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We study the relaxation dynamics of an isolated zero temperature quasi-two-dimensional superfluid
Bose-Einstein condensate that is imprinted with a spatially random distribution of quantum vortices.
Following a period of vortex annihilation the remaining vortices self-organize into two macroscopic
coherent “Onsager vortex” clusters that are stable indefinitely—despite the absence of driving or external
dissipation in the dynamics. We demonstrate that this occurs due to a novel physical mechanism—the
evaporative heating of the vortices—that results in a negative-temperature phase transition in the vortex
degrees of freedom. At the end of our simulations the system is trapped in a nonthermal state. Our
computational results provide a pathway to observing Onsager vortex states in a superfluid Bose gas.
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The question of how thermodynamics arises from
unitary quantum evolution [1] has been debated since
the early days of quantum mechanics. The closest labo-
ratory realization of an isolated quantum system of many
particles is perhaps the ultracold quantum gas, and recent
progress in the control and manipulation of these systems
means that the question is no longer simply an academic
one [2]. A particular focus has been one-dimensional Bose
gases as described by the Lieb-Liniger model [3], as the
integrability of the model suggests that it may be prevented
from attaining thermal equilibrium following a quench [4].
Indeed, two ground-breaking experiments on the dynamics
of one-dimensional Bose gases [5,6] sparked a rush of
further activity due to their seemingly contradictory results
on whether the experiments returned to standard thermal
equilibrium. These experiments have generated significant
recent theoretical interest in the nonequilibrium dynamics
and relaxation of idealized isolated quantum systems
following a disturbance [2,7–9].
The quantum relaxation of higher-dimensional isolated

quantum systems is difficult to address computationally
due to their exponential complexity. Recent experiments
have quenched the interatomic interaction strength of 3D
Bose-Einstein condensates (BECs) in oblate and spherical
harmonic traps and followed the subsequent dynamics
[10,11], including apparent saturation of the momentum
distribution [10]. However the relevance of quantum
dynamics in their relaxation is not clear. In some situations
the classical field approximation [12,13] can provide
insight into quench dynamics. Indeed, recent theoretical
work has considered the classical equilibration dynamics of
2D superfluids following a quench from the perspectives of
turbulence and nonthermal fixed points [14–19].
The thermalization of isolated classical systems is gen-

erally understood in terms of ergodicity and chaotic dynam-
ics [20]. Even though the equations of motion of a physical

system are entirely reversible, if a system with a sufficiently
large number of degrees of freedom begins in an “atypical”
state—such as a gas with all particles in one half of the
container—it will quickly relax to a more “typical” state
consistent with thermal equilibrium as predicted by stat-
istical mechanics. This agrees with our everyday experience
of the arrow of time that makes it abundantly clear that time
only proceeds in one direction [21], and is encapsulated by
the second law of thermodynamics—that isolated systems
only become more disordered with time [22]. Here we
present results on an isolated, quasi-two-dimensional super-
fluid Bose gas in which order appears with time.
Typically quenches in isolated systems increase the

energy per particle, leading to more disorder and increased
entropy at equilibrium. However, for systems with a limited
phase space, continuing to add energy will eventually
render it more ordered. This decrease in entropy with
increasing energy is the definition of a state with negative
absolute temperature [23,24]. Such states are actually
“hotter” than those at positive temperature, as energy will
spontaneously flow from negative to positive temperature
systems when in contact. Thus, for negative-temperature
thermodynamic states to be realized in practice, they need
to be isolated from their environment. Negative temper-
atures have been realized in spin systems [25], and more
recently with ultracold atoms in optical lattices [26].
Onsager predicted that negative-temperature states may be

