet and dry categories. 

As far as I know, this is the first attempt to develop objective technology for the dry/wet 

classification of paediatric cough sounds. Besides being the first research of its type, it is also 

unique in that we proposed and validated methods to classify a given cough event into dry/wet 

groups; this is in contrast to previous research, which are limited to qualitatively describing 

characteristics of cough events pre-classified by a human observer. The results presented in this 

study are based on 536 cough events from 78 subjects, which is a considerably larger sample than 

that of existing research [121, 122] which use no more than 30 coughs in their descriptive analyses. 

For these reasons, the results cannot be directly compared against other work.  

The reference method used for the assessment of my method is the subjective classification of 

cough sounds into wet/dry classes by two paediatric respiratory paediatricians from different 

countries. These scorers were blinded to the actual clinical diagnosis of the subjects. In an event by 

event cough classification, the two experts agreed with each other at a Moderate Level (kappa value 

of κ = 0.54). In [49], the inter clinician agreement for wet/dry cough is reported as κ = 0.88. 

However, it should be noted that, the clinicians assessed the wetness of cough at the patient level, 

but not at the individual cough level. When the agreement was computed between scorers at the 

patient level, the kappa value increased to κ = 0.66 (substantial agreement). These numbers further 

illustrate the subjective nature of the wet/dry classification.  

The classifier technology was trained on coughs from the training set (dataset MDD) using only 

events where both scorers reached consensus. At the output of the training process, a good Logistic 

Regression Model () was identified and its parameters were fixed. The model was then tested on 

the Prospective Set (dataset PSD) in several different ways. The highest sensitivity and specificity 

(84% and 76%, respectively) of classification were achieved when  was tested against consensus 

events within PSD. It is interesting to note that these numbers were consistently higher than what 

we got by testing against individual classification outcomes of each scorer.   

Another salient feature of the method is that it has a high negative predictive value (NPV = 

93%), when scorer consensus data is used as the ground truth. This means that if the model 

classifies a cough as dry, it is most likely that the two expert scorers would reach the same 

conclusion independently. However, the positive predictive value of the method compared to 

human scorers is lower (PPV = 55%). Thus, a sizable fraction of coughs classified by the model as 

wet ends up being consensus-classified as dry by human scorers. This phenomenon appears to be 

explained by the results presented by Chang et al. [49] which found that expert human scorers 
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underscore wet coughs. In [49] they systematically compared subjective wet/dry classifications of 

expert clinicians with bronchoscopy indications of airway mucus. They reported that clinicians’ 

classification of dry cough do not necessarily indicate the absence of secretions. Certain situations 

in airways, such as when there are small amounts of secretions, may not be reflected in cough 

sounds at a sufficient magnitude to be detected by a human observer. One possible reason for a 

lower PPV value found in the method is this weakness in the gold standard, human scorers, used to 

generate the performance statistics. This hypothesis needs to be carefully validated against 

bronchoscopic findings in the future.  

The ability to correctly detect airway mucus is particularly important in the management of 

suppurative lung diseases [49, 127]. Cough is an early symptom of diseases such as pneumonia, 

bronchitis, and bronchiolitis. The accurate assessment of this symptom is a crucial factor in the 

diagnosis of acute diseases and in the monitoring of chronic symptoms and treatment efficacy. It is 

known that, in children, wet coughs are more likely to be associated with lower respiratory tract 

infections [127]. The subjective classification of wet cough has low sensitivity as a method of 

detecting airway mucus, even in the hands of expert clinicians. Accurate, objective technology for 

the classification of dry/wet coughs is currently unavailable either at the commercial or research 

levels. To the best of my knowledge, this work is the first attempt in the world to develop such 

technology. 

4.5. Conclusion  

 The proposed method in this study can classify cough sounds into wet and dry classes with high 

accuracy and good agreement with the assessment of paediatricians. This is the first known method 

for wet/dry classification, presented with complete training and testing results on significantly large 

cough samples. It is also the first effort to automate the wet/dry classification in the paediatric 

population with range of respiratory infectious diseases. It carries the potential for development as a 

useful clinical tool for long term cough monitoring, and in the assessment of treatment efficacy or 

in characterizing lower respiratory tract infections. It will be essentially useful in clinical or 

research studies where temporal patterns of cough quality (wet/dry) on an hour to hour basis are 

needed. 

The methods proposed in this study should be available for simultaneous implementation with 

other potential technologies, such as microwave imaging and ultrasound imaging, which may be 

capable of detecting consolidations and mucus in lungs. 
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Novelty and Impact: 

 First method to facilitate automated wet/dry coughs classification. 

 Included a large number of non-voluntary/spontaneous cough sound samples 

obtained from paediatric populations. 

 Can be developed as a tool to study temporal patterns of wet cough in long-term 

recordings. 
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5. Cough Sound Analysis: An Alternative to the Bronchodilator Test in Remote Areas 

Chapter 5 

Cough Sound Analysis: An Alternative to 

the Bronchodilator Test in Remote Areas 

Separating paediatric asthma from paediatric pneumonia is one of the major issues in remote areas. 

These diseases have overlapping symptoms, but require drastically different treatments. Existing 

guidelines for pneumonia classification in resource poor regions call for the use of a test called the 

bronchodilator test to separate asthma from pneumonia. It is time consuming, inconvenient, and not 

readily available in remote regions. In this chapter, I propose a substitute for the bronchodilator test 

based on the quantitative analysis of cough.   

5.1. Introduction 

 Pneumonia and asthma are highly prevalent in paediatric populations [53, 109, 128]. These 

diseases contribute to the high mortality and morbidity of children, especially those who live in low 

income countries [53, 129]. In the first level health facilities of these countries, even primitive 

imaging and laboratory testing facilities are extremely rare. Further, it is also difficult to find trained 

healthcare personnel with expert clinical skills. The management of these diseases in such regions is 

largely dependent on community health workers who visit remote communities. To assist the 

community health workers in the fields, The World Health Organization (WHO) and United Nation 

International Children’s Funds (UNICEF) have developed basic guidelines known as Integrative 

Management of Childhood Illness (IMCI) [55, 130]. 

IMCI guidelines describe the symptoms and procedures to clinically diagnose diseases in the 

paediatric population including pneumonia and asthma. According to the guidelines, the clinical 

signs of cough and/or difficulty of breathing are screening criteria for pneumonia. Fast breathing, 

defined as a breathing rate higher than a particular threshold (50 breaths/min in children younger 

than 12 months and 40 breaths/min in children between 12 and 60 months of age), is a determinant 

of whether pneumonia exists [55]. The existence of lower chest in-drawing indicates severe 

pneumonia. The diagnosis of asthma is established by symptoms of wheezing (often with cough), 
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fast breathing, hyperventilation of the lungs, chest wall in-drawing, and prolonged expiration [130]. 

Asthma and pneumonia have overlapping symptoms but require drastically different treatments. 

The implementations of IMCI guidelines are successful in sorting out pneumonia and asthma 

from other respiratory diseases [59-61]. However, the similarity of the symptoms between 

pneumonia and asthma makes it difficult to differentiate between these two diseases with the result 

that asthma patients are often over-diagnosed as having pneumonia and receive unnecessary 

antibiotic treatments.  

To address this problem, the updated WHO guidelines [67] recommends a test known as the 

bronchodilators test to differentiate asthma from pneumonia, in a population of subjects whose 

diagnosis is already narrowed down to the category: “either pneumonia or asthma”.  

As specified in IMCI guidelines [67], the bronchodilator test is administered to children 

exhibiting wheeze and fast breathing and/or lower chest in-drawing. After the first clinical 

observation by the physician, these children are given a bronchodilator via the oro-nasal route to 

dilate their airways. After 15 minutes, the clinical examination is repeated. If the symptoms that led 

to the bronchodilator prescription have disappeared, the patient is classified asthmatic [131]. 

Otherwise, the classification is pneumonia and antibiotics are prescribed [131].   

Unfortunately, the bronchodilator test is time consuming. Bronchodilators and their delivery 

systems such as inhalers or nebulizers are also expensive and rare in resource-limited settings. 

Further, extra efforts to sterilize the bronchodilator deliver systems are required to avoid the spread 

of infections. An alternative for bronchodilator test is urgently required. 

This chapter proposes a pioneering class of technology addressing these challenges. The target 

is to develop a cough-based technology as an alternative to bronchodilator tests used in the 

differential diagnosis of asthma from pneumonia in remote settings. The proposed method centres 

on cough sounds analysis to separate asthma patients from pneumonia patients.  

Cough is one of the main symptoms of pneumonia and asthma. It is well known that cough 

sounds carry information related to respiratory diseases and researchers have attempted to 

investigate the acoustic properties of asthma coughs. One such study reported that the expulsive 

phase of asthma coughs containing quasi-periodic signal with fundamental frequency between 3 and 

6 kHz. In a different study, asthma coughs were identified as sounds characterised by long duration 

wheezing [114, 132]. Asthma coughs have relatively high frequency components compared to 

cough caused by, for example, chronic bronchitis and tracheobronchial collapse syndrome. A 

common thread of these studies is that the acoustics of asthma coughs are seen as distinct from 

coughs in other diseases. 
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I hypothesize that cough sounds carry vital information that can be used to separate asthma from 

pneumonia. Support for this hypothesis comes from the patho-physiology of pneumonia and 

asthma, the physics of cough sound generation, and prior explorations [115]. The study in [19] 

showed that wavelet coefficients of cough sounds can be used to differentiate healthy, asthmatic, 

and chronic obstruction pulmonary diseases (COPD) subjects. Our own feasibility studies [115] 

indicated that cough carries vital information that can be extracted by quantitative analysis and used 

to screen pneumonia in remote regions. 

In this work, I propose a Hidden Markov Model (HMM) based classifier for pneumonia-asthma 

classification. The HMM is used to model the temporal acoustic characteristic of cough sounds. 

Each cough sound is assigned with log-likelihood values corresponding to the likelihood that it will 

belong to either the pneumonia or asthma class.  

To the best of my knowledge, the proposal to replace the bronchodilator test using a cough-

based analysis is the first of its kind in the world. The proposed method is fully automated and does 

not use sensors that require physical contact with patients, so there is no need for sterilisation. These 

benefits make it easy to use in resource-poor regions by minimally trained personnel. The outcome 

of this work has the potential to transform the way the pneumonia/asthma is managed in remote 

resource-limited settings of the world. 

