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In this work, the crystal structure of GaAs nanowires grown by molecular beam epitaxy has been

tailored only by bismuth without changing the growth temperature and V/III flux ratio. The

introduction of bismuth can lead to the formation of zinc-blende GaAs nanowires, while the re-

moval of bismuth changes the structure into a 4H polytypism before it turns back to the wurtzite

phase eventually. The theoretical calculation shows that it is the steadiest for bismuth to adsorb on

the GaAs(111)B surface compared to the liquid gold catalyst surface and the interface between the

gold catalyst droplet and the nanowire, and these adsorbed bismuth could decrease the diffusion

length of adsorbed Ga and hence the supersaturation of Ga in the gold catalyst droplet. VC 2014
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4898702]

III-V semiconductor nanowires have attracted great

interests for more than a decade due to their potential appli-

cations in electronics,1 photonics,2 and sensors.3 Many of

these applications are based on a low defect density and a

high crystal quality of nanowires, because the crystallo-

graphic properties have a significant effect on the carrier life-

time,4 the electrical energy band,5 and the transport

properties.6 Therefore, a precise control of nanowire struc-

tures is required before their applications come true. During

the past decade, many methodologies have been proposed to

tailor the crystal structure grown by the vapor-liquid-solid

(VLS) mechanism. Joyce7 proposed different combinations

of the growth temperature and V/III flux ratio to tune the

phase perfection, while the phase transition between wurtzite

(WZ) and zinc blende (ZB) structures has been controlled

only by changing the V/III flux ratio8 or only by varying the

growth temperature.9 Alternative approach is by such addi-

tive atoms as antimony10 or zinc11,12 to tune the phase struc-

ture of GaAs or InP nanowires.

It is now well accepted that there are at least three pa-

rameters that influence the polytypism in particle-assisted

III-V nanowire growth: supersaturation, interface energies,

and the contact angle.13 For example, realizing single-phase

growth often needs high supersaturation conditions for pure

WZ structure, or low supersaturation for pure ZB structure.13

Moreover, the large contact angle and the lower surface

energy of the catalyst particle will favor the formation of ZB

crystal phase.14 The growth temperature and V/III flux ratio

usually affect the crystal structure of nanowires by changing

supersaturation.9 Besides the growth temperature and V/III

flux ratio, the introduction of additive atoms is also able to

control the crystal structure of nanowires via adjusting the

above mentioned three parameters. Algra et al. demonstrated

that they can control the crystal structure of InP nanowires

by impurity dopants and ascribed it to the modulation of

interface energies.12 Meanwhile, the ZB phase of GaAsSb

nanowires was found to be favorably formed after the intro-

duction of Sb, which can be explained by the changing of

supersaturation very well.10 Nonetheless, controlling crystal

phase in III-V nanowires using the additive atom still

remains challenging and requires further investigations to

understand the fundamental growth mechanism.

In this study, we have grown GaAs nanowires by molec-

ular beam epitaxy (MBE), in which the crystal structure is

tailored by alternatively adding or removing bismuth. By the

qualitative analysis, we attribute the phase transition to the

bismuth which decreases the supersaturation in the alloy

droplet by impeding the diffusion of adsorbed Ga on the sub-

strate to the growth front.

GaAs nanowires were grown in the bismuth ambient via

the VLS growth approach on GaAs(111)B substrates in a

Riber 32 MBE system with the As4 source. The growth tem-

perature was 420 �C and the As4/Ga beam equivalent pres-

sure (BEP) ratio was set at 23, with the Ga BEP of

2.0� 10�7 Torr and the As4 BEP of 4.6� 10�6 Torr. These

growth conditions were set to grow pure WZ structured

GaAs nanowires15,16 when no bismuth exists in the ambient.