relevant for 2D fluids by applying statistical mechanics to a
2D model of point vortices [23]. The point-vortex model
represents the full velocity field of the fluid as the super-
position of the circular velocity fields generated by the
individual vortices. Hence the point vortices themselves have
no inertial kinetic energy—resulting in a phase space deter-
mined entirely by the finite area available to the point vortices,
thus allowing negative temperatures. While intended as a
model of 2D fluids in general, Onsager noted that the model
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was potentially particularly relevant for 2D superfluids,
whose vortices have quantized circulation [23,27].
Experiments on quasi-two-dimensional ultracold quan-

tum gases are now routine [28–30], and offer tantalizing
prospects for the study of 2D turbulence in superfluids.
Recently, Neely et al. have demonstrated that coherently
stirring a quasi-2D Bose-Einstein condensate can lead to a
proliferation of vortices, with evidence of transient, local
clusters of like-signed vortices [31].
Recent simulations [32,33] showed that by starting with

a periodic array of vortex clusters—an atypical state of the
microcanonical ensemble—the dynamics evolved the vor-
tex configuration to one that was more typical for the given
energy: an Onsager vortex state. However, to date, a
mechanism that enables a transition from random vortex
configurations at infinite temperature to Onsager’s negative
absolute temperature states corresponding to long-lived,
giant vortex clusters in inviscid quantum fluids has not been
discovered. Indeed, while the formation of giant vortex
structures in generic classical two-dimensional fluids in the
limit of vanishingly small viscosity has been proven [34],
Onsager’s prediction of vortex clustering in inviscid flows
remains unexplained [35].
In this Letter we study the relaxation dynamics of an

isolated quasi-two-dimensional superfluid Bose-Einstein
condensate that is “quenched” by imprinting a spatially
random arrangement of vortices. We subsequently simulate
the classical Hamiltonian dynamics—conserving both the
energy and number of particles—and find that two Onsager

vortices corresponding to negative-temperature states can
arise out of the initially turbulent flow. This emergence of
order in an isolated system occurs due to evaporation of
vortices that enable a redistribution of the energy among the
degrees of freedom, and leaves the BEC in a nonthermal
state.
Our simulations begin with a BEC at zero temperature, in

which we prepare an equal number of vortices and anti-
vortices (80 in total) at stochastically sampled locations. We
subsequently simulate the dynamics of the BEC using the
Gross-Pitaevskii equation (GPE), a nonlinear Schrödinger
equation providing a realistic mean-field description of
BECs [36]. The conservative Hamiltonian evolution of the
GPE preserves the total energy EGP, atom number Na, and
angular momentum of the system. While the BEC itself is
three dimensional, the dynamics of the vortices are essen-
tially two dimensional [31,37]. In contrast to theoretical
studies of quasi-two-dimensional quantum turbulent systems
in harmonic traps [38–40] or in uniform doubly periodic
domains [16,32,33,41,42], we consider a BEC confined in a
disk trap [43]. Full details are provided in the Supplemental
Material [43].
The results of our simulation for a typical initial condition

can be seen in Movie S1 [43]. In Figs. 1(a)–1(f) we show the
condensate column densities for a range of evolution times
from the movie, and identify the location of the vortices and
antivortices. The dynamics initially leads to the annihilation
of several vortex-antivortex pairs, with the subsequent
emission of sound waves in the bulk BEC. Occasionally