 

(A) Data acquisition

(B) Construction of cough data set (DS)

Pneumonia cough 

dataset

Asthma cough 

dataset

(C) Pneumonia/asthma classification

Noise reduction and pre-emphasis

Feature computation of cough episodes

Apply rectangular window 

Compute feature:

MFCC: K MFCCs + K ΔMFCCs + K 

Δ2MFCCs, K = 1, 2, ... 

HMM Model development

Develop HMM model for pneumonia (λ1) 

and asthma (λ2)

Train and test the HMM models following 

Leave One Out Validation

Cough episodes labelling

Label cough episodes into pneumonia and 

asthma classes

Compute Pneumonic Cough Index (PCI) 

of subjects

Classify subjects as pneumonia/asthma

Record signal at 44.1 k samples/sec, 16 bit 

Subject classification 

 

Figure 5.1: The block diagram of the proposed method. There are three main stages: (A) data 

acquisition; (B) construction of cough data set; and (C) pneumonia/asthma classification. 
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5.2. Material and method 

 The method proposed in this study is summarized in the overall block diagram in Figure 5.1. 

Each block represents a stage in the method: (A) data acquisition; (B) construction of the cough 

dataset; and (C) pneumonia and asthma classification. Details of these processes are described in 

Sections 6.2.1 to 6.2.3. 

5.2.1. Data acquisition 

The data for this work was obtained using the data acquisition systems and protocols described in 

Chapter 3. 

 

5.2.2. Construction of cough dataset 

 In this study, I involved Ŋ paediatric subjects (Ŋ = 20) admitted to hospital with respiratory 

complaints. The clinical diagnosis of pneumonia/asthma was established by professional 

paediatricians at Sardjito Hospital in Yogyakarta, Indonesia. 

The cough dataset used in this study were constructed by manually picking Ç first cough 

episodes (Ç = 50) from each recording. The criteria of the cough selection are described in Section 

3.3 of Chapter 3. If the number of coughs in a recording is less than ∂, then all coughs fulfilling the 
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Figure 5.2: Five states of HMM are used to model onset, body, and end of a cough episode. 

States 1 and 5 are non-emitting states, while states 2, 3, and 4 are emitting states. 
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criteria were used. Let DS represents the coughs obtained from this process with a size of Ç × Ŋ. 

These DS coughs were then used to train and test the Hidden Markov Model (HMM) based 

classifier for pneumonia-asthma classification. Details of this process are described in Section 5.2.3. 

5.2.3. Design of pneumonia and asthma classifier 

To classify pneumonia and asthma subjects I process the cough episodes through three steps (S1-

S3) as follows: 

(S1) Noise reduction and pre-emphasis: 

The noise reduction process is described in Section 3.3 of Chapter 3. The noise reduction 

process implements a High Pass Filter and a Power Spectral Subtraction (PSS) filter. The 

filtered cough signal is denoted as ŝcg[n]. In this work, I further process the cough episodes 

through a first order pre-emphasis filter to enhance their high frequency components [133]. 

The output from the pre-emphasis process is denoted as ṡ[n]. 

(S2) Feature computation of the cough episode: 

The process of feature vector computation from ṡ[n] is as follows: 

(i). Apply a rectangular sliding window wr[n] of length N, generating data sub-blocks. Let 

ṡ[n] = (|ṡ1[n]|, …, | ṡk[n]|, …, | ṡK[n]|) represents the filtered cough sound where ṡk[n] 

represents the k
th

 (k = 1, 2, …, K) sub-block in ṡ[n]. 

(ii). For each sub-block ṡk[n], compute Mel-Frequency Cepstral Coefficients (MFCC). The 

MFCCs are spectral features computed from short-time sound signal. It approximates 

the auditory system behaviour by using non-linear frequency scale [133]. In this work, I 

used MFCCs to describe the temporal characteristic of cough episodes. Details of 

MFCC computation is given in Appendix A1.1. 

Let Φk is the MFCC coefficients of k
th

 sub-block from a cough episode ṡk[n]. The 

MFCC features of a cough episode ṡ[n] can be expressed in a matrix form as ( = [Φ1, 

Φ2, … , Φk, …, ΦK].  

(S3) HMM model development for classifying pneumonia/asthma: 

(i). HMM structure: In this study, a cough episode is represented as three stages, namely: 

Onset, Body, and End. To model the probable temporal characteristic of these stages, I 

developed i-states (i = 5) HMM. The illustration of the HMM model is shown in Figure 

5.2. State 1 and 5 are non-emitting states, while States 2, 3, and 4 are emitting states that 

correspond to a particular respiratory tract configuration and model the probability 

characteristics of observation feature vectors Φk of each stage of cough. The Gaussian 

Mixture Model (GMM) is used to model the probability characteristics of the 
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observation MFCC feature vector Φk associated with each emitting state. The 

probability of Φk from state i of the HMM is governed by the output probability density 

function bi(Φk) given in (5-1) which is defined as a multivariate GMM with j Gaussian 

mixture components (j = 1, …M, where M is the number of Gaussian mixture 

components, i.e. 1, 2, 4, and 6). 
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where mij is the j
th

 mixture weight of the i
th

 state of HMM and bij(Φk) is defined as in (5-
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where μij and Σij are the mean and the covariance matrix of the j
th

 Gaussian distribution 

of the i
th

 state, and  is the dimension of the feature vectors. 

  The HMM parameters (state transition and emission probability distributions) are 

estimated using the Baum-Welsh re-estimation procedure with Viterbi alignments. 

  Let Λ = (λ1, λ2) denotes the set of respiratory diseases model of cough episodes 

where λ1 and λ2 respectively represent the HMM model for pneumonia and asthma. The 

likelihood of a cough episode with a sequence of k observation feature vector ( = [Φ1, 

Φ2, … , Φk, …, ΦK]), from any given HMM model λy (y = 1, 2) is expressed in terms of 

the log-likelihood (LL) given in (5-3). 
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 (5-3) 

A Viterbi decoder return 𝜆̂ the best pneumonia/asthma model that give the highest log-

likelihood score by computing P(Φk|λ) in terms of the HMM probability distributions 

according to (5-4). 

)|(logmaxargˆ     P            (5-4) 

(ii). Pneumonia/asthma classification rule: Let Ω = {1, 2, …, t, … , T)  be a set of 

cough episodes from a patient, where t is the t
h
 cough episode and | Ω | = Ç. 

Rule 1: Cough episode classification 

  ythenPif y   

  toattributed is
  |logmaxargˆ ,      (5-5) 
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For all cough episodes  belong to set of Ω, if the cough model that produces the 

highest LL for cough episode  is the y
th

 cough model, then Rule 1 attributes  to the y
th

 

cough model.  

 

Rule 2: Pneumonia/asthma classification 

Applying Rule 1 repeatedly on to Ω leads to a mutually exclusive and exhaustive 

partition of Ω into two model classes: pneumonia (λ1) and asthma (λ2). To classify a 

subject as pneumonia/asthma, I implemented a Pneumonic Cough Index (PCI). Let Q be 

the number of coughs classified as pneumonia and Ç be the total number of cough 

episodes analysed from a subject. The PCI can be computed as given in (5-6).  Subjects 

that have a higher PCI than the optimum PCI threshold (γ) are classified as pneumonia 

and vice versa. 

PCI = Q/Ç              (5-6) 

In the classification process, I followed the ‘leave one out’ validation method where 

all subjects were used in training except one for testing. This process was systematically 

repeated such that each subject was used as the validation data once. 

5.3. Results  

5.3.1. Dataset 

In this study, I used recordings from Ŋ = 20 subjects consisting of 8 males and 12 females. The 

age of the subjects ranges from 1 to 86 months (average age 25 months). In the dataset, the ratio of 

pneumonia and asthma subjects was equal (10 of each disease). Of 10 pneumonia subjects, chest x-

ray was used to confirm nine of them.  

According to the physical examination findings, nine of the pneumonia subjects and five of the 

asthma subjects had respiratory rates above the WHO threshold (respiratory rate greater than 50 

breaths per minute in children younger than 12 months and greater than 40 breaths per minute in 

children aged 12 to 60 months). Fever (body temperature > 37.5°C) was presence in seven 

pneumonia subjects and five asthma subjects. Abnormal lung sounds found by clinicians in these 

subjects through a conventional stethoscope were crackles (pneumonia = 9 and asthma = 1) and 

wheeze (pneumonia = 2 and asthma = 7). Respiratory distress symptoms (sub-costal retractions) 

were present in all pneumonia subjects and in four asthma subjects. Three asthma subjects had 



  

46 

 

oxygen saturation levels below normal (< 96), while it was below normal value in only one 

pneumonia subject. 

The total number of coughs in the data set DS was 739, with 462 coughs from pneumonia 

subjects and 277 coughs from asthma subjects. Over a 60 minutes period, the average number of 

coughs in pneumonia subjects was larger than that in asthma subjects (46 coughs and 28 coughs, 

respectively). 

 

 

5.3.2. Characteristic of cough in pneumonia and asthma 

In step (S2)-(i) of Section 5.2.3 I used a sliding rectangular window wr[n] of length N to 

segment the data in each cough episode ŝ[n] into sub-blocks. Then I computed the features for each 

sub-block.  The performance of the method in different length of N is presented in Section 5.3.3. 

Figure 5.3 shows the signals, the spectrograms, and the MFCCs of coughs from pneumonia and 

asthma subjects. From the spectrogram, one can see that the asthma cough has longer duration with 

 

Figure 5.3: Illustration of signals, spectrogram, and MFCCs of coughs from pneumonia 

and asthma subjects. 
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clear formant/harmonics from the beginning to the end of cough. In contrast, the energy of 

pneumonia cough beyond 10 kHz is higher compared to asthma cough. 

The MFCCs in Figure 5.3 was computed using N = 30 ms (1232 samples). Pneumonia and 

asthma coughs show the high intensity in their first MFCC. However, pneumonia has a relatively 

high magnitude as well at the 6th, 7th and 8th of the MFCCs, while the asthma cough shows high 

magnitude at the 4th, 10th, 11th, and 12th of the MFCCs. 

5.3.3. Pneumonia asthma classification 

To investigate the optimum sub-block size, the size of the rectangular sliding window (N) was 

varied from 20 ms to 60 ms in steps of 10 ms. To compute the features from a cough episode, the 

rectangular window was shifted from the beginning to the end of the cough episode with 50 percent 

overlap. From each sub-block, a feature vector containing 39 features was computed. Thirty-nine 

features are 13 of MFCC and their first and second order differentials. 

