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Abstract 

 

A promising alternative to replace the current egg- or cell culture-based technology for 

vaccine production from live viruses is virus-like particle (VLP) technology based on a 

microbial platform. VLPs are macromolecular assemblies of viral capsid proteins, which 

have been shown to tolerate insertion of antigen modules via genetic recombinant 

technology, yielding modular VLPs. Many studies on modular VLPs presume that when a 

peptide antigen element is taken out from the intact proteins and then modularised on 

VLPs, it is unable to fold into its native structure. However, until now, presentation of a 

peptide antigen element on a VLP and the impact of the display strategy to present the 

antigen element on the quality of the resulting antibodies (i.e. the ability of the antibodies 

to recognise the intact protein) are not fully understood. This thesis aims to understand the 

underlying fundamentals regarding modularisation of peptide antigen elements on VLPs 

for induction of high-quality antibodies. A hypervariable receptor-binding domain, Helix 190 

(H190), from the hemagglutinin protein of influenza A virus was used as a model for 

modularisation on VLPs from murine polyomavirus (MuPyV) VP1 protein. Four major 

findings are presented. Firstly, two display strategies, i.e. arraying of H190 in tandem 

repeats and the use of helix promoter elements, were shown to display H190 in its 

immunogenic form equally. However, modularisation using tandem repeat display induced 

antibodies of a higher quality than modularisation using helix promoter elements. 

Secondly, the quality of antibodies induced by the tandem repeat display bearing two 

copies of H190 was optimum, thus no significant improvement was observed following the 

use of adjuvant or increasing the copy number of H190. Additionally, the increase in the 

copy number of H190 was shown to reduce the assembly capability and solubility of 

modular VP1 in an environment that was optimised for wild-type VP1. Thirdly, this thesis 

shows the novel finding in the use of flanking ionic elements to stabilise VLP precursors, 

termed as capsomeres, bearing two copies of H190 containing a hydrophobic stretch, 

which caused aggregation. Fourthly, the first steps towards obtaining the atomic crystal 

structure of presented H190 on a modular protein were performed, i.e. a mild and 

satisfactory laboratory process was developed to achieve high-purity modular VP1 

capsomeres, unattainable using previously established expression and purification 

process of wild-type MuPyV VP1. This thesis shows a step forward towards understanding 

the presentation of a peptide antigen element on a VLP that enables induction of high-

quality antibodies, and towards VLP engineering to manipulate the aggregation and 

solubility of modular VP1. VLP technology based on a microbial platform presented here is 
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a potentially safe and effective alternative vaccine candidate that targets a hypervariable 

peptide antigen element. The speed of the microbial platform allows a rapid response to 

the hypervariability of the peptide antigen element, which otherwise may be unachievable 

using the egg- and cell culture-based technologies. 
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Chapter 1. Project overview 
1 Chapter 1. Project overview 
1.1 Pandemic influenza A and current influenza vaccine manufacturing 

Influenza A viruses belong to the Orthomyxoviridae family (Webster et al. 1992) and 

have been isolated from various species, including human, birds, pigs, and horses 

(Horimoto and Kawaoka 2005, Medina and García-Sastre 2011, Olsen et al. 2006). The 

viruses contain eight single negative-sense RNA strands, which encode eight structural 

viral proteins and two major internal proteins (Webster et al. 1992). Haemagglutinin (HA) 

and neuraminidase (NA) are the principal structural proteins of influenza A viruses that 

determine the antigenic characteristics and subsequent classification of the viruses 

(Medina and García-Sastre 2011). Antigenic variation in influenza A viruses results from 

accumulation of mutations within the antibody binding sites in HA and/or NA (i.e. antigenic 

drift), or from replacement of HA and NA with novel subtypes, which have not circulated in 

humans for a long period of time (i.e. antigenic shift). Antigenic shift can cause pandemics 

when a newly emerging influenza A virus can transmit efficiently and sustainably from 

human to human with little or no existing immune responses against the HA of the virus. 

There have been four pandemic events with worldwide impacts since 1918, each with 

antigenically different viruses (Table 1-1).  

 
Table 1-1. Influenza A pandemic cases with worldwide impacts. 

(Data were taken from http://www.flupandemic.gov.au/) 
 

 

 

 

 

 

 

 

One of the most effective and sustainable ways to prevent the spread of influenza 

viruses is through vaccination (Bagnoli et al. 2011). Vaccination has successfully reduced 

both occurrence and mortality rates of influenza (Ulmer et al. 2006). Most commercial 

vaccines in markets are produced using live virus-based technologies, which follow the 

Pasteur paradigm of “isolate, inactivate, and inject” (Rappuoli 2007). In these technologies, 

influenza vaccine viruses are passaged in the allantoic fluid of embryonated chicken eggs 

Year Influenza virus strain Mortality rate 

1918 A/South Carolina/1/1918 (H1N1) ~ 50 million 

1957 
H2N2 (A/Singapore/1/1957, A/Japan/305/1957, 

A/Guiyang/1/57) 
~ 2 million 

1968 A/Aichi/2/1968 (H3N2) ~ 1 million 

2009 A/California/07/2009 (H1N1) ~37,000  
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(Gerdil 2003, Tree et al. 2001) or cell culture (Doroshenko and Halperin 2009, Tree et al. 

2001). The purified viruses are then (i) inactivated (Maassab et al. 1990, Murphy and 

Coelingh 2002); (ii) treated with diethyl ether or Tween to produce split vaccines (Brandon 

et al. 1967, Hoyle et al. 1961, Neurath et al. 1971); or (iii) treated with detergent, such as 

Triton N 101 (Brady and Furminger 1976), ammonium deoxycholate (Laver and Webster 

1976), or cetyltrimethylammonium bromide (Bachmayer et al. 1976) to recover the HA 

and/or NA from the virions.  

However, despite the fact that it has played crucial roles in the prevention of 

influenza disease, live virus-based technologies are slow. Egg-based technology for 

manufacture of these vaccines requires 6-9 months to produce vaccines (Subbarao and 

Joseph 2007), while cell culture-based technology requires at least 2 months at scale (Cox 

and Hollister 2009). The speed limitation of live virus-based vaccine production is 

exacerbated in a case of an emerging pandemic when a new virus strain appears rather 

suddenly and unpredictably. Additionally, the process of virus passage results in mutations 

in the vaccine viruses, leading to a mismatch between the vaccine composition and the 

dangerous strains it is intended to protect against (Katz and Webster 1992). Due to the 

slow vaccine manufacturing and mismatches between the vaccine and circulating strains, 

widespread and timely prophylaxis through rapid manufacturing and deployment of 

effective vaccine remains a significant unsolved challenge for influenza.  

 

1.2 Virus-like particles (VLPs) 
An effective influenza pandemic intervention strategy mandates rapid vaccination at 

the population scale that is unachievable using live-virus based vaccine technology 

(Ferguson et al. 2006). One emerging technology that has a potential as the next-

generation of influenza vaccines is the virus-like particle (VLP). VLP represents an 

advanced vaccine technology platform, which is able to combine most of the key features 

of viruses (1) highly repetitiveness, (2) particulate nature, and (3) effective induction of 

innate immune response leading to strong T-cell responses (Jennings and Bachmann 

2007).  

VLPs are defined as macromolecule assemblies, which are composed of self-

assembling viral capsid proteins (i.e. capsomeres) (Pattenden et al. 2005). They have 

been used comprehensively and successfully as a safer alternative to the live virus-based 

vaccines because they are infection and replication incompetent (Ludwig and Wagner 

2007). Approved VLP vaccines are used clinically to protect against the parental viruses 

from which the VLPs were derived. For example, Engerix-B or Recombivax-B for Hepatitis 
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B (Averhoff et al. 1998, Keating et al. 2003, Poland and Jacobson 2004), and Gardasil® 

and CervarixTM for human papillomavirus (Einstein et al. 2009, Kato et al. 2007, Schiller et 

al. 2008). Due to their stable structure and tolerance towards modification, VLPs have also 

been exploited to carry and display antigen modules, which are genetically inserted into 

the viral capsid protein (Figure 1-1). Antigen modules comprise peptide antigen elements 

from foreign pathogens and other necessary elements, such as flanking structure promoter 

or spacer elements. Combination of a VLP and an antigen module yields a modular VLP 

(Figure 1-1) (Anggraeni et al. 2013, Boisgérault et al. 2002, Garcea and Gissmann 2004, 

Pattenden et al. 2005, Roldão et al. 2010).  

 

 
 
Figure 1-1. An illustration of a genetically inserted antigen module in a modular viral capsid protein. (A) A 
tertiary structure of a modular monomeric viral capsid protein (grey) displaying an antigen module (red, 
green, and blue). The figure was generated using UCSF Chimera (Pettersen et al. 2004). The PDB file of the 
protein was obtained using SWISS MODEL (http://swissmodel.expasy.org/) (Arnold et al. 2006, Biasini et al. 
2014, Guex et al. 2009, Kiefer et al. 2009); and (B) A schematic diagram of the antigenic module in the 
modular protein in panel A. 
 

 

A microbial vaccine platform based on VLPs from murine polyomavirus (MuPyV) 

VP1 protein has been developed. The use of bacteria allows faster VLP production than 

other hosts, such as mammalian cells, and thus provides a technology for rapid-response 

vaccine development (Middelberg et al. 2011). This platform is underpinned by 

bioprocessing investigations into scale-up techniques (Chuan et al. 2008, Liew et al. 2010, 

Lipin et al. 2008). The crystal structure of the VP1 protein is available at 1.9 Å resolution 

(Stehle and Harrison 1996, Stehle and Harrison 1997, Stehle et al. 1994). Several 

insertion sites in the VP1 protein have been patented (Lua and Middelberg 2007), allowing 

for recombinant insertion of antigen modules at a genetic level and projection of the 

inserted antigen modules to the surface of modular VLPs for immune system recognition 
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(Gedvilaite et al. 2000, Liddington et al. 1991). The MuPyV VP1 VLPs have been 

engineered to present antigen modules containing peptide antigen elements from various 

pathogens (Anggraeni et al. 2013, Chuan et al. 2013, Rivera-Hernandez et al. 2013), 

indicating the robustness of the VLPs. 

The MuPyV VP1 capsid protein is isolated as a basic subunit viral capsid protein 

(i.e. capsomeres) following bacterial expression. In the presence of Ca2+, purified 

capsomeres can then self-assemble in vitro to form VLPs (Figure 1-2). The assembly 

mechanism involves (i) invasion of C-terminal arms to the neighbouring capsomeres, 

which are secured by N-terminal clamps, and (ii) clamp-clamp interactions of N-terminals 

of neighbouring capsomeres. Compared to in vivo VLP assembly, in vitro VLP assembly is 

advantageous due to minimum encapsulated contaminants or cellular materials and can 

be more controllable yielding highly consistent VLPs (Pattenden et al. 2005).  

 

 
 

Figure 1-2. A murine polyomavirus VP1 VLP. VP1 capsid proteins are isolated as capsomeres from bacterial 
expression. Capsomeres self-assemble in vitro into VLPs. The VP1 monomer and capsomere structures 
were obtained from Protein Data Bank, PDB ID 1SID (Stehle and Harrison 1996). Molecular graphic images 
were created using UCSF Chimera (Pettersen et al. 2004). VLP picture was obtained from Virus Particle 
Explorer (VIPER) (http://viperdb.scripps.edu/info_page.php?VDB=1sid) (Reddy et al. 2001). 
 

 

The manufacturing speed and robustness of MuPyV VP1 VLPs suggest that the 

VLPs can be used as a potential vaccine platform for pandemic influenza A. An excellent 

model peptide antigen is from HA. HA is the most important components in influenza 

vaccines (McCaughey 2010). It is involved in the first step of influenza virus infection, that 

is binding of the virus onto the sialic acid receptor on host cells (Neumann et al. 2009, 

Skehel and Wiley 2000). The viral binding occurs in the receptor-binding site, which is 

located in the membrane distal tip of HA. The receptor binding site is bordered by three 

hypervariable domains, i.e. loop 220, loop 130, and helix 190 (Weis et al. 1988). Helix 190 

VP1 monomer 
(42.5 kDa) 

Capsomere  
(5 VP1 monomers) 

VLP 
(72 VP1 monomers) 



 5 

(H190) has a defined helicity and contains a B-cell epitope, called site Sb; monoclonal 

neutralising antibody specific to this site has shown to be protective in mice (Yu et al. 

2008). The antigenicity, biological function, and defined structure of H190 suggest that 

H190 is interesting to be utilised as a model antigen element for insertion into the MuPyV 

VP1 protein (Figure 1-3). 

 

 
 

Figure 1-3. Illustration of generation of a modular MuPyV VP1 VLP presenting a peptide antigen element 
(helix 190 from HA protein). This figure was generated using Accelrys Discovery Studio® 3.0. and RasWin 
Molecular Graphics version 2.7.5.2. by Dr. Natalie Connors.  
 

 

The structure of B-cell epitopes can regulate the neutralising mechanisms of 

antibodies (Dormitzer et al. 2008). This is particularly of interest for immunisation with 

peptides containing B-cell epitopes. Exogenously administered peptides, removed from 

the context of the full parent protein(s), may not preserve their conformational integrity, 

and thus may not necessarily undergo the same pathways of immune processing as the 

intact proteins. As a result, although B-cell epitope peptides can easily induce antibodies, 

the quality of antibodies induced against B-cell epitope peptides is different from the 

quality of those induced against the intact proteins (Purcell et al. 2007, Purcell et al. 2003). 

The quality of antibodies here is defined as the ability of the antibodies to recognise the 

native proteins. Immunisation with exogenous epitope peptides very rarely elicits 

antibodies that recognise the native proteins. Thus, in order to obtain antibodies that 

cross-react with the native antigen protein, the epitope peptides need to maintain 

conformational integrity (Purcell et al. 2007, Purcell et al. 2003). The quality of antibodies 

has been shown to resemble the protection efficacy of the antibodies (Alvarez et al. 2010). 

VP1 capsomere 
displaying H190 

element 

HA monomer 
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A higher antibody quality indicates a higher potential of protection efficacy, thus a high 

quality of antibodies is desirable. 

Studies in modular VLPs presume that it is nearly impossible for a peptide antigen 

element to assume its conformational integrity when it is presented on a modular VLP 

(Jennings and Bachmann 2007, Roldão et al. 2010, Tissot et al. 2010). Until now, 

presentation of a peptide antigen element on a modular VLP and the impact of display 

strategy for presentation of the antigen element on the quality of the resulting antibodies 

are not fully understood. In this thesis, a VLP from MuPyV VP1 is genetically modularised 

with a H190 element from an influenza A virus using different display strategies, and the 

display strategies are linked to the quality of the antibodies. Four major problems 

addressed around the presentation of a H190 element on a modular MuPyV VP1 VLP are: 

 

1. Effect of display strategy on the quality of antibodies 

Various strategies have been explored in studies of peptide-based vaccines to drive 

peptide antigens to fold in their native structures. Examples of these strategies are: (i) the 

use of flanking helix promoter elements (De Filette et al. 2008, Relf et al. 1996), and (ii) 

tandem repeat display (Fontenot et al. 1995, Fontenot et al. 1993, Kovacs-Nolan and Mine 

2006). 

The first strategy explores the use of flanking helix promoter elements derived from 

GCN4. GCN4 is a well-characterised protein from yeast (Arndt and Fink 1986). Due to its 

defined helicity, GCN4 has been used in peptide-based vaccine studies as flanking helix 

promoter elements for a helical peptide antigen from group A streptococcus (GAS) 

bacteria (Hayman et al. 1997, Relf et al. 1996). Incorporation of the GCN4-derived 

elements to present the GAS antigen in a modular VLP has been reported (Rivera-

Hernandez et al. 2013), but the question of whether the incorporated GCN4-derived 

elements have any impact on the quality of antibodies induced against the modular VLPs 

was not addressed. 

The second strategy utilises tandem repeat display of peptides. Tandem repeat 

display has been explored to design peptide-based vaccines for various pathogens 

(Kovacs-Nolan and Mine 2006, Liu et al. 2004, Schuman et al. 2005). In structural studies 

utilising nuclear magnetic resonance (NMR), tandem repeat display has been shown to 

promote peptide repeats to fold into their native structures (Fontenot et al. 1995, Fontenot 

et al. 1993). Furthermore, the display strategy has been utilised solely to increase the 

immunogenicity of a peptide antigen element (Jain et al. 2010) and has not been linked to 

the quality of the antibodies generated. 
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The research question here is whether presentation of the H190 element on a 

modular VLP using these two display strategies will have any impact on the quality of 

antibodies induced against the modular VLPs. Comparison of antibody quality raised 

against H190 element(s) presented on a modular VLP using these two strategies is then 

required. 

 

2. Display strategy improvements for induction of a higher quality of antibodies 

As described above, antibodies with a higher quality are desirable because the 

quality of antibodies has been correlated to the protection efficacy of the antibodies. After 

the impact of the two display strategies on the antibody quality has been revealed, further 

investigation is then required to understand how to induce antibodies with a higher quality. 

Two proposed approaches to increase the quality of antibodies are: (i) the use of 

adjuvant, and (ii) increasing copy number of H190 tandem repeats. The first approach 

relies on the use of adjuvant to increase the immunogenicity of H190 element on a 

modular VLP, which is then expected to result in an increased quality of induced 

antibodies. One of the effective adjuvants for VLPs is AdvaxTM-1. It is a polysaccharide 

adjuvant derived from delta-inulin (Cooper and Petrovsky 2011). It has been shown to 

promote the antigen sparring effects of various vaccine candidates, resulting in the 

increased protective efficacy (Honda-Okubo et al. 2012, Petrovsky et al. 2013, Saade et 

al. 2013). The second approach focuses on increasing the number of H190 tandem 

repeats. Previous studies on peptide-based vaccines show that tandem repeat display 

strategy affects both structure (Fontenot et al. 1995, Fontenot et al. 1993) and 

immunogenicity of peptide repeats (Jain et al. 2010, Rueda et al. 2004, Zheng et al. 1993).  

The research questions here are: Which approach can result in induction of 

antibodies with a higher quality? What is the preferred display strategy to present the H190 

element on a modular VLP? 

 

3. Robustness of display strategy 

As described above, the H190 element is a hypervariable region. Following 

identification of the preferred display strategy, there is a need to investigate the robustness 

of the display strategy for modularisation of H190 element variants. As an extreme test 

case is H190 from A/Victoria/210/2009 influenza, which is hydrophobic, and its 

hydrophobic residues are positioned in the middle of the H190 amino acid sequence. A 

hydrophobic stretch has been known to cause formation of insoluble aggregates, as well 

as incorrect folding of proteins. Although the negative effects of a hydrophobic stretch 
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have been widely recognised (Aleksaitė and Gedvilaitė 2006, Chiti et al. 2003, Esler et al. 

1996, Karpenko et al. 2000, Kazaks et al. 2004, Otzen et al. 2000), approaches to 

minimise its effects on VLP assembly still rely on simultaneous expression of modular and 

unmodularised viral capsid proteins, which yields mosaic VLPs (Karpenko et al. 2000, 

Loktev et al. 1996).  

Various approaches have been commonly utilised to improve the solubility of 

proteins. These approaches can be classified into two classes, i.e. (i) sequence-dependent 

approaches, and (ii) sequence-independent approaches. An example of the first 

approaches is the use of charged residues. Charged residues can be introduced outside 

hydrophobic stretches as fusion tags at the N- and C-terminal of proteins (Jung et al. 2011, 

Kato et al. 2007), or within hydrophobic stretches via point mutations (Miklos et al. 2012, 

Perchiacca et al. 2012). The second approach includes modifications of conditions for 

protein expression. One of the important factors during protein expression in E. coli is 

temperature. E. coli has a high translation and protein folding rate. Reducing expression 

temperature can lower translation and folding rate of protein, and subsequently increase 

the solubility of proteins (Esposito and Chatterjee 2006, Qing et al. 2004). 

The questions here are: to what extent does the hydrophobic stretch affect the 

properties of the modular VLP? Can the addition of charged residues or lowered 

expression-temperature minimise the effects of the hydrophobic stretch? Between the two 

approaches, which one is more effective in minimising the effects of a hydrophobic stretch 

on a modular VLP?  

 

4. Structural determination of H190 element on a modular VLP 

The ultimate question that needs to be answered is: what is the structure of the H190 

element when presented on a modular VLP using different display strategies? Solving the 

structure of the H190 element will provide invaluable inputs for future structure-based 

vaccine designs. A potential method to determine the structure of H190 elements on 

modular VLPs is X-ray crystallography, which is one proven technology used widely to 

determine the structure of proteins (Chen et al. 2000, Momany et al. 1996). The crystal 

structure for assembly-incompetent MuPyV VP1 capsomeres is available at up to 1.9 Å. In 

addition, the conditions in which the unmodularised VP1 protein can crystallise have been 

revealed (Stehle and Harrison 1997). 
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1.3 Research aims and objectives  

This thesis aims to understand how to present a structural peptide antigen on a 

modular VLP in such a way that it can elicit high-quality antibodies. The helical influenza A 

antigen, H190, is used as a model peptide antigen element to be presented on a modular 

MuPyV VP1 VLP. Studies in this thesis are directed by the following objectives: 

1. To compare effects of two different display strategies: (i) the use of flanking helix 

promoter elements, and (ii) tandem repeat display on the quality of antibodies. 

2. To perform improvements to the tandem repeat display strategy in order to induce 

antibodies of a higher quality. 

3. To investigate the applicability of tandem repeat display strategy for H190 element 

containing a hydrophobic stretch. 

4. To take the first steps toward obtaining the atomic structure, using X-ray 

crystallography, of a peptide antigen element displayed on a modular VLP. 

 

1.4 Thesis organisation 

In this thesis, this introductory chapter is followed by six chapters. 

 

Chapter 2 provides a literature review for central topics in this thesis, including influenza 

viruses, current influenza vaccine technologies, and VLPs.  

 

Chapter 3 compares the effects of the use of flanking helix promoter elements and tandem 

repeat on the quality of antibodies raised against the H190 element on a modular VLP 

[objective (1)]. 

  

Chapter 4 investigates what improvements can be done to the display strategies to induce 

antibodies with a higher quality. Furthermore, this chapter also shows that tandem repeat 

display comprising two copies of H190 is the preferred display strategy to present H190 

element on a modular VLP to induce antibodies with a higher quality [objective (2)].  

 

In Chapter 5, the tandem repeat display strategy is applied for H190 element containing a 

hydrophobic stretch [objective (3)]. Effects of the hydrophobic stretch on the properties of 

the modular protein are discussed. Improvements to the modular VP1 protein to minimise 

the effects of the hydrophobic stretch, including the addition of charge residues and 

lowered expression temperature in the protein expression, are described. 
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Chapter 6 demonstrates the development of chromatographic purification processes for 

production of modular VP1 capsomeres with a high purity [objective (4)].  

 

Chapter 7 contains a summary of findings from accomplished work in this thesis and 

suggestions for future work.  
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2 Chapter 2. Literature review 
 

2.1 Influenza A viruses 
Influenza A viruses belong to the Orthomyxoviridae family (Webster et al. 1992). 

The natural resources of influenza A viruses are aquatic birds (Subbarao and Joseph 

2007), but they are also found in various host cells, including humans, pigs, and horses 

(Horimoto and Kawaoka 2005, Medina and García-Sastre 2011, Olsen et al. 2006). The 

viruses have a unique characteristic, that is their ability to transmit among wild and 

domestic birds, as well as mammalian species, (Mubareka and Palese 2011).  

Influenza A virions (Figure 2-1) consist of two layers of shells: the outer shell and 

the inner shell. The outer shells of the virions are a host-derived lipid bilayer envelope. 

Two surface glycoproteins, haemagglutinin (HA) and neuraminidase (NA), and the M2 ion-

channel protein are located within this lipid envelope. The inner shells of the virions are 

composed of matrix protein (M1). Furthermore, in the centre of the virions, eight single 

negative-sense RNA strands are encapsulated by nucleoprotein (NP). The RNA strands 

encode viral polymerase proteins PB1 and PB2, and PA, HA, NP, NA, M1 and M2 proteins 

and NS1 and NS2 proteins (Horimoto and Kawaoka 2005, Medina and García-Sastre 

2011, Webster et al. 1992). The virions must contain these RNA strands to be infectious. 

 

 

 
 

Figure 2-1. A schematic diagram of Influenza A virions. Figure taken from (Horimoto and Kawaoka 2005). 
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 The life cycle of influenza A viruses can be divided into three steps (Figure 2-2). 

These steps are: (i) viral attachment to the host cells, (ii) viral entry and replication, and (iii) 

viral assembly budding and release (Mubareka and Palese 2011, Neumann et al. 2009). 

During the viral attachment process, influenza A viruses bind to host-cellular sialic acid 

receptors, which are located on the surface of epithelial cells. Human influenza viruses 

preferentially bind to sialic acid that is linked to penultimate galactose by an α2,6-linkage 

(SAα2,6Gal). This form of sialic acid is the major form of sialosaccharide in human 

tracheal epithelia, where the influenza viruses replicate. In contrast, avian influenza 

viruses preferentially bind to SAα2,3Gal, which is distributed on epithelial cells in the 

intestinal tract of waterfowl and domestic poultry. The specificity of avian influenza viruses 

to SAα2,3Gal reflects the ability of avian influenza viruses to transmit via the faecal-oral 

route (Skehel and Wiley 2000). Following attachment, the viruses enter the host cells 

through a process called receptor-mediated endocytosis. During the entry process, the 

cellular membrane of the host cells invaginates and encloses the virus, leading to proton 

entry and the formation of an endosome inside the cells. Protons create an acidic 

environment within the endosome. The pH changes then stimulate structural changes of 

the HA molecule of the viruses, and subsequently enables the viruses to fuse with the 

endosomal membrane. Simultaneously, protons are pumped into the viruses to separate 

the M1 and RNA-nucleoprotein complex (RNP). The RNP then enters the cytoplasm and 

migrates to the cell nucleus. The entry process is then followed by a replication process, in 

which the viruses take over the host cells to produce viral RNA and proteins. Viral nucleic 

acids migrate to the nucleus (i) to produce incoming viral RNA using the viral replicative 

enzymes, and (ii) to produce the positive strands of the viral RNA, which can function as 

messenger RNA for subsequent viral protein synthesis in the cytoplasm. Synthesised viral 

surface proteins consisting of HA, NA, and M2 assemble on the cellular membranes. 

Subsequently, other viral proteins place themselves under the cellular membranes. 

Through a budding process, newly synthesised viruses are released when the viral NA 

enzyme splits the sialic acid receptor, which holds the HA of the new viruses on the host 

cells.  
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Figure 2-2. Schematic diagram of the life cycles of influenza A viruses. Viruses attach to the host cells via 
receptor binding. The viruses then enter the host cells through endocytosis and replicate. Following a 
budding process, newly synthesised viruses are released from the host cells. Figure taken from (Neumann et 
al. 2009).  
 

 

Influenza A viruses evolve via a complex pattern of antigenic variation, which 

primarily occurs in the HA and NA. To date, 16 HA (H1-H16) and 9 NA (N1-N9) have been 

identified and used for influenza A virus subtyping (Neumann et al. 2009). The evolution of 

influenza A viruses consists of two mechanisms: (i) antigenic drift, and (ii) antigenic shift. 

Antigenic drift is the annual antigenic variation in the HA and/or NA due to the 

accumulation of point mutations, which result from the low fidelity of RNA polymerase. 

Antigenic drift can also result from immune pressure selection by host cells. Antigenic drift 

reduces the protection provided by pre-existing antibodies; thus, it has become the major 

challenge of annual influenza vaccine production. Antigenic shift is the result of viral 

reassortment, where one virus strain exchanges one or more segments of viral RNA 

strands with another strain. Due to the ability of influenza A viruses to transmit among 

birds and mammalian species, antigenic shift can result in the emergence of a novel strain 

containing HA and/or NA immunologically different from circulating strains, with a possibly 

distinct host range. The emergence of a novel serotype of HA may lead to a pandemic with 

a huge impact, such as significant morbidity and mortality globally, and social and 

economic disturbance (Haaheim et al. 2010, Hay et al. 2001).  

‘Asian’ influenza (H2N2). The ‘Asian’ influenza originated in
Southern China in February 1957. From there, it spread to
Singapore (March 1957), Hong Kong (April 1957), Japan (May
1957), and the United States and the United Kingdom (October
1957). A second wave was detected in January 1958. In the United
States, excess mortality was estimated to be 70,000. The pandemic
was caused by a human/avian reassortant that introduced avian virus
H2 HA and N2 NA genes into human populations (Fig. 3).
Furthermore, the Asian influenza virus also possessed a PB1 gene
of avian virus origin.
‘Hong Kong’ influenza (H3N2). In 1968, viruses of the H2N2 sub-
type were replaced by another human/avian reassortant that possessed
an H3 HA gene of avian virus origin (Fig. 3). Again, the PB1 gene of the
pandemic virus was derived from an avian virus. The virus was first
isolated in Hong Kong in July 1968 and caused a pandemic in the

winters of 1968–1969 and 1969–1970. In the United States, an esti-
mated 33,800 people died from the ‘Hong Kong’ influenza.
‘Russian’ influenza (H1N1). In May 1977, an influenza virus out-
break was reported in China that affected young adults in the
northern hemisphere in the winter of 1977–1978. The outbreak
was caused by influenza viruses of the H1N1 subtype that closely
resembled viruses that had circulated in the early 1950s16, suggesting
accidental release of this virus. The re-emerging H1N1 virus did not
replace the H3N2 viruses circulating at the time, and both subtypes
are co-circulating in humans to this day. Reassortment between
viruses of these subtypes resulted in the emergence of H1N2 viruses
in human populations in 2001. However, these H1N2 viruses have
since disappeared.

Highly pathogenic H5N1 influenza viruses
The infection of 18 individuals in Hong Kong in 1997 with highly
pathogenic avian influenza viruses of the H5N1 subtype, which
resulted in six fatalities17,18, marked the first reported fatal infections
of humans with avian influenza viruses. This outbreak was brought
under control with the depopulation of live birds in poultry markets
in Hong Kong. After a period of local and sporadic outbreaks, a new
outbreak started in 2003. H5N1 viruses have since reassorted
frequently19–22 and have spread to Europe and Africa and/or become
enzootic in poultry populations in many Southeast Asian countries23.

The highly pathogenic H5N1 viruses have several remarkable
features. First, they are not only lethal in chickens, but some highly
pathogenic H5N1 viruses also kill waterfowl, the natural reservoir of
influenza A viruses. Second, they replicate and cause lethal infection
in mice without prior adaptation. Third, they have fatally infected
several mammalian species. Non-lethal pig infections have been
detected at low rates. Fourth, their pathogenicity in ferrets has
increased over the years, indicating the acquisition of mutations that
increase pathogenicity in mammalian species. Fifth, and of most
concern, is their continued transmission to humans, resulting in
severe respiratory infection with high mortality rates.

HA

NA
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PB1
PB2

RNA polymerase

NP

Viral RNA

Figure 1 | Schematic diagram of influenza A viruses. Virions are decorated
with two surface glycoproteins, HA and NA. The genome is composed of
eight segments of single-stranded RNA that interact with the nucleoprotein
and the components of polymerase complex (PB2, PB1 and PA).
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Figure 2 | Schematic diagram of the influenza viral life cycle. After
receptor-mediated endocytosis, the viral ribonucleoprotein (vRNP)
complexes are released into the cytoplasm and subsequently transported to
the nucleus, where replication and transcription take place. Messenger RNAs
are exported to the cytoplasm for translation. Early viral proteins, that is,

those required for replication and transcription, are transported back to the
nucleus. Late in the infection cycle, the M1 and NS2 proteins facilitate the
nuclear export of newly synthesized vRNPs. PB1-F2 associates with
mitochondria. The assembly and budding of progeny virions occurs at the
plasma membrane.
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There have been three major influenza pandemics in the past. These pandemics 

occurred in 1918-1919, 1957, and 1968. In 1918-1919, the deadly and highly contagious 

Spanish influenza virus (H1N1) caused the death of approximately 40 million people 

worldwide. This pandemic is recognised as the most deadly pandemic in history. In 1957, 

a less serious pandemic of Asian influenza (H2N2) emerged. HA of the H2N2 subtype only 

shared 66% identity at the amino acid level with HA of the H1N1 subtype. Similarly, NA of 

the H2N2 subtypes was 37% similar to NA from the H1N1 subtype. Due to the antigenic 

variation, pre-existing immune responses in humans could not provide protection against 

this new H2N2 subtype, resulting in the death of approximately 70,000 people in the 

United States alone, and many more worldwide. HA of the H2N2 subtypes then further 

evolved, leading to the emergence of H3N2 subtypes. The pandemic caused by the Hong 

Kong influenza virus (H3N2) occurred in 1968 and claimed the lives of more than 30,000 

people worldwide. In addition to these three pandemics, another occurred in 2009. Within 

one year, the pandemic resulted in the death of more than 18,000 people and left between 

43 and 89 million infected people. The pandemic strain was of the swine-origin H1N1 

subtype, which contained genes from avian, swine, and human influenza viruses (Cox and 

Subbarao 1999, Horimoto and Kawaoka 2005, Medina and García-Sastre 2011, Palese 

2004, Potter 2001).  