FIG. 1 (color online). Onsager vortex formation in the Gross-Pitaevskii model. (a)–(f) Time series of the condensate column
density. The location of vortices with positive and negative circulations are shown using blue (dark) and green (light)
circles, respectively, and the white line indicates the vortex dipole moment vector d as defined in the text. The initial random
vortex configuration in (a) evolves to the Onsager vortices configuration in (f) characterized by two large-scale, coherent
clusters of vortices in a background field of sound. (g) The total number of vortices, N, as a function of time, with the dashed
vertical lines indicating the times at which we plot the condensate density in (a)–(f). (h) Kinetic energy, E, of the system. (i) Dipole
moment, d, of the vortex configuration as a function of time. In (g)–(i) the thin (red) curves correspond to instantaneous values
and the thick smooth (blue) curves are sliding averages over a window of 15τ to smooth out rapid fluctuations. The bar under (d) shows the
scale of condensate density and the length of the scale bar under (f) is 56aosc, the diameter of the trap.
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this process is reversed. The vortex pair annihilation results
in the rapid decay of the total vortex number until ∼20
remain [Fig. 1(g)], while the GPE kinetic energy per vortex
grows [Fig. 1(h)]. During this annihilation period, like-
signed vortices exhibit a tendency to form transient clusters
that grow larger with time. A remarkable feature of this
system is the eventual emergence of two counterrotating
clusters of like-signed vortices on opposite sides of the
condensate, which we identify as Onsager vortices (OVs).
These are characterized in Fig. 1(i) by the growth in the
vortex dipole moment d ¼ jdj ¼ jPiqirij, where ri is the
position of the ith vortex. The vortex charge is qi ¼ sih=m,
where si ¼ �1 for vortices and antivortices, respectively, h
is Planck’s constant and m is the mass of an atom. After the
formation of OVs, the vortex annihilation mostly ceases and
the OVs remain a robust and long-lived feature of the system.
Analyses of the GPE energetics and spectral features are
provided in the Supplemental Material [43].
The abrupt end to the annihilation of vortices and the

spontaneous emergence and persistence of the OVs in Fig. 1
is a surprising result. How has order spontaneously arisen
from an initially chaotic state? The vortex gas is apparently
trapped in a negative-temperature state, whereas the sound
waves on top of the BEC have a positive temperature,
suggesting that ergodicity has been broken in this system.
In order to develop a microscopic understanding of our

results, we utilize Onsager’s point-vortex model for a two-
dimensional fluid, which can be derived as an approximation
to the GPE in the incompressible limit [44]. We consider N
singly quantized point vortices with equal numbers of each
circulation confined in a disk geometry [45–47]. In the
Supplemental Material [43] we present the results of
Monte Carlo calculations for the equilibrium thermodynam-
ics of this system [46]. This allows the construction of the
schematic phase diagram depicted in Fig. 2.
At positive zero temperature (T ¼ 0þ) in Fig. 2, a zero-

entropy, zero-momentum BEC exists. In the PC phase at
low positive temperatures, all vortices and antivortices are
paired, and the velocity fields generated by each vortex
cancel [46,49,50]. On increasing the temperature there is a
critical point where the vortex pairs unbind and the system
transitions to the NS. This is the entropy-dominated regime
where correlations between the positions of vortices and
antivortices are negligible.
The point-vortex model has a finite phase space, and

the entropy S is not a monotonically increasing function
of energy E. This allows β ¼ 1=kBT ¼ ð∂S=∂EÞ < 0
(where kB is the Boltzmann constant) and, hence, neg-
ative-temperature states [23,24]. Continuing to increase
the energy results in another abrupt change in the con-
figuration of the vortices at a critical negative temperature
TOV, where well-defined clusters of like-signed vortices
emerge—the Onsager vortices. Eventually, at T ¼ 0− (see
Fig. 2) the OV state corresponds to a pure, zero-entropy
EBC—a BEC in a nonzero momentum state [48,50].

Our GPE simulation exhibits counterintuitive collective
behavior—an apparent dynamical transition in the vortex
gas from an initially disordered NS phase to an ordered OV
phase at negative temperature. This result raises the
question—what is the physical mechanism underlying this
emergent phenomenon? In short, the answer is the evapo-
rative heating of the vortex gas.
The kinetic energy of the system can be divided into three

components: an incompressible part due to the rotational
vortex velocity field, a compressible part due to sound
(phonon excitations), and a quantum pressure term [36]. The
incompressible kinetic energy in the GPE initial state is
significant, while the compressible kinetic energy is small.
The GPE dynamics convert the rotational energy of vortices
to sound energy via vortex-antivortex annihilation. Once the
Onsager vortices form, the energy of these two components
are approximately constant as shown in Fig. S3 [43].
The vortex pair annihilation, however, leads to an increase