 

Table 5.1 shows the accuracy of cough episodes classification into pneumonia and asthma 

classes using four different numbers of Gaussian Mixture Model/GMM (1, 2, 4, and 6) following 

Rule 1. From the Table 5.1, it can be seen that in the HMM model for pneumonia (λ1), the optimum 

accuracy was obtained at sub-block size 30 ms with single GMM (mean 82.7%, standard deviation 

Table 5.1: The accuracy of cough episodes classification into pneumonia and asthma classes 

follows Rule 1 (in %). The results are presented in mean ± standard deviation. 

 

Number 

of  

GMM 

Sub-block sizes (milliseconds) 

20 30 40 50 60 

Pneumonia 

1 74.3±21.2 82.7±12.6 82.5±14.3 80.1±15.6 80.4±12.9 

2 72.9±23.7 76.3±17.0 76.8±20.1 77.6±18.0 78.0±16.8 

4 69.8±27.1 73.1±22.5 74.1±23.3 71.5±22.9 75.9±22.1 

6 72.7±23.9 78.1±20.3 75.4±21.2 75.1±17.1 75.3±18.9 

Asthma 

1 52.6±21.2 48.4±12.6 44.5±14.3 47.3±15.6 49.5±12.8 

2 45.8±23.8 50.0±17.0 45.2±20.1 51.3±18.0 51.1±16.8 

4 42.7±27.1 48.0±22.5 47.1±23.3 51.1±22.9 42.5±22.1 

6 42.3±23.9 41.5±20.3 43.9±21.2 48.9±17.1 37.7±18.8 
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12.6%). The table also shows a decreasing trend in accuracy with the addition of GMM components 

(2, 4, and 6). 

In the HMM model for asthma (λ2), the optimum accuracy of cough episodes classification at 

sub-block size 20 ms with single GMM is 52.6 percent. However, the standard deviation of the 

accuracy in this set is very high (21.2%). The optimum accuracy with the smallest standard 

deviation can be found at sub-block sizes either 30 ms or 60 ms with one or two GMMs. In this set, 

the accuracies are slightly lower by 1.5 to 4.2 percent but the standard deviations are 4.2 to 8.6 

percent lower. Similar to λ1, increasing the number of GMM by 2 and 4 also reduced the accuracy 

of λ2. 

Following Rule 2 in Step 3 (S3) in Section 5.2.3, I computed the Pneumonic Cough Index (PCI) 

[113] and computed the performance of the method in classifying pneumonia/asthma subjects at 

sub-block sizes 30 ms and 60 ms with one and two GMMs. I varied the threshold and plotted the 

receiver operating characteristic (ROC) curve. Figure 5.4 shows the ROC curve of the testing set 

computed using the ‘leave one out’ validation procedure. As can be seen, there are overlapping 

areas in the ROC curves at both sub-block sizes with one/two GMMs. 

 

 

Figure 5.4: ROC curve of pneumonia and asthma classification computed using the Pneumonic 

Cough Index (PCI) defined as ratio of the number of pneumonia coughs divided by the total 

number of coughs in a patient. 
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Table 5.2 shows the performance of the pneumonia and asthma classification computed using 

PCI at sub-block sizes 30 ms and 60 ms. At the defined optimum PCI thresholds (γ), in both sub-

block sizes with one GMM, our method achieved sensitivity and specificity of 100 and 80 percent, 

respectively. The increment of GMM to 2 decreases the sensitivity by 10 percent. Table 5.2 also 

shows that the agreement between our results and the diagnosis from the hospital is high as shown 

by Kappa statistics 0.7 to 0.8. 

5.4. Discussion  

Although pneumonia is a major cause of mortality among children, it is often over-diagnosed at 

the cost of under-diagnosing asthma in resource poor regions of the world. The main reasons for 

this include: unavailability of advance diagnostic tools, difficulty in finding trained healthcare 

personnel with expert auscultation and clinical skills, and, most importantly for my research, the 

presence of overlapping clinical symptoms between the diseases.  

In my own database, all the subjects presented with cough and/or difficult breathing, which are 

central symptoms for screening pneumonia according to the WHO algorithm used by community 

workers. More than 50 percent of asthma subjects had respiratory rates higher than the 

recommended WHO threshold for diagnosing pneumonia. Moreover, 30 percent of asthma subjects 

had sub-costal retraction, which is an indication of severe pneumonia and requires immediate 

administering of antibiotics according to the WHO algorithm. This shows that if the WHO 

guidelines were followed, at least 50 percent of asthma subjects would be misclassified as 

Table 5.2: The performance of pneumonia and asthma classification computed using 

Pneumonic Cough Index (PCI) follows Rule 2. The γ, Sens, Spec, Acc, PPV, NPV, and κ, 

respectively represent the optimum PCI threshold, Sensitivity, Specificity, Accuracy, Positive 

Predictive Values, Negative Predictive Values, and Cohen’s Kappa statistics. 

Sub-

block 

sizes 

Number 

of 

GMM 

γ Sens Spec Acc PPV NPV κ 

30 
1  0.60 100.0 80.0 90.0 83.3 100.0 0.80 

2  0.61 90.0 80.0 85.0 81.8 88.9 0.70 

60 
1  0.61 100.0 80.0 90.0 83.3 100.0 0.80 

2 0.66 90.0 80.0 85.0 81.8 88.9 0.70 
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pneumonia in my database. These results are in line with [61] which reported that out of 200 

children diagnosed with pneumonia based on the WHO criteria, 46 percent actually had asthma.  

One study [63] suggested adding fever to the WHO algorithm for pneumonia diagnosis to 

improve its specificity. However, 44.4 percent of asthma subjects also had fever, which makes fever 

an unreliable symptom to use in separating asthma from pneumonia. Our feasibility work on 

pneumonia community screening [115] also indicated that fever had limited use in detecting 

pneumonia with higher specificity.   

At present to separate pneumonia cases from asthma cases, WHO recommends the 

bronchodilator test [67, 68] as an additional diagnostic criterion for asthma. However, 

bronchodilators and their delivery systems, such as inhalers or nebulizers, are costly. Further, the 

sterilization requirements for inhalers/nebulizers (to avoid the spread of infections) add extra costs 

to the bronchodilator tests. The bronchodilator test is not an efficient use of time either, as it can 

take up to 45 minutes to complete the test. More than 75 percent of deaths due to pneumonia and 

asthma occur in developing and low-income countries where first level medical services, if 

available, are sub-optimal at best. There is an urgent need for an alternative method to the 

bronchodilator test, which is not only cost effective, but also easily deployable in settings where 

resources are limited.   

In this chapter, I discussed an innovative method of separating pneumonia cases from asthma 

using cough sounds only. The novelties of the proposed method lie in the classification technique as 

well as in the clinical applications. This is the first effort in this field to address fundamental 

problems with pneumonia/asthma classification due to the overlapping symptoms between these 

diseases.  

My methods, when rigorously validated, are expected to provide an unorthodox new approach 

to detecting pneumonia patients in a mixed population of pneumonia and asthma subjects. In other 

words, the method may function as an alternative to an accurate, low-cost bronchodilator test that 

can be field-deployed in resource-poor remote regions of the world. My method uses non-contact 

measurements; therefore, it does not need extensive sterilization. Cough sound analysis can be fully 

automated and implemented as a self-standing package on a smart phone. This makes the 

technology easy to deliver and maintain in remote regions where it is really needed.  

While I developed my technology largely targeting field-deployment in remote regions, its 

applications reach beyond that context. I believe it has applications in respiratory units of healthcare 

facilities and offices of primary care paediatricians, even in the developed world.   

My pneumonia/asthma classification method based on cough analysis implements Hidden 

Markov Models (HMMs) incorporated with Mel-frequency cepstral coefficients (MFCCs). Cough 
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shares some similarities with speech. It consists of temporal structures and can be encoded as a 

sequence of spectral vectors spanning a specific frequency bandwidth. HMMs are capable of 

providing a natural framework for constructing such models [134].  

As the feature set, MFCCs and its derivatives were implemented to describe the temporal 

patterns of cough. The MFCCs use the non-linear frequency scale to approximate the human 

auditory system [133]. By listening to the patient’s cough sounds, trained clinicians and/or 

caretakers are able to differentiate coughs in several different categories such as wet and dry. In 

children, the characteristic of cough may suggest a specific aetiology [47, 110]. For example, wet 

cough may be correlated with protracted bacterial bronchitis/sinusitis. These facts show that the 

human auditory system can be used to support diagnosis. Therefore, in this work, we implemented 

MFCC to capture the features of cough sounds. 

I tested my method on 20 subjects following the ‘leave one out’ validation method, and 

achieved high sensitivity, specificity, and Kappa. These results support the previous study [115] and 

indicate that cough sound analysis has the potential to be implemented as a substitute for the 

bronchodilator test to classify pneumonia and asthma.  

5.5. Conclusion  

In this study, I proposed a novel method for classifying pneumonia subjects and asthma subjects 

using cough sounds. This is the first effort in this field to address fundamental problems with 

classifying pneumonia and asthma due to the overlapping symptoms of these diseases. The results 

show that the proposed method has the potential to be implemented in resource-limited settings as a 

support for the existing guidelines from the WHO and as an alternative for the bronchodilator test. 

 

 

  

Novelty and the impact: 

 The first study to investigate cough sounds from paediatric pneumonia and asthma. 

 Use of cough sound analysis to separate pneumonia from asthma 

 Potential to be developed as a low cost system that can substitute for the bronchodilator 

test in remote resource-poor areas. 
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6. Automatic Cough Segmentation in Paediatric Populations 

Chapter 6 

Automatic Cough Segmentation in 

Paediatric Populations 

Cough is the dominant single symptom leading to physician visits throughout the world. Cough 

carries vital information on the paediatric respiratory system, yet the quantitative analysis of cough 

is still in its infancy. At present, medical practitioners and researchers alike still rely on manual 

cough identification, which is laborious and time consuming. In this chapter, I develop an 

automated paediatric cough identification and segmentation technique based on Time-Delay Neural 

Networks (TDNN). The method can analyse a continuous sound recording and extract cough events 

while discarding other sounds, such as speech and ambient noise. The method has the potential to 

serve as a real-time paediatric cough-counting device and as the front end of a system to diagnose 

diseases such as pneumonia and asthma.  

6.1. Introduction 

Cough quantity, defined as the frequency of cough events over a given time interval, is one of 

the important markers evaluated by paediatricians during consultation sessions. This information 

can be used to determine the nature (e.g., acute, chronic) and the severity of coughs, as well as to 

monitor the efficacy of a treatment [20]. However, to obtain this information, paediatricians rely 

heavily on subjective reports provided by patients or their carers. There is a great need for an 

automated device capable of counting the number of coughs, especially for childhood disease. More 

importantly, technology capable of automatically extracting cough events from paediatric 

recordings is urgently needed in order to facilitate the diagnosis of diseases such as pneumonia. 