The bismuth BEP was maintained at 2.0� 10�7 Torr. After

50-min growth, the bismuth shutter was closed and the

growth of GaAs nanowires continued for another 10 min

without bismuth in the ambient. Morphological characteriza-

tion of GaAs nanowires was carried out in a JEOL 7800F

scanning electron microscopy (SEM) operating at 10 kV, and

their crystallographic structure was analyzed in detail by a

Philips Tecnai F20 and a FEI Tecnai F30 transmission elec-

tron microscopy (TEM) operating at 200 kV and 300 kV,

respectively. The Tecnai F20 TEM is equipped with an X-

ray energy dispersive spectroscopy (EDS) for the composi-

tional analysis. The nanowires for TEM characterization

were ultra-sonicated off from the substrates in ethanol and

then dispersed onto holey carbon films supported by Cu

mesh grids.a)Electronic addresses: ppchen@mail.sitp.ac.cn and luwei@mail.sitp.ac.cn
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Figure 1(a) is a SEM image of a typical GaAs nanowire,

showing its tapered morphology. Figure 1(b) is a TEM image

of the tip section of a nanowire, and Figs. 1(c) and 1(d) are

high-resolution TEM images taken from different sections of

the nanowire shown in Fig. 1(b). Figures 1(c) and 1(d) depict

the phase information of the top part grown without bismuth

(defined as GaAs-II) and the phase information of the bottom

part grown with bismuth in the ambient (defined as GaAs-I),

respectively. As can be seen from the selected area electron

diffraction [SAED, insets in Figs. 1(c) and 1(d)], the GaAs-I

is of ZB structure [shown in Fig. 1(d)], which was obtained

only by adding bismuth atoms without changing any other

conditions. In contrast, the GaAs-II shows an impure 4H pol-

ytypism followed by the WZ structure [shown in Fig. 1(c)].

These two findings indicate that the introduction of bismuth

can control the crystal structure of GaAs nanowires: the pres-

ence of bismuth favors the formation of ZB structure, while

the removal of bismuth changes the ZB structure to a 4H pol-

ytypism and finally back to the WZ structure.

In order to further investigate the effect of bismuth on

the control of crystal structure of GaAs nanowires, we have

grown the GaAs nanowires with five GaAs-I inserts with fol-

lowing features in the inserts. Each GaAs-I insert was grown

for 1 min, and from the bottom to the top of nanowire, the

bismuth BEP for each insert increased gradually from

7.5� 10�8 Torr to 4.8� 10�7 Torr, as shown in Fig. 2(a).

After each insert, the GaAs-II section was grown for 9 min

with the bismuth source switched off. Throughout the

growth, the growth temperature and the As/Ga BEP ratio

were kept at 420 �C and approximately 20, respectively.

Since all GaAs-I inserts were grown in a single nano-

wire, we can explore the mechanism of crystal-structure

transformation induced by bismuth, excluding the effect of

other growth parameters, such as growth temperature and V/

III flux ratio, on the crystal structure. Since the third insert

from the top was grown with the bismuth BEP of

2.0� 10�7 Torr (identical to the previous case), we first

focus on this GaAs-I insert to see whether the transition of

crystal structure has been repeated. Figures 2(b)–2(d) show

the detailed TEM investigations. As expected, before the bis-

muth was introduced to the growth ambient, GaAs nanowires

present a pure WZ structure. Once introducing bismuth, the

transition from the pure WZ structure to the twinned ZB

structure (GaAs-I) happens abruptly [as shown in Figs. 2(b)

and 2(e)]. The close of bismuth source causes the expected

formation of GaAs-II, which is a 4H polytypism followed by

the WZ structure [refer to Figs. 2(c) and 2(d)]. The similar

phase transition has been also reported by Dheeraj et al.10

Their transition was caused by the introduction of antimony

and the ZB segment was a ZB structured GaAsSb insert.

However, the EDS result of our GaAs-I shown in Fig. 3(a)

FIG. 1. (a) The 30�-tilted SEM image of a typical GaAs nanowire grown in

the bismuth ambient. (b) The TEM image near the tip section of the GaAs

nanowire, including the GaAs-I and the GaAs-II. (c) The 4H polytypism fol-

lowed by the WZ structure in GaAs-II and (d) the ZB structure of GaAs-I, in

which the insets of SAED patterns verify the corresponding crystal structure.