 

2.1.1 Haemagglutinin (HA) 
HA is synthesised as a single polypeptide chain, HA0, and undergoes 

posttranslational process consisting of proteolytic cleavage, fatty acid acylation, and 

glycosylation. Signal sequences for transport to the cell membrane are removed from a 

newly synthesised HA. Carbohydrate side chains are then added in positions that vary 

between strains. This process is followed by the addition of palmitic acid to cysteine 

residues, close to the HA carboxyl terminus. The posttranslational process is finalised by 

cleavage of the HA by a specific host-produced trypsin-like protease. HA is cleaved into 

subunits HA1 and HA2, which are connected via disulphide bonds (Webster et al. 1992). 

This cleavage of HA into HA1 and HA2 is required for membrane fusion activity and virus 

infectivity (Skehel and Wiley 2000).  

During maturation, HA molecules form homotrimers (Webster et al. 1992) with a 

molecular weight of approximately 224 kDa (Figure 2-3). These homotrimers are about 

135 Å in length and have a triangular cross section varying in radius from 15 to 40 Å 

(Wilson et al. 1981). In addition, there are two distinct regions: (i) a globular region 

composed of an antiparallel β-sheet (Figure 2-3B), and (ii) a stem region, consisting of a 
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triple-stranded coiled coil of a helix (Figure 2-3C). The coil extends 76 Å from the 

membrane and consists of HA1 (typically about 328 amino acids) and HA2 (typically about 

222 amino acids). The carboxyl terminus of HA2 contains the hydrophobic transmembrane 

sequence and a terminal cytoplasmic anchor sequence where palmitate is connected 

(Figure 2-3D). The globular region is solely composed of HA1, and it contains most of the 

antigenic sites of the molecule as well as the receptor-binding site (Katz and Webster 

1992, Wilson et al. 1981).  

 

 

 
 

Figure 2-3. An illustration of HA molecules. (A) Schematic diagram of HA trimers, showing its antibody-
binding sites (Ab site), the receptor-binding site, carbohydrate attachment sites (CHO) and its position on the 
membrane; (B) The eight-stranded β-sheet and looped-out region in the globular domain; (C) HA2, showing 
two α-helices (cylinders). In HA trimers, the long helices from each HA monomer pack together and form a 
triple-stranded coiled-coil, which stabilises the trimers; and (D) The membrane end of HA contains a five-
stranded β-sheet and hydrophobic anchoring peptide (broken line). The central strand (black) is the N-
terminal of HA1, and the other strands are the C-terminal of HA2. Figure taken from (Wilson et al. 1981). 
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2.1.2 Antibody-binding site 
HA1 is the primary target for the immune system in a form of neutralising antibodies, 

which sterically prevent viral attachment and thus neutralise viral infectivity (Das et al. 

2010). Antigenic variations in HA due to the evolution of influenza A viruses through 

antigenic shift and antigenic drift enable the viruses to escape from pre-existing antibodies. 

To date, the localisation and structure of antibody-binding sites on the three dimensional 

structure of the HA have been assessed for three influenza A virus subtypes, H3, H5, and 

H9.  

The first structural characterisation and antigenic mapping was conducted for HA 

from A/Hong Kong/1/1968 (H3N2) (Wiley et al. 1981). Wiley et al. suggested four antibody-

binding sites in the HA (Figure 2-4). Amino acid substitutions on these sites were shown to 

affect the binding of neutralising antibodies. These sites were designated site A, B, C, and 

D.  

1. Site A (�) consists of residues from 140 to 146 and has the structure of a 

protruding loop. It is 8 Å away from the surface and the most vivid antibody-binding 

site.  

2. Site B (�) is an α-helix, composes of 187 to 196 amino acids and nearby residues 

along the upper side of receptor-binding sites.  

3. The third antigenic site, site C (�), is located between the disulphide bond formed 

from Cys52 to Cys277. The site is at about 60 Å from the distal tip of the HA 

molecule. 

4. Site D (♦) is located in the interface region between subunits in the HA trimers. 

Unlike other antigenic sites, amino acid substitution detected in site D may be 

recognised because of relative movement of the globular domain HA1. 
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Figure 2-4. Antibody-binding sites in A/Hong Kong/1/1968 (H3N2) HA1. Red, green, blue, and orange 
domains refer to the antibody-binding site A, site B, site C, and site D, respectively. The figure is adapted 
from (Wiley et al. 1981) and generated using UCSF Chimera (Pettersen et al. 2004) using the crystal 
structure of HA from A/Hong Kong/1/1968 (4FNK.pdb) (Ekiert et al. 2012). 

 

 

The location of antibody-binding sites in the H3 HA was used to map antigenic sites 

in HA from A/PR/8/34 (H1N1) (Caton et al. 1982). Caton et al. suggested four antibody-

binding sites in the H1N1 HA. These sites were designated Sa, Sb, Ca and Cb (Figure 2-

5); the residue numbering of these sites was based on H3 numbering.  

1. Sites Sa and Sb reside in the upper part of the globular head of HA1, and are 

closely linked. These sites cannot accommodate the simultaneous binding of 

antibodies to each site. Site Sa is in the “front” part of the globular head, and 

comprises residues 128, 129, 158, 160 and 162 to 167, excluding 164. The site is 

relatively close to the receptor-binding site of the adjacent monomer in trimeric HA. 

Site Sb is the “back” part of the globular head, comprises residues that form the 

upper edge of the receptor-binding site. These residues are 192, 193 and 196 of an 

α-helix region and residues 198, 156 and 159.  

2. Site Ca is composed of two regions, Ca1 and Ca2. In the three-dimensional 

structure of a HA monomer, these regions are widely separated. Region Ca1 is 

formed by residues 169, 173, 207, and 240. Residues 182 and 273 are also 
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possibly involved. Region Ca2 is formed by residues 140, 143, 145, 224 and 225. 

However, in trimeric HA molecules, regions Ca1 and Ca2 are in close proximity.  

3. Site Cb is a region near the bottom of the globular head of HA1, comprised of 

residues 78 to 83.  

Caton et al. highlighted that these four antibody-binding sites correspond to sites in 

HA from A/Hong Kong/1/1968 (H3N2) identified by Wiley et al. (Wiley et al. 1981). 

However, no equivalent of site C in H3 HA could be found in the H1 HA. 

 

 
 

Figure 2-5. The position of the antibody-binding sites on HA from A/PR/8/34 (H1N1) relative to the 
arrangements on HA from A/Hong Kong/1968 (H3N2). Triangles show the position of the carbohydrate 
attachment sites and rectangles show the receptor-binding sites. Figure taken from (Caton et al. 1982). 
 

 

Furthermore, a study by Xu et al. (Xu et al. 2010) successfully identified antibody-

binding sites Sa, Sb, Ca, and Cb in various H1 subtypes. In the study, Xu et al. aligned the 

amino acid sequences of the antibody-binding sites for several different H1 subtypes, as 

shown in Figure 2-6. The H1 subtypes were A/California/04/2009 and A/South 

Carolina/1/1918, which are pandemic influenza strains; A/Puerto Rico/8/34, which is a 

laboratory strain; and A/Brisbane/59/2007, which is a seasonal influenza strain. The 

alignment shows that, for those H1 subtypes, the antibody-binding sites are discontinued 

epitopes except for site Sb. In addition, the alignment shows that the amino acid 

sequences of the four antibody-binding sites vary among the listed H1 subtypes, showing 

that even within a subtype, the amino acid sequences of the antibody-binding sites are 

variable.  

 

Antigenicity of Influenza Virus Hemagglutinin 
425 

2a 

. 
5 10 15 

Number of altered amino acids 
recognised by individual antibodies 
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Figure 4. The Number of Altered Amino Acids Recognized by Indi- 
vidual Antibodies 

The histogram shows the number of antibodies that exhibit strongly 
reduced binding to one or more unique mutant viruses. Only anti- 
bodies that differ from each other by strongly reduced reactivity with 
unique mutant viruses are included. 

subtype site D. It is possible then to assign approxi- 
mate equivalence to antigenic sites B and Sb, and D 
and Ca. There are, however, two proposed antigenic 
sites in the PR8 HA that do not immediately appear to 
have equivalents in the H3 subtype HA, and vice 
versa. Although some of the anti-Cae (PR8) mono- 
clonal antibodies map to the structure that forms the 
H3 subtype site A, the corresponding residues form 
part of a much larger site (Ca) on the HA of PR8. 

It is possible that the inconsistent location of some 
antigenic sites on the PR8 and H3 subtype HAS is 
merely an artifact of biased mutant and epidemic 
variant virus panels studied so far in the two systems. 
It also may reflect subtle differences in Ir gene control 
(McDevitt and Benacerraf, 1969) of the immune re- 
sponse to distinct regions of these HAS. Most likely, 
however, the presence of carbohydrate at the poten- 
tial attachment sites at residues 81 and 165 of the H3 
subtype HAl, and at residue 271 of the PR8 HAI, 
could result in the observed differences in antigenicity. 
For instance, site Cb in PR8 and site C in the H3 
subtype both occupy positions near the bottom of the 
globular head of the HA1 subunit (Figure 5). Neither 
of these sites contains potential carbohydrate attach- 
ment sequences, However, such attachment se- 
quences do occur in the region of the H3 subtype HA 
corresponding precisely to PR8 site Cb, and in the 
PR8 HA at the region corresponding precisely to the 
H3 subtype site C. The reciprocal nature of this rela- 
tionship, wherein antigenic sites in the HA of one 
subtype do not contain the carbohydrate attachment 
sequences that are found in the equivalent location of 

Hl H3 

Figure 5. Schematic Representation of the HA Trimer 

Shown are the relative arrangements of carbohydrate attachment 
sites (VI, antigenic sites, and the receptor binding site, for the Hl (a) 
and H3 (b) subtype HAS. Only the carbohydrate attachment sites in 
the region of the globular head of the trimer are shown. 

the HA of the other subtype, suggests that the pres- 
ence of carbohydrate is masking potentially antigenic 
amino acid residues. Also, antigenic site Sa in the 
PR8 (Mount Sinai) HA does not contain any carbohy- 
attachment sequences in this region of the three-di- 
mensional structure (Figure 1), while oligosaccharide 
is attached at residue 165 of the H3 subtype HA 
(Wilson et al., 1981). The presence of this carbohy- 
drate is consistent with the absence in the H3 subtype 
HA of a site corresponding to PR8 site Sa (Figure 5). 
It is possible that the apparently increased antigenicity 
of the amino acids of the H3 subtype site A results 
from carbohydrate masking the amino acid residues 
of the H3 subtype HA which correspond to the PR8 
site Sa. The possibility that oligosaccharide chains 
may sterically prevent the immune recognition of an- 
tigenic sites in the hemagglutinins of different sub- 
types has been proposed previously, on the basis of 
considerations of the H3 subtype antigenic sites and 
the amino acid sequences of fowl plague and A/ 
Japan/305/57 viruses (Wiley et al., 1981). Determin- 
ing the location of antigenic sites in the HAS of other 
influenza viruses may provide further insight into the 
role of carbohydrate in modulating the antigenicity of 
particular regions of the HA molecule. 

Experimental Procedures 

Hybridoma Antibodies 
The 90 hybridomas included in this analysis have been generated by 
fusion of lymphocytes from the spleen or mediastinal lymph nodes or 
both of 15 BALB/c mice following primary, secondary or primary and 
secondary immunization with PR8 virus or with PRS-virus-infected 
PSI5 cells. The fusions were performed as previously described 
(Gerhard, 1980) with the myelomas P3X63 (Kohler and Milstein, 
19761, P3X63Ag8-cl.653 (Kearney et al., 1979) or Sp2/0 (Shulman 
et al., 1978) as fusion partners. The hybridomas were grown in vitro 
in Dulbecco’s modified Eagles medium supplemented with 7.5% fetal 
calf serum, 7.5% A-gamma horse serum (both from Flow Laborato- 
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Figure 2-6. Comparison of amino acid sequences of antibody-binding sites in various H1 subtypes. Residues 
highlighted in blue, pink, orange, and purple refer to antibody-binding site Sb, Sa, Ca, Cb, respectively. The 
alignment is reproduced from (Xu et al. 2010) using Clustal Omega 
(http://www.ebi.ac.uk/Tools/msa/clustalo/). 

 

 

Different from the HA molecules from H3 and H1 subtypes, in H5 and H9 HA, only 

two antibody-binding sites were suggested. In H5 HA, the sites correspond to the 

antibody-binding sites A and B in H3 HA (Kaverin et al. 2007). Meanwhile, in H9 HA, the 

first site is composed of residues forming site A (position 135 in H3 numbering) and site B 

(position 157 and 162 in H3 numbering) of H3 HA. The second site comprises residues at 

positions 145 (site A in H3), 193 (site B in H3), and 226 (site D in H3). Furthermore, in H9 

HA, these two antigenic sites are overlapping (Kaverin et al. 2004).  

 

2.1.3 The receptor-binding site 
Topographically, the receptor-binding site is a depression at the membrane distal tip 

of the HA monomer. The site is composed of conserved residues, and bordered by three 

secondary structure domains, which are composed of highly variable residues. These 

CLUSTAL O(1.2.1) multiple sequence alignment 
 
A/Brisbane/59/2007        MKVKLLVLLCTFTATYADTICIGYHANNSTDTVDTVLEKNVTVTHSVNLLENSHNGKLCL 
A/California/04/2009      ---------------PGDTLCIGYHANNSTDTVDTVLEKNVTVTHSVNLLEDKHNGKLCK  
A/South Carolina/1/1918   -------------ADPGDTICIGYHANNSTDTVDTVLEKNVTVTHSVNLLEDSHNGKLCK  
A/Puerto Rico/8/34        -------------ADADDTICIGYHANNSTDTVDTVLEKNVTVTHSVNLLEDSHNGKLCR  
                                           **:*******************************:.******   
 
A/Brisbane/59/2007        LKGIAPLQLGNCSVAGWILGNPECELLISKESWSYIVEKPNPENGTCYPGHFADYEELRE 
A/California/04/2009      LRGVAPLHLGKCNIAGWILGNPECESLSTASSWSYIVETPSSDNGTCYPGDFIDYEELRE  
A/South Carolina/1/1918   LKGIAPLQLGKCNIAGWLLGNPECDLLLTASSWSYIVETSNSENGTCYPGDFIDYEELRE  
A/Puerto Rico/8/34        LKGIAPLQLGKCNIAGWLLGNPECDPLLPVRSWSYIVETPNSENGICYPGDFIDYEELRE  
                          *:*:***:**:*.:***:******: *    *******. . :** ****.* *******   
 
A/Brisbane/59/2007        QLSSVSSFERFEIFPKESSWPNHTV-TGVSASCSHNGESSFYRNLLWLTGKNGLYPNLSK 
A/California/04/2009      QLSSVSSFERFEIFPKTSSWPNHDSNKGVTAACPHAGAKSFYKNLIWLVKKGNSYPKLSK  
A/South Carolina/1/1918   QLSSVSSFEKFEIFPKTSSWPNHETTKGVTAACSYAGASSFYRNLLWLTKKGSSYPKLSK  
A/Puerto Rico/8/34        QLSSVSSFERFEIFPKESSWPNHNT-NGVTAACSHEGKSSFYRNLLWLTEKEGSYPKLKN  
                          *********:****** ******   .**:*:* : * .***:**:**. *   **:*.:  
 
A/Brisbane/59/2007        SYANNKEKEVLVLWGVHHPPNIGVQKALYHTENAYVSVVSSHYSRKFTPEIAKRPKVRDQ 
A/California/04/2009      SYINDKGKEVLVLWGIHHPSTSADQQSLYQNADTYVFVGSSRYSKKFKPEIAIRPKVRDQ  
A/South Carolina/1/1918   SYVNNKGKEVLVLWGVHHPPTGTDQQSLYQNADAYVSVGSSKYNRRFTPEIAARPKVRDQ  
A/Puerto Rico/8/34        SYVNKKGKEVLVLWGIHHPPNSKEQQNLYQNENAYVSVVTSNYNRRFTPEIAERPKVRDQ  
                          ** *.* ********:*** .   *: **:. ::** * :*.*.::*.**** *******  
 
A/Brisbane/59/2007        EGRINYYWTLLEPGDTIIFEANGNLIAPRYAFALSRGFGSGIINSNAPMDKCDAKCQTPQ 
A/California/04/2009      EGRMNYYWTLVEPGDKITFEATGNLVVPRYAFAMERNAGSGIIISDTPVHDCNTTCQTPK  
A/South Carolina/1/1918   AGRMNYYWTLLEPGDTITFEATGNLIAPWYAFALNRGSGSGIITSDAPVHDCNTKCQTPH  
A/Puerto Rico/8/34        AGRMNYYWTLLKPGDTIIFEANGNLIAPMYAFALRRGFGSGIITSNASMHECNTKCQTPL  
                           **:******::***.* ***.***:.* ****: *  ***** *:: :..*::.****   
 
A/Brisbane/59/2007        GAINSSLPFQNVHPVTIGECPKYVRSAKLRMVTGLRNIPSIQSRGLFGAIAGFIEGGWTG 
A/California/04/2009      GAINTSLPFQNIHPITIGKCPKYVKSTKLRLATGLRNIPSIQSR----------------  
A/South Carolina/1/1918   GAINSSLPFQNIHPVTIGECPKYVRSTKLRMATGLRNIPSIQSR----------------  
A/Puerto Rico/8/34        GAINSSLPYQNIHPVTIGECPKYVRSAKLRMVTGLRNIPAR-------------------  
                          ****:***:**:**:***:*****:*:***:.*******:                      
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domains are: (i) helix 190, comprising of HA1 residues 190 to 197, (ii) loop 130, consisting 

of HA1 residues 135 and 138, and (iii) loop 220, consisting of HA1 residues 221 and 228 

(numbering based on H3 A/Aichi/1/68; Figure 2-7A). Helix 190 is an α-helical structure. In 

contrast, loop 130 and loop 220 lack secondary structures. Furthermore, while the 

secondary structure of helix 190 are similar between subtypes, the conformations adopted 

by loop 130 and loop 220 are similar within influenza subtypes, but they vary greatly 

between subtypes (Gamblin et al. 2004). Furthermore, the bottom of the receptor-binding 

site is composed of the phenolic hydroxyl of Try98 and the aromatic ring of Trp153. The 

rear of the site is defined by Glu190 and Leu194 from the helix 190 as well as His183 and 

Thr155. Residues 134 and 138 compose the right side, while residues 224 and 228 

compose the left side (Skehel and Wiley 2000, Stevens et al. 2006, Weis et al. 1988, Yang 

et al. 2007). In the study by Yang et al. (Yang et al. 2007), the amino acid sequences of 

the three domains in HA from H1, H3, and H5 subtypes are compared. The comparison 

shows that the three domains in HA molecules from H1 and H5 have greater similarities in 

structure and genetics to one another than to H3 (Figure 2-7B).  

Receptor-binding specificity is important for two reasons. The first is related to the 

determination of the virus host ranges, which limits virus transmission across species. 

Studies show that mutation of the conserved residues can alter the receptor-binding 

specificity, and consequently lead to cross-species transfer. Different influenza virus 

subtypes require different mutations to alter their receptor-binding specificity. For example, 

for H2 and H3 subtypes, mutations Gln226Leu and Gly228Ser shift the receptor-binding 

specificity from SAα2,3Gal to SAα2,6Gal (Gamblin et al. 2004, Stevens et al. 2006, 

Yamada et al. 2006). However, the same mutations in H5 subtypes result in a lack of 

binding to sialic acid SAα2,6Gal. In contrast, the changes Ser137Ala and Thr192Ile in 

H5N1 strains increase binding to SAα2,6Gal (Yang et al. 2007). The second is related to 

the selection processes during virus replication in vitro, which are relevant for both 

influenza surveillance and vaccination. It has been shown that during vaccine production, 

viral propagation in eggs or mammalian cells can result in antigenically different variants, 

which may not be representative of the circulating viruses (Skehel and Wiley 2000). Yang 

et al. (Yang et al. 2007) show that if mutations occur on the receptor-binding site, they can 

change the neutralisation sensitivity of antibodies. In their study, monoclonal antibodies 

(mAbs) were generated from the vaccination of mice with H5 Glu190Asp, Lys193Ser, 

Gly225Asp triple mutant HA and wild-type HA. A potent antibody, 9B11, neutralised the 

triple mutant but not the wild type. Another potent antibody, 9E8, neutralised wild type HA 
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but showed reduced neutralisation against the triple mutant as well as the Ser137Ala, 

Thr192Ile mutant.  

 

 

 
 

Figure 2-7. The receptor-binding site within HA molecule. (A) A schematic diagram of the receptor-binding 
site in A/Aichi/2/68 HA. Hydrogen bonds between conserved residues in the receptor-binding site are shown. 
Figure taken from (Weis et al. 1988); and (B) Comparison of amino acid sequences of loop 130 (pink), helix 
190 (green), and loop 220 (purple) in 1918 H1, Vietnam04 H5, and 1968 H3 subtypes. Figure taken from 
(Yang et al. 2007).  
 

 

2.1.4 Correlation of antibody-binding site and receptor-binding site  
To correlate antibody-binding sites (see Figure 2-6) and receptor-binding domains 

(see Figure 2-7) in the H1N1 strain, the amino acid sequences of receptor-binding 

domains and antibody-binding sites in the H1N1 strain are compared (Figure 2-8). The 

comparison reveals that loop 130 does not overlap with any antibody-binding sites within 

press both a2,3- and a2,6-SAs (fig. S1B),
was measured with a luciferase reporter. The
E190D,K193S,G225D triple-mutant virus showed
entry similar to the wild-type HA (fig. S1C),
confirming its functional integrity; however,
receptor specificity could not be defined with
this assay.

The SA specificity of different HAs was
analyzed by a modification of the glycan mi-
croarray method (12) and by the resialylated
HA assay (13). For glycan arrays, HAs were
coexpressed with NA and purified (8). The
E190D,K193S,G225D mutation eliminated rec-
ognition of most a2,3-linked substrates com-
pared with wild-type protein (Fig. 2, A versus
B). The resialylated HA assay confirmed the
loss of a2,3-SA recognition in the triple mu-
tant and lack of a2,6 binding (Table 1A), also
seen in Q226L,G228S. Analysis of previously
described mutants (14) also revealed no a2,6-SA
recognition (Table 1B). Finally, we identified
mutations that increased a2,6-SA recognition
(Table 1C), particularly the S137A,T192I var-
iant that alters both the 130 loop and 190
helix. This altered specificity was confirmed
in glycan microarrays (table S1). These mu-
tations represent alternatives by which the HA
can adapt its substrate recognition; in the last-
mentioned instance, it increases a2,6-SA binding
to be more similar, although not identical, to
human-adapted influenza viruses.

Immunogenic and antigenic differences among
HAs with altered receptor specificity were
analyzed by vaccination of mice with wild-type
or the triple-mutant HA and generation of
monoclonal antibodies (mAbs). Each mAb
recognized mutant or wild-type HA coexpressed
with NA with differential specificity (Fig. 3A).
One potent H5-specific mAb, 9E8, neutralized
wild-type H5 but showed significantly re-
duced activity against the triple-mutant pseudo-
virus (Fig. 3B, left). In contrast, a second such
monoclonal, 10D10, neutralized both HAs
equivalently at maximal inhibitory concentra-
tions, although smaller differences were ob-
served at intermediate concentrations (Fig. 3B,
middle). A third mAb, 9B11, isolated after im-
munization with the triple-mutant expression
vector, showed the converse specificity, in-
hibiting the triple mutant but not affecting the
wild-type H5 pseudovirus (Fig. 3, B and C,
right). Finally, although 9E8 more effectively
neutralized the wild type than S137A,T192I,
another antibody, 11H12, showed comparable
activity on both (Fig. 3D), confirming the dif-
ferential antigenicity of this mutant. Modifica-
tion of SA binding specificity therefore altered
neutralization sensitivity and facilitated the
generation of vaccines that elicited effective
neutralizing mAbs.

In this report, we have identified muta-
tions in the avian H5 hemagglutinin that alter
its specificity for SA receptors and have
shown that such mutants can be used to elicit
neutralizing monoclonal antibodies that more

effectively inhibit these variants. Neutraliza-
tion sensitivity was determined with a lenti-
viral entry assay previously shown to define
mechanisms of entry for numerous viruses,
including HIV, severe acute respiratory syn-
drome (SARS), Ebola and Marburg hemor-
rhagic viruses, and, recently, influenza (15–17).
Inhibition by antibodies determined neutral-
ization sensitivity (18, 19) and correlated with
hemagglutination inhibition, a traditional marker

of immune protection (table S2) (19). With this
approach, the specificity of the HA was ex-
amined, independent of molecular adaptations
required to generate replication-competent
virus, which allowed identification of several
mutants with altered SA specificity. Other
mutants have been defined recently whose
recognition was assessed with a less-specific
assay (14), and we find here that they do not
gain a2,6-SA recognition in the HA assay

A B

D190
S193

H1

E190
S193

H3

E190
K193

H5

D225 G225G225

Fig. 1. Structural and genetic basis for hemagglutinin mutations. (A) The RBDs of alternative viral
hemagglutinins are shown. (B) Comparison of amino acid sequences in the major 130 and 220
loops and the 190 helix, color-coded in purple, lavender, and green, respectively.

Fig. 2. Altered specificity of the triple-mutant H5 compared with wild-type KAN-1 H5 coexpressed
with NA. Glycan microarray analysis of (A) wild-type or (B) triple-mutant HA purified after
coexpression with NA was performed by a modification (18) of a previous technique (12)
performed by Core H, Consortium for Functional Genomics, Emory University. Glycans with related
linkages are grouped by color: selected glycoproteins (orange), predominantly a2,3-sialosides
(yellow), a2,6-sialosides (green), a2,8 ligands (blue), or others (purple), as previously shown
(table S3).
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the H1N1 HA. In contrast, loop 220 partially overlapped with the antibody-binding site Ca, 

and helix 190 was contained within antibody-binding site Sb.  

A similar comparison was also made for HA from A/Hong Kong/1/1968 (Figure 2-9). 

The comparison revealed that, similar to the comparison of the H1N1 strain above, helix 

190 comprises antibody-binding site B. However, loop 130 and loop 220 do not overlap 

with any antibody-binding sites.  

 

 

 
 

Figure 2-8. Comparison of antibody-binding sites and receptor-binding domains in the globular head of HA 
molecule from A/South Carolina/1/1918 (H1N1) influenza. In panel A: (blue) antibody-binding site Sb, (pink) 
antibody-binding site Sa, (orange) antibody-binding site Ca, and (purple) antibody-binding site Cb. In panel 
B: (pink) loop 130, (green) helix 190, and (purple) loop 220. Figures were generated using UCSF Chimera 
(Pettersen et al. 2004) with the crystal structure of HA from A/South Carolina/1/1918 (1RUZ.pdb) (Gamblin et 
al. 2004).  
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Figure 2-9. Comparison of antibody-binding sites and receptor-binding domains in the globular head of HA 
molecule from A/Hong Kong/1/1968 (H3N2) influenza. In panel A: (red) antibody-binding site A, (green) 
antibody-binding site B, and (orange) antibody-binding site D. In panel B: (pink) loop 130, (green) helix 190, 
and (purple) loop 220. Figures were generated using UCSF Chimera (Pettersen et al. 2004) with the crystal 
structure of HA from A/Hong Kong/1/1968 (4FNK.pdb) (Ekiert et al. 2012). 
 

 

2.1.5 Glycosylation of HA 
HA undergoes post-translational modification in the form of N-linked glycosylation, 

which is one of the most common forms of post-translational modification. HA produced in 

mammalian cells and chicken eggs possesses heterologous complex type N-linked 

glycans, whereas HA produced in insect cells possesses heterologous high-mannose type 

N-linked glycans (Chen et al. 2011). N-linked glycan is attached to the amide nitrogen of 

asparagine in a conserved motif of Asn-X-Ser/Thr (Vigerust and Shepherd 2007).  

In HA, N-linked glycans are found in both the stem region and the globular domain 

of HA molecules (Keil et al. 1985). Glycosylation sites in the stem region are highly 

conserved and are required to maintain structural integrity and stability during the 

synthesis process (Daniels et al. 2003, Kawaoka and Webster 1989). These sites are at or 

near residues 5, 26, 289, 483, and 542 (H3 numbering). Furthermore, these sites are 

conserved, possibly due to proper interactions between HA and glycan binding ER during 

HA folding and assembly (Das et al. 2010). Glycosylation in the stem region has been 

shown to affect virus virulence by changing the optimum pH required for fusion (Ohuchi et 

al. 1997) and the infectivity of influenza viruses by modulating the cleavage process of HA 

(Deshpande et al. 1987). 

In contrast, glycosylation sites in the globular domain vary from one strain to 

another. They are added or removed during evolution, and the complexity of the glycans is 

different. For example, the globular domain of H3 HA gradually gains more glycosylation 

A B 
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sites than H1 HA with a similar circulating time (Xu et al. 2010). There are a maximum of 

six glycosylation sites in H3 HA, whereas in H1 HA, only three glycosylation sites are 

encoded, which are centred on residues 92, 129, and 162. In addition, H2 HA maintains 

one glycosylation site in its globular domain, even though the strain circulated for about 10 

years, from 1957 to 1968 (Das et al. 2011, Das et al. 2010). The minimum alteration in 

glycosylation site in H2 HA indicates that glycosylation greatly affects the biological 

function of H2 HA (Tsuchiya et al. 2002, Tsuchiya et al. 2002). Furthermore, glycosylation 

in the globular domain determines the pathogenicity of influenza A virus. It also functions 

to help the virus evade pre-existing immune responses, and the induction of cross-

reactivity polyclonal antibody responses (Abe et al. 2004, Medina et al. 2013, Wanzeck et 

al. 2011). Analysis of glycosylation sites in pandemic influenza viruses demonstrates that 

the viruses are highly virulent because of the low number of glycosylation sites in their 

globular domain. As pandemic strains evolve into seasonal strains, the influenza viruses 

acquire more glycosylation sites to sterically hinder antibodies binding to the globular 

domain. It has been shown that N-glycan removal in seasonal influenza viruses increases 

viral virulence. Additionally, immunisation with seasonal strains lacking N-linked glycans 

can induce antibodies to cross-react with pandemic strains, although seasonal strains did 

not share similarities with pandemic strains.  

During viral evolution, some glycosylation sites are deleterious, while other 

glycosylation sites are maintained as they provide fitness and/or escape from immune 

responses, resulting in antigenic drift (Medina et al. 2013, Reichert et al. 2010, Sun et al. 

2011). A study involving the simulation and prediction of glycosylation in HA from H1 

strains by Das et al. (Das et al. 2011) demonstrated that glycosylation in one of the 

antibody-binding sites reduces the variability of residues around the site, and subsequently 

increases the variability of other sites. Moreover, when variability occurs at residues 190 

and 228, the receptor-binding specificity of the influenza virus is consequently altered (Das 

et al. 2011).  

As glycosylation in the globular domain interferes the binding of neutralising 

antibodies, it has been considered that glycosylation is also responsible for the low 

efficiency of conventional influenza vaccines based on the use of highly-glycosylated HA. 

Therefore, glycosylation should be included as one of the most important factors in 

influenza vaccine design. A study by Wang et al. (Wang et al. 2009) correlated the 

complexity of N-linked glycan in HA and the protection efficacy of the HA. In the study, the 

protection efficacy of fully-glycosylated HA (HAfg) was compared to the efficacy of 

monoglycosylated HA (HAmg). HAmg was produced by trimming down the complexity of N-
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linked glycan in HAfg using Endo H enzyme. The enzymatic treatment left a single N-

acetylglucosamine (GlcNAc) glycan residue attached to the glycosylation site. Both HAmg 

and HAfg were shown to be structurally similar, indicating that changes in the complexity of 

N-linked glycan did not alter the structure of the HA. However, the study showed that HAmg 

antiserum demonstrated a higher neutralising activity and mice immunised with HAmg 

showed a higher survival rate.  