Several approaches have been taken to develop automated cough counting systems (e.g. Hull 

Automatic Cough Counter (HACC), Leicester Cough Monitor (LCM), LifeShirt, VitaloJAK, and 

PulmoTrack). The performances of these devices are varied. The HACC claimed 80 percent 

sensitivity and 96 percent specificity [32]. The figures for LifeShirt, PulmoTrack, LCM, and 

VitaloJAK are (78%, 99%), (94%, 96%), (85.7%, 99.9%), and (97.5%, 97.7%) respectively [33-36]. 

To extract the sound events, HACC computed the standard deviation of cough sound intensities 
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[32], while VitaloJAK  [135] and LCM [136] used the sound intensities themselves. This makes 

these methods susceptible to variations in recording conditions, such as the distance between the 

microphone and the patient, the sensitivity of the recording instruments, and the sound level of the 

coughs being recorded. Both LifeShirt [137] and PulmoTrack [138] described cough as having a 

distinguishable humped structure in the waveform. Then they identified coughs by counting the 

number and/or measuring the slope of these humps. None of these commercial devices has been 

tested on paediatric populations or on subjects with diseases such as pneumonia. In paediatric 

subjects, the cough sound intensities and waveform-shapes may vary widely. Therefore, intensity or 

simple waveform-shape based methods are unlikely to be optimal and are less likely to be robust in 

field use. 

Cough recording on children, especially the younger ones, pose several additional challenges. 

Younger children are unable to produce voluntary coughs upon request. Any method targeting 

paediatric populations should be capable of using spontaneous coughs recorded over a period of 

time. In paediatric recordings, crying, vocalization, and grunting are found abundantly, and are 

intermixed with cough sounds. Consequently, technologies developed for adults are unlikely to be 

optimal for use on children. 

Existing commercial cough counting devices such as VitaloJAK [135], LifeShirt [137], and 

PulmoTrack [139] employ contact sensors. While the use of contact sensors may have some 

advantages, they also carry several drawbacks. Contact sensors, compared to non-contact (free-air) 

microphones are robust against background sound propagated through air. However, they are more 

vulnerable to sound conducted through tissue and bones; spurious rubbing sounds due to sensor 

movement can also be an issue. In infectious diseases, elaborate efforts are needed to avoid cross 

contamination of patients through contact instrumentation. Furthermore, in paediatric subjects, 

contact sensors can also be difficult to attach because of patient discomfort. 

I address these issues and propose a novel technology for the automated segmentation of cough 

events from recordings obtained using non-contact microphones in a paediatric ward. In particular: 

 I design algorithms to target the paediatric population (age < 6 years), addressing a 

fundamental gap in current technology. 

 I develop a method for the segmentation of cough events, with algorithms capable of 

discounting background sounds, such as crying, vocalization, and grunting. 

 I develop new techniques that are robust against the variation of cough sound intensity 

levels and waveform-shapes. This is an unprecedented approach in this field, to the best of 

my knowledge.  
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The method has the potential to be developed as an automated cough counting device as well as 

the front-end of a cough based diagnostic system. 

 

6.2. Material and method 

The block diagram of the overall method is shown in Fig 6.1. The method is comprised of five 

main processes: construction of the recording dataset; noise reduction; design of feature extraction 

from sub-blocks of data; design of the automatic segmentation model; and testing of the best 

selected model. Details of the process are described in Sections 6.2.1 through 6.2.5. 
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Figure 6.1: The block diagram of the automatic segmentation proposed algorithm.  
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6.2.1. Construction of recording dataset 

The recording dataset for this study was obtained by following the procedure described in Chapter 

3. The dataset was divided into two categories, namely:  

(i). Model Design Dataset (MDD): Dataset MDD denotes the training dataset that was used to 

train the neural network (NN) classifier. The main criterion in designing MDD is that it 

should contain the whole range of cough types and their variations, as well as non-cough 

sounds expected in the practical setting. That way, the NN can learn the characteristics of 

the variety of coughs and learn to differentiate them from non-cough sounds. Dataset MDD 

was designed by manually picking representative cough and non-cough sounds from each 

subject in the training dataset. All such sound events were then concatenated as a single data 

stream to form the set MDD. Thus, the dataset MDD is not a natural sequence of sound 

events, but the combination of a large number of handpicked cough and non-cough sounds. 

To develop MDD, I took cough and non-cough sound samples from Ŋ1 = 10 subjects. The 

overall length of MDD was 15 minutes. 

(ii). Prospective study dataset (PSD): Dataset PSD denotes the testing dataset and contains the 

actual sound stream recorded in the hospital. This way, the results on PSD can be taken as a 

true indication of performance in the clinical environment. The testing set PSD included the 

first 60 minutes of the sound streams recorded from Ŋ2 = 14 subjects in the testing set. The 

total duration of PSD was 840 minutes. 

Subjects in dataset MDD and PSD were mutually exclusive. The division of the subjects in two 

datasets was based on the order in which they presented to the respiratory clinic of the hospital.  

In both MDD and PSD, cough events were manually identified and marked. To define the 

beginning and end of cough segments, the scorer carefully listened to the sounds and 

simultaneously looked at the time domain waveform displayed on computer screen. This manual 

identification of cough events is used as the gold standard against which the results of the automatic 

classification were compared. 

The recordings in MDD and PSD were then passed through noise reduction process. The 

process is described in the following section. 

6.2.2. Noise reduction 

To reduce the noise, the recording signal s[n] is processed through a High Pass Filter and Power 

Spectral Subtraction Filter as described in Section 3.4 of Chapter 3. 



  

56 

 

Let ŝ[n] be the estimate of the recording s[n] after the high pass and power spectral subtraction 

filters. It consisted of ŝcg[n] and ŝnc[n] to represent the estimates of cough sounds and non-cough 

sounds respectively. The signal of interest is the cough sound estimate ŝcg[n]. In this chapter, an 

automated method is proposed to extract cough sounds ŝcg[n] from the recording ŝ[n]. To do so, the 

sound features of ŝ[n] is first computed and then processed through a classifier. The next section 

describes the feature extraction method used in this work. 

6.2.3. Feature extraction 

To obtain the features of the sound signal, I applied a rectangular sliding window wr[n] of length 

N (N = 882 samples, equal to 20 ms) to ŝ[n], generating data sub-blocks. Let ŝ[n] = (|ŝ1[n]|, …, 

|ŝk[n]|, …, |ŝK[n]|) represents the filtered sound recording where ŝk[n] represents the k
th

 (k = 1, 2, …, 

K) sub-block in ŝ[n]. For each sub-block ŝk[n] I computed the following features: Mel-frequency 

cepstral coefficients (MFCC), formant frequency (FF), zero crossing rates (ZCR), non-Gaussianity 

scores (NGS), and Shannon entropy (SH), and then formed a feature vector Fk = [MFCC FF CR 

NGS SH]
T
. Details of these features are presented in Appendix A.1.  

In this study, I extract such feature vectors from the Model Development Dataset (MDD) and 

the Prospective Validation Set (PSD). Let the feature set extracted from the k-th sub-block of MDD 

be denoted by Fk,M and that from the PSD be denoted Fk,P. Next, I form an overall feature matrix for 

ŝ[n], based on the feature vectors of sub-blocks as:  GM = (F1,M, F2,M,…, Fk,M, …, FK,M) and GP = 

(F1,P, F2,P,…, Fk,P, …, FK,P), where GM and GP represent feature matrices for MDD and PSD. 

The cough feature matrix estimated from the set MDD, GM, was then used to train the automatic 

classifier model to classify sound data in a sub-block ŝk[n] into the classes of cough (CG) and non-

cough (NC). Details of this process are described in Section 6.2.4. The matrix GP from the set PSD 

was used for the prospective testing of the trained models. 

6.2.4. Design of automatic cough segmentation model 

The automatic cough segmentation method is a two stage process: classification of sound 

features into cough (CG) and non-cough (NC) classes, and identification of cough events.  The 

description of these processes is given in Section 6.2.4(A) and 6.2.4 (B).  

(A). Design of neural network model to classify a sub-block ŝk[n] into the cough (CG) and 

non-cough (NC) classes 

In this study, I investigate the use of an Artificial Neural Network (ANN) as the CG/NC 

classifier at the sub-block level. I used the ANN inspired by the capability of human brain to 
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recognize different types of cough sounds, regardless of their intensity, duration, or wetness. 

Moreover, ANN has the advantage of classifying data using non-linear decision boundaries, based 

on a process of supervised learning with a set of given examples. In this work, I used the particular 

form of an ANN known as a Time Delay Neural Network (TDNN) [140] that has been used in 

speech recognition applications. TDNN is capable of classifying sub-blocks ŝk[n], discounting 

temporal translations of the input feature set [140]. 

The TDNN structure is comprised of an input layer (Li), two hidden layers (Lh1 and Lh2), and an 

output layer (Lo). The number of neurons in Li, Lh1, Lh2, and Lo are 110, 20, 10, and 1 respectively. I 

used a linear activation function for neurons in the Lo layer and sigmoid activation functions for 

neurons in the Lh1 and Lh2 layers. To determine initial weights and bias values, I used the Nguyen-

Widrow initialization method [141]. For updating weights during the training process, I employed 

the resilient back propagation (RPROP) algorithm [142]. 

I trained the TDNN to classify each sub-block in ŝ[n] into CG/NC class.  Let Q = [Fk-2 Fk-1 Fk 

Fk+1 Fk+2] represents the feature vectors of sub-block ŝk-2[n], ŝk-1[n], ŝk[n], ŝk+1[n], ŝk+2[n], 

respectively. I used Q as input to the TDNN for classifying the k
th

 sub-block ŝk[n] into CG/NC 

class. This process was repeated for k = 3, 4,…, K-2 to cover the whole signal ŝ[n] represented by 

ŝ[n] = (| ŝ1[n]|, …, | ŝk[n]|, …, | ŝK[n]|). An illustration of this process is shown in Figure 6.2. 

In training and optimizing the TDNN, I used the matrix GM and adopted the ‘leave one out’ 

validation technique. This involves using feature matrices from all the subjects in MDD except one 

to train the TDNN model, and validate the model using the remaining subject. This process was 

systematically repeated M times (M = 10), such that each subject in MDD was used as the 

validation data once. This resulted in M neural network models.  

Let uv[k], v = 1, 2, …, 10  represents the output of the v
th

 TDNN model. In the following section, 

I describe the method to identify the beginning and the end of a cough events using uv[k]. 