The two circles in the bottom inset of (c) show the (01�10) and (000�4) dif-

fraction points for a 4H polytype phase.

FIG. 2. (a) The scheme of GaAs nanowire with five GaAs-I inserts to depict

the growth process. (b) The TEM image showing the structural transition

from WZ to ZB and back to WZ. The 4H segment follows the ZB segment.

(c)–(e) correspond to the high-resolution TEM images of the WZ segment,

the 4H polytype section and the ZB GaAs-I insert in the GaAs nanowire,

respectively.

FIG. 3. The EDS results showing the composition of (a) the GaAs-I insert

and (b) the catalyst in the nanowire. Both spectra indicate no distinct exis-

tence of bismuth.
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reveals no existence of the bismuth in GaAs nanowires. A

further EDS measurements were both performed in the gold

catalyst [as shown in Fig. 3(b)] and in the neck section

formed during the cooling down, and again no bismuth was

detected. Therefore, it is suggested that, in our case, the bis-

muth does not participate in the formation of nanowires like

antimony.

Figures 4(a)–4(e) show the structural characteristics of

the five GaAs-I inserts (between the two lines) taken from a

typical nanowire. Under the bismuth BEP conditions of

7.5� 10�8 Torr and 1.2� 10�7 Torr, both GaAs-I inserts do

not present a ZB phase. In these cases, only stacking faults

are formed in the WZ structure, as shown in Figs. 4(a) and

4(b). However, when bismuth BEP is increased to the

amount comparable with gallium [Fig. 4(c)], the expected

ZB structured GaAs-I is obtained with some twins. With fur-

ther increasing bismuth, the transition from WZ to ZB hap-

pens, as shown in Figs. 4(d) and 4(e). The pure ZB insert is

obtained finally under the bismuth BEP condition of

4.8� 10�7 Torr. According to these experimental results, it

can be noted that the increase of bismuth BEP can reduce the

density of twin defects in the GaAs-I inserts. Above the

GaAs-I, the 4H polytype phase forms due to the close of bis-

muth, except the case where the amount of bismuth is small-

est [refer to Fig. 4(a)]. Figure 4(f) depicts the length

variation of the transition region, including the 4H polytype

section and the GaAs-I insert, with the amount of bismuth.

From the bottom to the top, the length of the 4H polytype

section decreases with increasing bismuth. The same trend

holds for the ZB GaAs-I insert and hence for the overall

length of the 4H polytype section and the ZB GaAs-I insert.

In order to clarify the reason for the phase transforma-

tion caused by bismuth, two issues need to be addressed. The

first issue is that why we cannot detect Bi in the nanowire

and catalyst. The second issue is that why the introduction of

Bi could tailor the structure of nanowire. To address the first

issue, we noted that in the two dimensional growth, bismuth

has a strong tendency to surface segregation, so that it is dif-

ficult for bismuth to be incorporated into the surface to form

GaAsBi film under conventional GaAs film growth condi-

tions.17,18 In our case, we cannot find any bismuth on the

post-grown GaAs substrates by EDS investigation. Further

theoretical calculations by the first principle show that the

energies of adsorption of bismuth on the GaAs(111)B sur-

face, on the liquid gold catalyst surface, and at the interface

between the gold catalyst droplet and the nanowire are

4.11 eV, 3.13 eV, and 2.49 eV, respectively. The energy of

adsorption Ead is defined as19

Ead ¼
Ebf þ

Pn

i¼1

Ei � Eaf

n
; (1)

where Eaf represents the total energy of the system after

atoms are adsorbed, Ebf is the total energy of the system

without adsorbed atoms, Ei is the energy of an isolated atom,

and n is the total number of adsorbed atoms. According to

Eq. (1), positive Ead means that the adsorption is an exother-

mic process, and the larger the Ead of atoms on a specific sur-

face, the more steadily they stay there. Therefore, the above

calculated energies of adsorption reveal that bismuth atoms

prefer to stay on the surface of GaAs(111)B substrate, while

it is difficult for them to reach the interface between the gold

catalyst droplet and the nanowire to participate in the nuclea-

tion there. In this regard, bismuth cannot be detected in the

ZB GaAs-I inserts as well as in the gold catalysts.