The single GlcNAc glycan residue of N-linked glycan has been proposed to be 

important for protein folding and structure stabilisation (Chen et al. 2011, Hanson et al. 

2009, Khurana et al. 2010). Therefore, it has been argued that proper folding of HA could 

not be achieved in the absence of glycosylation. Since the induction of neutralising 

antibodies necessitates a native conformational epitope, HA lacking of N-linked glycan 

may not be protective. Khurana et al. (Khurana et al. 2010, Khurana et al. 2011) 

challenged this assumption by showing that bacterially produced HA1, which was non-

glycosylated, was able to induce a higher titre of neutralising antibodies than HA produced 

in mammalian cells. The study also demonstrated that mice immunised with bacterially 

produced HA1 were protected from morbidity.  

 

2.2 Influenza vaccines 
2.2.1 History of vaccination 

Vaccination is one of the most important inventions in human history. It is one of the 

most cost-effective methods to control and prevent the spread of various infectious 

diseases (Ehreth 2003, Ulmer et al. 2006). Vaccination was first introduced in China, or 

India, back in the fifteenth century through the practice of variolation. In variolation, the 

smallpox virus was artificially given to healthy individuals in order to raise immunity against 

the virus. There were various methods of variolation, i.e. (i) exposing a piece of cotton 

filled with pox pus or squama into the nostril of healthy individuals, (ii) putting clothes worn 

by infected individuals on healthy individuals, or (iii) blowing powdered squama into nostril 

of healthy individuals using a thin silver tubes. Variolation was widely used, possibly due to 

its ability to protect the variolated individuals from developing scarring. However, 

unavoidably, some variolated individuals also died due to illness which developed from the 

inoculation process itself (Leung 2011). 

The practice of variolation was then replaced by Jennerian vaccination. In 1796, 

Edward Jenner inoculated fluid extracted from a cowpox lesion in the arm of an 8-year old 

boy. Jenner demonstrated that the boy developed a slight illness from the cowpox and 

was protected from procuring smallpox following the inoculation. The use of the cowpox 
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virus to achieve protection against smallpox was a significant development over variolation 

(Bonanni and Santos 2011, Leung 2011). In addition, Jenner’s work was the first 

demonstration of a safer approach for vaccination using live organism. However, the 

approach was still empirical, without knowledge of the origin of the virus and an 

understanding of virus transmission and infection. The term “vaccine inoculation” was used 

for the first time to describe this process (Letvin 2007, Spohn and Bachmann 2008).  

Eighty years later, Louis Pasteur took vaccination to the next level of development 

in the laboratory, marking the first generation of developments in vaccine technologies. He 

discovered that exposure to adverse conditions could attenuate the virulence of 

pathogens. He also showed that inoculation could induce whole-body immunity, rather 

than just immunity at the point of injection. Pasteur’s approach for vaccination was distinct 

from the practice of variolation and Jennerian vaccination. Variolation and Jennerian 

vaccination involved inoculation with live pathogens to induce immunity against the 

pathogen. In contrast, Pasteur’s approach elaborated the use of attenuated pathogens. 

However, similar to variolation and Jennerian vaccination, Pasteur’s approach was still 

empirical, in the absence of knowledge regarding the structure and pathogenicity of the 

pathogens (Barbosa and Barral-Netto 2013, Bonanni and Santos 2011, Leung 2011). In 

the last decade of the nineteenth century, the first generation of vaccines for various 

diseases, such as typhoid fever, cholera, and the plague, were produced and tested 

(Plotkin and Plotkin 2011). Another example of the first generation vaccines is inactivated 

whole-virus influenza vaccine that was developed in 1930s using chicken eggs, discussed 

in Section 2.2.2 below (Thomas and Luxon 2013). In the twentieth century, the first 

generation of vaccine development reached the golden age through the growth of viruses 

in cell culture (Enders et al. 1949, Plotkin and Plotkin 2011). Using the cell culture 

technology, inactivated and life attenuated polio vaccines were produced during 1950s, 

followed by vaccines for mumps, rubella, rotavirus, and influenza. The first generation of 

vaccines ended following the development of purified polysaccharide vaccine to combat 

meningococcus serogroups A, C, Y, and W (Austrian et al. 1976), as well as Haemophilus 

influenza type b (Anderson et al. 1972). The development in the use of purified-

polysaccharide based vaccines then lead to the development of conjugate vaccines, in 

which the polysaccharides were conjugated to a protein (Avery and Goebel 1929, Robbins 

and Schneerson 1990). 

Although conjugate vaccines were successfully used to combat the two mentioned 

pathogens, the technology was not applicable for meningococcus serogroup B. The 

inapplicability of conjugate vaccine drove the development of the second-generation 
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vaccines, harnessing genomic sequencing. This vaccine technology is often described as 

reverse vaccinology (Thomas and Luxon 2013). In reverse vaccinology, the predicted 

antigens are screened for development as vaccine candidates by combining advance 

genomic sequencing, bioinformatics tools, high-throughput expression and purification 

systems, and serological screening assays (Dormitzer et al. 2008, Rappuoli 2000, Thomas 

and Luxon 2013).  

 

2.2.2 Structural vaccinology 
Nevertheless, the first and second generation vaccines are not suitable for 

“refractory pathogens”, such as those with highly variable surface antigens and those 

which cannot be produced using conventional vaccine production. To overcome these 

barriers, vaccination is developed towards the third generation, which is structural 

vaccinology, a.k.a. structure-based antigen design. Structural vaccinology combines 

genetic engineering and structural information about pathogens obtained using various 

analysis tools (listed in Table 2-1). It relies on the peptide-antigen-focusing concept, in 

which the entire protein is not necessary for the induction of protective immune responses. 

Therefore, in structural vaccinology, vaccination is focused on the selection of specific 

peptide antigens that elicit protective immune responses based on structural information. It 

avoids the use of antigens that can induce disease-enhancing immunity and vaccine-

mediated diseases (Dormitzer et al. 2008, Thomas and Luxon 2013).  

The peptide-antigen-focusing concept led to the emergence of peptide-based 

vaccines. However, peptide-based vaccines possess various disadvantages. For example, 

(i) they have poor immunogenicity, (ii) usage is restricted to patients of a given tissue type, 

and (iii) the antigen has a small size and low copy number. Two approaches to overcome 

these problems are: (i) the use of the larger domains from the pathogens containing 

selected peptide antigens but lacking other non-protective and undesirable antigens or 

domains; and (ii) the presentation of peptide antigens to unrelated carrier proteins for 

conformational stability (Kulp and Schief 2013). Examples of carrier proteins are: virus-like 

particles (VLPs) (Middelberg et al. 2011, Schneemann et al. 2012), green fluorescence 

protein (Abedi et al. 1998), cholera toxin B subunit (Totrov et al. 2010), and self-

assembling protein nanoparticles (Wahome et al. 2012). 
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Table 2-1. Analysis tools in structural vaccinology, taken from (Dormitzer et al. 2008). 
 

Property analysed Techniques Utility 
Three-dimensional structure 
of antigen-antibody 
complexes 

X-ray crystallography, NMR, 
cryo-EM 

Allow for rational engineering by defining 
domain boundaries, epitope structure, and 
underlying architecture 

Antigen structure ELISA, IP, escape mutant 
analysis, DXMS, phage 
display 

Define the link between physical structure 
and the landscapes recognised by 
antibodies 

Post-translational 
modification 

SDS-PAGE, MS, glycosidic 
linkage analysis, X-ray 
crystallography, NMR 

Assess the authenticity and homogeneity of 
modifications on recombinantly expressed 
proteins 

Protein folding and stability CD, ITC, DXMS, NMR, 
DSC, protease protection, 
native and SDS-PAGE 

Assess antigen conformation and integrity 
in solution over time for vaccine stability 

Non-covalent association 
and hydrodynamic radius  

AUC, DLS, SEC, SPR Assess antigen valency and aggregation 

Abbreviations: AUC, analytical ultracentrifugation; CD, circular dichroism spectroscopy; ELISA, enzyme-
linked immunosorbent assay; IP, immunoprecipitation; ITC, isothermal titration calorimetry; EM, electron 
microscopy; DLS, dynamic light scattering; DXMS, deuterium exchange mass spectrometry; MS, mass 
spectroscopy; NMR, nuclear magnetic resonance spectroscopy; SEC, size exclusion chromatography; 
SPR, surface plasmon resonance.  

 

 

Driven by structural considerations, structural vaccinology allows for the 

engineering of peptide antigens (i) to improve their feasibility as vaccine candidates, and 

(ii) to rapidly respond to antigen variability (Correia et al. 2014, Dormitzer et al. 2012). The 

engineering of peptide antigens is required if B-cell immune responses are targeted. The 

induction of different immune responses involves different mechanisms. T-cell immune 

responses are produced through complex intracellular antigen-processing pathways, 

which are independent of the antigen conformations. Thus, when T-cell immune responses 

are targeted, engineering of the peptide antigen is not required. In contrast, the 

neutralising mechanism of antibodies may be dependent on the structure of B-cell 

epitopes (Dormitzer et al. 2008). Thus, to induce antibodies recognising the parental 

viruses, B-cell epitopes in their native conformation are necessary. 

When peptide antigens are taken out of context from their parental proteins, they 

may not be able to preserve their native conformation. Similarly, when peptide antigens 

are presented in unrelated scaffold proteins, they may not be able to assume their native 

conformation. B-cell epitopes in non-native conformation may not undergo the same 

pathways of immune processing as the parental proteins. As a result, although B-cell 

epitopes are highly immunogenic, the induced antibodies may not be able to recognise the 

parental proteins (Purcell et al. 2007, Purcell et al. 2003). Thus, in order to obtain 

antibodies that cross-react with the native antigen protein, engineering of peptide antigens 

is required in order to maintain the native conformation of the epitope (Purcell et al. 2007, 
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Purcell et al. 2003). Various approaches have been used to induce the native 

conformation of peptide antigens in peptide-based vaccines. These approaches include: (i) 

the use of structure promoter (De Filette et al. 2008, Relf et al. 1996), (ii) increasing copy 

number of B-cell epitope (Fontenot et al. 1995, Fontenot et al. 1993, Kovacs-Nolan and 

Mine 2006, Schuman et al. 2005), (iii) incorporation of TH-epitopes and B-cell epitopes 

(Fitzmaurice et al. 1996), and (iv) cyclisation (Luzzago et al. 1993, Tugyi et al. 2005). 

However, approaches to induce the native conformation of peptide antigens presented on 

unrelated carrier proteins are still limited to (i) grafting, and (ii) the use of structural 

promoters.  

In the grafting approach, continuous-structural antigens are transplanted to scaffold 

proteins, assisted by computational design, whilst maintaining the structure and 

antigenicity of the peptide antigens (Kwong and Shapiro 2011). Engineering peptide 

antigens using the grafting approach is comprised of four steps. The first step is finding 

appropriate scaffold proteins with similar backbone structures to the targeted peptide 

antigens. The second step is filtering the scaffold proteins by retaining those that can bind 

to antibodies without any significant clashes. The third step is transplantation of side 

chains from the targeted peptide antigens at appropriate positions on the selected 

scaffolds. The fourth step is the introduction of additional mutations into the selected 

scaffolds to optimise stability, to expose the antigens from the surface, and to minimise 

undesirable interactions between antibodies and the scaffolds (Ofek et al. 2010). To date, 

this approach has mostly been used to present helical epitope peptides. Studies of the 

gp41 epitopes from HIV (Correia et al. 2010, Ofek et al. 2010) have shown that the grafting 

approach successfully presents the epitope in a conformation that is the same as in the 

template antibody-antigen complex. Nevertheless, antibodies induced against the grafted 

epitope are not effective for neutralisation (Ofek et al. 2010, Ofek et al. 2004). The 

approach has also been used for the Helix A epitope from HA2 of the influenza A virus 

(Schneemann et al. 2012), and the motavizumab epitope from the Respiratory syncytial 

virus (McLellan et al. 2011).  

In the second approach, structural promoters are used to induce native 

conformation of peptide antigens present in unrelated VLPs. Studies by Gleiter et al. 

(Gleiter et al. 1999) and Gleiter and Lilie (Gleiter and Lilie 2001) have shown the use of 

structural promoters to present the peptide epitope in unrelated VLPs. In these studies, 

amino acid sequences comprised of glycine and serine residues were used, aiming to 

provide flexibility for the peptide epitopes on the surface of the VLPs.  
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2.2.3 Current technologies for influenza vaccine production 
2.2.3.1 Egg-based influenza vaccine production 

Vaccination remains the main method to prevent seasonal influenza and reduce the 

rate of morbidity and mortality (Kang et al. 2012). More than 95% of the currently available 

influenza vaccines in markets are produced in embryonated chicken eggs (Perdue et al. 

2011). One million doses of seasonal trivalent influenza vaccines are produced annually 

using egg-based technology (Lee and Hu 2012). Egg-based technology was licensed in 

1945 (Ulmer et al. 2006) to produce inactivated purified whole virus for influenza vaccines 

(Lee and Hu 2012). In egg-based technology, influenza viruses are grown in the allantoic 

cavity of embryonated-chicken eggs. Grown viruses are then concentrated using ultra-

centrifugation and inactivated using formalin or β-propiolactone (Maassab et al. 1990, 

Murphy and Coelingh 2002). Grown viruses can also be treated using ether or Tween 

(Brandon et al. 1967, Hoyle et al. 1961, Neurath et al. 1971) to disturb the virion, 

producing split influenza vaccines, or treated with detergent, such as Triton N 101 (Brady 

and Furminger 1976), ammonium deoxycholate (Laver and Webster 1976), or 

cetyltrimethylammonium bromide (Bachmayer et al. 1976) to recover the HA and/or NA 

from the virions. Vaccines based on split virion and recovered surface antigens had lower 

adverse reactions than those based on inactivated whole virus. To increase virus yield, 

high-growth reassortants are used. The reassortant viruses contain six internal genes from 

the A/PR/8/1934 H1N1 and two external genes (HA and NA) from circulating strains (Lee 

and Hu 2012, Shaw 2012). 

Due to antigenic drift and antigenic shift on the HA and NA of influenza virion, the 

influenza vaccine must be reformulated every year. The World Health Organisation (WHO) 

manages an international surveillance system to observe the epidemiology of influenza 

viruses, and the surveillance data are reviewed by WHO Collaborating Centre 

investigators in February and September. Based on the review, the WHO then decides 

which vaccine strains to be included in the preparation of the following season’s influenza 

vaccines. Current influenza vaccines contain two strains of influenza A subtypes (H3N2 

and H1N1) and one strain of influenza B. Influenza vaccines are available on the market 

approximately 6-8 months after the decision is made. Due to the time delay, the vaccine 

strains may not accurately match the circulating strains. A typical annual vaccine 

manufacturing process using egg-based technology is shown Figure 2-10. 
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Figure 2-10. Manufacturing of seasonal trivalent influenza vaccines using egg-based technology (Treanor 
2004). 
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Figure. Outline of the Annual Process of Development, Manufacturing, and Distribution of Influenza Vaccine.
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Although egg-based vaccine production is widely used, this method has several 

limitations. First, egg-based vaccine production is time-consuming and labour intensive. In 

addition, a large number of eggs are required (Kistner et al. 1998, Tree et al. 2001). 

Therefore, vaccine production using egg-based technology requires an extended period of 

preparation. Consequently, the vaccine strains may not match the circulating strains when 

they become available. Second, in egg-based production, eggs are a major part of the 

production process (Tree et al. 2001). However, the use of eggs is not suitable for avian 

influenza viruses, such as H5N1. Optimal growth conditions for avian influenza viruses are 

difficult to achieve because the high pathogenicity of the virus can result in considerable 

tissue destruction. Although such viruses can still replicate in eggs at high temperatures 

and shortened incubation times, the yield is low (Stockmann et al. 2009). Third, eggs can 

also potentially select for variants that grow well in the environment used during the 

adaptation process (Kistner et al. 1998, Ulmer et al. 2006). Nucleotide sequencing has 

indicated that the HAs of influenza A strains grown in the egg have a single base 

substitution and subsequently a single amino change (Katz and Webster 1992, Robertson 

1993). Such amino acid substitutions can result in antigenic mismatch between vaccine 

strains and circulating strains (Tree et al. 2001). Finally, a trace amount of egg protein can 

become a latent source of allergic reaction for recipients (Ulmer et al. 2006). Furthermore, 

the handling of pathogenic viruses requires a biosafety level 3 working environment (Kang 

et al. 2009, Robertson and Engelhardt 2010).  
 

2.2.3.2 Cell culture-based influenza vaccine production 
  The limitations of egg-based vaccine technology have ignited the emergence of 

new vaccine production using cell culture. The production of influenza vaccine using cell 

culture-based technology has been developed since the 1970s. In 1995, the WHO 

officially recommended cell culture as a new method to produce influenza vaccines 

(Ghendon et al. 2005). The first licensed cell culture-based influenza vaccine was 

approved in the Netherlands in 2001. Production of vaccines in cell culture-based 

technology is similar to egg-based, which is summarised in Figure 2-11. Cell culture-based 

technology also produces inactivated whole virion influenza vaccines, split influenza 

vaccines, or surface antigen vaccines. A priori differences in the effectiveness of influenza 

vaccines produced from eggs or cell cultures in commercial production systems have not 

been observed. Influenza vaccines produced using both technologies have exhibited equal 

immunological efficacy and safety.  
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Figure 2-11. A schematic flow-chart of vaccine production using cell culture-based technology. Figure 
reproduced from (Doroshenko and Halperin 2009).  
 

 

Various cell lines have been widely used for commercial vaccine development and 

production. These cell lines are Madin-Darby canine kidney (MDCK) (Doroshenko and 

Halperin 2009, Hu et al. 2008, Liu et al. 2009), Vero (African green monkey kidney cell) 

(Kistner et al. 1998), Human diploid cell lines WI-38 and MRC 5 (secondary human lung 

fibroblasts), chick embryo fibroblast cells, PerC6 (immortalised human cell lines) (Lewis et 

al. 2005, Pau et al. 2001), and primary monkey kidney (PMK) (Chezzi et al. 1998). Vero 

and MDCK cells are licensed for the production of human influenza vaccines. The types of 

vaccines being produced, e.g. inactivated whole virion, subunit or split vaccines, determine 

the selection of cell lines (Perdue et al. 2011, Youil et al. 2004).  

Cell culture-based production offers many advantages over egg-based production. 

Firstly, cell culture-based production facilitates a faster vaccine production, which is 

beneficial in the case of pandemics. Vaccine production using egg-based technology 

requires about 6-8 months, whereas the use of cell culture-based technology vaccine 

enables production within 2-3 months. The use of various growth media also allows the 

same system for the production of various different vaccine products. Secondly, cell 
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culture-based production is controllable and easy to scale-up because continuous cell 

lines permit the use of fully characterised and standardised cells (Halperin et al. 1998, 

Murakami et al. 2008, Tree et al. 2001). Lastly, adverse effects, such as allergic reaction to 

certain egg components, can be minimised in vaccines produced using cell culture-based 

technology (Murakami et al. 2008). In addition, with the current advanced manufacturing 

practice, the contamination rate in cell culture-based vaccine production can be reduced to 

below 1%. In contrast, contamination is inevitable in egg-based technology due to the non-

sterile nature of eggs.  

However, cell culture-based production also has some limitations. Firstly, to be able 

to operate at a comparable capacity to egg-based production, cell culture-based 

technology requires an initial capital cost that is 2-3 times higher. Cell culture-based 

technology also requires higher maintenance costs. Secondly, cell lines must not contain 

any adventitious agents. The list of such agents is continually growing, and the testing is 

laborious, challenging, and time-consuming. Lastly, similar to egg-based production, cell 

culture can result in cell line-specific gene mutation which can cause further changes in 

the HA and NA proteins (Shank-Retzlaff et al. 2006) and subsequently lower 

immunogenicity (Johansson 1999, Wang et al. 2006).  

 

2.3 Virus-like particles (VLPs) 
A promising alternative to inactivated whole virion or split virion vaccines is virus-like 

particles (VLPs). VLPs are produced using genetic recombination technology, without the 

use of live viruses as the starting material. VLPs are defined as a particulate structure 

composed of the self-assembling viral capsid proteins. The capsid protein self-assembles 

to form sub-structures (capsomeres) that are subsequently organised to form particles 

(capsids). VLPs mimic native viruses, but they lack regulatory proteins and infectious 

genetic materials. Therefore, VLPs are replication-incompetent and safe for vaccine 

application (Buonaguro et al. 2001, Noad and Roy 2003, Pattenden et al. 2005, Roldão et 

al. 2010). The absence of infection genetic materials may also enable the differentiation of 

immunised and naturally infected animals. Such application is particularly of interest for 

foot-and-mouth disease vaccines (Parida 2009, Smith et al. 2014). As particulates with 

repetitive and ordered surface, VLPs are effective for (i) antigen delivery to antigen-

presenting cells (APCs), and (ii) stimulating innate and humoral immunity at equal or 

greater levels than inactivated whole virion and subunit vaccines (Malboeuf et al. 2007, 

Takamura et al. 2004, Touze and Coursaget 1998). The particulate nature of VLPs can 

also promote the induction of strong B-cell responses without the need for adjuvants 
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(Chackerian et al. 2002, Jegerlehner et al. 2002). Furthermore, VLPs have a size range of 

20-100 nm, allowing them to reach the draining lymphoid organs following subcutaneous 

injection and to be taken-up by lymph node-resident cells (Buonaguro et al. 2001). 

To date, VLPs have been used to combat parental viruses from which the VLPs are 

derived (Jennings and Bachmann 2009). Clinically approved VLP-based vaccines for this 

purpose are Gardasil® and CervarixTM for human papillomavirus (Jennings and Bachmann 

2009, Koutsky et al. 2002, Villa et al. 2005), and Engerix-B or Recombivax-B for Hepatitis 

B virus (Averhoff et al. 1998, Keating et al. 2003, Poland and Jacobson 2004).  

VLPs have also been used to display antigen modules, yielding modular VLPs. 

Antigen modules commonly contain short antigen elements with expected secondary 

structures (Crisci et al. 2012, Neirynck et al. 1999, Xia et al. 2011, Yin et al. 2011) or larger 

domains with expected tertiary structures (Buonaguro et al. 2001, Kratz et al. 1999, 

McGinnes et al. 2011, Murawski et al. 2010). Antigen modules may also contain other 

necessary elements, such as structure promoter elements. The repetitive patterns on the 

surface of VLPs increase the immunogenicity of the antigen modules significantly. Two 

commonly used methods for displaying antigen modules are (i) genetic fusion, and (ii) 

conjugation of the antigen modules on pre-formed VLPs (Zeltins 2013).  

In the first method, DNA-encoding antigen modules are cloned into DNA encoding 

the viral capsid protein. Antigen modules are fused in the region of the viral capsid protein 

that is exposed on the surface, including the N- and C-termini (Roldão et al. 2010). 

Genetic fusion of the antigen module combines structural knowledge and DNA 

recombinant engineering. To assist in the assembly of viral capsid proteins bearing 

antigen modules to form modular VLPs, modular viral capsid proteins can be co-expressed 

with wild-type viral capsid proteins. The resultant VLPs contain both wild type and modular 

capsid proteins at determined proportions. This technique is called mosaic VLPs (Jennings 

and Bachmann 2007, Karpenko et al. 2000, Loktev et al. 1996). Nevertheless, the 

production of modular VLPs, in which antigen modules are genetically fused into the viral 

capsid proteins, is highly unpredictable, depending on (i) the interaction between antigen 

modules and the viral capsid proteins, (ii) glycosylation efficacy, (iii) the expression 

system, and (iv) the length of the antigen module. It is thought that it is nearly impossible 

for the fused antigen module to assume quaternary structures (Roldão et al. 2010). To 

date, there have been four modular VLP-based vaccines, which are comprised of 

genetically-fused antigen modules, entered into clinical trials. These vaccines are: (i) 

RTS.S particle (GSK and PATH Malaria Vaccine Initiative an Bill & Melinda Gates 

Foundation-Rixensart, Belgium), which contains modular VLPs from the hepatitis B core 
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antigen (HBcAg) bearing amino acids 207-295 of the circumsporozite (CS) protein in the 

N-terminus of HBcAg (Nardin et al. 2004); (ii) HIV p17/24:Ty by British Biotech 

Pharmaceuticals Ltd (Oxford, UK), which contains modular VLPs from the p1 protein 

encoded by the yeast retrotransposon Ty. The modular VLPs are comprised of a gag 

component of HIV, 33 amino acids of p17 and 177 amino acids of p24 (Jennings and 

Bachmann 2007, Weber et al. 1995); (iii) Malarivax (ICC-1132), by Apovia, Inc., which 

contains modular VLPs from HBcAg bearing T-cell and B-cell epitopes from the 

circumsporozite (CS) protein (Roldão et al. 2010), and (iv) ACAM-FLU-A by Sanofi 

Pasteur Co., which contains modular HBcAg VLPs bearing a genetically-fused epitope 

from the external domain of M2 protein (M2e) (Fiers et al. 2009).  

In the second method, antigen modules are linked to the surface of preassembled 

VLPs. VLPs and antigen modules are generated separately. The antigen modules are 

then conjugated to the VLPs in vitro by covalent or non-covalent bonding. Non-covalent 

bonding exploits the strong interaction between streptavidin and biotin (Chackerian et al. 

2001), while covalent bonding utilises chemical cross-linkers. In covalent bonding, two 

distinct reactive groups are coupled to distinct functional target, one on the VLPs, and the 

other one on the antigen modules (Roldão et al. 2010). Two modular VLPs with 

conjugated antigen modules have entered clinical trials. These vaccines are: (i) nicotine 

Qβ VLPs by Cytos Biotechnology AG and Novartis, and (ii) AngII-Qβ VLPs by Cytos 

Biotechnology AG. Nicotine Qβ VLPs are generated by chemically conjugating nicotine to 

the bacteriophage Qβ VLPs, which are produced via E. coli. The conjugation is performed 

using a succinate linker with nicotine to VLPs ratio of 580. Nicotine Qβ VLPs is the first 

modular VLPs in clinical trial for non-infectious disease (Maurer et al. 2005). Similar to 

Nicotine Qβ VLPs, AngII-Qβ VLPs are generated by chemically conjugated AngII peptide 

to Qβ VLPs using SMPH (Succinimidyl-6-[(β-maleimidopropionamido)hexanoate]) (Ambühl 

et al. 2007).  

 

2.3.1 VLP production  
VLPs can be produced using various expression systems, both eukaryotic (e.g. 

yeast, insect cells, plants) and prokaryotic (e.g. Escherichia coli) host cells. This chapter 

focuses on baculovirus-insect cells and E. coli as the most widely used expression 

systems for VLP production. 
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2.3.1.1 Baculovirus-insect cell expression vector system (BEVS) 
BEVS is one of the most preferred expression systems for VLP production. The 

expression system mostly uses Sf9 and High FiveTM (Invitrogen, CA, USA) cell lines. Sf9 

cell lines, originating from Spodoptera frugiperda, are mostly used for the generation and 

propagation of recombinant baculovirus (rBVs). High FiveTM cell lines are derived from 

Trichoplusia ni and mostly used to produce recombinant protein (Fernandes et al. 2013, 

Mena and Kamen 2011). An approved VLP-based vaccine produced in Trichoplusia ni cell 

lines is CervarixTM (Koutsky et al. 2002, Villa et al. 2005).  
BEVS offers many advantages as a template for VLP expression system. Firstly, the 

expression system can reach high cell densities in suspension culture. Thus, high yield 

recombinant proteins could be achieved (Noad and Roy 2003, Zeltins 2013). Moreover, 

the proteins undergo eukaryotic post-translational modification, thus the biological activity 

of the proteins can be retained (Zeltins 2013). Secondly, baculovirus has a very limited 

host range, including a few species of Lepidoptera. The virus replicates efficiently in insect 

cells (>108 pfu/ml). However, the virus is not able to replicate in mammalian cells, although 

it can infect the cells. In addition, the virus only presents in the nucleus and culture media 

of insect cell preparations, while VLPs, the product, is in the cytoplasm. For these reasons, 

VLP produced in this expression system is safe for human use (Noad and Roy 2003). 

Lastly, BEVS is applicable for large-scale production (Noad and Roy 2003, Zeltins 2013) 

and allows the production of multiple proteins effectively and simultaneously (Mena and 

Kamen 2011, Tang et al. 2011).  
However, BEVS also faces various challenges for VLP manufacturing. Firstly, the 

self-assembly of VLPs in insect cells may not be properly performed. BEVS commonly 

uses two promoters, Polh and p10. The use of both promoters can increase the 

expression yield. However, the two promoters are activated very late post-infection, when 

the gradual degradation of insect cells occurs. As a consequence, post-translational 

modification may not properly performed and thus the self-assembly of VLPs may not be 

achieved properly (Liu et al. 2013). Secondly, although proteins produced in insect cells 

can fold more similarly to those produced in mammalian cells, this folding is inconsistent. 

Consequently, the production of VLPs in insect cells may result in heterologous products 

(Mena and Kamen 2011). Thirdly, because VLP self-assembly in insect cells occurs in 

vivo, the VLPs formed may contain live baculovirus or host nucleic acid as contaminants. 

This contamination increases batch-to-batch product variability (Mena and Kamen 2011, 

Pattenden et al. 2005), and affects the immunology of the VLPs, although it is believed to 

be at an insignificant level (Haynes 2009). To remove the contaminants, additional 
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disassemble-reassemble processes are necessary. Lastly, post-translational processes in 

this expression system are unpredictable, incomplete, and potentially immunogenic 

(Pattenden et al. 2005).  

 
2.3.1.2 Escherichia coli expression system 

Various VLPs have been successfully produced using the E. coli expression system. 

For example, VLPs from polyomavirus VP1 protein (Chuan et al. 2008, Leavitt et al. 1985, 

Salunke et al. 1986), hepatitis B core antigen (Bundy et al. 2008, Zlotnick et al. 1996), 

human papillomavirus (Schädlich et al. 2009), and hepatitis E (Wu et al. 2012). The last 

example is the first E. coli-produced VLP that is currently undergoing a clinical trial.  

The E. coli expression system offers many advantages. Firstly, the E. coli 

expression system is well characterised, allowing control and direct access to the 

optimisation of transcription and translation. These parameters are difficult to regulate in 

BEVS (Bundy et al. 2008). Secondly, the E. coli expression system offers a high yield of 

proteins, and the expressed proteins are easy to purify and recover (Bundy et al. 2008, 

Zhang et al. 1998). The well-studied denaturation and refolding mechanism also provides 

a solution to overcome the solubility problem for some recombinant proteins, especially 

those which originate from eukaryotic hosts using the E. coli expression system, may 

result in insoluble proteins (Zeltins 2013). Thirdly, in the E. coli expression system, the 

self-assembly of VLPs is performed in vitro. Therefore, the optimisation of assembly 

conditions can be controlled, and consequently more homogenous products can be 

obtained (Chuan et al. 2008). In vitro assembly also minimises the contamination of host 

nucleic acids and eliminates the disassembly-reassembly process (Pattenden et al. 2005). 

Lastly, the E. coli expression system allows for the production of VLPs within weeks (Lua 

et al. 2013).  

Although the E. coli expression system offers various advantages, it still has many 

challenges, which are yet to be answered. Challenges in VLP production using the E. coli 

expression system include (i) the absence of post-translational modification of proteins 

expressed in E. coli, (ii) the presence of endotoxins in the outer membrane of E. coli, and 

(iii) the presence of heat shock proteins or chaperone proteins, which may affect 

downstream processes (Zeltins 2013).  

 

2.3.1.3 Current studies on VLP-based influenza vaccines 
Current studies on VLP-based influenza A vaccines are focused on the paradigm of 

broadly cross-protective vaccines, which exploit highly conserved antigens from influenza 
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A virus, including the HA stalk domain (HA2), M2e, and NA. Antigens from HA2 include (i) 

a fusion peptide; (ii) a HA cleavage site that is an extended, highly exposed loop structure 

on the surface, and (iii) the long α-helical polypeptides, which are conserved among H1, 

H2, H3, H5, and H7 (Kang et al. 2012). 

These studies can be classified into two main streams. In the first stream, VLPs are 

formed from influenza viral capsid proteins and are produced using insect cell expression 

systems. The first studies in this stream demonstrated the production of VLPs based on 

the simultaneous expression of four structural proteins, HA, NA, M1 and M2 (Cox 2008, 

Latham and Galarza 2001). Similarly, many studies have developed VLPs based on HA 

and/or NA on influenza M1 VLPs both for seasonal (Bright et al. 2007, Quan et al. 2007, 

Wang et al. 2008) and pandemic (Bright et al. 2008, Haynes 2009, Kang et al. 2009, 

Mahmood et al. 2008, Prel et al. 2008) influenza viruses. Full-length M2 protein is also 

presented on influenza M1 VLPs (Song et al. 2011).  