(B). Identification of the beginning and the end of coughs events  

The identification of the beginning and the end of cough events from the output of TDNN 

models um[k] was carried by following steps (S1) through (S3): 

(S1).  Smoothing process - Pass um[k] through a moving average filter with the tap length . Let 

the output of this filter be ũm[k]. 

(S2).  Thresholding - Apply a threshold value  to ũm[k]. The sub-blocks with ũm[k] above the 

threshold  were assigned the decision Y = 1, otherwise Y = 0. The sub-blocks with value 

Y = 1 are candidate cough event sub-blocks. 
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(S3).  Cough event identification – A cough event is identified if q number of consecutive sub-

blocks are candidate sub-blocks (i.e. Y = 1) and following conditions are satisfied: 

Condition 1: min ≤q≤max, where  is the total time duration of q consecutive sub-blocks 

with Y = 1. min and max respectively are the minimum and maximum cough sound 

durations computed from the cough events in MDD. 

Condition 2: δq > δ, where δq is the root mean square value of q consecutive sub-blocks 

in ũm[k] with γ = 1 and δ is the threshold root mean square value. 

 

All the parameters including ,  and δ were optimized using data in MDD for maximizing the 

classifier performance. The steps for optimizing these parameters are as follows: 

(P1). Optimizing  - Set parameter  and δ at certain values then vary  from 1 to 30. Select the 

optimum  values at the maximum performance in the validation set. 

(P2). Optimizing  - Use the optimized  and δ values from step (P1), and then vary  from 

0.001 to 1. Select the optimum  at the maximum performance in the validation set. 
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Figure 6.2: The structure of TDNN. It is comprised of an input layer, a hidden layer, and an 

output layer. Five successive inputs are used as input to TDNN to determine the class of a sub-

block. The process starts from the beginning of recordings and shifts to the end of recording. 



  

59 

 

(P3). Optimizing δ – Use the optimized  and  values from steps (P1) and (P2), and then vary 

δ from 0.001 to 1. Select the optimum δ at the maximum performance in the validation 

set. 

To evaluate the performance of the designed 10 TDNN models and proposed method for cough 

event identification, performance measures such as sensitivity, specificity, accuracy, and Cohen’s 

Kappa statistic were computed. The performances were computed at the sub-block level as well as 

the cough event level by comparing the output of the algorithm with the reference scoring from the 

human observer. 

From the 10 TDNN models, I selected the model that gave us the best performance as obtained 

in the ‘leave-one-out’ validation technique on MDD. Let  represents the selected TDNN model 

with s, s, δs as its corresponding parameters. In Section 6.2.5, I describe the performance of  in 

segmenting coughs from the prospective study data set (PSD).  

6.2.5. Testing the selected model on PSD 

The process of cough segmentation in PSD is as follows. Let GP be a feature matrix computed 

using sound data from a subject in dataset PSD, following the process described in Section 6.2.4. 

Apply the model  to GP and automatically classify the cough sounds into classes CG/NC at the 

sub-block level; identify cough events following the steps given in Section 6.2.4. Repeat this for all 

the patients (Ŋ2 = 14) in PSD. Compare the results of automatic segmentation with that of manual 

segmentation and evaluate the performance, at sub-block as well as event levels.  

6.3. Results  

6.3.1. Dataset 

In this work, I included cough sound data from Ŋ = 24 subjects (13 males and 11 females). The 

age of the subjects spanned from 3 months to 71 months (14 subjects < 12 months and 10 subjects > 

12 months). After the clinical evaluation and laboratory tests, 18 were diagnosed with pneumonia, 

and one each with rhinopharyngitis, nasopharyngitis, tonsillopharyngitis, pulmonary hypertension, 

bronchiectasis, and bronchitis. 

The training dataset MDD (Ŋ1 = 14 subjects) has 656 cough and 2297 non-coughs events 

spread over a 15 minute period. Each subject contributed, on average, 66 coughs to the set MDD. 

The minimum length of cough event (min) was 180 ms and the maximum (max) was 720 ms.  
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The prospective dataset PSD has total sound data of 840 minutes duration from Ŋ2 = 14 

subjects. In this dataset, there were 1434 coughs and 40144 non-cough sounds. The coughs have 

minimum and maximum length of 160 ms and 800 ms, respectively. On the average, there were 96 

coughs in one hour of sound data from each subject.  

The length distribution of coughs is illustrated in Figure 6.3. 

 

6.3.2. Parameter optimization of the classifier model using the set MDD 

Following the process described in Section 6.2.2 and using the data from MDD, a cough feature 

matrix GM was created. GM was then used to train the automatic classifier model (Time-Delay 

Neural Network, TDNN) to classify sound data in sub-blocks ŝk[n] into two classes: cough (CG) 

and non-cough (NC). 

I varied the length of sub-blocks (N) to optimize the classification performance (sensitivity, 

specificity) of 10 TDNN models. The results are shown in Tables 6.1 and 6.2. Table 6.1 shows that 

the sub-block size N ranging from 20 to 40 ms gave a similar performance. Therefore, I set 

sub-block size = 20 ms in Section 5.2.2B. The reason behind this choice is that a shorter sub-block 

can give a better time resolution. Table 6.2 shows TDNN model performance when different 

combinations of feature sets were used in the training. From Table 6.2 it can be seen that when all 

features were used to train TDNN, it gave the best performance, both in training and in ‘leave one 

 

Figure 6.3: Histogram of the cough duration in MDD (a) and PSD (b). The minimum (min), 

maximum (max), and mean length of cough were 180 ms, 720 ms and 283 ms, respectively, 

in MDD and 160 ms, 800 ms and 291 ms, respectively, in PSD. 
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out’ validation. For this reason, results reported in this study use TDNN models trained with all 

these features.  

 

 

Parameters ,  and  were optimized to achieve the best classification performance following 

the process described in Section 2.4.4. Figure 6.4 shows parameter optimization results for ,  and 

. According to Fig 6.4(A), at low  values, the classification sensitivity is high. It starts decreasing 

as  increases above 10. No significant variation in validation specificity can be seen with  value. 

Table 6.1: Performances of TDNN in training dataset MDD using four different sub-block 

sizes. Statistics provided in the table are mean ± standard deviation. Tr, Va, Sens, and Spec 

respectively indicate training set, validation set, sensitivity, and specificity. 

 Sub-block size 

10ms 20ms 40ms 60ms 

Tr 
Sens 90.56±1.79 92.92±2.13 92.92±1.94 74.72±2.55 

Spec 90.57±1.79 92.92±2.13 92.93±1.94 74.72±2.55 

Va 
Sens 84.09±3.39 87.16±3.11 87.84±2.71 67.49±3.27 

Spec 84.11±3.39 87.17±3.11 87.91±2.69 67.56±3.27 

 

Table 6.2: Performances of TDNN on training dataset MDD, using different combination of 

features. Statistics provided in the table are mean ± standard deviation. FF = Formant frequency, 

SH = Shannon entropy, ZCR = Zero Crossing Rate, NGS = Non-Gaussianity Score, and MFCC = 

MFCCs. Tr, Va, Sens, and Spec, respectively indicate training set, validation set, sensitivity, and 

specificity. 

 

Features 

FF FF, SH FF, SH, ZCR 
FF, SH, ZCR, 

NGS 

FF, SH, ZCR, 

NGS, MFCC 

Tr 

Sens 71.68±3.12 73.29±3.09 79.52±2.72 81.09±2.38 92.92±2.13 

Spec 71.68±3.12 73.29±3.09 79.52±2.72 81.10±2.38 92.92±2.13 

Va 

Sens 68.47±4.43 70.21±5.20 77.32±5.34 78.89±4.26 87.16±3.11 

Spec 68.48±4.43 70.24±5.21 77.35±5.34 78.92±4.25 87.17±3.11 
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In case of the parameter  (Fig 6.4(B)), the validation sensitivity increases with   reaching the peak 

value at  = 0.116 and then starts decreasing. On the other hand, the validation specificity shows a 

consistent increase with an increase in . For the parameter , validation sensitivity shows no 

variation until  = 0.229 and then starts decreasing. Contrary to this, validation specificity starts 

increasing after  = 0.229. Using these curves we set s = 9, s = 0.116 and δs = 0.327. 

 

6.3.3. Segmentation results on training/validation dataset MDD 

In this section, I illustrate the cough segmentation process and present the segmentation results 

on dataset MDD. The segmentation results are presented at the sub-block level, as well as the cough 

event level.  

I illustrate a typical cough sound segment from MDD and the output of automatic segmentation 

at different stages of processing in Figure 6.5. Figure 6.5(A) shows the filtered signal ŝ[n] while 

Figure 6.5(B) shows the output signal um[k]. According to Figure 6.5(B), um[k] is high (very close to 

 

Figure 6.4: Illustration of classifier parameters (β, , ) optimization in model design dataset 

(MDD). 
 

10 20 30

0.6

0.7

0.8

0.9


 

 

0.2 0.4 0.6

0.6

0.7

0.8

0.9

S
e
n
s
it
iv

it
y
, 

S
p
e
c
if
ic

it
y

0.2 0.4 0.6

0.6

0.7

0.8

0.9


 

 

sensitivity of training in MDD

sensitivity of validation in MDD

specificity of training in MDD

specificity of validation in MDD

sensitivity of training in MDD

sensitivity of validation in MDD

specificity of training in MDD

specificity of validation in MDD

(A) Optimization of  

(B) Optimization of 

(C) Optimization of  



  

63 

 

1) during cough events (CG1, CG2, CG4, CG5, and CG6). Even though the intensity of CG5 is low 

(Figure 6.5(A)), um[k] is still high. In Figure 6.5(A), CG3 is a cough event mixed with a speech 

signal and, in that case, um[k] has a low value. 

 

 

To determine the beginning and the end of cough segments from um[k], I followed the process 

described in Section 6.2.4(B) steps (S1) through (S3).  Figures 6.5(C) through 6.5(E) shows the 

outputs of those steps. Figure 6.5(C) shows the output of the smoothing process ũm[k]. According to 

Figure 6.5(C), the smoothing process improves the shape of the signal by reducing the spurious 

transitions of ũm[k], as in the case of CG5.  

Figure 6.5(D) shows the candidate cough segments after applying the threshold. At step (S3) of 

Section 6.2.4(B), only the candidate segments fulfilling criteria (min ≤ q ≤ max and δq > δ) were 

classified as cough segments. Figure 6.5(E), shows the output after step (S3). According to Figure 

6.5(E), segments CG1, CG2, CG4, CG5, and CG6 were correctly identified as cough events. The 

 

Figure 6.5: An illustration of cough segment identification from the model design dataset MDD. 