Then, how does the bismuth tailor the crystal structure

of nanowires? It has been reported that the additive zinc can

lower the liquid-solid step energy for ZB structure,12 while

the additive antimony will increase the equilibrium concen-

tration of Ga in the Au-Ga alloy droplet.20,21 However, as is

mentioned above, bismuth preferentially adsorbs on the sub-

strate surface, and no bismuth is detected in the Au-Ga alloy

droplet. These two facts suggest that bismuth should not be

possible to get into the Au-Ga alloy droplet to lower the

liquid-solid step energy (like zinc), or to increase the equilib-

rium concentration of Ga in the droplet (like antimony). To

understand the role of bismuth, we note that when growing

FIG. 4. The structure variation of the transition region with the BEP of bis-

muth. (a)–(e) correspond to the TEM images of the GaAs-I inserts (between

the two lines) in the five transition regions from the bottom to the top in one

single nanowire. The arrows in (a) and (b) mark the positions of stacking

faults and those in (c) and (d) the position of the twinned ZB. The BEPs of

bismuth for each transition region are listed below, respectively. The scale

bar is 5 nm. (f) Length variation of the 4H polytype section, the GaAs-I

insert, and the whole transition region with the content of bismuth.
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GaAsBi film by MBE, bismuth is easy to become a “bonding

anti-surfactant,”22,23 which occupies the substitutional sur-

face sites and reduces the surface diffusion length of adatoms

on the substrate surface. Considering that, in our case, bis-

muth prefers to stay on the surface of GaAs(111)B substrate,

the bismuth might also act as the “bonding anti-surfactant,”

and in turn decreases the diffusion length of Ga atoms.

Generally, the majority of Ga atoms that migrate to the gold

catalyst come from the diffusion of Ga atoms on the sub-

strate in the MBE system. Since the diffusion length of Ga

atoms decreases, the number of Ga atoms that diffuse from

the substrate to the gold catalyst droplet declines and accord-

ingly the supersaturation of Ga decreases. After the bismuth

source is closed, bismuth atoms are desorbed gradually from

the substrate and the diffusion length of Ga increases again.

This makes the supersaturation increase gradually. It is well

accepted that the supersaturation for the formation of WZ

nanowires has to be high enough while the supersaturation

for ZB nanowires needs to be low enough, and the median

supersaturation between the former two gives the possibility

of forming the 4H polytypism.24 Therefore, the introduction

of bismuth causes the formation of ZB GaAs-I inserts, while

the crystal structure changes to the 4H polytypism and even-

tually back to ZB phase after the removal of bismuth.

With increasing bismuth, more “bonding anti-

surfactants” form on the substrate, causing a strong suppres-

sion of Ga diffusion on the substrate, and in turn less

concentration of Ga in the alloy droplet. As a result, the

increase of bismuth partial pressure lowers the growth rate

of nanowires, and accordingly the length of ZB GaAs-I

inserts decreases with increasing bismuth. Similarly, since

more bismuth causes less concentration of Ga in the gold cat-

alyst, the supersaturation decreases more greatly and hence

the crystal structure of ZB GaAs-I inserts becomes purer

with increasing bismuth partial pressure.

In conclusion, we have achieved to tailor the crystal

structure of GaAs nanowires between ZB and WZ phases by

adding or removing the bismuth. However, bismuth does not

participate in the formation of nanowires. We have found

that the ZB GaAs-I insert forms with the bismuth in the am-

bient, while removing the bismuth changes the crystal struc-

ture to the 4H polytypism and finally back to the WZ

structure. The theoretical calculation reveals that bismuth

prefers to stay on the GaAs(111)B surface for its largest

adsorption energy, comparing to the other locations such as

the gold catalyst surface and the interface between the gold

catalyst and the nanowire. These adsorbed bismuth could

decrease the diffusion length of adsorbed Ga and hence the

supersaturation of Ga in the gold catalyst droplet, resulting

in the transition from the WZ structure to the ZB structure.
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