In the second stream, studies developed VLP-based influenza vaccines by 

displaying antigens from influenza viruses on VLPs from unrelated pathogens. Murine 

leukaemia virus (MLV) gag particles have been used to display genetically fused HA and 

NA of an influenza virus using mammalian (Szécsi et al. 2006) or insect cell (Haynes et al. 

2009) expression systems. Similarly, gag VLPs have been used to display a headless HA 

protein of influenza (Steel et al. 2010) and Flock House virus (FHV) VLPs have been used 

to display Helix A from the HA2 influenza virus (Schneemann et al. 2012). In addition, 

studies have displayed peptide antigens from the M2 protein on VLPs from murine 

polyomavirus VP1 protein (Wibowo et al. 2013) and HBcAg (De Filette et al. 2006, 

Neirynck et al. 1999) via genetic fusion. Antigens from the M2 protein have also been 

displayed on HBcAg (Fan et al. 2004), human papillomavirus L protein (Ionescu et al. 

2006), and phage Qβ-derived VLPs (Bessa et al. 2008) via conjugation.  

 

2.4 The UQ Microbial Vaccine Platform (UQ-MVP)  

2.4.1 Murine polyomavirus (MuPyV) VP1 protein 

Murine polyomavirus (MuPyV) is an endogenous mouse virus from the class of 

polyomaviridae, and is closely related to simian virus 40 (SV40) (Stehle et al. 1996). It is a 

small non-enveloped DNA tumour virus, which recognises (α2,3)-linked α-5-N-

acetylneuraminic acid (sialic acid) on the surface of host cells. While all strains recognise 

straight-chain (α2,3)-sialic acid, some are also able to recognise branched-chain receptor 

oligosaccharides, which are linked to a second (α2,6)-sialic acid. The ability of the virus to 

recognise the branched-chain receptor is linked to a substitution of the residue at position 
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91 to glycine. The substitution of the residue to glycine has also been shown to reduce 

tumorigenicity of the virus (Stehle and Harrison 1996, Stehle and Harrison 1997). 

The nucleocore in MuPyV consists of 5.3 kb of circular genomic DNA (Bouřa et al. 

2005, Gillock et al. 1997). This genome encodes three T antigens (large, middle, and small 

tumour) and three capsid proteins, i.e. VP1, VP2, and VP3. VP1 is important for virus self-

assembly, while VP2 and VP3 have been shown to be insignificant for the assembly 

process (Stehle and Harrison 1997). The virus particle is about 45 nm in diameter and the 

shell of the virus consists of 72 pentamers, which are arranged in a T = 7d icosahedral 

lattice. The pentamers, also called capsomeres, are identical and composed of five copies 

of the major structural protein, VP1. Each VP1 monomer is about 42.5 kDa (Stehle et al. 

1996, Stehle and Harrison 1997).  

The crystal structure of VP1 from MuPyV has been resolved at 3.65 Å from purified 

polyoma strain P16 (Figure 2-12A; 1SID.pdb and UniProtKB P49302). This structure was 

resolved based on a previously described model of VP1 protein from SV40 (Stehle and 

Harrison 1996, Stehle et al. 1994). The structure of VP1 from MuPyV has also been 

resolved at 1.9 Å (Figure 2-12B; 1VPN.pdb) from bacterially expressed VP1 capsomeres 

lacking 31 amino acids in the N-terminus and 63 amino acids in the C-terminus (Stehle 

and Harrison 1997). Both crystals show that the structure of the VP1 protein is mainly β-

sheets, forming a barrel of “jelly-roll” topology. The only difference between both crystal 

structures is the arrangement of the N- and C-termini, indicating the role of both termini 

during capsomere assembly. Similarities between both crystal structures show that in the 

absence of post-translational modifications, bacterially expressed VP1 protein can fold into 

its native structure.  
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Figure 2-12. Crystal structures of murine polyomavirus VP1 capsomeres. (A) Crystal structure from purified 
virions (VP1 residues 1-384; 1SID.pdb). Red represents the N-terminal residues (residues 1-31). Green 
represents the C-terminal residues (residues 321-384); and (B) Crystal structure from recombinant VP1 
capsomeres (VP1 residues 32-320; 1VPN.pdb). Red represents residues 32-36. Green represents residues 
316-320. Figures were generated using UCSF Chimera (Pettersen et al. 2004).  

 

 

Similar to SV40, the assembly process of VP1 capsomeres to form VLPs is 

proposed to involve the interchange of arms to make contact between one capsomere and 

a neighbouring capsomere. A C-terminal arm from one capsomere invades another 

(Figure 2-13A). The invading C-terminal affects the structure of the N-terminal on the 

targeted capsomere. The N-terminal arm forms a clamp to secure the invading C-terminal 

arm (Figure 2-13B). The invading C-terminal also dislodges another N-terminal arm on the 

target capsomere to form a clamp with a third capsomere. Afterwards, the exchanging C-

terminal arms between two capsomeres are stabilised by additional clamp-clamp 

interactions between the N-termini of the two capsomeres (Figure 2-13C) (Stehle and 

Harrison 1997).  

 

A B 
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Figure 2-13. Assembly process of murine polyomavirus capsomeres to form VLPs. (A) A free-capsomere, 
(B) Invading of C-terminal arm (blue) from one capsomere to a neighbouring capsomere. The invading C-
terminal arm is secured by the N-terminal (red) clamp, and (C) Formation of clamp-clamp interaction 
between N-terminal arms of two capsomeres. Figure taken from (Stehle and Harrison 1997). 
 

 

2.4.2 Modular MuPyV VP1 as an antigen carrier 
The structural study of SV40 using X-ray crystallography shows that pentamers are 

roughly cylindrical, about 80 Å in diameter and 70 Å in length. Each pentamer has a hollow 

conical interior with 50 Å in diameter at its base and 12 Å at its neck, which is formed by a 

loop named loop FG (Liddington et al. 1991). The outside of each pentamer is formed by 

three surface-exposed loops named loops BC2, DE, and HI. These loops interact closely 

with each other and each loop connects two strands of β-sheets. An additional loop, 

named loop EF, is on one side of the β-sheet, starting from the inside, facing the end of 

the β-sheet. Loops BC2, HI and EF are suitable for the insertion of foreign amino acid 

sequences. However, loop DE is involved in monomer-monomer interactions within the 

pentamer; thus, it is not suitable for the insertion of a foreign sequence. Due to the 

structural similarities between SV40 and MuPyV, these four surface-exposed loops are 

also found in MuPyV VP1 (Figure 2-14). However, in MuPyV VP1, these loops contain 18 

additional amino acids (Stehle et al. 1996, Stehle et al. 1994). 

 

 

Structure of polyomavirus VP1 pentamer

Fig. 4. Differences between the unassembled and the assembled
structures of the VP1 pentamers. (A) Schematic view of the
rearrangement at the N-terminus. The invading β-strand J and the
clamp (β-strand A, 310-helix 3A), present only in the assembled
capsid, are outlined with thin broken lines. The segment (Anew) of
VP1 that is rearranged in the free pentamer, with respect to its position
in the virion, is shown in black; main-chain hydrogen bonds between
strands Anew and I are indicated. (B) Superposition of a fully
assembled pentamer as seen in the virus structure (Stehle and
Harrison, 1996) with the recombinant VP1 pentamer fragment. The
rearranged N-terminal segment is shown in yellow. Shown in blue are
the invading arm, present only in the assembled pentamer, and the
clamp, i.e. the conformation that the N-terminal segment assumes
when the invading arm is present. The clamp secures the invading arm
in its location. Two calcium ions (green) that were detected with
soaking experiments in SV40 (Liddington et al., 1991; Stehle et al.,
1996) also help to secure the invading arm and presumably stabilize
the assembled particle. (C) Model for the formation of the contact
between pentamers at the strict and local 5-fold positions. I: free
pentamer; II: a C-terminal arm (blue) from one pentamer invades
another pentamer and is secured with the N-terminal clamp (red);
III: completed contact, with two pentamers exchanging C-terminal
arms across a local dyad. The clamp is used not only to secure an
invading arm but also to present a set of contacts for the clamp of the
pentamer that lies across the local dyad. The free N-terminus in the
upper pentamer would be dislodged and primed to clamp a third
pentamer, as indicated by the black arrow. IV: ribbon drawing of the
interaction shown schematically in III. Part (B) of this figure was
prepared with RIBBONS (Carson, 1987), panel IV of (C) with
MOLSCRIPT (Kraulis, 1991).

C-terminal arm as it emerges from the subunit, and the N-terminus is part of a mechanism that helps ensure
correct exchange of arms and increases the accuracy ofthis interaction may help direct the arm away from the

pentamer, thereby reducing the likelihood of self-invasion. assembly.
The assembly of polyomavirus is likely to be a ‘self-Moreover, the N-terminal segment itself is prevented from

forming a clamp to lock in an auto-invading C-terminal controlled’ process (Caspar, 1976) with the following
properties (Stehle et al., 1996). (i) There is a definedarm. Thus, we propose that the observed conformation of
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Figure 2-14. Surface-exposed loops in monomeric murine polyomavirus VP1 (1SID.pdb) (Stehle and 
Harrison 1996). The figure was generated using UCSF Chimera (Pettersen et al. 2004). 
 

 

Based on the three-dimensional structure of the VP1 major capsid protein of SV40, 

Gedvilaite et al. (Gedvilaite et al. 2000) conducted a structural prediction in the hamster 

polyomavirus (HaPyV) VP1 protein (UniProtKB O73427) to determine potential sites for 

the genetic insertion of foreign antigens. The finding shows that in the HaPyV VP1 protein, 

four sites in the HaPyV VP1 protein can tolerate the genetic insertion of a foreign 

sequence. These sites are located in positions 80-89 (site 1), 221-224 (site 2), 243-247 

(site 3), and 288-295 (site 4). Solvent accessibility (>30%) calculations indicated that all 

sites showed relatively high solvent accessibility, except site 2. Furthermore, analysis of 

atom mobility based on the value of the atomic temperature factor (B-value) given in the X-

ray structure analysis showed that the mean B-value of the insertion sites in order were 

site 4 > site 1 > site 3 >> site 2. These analyses demonstrated that foreign antigens 

inserted in site 1, 3, and 4 should fold correctly and could therefore induce immune 

responses. These findings are supported by a study by Gedvilaite et al. (Gedvilaite et al. 

2004). The study showed that modular HaPyV VP1 bearing foreign antigens at insertion 

site 1 and 4 had higher expression levels in yeast than those bearing foreign antigens at 

insertion sites 2 and 3. Modular HaPyV VP1 bearing foreign antigens in sites 1 and 4 were 

also able to form VLPs in vivo. However, VLPs of modular HapPyV VP1 bearing foreign 

antigens in sites 2 and 3 could not be obtained.  

To be able to locate these insertion sites in MuPyV VP1, the amino acid sequence 

of MuPyV VP1 and HaPyV VP1 were aligned, as shown in Figure 2-15 (Gedvilaite et al. 

DE 
HI 

EF 

BC2 
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2000). The alignment shows that sites 1, 2 and 4 are located in surface-exposed loops 

BC2, EF and HI, respectively. Site 3 is located in loop FG (Figure 2-16).  

 

 

 
 
Figure 2-15. Amino acid sequence alignment of VP1 from hamster polyomavirus (UniProtKB identifier 
O73427) and VP1 from murine polyomavirus (UniProtKB identifier P49302, 1SID.pdb). The alignment is 
adopted from (Gedvilaite et al. 2000) and performed using Clustal Omega 
(http://www.ebi.ac.uk/Tools/msa/clustalo/). 

 

 

 

 

 

 

CLUSTAL O(1.2.1) multiple sequence alignment 
 

O73427      MRKSMAPKRKSGASSRCANPCGKPCPKPANVPKLIMRGGVGVLDLVTGEDSITQIEAYLN 
P49302      ----MAPKRKSGV-SKCETKCTKACPRPAPVPKLLIKGGMEVLDLVTGPDSVTEIEAFLN                    
                ********. *:* . * * **:** ****:::**: ******* **:*:***:**   
 
O73427      PRMGQNKPG--TGTDGQYYGFSQSIKVNSSLTADEVKANQLPYYSMAKIQLPTLNEDLTC 
P49302      PRMGQPPTPESLTEGGQYYGWSRGINLATSDTEDSPGNNTLPTWSMAKLQLPMLNEDLTC              
            *****          *****:*:.*:: :* * *.   * ** :****:*** *******   
 
O73427      DTLQMWEAVSVKTEVVGVGSLLNVHGYGSRSET-KDIGISKPVEGTTYHMFAVGGEPLDL 
P49302      DTLQMWEAVSVKTEVVGSGSLLDVHGFNKPTDTVNTKGISTPVEGSQYHVFAVGGEPLDL              
            ***************** ****:***: . ::* :  ***.****: **:**********   
 
O73427      QGLVQNYNANYE-AAIVSIKTVTGKAMTSTNQVLDPTAKAKLDKDGRYPIEIWGPDPSKN 
P49302      QGLVTDARTKYKEEGVVTIKTITKKDMVNKDQVLNPISKAKLDKDGMYPVEIWHPDPAKN              
            **** : .::*:  .:*:***:* * *...:***:* :******** **:*** ***:**   
 
O73427      ENSRYYGNFTGGTGTPPVMQFTNTLTTVLLDENGVGPLCKGDGLYLSAADVMGWYIEYNS 
P49302      ENTRYFGNYTGGTTTPPVLQFTNTLTTVLLDENGVGPLCKGEGLYLSCVDIMGWRVTRNY              
            **:**:**:**** ****:**********************:*****..*:*** :  *    
 
O73427      AGWHWRGLPRYFNVTLRKRWVKNPYPVTSLLASLYNNMLPTIEGQPMEGEAAQVEEVRIY 
P49302      DVHHWRGLPRYFKITLRKRWVKNPYPMASLISSLFNNMLPQVQGQPMEGENTQVEEVRVY                 
            *********::************::**::**:***** ::******* :******:*   
 
O73427      EGTEAVPGDPDVNRFIDKYGQQHTKPPAKPAN  
P49302      DGTEPVPGDPDMTRYVDRFGKTKTVFPGN--- 
            :*** ******:.*::*::*: :*  *.: 
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Figure 2-16. Insertion sites (spheres) in monomeric murine polyomavirus VP1 protein (1SID.pdb). The 
insertion sites are located in surface-exposed loops. (A) Site 1 in loop BC, (B) Site 2 in loop EF, (C) Site 3 in 
loop FG, and (D) Site 4 in loop HI. The figure was generated using UCSF Chimera (Pettersen et al. 2004). 

 

 

Studies have exploited the use of the insertion sites in MuPyV VP1 to introduce 

antigens from various pathogens. Based on the study by Gedvilaite et al. (Gedvilaite et al. 

2004) explained in the preceding paragraph, site 1 in loop BC2 and site 4 in loop HI in 

MuPyV VP1 are mostly exploited (Gleiter et al. 1999). Similarly, the insertion site has also 

been exploited to display the sequence of the immunoglobulin-binding domain, the protein 

Z (Gleiter and Lilie 2001). In both studies, the inserted antigens were shown to be able to 

retain their biological functions. Furthermore, in the study by Rivera-Hernandez et al. 

(Middelberg et al. 2011, Rivera-Hernandez et al. 2013), MuPyV VP1 was utilised as a 

carrier for peptide antigen from p145 protein from Group A streptococcus (GAS) bacteria. 

The antigen was inserted in insertion site 4 of the VP1 protein. In the study by Wibowo et 

al. (Wibowo et al. 2013), the same insertion site was utilised to display peptide antigen 

from M2e protein of influenza protein.  

 

A B 
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2.4.3  Production of MuPyV VP1 VLPs using E. coli expression system  
The UQ MVP (Lua and Middelberg 2007) is developed based on production of 

MuPyV VP1 VLP using an E. coli expression system. In the UQ MPV, MuPyV VP1 is 

expressed as a Glutathione S-transferase (GST)-tagged protein in E. coli (Chuan et al. 

2008). Highly soluble GST-tagged protein is then purified using GST-affinity 

chromatography (Lipin et al. 2008). Following tag removal, capsomeres are separated 

from aggregates and cleaved GST-tag using size-exclusion chromatography (SEC). 

Purified capsomeres spontaneously self-assemble in vitro under the following conditions: 

(i) the presence of Ca2+ ions, (ii) increased ionic strength, and (iii) the absence of reduction 

agents (Chuan et al. 2008, Chuan et al. 2010, Salunke et al. 1989). The formed VLPs are 

then analysed using asymmetric flow-field flow fractionation (AF4) coupled with multi-angle 

light scattering (MALS), and transmission electron microscopy (TEM) (Chuan et al. 2008). 

Unlike VP1 protein expressed in eukaryotic systems, bacterially expressed VP1 

does not undergo post-translational modification, such as phosphorylation and acetylation. 

However, VLPs from bacterially expressed MuPyV VP1 mimic the native virus (Salunke et 

al. 1986). More importantly, the use of the E. coli expression system allows for the rapid 

production of VLPs with a high yield. The production can be scaled-up to produce up to 1 

g/L VP1 (Liew et al. 2010). Nevertheless, bacterially expressed MuPyV VP1 has two major 

contaminants, GroEL and DnaK (Fan and Middelberg 2010). These contaminants are 

highly conserved E. coli molecular chaperones and classified as heat shock proteins 60 

and 70, respectively.  

 

2.4.4 Molecular chaperones as contaminants on MuPyV VP1 produced in E. coli 
Chaperones recognise and selectively bind to non-native proteins to form stable 

complexes via exposed hydrophobic residues. The complexes can be dissociated via the 

binding and hydrolysis of ATP. Protein folding in vitro is usually performed at low protein 

concentrations under non-physiological conditions and long incubation times. However, in 

vivo, cells are mostly grown at homeothermic temperature (e.g. 37°C). This condition 

results in stronger hydrophobic effects, and consequently the higher propensity of protein 

aggregation and misfolding. Therefore, chaperones are required for protein in vivo folding 

(i) to prevent the aggregation and misfolding of newly synthesised protein, (ii) to prevent 

non-productive interactions with other cells, (iii) to assist in the assembly of larger proteins 

and multiprotein complexes, and (iv) to prevent the unfolding of folded proteins due to 

exposure to stresses. The major class of chaperones involved in in vivo protein folding are 

40-kDa heat shock protein (Hsp40, the DnaJ family); 60-kDa heat shock protein (Hsp60), 
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which include GroEL and the T-complex polypeptide 1 ring-complexes; 70-kDa heat shock 

protein (Hsp70); and 90-kDa heat shock protein (Hsp90).  

 

2.4.4.1 GroEL 
GroEL is a homotetradecamer protein and is composed of two back-to-back rings. 

Each ring comprises seven monomeric subunits of 57 kDa. The crystal structure of free 

GroEL shows a cylindrical complex that is 145 Å in height and 135 Å in diameter. The 

central channel in each terminus is 45 Å in diameter (Braig et al. 1994, Braig et al. 1993). 

GroEL is found in all biological compartments except the ER of prokaryotes, chloroplasts, 

and mitochondria. It functions to prevent the aggregation of partially folded intermediates 

as well as to facilitate the folding and assembly of the intermediates in a favourable 

environment. It also allows misfolded proteins to unfold and refold (Fink 1999).  

The GroEL subunit is composed of three domains: the apical domain, the equatorial 

domain, and the intermediate domain. The apical domain forms the end part of GroEL 

cylinder and is composed of an orthogonal β-sheet structure flanked by α-helices. The 

domain is suggested to have intrinsic flexibility, which is necessary to accommodate the 

binding of various polypeptides. The equatorial domain is the structural foundation of the 

cylinder structure of GroEL, and allows for the major contacts between subunits within and 

between rings. Long and parallel α-helices compose this domain. The apical domain is 

covalently connected to the equatorial domain via the intermediate domain. Mutations of 

the intermediate domain have been shown to affect measurable functions of GroEL 

(Fenton and Horwich 1997, Fink 1999, Xu et al. 1997). 

The activity of GroEL is assisted by the co-chaperone GroES (cpn10). Similar to 

GroEL, GroES is a ring-like protein, composed of seven subunits that are 10 kDa in size. 

In the presence of nucleotides, GroES binds to one or both ends of the GroEL cylinder, 

resulting in the upward and outward opening of the GroEL apical domains. Furthermore, 

the activity of GroEL is also regulated by the binding and hydrolysis of ATP 

(Chandrasekhar et al. 1986, Chen et al. 1994, Fenton and Horwich 1997, Fink 1999, 

Langer et al. 1992, Saibil et al. 1991).  

The reaction pathway of GroEL-GroES in mediating folding consists of four steps. 

First, GroEL binds to a non-native polypeptide while GroES caps the other end of the 

cylinder (trans ternary complex). The binding occurs in the presence of physiological levels 

of ATP/ADP. Second, the trans complex then becomes a cis ternary complex, in which 

GroES binds to GroEL on the same ring as polypeptides. The formation of the cis ternary 

complex is achieved (i) by releasing GroES from the trans ring, followed by binding in cis 
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ring; or (ii) by binding of the second GroES in the cis ring. Third, in the presence of ATP, 

the bound polypeptide is released from its binding site in GroEL, allowing for folding inside 

the sequestered space of GroES. Fourth, GroES is released from GroEL, and the 

polypeptide departs in three possible structures: native conformation, native intermediate, 

and non-native intermediate. The latter can rebind to GroEL for another folding attempt 

(Fenton and Horwich 1997).  

 

2.4.4.2 DnaK 
DnaK is the major bacterial Hsp70 and expressed abundantly in E. coli. Together 

with the co-chaperone DnaJ and the regulator GrpE, DnaK functions in de novo protein 

folding (Calloni et al. 2012). Similar to GroEL, DnaK prevents the aggregation of misfolded 

proteins and promotes refolding. Due to its function in repairing denatured proteins, DnaK 

is viable at high temperatures (>37°C). DnaK only binds to unfolded proteins, and 

relatively unfolded intermediates (Mayer et al. 2000). It does not bind to folded and 

strongly native-like intermediates. DnaK binds to unfolded polypeptides via short, 

hydrophobic regions in the centre of the polypeptides. The hydrophobic region preferably 

consists of four to five hydrophobic residues, particularly enriched in Leu, Ile, Val, Phe, and 

Tyr (Rüdiger et al. 1997). The binding is also favoured by a strong ionic interaction 

between DnaK and negative charged residues in the region (Fink 1999).  

DnaK consists of two major functional domains: (i) the ATPase domain of 45 kDa, 

and (ii) the COOH-terminal domain of 25 kDa. The ATPase domain is highly conserved 

and binds to ADP and ATP very tightly in the presence of Mg2+ and K+. Hydrolysis of the 

ATP also takes place in the domain. Furthermore, the ATPase domain comprises of four 

sub-domains. These sub-domains form two lobes with a deep gap where MgATP and 

MgADP bind. Meanwhile, the COOH-domain of DnaK binds to a polypeptide. The domain 

consists of a β-sandwich subdomain and four α-helical segments. The β-sandwich 

comprises two groups of four antiparallel β-strands, which are connected by upward-

protruding loops. These loops form a channel for the binding of polypeptide in an extended 

conformation. The complex is then stabilised by one of the α-helical segments without any 

direct contact. The other three α-helical segments build a hydrophobic helical core, 

forming a lid-like structure, presumably to maintain the bound polypeptide (Harrison et al. 

1997, Zhu et al. 1996).  

The reaction cycle of DnaK comprises three major pathways. First, ATP binds to 

DnaK, inducing a conformational change of the COOH-terminal domain in DnaK to a low-

affinity state. The conformational change is hypothesised to involve the elevation of the 
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hydrophobic helical core. Due to the low affinity of DnaK, the DnaK-ATP complex binds 

and releases polypeptides rapidly. Second, in the presence of DnaJ, ATP is hydrolysed, 

resulting in the formation of a stable DnaK-ADP complex. Polypeptides bind to the DnaK-

ADP complex, which has a high affinity and lives for a relatively long period. Third, GrpE 

promotes the dissociation of ADP from DnaK, and ATP consequently binds to DnaK. The 

cycle returns to (i) the first pathway, leading to the release of polypeptide, and the binding 

of new polypeptides, or (ii) to the second pathway, where ATP is hydrolysed, yielding the 

DnaK-ADP complex (Calloni et al. 2012, Fink 1999, Mayer et al. 2000).  

 

2.4.4.3 Existing methods for purification of DnaK and GroEL 
Studies have shown that ATP-affinity chromatography effectively purified both 

chaperones (Khandekar et al. 1993, Peng et al. 1997). Treatment with ATP has also been 

shown to separate both chaperones from bound proteins (Rial and Ceccarelli 2002, Schön 

and Schumann 1995). In addition, both chaperones can also be purified based on ion 

exchange chromatography (IEX) utilising Q-sepharose (Fan and Middelberg 2010, Henot 

2010, Henot et al. 2008, Schön and Schumann 1995, Zylicz and Georgopoulos 1984), 

DEAE (Kamireddi et al. 1997, Zylicz and Georgopoulos 1984), or P-11 cellulose (Zylicz 

and Georgopoulos 1984) columns. Size-exclusion chromatography (SEC) using a 

Sephacryl column can also be utilised (Henot 2010, Kamireddi et al. 1997, Schön and 

Schumann 1995) as a polishing step. The purification of GroEL using hydrophobic 

interaction chromatography (HIC) (Schoel and Kaufmann 1991) and DnaK using a 

hydroxyapatite type II column (Henot 2010, Zylicz and Georgopoulos 1984) has also been 

shown.  

 

2.5 Concluding statement 
In this chapter, relevant literature on the influenza A viruses and influenza vaccines 

are gathered. Vaccination has been shown to be the most cost effective way to prevent the 

spread of various infectious diseases, including influenza A. However, influenza A viruses 

undergo continuous antigen variability through antigenic drift and antigenic shift 

mechanisms. Vaccine production using conventional egg-based and cell culture-based 

technologies has not provided a solution for the variability of influenza A surface antigens. 

A promising alternative to the conventional vaccine technologies is virus-like particles 

(VLPs) based on a microbial platform. The literature gathered in this chapter show 

extensive studies in VLPs from the murine polyomavirus (MuPyV) VP1 protein. An 

attractive feature of MuPyV VP1 VLPs is that they can be used as a carrier for foreign 
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peptide epitopes. Rapid and high-yield production of the VLPs via a bacterial expression 

system has also been established.  

This chapter also showed the importance of the receptor-binding site within the 

globular domain of HA during the first step of viral infection. The receptor-binding site is 

bordered by three secondary elements that are hypervariable. One of the elements is 

named helix 190. It has a helical secondary structure and studies show that it contains an 

antigenic site in both H1 and H3 subtypes. Therefore, helix 190 is an interesting candidate 

for peptide antigens to be presented on MuPyV VP1 VLPs.  

This chapter has also shown an increasing need to develop vaccines based on the 

structure of antigens, especially for pathogens undergoing constant changes on the 

surface antigens, such as influenza virus. Various approaches used to preserve the native 

conformation of peptide antigens presented in unrelated protein carriers are described. 

Information from these literatures can be used to present helix 190 in MuPyV VP1 VLPs 

and to retain the native conformation of helix 190 when it is presented on the VLPs.  
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3 Chapter 3. Sensitivity of immune response quality to influenza 
helix 190 antigen structure displayed on a modular virus-like 
particle 

 
The entire Chapter 3 consists of the journal article published as: 

Anggraeni, MR, Connors, N, Wu, Y, Chuan, YP, Lua, LHL, Middelberg, APJ. 2013. 

Sensitivity of immune response quality to influenza helix 190 antigen structure displayed 

on a modular virus-like particle. Vaccine 31(40):4428-4435. 

 

The following modifications were made to the article: 

1. Page numbers of the original article were crossed out. 

2. Page numbers consistent with those on the remainder of the thesis pages were 

inserted.  

3. Published supplementary information was attached as Appendix A. Font and 

reference format were adjusted.  
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a  b  s  t  r  a  c  t

Biomolecular  engineering  enables  synthesis  of  improved  proteins  through  synergistic  fusion  of  modules
from unrelated  biomolecules.  Modularization  of  peptide  antigen  from  an  unrelated  pathogen  for  pre-
sentation  on  a modular  virus-like  particle  (VLP)  represents  a new  and  promising  approach  to  synthesize
safe and  efficacious  vaccines.  Addressing  a  key  knowledge  gap  in  modular  VLP  engineering,  this  study
investigates  the  underlying  fundamentals  affecting  the  ability  of  induced  antibodies  to  recognize  the
native  pathogen.  Specifically,  this  quality  of  immune  response  is  correlated  to  the  peptide  antigen  mod-
ule structure.  We  modularized  a helical  peptide  antigen  element,  helix  190  (H190)  from  the  influenza
hemagglutinin  (HA)  receptor  binding  region,  for presentation  on murine  polyomavirus  VLP,  using two
strategies  aimed  to  promote  H190  helicity  on the  VLP.  In the  first  strategy,  H190  was  flanked  by GCN4
structure-promoting  elements  within  the  antigen  module;  in  the second,  dual  H190  copies  were  arrayed
as tandem  repeats  in  the  module.  Molecular  dynamics  simulation  predicted  that  tandem  repeat  array-
ing would  minimize  secondary  structural  deviation  of  modularized  H190  from  its native  conformation.
In vivo  testing  supported  this  finding,  showing  that  although  both  modularization  strategies  conferred
high  H190-specific  immunogenicity,  tandem  repeat  arraying  of  H190  led to  a strikingly  higher  immune
response  quality,  as  measured  by ability  to  generate  antibodies  recognizing  a  recombinant  HA  domain
and split  influenza  virion.  These  findings  provide  new  insights  into  the  rational  engineering  of  VLP  vac-
cines, and  could  ultimately  enable  safe  and  efficacious  vaccine  design  as  an  alternative  to  conventional
approaches  necessitating  pathogen  cultivation.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Synthetic biomolecular engineering has enhanced understand-
ing of biological processes and design of novel proteins [1,2]. Fusion
of different protein domains to realize a synergic combination of
modules [3] has been used extensively to create hybrid enzymes
[4] and humanized antibodies [5]. This approach has yet to impact
vaccines significantly, but rational vaccine design based on presen-
tation of protective antigen modules [6,7] is emerging.

VLPs are protein assemblies that mimic  viral structure [8–14];
modular VLPs combine a VLP with an antigen module from an
unrelated pathogen [9,15–17]. Two types of modules are com-
monly used: (i) short peptides expected to have minimal structure
[18–21]; and (ii) larger domains with expected tertiary structures
[22–25]. There remains a significant knowledge gap about the

∗ Corresponding author. Tel.: +61 7 3346 4189; fax: +61 7 3346 4197.
E-mail address: a.middelberg@uq.edu.au (A.P.J. Middelberg).

display of peptide antigen with specific secondary structure e.g. !-
helix, on an unrelated VLP. Here we  address this knowledge deficit
using influenza as a model pathogen.

Hemagglutinin (HA) is an influenza surface glycoprotein com-
prising globular HA1 and stalk HA2 domain. HA mediates viral entry
in two  steps: (i) viral attachment to the sialic acid receptor; and (ii)
fusion of the viral and endosomal membrane [26,27]. Antibodies
that bind within the receptor binding region on HA1 block viral
attachment and are neutralizing [28,29]. The receptor binding site
within HA1 determines viral specificity [30] and is bordered by
hypervariable regions including helix 190 [31]. Helix 190 (H190;
Fig. 1A) possesses a defined helicity and contains the immunodom-
inant antigenic site Sb [32,33]; monoclonal antibodies against this
site have been shown to be protective in mice [34]. The immuno-
genicity, function and defined secondary structure of H190 suggest
it is an interesting candidate for structural display on an unrelated
VLP.