The cough sounds are indicated by CG1 through CG6. (A) output of noise reduction process, (B) 

output of TDNN, (C) output of moving average filter (step (S1) in Section 6.2.4, (D) output of  

thresholding (step (S2) in Section 6.2.4), (E) cough segments identified after step (S3) in Section 

6.2.4. 
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event CG3, which has speech segments, was not identified as a cough event. These results indicate 

that the proposed automated algorithm is capable of rejecting cough events corrupted with speech 

sounds and is robust against the variation of cough sound intensities.  

 

 

In Tables 6.3(A) and 6.3(B), I present segmentation results obtained from the 10 TDNN models 

in the ‘leave one out’ validation. Table 6.3(A) shows the segmentation performance computed at the 

sub-block level. At the sub-block level, the algorithm achieved a sensitivity and specificity of 

85.5±2.3 percent and 90.5±0.8 in the TDNN training process. The trained model resulted in a 

sensitivity and specificity of 84.6±8.6 and 90.4±3.9 percent respectively, in the ‘leave one out’ 

validation process. Kappa agreement between automated algorithm and manual scoring was 

0.71±0.06 during the ‘leave one out’ validation. 

Table 6.3: The performance of the algorithm on the training dataset (MDD) and prospective 

study dataset (PSD) using the optimized parameters (s  = 0.327, when s  = 9, s = 0.116). 

Statistics provided in the table are mean ± standard deviation. 

Training results for 10 TDNN models on dataset MDD 

(A) Performance computed at sub-block level 

 Accuracy Sensitivity Specificity Kappa 

Training 89.4±1.0 85.5±2.3 90.5±0.8 0.71±0.03 

Validation 89.4±3.3 84.6±8.6 90.4±3.9 0.71±0.06 

(B) Performance computed at event level (overlap > 50%) 

 Accuracy Sensitivity Specificity Kappa 

Training 93.6±1.2 91.3±1.9 94.8±1.2 0.82±0.03 

Validation 93.9±2.0 89.8±7.0 94.8±1.7 0.82±0.06 

Testing results using selected TDNN model Ms (s, s, s) on dataset PSD 

(C) Performance computed at sub-block level 

 Accuracy Sensitivity Specificity Kappa 

Testing 99.1±0.5 83.7±8.6 99.3±0.4 0.60±0.1 

(D) Performance computed at event level (overlap > 50%) 

 Accuracy Sensitivity Specificity Kappa 

Testing 97.4±1.1 92.8±6.8 97.5±1.1 0.65±0.1 
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Table 6.3(B) shows the performance of the automated algorithm in identifying cough events. 

For the work of this study, a true positive was detected if the event identified by the automatic 

classifier had at least 50 percent overlap with the manual scorer. The ‘leave one out’ validation 

sensitivity and specificity in identifying cough events were 89.8±7.0 and 94.8 percent respectively. 

The validation Kappa agreement between automated algorithm and scorer was 0.82±0.06 percent, 

which signifies a substantial agreement. 

6.3.4. Segmentation results on prospective study dataset PSD 

Following the process in Section 6.2.4, the TDNN model  (with all the parameters fixed) was 

constructed and tested on the set PSD. Table 6.3(C) shows the performance of  at the sub-block 

level. It achieved an accuracy, sensitivity, and specificity of 99.1±0.5, 83.7±8.6, and 99.3±0.4 

percent, respectively. The Kappa agreement between  and manual scoring was 0.61±0.13. Table 

6.3(D) presents the performance of  in identifying cough events in PSD. The automated algorithm 

achieved 97.4±1.1 percent accuracy, 92.8±6.8 percent sensitivity, 97.5±1.1 percent specificity, with 

a Kappa agreement of 0.65±0.1 in identifying cough events.  

According to Table 6.3, the performance of the automated algorithm is better on PSD than on 

MDD. The major reason for this is the way the MDD and PSD have been designed, as described in 

Section 6.2.1. The MDD (training set) consists of manually picked sounds, with a target of 

presenting the TDNN with a range of sound episodes observable in a real recording. To make the 

learning process robust, in MDD I purposely included even difficult examples such as low SNR 

data and low intensity coughs. In the case of PSD, I used the actual recorded data streams, where 

such difficult events naturally occur at a much lower rate. Even though this strategy led to a slightly 

lower performance on the training set, it also led to a better generalization capability, which helped 

the Ms to produce a better outcome on PSD. 

Table 6.4 presents the segmentation results in three age groups (age < 12 months, 12 to 36 

months, and 36 to 72 months). From Table 4, it can be seen that the accuracy and specificity of the 

automated algorithm is similar across all age groups. The sensitivity in the age group 12 to 36 

months is about 2 percent higher compared to the other age groups. The results show that my 

automated algorithm is not significantly affected by the age variations.   
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Table 6.4: Performance of the selected TDNN model Ms (s, s, s) on the 

Prospective Study Dataset (PSD).  

 
Less than 12 months 12  to 36 months 36 to72 months 

Accuracy 97.0±1.4 97.1±0.2 97.7±0.3 

Sensitivity 91.4±8.1 94.6±4.7 92.2±7.8 

Specificity 97.3±1.4 97.4±0.6 98.3±1.0 

 

 

 

 

Figure 6.6: Illustration of cough segment identification using different types of coughs from the 

prospective study dataset PSD. It can be seen that the proposed algorithm is robust against: (i) 

SNR variation (graphs in (A) and (B)); (ii) waveform-shapes variations (graphs in (C) and (D)); 

and (iii) in rejecting non-cough sounds (graphs in (E) and F)). 
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In Figure 6.6, I further illustrate the performance of the proposed algorithm on sound recordings 

with different SNRs and a range of cough waveforms. All the sound segments in Figure 6.6 were 

taken from the prospective dataset PSD. In Figures 6.6(A) and 6.6(B), in spite of significant 

variations in cough intensity, the proposed algorithm is able to identify all the cough events. This 

signifies that the algorithm performance is robust against intensity variations. The waveform-shapes 

(e.g. the number of humps) of cough sounds can vary widely, especially in disease conditions. In 

order to test whether the algorithm is sensitive to this change, I tested it on two sound segments 

consisting of coughs with different wave-shapes (see Figures 6.6(C) and 6.6(D)). As can be seen 

from these figures, my algorithm identifies the entire cough segment irrespective of their wave-

shape. Figures 6.6(E) and 6.6(F) show the performance of the algorithm on a typical sound segment 

consisting of speech, laughter, and cries. This result shows the robustness of the algorithm in 

discounting non-cough sounds, regardless of their intensity. 

6.4. Discussion  

In this study, I propose an automated method to identify cough events from paediatric sound 

recordings acquired with non-contact microphones in the natural environment of a respiratory ward. 

The subject cohort for my study was children from 3 to 71 months of age with respiratory diseases 

such as pneumonia, bronchitis, and nasopharyngitis. Working with the sound recordings from 24 

paediatric subjects, I showed that my method was capable of identifying cough events with 

sensitivity and a specificity of > 90 percent. To the best of my knowledge, my work is the first ever 

attempt to identify cough events from the paediatric sound recordings.  

All previous research on cough event identification is based on sound recordings from adult 

subjects. Yet, it is well known that the airway anatomy and functionality of children are quite 

different to those of adults and that cough sounds from the two groups have different characteristics.  

The vast majority of my dataset consisted of coughs from pneumonia patients. This is a distinct 

novelty. The nature of the cough changes due to pneumonia; specifically, the coughs become 

smaller in magnitude, thus lowering the signal to noise ratio. Conventional detection methods that 

depend on features such as gradients and the number of humps in cough waveforms are not 

appropriate, due to the sharp decrease of the gradients and deteriorations in the hump structures. My 

method is novel in that it does not rely on intensity features alone, it does not depend on the number 

of humps, and it does not need calibration every time it is used. All of these features make my work 

unique.   
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Another novelty of my study is that I was able to analyse spontaneous coughs from children, 

whereas previous research methods [36, 113] only reported results on voluntary coughs in adults. 

Spontaneous coughs contain a wide range of natural variety in terms of cough sound intensity, 

duration, and waveform shape, which cannot be expected in a voluntary cough that could be 

consciously or subconsciously controlled by an adult subject. Furthermore, the spontaneous (and 

continuous) sound recordings capture other undesirable sound events such as toy noise, children’s 

laughter and cries, and adult conversations. My algorithms assume total naiveté to the time of 

occurrence of any desirable sound event, whereas voluntary recording enables a reasonable control 

over undesirable sounds and the time of occurrence of desirable events. These differences make 

spontaneous coughs much more difficult to detect in a continuous sound stream. 

I designed and tested my algorithm on data recorded using non-contact bedside microphones. 

Previous studies have used body-contact sensors to record sounds [34-36]. While contact sensors 

may provide an easier signal to work with, the need for a physical sensor to have contact with the 

patient is problematic. Specifically, contact sensors are inconvenient to use on paediatric subjects, 

and they cause a risk of cross-infection among pneumonia patients. These differences in 

measurement protocols make the results difficult to compare with those of previous studies. 

6.5. Conclusion  

The cough segmentation method proposed in this study achieved an accuracy, sensitivity, and 

specificity of 97.4 percent, 92.8 percent and 97.5 percent, respectively on a prospective dataset. The 

Kappa agreement between my method and the human observer was 0.65. Based on these results, I 

conclude that my method has the potential to be used in automated cough logger applications. It 

should also be possible to use it as the front-end of an automatic cough analysis system. The results 

presented in this study should be further verified with a larger dataset. 

 

 

 

Novelty and impact: 

 This is the first method facilitating automated cough segmentation for long-term recordings 

in paediatric populations. 

 The method is non-contact, inexpensive, and reproducible. 

 Can be used for a cough counter as well as the front end of a cough sound analysis system. 



  

69 

 

7. Conclusion and Future Work 

Chapter 7  

Conclusion and Future Work 

This thesis contributes to the development of novel methods for cough assessment and its 

application to screen respiratory diseases. It addresses three major gaps in the cough analysis fields: 

first, it develops an automated method for wet/dry cough identification; second, it develops a cough 

sound analysis based method that can be substituted for the bronchodilator test; and third, it 

develops an automated method for segmenting cough sounds from the continuous recordings.  

Currently, wet/dry cough identification is manually identified by physicians during physical 

examinations. However, the perceptions of wet/dry cough differ among paediatricians due to their 

individual skills and experiences. In Chapter 4, I addressed the problem by proposing a novel 

method to identify wet/dry cough automatically. The proposed method achieved 84 percent 

sensitivity and 76 percent specificity, demonstrating that the method has potential to be 

implemented for cough quality monitoring especially in the home environment. It also facilitates the 

study of the wet/dry cough in long term recordings. 