in the mean energy per vortex. The annihilation always
occurs at the length scale of the vortex core size, which is
much smaller than the mean distance between vortices. Since
the energy of a vortex-antivortex pair decreases with sepa-
ration distance [36], pair annihilation causes a decrease in the
total energy of the vortex gas that is small in comparison to
the mean energy per vortex, while also reducing its entropy.
The subsequent dynamics of the vortex gas lead to retherm-
alization with a larger mean energy per vortex.
This process is evaporative heating—the reverse analog

of forced evaporative cooling used to achieve quantum

FIG. 2 (color online). A schematic plot of entropy versus
energy for the point-vortex model. A zero-entropy Bose-Einstein
condensate forms at T ¼ 0þ with its negative-temperature
counterpart, an Einstein-Bose condensate (EBC) [48], emerging
at T ¼ 0−. Entropy is maximized at T ¼ �∞ in the entropy-
dominated normal state (NS), which has a stochastic distribution
of vortices. The vortex binding-unbinding phase transition
separates the normal state from the pair-collapse (PC) state at
positive temperature, whereas there is a transition to the coherent
Onsager vortex state at a vortex-number-dependent negative
temperature.
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degeneracy in ultracold atomic gases. Evaporative cooling
removes the “hottest” atoms from the system, leaving the
remaining atoms to rethermalize to a lower positive temper-
ature [51]. Instead, in our simulation the “coldest” vortices,
corresponding to vortex-antivortex pairs, are removed,
leaving the remaining vortices to equilibrate at a higher
average energy, and hence a hotter negative temperature.
The evaporative heating of the vortex gas becomes inef-
fective once the Onsager vortices have formed, and
encounters between vortices and antivortices become rare.
The evaporative heating mechanism is strikingly con-

firmed by dynamical simulations of Onsager’s point-vortex
model with the addition of vortex-antivortex annihilation to
represent the conversion of energy from the incompressible
to compressible kinetic energy in the GPE. Whenever a pair
of vortices of opposite sign comes within the “annihilation
distance” da of one another, they are removed from the
simulation as described in the Supplemental Material
[43]. Schwarz used a similar dynamical rule to account
for reconnection events in a vortex filament model of three-
dimensional superfluid turbulence [52]. Campbell and
O’Neil used forced vortex annihilation to describe viscosity
in a two-dimensional vortex random walk model [53].
However, such effective vortex viscosity vanishes for
systems where vortex annihilation is prohibited, such as
Onsager vortex states or configurations consisting of only
one sign of vortices. Therefore, it seems that this effective
vortex viscosity behaves quite differently from the usual
kinematic viscosity of classical fluids.
We have performed simulations for an ensemble of 500

stochastically sampled vortex configurations matched to
the GPE initial state, and a sample trajectory is shown in
Movie S2 [43]. The results for the vortex number, energy,
and dipole moment are shown in Figs. 3(a)–3(c), and
should be compared with the corresponding quantities for
the GPE simulation in Figs. 1(g)–1(i). These results
confirm that the energy per vortex increases as the vortex
pairs evaporate; this is accompanied by an increase in the
net vortex dipole moment, for which our Monte Carlo
calculations indicate the OV transition occurs near d ∼ 0.5.
We hence conclude that the GPE dynamics describe a

transition to a coherent negative-temperature Onsager
vortex state in a closed system—order emerges from chaos.
This may leave the impression that the arrow of time for the
vortices has been reversed. However, the heating of the
background BEC, through the transfer of the fluid motion
associated with vortices into sound waves, creates suffi-
cient entropy that the results are in full compliance with the
second law of thermodynamics. Nevertheless, the BEC
remains trapped indefinitely in a nonthermal state, with
lower entropy than that expected at full thermal equilib-
rium. Whether the Onsager vortex state is an example of a
nonthermal fixed point [54], and whether this behavior
persists in the full quantum dynamics of the system, are
intriguing questions.
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