We chose to explore murine polyomavirus (MuPyV) VLP for
modularization with H190. High-efficiency microbial expression

0264-410X/$ – see front matter ©  2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.vaccine.2013.06.087
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Fig. 1. (A) Crystal structure of H1N1 HA with H190 highlighted in red. Data for A/California/04/2009 HA (3AL4.pdb), bearing one amino acid difference from
A/California/07/2009 HA, is shown here. The picture was created using UCSF Chimera 1.5.2 [65], (B) modular MuPyV VP1 designs showing the heterologous elements
in  (i) VP1-GCN4-H190-GCN4; and (ii) VP1-H190-H190. Numbers refer to residues of VP1, (C) root-mean-square-deviation (RMSD) of C˛ , backbone, side chain, and all heavy
atoms  of simulated GCN4-H190-GCN4 and H190-H190 peptides with reference to H190 on HA (3MLH.pdb), and (D) final conformation of H190 element in simulated pep-
tides  (i) GCN4-H190-GCN4; and (ii) H190-H190, in comparison to (iii) native H190 structure in HA. !-Helical structures are highlighted in blue. The image was created using
Accelrys  Discovery Studio® 3.0. Positions of Ser1 and Tyr16 on the peptides are as indicated. (For interpretation of the references to color in this figure legend, the reader is
referred  to the web version of the article.)

and purification processes for modular MuPyV VLPs have been
reported [9]. We  explore whether the helicity of different H190
antigen module designs affect the quality, i.e. native protein recog-
nition, of the antibodies raised by vaccination with the modular
VLPs.

Two display strategies were compared: (i) display of H190 using
flanking helix promoting elements; and (ii) tandem repeat arraying
of H190. The first strategy explores GCN4 as flanking structure-
promoting elements within the antigen module. GCN4 is well
characterized and has been used as an !-helical scaffold [35,36]
or as a helix promoter [37,38]. We  previously reported the inclu-
sion of GCN4 in an antigenic module designed to display Group A
Streptococcal antigen on a VLP [9]. However, these studies have not
established whether the GCN4 elements have any positive effect
on the immune response quality. The second strategy explores the
use of tandem repeats, which are ubiquitous in proteins, and form
domains with extensive secondary structures including helices
[39]. The use of this strategy has been restricted to present con-
formational proline-rich peptide to effect the necessary structure
[40,41], or to simply increase immunogenicity [42–44].

Modularized VLPs were assessed computationally and in vivo.
Molecular dynamics (MD) simulation predicted that modulariza-
tion using tandem repeats would provide a closer structural match
of modularized H190 and the equivalent native region in HA. In vivo
testing confirmed this strategy was superior as it induced antibod-
ies able to bind recombinant HA1 protein and split influenza virion.
These findings illustrate, for the first time, the importance of VLP

antigen module design on the quality of an immune response, pro-
viding new insights into the design rules for synthetic biomolecular
engineering of VLP vaccines.

2. Materials and methods

2.1. Simulation of peptides GCN4-H190-GCN4 and H190-H190

Peptides GCN4-H190-GCN4 and H190-H190 were simulated
using GROMACS version 3.3.3 in water containing 137 mM NaCl
for 20 ns, 3 times for each peptide, as described in Supplementary
information.

2.2. Cloning, purification and assembly of modular VLPs

E. coli codon-optimized DNA oligomers corresponding to the
antigen modules containing heterologous elements (Fig. 1B) were
cloned into pGEX-VP1 vectors as described previously [9]. Mod-
ular proteins VP1-GCN4-H190-GCN4 and VP1-H190-H190 were
recombinantly produced and prepared as described [45,46]. After
endotoxin removal to below 5 EU/ml, purified modular capsomeres
were assembled in vitro into modular VLPs and dialyzed against
PBS [9]. The endotoxin levels of the capsomeres were below the
suggested limit for a recombinant protein based vaccine, which is
20 EU/ml [47].

Melisa Anggraeni

Melisa Anggraeni
53



4430 M.R. Anggraeni et al. / Vaccine 31 (2013) 4428– 4435

2.3. Characterization and visualization of modular VLPs

VLP size distribution was characterized using AF4-MALS and
TEM [46,48].

2.4. Mice immunization

Female Balb/c mice aged 6–8 weeks, 8 mice/group, were
purchased from Monash Animal Research Platform (Monash Uni-
versity, Australia). Ethical clearance no. AIBN/273/10/CBME/AIBN
(NF) was granted from the University of Queensland Animal Ethics
Committee. Mice were injected subcutaneously at the tail base with
50 !g of VP1-GCN4-H190-GCN4 or VP1-H190-H190 VLPs in a vol-
ume of 50 !l on days 0, 21, and 42. Negative control groups were
immunized with an equal dose of wild-type (wt) VLP or 50 !l PBS.
Mice were bled on tail on days 0, 14, 35, and 56. Sera from day 56
were used for immunoassays.

2.5. Dot blot

Antigens (3 !g) were applied onto membrane and were probed
with sera (1/200 dilution) for 1 h. After washing, horseradish perox-
idase (HRP)-conjugated anti-mouse IgGs (Sigma–Aldrich, St. Louis,
USA) was added. After 1-h incubation, HRP activities were detected
via luminescence intensity.

2.6. ELISA

For indirect ELISA, antigens were immobilized and probed with
sera for 1.5 h. After washing, HRP-conjugated anti-mouse IgGs was
added. After 1-h incubation, HRP activities were detected via lumi-
nescence intensity. For competitive ELISA, an additional step was
included in which sera were pre-mixed with various concentra-
tions of inhibitor prior to incubation on plate.

2.7. Statistical analysis

Statistical analysis was performed on log-transformed data
using GraphPad Prism 5.03 (GraphPad, Inc.). Comparison of anti-
body titer for multigroup was conducted using one-way ANOVA
with Tukey’s post hoc test. Total amount of HA in Fluvax was calcu-
lated based on product information for Fluvax season 2011 which
specifies that Fluvax contains total HA of 45 !g in 500 !l. The con-
centration of recombinant HA1 was determined using absorbance
at 280 nm with extinction coefficient (ε 1% in water) of 1.526 L/g cm.

Additional details are provided in the Supplementary informa-
tion.

3. Results

3.1. Modularization of VLP and simulation

MuPyV VLP assembled from the major structural protein VP1 [9]
was modularized with H190 (STSADQQSLYQNADAY) from H1N1
A/California/07/2009 influenza (Fig. 1A). Two modular MuPyV
VP1 designs shown in Fig. 1B were investigated. In VP1-GCN4-
H190-GCN4, the module comprised an H190 element flanked
immediately by GCN4 helix-promoting elements (VKQLEDKV),
with GSGS spacer elements connected to the VP1 backbone
(Fig. 1Bi). In VP1-H190-H190, two H190 elements were simply
arrayed as tandem repeats (Fig. 1Bii).

Molecular dynamics (MD) was performed to predict the
structure of the H190 element in these designed modules.
Root-mean-square-deviation (RMSD) was significantly higher in
the GCN4-H190-GCN4 module than in the H190-H190 mod-
ule (Fig. 1C). Final conformation of simulated peptide (Fig. 1D)

showed unfolding of H190 element in GCN4-H190-GCN4 after
20 ns, whereas a copy of H190 in H190-H190 retained its heli-
cal propensity. These data suggest that the H190 elements are
likely to have different structures in the two  antigen modules
when presented on a VLP, though actual module structure may
be further modified by the VLP junction regions. Nevertheless, the
simulation results suggest that a tandem repeat arraying strategy
could present the H190 in a structure that might raise an immune
response of higher quality. This suggestion was investigated exper-
imentally.

3.2. Formation of modular VLPs

Fig. 2 shows analyses of the assembled VLPs. The AF4 peak
at approximately 20 min  corresponded to VLPs [48] with aver-
aged root-mean-square (rms) radius of 20 nm. The polydispersity
index was 1.00 for all VLPs, indicating that the particles were
monodisperse. TEM visualization showed that the modular VLPs
were morphologically indistinguishable from the wild-type (wt)
VLP.

3.3. H190-specific immunogenicity

To determine the presence of H190 sequence-specific IgGs
raised by the modular VLPs, antisera were analyzed against peptide
H190 (Peptide2.0, Chantilly, VA, USA) in a dot blot assay (Fig. 3A).
Fig. 3B shows that immunization with either modular VLP induced
a high IgG titer (>104) against H190 peptide. The IgG titers were
similar for both modular designs. This result confirms that both
modular VLPs were comparably effective at inducing a high titer of
sequence-specific IgGs against the H190 element.

To determine the immunogenicity of the GCN4 element, a com-
petitive ELISA was performed (Fig. 3C and D). Fig. 3C shows that
peptide GCN4-H190-GCN4 (Peptide2.0, Chantilly, VA, USA) at a
concentration of 239 !M completely abrogated binding of VP1-
GCN4-H190-GCN4 serum IgGs to immobilized GCN4-H190-GCN4
peptide target, while peptide H190 at the same concentration
only partially inhibited binding. In contrast, peptides GCN4-H190-
GCN4 and H190 were comparably effective at inhibiting binding of
VP1-H190-H190 VLP serum IgGs against the immobilized peptide
GCN4-H190-GCN4, with complete inhibition achieved at 239 !M of
competing peptide. These results confirmed the immunogenicity of
the GCN4 element.

3.4. Specificity of modular VLP antisera to recombinant HA1
protein

The modular VLP antisera were tested against recombinant
H1N1 A/California/07/2009 HA1. Fig. 4A shows that HA1-specific
antibodies were present in the VP1-GCN4-H190-GCN4 VLP and
VP1-H190-H190 VLP antisera. The ELISA result (Fig. 4B) showed
that immunization with VP1-GCN4-H190-GCN4 or VP1-H190-
H190 VLPs induced a high HA1-specific IgG titer against HA1,
achieving greater than 104 for VP1-H190-H190. Importantly, the
result also showed that VP1-H190-H190 induced a HA1-specific
IgG titer significantly higher than the VP1-GCN4-H190-GCN4 VLP.
Fig. 4C shows that IgGs binding to the immobilized HA1 protein
could be completely inhibited by competing peptide H190. The
complete inhibition concentration was  0.2 !M and 2 !M for VP1-
GCN4-H190-GCN4 and VP1-H190-H190 VLPs, respectively.

3.5. Glycosylation effects of recombinant H1N1 HA1

HA1 used in this study was  purchased from the Protein Expres-
sion Facility, The University of Queesland (Australia). It was
produced in insect cells and was likely glycosylated [49]. SEC-MALS
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Fig. 2. Characterization of modular VLPs using AF4 (left panels) and TEM (right panels). (A) Wild-type VLP; (B) VP1-GCN4-H190-GCN4 VLP; and (C) VP1-H190-H190 VLP.
Scale  bars represent 100 nm.

analysis confirmed HA1 was predominantly monomeric (49.3 kDa;
Fig. S1A) but larger than expected (35.6 kDa), in agreement with
SDS-PAGE (Fig. S1B). Glycoprotein staining confirmed N-linked gly-
cosylation (Fig. S1C lane 1).

Dot blot analysis indicated that modular VLP antisera reacted
with both PNGase A- and PNGase F-treated HA1 (Fig. 5A).
Indirect ELISA performed to test the modular VLP serum IgGs
against PNGase F treated-HA1 protein (Fig. 5B) showed that both
VP1-GCN4-H190-GCN4 VLP and VP1-H190-H190 VLP antisera con-
tained IgGs that recognized the treated-HA1, at a titer comparable
to that for untreated HA1. This result indicates that the HA1 titer
observed was independent of glycosylation. Competitive ELISA
(Fig. 5C) showed that IgG binding to PNGase F-treated HA1 could be
completely inhibited by competing peptide H190. Together, these
results indicated that binding of the modular VLP antisera to H190
on HA1 protein was not affected by glycosylation on HA1, even
though immunization was performed with non-glycosylated VLPs
made using bacteria.

3.6. Specificity of modular VLP antisera

Modular VLP antisera were tested against the triva-
lent 2011 influenza vaccine Fluvax® (containing split H1N1
A/California/07/2009 influenza) by dot blot (Fig. 6A) and indirect
ELISA (Fig. 6B). Both analyses showed that only VP1-H190-
H190 VLP induced IgGs which recognized the split virion. For

VP1-H190-H190 VLP antisera, the amount of IgGs that bound to
the split virion was  lower than to the HA1 protein at an equal
HA molar concentration. However, full-length HA protein of
the split influenza virion has complex and poorly understood
self-association characteristics that can lead to the formation of
aggregate-like structures that might alter both immunogenic-
ity and the availability of H190 region, reducing the effective
concentration of H190.

4. Discussion

This study explores an important question in the synthetic
biomolecular engineering of virus-like particle (VLP) vaccines –
does antigen module design alter the quality of the resulting
immune response, specifically the ability of serum antibodies to
recognize the native structure on the target pathogen? It has
been shown that many neutralizing antibodies isolated from nat-
ural infections are raised against conformational epitopes [50–52].
However, free peptide antigens comprising the same residues as
these epitopes in aqueous solutions are generally non-structural
[53].

Two modularization strategies (Fig. 1B) were investigated,
using: (i) flanking helix promoting elements; and (ii) tandem
repeat arraying, to drive helical propensity of the antigen ele-
ment toward that of the native structure. VP1-GCN4-H190-GCN4
and VP1-H190-H190 modular VLPs were created based on (i) and
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Fig. 3. Dot blot, indirect ELISA and competitive ELISA results showing immunogenicity of H190 in modular VLPs. (A) Dot blot analysis showing serum reactivity to peptide
H190,  (B) peptide H190 sequence-specific IgG titers induced by modular VLPs, evaluated using indirect ELISA with immobilized peptide H190. Bars represent geometric mean
of  IgG titer from 8 mice. Error bars represent 95% confidence intervals. ns, not significant (P > 0.05); ***, extremely significant (P < 0.001), (C and D) competitive inhibition of
antiserum (1/1000 dilution) binding to immobilized peptide GCN4-H190-GCN4 by peptide GCN4-H190-GCN4 (!) or peptide H190 (⃝) in solution. (C) VP1-GCN4-H190-GCN4
VLP  antiserum; and (D) VP1-H190-H190 VLP antiserum. Arithmetic means and standard deviations, from triplicates, are presented.

(ii), respectively. Computational prediction provided evidence that
helical propensity of a helical antigen module on an unrelated VLP
could be manipulated by the antigen module display strategy. More
importantly, in vivo data showed that the display strategy could
significantly affect the quality of the immune response.

The use of peptides from a larger protein domain for struc-
tural prediction is a widely used strategy [41]. Particularly for helix
structure, it has been shown that helical peptides adopt secondary
structure that is preserved when the same sequence is present
in a protein. Helix localization occurs due to encoded signals in

Fig. 4. Dot blot, indirect ELISA and competitive ELISA results showing reactivity of modular VLP antisera against recombinant HA1 protein. (A) Dot blot analysis showing
serum reactivity to (1) HA1 storage buffer; and (2) HA1, (B) HA1-specific IgG titer induced by modular VLPs, evaluated using indirect ELISA. Bars represent geometric mean
of  IgG titer from 8 mice. Error bars represent 95% confidence intervals. ns, not significant (P > 0.05); ***, extremely significant (P < 0.001) and (C) competitive inhibition of
antiserum (1/100 dilution) binding to immobilized HA1 by peptide H190 in solution. Arithmetic means and standard deviations from triplicates are presented.

Melisa Anggraeni

Melisa Anggraeni
56



M.R. Anggraeni et al. / Vaccine 31 (2013) 4428– 4435 4433

Fig. 5. Effects of N-linked glycans on reactivity of modular VLP antisera to HA1. (A) Dot blot analysis showing serum reactivity to (1) PNGase A-treated HA1; (2) PNGase A
enzyme;  (3) PNGase F-treated HA1; and (4) PNGase F enzyme, (B) indirect ELISA showing binding of IgGs from (i) wild-type VLP; (ii) VP1-GCN4-H190-GCN4 VLP; and (iii)
VP1-H190-H190-VLP antisera, to HA1 and PNGase F-treated HA1 protein at various dilutions. Geometric mean (n = 8) and standard error of the mean (SEM) are presented,
and  (C) competitive inhibition of antiserum (1/100 dilution) binding to immobilized PNGase F-treated HA1 by peptide H190 in solution. Arithmetic means and standard
deviations from triplicates are presented.

the local sequence, rather than tertiary interaction. These signals
are hydrophobic capping at the N- and C-terminal and hydrogen
bonding to backbone NH or CO group [54]. We  hypothesized that
antigen module conformation predicted by molecular dynamics
peptide simulation would allow prediction of the superior VLP
modularization design. Simulation results suggest that H190 dis-
played by tandem repeat arraying on the VLP exhibits less structural
deviation from its native conformation. In agreement with RMSD
values, final conformation of simulated peptide after 20 ns (Fig. 1D)
showed that the H190 element within module GCN4-H190-GCN4
unfolded whereas one copy of H190 in module H190-H190 retained

its higher helical propensity. The results suggested that module
design would impact immune response quality, and that tandem
repeat arraying would be more effective for H190 display.

Synthesis of modular VP1-GCN4-H190-GCN4 and VP1-H190-
H190 VLPs was  successful using a platform process [9] and robust
bioprocessing techniques [45,55,56]. It is important to validate
that the quaternary structural integrity of VLPs is maintained after
modularization, as structural changes such as VLP aggregation
may  result in the antigen module being buried or denatured, thus
introducing unpredictable experimental artifacts. Analyses by both
asymmetrical flow field-flow fractionation [48] and transmission

Fig. 6. Dot blot and indirect ELISA results showing reactivity of modular VLP antisera against Fluvax® . (A) Dot blot analysis showing serum reactivity to Fluvax® and (B)
indirect  ELISA showing binding of IgGs from modular VLP antiserum to Fluvax® . Arithmetic means and standard deviations from duplicates are presented.
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electron microscopy (Fig. 2) confirmed that both modular VLP
preparations were highly homogenous, and that the VLPs were
morphologically indistinguishable from the related virion [57].

In vivo testing was performed to evaluate the immunological
properties of the modular VLPs. This testing confirmed that the
H190 element in both modular VLPs was highly immunogenic
with sequence-specific IgG titers higher than 104 (Fig. 3B). The
high sequence-specific IgG titer observed in this study is consis-
tent with previous studies showing that presentation by a VLP
carrier can promote immunogenicity for peptides which are oth-
erwise non-immunogenic [18]. Interestingly, the H190 element in
both modular VLPs led to sequence-specific IgG titers which were
not significantly different, indicating that both module designs
were comparably effective in presenting the H190 sequence in an
immunogenic form.

We next sought to assess the quality of the immune response to
each modular VLP. Levels of authentic structure-specific IgGs were
evaluated by quantifying serum IgGs able to recognize H190 on
recombinant HA1. Fig. 4B shows that VP1-H190-H190 VLP elicited
a HA1-specific IgG titer exceeding 104, 10-fold higher than that by
immunization with VP1-GCN4-H190-GCN4 VLP. Competitive ELISA
showed that IgG binding to HA1 was inhibited by peptide H190
(Fig. 4C), indicating that the HA1-specific IgGs indeed bound to
HA1 via the H190 element instead of non-specific sites. These two
lines of evidence demonstrated that VP1-H190-H190 VLP was  able
to induce a significant level of H190 authentic structure-specific
IgGs. In contrast, the VP1-GCN4-H190-GCN4 VLP yielded a lower
level of H190 authentic structure-specific IgGs despite a high titer
of sequence-specific IgGs. These results are in a good agreement
with the MD  simulation predicting that the structure of the H190
element in VP1-H190-H190 VLP was more closely matched to the
native influenza conformation.

The binding of modular VLP antiserum IgGs to split virion within
a commercial vaccine preparation (Fluvax®) was next evaluated.
Only VP1-H190-H190 VLP was able to induce IgGs that exhibited
reactivity to Fluvax® (Fig. 6). This finding confirmed that the mod-
ule display strategy for H190 affects native protein recognition of
antibody induced by the modular VLPs. Together with the simu-
lation result, the in vivo data demonstrated a correlation between
helical propensity of the antigen module, as a result of antigen mod-
ule display strategy, and quality of the immune response induced
by the modular VLPs. Importantly, our data show that a design strat-
egy based on tandem repeat arraying of H190 is more effective than
using flanking GCN4 helix elements to drive structure within the
H190 element. Tandem repeat arraying is also preferable due to
its simplicity. The use of an element unrelated to the pathogen and
the VLP backbone, such as GCN4, introduces unnecessary complex-
ity, due to the inherent immunogenicity of that element. The GCN4
elements used in this study were indeed immunogenic (Fig. 3C and
D), consistent with other reports [38]. However, other variants were
shown to be not immunogenic [37]. The response to this foreign ele-
ment cannot be predicted a priori, introducing additional product
complexity.

N-glycans have been shown to have important roles in modu-
lating biochemical properties of protein, such as protein folding
and bioactivity, and as determinants in molecular recognition
events [58]. They have been shown to be important in promot-
ing and maintaining the structure of folded glycoproteins [59–62].
N-glycans affect protein structure locally at residues near the gly-
cans [63] and globally [64]. As such, glycosylation engineering is
often heralded as the pre-requisite for correct glycoprotein struc-
ture engineering [49]. Here we display vaccine-relevant antigen
element (H190) from glycoprotein HA on an unrelated VLP and
show that the proper secondary structure needed for native pro-
tein recognition of antibodies induced by modular VLPs could
be mediated via rational antigen module display strategies, in a

system lacking glycosylation. Antibodies induced by non-
glycosylated VLPs could recognize H190 within the glycosylated
HA1 (Fig. 4), and the level of antibody binding was  not influenced
by HA1 glycosylation (Fig. 5). This result indicates that simple
structure-based biomolecular engineering enables antigen display
in such that the antigen can raise immune responses recognizing a
glycosylated native protein.

The results of this study provide new insights into protein engi-
neering of VLP vaccines based on rational display of a heterologous
peptide antigen in the correct secondary structure. The rational dis-
play strategies here could ultimately enable safe and efficacious
vaccine alternatives to historical approaches based on cultivation of
an entire virus. This study is particularly relevant to prophylaxis of
influenza, by demonstrating the proof-of-concept for an influenza
vaccine based on modularization of MuPyV VLPs to display a hyper-
variable region from HA, H190. The manufacture responsiveness of
MuPyV VLP technology based on microbial platform [9] potentially
enables the use of influenza hypervariable antigenic determinants
to produce rapidly customized vaccines with genetic sequences
precisely tailored for circulating and emerging viral strains.
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4 Chapter 4. Display strategy improvements for induction of a 
higher quality of antibodies 
 
4.1 Introduction 

Structural vaccinology has provided opportunities to combat viruses which otherwise 

may not be achievable through conventional vaccinology (Grimm and Ackerman 2013). In 

structural vaccinology, it is believed that whole antigen proteins are not obligatory for 

induction of immune response against viruses (Thomas and Luxon 2013). Vaccine 

candidates against viruses are developed based on identification of peptide antigens from 

the proteins that are critical for immunity. The peptide antigens are then engineered to 

increase their feasibility as vaccine candidates (Gori et al. 2013).  

For induction of strong and long lasting protective antibodies, engineering of peptide 

antigens can be driven by structural consideration, which exploits: (i) conformation 

integrity, and (ii) key characteristics of viruses. Information regarding the conformation 

integrity of peptide antigens can be attained from available structural information of the 

viruses (Gori et al. 2013, Kulp and Schief 2013). Conformation integrity of peptide antigens 

is important, as it determines the ability of induced antibodies to recognise the native 

proteins (i.e. conformational integrity determines the quality of antibodies induced). Key 

characteristics of viruses are also important for induction of strong and long lasting 

protective antibodies against viruses. Of particular interest is repetitive peptide antigen 

display on the surface of viruses, which is efficiently recognised by B-cell receptors, 

leading to efficient induction of antibodies. This repetitive display of peptide antigens can 

be efficiently simulated by presenting the peptide antigens on modular virus-like particles 

(VLPs; reviewed in Section 2.3) (Spohn and Bachmann 2008).  

Chapter 3 of this thesis reports the engineering of peptide antigens to achieve both 

conformational integrity and repetitive pattern display of peptide elements on modular 

VLPs. A peptide antigen Helix 190 (H190) from influenza virus A/California/07/2009 H1N1 

was presented on a modular VLP from murine polyomavirus (MuPyV) VP1 protein. Two 

display strategies were investigated, i.e. (i) tandem repeat display, and (ii) the use of 

GSGS spacer elements together with GCN4 helix promoter elements (refer to Fig. 1 in 

Chapter 3 for details). The chapter concludes that modular VLPs using the tandem repeat 

H190 display strategy induced higher quality antibodies, resulting in higher antibody level 

against the recombinant HA1 protein and split influenza virions.  
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The findings reported in Chapter 3 lead us to the question what improvements can 

be made to the tandem repeat display strategy to induce antibodies of a higher quality? A 

higher quality of antibodies is desired because the quality of antibodies has been shown to 

represent the protection level of the antibodies (Alvarez et al. 2010). In an attempt to 

increase the quality of antibody, two approaches are explored in this chapter: (i) the use of 

adjuvants, and (ii) increasing the number of tandem repeat H190. The first approach 

focuses on the use of adjuvant to induce a higher titre of antigen-specific antibodies. One 

of the promising adjuvants is AdvaxTM-1, which is a polysaccharide adjuvant derived from 

delta-inulin (Cooper and Petrovsky 2011). It has been shown to enhance the 

immunogenicity of various vaccine candidates and consequently their protective efficacy 

(Honda-Okubo et al. 2012, Petrovsky et al. 2013, Saade et al. 2013). The second 

approach focuses on increasing the number of H190 tandem repeats from one copy to 

three, four, and five copies (Figure 4-1). Previous studies on peptide-based vaccines show 

that tandem repeat display strategy affects both structure (Fontenot et al. 1995, Fontenot 

et al. 1993) and immunogenicity of peptide repeats (Jain et al. 2010, Rueda et al. 2004, 

Zheng et al. 1993).  

  

 

 
 

Figure 4-1. Schematic diagram of antigen modules for modular constructs reported in Chapter 4. These 
antigen modules comprised of various copy number of H190: (A) One copy of H190, (B) Two copies of 
H190, (C) Three copies of H190, (D) Four copies of H190, and (E) Five copies of H190. Numbers in the 
white block refer to amino acid residue of wild-type murine polyomavirus VP1 protein. The diagram is not to 
scale. 
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4.2 Materials and methods 
4.2.1 Generation of modular constructs 

The commercial plasmid pGEX-4T-1 (Novagen, Billerica, MA, USA) with gene insert 

encoding murine polyomavirus VP1 protein (M34958) was generously provided by 

Professor Robert Garcea (University of Colorado) (Middelberg et al. 2011). This plasmid 

was designated as pGEX-VP1. NaeI and AfeI recognition sites were inserted into pGEX-

VP1 at positions 86 and 293 of VP1, yielding plasmid pGEX-VP1-S1S4 (Middelberg et al. 

2011). Similarly, plasmid pGEX-VP1-S4 was generated by inserting AfeI recognition site at 

position 293 of VP1 (Middelberg et al. 2011).  

DNA sequence of antigen module containing H190 from influenza virus 

A/California/07/2009 H1N1 (STSADQQSLYQNADAY) was codon optimised for E. coli. 

Homologous DNA sequences flanking (21-24 bp) AfeI site of plasmid pGEX-VP1-S1S4 or 

pGEX-VP1-S4, were added to the 5’ and 3‘ end DNA sequence of the antigen module 

(Figure 4-2).  

 

 

 
Figure 4-2. Schematic diagram of design of DNA fragments containing an antigen module and homologous 

regions. 
 

 

A DNA fragment containing the antigen module and homologous regions was 

synthesised by (i) annealing and phosphorylation of complementary oligonucleotides 

(Sambrook and Russell 2001) or, (ii) assembling a set of oligonucleotides (gene 

assembly), which were designed using DNAWorks (Hoover and Lubkowski 2002). Details 

of oligonucleotides are given in Table 4-1. Gene assembly was conducted in a polymerase 

DNA fragment 

AfeI-linearised plasmid pGEX-VP1-S1S4 or 
pGEX-VP1-S4 

 Homologous regions (21-24 bp) 

Antigen module 

AfeI recognition site 
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chain reaction (PCR) mixture (1 U Phusion Hot Start II DNA polymerase*, 1x Phusion HF 

Buffer, 0.2 µM mixed oligonucleotides, and 200 µM dNTPs), and performed at an 

annealing temperature of 62°C. The synthesised DNA fragment was then amplified using 

1 µl from initial assembly PCR. The PCR reaction for final amplification was the same as 

for the assembly PCR, except that utmost 5’ and 3’ oligonucleotides were used as primers 

at final concentration 25 µM. The amplified DNA fragment was then purified using 

PureLinkTM Quick Gel Extraction Kit (Life Technologies, Carlsbad, CA, USA). 

The purified DNA fragment was cloned into AfeI-linearised vector pGEX-VP1-S1S4 

or pGEX-VP1-S4 using in vivo homologous recombination (Bubeck et al. 1993, Jones 

1994, Oliner et al. 1993, Parrish et al. 2004). Briefly, purified AfeI-linearised pGEX-VP1-

S1S4 or pGEX-VP1-S4 was mixed with purified DNA fragment at an optimised ratio of 1 to 

5 (the ratio referred to the ratio of DNA copy number per volume†) to a maximum final 

volume of 7 µl. The mixture was then added into 50 µl of One Shot® OmniMAX™ 2 T1R 

Chemically Competent E. coli strain (InvitrogenTM, Life Technologies, Carlsbad, CA, USA) 

using the heat shock method (Sambrook and Russell 2001). DNA sequences of 

designated constructs were confirmed by sequencing conducted by the Australian 

Genome Research Facility (AGRF, Brisbane, Australia).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

                                            
* Thermo Scientific, Pittsburgh, PA, USA. 
† DNA copy number was calculated based on the assumption that one mole of a base pair 
weighs 650 g and one mole of a molecule equals to 6.022x1023 molecules. 
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Table 4-1. List of modular constructs reported in Chapter 4. 
 

 

 

 

4.2.2 Expression and purification of modular VP1 proteins 
Modular VP1 proteins were expressed as Glutathione S-transferase (GST)-tagged 

proteins in E. coli and purified using affinity chromatography as described previously 

(Chuan et al. 2008, Lipin et al. 2008, Middelberg et al. 2011). Following GST removal, 

modular VP1 capsomeres were separated from aggregates and GST through size-

Construct 
name 

Antigen 
module 

Oligonucleotides to synthesise DNA fragment 
containing the antigen module and the 

homologous regions 
Clone into 

VP1-H190 
(Figure 4-1A) 

One copy of 
H190 

Complementary oligonucleotides:  
5’ggctggagagttacaagaagctctacctctgcggaccagcagtc
tctgtaccagaacgcggacgcgtatgcttatgatgtccatcactgg3’ 

pGEX-VP1-S1S4 

VP1-H190-
H190 
(Figure 4-1B) 

Two copies 
of H190 Reported in Chapter 3 pGEX-VP1-S1S4 

VP1-H190-3x 
(Figure 4-1C) 

Three 
copies of 
H190 

Oligonucleotide set: 
5’atgggctggagagttacaagaagctctacctct3’ 
5’cagagactgctgatccgcagaggtagagcttcttgtaactc3’ 
5’gcggatcagcagtctctgtatcaaaacgccgacgcgtattc3’ 
5’agggactgttggtcagcggacgtagaatacgcgtcggcgtt3’ 
5’cgctgaccaacagtccctctaccagaacgcggacgcataca3’ 
5’gctttgctggtcggcagacgtgctgtatgcgtccgcgttct3’ 
5’ctgccgaccagcaaagcctctatcagaatgcagacgcctac3’ 
5’tctccagtgatggacatcataagcgtaggcgtctgcattctgata3’ 

pGEX-VP1-S1S4 

VP1-H190-4x 
(Figure 4-1D) 

Four copies 
of H190 

Oligonucleotide set: 
5’atgggctggagagttacaagaagctctac3’ 
5’actgctggtctgcgctcgtagagcttcttgtaactctcca3’ 
5’gagcgcagaccagcagtccctgtaccaaaatgcggatgca3’ 
5’tggtccgcagaagtgctgtatgcatccgcattttggtaca3’ 
5’agcacttctgcggaccaacagtctctgtatcagaacgcag3’ 
5’gcgctagtagagtaggcgtctgcgttctgatacagagact3’ 
5’acgcctactctactagcgcggatcagcaatctctctacca3’ 
5’ggagtacgcatcggcattctggtagagagattgctgatcc3’ 
5’gaatgccgatgcgtactccacctctgccgatcaacagagc3’ 
5’agcgtcagcgttttgatagaggctctgttgatcggcagag3’ 
5’tctatcaaaacgctgacgcttatgcttatgatgtccatcactg3’ 
5’tctccagtgatggacatcataagcata3’ 

pGEX-VP1-S1S4 

VP1-H190-5x 
(Figure 4-1E) 

Five copies 
of H190 

Oligonucleotide set: 
5’atgggctggagagttacaagaagca3’ 
5’tgctggtcggcagaggtgctgcttcttgtaactctccagc3’ 
5’cctctgccgaccagcaatctctctaccaaaatgccgatgc3’ 
5’gatcggcggacgtgctgtaagcatcggcattttggtagag3’ 
5’agcacgtccgccgatcaacagagcctgtatcaaaacgccg3’ 
5’ccgcgctggtgctatatgcgtcggcgttttgatacaggct3’ 
5’catatagcaccagcgcggatcagcaaagcctctatcagaa3’ 
5’cgtggagtacgcatctgcattctgatagaggctttgctga3’ 
5’gcagatgcgtactccacgtctgctgaccagcagtccctgt3’ 
5’gagtaggcgtctgcgttctggtacagggactgctggtcag3’ 
5’gaacgcagacgcctactctacttctgcggaccaacagtct3’ 
5’aagcgtccgcgttttgatacagagactgttggtccgcaga3’ 
5’tcaaaacgcggacgcttatgcttatgatgtccatcactgg3’ 
5’tctccagtgatggacatcataagca3’ 

pGEX-VP1-S1S4 
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exclusion chromatography (SEC). Briefly, plasmid was transformed into E. coli Rosetta 

(DE3) pLysS cells (EMD Millipore, Merck KGaA, Darmstadt, Germany) using the heat 

shock method (Sambrook and Russell 2001). A single colony of the transformed cells was 

inoculated in 5 ml Terrific Broth (TB) medium for overnight incubation at 30ºC, 180 rpm 

using a rotary shaker (Bioline, Edwards Instrument Company, Australia). Then, 400 µl of 

the seed culture was cultivated in 400 ml of TB medium at 37ºC, 180 rpm. When the cell 

OD600 nm reached 0.5, culture was cooled down to 26ºC and subsequently induced with 0.2 

mM isopropyl�β-D-1-thiogalactopyranoside (IPTG). The culture was then incubated at 

26ºC, 180 rpm for 16 h, and harvested by centrifugation at 4ºC, 6000g for 20 min. All 

cultures were supplemented with 50 µg ml-1 of ampicillin and 34 µg ml-1 of 

chloramphenicol.  