In Chapter 5, a cough sound analysis based method was proposed as an alternative to the 

bronchodilator test. Cough is the primary symptom of both pneumonia and asthma. Using non-

contact sensors to obtain the cough signal facilitates the development of low cost diagnostic tools.  

Non-contact measurements reduce the risk of cross-infection and require less effort as no 

sterilization is required. All these benefits are useful to address the problems of pneumonia/asthma 

diagnosis in resource-limited settings. The proposed method achieved 100 percent sensitivity, 80 

percent specificity, and 0.8 Kappa agreements in separating pneumonia from asthma subjects. The 

performances were computed from 20 subjects following the ‘leave one out’ validation method. The 

results show that analysis of cough sounds has the potential to be developed as a substitute for the 

bronchodilator test in resource-limited settings. 

Chapter 6 proposed the development of an automated method for segmenting coughs from 

recordings obtained in paediatric populations. The proposed method achieved high performance 

with 93 percent sensitivity, 98 percent specificity and 0.65 percent Kappa. To the best of my 

knowledge, this is the first effort in this field. Previous research focused on the development of 

cough counting devices for the adult population and researchers relied on sound intensity features to 
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detect cough sounds. It is worth noting, however, that counting cough frequency is only one aspect 

of cough quantification study. There are numerous areas of cough quantification (i.e. wetness index, 

pneumonia cough index) that have not yet been explored. My method is intended to facilitate those 

purposes as it has the potential to be developed as an automated cough counting device, as well as 

the front end of cough analysis systems. Researchers and health workers no longer have to manually 

segment cough samples for the recordings. 

The findings of this current research show that cough analysis can be carried automatically with 

minimum intervention from human operators. It also shows the potential for cough sound analysis 

as a means to develop a low cost, convenient, and accurate diagnostic tool for paediatric 

pneumonia/asthma. It can be augmented to suit the existing WHO guidelines for pneumonia 

management in the resource-limited settings. 

It should be noted that the positive results from this thesis should be followed up with further 

studies before the proposed method is applied in the field.  

7.1. Direction for future work 

In this thesis, the cough samples were recorded using non-contact microphone sensors with a 

frequency range of 20 Hz to 20 kHz. It is understood that the propagation of sound signals 

correspond to their wavelength/frequency. To achieve the maximum performance, it is necessary to 

investigate the effect of distance variations between the sensors and the subjects and then to define 

the optimum distance to gain the maximum performance. Further, sounds recorded in the narrow 

room (e.g. paediatric wards in low-income countries) could produce echo that contributes to the 

recorded cough sounds. Studies on the effect of echo and an echo cancellation algorithm would be 

useful to improve the cough processing algorithm further. 

The performance of the methods presented in this thesis can be improved by further fine tuning 

the parameters used in the algorithm. My methods are mostly inspired by the features and 

algorithms used in the speech processing field. Despite the positive results, an advanced signal-

processing algorithm could be implemented to deepen the study on pneumonia/asthma and to obtain 

more definitive features/algorithms to separate those diseases. 

Lung sounds such as crackles are commonly reported in pneumonia subjects. This information 

can be augmented to support the results from cough sound analysis. Further, crackles data can be 

used to validate the hypothesis that crackles present in the cough sounds of pneumonia subjects. If 

the hypothesis is true then non-contact detection of crackles via cough can be developed.  



  

71 

 

The database of cough sounds from paediatric subjects is extremely limited due to the lack of 

pertinent studies; therefore, developing a comprehensive database is one of the important tasks that 

should be completed. Studies on the influence of gender, age, and co-morbidities to the 

performance of the algorithm are only possible using a large database. Database augmentation is a 

key element in the development of robust algorithms. To this end, testing in an adequate number of 

prospective datasets is required before implementing the algorithm in the field. 

One of the ultimate goals of this study is to develop pneumonia diagnosis tools for resource-

limited settings. It is essential to develop the method into a portable device or mobile phone 

applications to enable production of low cost systems. 
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Appendix A  

A.1. Computed features 

Let ŝk[n] represents the k
th

 (k = 1, 2, …, K) sub-block/sub-segment having length N from signal ŝ[n]. 

The following features can be computed in each ŝk[n].   

A1.1. Mel-frequency cepstral coefficients (MFCC) 

MFCC is widely used in speech processing [143]. It was found to be highly useful for snore 

analysis [144, 145] as well as cough analysis [33]. To compute the MFCCs, ŝk[n] is processed 

through four successive stages: signal windowing, discrete Fourier transform, Mel-frequency filter 

banks filtering, and discrete cosine transform [133]. The equations for the Hamming window and 

discrete Fourier transform are given in (A-1) and (A-2) respectively.  
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Next, the magnitude of ζk() is passed to Mel filter banks where the output given in (A-3). 
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where m is the number of Mel filter banks, which can be varied from 24 to 40. The transfer function 

of the Mel-filter is given in (A-4).  
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Let fl and fh be the lowest and the highest frequencies of the filter bank in Hz, and fs are the 

sampling rate in Hz. The boundary points f[m] are given as follows. 
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The Mel-scale B and its inverse (B
-1

) given in (A-6) and (A-7) respectively. 
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Finally, the MFCCs are computed is computed using a discrete cosine transform as in (A-8). 
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where η represents the number of cesptral coefficients. The first η =13 cesptral coefficients were 

used in the automatic segmentation work. In pneumonia and asthma classification using HMM, 13 

of the first order differential (Φ) and 13 of the second order differential (Φ) of MFCC were 

augmented to capture the temporal signal dynamic.  

A1.2. Non-Gaussianity score (NGS) 

The NGS provides an easy method to quantify the deviation of a given signal from a Gaussian 

model. In a study on snore sound analysis [146], this feature showed a capability to screen 

obstructive sleep apnoea. In this work, the NGS is computed as follows. Let p be a model Gaussian 

probability plot denoted as (A-9). I compute γ, the inverse (F
-1

) of normal Cumulative Distribution 

Function (cdf) at given probability  denoted in (A-10). 
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where the mean ( = 0) and standard deviation (  = 1). Suppose r is the discrete signal in ŝk[n]. 

The estimation of inverse normal cdf of  sk[n] is given in (A-11) and the NGS in (A-12). 
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where χ1 and χ3 respectively is the first and third quartile of r. 

 

A1.3. Zero crossing rate 

The ZCR, defined as the total times a signal crosses the zero axis, is a simple but useful method 

to detect the periodic nature of a signal regardless of its magnitude. The ZCR feature Zk is computed 

as follows. 
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where the indicator function Π[A] is 1 if the argument A is true and 0 for otherwise.  

 

A1.4. Shannon entropy 

Cough sound is a complex signal, which represents contributions from various sub-structures of 

the respiratory tract. Some of these components display pseudo-periodic structures, while others 

have a random stochastic character. In this work, I computed the Shannon entropy to capture these 

features. The Shannon entropy (ħk) of a sub-block ŝk[n] was obtained using definition in (A-14).  
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A1.5. Formant frequency 

In speech, Formant frequencies show the characteristics of vocal tract resonances; in snore 

sound analysis they indicate the resonance of the upper airway. I hypothesized that in 

cough/respiratory sounds, formant may carry resonances of the entire respiratory tract. For 

instance, wheezing sounds, which originates due to vibrations in the bronchioles of the lung, may 

contribute higher frequency formants (resonance frequencies) in the cough sounds. The first four 

FF was included in wet/dry classification work, and five formants were used in the automatic 

segmentation work. Past studies in the speech and acoustic analysis have shown that these formants 

correspond to various acoustic features of airways [147, 148]. I computed the formant frequencies 

by peak picking the Linear Predictive Coding (LPC) spectrum of cough sounds. For this work, I 

used the 14
th

 order LPC model with the parameters determined via the Levinson-Durbin recursive 

procedure. 
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A1.6. Pitch 

In speech analysis, pitch is defined as the fundamental frequency of the vocal cord. Several 

algorithms have been proposed in the literature to estimate the pitch of a voiced acoustic signal. In 

this study, I used the classical method of ‘autocorrelation with center clipping’ [150] to compute the 

pitch of a cough sub-segment. 

A1.7. Log energy 

The log energy for every sub-segment was computed using eq. A-15. 
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In (15)  in (%) is an arbitrarily small positive constant added to prevent any inadvertent 

computation of the logarithm of 0. 

A1.8. Kurtosis 

Kurtosis is a measure of the “peakedness” associated with a probability distribution of sub-

segment ŝk[n], computed using (A-16). µ and  are the mean and standard deviation of the segment 

ŝk[n]  respectively.  
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A1.9. Bispectrum score (BSS) 

The third order spectrum of the signal is known as the bispectrum. Unlike the power spectrum 

(second order statistics) based on the autocorrelation, bispectrum preserves Fourier phase 

information. The bispectrum can be estimated via estimating the third order cumulant and then 

taking a 2D-Fourier transform. The third order cumulant C(1,2) was estimated using (A-17) as 

defined in [151]. By applying a bispectrum window function (minimum bispectrum-bias supremum 

window described in [152]) to the cumulant estimate, a windowed cumulant function Ck(1,2)was 

obtained.  
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In (17) Q is the length of the 3
rd

 order correlation lags considered. The bispectrum Bk(ω1,ω2) of the 

sub-segment ŝk[n]  was estimated using (A-18). FFT length is set at 512 points. 
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In the frequency domain, a quantity Pk(ω;,ρ) can be defined for the data sub-segment ŝk[n] such 

that: 

),(),;(   kk BP             (A-19) 

describing a one-dimensional slice inclined to the ω1-axis at an angle tan
-1 and shifted from the 

origin along the ω2-axis by the amount ρ,(-<ρ<). For this work I set =1 and ρ=0 so that the slice 

of the bispectrum considered is inclined to the ω1-axis by 45
o
 and passes through the origin. Then 

Bispectrum Score ξ is computed using (A-20). In (A-20) I used 1 = 90 Hz, 2 = 5 kHz, 3 = 6 kHz 

and 4 = 10.5 kHz. 
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A.2. Performance parameters 

Definition of the statistical measures used to evaluate the performance of the algorithm. 