Cell pellets from 800 ml culture were resuspended in 40 ml of Lysis Buffer (40 mM 

Tris-base, 200 mM NaCl, 1 mM EDTA, 5% (v/v) glycerol, 5 mM DTT, pH 8.0). The 

suspension was sonicated for 4 cycles of 45 s using a Branson Sonifier 250 cell disruptor 

mounted with a microtip (Branson Ultrasonics Corporation, Connecticut, USA), and 

subsequently clarified by centrifugation at 4ºC, 18000g for 20 min. Supernatant was 

collected and was filtered using 0.45 µm filters (Pall, New York, USA). The clarified 

supernatant was then loaded into a GST affinity column (GSTrap HP 5 ml, GE Healthcare, 

UK) at a flow rate of 0.5 ml min-1. Bound GST-tagged VP1 protein was eluted with Elution 

Buffer (40 mM Tris-base, 200 mM NaCl, 1 mM EDTA, 5% (v/v) glycerol, 5 mM DTT, 10 

mM GSH, pH 8.0). 

GST tag was removed from VP1 by incubating GST-tagged protein with thrombin 

(Catalogue# 27-0846-02, GE Healthcare, UK) at a ratio of 40:1 (thrombin unit/ml protein) 

for 2 h at room temperature. Digested protein was centrifuged and the supernatant was 

then loaded into size exclusion chromatography (SEC) column Superdex 200 10/300 GL 

(GE Healthcare, UK) pre-equilibrated with Lysis Buffer, as described previously (Chuan et 

al. 2008), to separate modular VP1 capsomeres from soluble aggregates and GST. 

Capsomeres were eluted at a volumetric outflow of approximately 12.5 ml after sample 

injection. 

 

4.2.3 Assembly of modular VP1 proteins 

Endotoxins were removed from the purified modular VP1 capsomeres to below 20 

EU ml-1 using Vivapure Q Maxi H spin column (Sartorius Stedim, Goettinge, Germany) as 

previously described in Chapter 3 (Anggraeni et al. 2013). Modular VP1 capsomeres were 

assembled in vitro into VLPs by dialysis against Assembly Buffer 1 (0.5 M (NH4)2SO4, 20 
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mM Tris-base, 5% (v/v) glycerol, 1 mM CaCl2, pH 7.4) for 15 h at room temperature 

(Gleiter and Lilie 2001) in an endotoxin-free environment. Formed VLPs were then 

dialysed against phosphate buffer saline (PBS; E404, Amresco, USA) at 4ºC for 24 h. 

VLPs were characterised using asymmetrical flow field-flow fractionation (AF4) coupled 

with multi-angle light scattering (MALS) and visualised using transmission electron 

microscopy (TEM) (Chuan et al. 2008).  

 

4.2.4 SDS-PAGE 
For analysis by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-

PAGE), samples were mixed with 5x sample buffer (10% (w/v) sodium dodecyl sulphate, 

10 mM DTT, 20% (v/v) glycerol, 0.2 M Tris-HCl, pH 6.8, 0.05% (w/v) Coomassie Brilliant 

Blue R250) at volume ratio 4:1. Pre-treated samples were then heated at 95ºC for 5 min. 

SDS-PAGE analysis was performed by resolving 12 µl of the samples on polyacrylamide 

gels (10% (w/v) polyacrylamide, 0.375 M Tris pH 8.8, 0.1% (w/v) ammonium persulfate, 

0.1% (w/v) SDS, 0.04% (v/v) TEMED). Electrophoresis was conducted in Tris-Glycine 

running buffer (25 mM Tris-HCl, 200 mM glycine, 0.1% (w/v) SDS) for 55 min at 150 V. 

Then, polyacrylamide gels were incubated in staining solution (30% (v/v) methanol, 10% 

(v/v) acetic acid, 0.1% (w/v) Coomassie Brilliant Blue R250). Subsequently, the gels were 

incubated in destaining solution (45% (v/v) methanol, 15% (v/v) acetic acid) for 

visualisation of protein bands.  

Each SDS-PAGE gel picture in Figure 4-3 was taken from one gel. Relevant sample 

lanes were selected and positioned on the right hand side of the ladder. The SDS-PAGE 

gel picture in Figure 4-8 was taken from two different gels which were aligned to a ladder. 

 

4.2.5 Protein concentration determination 
Protein concentration was determined using UV absorbance at 280 nm, based on 

the Beer-Lambert Law (Aitken and Learmonth 1996), 

 

! = !!!!! 
 

where ! is the measured absorbance at 280 nm, ! is the extinction coefficient of protein 

(M-1 cm-1) at 280 nm measured in water, ! is the sample path length (10 mm), and ! is the 

protein concentration (M). Theoretical molecular weight and extinction coefficient of each 

protein was obtained using the ProtParam tool (Gasteiger et al. 2005), and summarised in 

Table 4-2.  
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Table 4-2. List of theoretical molecular weight and extinction coefficient of  
VP1 proteins reported in Chapter 4. 

 

Protein Theoretical molecular weight 
(g mol-1) 

Extinction coefficient, 
at 280 nm in water (M-1 cm-1) 

Wild-type (wt) VP1 42763.6 58057 
VP1-H190 44507.4 61225 
VP1-H190-H190 46251.2 64205 
VP1-H190-3x 47995.0 67185 
VP1-H190-4x 49738.7 70165 
VP1-H190-5x 51482.5 73145 

 

 

4.2.6 Mice immunisation 
In one study, mice were immunised with 50 µg of unmodified VP1 (wt-VP1) VLPs, 

VP1-GSGS-H190 VLPs, VP1-GCN4-H190 VLPs, VP1-H190 VLPs, VP1-H190-H190 VLPs, 

VP1-H190-3x VLPs, and VP1-H190-4x VLPs in total volume of 50 µl. Immunisation was 

conducted as described in Chapter 3, with the following modifications: (i) number of mice 

was five mice/group; (ii) ethical clearance number AIBN/189/12/NIRAP/SMART FUTURE.  

In another study, mice were immunised with 25 µg of VP1-H190-H190 VLPs, with 

and without adjuvant, in a total volume of 50 µl. The adjuvant was AdvaxTM-1 (Vaxine Pty. 

Ltd., Adelaide, Australia), which was supplied at 50 mg ml-1. AdvaxTM-1 was then diluted 

into 1 mg ml-1 in PBS, and gently mixed with an equal volume of VP1-H190-H190 VLPs at 

the same concentration. Immunisation was conducted as described in Chapter 3, with the 

following modifications: (i) number of mice was five mice/group; (ii) ethical clearance 

number AIBN/058/13/NIRAP/SMART FUTURES. 

 

4.2.7 ELISA 
Indirect ELISA and competitive ELISA were conducted using sera from day 56 as 

previously reported in Chapter 3. In this chapter, immobilised antigens for both ELISA 

assays were: (i) biotinylated peptide H190 (biotin-GGGGSSTSADQQSLYQNADAY-NH2) 

from Peptide 2.0 (Chantilly, VA, USA), and (ii) recombinant A/California/07/2009 H1N1 

HA1 protein, produced in Trichoplusia ni cell line by the Protein Expression Facility (The 

University of Queensland, Australia). Biotinylated peptide H190 in solution was used as 

the inhibitor in competitive ELISA. For competitive ELISA, data were presented as 

percentage relative absorbance [(B/B0) x 100%]. B was absorbance at 450 nm at a certain 

concentration of peptide H190, and B0 was absorbance at 450 nm when no peptide H190 

was present.  
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4.2.8 Statistical analysis 
Statistical analysis was performed on log-transformed data using GraphPad Prism 

5.03 (GraphPad, Inc.). Comparison of antibody titre for multigroup was conducted using 

one-way ANOVA with Tukey’s post hoc test.  

 

4.3 Results and discussion 
4.3.1 Solubility and assembly studies 

Three modular constructs: (i) VP1-H190-3x, (ii) VP1-H190-4x, and (iii) VP1-H190-5x 

(Figure 4-1C-E) bearing three, four, and five copies of tandem repeat H190 elements, 

were generated respectively as described in Section 4.2.1. The modular VP1 proteins 

were then expressed and purified as described in Section 4.2.2 to yield modular VP1 

capsomeres. These purified modular VP1 capsomeres were assembled to form VLPs in 

Assembly Buffer 1 (0.5 M (NH4)2SO4, 20 mM Tris-base, 5% (v/v) glycerol, 1 mM CaCl2, pH 

7.4) and the formed VLPs were dialysed against PBS as described in Section 4.2.3. 

After dialysis against Assembly Buffer 1 and subsequently PBS, precipitations were 

observed for all modular constructs as indicated from the turbidity of the protein solutions. 

Table 4-3 compares the turbidity of protein solution for the three modular VP1 constructs. 

As can be seen from Table 4-3, protein solutions for VP1-H190-4x and VP1-H190-5x were 

visually more turbid than for VP1-H190-3x, indicating that both modular VP1 capsomeres 

precipitated more than VP1-H190-3x. The observation in Table 4-3 was confirmed by 

SDS-PAGE analysis. Precipitates were removed through centrifugation and protein 

solution sampled before and after centrifugation was analysed by SDS-PAGE gel. Figure 

4-3 shows that after centrifugation, small proportions of VP1-H190-4x and VP1-H190-5x 

were found in the supernatant, confirming that the majority of both modular VP1 variants 

had precipitated. In contrast, the majority of VP1-H190-3x was found in the supernatant. 

Because precipitates were observed after dialysis against Assembly Buffer 1, both Figure 

4-3 and Table 4-3 indicated that modular proteins VP1-H190-4x and VP1-H190-5x were 

less stable in Assembly Buffer 1 than was VP1-H190-3x.  

 
Table 4-3. Observation of protein solution turbidity after dialysis against PBS. 

 

Modular VP1 protein Number of H190 tandem 
repeats Turbidity of protein solution 

VP1-H190-3x 3 + 
VP1-H190-4x 4 ++++ 
VP1-H190-5x 5 ++++ 
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Figure 4-3. SDS-PAGE analysis of modular VP1 bearing three, four, and five copies of H190 after dialysis 
against PBS. (A) VP1-H190-3x, (B) VP1-H190-4x, and (C) VP1-H190-5x. Lanes: (L) Pre-stained protein 
marker, (T) Total protein, (S) Soluble protein. The dominant bands correspond to the GST-tagged modular 
VP1.  
 

 

After precipitates were removed by centrifugation, supernatants were analysed 

using asymmetric flow-field flow fractionations (AF4), coupled with multi-angle light 

scattering (MALS). AF4 is a flow-based separation technique capable of separating 

particles with size range of 1-1000 nm at high resolution. The separation is performed 

inside a narrow ribbon-like channel (Figure 4-4A), where carrier liquid flows in a parabolic 

laminar Newtonian flow profile. The velocity at the wall is zero, and increases to a 

maximum at the centre of the flow. Additional to the parabolic flow, cross-flow is applied 

perpendicularly to the flow of carrier liquid. The cross-flow forces particles toward the wall, 

and driven by concentration difference, particles start to diffuse back toward the centre of 

the parabolic flow (Figure 4-4B). The diffusion rates of the particles depend on the size of 

the particles. Smaller particles diffuse faster, and hence they are closer to centre of the 

laminar flow and travel with a faster velocity (Fraunhofer and Winter 2004, Giddings 2002, 

Wahlund 2000).  

Coupled with a suitable detection technique, such as MALS, AF4 has been shown 

to be a powerful method for VLP analysis (Chuan et al. 2008). Analysis of VLPs using 

AF4-MALS comprises of two main steps. These steps are (i) focusing of injected samples 

at near the injection point, and (ii) elution step. Fractionation of VLPs from the MuPyV VP1 

in AF4-MALS typically reveals three peaks, i.e. (i) a void peak at 10 min, (ii) a VLP peak at 

20 min, and (iii) a soluble amorphous aggregate peak at 40 min. In the study by Chuan et 

al., the void peak marked the end of focusing step and the start of the elution step. The 
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peak was observed due to elution of materials that were too small to be retained at a 

certain cross-flow value, such as would be expected for unassembled capsomeres.  

 

 
Figure 4-4. Principle of separation using asymmetric flow-field flow fractionation (AF4). (A) Trapezoidal 
channel used in AF4, and (B) Schematic diagram to illustrate the directions of carrier liquid flow and cross 
flow inside an AF4 channel. Cross flow forces particles toward the wall of a porous membrane, and driven by 
concentration different, the particles diffuse back toward the centre of the channel. The figure was 
reproduced and modified from (Chuan et al. 2008). 

 

 

AF4-MALS analysis of assembled modular VP1 bearing three, four, and five copies 

of H190 is shown in Figure 4-5. Figure 4-5A shows construct VP1-H190-3x forming 

modular VLPs although a small fraction of unassembled capsomeres was observed. In 

contrast, Figure 4-5B shows construct VP1-H190-4x yielding mostly unassembled 

capsomeres with a small proportion of VLPs formed. Figure 4-5C shows construct VP1-

H190-5x yielded a negligible fraction of VLPs. The proportion of VLPs to unassembled 

capsomeres in construct VP1-H190-5x was lower than the proportion in construct VP1-

H190-4x. This result shows that as the number of H190 tandem repeat increased, the 

ability of modular VP1 capsomeres to assemble into VLPs decreased. 
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Figure 4-5. Characterisation of modular VP1 bearing three, four, and five copies of H190 after assembly 
using AF4-MALS and TEM. (A) VP1-H190-3x, (B) VP1-H190-4x, and (C) VP1-H190-5x. Peaks containing 
unassembled capsomeres, VLPs, and amorphous aggregates eluted at about 10 min, 20 min, and 40 min, 
respectively. UV absorbance at 280 nm (UV) and light scattering signals (LS) were shown on a relative scale 
for AF4-MALS analysis. Bars represent 100 nm.  
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Results in Table 4-3, Figure 4-3, and Figure 4-5 show that there were two difficulties 

for the assembly of modular VP1 bearing four and five copies of H190 under the chosen 

buffer conditions that had been previously optimised for wt-VP1. These problems were: (i) 

reduced solubility, and (ii) reduced capability of assembly.  

Like many protein phenomena, protein solubility and formation of aggregates are 

driven by protein-protein interactions mediated by salt ions and water (Curtis et al. 2002a). 

Generally, in a dilute aqueous salt solution (< 0.1 M), protein-protein interactions depend 

on the favourable interaction between charges on the surface of proteins and surrounding 

ions (Chiew et al. 1995, Curtis et al. 1998). The net surface charge of proteins for a given 

primary sequence, or the zeta potential of a protein, is determined by pH. As pH increases 

away from the isoelectric point (pI), where proteins have neutral surface charges and do 

not migrate in electric field, proteins become net-negatively charged. Conversely, as pH 

decreases away from pI, proteins become net-positively charged (Yang and Honig 1993). 

Therefore pH is the strongest factor that influences protein-protein interaction, for a given 

amino acid sequence, in aqueous salt solution (Curtis et al. 1998).  

Protein-protein interactions can be measured using various techniques, such as 

osmometry, sedimentation, and static-light scattering. These techniques yield the 

parameter for protein-protein interaction that is a protein-protein osmotic second virial 

coefficient (B22) (Curtis et al. 1998, Curtis et al. 2002a). The B22 is a parameter to assess 

the thermodynamics of protein solutions. It reflects the direction and magnitude of protein-

protein interactions (Prausnitz 2003). Furthermore, the coefficient is the sum of the 

potentials of mean force (pmf). Negative derivative of pmf with respect to distance (r) 

reflects the force between two solute molecules at infinite dilution (McMillan Jr and Mayer 

2004). Because the function of pmf over r is negative, B22 is modelled as a function of W22, 

that is the free energy of two protein molecules as a function of the centre-to-centre 

separation (Eq. 1 and 2). The assumption of this equation is that W22 is spherically 

symmetric.  

 

!!! = !!"!!!�/!!
!         (1) 

!!!� = !
! 1− !�!!! 4!!!�

! !"       (2) 

 

where � = !!! !!, kb is Boltzmann’s constant, and T is absolute temperature (Curtis et 

al. 1998, Curtis et al. 2002a). 

In aqueous salt solution, W22 is modelled using DLVO theory, named after the 

scientists Deryaguin and Landau, and Verwey and Overbeek. In this theory, proteins are 
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treated as a rigid sphere with uniform surface charge. The sphere is assumed to be in a 

continues dielectric medium containing salt ions, which behave as point charges 

(Deryaguin and Landau 1941, Verwey and Overbeek 1947). Using this approach, W22 is 

the sum of: (i) the hard-sphere potential, (ii) the electric double-layer repulsion, and (iii) the 

attractive van der Waals forces.  

 

!!! =!!! ! +!!"#$ ! +!!"!#(!)      (3) 

 

where Whs is the hard-sphere potential, Wdisp is the attractive van der Waals force, and 

Welec is the electric double-layer repulsion (Curtis et al. 1998, Curtis et al. 2002a). 

Approximation for each force is explained as follows.  

The hard-sphere potential determines the excluded volume of a protein. The 

simplest form of hard-sphere potential is given by  

 

!!!(!) =�!0
!!!for!!! ≤ !!! + 2!
!!!for!!! > !!! + 2!       (4) 

 

Eq. 4 shows two variables that determine the hard-sphere potential of a protein. These 

variables are d2 and �. d2 is defined as the effective spherical diameter, and can be 

calculated from the crystal structure dimension of the protein. It equals to the distance of 

the closest approach between two protein molecules. � is thickness of the impenetrable 

layer of water. It is assumed constant and independent of pH and ionic strength (Curtis et 

al. 1998, Curtis et al. 2002b). Both variables in Eq. 4 are not a function of pH. 

Consequently, the hard-sphere potential is not affected by pH.  

Similarly, variables determining the attractive van der Waals force are pH 

independent. The attractive van der Waals force is treated using a linear Lifshitz theory 

(Sabisky and Anderson 1973), which is usually written in a form with Hamaker constant.  

 

!!"#$ ! = − !
!"

!!!
!!!!!!

+ !!!
!! + 2!ln 1− !!!

!! !for!! ≥ !! + 2!    (6) 

 

H is the effective Hamaker constant, which is affected by the composition and density of 

the protein, and chemical nature of the solute. Furthermore, Eq. 5 shows that the attractive 

van der Waals is independent of ionic strength. This independency is because the 

correlation time required for ions to reach equilibrium between atoms is negligible. 
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In contrast, pH is one of variables determining the electric double-layer repulsion, 

which is approximated using non-linear Poisson-Boltzmann theory (Outhwaite and 

Bhuiyan 1983). If the concentration of electrolyte is very low, less than about 100 mM, and 

therefore salt ions behave as point charges, the Poisson-Boltzmann equation can be 

simplified into the Debye-Hückle equation (Verwey and Overbeek 1947). The equation is 

given by 

 

!!"!# ! = !!!! ! ! !"# !! !!!!
!!!!!! !!!!!/! ! !for!! > (!! + 2!)     (5) 

 

where z is the valence of the protein, e is the elementary charge, 4!!!  is dielectric 

permittivity of free space, and !! !is the relative dielectric permittivity of water. Furthermore, 

� is the inverse of the Debye length, given by  

 

!! = 2!!!!! !"!!!!         (6) 

 

with I is the ionic strength of salt, which is determined by both molar concentration of salt 

ions and the charge number of salt ions. Additionally, I is also a function of pH, given by 

the extended Debye-Hückle equation (Eq. 7-8) (Baumgarten 1981). 

 

pH = −log!!! !!          (7) 

log!!! = !!!!! !
!! !" !           (8) 

 

where !!!  is the activity coefficient of ion hydrogen, !!  is the concentration of ion 

hydrogen that is 1 x 10-7, z in Eq. 8 is the charge number of hydrogen ion, I is the ionic 

strength of salt, A and B are the Debye-Hückle constants, and � is the effective diameter 

of ion hydrogen. As can be seen from Eq. 5 to 8, changes in pH of solution will affect the 

ionic strength of the solution at a given type and concentration of salts. Changes in ionic 

strength will affect the Debye length and consequently the electric double-layer repulsion. 

Therefore, the importance of the electric double-layer repulsion increases with increasing 

or decreasing pH away from the pI (Velev et al. 1998). 

Different from aqueous salt solution, in concentrated salt solution, such as in 

biological solutions, protein-protein interactions occur due to unfavourable interaction 

between salt ions and non-polar surface of proteins, and favourable weak ion binding 

interaction between salt and charge surface groups (Curtis et al. 2002a). In this solution, 



 75 

the range of the electric double-layer repulsion is strongly suppressed and reduced, hence 

the dispersion force becomes dominant (Bostrom et al. 2001). Protein-protein interactions 

no longer depend on net charge and pH (Curtis et al. 1998); they depend on the specific 

ion effects.  

The specific ion effects are determined by the position of anions and cations in the 

lyotropic (Hofmeister) series (Curtis et al. 2002a). The effects from anions are more 

noticeable than from cations. The Hofmeister series were originally developed to explain 

the different concentrations of neutral salts required to precipitate a protein from solution 

(Hofmeister 1888). In the series, ions are positioned according to their surface tension, 

which is the ability of the ions to affect protein stability indirectly by changing the hydrogen-

bonding properties of water (Baldwin 1996). Figure 4-6 shows the Hofmeister series for 

anions and cations in decreasing order of the surface-tension increment. Salts with high 

surface tension are known as high lyotropics, or kosmotropes, while salts with low surface 

tension are called low lyotropics, or chaotropes (Curtis et al. 2002a).  

 

 

 
 

Figure 4-6. The Hofmeister series of anions and cations. 
 

 

Kosmotropes increase the surface tension between water and proteins by 

interacting strongly with water. They make water molecules around the salt ions more 

structured than bulk water, and consequently promote salting-out effects where solubility 

of proteins is reduced. This behaviour of kosmotropes is in contrast to chaotropes. 

Chaotropes decrease the surface tension between water and proteins because they 

interact weakly with water. They break the structure of water molecules and promote 

salting-in effects where solubility of proteins is increased (Zhang and Cremer 2006). 

DLVO theory fails to predict the impact of the specific ion effects because it treats 

salt ions as point charges. By doing so, DLVO theory could not differentiate the size and 
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type of ions with the same charges. Therefore, DLVO theory could only be applied at low 

salt concentration where electrostatics dominates (Bostrom et al. 2001). 

Protein-protein interactions have been used to explain the importance of pH and 

salt on the spontaneous assembly of MuPyV VP1 capsomeres to form VLPs. The study by 

Salunke et al. (Salunke et al. 1989) showed that reducing the pH of assembly buffer (10 

mM Tris-HCl, 150 mM NaCl, 1 mM EDTA, 15 mM 2-ME, 5% (v/v) glycerol) from 7.2 to 5 

promoted assembly of the VP1 capsomeres to form VLPs. In contrast, increasing pH from 

7.2 to 8 did not result in the formation of VLPs. In addition to pH, the assembly is also 

affected by other factors, i.e. the concentration of calcium and (NH4)2SO4. In the absence 

of pH adjustment, addition of 0.5 mM CaCl2 or 2 M (NH4)2SO4 promoted the formation of 

polymorphic aggregates of the VP1 capsomeres.  

Chuan et al. (Chuan et al. 2010) investigated how these three parameters, i.e. pH, 

calcium concentration, and (NH4)2SO4 concentration, can play role the formation of VLPs 

by linking the assembly process to protein-protein interactions. In the study, Chuan et al. 

measured the osmotic second virial coefficient (B22) of MuPyV VP1 capsomeres during 

assembly process as a function of these three parameters. The study by Chuan et al. 

showed that reducing the pH of L buffer (40 mM Tris or Bis-tris, 200 mM NaCl, 1 mM 

EDTA, 5 mM DTT, 5% (v/v) glycerol) from pH 7 to 6 resulted in considerable reduction in 

B22 of MuPyV VP1 capsomeres, which indicates increased attractive interaction between 

capsomeres to promote assembly of capsomeres to form VLPs. Similar effects on B22 

were also observed by increasing the concentration of calcium and (NH4)2SO4. Based on 

the findings by Chuan et. al., the concentrations of both calcium and (NH4)2SO4 in 

Assembly Buffer 1 in this chapter were sufficient to maintain the value of B22 at lower than -

20 x 10-4 mol ml g-2. This value is considerably lower than -8 x 10-4 mol ml g-2, the limit of 

B22 below which protein-protein interactions are classified as a strong attraction (Chuan et 

al. 2010, Curtis et al. 1998, Curtis et al. 2002a, George and Wilson 1994). The low value of 

B22 suggested that both concentrations of calcium and (NH4)2SO4 in Assembly Buffer 1 in 

this chapter had been sufficient to promote strong attractions between capsomeres, and 

consequently self-assembly of the capsomeres to form modular VLPs. In contrast, at the 

pH of Assembly Buffer 1 the value of B22 was approximately -2.5 x 10-4 mol ml g-2 (Chuan 

et al. 2010). This value is higher than the limit of B22 for a strong attraction, which suggests 

that the pH was not sufficient to promote a strong attraction. This analysis indicated that 

when VLPs are obtained in Assembly Buffer 1, such as observed with wt-VP1, the 

assembly process is driven by strong attractions resulting from the concentrations of both 
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calcium and (NH4)2SO4, rather than from pH. Furthermore, the analysis suggested that a 

stronger attraction may be achievable via pH optimisation of Assembly Buffer 1. 

The Assembly Buffer 1 used in this thesis contained 500 mM (NH4)2SO4, thus it 

represented a concentrated salt solution. Because modular VLPs bearing four and five 

copies could not be obtained when assembly was performed in Assembly Buffer 1, this 

section investigated the importance of pH and specific ion effects on the assembly and 

precipitation of VP1-H190-4x and VP1-H190-5x. The importance of pH was investigated 

by conducting assembly at various pH values, between pH 7.4 and 5.4. Tris-base was 

replaced with sodium phosphate to maintain the pH of assembly buffers at pH below 7.4. 

The importance of specific ion effects was investigated by conducting assembly at two 

conditions, i.e. (i) different concentrations of (NH4)2SO4 that were 200 mM, 350 mM, and 

500 mM; and (ii) different types of salts that were 500 mM NaCl and 500 mM (NH4)2SO4.  

SDS-PAGE and AF4-MALS analysis of VP1-H190-4x and VP1-H190-5x assembled 

at various pH values are shown in Figure 4-7 and Figure 4-8, respectively. SDS-PAGE 

analysis in Figure 4-7A showed that at all tested pH values, modular protein VP1-H190-4x 

precipitated considerably after assembly. There was a slight improvement in the solubility 

of the modular protein when the pH was reduced from 7.4 to 6. Further pH reduction 

resulted in decreases in the solubility of the modular protein. The result shows that the pH 

of Assembly Buffer 1 weakly affected the precipitation of modular VP1 bearing four copies 

of H190. In contrast, AF4-MALS analysis in Figure 4-7B-F showed that pH of Assembly 

Buffer 1 influenced considerably the proportion of formed VLPs to capsomeres for VP1-

H190-4x. Reduction in the pH of Assembly Buffer 1 from 7.4 to 6 increased the proportion 

of VLPs to unassembled capsomeres. Further pH reduction to 5.4 resulted in decreased 

proportion of VLPs to unassembled capsomeres. Thus, for VP1-H190-4x, the optimum 

proportion of VLPs to capsomeres was obtained at pH 6.  

Unlike construct VP1-H190-4x, precipitation of modular protein VP1-H190-5x was 

not affected by pH of the Assembly Buffer 1. SDS-PAGE analysis in Figure 4-8A showed 

that, at all tested pH values modular protein VP1-H190-5x precipitated significantly. 

Similarly, pH of Assembly Buffer 1 did not influence the assembly capability of modular 

capsomeres VP1-H190-5x. AF4-MALS analysis (Figure 4-8B-F) of assembled protein for 

VP1-H190-5x showed that at all tested pH values, modular VLPs could not be obtained, 

using the chosen salt conditions. 
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Figure 4-7. Analysis of modular VP1 bearing four copies of H190 after assembly at various pH. (A) Analysis 
using SDS-PAGE. Lanes: (L) Pre-stained protein marker, (T) Total protein after dialysis against PBS, (S) 
Soluble protein after dialysis against PBS. The soluble protein after dialysis against PBS was analysed using 
AF4-MALS. The dominant bands on the gel represent VP1-H190-4x; and (B-F) Analysis using AF4-MALS. 
UV absorbance at 280 nm (UV) and light scattering signals (LS) were shown on a relative scale for AF4-
MALS analysis. Peaks containing unassembled capsomeres, VLPs, and amorphous aggregates eluted at 
about 10 min, 20 min, and 40 min, respectively. 
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Figure 4-8. Analysis of modular VP1 bearing five copies of H190 after assembly at various pH. (A) Analysis 
using SDS-PAGE. Lanes: (L) Pre-stained protein marker, (T) Total protein after dialysis against PBS, (S) 
Soluble protein after dialysis against PBS. The soluble protein after dialysis against PBS was analysed using 
AF4-MALS. The dominant bands on the gel represent VP1-H190-5x; and (B-F) Analysis using AF4-MALS. 
UV absorbance at 280 nm (UV) was shown on a relative scale for AF4-MALS analysis. Peaks containing 
unassembled capsomeres, VLPs, and amorphous aggregates eluted at about 10 min, 20 min, and 40 min, 
respectively.  
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Both Figure 4-7 and Figure 4-8 showed how pH changes affected the precipitation 

and assembly of modular VP1 bearing four. The observation in both figures could be 

explained using the principal of protein-protein interactions in concentrated salt solution 

explained above. However, the effect of pH on the assembly of VP1-H190-4x was not in 

agreement with what would be predicted based on protein interaction literature. The 

observation showed that pH affected the assembly of the modular VP1 considerably, 

indicating that electrostatic interaction still played a role during assembly. The optimum pH 

for the assembly was achieved at pH 6. This pH was close to the theoretical pI of the 

protein, which is predicted to be 6.27 based on the amino acid sequence of the modular 

VP1 using ProtParam Tool (Gasteiger et al. 2005). At pH near the pI, modular VP1 bearing 

four copies of H190 might have neutral net surface charge, which may enhance the 

capsomere-capsomere interactions and promote formation of VLPs. An alternative 

explanation is that the role of electrostatic interaction was manifested in how the pH 

changes affected the C-terminal region of VP1 protein. C-terminal arm of the VP1 protein 

is involved in the assembly process and sensitive to electrostatic switching. When calcium 

ions are added to assembly buffer, they bind to the C-terminal arm, reducing electric 

double-layer repulsion of the arm and promoting assembly (Salunke et al. 1989). In this 

chapter, modular VLPs bearing four copies of H190 could be obtained by reducing pH of 

Assembly Buffer 1. The pH reduction leads to the addition of protons, which have a similar 

charge to calcium. Therefore, it is possible that added protons bound to the C-terminal arm 

of VP1 in a similar way to calcium ions, shielding electric double-layer repulsion of the arm 

and subsequently promoting self-assembly of modular VP1 capsomeres (Salunke et al. 