 FNTPTP  ySensitivit            (A-21) 

 TNFPTN  ySpecificit            (A-22) 

   FNTNFPTPTNTP  Accuracy          (A-23) 

 FPTPTP PPV              (A-24) 

 FNTNTN NPV             (A-25) 

where TP – True Positive, FP – False Positive, TN – True Negative, FN – False Negative, PPV – 

Positive Prediction Value, NPV – Negative Prediction Value. 
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In this work, Kappa statistic measures the agreement between the proposed algorithm and the 

trained scorer. Below are the guidelines for interpreting the Kappa values.  

 

A.3. Recording devices specification 

In this study, I used Rode NT3 microphones incorporated with pre-amplifier and A/D converter 

MobilePre USB, M-Audio
®
, California, USA. The specification of the microphones is illustrated in 

Table A3.1 while the polar pattern and frequency response are shown in Fig A3.1 and Fig A3.2, 

respectively. The frequency response of MobilePre USB M-Audio is shown in Fig A3.3. 

 

  

Table A.1: The interpretation of Kappa values. 

Kappa Interpretation 

< 0 less than chance agreement 

0.01 – 0.20 Slight agreement 

0.21 – 0.40 Fair agreement 

0.41 – 0.60 Moderate agreement 

0.61 – 0.80 Substantial agreement 

 

Table A.2: The specification of microphone RODE NT3. 

Acoustic principle Pressure gradient 

Directional pattern Hypercardioid 

Sensitivity -39 dB re 1Volt/Pascal(12 mV @ 94 dB SPL) +/- 2 dB @ 1 kHz 

Output impedance 200 

Output connection 
3 pin XLR, balanced output between Pin 2 (+), Pin 3 (-) and Pin 

1 (ground) 

Power 9V battery or phantom power 12V 

SPL/Noise Max sound pressure level (SPL): 140 dB, Self-noise: 16 dB (A) 

 



  

86 

 

A.4. Graphical user interface for wet/dry cough classification 

 

 

  

 

Figure A.1: Graphical user interface application (GUI) used by paediatricians for 

classifying coughs into different categories. 
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A.5. Feature vectors statistics from cough sound and non-cough 

sounds 

The feature vectors F for automatic cough segmentation contains 22 elements: 13 

Mel-frequency cepstral coefficients, 5 Formant Frequency, and 1 coefficient of each Log Energy, 

Zero crossing rates, Shannon entropy, and Non-Gaussianity score. To discover the characteristic of 

these features, I calculated the probability density function (pdf) of a specific sound in the cough 

(CG) and non-cough (NG) classes. The NG represent a wide range of non-cough sounds; hence, in 

this work, I chose the most dominant sounds, such as cry (CY), vocalization (abbreviated as VC, 

e.g., speech, typical baby voices), and appliances sounds (abbreviated as AS, e.g., sound from the 

door bank, trolley, bed). 

I illustrate the smoothed pdf of each feature of F in Figures A.4 through A.6. All values in the 

pdf had been normalized. As can be seen from these figures, the distribution of features (MFCC, FF, 

CR SH, and NGS) between cough and other sounds are overlapping. However, each component of 

the features has a unique distribution. 

Figure A.4 shows the pdf from randomly selected elements of MFCC (M(1), M(4), M(9), and 

M(11)). From Figures A.4(A) and A.4(B), it can be seen that the pdf of M(1) in CG and AS classes 

have a different mean ( = 0.31 to 0.18). The pdf of M(9) in Figure A.4(C) shows that CG has 

lower mean than CY ( = -0.01 to  =  -0.13, respectively). The complete statistical information of 

MFCC is shown in Table A.3. 

Figure A.5 exhibits the pdf of formant frequencies. The statistical distribution (mean, standard 

deviation, skewness, and kurtosis) of formant frequencies of F(1), F(3), and F(5) between cough 

(CG) and appliance sounds (AS) are distinguishable. The distribution of F(2) in CG, CY, VC, and 

AS seem similar; however, CG has the lowest mean (-0.06).  Moreover, the distribution of F(4) in 

TS has the lowest mean among the classes (-0.003).  

Figure A.6 illustrates the NGS index of CG, CY, VC, and AS. The NGS has the potential to 

discriminate CG from VC and CY (Figure A.6(D)). Similarly, from Figure A.6(B) it can be seen 

that ZCR can be used to discriminate CG from AS. I show the mean and standard deviation of 

formant frequency, Shannon entropy, zero crossing rates, and non-Gaussianity score in Tables A.4 

and A.5. 

The pdf of the features shows that there are no dominant feature which can be used alone as an 

input for TDNN to classify CG/NG class. Hence, to obtain the maximum benefit of each component 

of the features, I combined them and used d (d = 5) successive of features vector as the input of 

TDNN to classify CG/NG class. 
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Figure A.2: The probability density function (pdf) of randomly selected Mel-frequency cepstral 

coefficient (smoothed for display purposes). Although they are overlapping, the coefficient 

M(4) can be used to differentiate cough and appliance sound, the coefficient M(9) differentiate 

between cough to cry, and M(11) to differentiate between cough and vocalization. 
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Figure A.3: The pdf of five first formant frequencies (F(1) – F(5)). Even though the distribution 

of the formant frequencies are overlapping, they have different mean, skewness, and kurtosis, 

especially for F(1), F(3), and F(5). 
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Figure A.4: The pdf of the energy, zero crossing rate (ZCR), Shannon entropy, and non-

Gaussianity score (NGS). The NGS can be used to differentiate between cough with 

vocalization and cry, while ZCR differentiates between cough and appliance sound. The profile 

of log energy and Shannon entropy between sounds are similar, but they have different 

skewness and kurtosis. 
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Figure A.5: Illustration of cough sound recording. As well as coughs, the recording also 

contains an abundance of other sounds from children, such as crying, grunting, and 

vocalizations. 
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Figure A.6: A portion of an enlarged cough sound recording along with the segmentation 

results (indicated by the dashed line). It shows 30 second length recordings containing coughs, 

crying, and grunting. 
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Table A.3: Mel-frequency cepstral coefficients (MFCCs) statistics from cough (CG), 

Vocalization (VC), Cry (CY) and Appliances sounds (AS). M(1) – M(12) represent the MFCCs, 

 = mean and   = standard deviation. 

Cla

ss 

M(1) M(2) M(3) M(4) M(5) M(6) 

            

AS 0.18 0.40 0.18 0.42 -0.01 0.36 -0.04 0.38 0.23 0.30 0.17 0.35 

CY 0.23 0.33 0.36 0.35 0.08 0.34 0.21 0.39 -0.06 0.31 0.09 0.33 

VC 0.33 0.32 0.46 0.28 -0.13 0.31 0.11 0.40 0.19 0.32 0.33 0.33 

CG 0.31 0.41 0.23 0.38 0.33 0.26 0.38 0.42 0.24 0.24 0.27 0.37 

  

Cla

ss 

M(7) M(8) M(9) M(10) M(11) M(12) 

            

AS 0.04 0.37 0.09 0.28 -0.13 0.31 0.18 0.30 0.06 0.29 0.04 0.36 

CY -0.03 0.32 0.08 0.30 -0.12 0.31 0.06 0.33 -0.02 0.33 0.16 0.32 

VC -0.29 0.28 -0.07 0.32 0.02 0.30 -0.23 0.28 0.15 0.30 -0.08 0.30 

CG -0.02 0.33 -0.14 0.29 -0.01 0.30 -0.10 0.34 -0.05 0.32 0.03 0.35 
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Table A.4: Formant frequency (F(1) – F(5)) statistics from cough (CG), Vocalization (VC), Cry 

(CY) and Appliances sounds (AS). 

Cla

ss 

F(1) F(2) F(3) F(4) F(5) 

          

AS -0.47 0.41 -0.07 0.34 -0.13 0.34 -0.003 0.39 0.07 0.39 

CY -0.04 0.45 -0.07 0.39 0.18 0.36 0.07 0.33 0.12 0.30 

VA -0.23 0.43 0.01 0.39 0.10 0.40 0.08 0.41 0.01 0.53 

CG -0.37 0.33 -0.06 0.40 0.07 0.31 0.003 0.30 0.06 0.35 

 

Table A.5: Log energy, zero crossing rates (ZCR), Shannon entropy, and non-Gaussianity 

score (NGS) statistics from cough (CG), vocalization (VC), cry (CY) and appliances sounds 

(AS). 

Clas

s 

Log Energy ZCR Shannon Ent. NGS 

        

AS -0.38 0.39 -0.41 0.45 -0.88 0.27 -0.87 0.22 

CY -0.24 0.46 -0.64 0.34 -0.82 0.29 -0.73 0.29 

VC -0.48 0.29 -0.66 0.28 -0.93 0.14 -0.59 0.36 

CG -0.46 0.43 -0.60 0.42 -0.92 0.18 -0.84 0.24 
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Table A.6: Automatic segmentation results of each subject in Prospective Study Dataset 

(PSD). CG = cough, NC = Non-cough, TP, True Positive, FN = False Negative, TN = True 

Negative, FP = False Positive, Sen = Sensitivity, Spe = Specificity, Acc = Accuracy, K = 

Kappa, PPV = Positive Predictive Value, NPV = Negative Predictive Value. 

Subject 

ID 
CG NC TP FN TN FP 

Sen 

(%) 

Spe 

(%) 

Acc 

(%) 
κ 

PPV 

(%) 

NPV 

(%) 

1 275 2553 251 24 2499 54 91.3 97.9 97.2 0.9 82.3 99.0 

2 23 2311 19 4 2254 57 82.6 97.5 97.4 0.4 25.0 99.8 

3 57 2226 45 12 2212 14 78.9 99.4 98.9 0.8 76.3 99.5 

4 100 4555 97 3 4389 166 97.0 96.4 96.4 0.5 36.9 99.9 

5 96 5039 94 2 4887 152 97.9 97.0 97.0 0.5 38.2 100.0 

6 270 2413 260 10 2320 93 96.3 96.1 96.2 0.8 73.7 99.6 

7 172 3598 140 32 3425 173 81.4 95.2 94.6 0.6 44.7 99.1 

8 112 2542 105 7 2489 53 93.8 97.9 97.7 0.8 66.5 99.7 

9 71 4315 68 3 4231 84 95.8 98.1 98.0 0.6 44.7 99.9 

10 66 2679 61 5 2610 69 92.4 97.4 97.3 0.6 46.9 99.8 

11 51 2857 50 1 2785 72 98.0 97.5 97.5 0.6 41.0 100.0 

12 29 1526 29 0 1502 24 100.0 98.4 98.5 0.7 54.7 100.0 

13 20 1376 17 3 1361 15 85.0 98.9 98.7 0.6 53.1 99.8 

14 87 2154 87 0 2108 46 100.0 97.9 97.9 0.8 65.4 100.0 
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