1989). 

The investigation on the importance of specific ion effects was performed using 

modular VP1 bearing four copies of H190. Modular capsomeres VP1-H190-4x were 

assembled in Assembly Buffer containing (i) different concentrations of (NH4)2SO4, and (ii) 

different salt type. The effect of different concentration of (NH4)2SO4 was determined by 

performing assembly at 200 mM and 350 mM (NH4)2SO4. The effects of different type of 

salt were determined by performing assembly at 500 mM (NH4)2SO4 or NaCl. pH of the 

assembly buffers was maintained at 6 as results in Figure 4-7B-F show that the optimum 

ratio of VLPs to unassembled capsomeres could be obtained at this pH. 

SDS-PAGE and AF4-MALS analysis of modular capsomeres VP1-H190-4x 

assembled at different concentrations of (NH4)2SO4 are shown in Figure 4-9. The SDS-

PAGE analysis (Figure 4-9A) showed that assembly of VP1-H190-4x in Assembly Buffer 1 

containing 200 mM and 350 mM (NH4)2SO4 resulted in considerably less precipitation 
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compared to assembly at 500 mM (NH4)2SO4. This finding showed that the concentration 

of (NH4)2SO4 in Assembly Buffer 1 determined the level of precipitation of VP1-H190-4x. 

However, analysis of the assembled VP1-H190-4x using AF4-MALS (Figure 4-9B-C) 

showed that VP1-H190-4x VLPs assembled in Assembly buffer containing 200 mM and 

350 mM (NH4)2SO4 were highly heterogeneous in size as indicated by the broadness of 

the VLP peaks. The VLP peak for 200 mM (NH4)2SO4 was broader than the peak for 350 

mM (NH4)2SO4, indicating that the modular VLPs assembled in 200 mM (NH4)2SO4 were 

more heterogeneous. Moreover, the VLP peak for 200 mM (NH4)2SO4 eluted at around 35 

min, later than the peak for 350 mM (NH4)2SO4 which eluted at around 28 min. This result 

indicates that the VLPs assembled at lower concentrations of (NH4)2SO4 had bigger size. 

The AF4-MALS analysis results also showed that at both 200 mM and 350 mM (NH4)2SO4 

the amount of unassembled capsomeres was similar to the amount of VLPs. Furthermore, 

the proportion of soluble aggregates to VLPs for 200 mM (NH4)2SO4  was higher than the 

proportion for 350 mM (NH4)2SO4. This finding suggested that a lowered concentration of 

(NH4)2SO4 promoted formation of soluble aggregates.  
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Figure 4-9. Analysis of the effects of (NH4)2SO4 concentration in Assembly Buffer 1 on the solubility and 
assembly of modular VP1 bearing four copies of H190. (A) Analysis using SDS-PAGE. Lanes: (L) Pre-
stained protein marker, (T) Total protein after dialysis against PBS, (S) Soluble protein after dialysis against 
PBS. The soluble protein after dialysis against PBS was analysed using AF4-MALS. The dominant bands on 
the gel represent VP1-H190-4x; and (B-C) Analysis using AF4-MALS. UV absorbance at 280 nm (UV) and 
light scattering signals (LS) were shown on a relative scale for AF4-MALS analysis. Peaks containing 
unassembled capsomeres, VLPs, and amorphous aggregates eluted at about 10 min, 20 min, and 40 min, 
respectively. 
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Similarly to the impact of (NH4)2SO4 concentration on the precipitation of VP1-H190-

4x, replacement of (NH4)2SO4 with NaCl also affect the precipitation of the modular VP1 

protein. SDS-PAGE analysis in Figure 4-10A showed that when assembly was performed 

at 500 mM NaCl in place of (NH4)2SO4, solubility of VP1-H190-4x was considerably higher. 

Furthermore, AF4-MALS analysis in Figure 4-10B-C showed that VP1-H190-4x VLPs 

assembled at 500 mM NaCl were more heterogeneous than those assembled at the same 

concentration of (NH4)2SO4. Additionally, VP1-H190-4x assembled in NaCl contained less 

VLPs and higher unassembled capsomeres, which were at similar amount to soluble 

aggregates. These findings indicated that the use of NaCl rather than (NH4)2SO4 

prevented the formation of VLPs.  
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Figure 4-10. Analysis of the effects of salt type in Assembly Buffer 1 on the solubility and assembly of 
modular VP1 bearing four copies of H190. (A) Analysis using SDS-PAGE. Lanes: (L) Pre-stained protein 
marker, (T) Total protein after dialysis against PBS, (S) Soluble protein after dialysis against PBS. The 
soluble protein after dialysis against PBS was analysed using AF4-MALS. The dominant bands on the gel 
represent VP1-H190-4x; and (B-C) Analysis using AF4-MALS. UV absorbance at 280 nm (UV) and light 
scattering signals (LS) were shown on a relative scale for AF4-MALS analysis. Peaks containing 
unassembled capsomeres, VLPs, and amorphous aggregates eluted at about 10 min, 20 min, and 40 min, 
respectively. 
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The impacts of salt concentration and type on the solubility and assembly capability 

of VP1-H190-4x observed in Figure 4-9 and Figure 4-10 were possibly linked to the 

interactions of protein with ions. Both concentration and type of the salt have been shown 

to affect the surface tension of water. Increasing the concentration of salts increases the 

surface tension, and the type of the salts determines the extent of the surface tension 

increase. Both SO4
2- and Cl- are categorised as Hofmeister ions (Zhang and Cremer 

2006), which affect protein stability indirectly by changing the hydrogen-bonding properties 

of water. SO4
2- and Cl- affect the surface tension of waters in different ways. The anion 

SO4
2- is a kosmotrope, it interacts strongly with water and increases the surface tension 

between water and proteins. Consequently, water molecules around the salt ions are more 

structured than bulk water. Such changes in the structure of water molecule promote 

salting-out effects where solubility of proteins is reduced. In contrast, the anion Cl- is an 

example of chaotropes. It interacts weakly with water and decreases the surface tension 

between water and proteins. Consequently, it breaks the structure of water molecules and 

promotes salting-in effects where solubility of proteins is increased (Zhang and Cremer 

2006). The level of water surface tension have been widely accepted as explanations for 

changes in protein solubility in salt solution via cavity model (Baldwin 1996). 

The results above show that, at an assembly condition previously optimised for wt-

VP1, (i) solubility and (ii) assembly capability of the modular VP1 decreased as number of 

tandem repeat H190 increased. In this chapter, these two difficulties were linked to two 

important factors of protein-protein interactions, i.e. (i) the net surface charge for a given 

amino acid sequence (the zeta potential), and (ii) specific ion effects. For modular VP1 

bearing four copies of H190, the net surface charge was not the major driver for the 

solubility of the modular VP1 because pH adjustment of the Assembly Buffer 1 weakly 

affected the precipitation of the protein (Figure 4-7A). In contrast, manipulation of the net 

surface charge of modular VP1 bearing four copies of H190 resulted in changes in the 

proportion of formed VLPs to unassembled capsomeres. The optimum proportion was 

achieved at pH 6 (Figure 4-7B-F). Furthermore, the impacts of pH on the solubility and 

assembly capability observed for modular VP1 bearing four copies of H190 were not 

observed when the number of H190 tandem repeats was increased to five copies. The net 

surface charge of modular VP1 bearing five copies of H190 did not affect the solubility and 

assembly capability of the protein (Figure 4-8). In contrast to how pH solution impacted the 

solubility of modular VP1 bearing four copies of H190, the results in this section show that 

specific ion effects, in this case concentration and type of salt, regulated the solubility and 

assembly capability of modular VP1 bearing four copies of H190 considerably. Reducing 
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salt concentration (Figure 4-9A) and replacing ammonium sulphate to sodium chloride 

(Figure 4-10A) in Assembly Buffer 1 increased the solubility of the modular VP1. However, 

increase in the solubility of the protein was compensated by reduced capability of the 

modular VP1 to assemble into VLPs and increased size heterogeneity of the formed VLPs 

(Figure 4-9B-C and Figure 4-10B-C).  

The importance of net surface charge (zeta potential) and specific ion effects on the 

solubility and assembly of both modular VP1 bearing four and five copies of H190 agreed 

with literature. In concentrated salt solution, such as the Assembly Buffer 1, protein-protein 

interaction is dependent of the specific ion effects rather than the net surface charge of the 

proteins. In this case, the specific ion effects were the concentration and type of salt. 

However, the dependency of assembly capability of modular VP1 bearing four copies of 

H190 on pH and hence the net surface charge suggested that electric double-layer 

repulsion were still involved in the assembly process. 

It is also important to note that the impacts of specific ion effects on protein-protein 

interactions in a given solution condition are determined by the amino acid sequence of 

the protein. Increasing number of H190 results in changes in the amino acid sequence and 

can consequently affect protein-protein interactions. Additionally, changes in the amino 

acid can result in structural perturbation of the VP1 protein. As the number of H190 

tandem repeats increases, the size of antigen modules increases. Bigger antigen modules 

can perturb the structural integrity of modular VP1. This could result in exposure of buried 

residues to the surface, and consequently changes in the amino acid sequence exposed 

to the surface. Unfortunately, results in this chapter were insufficient to prove this 

possibility regarding structural perturbation. 

 

4.3.2 H190-specific immunogenicity 
The in vivo studies reported in this chapter were undertaken in two main groups to 

investigate (i) the use of AdvaxTM-1 as adjuvant, and (ii) the effect of increasing number of 

H190 tandem repeats. Groups of mice were immunised on days 0, 21, and 42, and bled 

on tail on days 0, 14, 35, and 56 (Figure 4-11). Sera from day 56 were used to determine 

the immunogenicity of H190 by performing immunoassays against peptide H190 as 

described in Section 4.2.7. 
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Figure 4-11. Schematic diagram of immunisation and tail bleeding for in vivo studies conducted in Chapter 4. 

 

 

Two types of immunoassays were performed, i.e. (i) indirect ELISA, and (ii) 

competitive ELISA. In indirect ELISA, mice sera at various dilutions were tested against 

immobilised peptide H190. Endpoint titres of H190 sequence-specific IgGs were 

determined as the lowest dilutions of sera with absorbance readings higher than 3 times 

the standard deviations above the mean absorbance obtained from pre-immunised mouse 

sera (Relf et al. 1996). Competitive ELISA was performed to confirm the results from 

indirect ELISA. The binding of IgGs to immobilised peptide H190 was competed with 

peptide H190 in solution at various concentrations. The competitive ELISA results were 

presented as the percentage of relative absorbance [(B/B0) x 100%], with B was 

absorbance 450 nm at a certain concentration of competitor, and B0 was absorbance 450 

nm in the absence of competitor. 

 

4.3.2.1 Effect of AdvaxTM-1 on H190 immunogenicity 
The effect of the use of AdvaxTM-1 on immunogenicity of H190 was investigated by 

performing immunisation using VP1-H190-H190 VLPs with and without AdvaxTM-1. Figure 

4-12A shows the endpoint titres of H190-sequence specific IgGs for adjuvanted and non-

adjuvanted VLPs. Both adjuvanted and non-adjuvanted VLPs induced H190 sequence-

specific IgG titre higher than 104. Furthermore, adjuvanted VLPs induced a slightly higher 

titre than non-adjuvanted VLPs, although statistical analysis showed that the titre 

difference was not significantly different (p= 0.6206). 

Figure 4-12B shows the competitive binding of the IgGs to immobilised peptide 

H190 by peptide H190 in solution. Similar to result from indirect ELISA in Figure 4-12A, the 

competitive ELISA result shows that there was a slight difference in H190 sequence-

specific IgG titre between adjuvanted and non-adjuvanted VLPs. Peptide H190 at about 

240 µM inhibited approximately 20% of IgG binding to HA1 for non-adjuvanted VLPs. 
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However, the same concentration of peptide H190 only inhibited 40% of IgG binding to 

immobilised peptide H190 for adjuvanted VLPs. The competitive ELISA result confirms 

that H190 sequence-specific IgG titre for adjuvanted VLPs was higher than the titre for 

non-adjuvanted VLPs.  

 

  
Figure 4-12. Indirect and competitive ELISA results showing the effect of AdvaxTM-1 on the immunogenicity 
of H190 element. (A) Endpoint titre of H190 sequence specific IgGs induced by modular VLPs. Geometric 
mean (n=5) and 95% confidence intervals were presented; and (B) Inhibition of antiserum binding (1/1000) 
to immobilised peptide H190 by peptide H190 in solution. Arithmetic mean (n=5) and standard deviation from 
duplicate measurements are presented. 
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specifically to the immobilised antigen and consequently cause background interference. 

Such background can create false-positive reading as well as conceal the low level of IgG 

binding, reducing the sensitivity of the assay (Saxinger and Gallo 1987).  

The novel AdvaxTM-1 is a polysacchararide adjuvant based on particles of β-D-
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stable (Cooper and Petrovsky 2011) and has been shown able to have antigen sparing 

effects through enhancement of antibody titre without skewing the immune response in 

either Th1 or Th2 direction (Honda-Okubo et al. 2012). The antigen sparing of AdvaxTM-1 

is achieved via an increase in total antibody secreting cells in bone marrow and spleen 

(Saade et al. 2013). In their study, Saade et al. suggested that AdvaxTM-1 assists 

additional rounds of antigen-specific B-cell proliferation within secondary lymphoid tissues. 

Alternatively, AdvaxTM-1 confers a survival advantage to antigen-specific B cells (Saade et 

al. 2013). 

AdvaxTM-1 has also been shown to boost immune activity in vitro (Cooper and 

Petrovsky 2011). A study by Honda-Okube et al. showed that immunisation of influenza 

vaccine with AdvaxTM-1 enhanced the induction of humoral immune responses IgM, IgG1, 

and IgG2, as well as CD4 and CD8 T-cell proliferation. Consequently, formulation with 

AdvaxTM-1 resulted in increased neutralising antibodies and protection level (Honda-

Okubo et al. 2012). Similar antigen sparing effect of AdvaxTM-1 was observed for 

vaccination Japanese encephalitis in mice and horses (Lobigs et al. 2010), HIV in mice 

(Cristillo et al. 2011), avian (H5N1) influenza in ferrets (Layton et al. 2011), and African 

Horse Sickness and Glanders in camels (Eckersley et al. 2011). 

In good agreement with the aforementioned studies, both results in Figure 4-12 

indicate that addition of AdvaxTM-1 increased the immunogenicity of the H190 element in 

VP1-H190-H190 VLPs, resulting in an increase in H190 sequence-specific IgG titre. 

Nevertheless, the increase in the IgG titre was not statistically significant. Hence, the 

findings in this section suggested that the modular VLPs presenting two copies of H190 

were self-adjuvanting and able to induce optimum immune responses without the need for 

adjuvant. 

 

4.3.2.2 Effect of increasing number of H190 tandem repeats on H190 
immunogenicity 

The effect of increasing number of tandem repeat H190 on immunogenicity of H190 

was investigated by comparing four modular constructs containing one to four copies of 

H190, which were designated as constructs VP1-H190, VP1-H190-H190, VP1-H190-3x, 

and VP1-H190-4x. Modular construct VP1-H190, as the simplest display strategy that 

does not incorporate a structural hypothesis, was used as a control. Together with VP1-

H190-H190, VP1-H190 was used as a control. Groups of mice were immunised separately 

with each construct, and antisera were then tested against peptide H190 to determine the 

presence of H190 sequence-specific IgGs.  



 90 

Figure 4-13A shows the endpoint titres of H190 sequence-specific IgG for the four 

modular VLPs. The four modular VLPs were able to induce H190 sequence-specific IgG 

titre higher than 104. The IgG titre for modular VP1 bearing two to four copies of H190 

were similar, and all were slightly higher than the titre for modular VP1 bearing one copy of 

H190. Statistical analysis showed that IgG titres for VP1-H190 and VP1-H190-H190 were 

not significantly different (p= 0.5491). Furthermore, statistical analysis showed that IgG 

titre comparisons between VP1-H190-3x VLPs and VP1-H190-H190 VLPs (p= 0.9919), 

and between VP1-H190-4x VLPs and VP1-H190-H190 VLPs (p= 0.5491) were not 

significantly different. Similarly, IgG titre for VP1-H190-3x VLPs and VP1-H190-4x VLPs 

were not significantly different (p= 0.9919). 

 

  
 

Figure 4-13. Indirect and competitive ELISA results showing the immunogenicity of H190 element in modular 
VLPs bearing one, two, three, and four copies of H190. (A) Endpoint titre of H190 sequence specific IgGs 
induced by modular VLPs. Geometric mean (n=5) and 95% confidence intervals were presented; and (B) 
Competition of antiserum binding (1/1000) to immobilised peptide H190 by peptide H190 in solution. 
Arithmetic mean (n=5) and standard deviation from triplicate measurements are presented.  
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4-13A. Competition profiles of peptide H190 at all tested concentrations, shown in Figure 

4-13B, were similar for all modular VLPs. This result is in good agreement with the indirect 

ELISA result, confirming that differences of H190 sequence-specific IgG titre for all three 

0.001 0.01 0.1 1 10 100 1000
0

50

100

150

Concentration of peptide H190 (µM)

B/
B 0 (

%
)

VP1-H190-H190 VLPs
VP1-H190-3x VLPs

VP1-H190 VLPs

VP1-H190-4x VLPs

wt-V
P1 V

LP
s

VP1-H
19

0 V
LP

s

VP1-H
19

0-H
19

0 V
LP

s

VP1-H
19

0-3
x V

LP
s

VP1-H
19

0-4
x V

LP
s

100

101

102

103

104

105

106

G
eo

m
et

ric
 m

ea
n 

of
 

en
d 

po
in

t I
gG

 ti
tre

ns 

ns 

ns 

A B 

ns 



 91 

modular VLPs were statistically not significant. Furthermore, the difference of IgG titre 

between modular VP1-H190 and the other three constructs observed in Figure 4-13A was 

not amplified in the competitive ELISA.  

Results in Figure 4-13 confirm that all modular VLPs were equally effective in 

inducing high titres of H190 sequence-specific IgGs. Comparison of the IgG titre of 

modular construct VP1-H190 against the other three constructs suggested that 

modularisations of H190 on a VLP using the simplest display strategy was comparably 

effective to tandem repeat display strategy in presenting H190 in an immunogenic form. 

These results are also in good agreement with findings in Chapter 3, confirming that 

display strategy did not affect the immunogenicity of H190.  

Furthermore, the results in Figure 4-13 show that increasing the number of tandem 

repeat H190 from one copy to four copies did not result in the increase in the H190 

immunogenicity. The finding on the immunogenicity of one and two copies of H190 was in 

good agreement with other studies that exploited the use of the MuPyV VP1 VLPs to 

present the J8 antigen from Group A streptococcus (GAS) (Chuan et al. 2013, Rivera-

Hernandez et al. 2013). In those two studies, administration of modular VLPs bearing one 

and two copies of J8 antigen resulted in induction of a similar level of J8-specific IgG titre. 

However, the finding on the immunogenicity of three and four copies of H190 could not be 

compared against other studies, because reports on the studies of modular VLPs bearing 

more than two copies of peptide antigen within an antigen element have not been found. 

The most similar report available for comparison is the study on DNA-based HIV vaccine 

by Jain et al. (Jain et al. 2010). In the study, administration of DNA vectors encoding for 

VLPs presenting one, three and five copies of MPER or ELD antigen resulted in induction 

of increased antigen specific IgG titre. Different from the finding in this chapter, Jain et al. 

showed that the significant increase in antigen specific IgG titre was obtained from one to 

three copies. The difference between the findings in this chapter and those by Jain et al. 

could be antigen specific. The difference was also possible because in this chapter mice 

were immunised with modular VLPs instead of DNA vectors. As DNA vaccines must in 

vivo be turned into protein, there may also be dose-dependent effects manifested in this 

result. Nevertheless, supported by the two studies in modular VLPs presenting J8 antigen 

from GAS, the findings in this chapter highlighted the superiority of VLPs from the MuPyV 

VP1 in presenting the modularised antigens in their immunogenic forms.  
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4.3.3 Specificity of modular VLP antisera to recombinant HA1 protein 
The specificity of modular VLP antisera to recombinant HA1 protein was determined 

by testing the sera from day 56 against recombinant HA1 A/California/07/2009 (H1N1) 

produced in insect cells as described in Section 4.2.7. Similar to the previous section, two 

types of immunoassays were performed, i.e. (i) indirect ELISA, and (ii) competitive ELISA. 

In indirect ELISA, mice sera at various dilutions were tested against immobilised HA1 

protein, while in competitive ELISA, the binding of IgGs to immobilised HA1 protein was 

competed with peptide H190 in solution at various concentrations.  

 

4.3.3.1 Effect of AdvaxTM-1 on specificity of modular VLP antisera to recombinant 
HA1 protein 

Figure 4-14A shows the endpoint titres of HA1-specific IgGs in modular VLP 

antisera. Both adjuvanted and non-adjuvated VLPs induced high titres of HA1-specific 

IgGs, higher than 104. Importantly, the IgG titre for adjuvanted VLPs (slightly below 105) 

was higher than the titre for non-adjuvanted VLPs (slightly above 104). Statistical analysis 

of HA1-specific IgG titres of both VLPs showed that the pair had an adjusted P value of 

0.0552. Using a family-wise significance level of 5% (p= 0.05), statistical analysis showed 

that the titres of both VLPs were not significantly different. However, because the adjusted 

P value was very close to the limit, the significance of the titre difference might change if 

the family-wise significance level was changed. When the significance level was relaxed to 

10% (p= 0.1), the titres of both VLPs became significantly different. This finding indicated 

that the use of AdvaxTM-1 marginally increased the quality of antibodies induced by 

adjuvanted VLPs. Whether such increase was statistically significant or not depended on 

how the parameter of the analysis was determined.  
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Figure 4-14. Indirect and competitive ELISA results showing the effect of AdvaxTM-1 on reactivity of modular 
VLP antisera against recombinant HA1 protein. (A) Endpoint titre of HA1-specific IgGs induced by modular 
VLPs. Geometric mean (n=5) and 95% confidence intervals were presented; and (B) Inhibition of modular 
VLP antisera binding (1/200) to immobilised HA1 protein by peptide H190 in solution. Arithmetic mean (n=5) 
and standard deviation from duplicate measurements are presented. 

 

 

The titre difference observed in the result from indirect ELISA was also observed in 

the result from competitive ELISA as shown in Figure 4-14B. Competitive binding of IgGs 

to HA1 with peptide H190 showed that peptide H190 at about 0.2 µM was required to 

compete the IgG binding down to 20% for both non-adjuvanted VLPs. In contrast, to 

achieve a similar competition, peptide H190 at a concentration of 10-fold higher was 

required for adjuvanted VLPs. Therefore, confirming the result from the indirect ELISA; the 
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Saade et al (Saade et al. 2013). In the study using guinea pigs, AdvaxTM-1 was shown 

able to induce antibodies of higher quality as indicated from the increase in antibody 

avidity. However, a higher protective efficacy following the avidity increase was not 

reported. Furthermore, Saade et al. suggested that the increased antibody avidity was a 

result of additional rounds of B-cell proliferation, which promoted antibody maturity. This 

suggestion was in good agreement with the finding that temporal association and direct 

contact between AdvaxTM-1 with the antigen were not observed, suggesting that AdvaxTM-

1 did not promote conformational changes of the antigen (Saade et al. 2013). 

Furthermore, as explained in Section 4.3.2.1, enhancement in the protective 

efficacy of vaccine candidates adjuvanted with AdvaxTM-1 is majorly driven by an increase 

in antibody titre (Honda-Okubo et al. 2012, Saade et al. 2013), in the absence of activation 

of innate immune inflammation (Honda-Okubo et al. 2012). Since Section 4.3.2.1 has 

shown that the use of AdvaxTM-1 increased the immunogenicity of H190 slightly, the slight 

increase in antibody quality observed in Figure 4-14 was therefore expected. 

 

 

4.3.3.2 Effect of increasing number of H190 tandem repeats on specificity of 
modular VLP antisera to recombinant HA1 protein 

Figure 4-15A shows HA1-specific IgG titres for modular VLPs bearing one to four 

copies of H190. VP1-H190 VLPs induced HA1-specific IgG titre slightly less than 103. In 

contrast, the other modular VLP antisera contained high titres of IgGs specific to HA1, 

between 103 and 104. In addition, the figure shows that the HA1-specific IgG titres 

increased with the increase in H190 copy number from one to three copies. The highest 

titre was for modular VLPs bearing three copies of H190. HA1-specific IgG titre for four 

copies of H190 was slightly lower than the titre for three copies of H190. Furthermore, 

Figure 4-15A shows that the group of mice immunised with modular VLPs bearing three 

copies of H190 gave a more uniform responses against HA1, in contrast to other modular 

VLP groups that gave responses against HA1 with larger ranges.  
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Figure 4-15. Indirect and competitive ELISA results showing the effect of increasing number of tandem 
repeat H190 element on the reactivity of modular VLP antisera against recombinant HA1 protein. (A) 
Endpoint titre of HA1-specific IgGs induced by modular VLPs. Geometric mean (n=5) and 95% confidence 
intervals were presented; and (B) Inhibition of modular VLP antisera binding (1/200) to immobilised HA1 
protein by peptide H190 in solution. Arithmetic mean (n=5) and standard deviation from triplicate 
measurements are presented.  
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changes in the concentration of peptide H190. This finding suggested that IgG binding to 

HA1 for VP1-H190 VLPs was not specific via H190. Similar to the competition profile for 

VP1-H190-H190 VLPs, the profiles for VP1-H190-3x and VP1-H190-4x VLPs showed that 

IgG bindings for both modular VLPs were responsive to the changes in the concentration 

of peptide H190 in solution. Furthermore, the levels of response for both modular VLPs 

were similar and were higher than for VP1-H190-H190 VLPs. This finding indicated that 

IgGs raised against VP1-H190-3x VLPs and VP1-H190-4x VLPs had a similar quality, 

which was higher than the quality of antibodies induced against VP1-H190-H190 VLPs.  

Both results from indirect and competitive ELISA in Figure 4-15A show two 

important findings from comparison between modular VLPs bearing one to four copies of 

H190. Firstly, both ELISA results show that two copies of H190 tandem repeats (VP1-

H190-H190 VLPs) and one copy of H190, which represents the simplest display strategy 

but without incorporating a structural hypothesis (VP1-H190 VLPs), could induce similar 

levels of HA1-specific IgG titre. However, for one copy of H190, the HA1-specific IgG 

bound non-specifically to HA1 (Figure 4-15B). This result indicates that the simplest 

modularisation of H190 was not sufficient to induce a high quality of antibodies, and 

therefore display strategy was necessary to obtain a higher quality of antibodies. Two 

copies of H190 tandem repeats and one copy of H190 were equally effective in presenting 

H190 in its immunogenic form (Figure 4-13). Therefore, the difference in the quality of 

antibodies observed in this section may be attributed by a structural difference of the 

modularised H190 in both modular VLPs, which was similar to the observation reported in 

Chapter 3 of this thesis. One copy of H190 may not be able to retain its conformation 

integrity. The finding on the comparison of antibody quality induced by two copies of H190 

tandem repeats and the simplest modularisation of H190 was an initial scientific attempt to 

support the presumption that peptide antigen may not be able to assume its conformation 

integrity when it is presented on a modular VLP (Jennings and Bachmann 2007, Roldão et 

al. 2010, Tissot et al. 2010). This presumption has underpinned many studies in modular 

VLPs, however to the best knowledge of the author, the finding in this thesis is the first 

reported attempt to support the presumption.  

Secondly, the results in Figure 4-15 show that the number of H190 tandem repeats 

weakly affected the quality of antibodies. Similar to the observation on the increase in 

antibody quality due to the use of AdvaxTM-1 (Figure 4-14), the increase in antibody quality 

in Figure 4-15 was marginal and not statistically significant. The increase could be 

detected in competitive ELISA assay, but not in indirect ELISA, which was possibly 

because the former assay has a higher sensitivity (Goda et al. 2000, Reddington et al. 
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1991, Wreghitt et al. 1986). The finding that increasing number of H190 tandem repeats 

from two to three and four copies of H190 did not result in a statistically significant 

increase in antibody quality indicated that two copies of H190 was sufficient to induce a 

high quality of antibodies. This finding is in good agreement with structural studies in 

peptide-based vaccines (Fontenot et al. 1993). The study showed that the native 

conformation of antigen peptide could be achieved via incorporation of at least two copies 

of antigen tandem repeats. Incorporation of more than two copies did not change the 

structure of the tandem repeat peptides.  

The two findings above were drawn mostly from the statistical analysis result. 

However, it could not be overlooked that both indirect and competitive ELISA results 

presented in Figure 4-15 show that as the number of H190 tandem repeats increased from 

one to three copies, the quality of antibodies qualitatively increased. Further increasing 

from three to four copies of H190 did not result in a further increase in antibody quality. 

Therefore, without using statistical analysis, it can be concluded that the highest antibody 

quality was achieved by immunisation with modular VLPs bearing three copies of H190 

tandem repeats. This analysis was supported by the fact that mice immunised with this 

modular VLPs gave the most consistent responses against HA1. The uniform responses 

indicate that unlike other modular VLPs, modular VLPs bearing three copies of H190 could 

induce consistent antibody quality. For potential vaccine applications, such consistent 

responses can be advantageous, although it should be noted that consistency is not 

quantified by a simple statistical comparison of mean antibody responses.  

 

4.4 Conclusions 
In this chapter, Objective 2 stated in Section 1.3 was accomplished by addressing 

the question concerning what improvements to a tandem repeat display strategy can be 

made to induce antibodies having a higher quality. Two approaches were explored, i.e. (i) 

by using AdvaxTM-1 as an adjuvant for modular VLPs bearing two copies of H190, and (ii) 

by increasing the number of H190 tandem repeats from two copies to five copies. 

Exploration of these two approaches led to two major findings. The first finding was 

correlated to the solubility and assembly capability of modular VP1 that was explained in a 

context of protein-protein interactions in a concentrated salt solution. Meanwhile, the 

second finding was correlated to in vivo studies undertaken in this chapter to analyse 

antibody quality raised by modular VLPs. Because VLPs could not be obtained for 

modular VP1 bearing five copies of H190, only modular VLPs bearing one to four copies of 

H190 were carried through in vivo studies. 
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Results in this chapter show that increasing number of H190 tandem repeats 

reduced the solubility and assembly capability of the modular VP1 capsomeres in the 

concentrated salt solution of Assembly Buffer 1, which has been optimised previously for 

wt-VP1. This chapter showed that in this buffer, modular VP1 bearing four and five copies 

of H190 (i) had low solubility levels and (ii) could not assemble into VLPs. In this chapter, 

these two difficulties were investigated in a context of protein-protein interactions. In the 

investigation, two parameters were varied, i.e. (i) the net surface charge of the proteins 

(zeta potential), and (ii) specific ion effects. The net surface charge of each modular VP1 

was manipulated by pH adjustment, while variation of specific ion effect comprised of 

concentrations and types of salts. pH adjustment of Assembly Buffer 1 only slightly 

affected the solubility of modular VP1 bearing four copies of H190. However, pH changes 

affected the assembly capability of this modular VP1 considerably. In contrast, the effects 

of pH adjustment were not observed for modular VP1 bearing five copies of H190. 

Furthermore, results in this chapter show that both concentrations and types of salts in 

Assembly Buffer 1 affected both solubility and assembly capability of modular VP1 bearing 

four copies of H190. The results in this chapter are as expected from literature, insofar as 

that in a concentrated salt solution, protein-protein interactions are regulated by specific 

ion effects rather than the net surface charges of a given protein sequence. The exception 

was on how pH changes affected the solubility of modular VP1 bearing four copies of 

H190. Such exception showed that protein-protein interactions are complex, and could 

involve electrostatic force and changes in amino acid sequence of the modular VP1 due to 

addition of modularised H190 and the possibility of structural perturbation. 

In addition, using indirect and competitive ELISA for sera analysis, results from in 

vivo studies in this chapter suggest that both the use of AdvaxTM-1 and increasing the 

number of H190 tandem repeats did not increase the immunogenicity of H190. However, 

both improvement approaches increased the quality of antibodies, although the increases 

were marginal. Results from both serological assays in this chapter show that adjuvanting 

modular VLPs bearing two copies of H190 increased HA1-specific IgG titre for about 10-

fold. Statistical significance of the increase depended on the selected significance level. If 

the family-wise significance level was determined at 5%, the increase was not statistically 

significant. In contrast, at 10% family-wise significance level, the increase can be 

concluded as statistically significant. Similarly, results from two serological assays show 

that increasing number of H190 tandem repeats increased the quality of antibodies. Both 

assays showed a trend of increases in HA1-specific IgG titres. The presented results 

suggest that the highest antibody quality could be achieved by increasing number of H190 
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tandem repeats to three copies. Further increase in the number of H190 did not result in 

increase in antibody quality. In addition, modular VLPs bearing three copies of H190 was 

shown able to induce more consistent responses against HA1. Statistical analysis showed 

that the increases were not statistically significant. Taking into account statistical analysis, 

the results in this chapter suggest that modular VLPs bearing two copies of H190 was 

sufficient to induce a high titre of H190-sequence specific IgGs and HA1-specific IgGs. 

Therefore, improvements to the tandem repeat display strategy to increase the quality of 

antibodies were not necessary.  
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5 Chapter 5. Challenging the tandem repeat display strategy 
using a hydrophobic helix 190 variant 
 
5.1 Introduction 

Chapter 4 of this thesis accomplished Objective 2 stated in Section 1.3, by 

addressing possible improvements to the tandem repeat display strategy used to induce 

antibodies of higher quality. Two approaches were explored in Chapter 4: (i) the use of 

adjuvant, and (ii) increasing copy number of H190 up to five copies. Results in the chapter 

showed that both approaches did not significantly increase the quality of antibodies 

compared to those induced by two copies of H190. This finding highlighted that two copies 

of H190 were sufficient to display the peptide antigen in its immunogenic form, resulting in 

the induction of high titres of H190-sequence specific IgGs (as also reported in Chapter 3). 

The induced IgGs were shown to be of a high quality, which was measured as their 

abilities to recognise recombinant HA1 protein produced in insect cells.  

In addition to its ability to induce high titres of antibody of a high quality, the tandem 

repeat display also has other advantages. Firstly, it is a simple display strategy; an antigen 

module containing two copies of H190 tandem repeats was modularised without any 

additional structure-promoter elements or spacer elements. The absence of additional 

elements is advantageous because such elements can be immunogenic, and the binding 

of antibodies to these elements may interfere with the antibody binding to the modularised 

H190 (as reported in Chapter 3). Secondly, modularisation of two copies of H190 was not 

associated with considerable precipitation of modular VP1 after assembly or reduced 

assembly capability of the modular VP1 under buffer conditions that were previously 

optimised for the wild-type (wt) VLP. Section 4.3.1 in Chapter 4 showed that as the copy 

number of modularised H190 increased, the tendency of modular VP1 to precipitate in 

standard buffer after assembly also increased, and that the assembly capability of modular 

VP1 decreased. Modular VP1, bearing three, four, and five copies of H190, precipitated 

considerably after assembly. Furthermore, under the limited set of excipient-free buffer 

conditions screened manually, modular VLPs displaying three and four copies of H190 had 

a lower capability to assemble into VLPs, resulting in a lower yield of modular VLPs, and 

modular VP1 presenting five copies of H190 could not assemble into VLPs.  

The superiority of the tandem repeat display, as reported in Chapters 3 and 4, was 

built using H190 from influenza virus A/California/07/2009 (H1N1; 

STSADQQSLYQNADAY) as an antigen model. However, H190 is a hypervariable region 
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(reviewed in Chapter 2); the amino acid sequence of H190 differs from one strain to 

another. Of particular interest is H190 (VTDKDQIFLYAQASGR) from influenza virus 

vaccine strain A/Victoria/210/2009 (H3N2/X-187), which is a high-growth reassortant virus 

strain. Together with the A/California/07/2009 strain, the A/Victoria/210/2009 strain was 

included in the trivalent split influenza vaccines, Fluvax® (CSL Limited, Australia) for the 

2011 and 2012 seasons. Unlike the H190 element from the A/California/07/2009, the H190 

element from the A/Victoria/210/2009 is hydrophobic, as indicated by its GRAVY score 

(grand average of hydropathicity index) of -0.419. The GRAVY score is a scoring system 

that can be used as an indicator of protein solubility (Kyte and Doolittle 1982). In this 

chapter, the GRAVY score of H190 from the A/Victoria/210/2009 was obtained from 

ProtParam tool (Gasteiger et al. 2005). The hydrophobic non-polar residues within the 

H190 element are centred in the middle region of the element, forming a hydrophobic 

stretch (amino acid residues IFLY).  

Although amino acid sequence, and consequently the biophysical and biochemical 

properties of H190 from both strains are different, their helical structures are conserved. 

Conservation of H190 helicity across various influenza strains has been indicated in 

several studies. For example, a study by Stevens et al. (Stevens et al. 2006) compared the 

structure of HA1 from two different influenza strains, i.e. (i) A/Human/South 

Caroline/1/1918 (H1N1; 1918 H1), and (ii) A/Duck/Singapore/3/97 (H5N1; Sing97). The 

study showed that Sing97 and 1918 H1 were not closely related in sequence, differing by 

approximately 40% in the sequence of HA1. The amino acid sequences of H190 from 

these two strains were also different (Figure 5-1A). However, superimposition of HA1 

monomer from these strains showed that the structure of these HA1 were similar (Figure 

5-1B). This superimposition also showed that the helicity of H190 from these strains were 

similar. This comparison was supported by studies of Russell et al. (Russell et al. 2004, 

Russell et al. 2006). In these studies, Russell et al. compared the structure of HA1 of 1918 

H1 and Sing97 against A/X-31 (H3N2), A/Swine/Hong Kong/9/98 (H9N2), and 

A/Turkey/Italy/02 (H7N3). HA1 from 1918 H1 differed from HA1 from the H3N2, H7N3, and 

H9N2 by approximately 60%. In comparison, HA1 from the H1N1 strain was more similar 

to the one from Sing97, differing by about 40%. Nevertheless, confirming the 

aforementioned study, Russell et al. showed, regardless of their sequence differences, the 

helicity of H190 from these strains was similar. These studies indicated that, independent 

of similarities or differences in the sequence of HA1, the secondary structure of H190 in 

these strains was conserved. Furthermore, these studies also suggested that the helicity 
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of H190 was conserved among influenza strains, which recognise different types of sialic 

acid receptors. 

 

 
 

Figure 5-1. Comparison of crystal structures of A/Human/South Caroline/1/1918 (H1N1) HA1 and 
A/Duck/Singapore/3/97 (H5N1) HA1. (A) Comparison of amino acid sequences of H190 elements from both 
strains; and (B) Structural comparison and superposition of HA1 monomers from the H1N1 (1RUZ.pdb) and 
H5N1 (1JSM.pdb). Helix 190 is coloured in red. Figure B was generated using UCSF Chimera 1.8.1 
(Pettersen et al. 2004).  
 

 

A stretch of hydrophobic amino acids within a protein sequence is known to be able 

to cause the pathological protein aggregation that is involved in a wide variety of diseases, 

such as Parkinson’s disease (Singleton et al. 2003), Alzheimer’s disease (Harper et al. 

1997, Selkoe 1991), and Prion disease (Lindquist et al. 2001, Scheibel et al. 2004). Such 

pathological protein aggregation can be lethal for people carrying detrimental mutations. In 

addition, a hydrophobic stretch within a protein can cause non-pathological protein 
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Strain H190 amino acid sequence 
A/South Carolina/1/1918 (H1N1) PTGTDQQSLYQNADAY 
A/Duck/Singapore/3/97 (H5N3) NDAAEQTKLYQNPTTY 
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(H5N3) 

Superimposed 
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aggregation, as observed in antibodies (Wu et al. 2010) and the globular protein Scr 

Homology 3 (Ventura et al. 2004). Non-pathological protein aggregation can become a 

nuisance factor in in vitro studies, or cause major economic and technical problems in 

biotechnology and pharmaceutical industries, such as during product storage and delivery 

(Fink 1999). Both types of protein aggregation are non-native aggregates and 

distinguishable from native protein aggregates, which can result from high concentrations 

of protein exceeding the solubility limit, salting out, and isoelectric precipitation. While 

native protein aggregation retains its native conformation and can be re-dissolved, non-

native protein aggregates cannot maintain their native folding and can only be dissolved in 

buffer containing, for example, a high concentration of detergents (Fink 1999, Kopito 

2000). 

Modularisation of an antigen module bearing a hydrophobic stretch in a viral capsid 

protein has been considered to be challenging as it promotes incorrect folding of the 

capsid protein (Kazaks et al. 2004), and consequently increases the tendency of the 

capsid proteins to aggregate (Aleksaitė and Gedvilaitė 2006, Shin and Folk 2003). By 

doing so, the hydrophobic antigen module prevents the proper self-assembly of the 

modular capsid protein into VLPs. The study using hamster polyomavirus VP1 reported 

that modular VP1 bearing hydrophobic tumour associated antigens (27 amino acids) 

formed VLPs with a heterogeneous diameter. Additionally, irregular aggregates were also 

observed (Aleksaitė and Gedvilaitė 2006). Similarly, the study by Karpenko et al. 

(Karpenko et al. 2000) showed that when an antigen module with a high hydrophobicity 

score was modularised into Hepatitis B core protein (HBcAg), the modular protein could 

not assemble into VLPs. They suggested that the hydrophobic antigen module was likely 

to fold in such a way that it blocked the contact region between the subunits of HBcAg 

dimer. Formation of the HBcAg dimer initiates the spontaneous assembly of HBcAg into 

VLPs. Thus, when the contact region between the dimer-subunit was blocked, HBcAg 

dimers could not be formed, and consequently the modular HBcAg could not assemble 

into VLPs.  

Incorrect folding of the capsid protein can also affect the quality of modular capsid 

proteins. In cases where VLPs are assembled in vitro, modular capsid proteins are often 

expressed with fusion tags (Pattenden et al. 2005). The fusion tags are removed from the 

capsid proteins using proteases prior to assembly processes under controlled buffer 

conditions. Incorrect folding of the capsid proteins can result in non-specific proteolysis (Li 

et al. 1983), and may consequently increase the heterogeneity of cleavage products after 

the tag-removal process. An example of a viral capsid protein that has been expressed 
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with a fusion tag is MuPyV VP1 protein. The VP1 protein has been expressed as a 

Glutathione S-transferase (GST)-tagged protein in E. coli (Chuan et al. 2008). Removal of 

GST tag from the wt-VP1 protein using thrombin has been shown to result in the 

generation of a secondary cleavage product, designated VP1*. Additional purification 

processes are needed to remove the VP1* in order to improve the quality of the wt-VP1 

protein. VP1* also reduced the quality of assembled VLPs. The study by (Connors et al. 

2013) showed that, in the presence of VP1*, the assembled VLPs contained a higher 

amount of misformed VLPs. In contrast, in the absence of VP1*, VLPs with a higher 

homogeneity were obtained.  

Although the influences of hydrophobic antigen modules are known, approaches to 

minimise these impacts are still limited to the use of mosaic VLPs (Karpenko et al. 2000, 

Kazaks et al. 2004). Mosaic VLPs are VLPs composed of a modular capsid protein and 

sterically less challenging capsid protein, e.g. wild-type capsid protein (Vogel et al. 2005). 

They can be obtained in vivo in E. coli by performing the co-expression of wild-type and 

modular capsid protein at a determined ratio using two compatible plasmids (Beterams et 

al. 2000) or limited translational read-through (Kazaks et al. 2004, Koletzki et al. 1997). 

Alternatively, they can be obtained from a column-based assembly process, which is 

comprised of three steps: (i) immobilisation of both wild-type and modular capsid proteins 

on the surface of a Ni2+ matrix via affinity interactions, (ii) assembly step, and (iii) and the 

elution of mosaic VLPs from the matrix (Vogel et al. 2005). To some extent, this column-

based process is rather a complicated process. 

The impacts of hydrophobic antigen modules and the limited approach to minimise 

these impacts motivated this chapter to investigate the application of the preferred display 

strategy for a hydrophobic H190 variant (VTDKDQIFLYAQASGR), which is from the 

influenza virus vaccine strain A/Victoria/210/2009 (H3N2/X-187). Modularisation of H190 

from the A/Victoria/210/2009, which contains a hydrophobic stretch, on MuPyV VP1 led to 

two questions: (i) to what extent does the hydrophobic H190 variant affect the properties of 

the modular VLP, and (ii) how can the impacts of the hydrophobic H190 variant be 

minimised?  

Based on the rationale discussed, this chapter reasons that modularisation of H190 

from A/Victoria/210/2009 could potentially result in: (i) increased aggregation, and (ii) 

increased non-specific thrombin proteolysis. This chapter aims to explore two approaches 

simultaneously to minimise the effects of hydrophobic stretch on the properties of modular 

VP1. These approaches are: (i) the addition of charged residues into the antigen module, 

and (ii) the use of a protease with a higher specificity to minimise non-specific proteolysis. 
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In this chapter, investigations to answer these two questions are focused on the 

established buffer conditions that have been previously optimised for wt-VP1. 

In the first approach, charged residues were utilised to minimise the tendency of 

modular VP1 to form soluble aggregates, and consequently obtain modular VP1 

capsomeres. Charged residues have been shown to improve protein solubility (Mosavi and 

Peng 2003). They are commonly used to substitute hydrophobic residues within a 

hydrophobic stretch (Armstrong et al. 2011, Bolognesi et al. 2013, Xu et al. 2013), but 

studies on VLPs have not been reported. However, the direct substitution of hydrophobic 

residues can impact the structure, bioactivity, and stability of proteins, and therefore this 

approach necessitates extensive information regarding the protein structure (Kato et al. 

2007). Alternatively, charged residues can be utilised as a fusion tag at the N- and/or C-

termini of proteins (Jung et al. 2011, Kato et al. 2007). The use of charged residues as a 

fusion tag has not been reported to have any impact on the structure of proteins. 

Nevertheless, both N- and C-termini of MuPyV VP1 are involved in the assembly of VP1 

capsomeres into VLPs (Stehle and Harrison 1997). Thus, the addition of charged residues 

at the N- and/or C-termini of the VP1 protein is not preferable, as it may interfere with the 

assembly process. Besides, the addition of charged residues at the N-terminal of a protein 

has been shown to reduce production of the protein due to interference in the initiation of 

translation at the N-terminus (Lilie et al. 2013). Based on these considerations, in this 

chapter, charged residues were added as ionic elements that flank the two copies of H190 

tandem repeats. 

The flanking ionic elements in this chapter were comprised of glutamic acid 

residues. Glutamic acid residue was selected because in VLP studies, it has been 

previously used for various purposes, such as peptide conjugation and purification. An 

ionic sequence comprising glutamic acids and cysteine (CEEEEEEEE) was explored in a 

study on MuPyV VP1 protein (Stubenrauch et al. 2000). The ionic sequence was used to 

aid in the purification of the viral capsid protein using ion-exchange chromatography. In the 

study, the ionic sequence was genetically fused between Asn294 and Tyr295 (HI loop) of 

the VP1 protein. The study showed that insertion of the ionic sequence did not have any 

impact on the VLP assembly process, which was performed in vitro. The same ionic 

sequence was also used in a study using papillomavirus L1 protein (Viscidi and Bossis 

2014). However, unlike the study by Stubenrauch et al., the study by Viscid and Bossis 

generated VLPs in vivo. In the later study, amino acids Cys347-Glu355 (HI loop) of 

papillomavirus L1 protein were replaced with the ionic sequence CEEEEEEEE. The study 

showed that the replacement did not interfere with the capability of the L1 protein to 
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assemble into VLPs in vivo. The study also showed that a similar result was obtained 

when the replacement was performed at amino acids Cys413-Glu421 (H4 loop), and 

Asn129-Glu137 (DE loop). Additionally, glutamic acid is negatively charged, which is 

preferable to positively charged residues, such as Lysine and Arginine. Positively charged 

residues could increase the binding of DNA and RNA, and hence reduce the purity of the 

VP1 protein. Moreover, the peptide bonds of arginine has been known to be susceptible to 

proteolysis degradation (Lilie et al. 2013).  

In an attempt to reduce non-specific thrombin proteolysis following GST-tag removal, 

this chapter compares the use of thrombin and tobacco etch virus protease (TEVp). A 

study by Connors et al. (Connors et al. 2013) conducted bioinformatic analyses to predict 

thrombin and TEVp cleavage sites in wt-VP1 from murine polyomavirus. Python 

programming was used to search for (i) amino acid sequences recognised by both 

proteases experimentally, and (ii) amino acid sequences that follow the cleavage rules 

outlined by the Expasy Peptide Cutter program (Gasteiger et al. 2003). The study 

predicted that thrombin had five of secondary cleavage sites in the wt-VP1; these sites are 

at Lys4, Arg22, Lys28, Arg58, and Arg305 (Figure 5-2). The size of truncated VP1 

fragments resulting from predicted thrombin proteolysis in these sites were determined 

using the ProtParam tool (Gasteiger et al. 2005) and are shown in Table 5-1. In contrast, 

TEVp was predicted not to have any secondary cleavage site in the wt-VP1 protein. The 

only TEVp cleavage site found was on the engineered cleavage site (Figure 5-2). These 

predictions were then proven experimentally. Experiments performed by Connors et al. 

proved that the removal of the GST tag from the wt-VP1 using thrombin resulted in the 

generation of a smaller secondary cleavage product with a theoretical molecular weight of 

about 37 kDa, designated VP1*. N-terminal protein sequencing identified this fragment as 

a product of thrombin secondary cleavage at Arg58. In contrast, the experiments proved 

that wt-VP1 with a higher homogeneity could be obtained following GST removal using 

TEVp. 
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Figure 5-2. Amino acid sequence alignment of GST-tagged wt-VP1 bearing thrombin or the TEVp cleavage 
sites. The figure reproduced from (Connors et al. 2013). Alignment was performed using ClustalW2 
(http://www.ebi.ac.uk/Tools/msa/clustalw2/). Residues highlighted in yellow refer to the engineered thrombin 
cleavage site, while residues highlighted in green refer to the engineered TEVp cleavage site. Five potential 
thrombin secondary cleavage sites are also shown. Cleavages are predicted to occur after the marked lysine 
(K) or arginine (R). 
 

 

 

              CLUSTAL 2.1 multiple sequence alignment    
Thrombin        MSPILGYWKIKGLVQPTRLLLEYLEEKYEEHLYERDEGDKWRNKKFELGLEFPNLPYYID 60  
TEVp            MSPILGYWKIKGLVQPTRLLLEYLEEKYEEHLYERDEGDKWRNKKFELGLEFPNLPYYID 60                  
                ************************************************************   
 
 
Thrombin        GDVKLTQSMAIIRYIADKHNMLGGCPKERAEISMLEGAVLDIRYGVSRIAYSKDFETLKV 120  
TEVp            GDVKLTQSMAIIRYIADKHNMLGGCPKERAEISMLEGAVLDIRYGVSRIAYSKDFETLKV 120  
                ************************************************************   
 
 
Thrombin        DFLSKLPEMLKMFEDRLCHKTYLNGDHVTHPDFMLYDALDVVLYMDPMCLDAFPKLVCFK 180  
TEVp            DFLSKLPEMLKMFEDRLCHKTYLNGDHVTHPDFMLYDALDVVLYMDPMCLDAFPKLVCFK 180 
                ************************************************************   
                    Thrombin 
                    ___|__ 
Thrombin        KRIEAIPQIDKYLKSSKYIAWPLQGWQATFGGGDHPPKSD--LVPRGSGGMAPKRKSGVS 238  
TEVp            KRIEAIPQIDKYLKSSKYIAWPLQGWQATFGGGDHPPKSDENLYFQGSGGMAPKRKSGVS 240  
                ****************************************      **************   
              Thrombin     Thrombin         Thrombin 
           ___|_____|__                       ___|__ 
Thrombin        KCETKCTKACPRPAPVPKLLIKGGMEVLDLVTGPDSVTEIEAFLNPRMGQPPTPESLTEG 298  
TEVp            KCETKCTKACPRPAPVPKLLIKGGMEVLDLVTGPDSVTEIEAFLNPRMGQPPTPESLTEG 300  
                ************************************************************   
 
 
Thrombin        GQYYGWSRGINLATSDTEDSPGNNTLPTWSMAKLQLPMLNEDLTCDTLQMWEAVSVKTEV 358  
TEVp            GQYYGWSRGINLATSDTEDSPGNNTLPTWSMAKLQLPMLNEDLTCDTLQMWEAVSVKTEV 360  
                ************************************************************   
 
 
Thrombin        VGSGSLLDVHGFNKPTDTVNTKGISTPVEGSQYHVFAVGGEPLDLQGLVTDARTKYKEEG 418  
TEVp            VGSGSLLDVHGFNKPTDTVNTKGISTPVEGSQYHVFAVGGEPLDLQGLVTDARTKYKEEG 420  
                ************************************************************   
 
 
Thrombin        VVTIKTITKKDMVNKDQVLNPISKAKLDKDGMYPVEIWHPDPAKNENTRYFGNYTGGTTT 478  
TEVp            VVTIKTITKKDMVNKDQVLNPISKAKLDKDGMYPVEIWHPDPAKNENTRYFGNYTGGTTT 480  
                ************************************************************   
                Thrombin 
                 ___|__ 
Thrombin        PPVLQFTNTLTTVLLDENGVGPLCKGEGLYLSCVDIMGWRVTRNYDVHHWRGLPRYFKIT 538  
TEVp            PPVLQFTNTLTTVLLDENGVGPLCKGEGLYLSCVDIMGWRVTRNYDVHHWRGLPRYFKIT 540  
                ************************************************************   
 
 
Thrombin        LRKRWVKNPYPMASLISSLFNNMLPQVQGQPMEGENTQVEEVRVYDGTEPVPGDPDMTRY 598  
TEVp            LRKRWVKNPYPMASLISSLFNNMLPQVQGQPMEGENTQVEEVRVYDGTEPVPGDPDMTRY 600  
                ************************************************************   
 
 
Thrombin        VDRFGKTKTVFPGN 612  
TEVp            VDRFGKTKTVFPGN 614  
                ************** 
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Table 5-1. List of predicted secondary thrombin cleavage sites on wt-VP1 and their cleavage products. The 
table reproduced from (Connors et al. 2013). 

 
Cleavage site VP1 fragment Mass (Da) 

Lys4 1-4 445 
    5-384 42,052 

Arg22   1-22 2,408 
  23-384 40,089 

Lys28   1-28 2,999 
  29-384 39,499 

Arg58   1-58 6,109 
  59-384 36,414 

Arg305     1-305 33,412 
306-384 9,111 

 

 

In addition to its high specificity, TEVp is also more cost effective than thrombin for 

both small- and large-scale production. It is also not involved in human physiological and 

biochemical networks (Connors et al. 2013). In contrast, thrombin regulates haemostasis 

and thrombosis in humans, which are important processes in the formation of blood clots. 

Excessive thrombosis and haemostasis can cause death, stroke, and a number of other 

medical complications (Maryanoff 2004). Because the future intended application of the 

study reported in this chapter is as a human vaccine, a trace amount of thrombin in the 

products may be undesirable. Therefore, this chapter explores the use of TEVp, which is a 

proven alternative for thrombin, to reduce the heterogeneity of modular VP1.  

 
5.2 Materials and methods 
5.2.1 Generation of modular constructs  

Plasmid pGEX-VP1 was generously provided by Professor Robert Garcea 

(University of Colorado). Plasmid pGEX-VP1-S1S4 was obtained as described in Chapter 

4 (Section 4.2.1). The DNA sequence of an antigen module containing H190 was codon 

optimised for E. coli. Homologous DNA sequences (21-24 bp) flanking the AfeI site of 

plasmid pGEX-VP1-S1S4 were added to the 5’ and 3‘ ends of DNA sequence encoding 

the antigen module (Figure 4-2). A DNA fragment containing the antigen module and the 

homologous regions were synthesised by assembling a set of oligonucleotides, which 

were designed using DNAWorks (Hoover and Lubkowski 2002) as outlined below:  

 

1. Construct VP1-H190-H190 

The antigen module in construct VP1-H190-H190 consisted of two copies of the H190 

element (STSADQQSLYQNADAY) from A/California/07/2009 (H1N1). Construct VP1-

H190-H190 was generated as previously described in Chapter 3 of this thesis. 
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2. Construct VP1-H3-H190-H190 

The antigen module in construct VP1-H3-H190-H190 consisted of two copies of the 

H190 element (VTDKDQIFLYAQASGR) from influenza A/Victoria/210/2009 (H3N2/X-187). 

A DNA fragment containing the antigen module with homologous regions was generated 

by assembling the following set of oligonucleotides:  

5’ atgggctggagagttacaagaagcgtgaccgacaagga 3’,  

5’ cctgcgcatacaggaaaatttgatccttgtcggtcacgct 3’,  

5’ aaattttcctgtatgcgcaggcgtctggtcgtgttacgga 3’,  

5’ cgtacagaaagatctggtctttgtccgtaacacgaccagacg 3’,  

5’ caaagaccagatctttctgtacgctcaagcgagcggccgt 3’, and  

5’ tctccagtgatggacatcataagcacggccgctcgcttg 3’. 

 

3. Construct VP1-H3-H190-H190-4E  

The antigen module in construct VP1-H3-H190-H190-4E consisted of two copies of 

the H190 element from influenza A/Victoria/210/2009 (H3N2/X-187) flanked by ionic 

elements, which were composed of four consecutive glutamic acid residues: 

EEEEVTDKDQIFLYAQASGRVTDKDQIFLYAQASGREEEE.  

A fragment of DNA containing the antigen module with homologous regions was 

generated by assembling the following set of oligonucleotides: 

5’ggctggagagttacaagaagcgaagaagaggaagttac 3’,  

5’cggaagcctgcgcgtacagaaaaatctgatccttgtcggtaacttcctcttcttcgcttc 3’,  

5’acgcgcaggcttccggtcgtgtgaccgataaagaccagatcttcctgtatgctcaggcgt 3’, and 

5’ccagtgatggacatcataagcctcttcctcctcacgaccagacgcctgagcatacagga 3’. 

 

Each set of oligonucleotides was assembled, amplified, and purified as described in 

Section 4.2.1. The purified DNA fragment was cloned into AfeI-linearised vector pGEX-

VP1-S1S4 using the in vivo homologous recombination (Bubeck et al. 1993, Jones 1994, 

Oliner et al. 1993, Parrish et al. 2004), as described in Section 4.2.1. 

The engineered thrombin cleavage site in pGEX-VP1 was mutated into a TEVp 

cleavage site, as described previously (Connors et al. 2013), yielding the construct TEVP-

VP1. The mutation was performed by the Protein Expression Facility (The University of 

Queensland, Australia) using the QuikChange Lightning Site-directed Mutagenesis kit 

(Agilent Technologies, Inc., Santa Clara, CA, USA), according to the manufacturer’s 

recommendations, with the complementary oligonucleotide 5’ 

tggtggcgaccatcctccaaaatcggatgaaaacttgtacttccaaggatccggaggaatggcc 3’. Similarly, the 
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engineered thrombin cleavage sites in modular constructs VP1-H190-H190, VP1-H3-

H190-H190, and VP1-H3-H190-H190-4E were mutated into TEVp cleavage sites, 

generating the constructs TEVP-VP1-H190-H190, TEVP-VP1-H3-H190-H190, and TEVP-

VP1-H3-H190-H190-4E, respectively.  

DNA sequences of all generated constructs were verified by the Australian Genome 

Research Facility (AGRF, Brisbane, Australia). The constructs used this chapter are listed 

in Table 5-2.  

 
Table 5-2. List of constructs used in Chapter 5. 

 

Constructs Cleavage site Antigen module 

Wild-type VP1 (wt-VP1) 

Thrombin 

No antigen module 

VP1-H190-H190 Two copies of H190 from A/California/07/2009 

VP1-H3-H190-H190 Two copies H190 from A/Victoria/210/2009 

VP1-H3-H190-H190-4E 
Two copies H190 from A/Victoria/210/2009 
flanked with ionic elements consisting of four 
glutamic acids 

TEVP-wt-VP1 

TEVp 

No antigen module 

TEVP-VP1-H190-H190 Two copies H190 from A/California/07/2009 

TEVP-VP1-H3-H190-H190 Two copies H190 from A/Victoria/210/2009 

TEVP-VP1-H3-H190-H190-4E 
Two copies H190 from A/Victoria/210/2009 
flanked with ionic elements consisting of four 
glutamic acids 

 

 

5.2.2 Protein concentration measurements  
Protein concentration was determined using UV absorbance at 280 nm, based on 

the Beer-Lambert Law (Aitken and Learmonth 1996), 

 

! = !!!!!! 
 

where ! is the measured absorbance at 280 nm, ! is the extinction coefficient of protein 

(M-1 cm-1) at 280 nm measured in water, ! is the sample path length (10 mm), and ! is the 

protein concentration (M). Theoretical molecular weight and extinction coefficient of each 

protein was obtained using the ProtParam tool (Gasteiger et al. 2005), and summarised in 

Table 5-3.  
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Table 5-3. List of theoretical molecular weights and extinction coefficients for proteins used in Chapter 5. 
 

Protein 
Theoretical molecular 

weight of monomeric protein 
(g mol-1) 

Extinction coefficient of 
monomeric protein,  

at 25°C in water (M-1 cm-1) 
wt-VP1 42763.6 58057 
TEVP-VP1 
VP1-H190-H190 46251.1 64205 TEVP-VP1-H190-H190 
VP1-H3-H190-H190 46351.7 61225 TEVP-VP1-H3-H190-H190 
VP1-H3-H190-H190-4E 47384.6 61225 TEVP-VP1-H3-H190-H190-4E 
TEVp 28600 30035 

 

 

5.2.3 Expression and purification of modular VP1 proteins 
Expression and purification of modular VP1 protein for each construct was 

conducted as described in Section 4.2.2, unless stated otherwise. Briefly, generated 

plasmids were transformed into E. coli Rosetta (DE3) pLysS competent cells (EMD 

Millipore, Merck KGaA, Darmstadt, Germany). Modular VP1 protein was expressed as a 

GST-tagged protein at 26°C or 12°C. Following overnight incubation, harvested cells were 

lysed by sonication (Branson Ultrasonics Corporation, Connecticut, USA) at output 30 for 4 

cycles of 40 s in 40 ml of Lysis Buffer (40 mM Tris-base, 200 mM NaCl, 1 mM EDTA, 5% 

(v/v) glycerol, 5 mM DTT, pH 8.0). The supernatant was separated from cell debris by 

centrifugation, filtered through 0.45 µm filters (Pall, New York, USA), and then loaded into 

a GST affinity column (GSTrap HP 5 ml, GE Healthcare, UK) at a flow rate of 0.5 ml min-1. 

Bound GST-tagged VP1 protein was eluted with Lysis Buffer containing 10 mM GSH (40 

mM Tris-base, 200 mM NaCl, 1 mM EDTA, 5% (v/v) glycerol, 5 mM DTT, 10 mM GSH, pH 

8.0).  

 GST tag was removed by incubating GST-tagged modular VP1 (about 473 µg) with 

10 U of thrombin or about 48 µg of TEVp (The Protein Expression Facility, The University 

of Queensland, Australia) at room temperature for 2 or 1 h, respectively, in a final volume 

of 250 µl. Digested protein was centrifuged and the supernatant was then loaded into a 

size exclusion chromatography (SEC) column (Superdex 200 10/300 GL, GE Healthcare, 

UK) pre-equilibrated with Lysis Buffer, as described previously (Chuan et al. 2008), to 

separate modular VP1 capsomeres from soluble aggregates and GST. 

 

5.2.4 SDS-PAGE 
Analysis using sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-

PAGE) was conducted as described in section 4.2.4. Each SDS-PAGE gel picture in 
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Figures 5-5, Figure 5-6A, Figure 5-6B, Figure 5-7, Figure 5-9A, Figure 5-9B, and Figure 5-

12 was taken from one gel. Relevant sample lanes were selected and positioned on the 

right hand side of the ladder. 

 

5.3 Results and discussion 
5.3.1 Increased aggregation and heterogeneity of modular VP1 bearing a 

hydrophobic stretch after GST removal  
The effects of a hydrophobic stretch on the properties of a modular VP1 was 

examined by investigating the properties of a modular VP1 displaying two copies of H190 

elements (VTDKDQIFLYAQASGR) from influenza virus A/Victoria/210/2009 (H3N2/X-

187). An antigen module containing two copies of the H190 tandem repeats was 

genetically fused into MuPyV VP1, yielding the modular construct VP1-H3-H190-H190. 

The modular protein VP1-H3-H190-H190 was expressed as a GST-tagged protein at 26°C 

using the protocol in Section 5.2.3, side-by-side with wt-VP1.  

The expression and fractional solubility of GST-tagged VP1-H3-H190-H190 (about 

72.5 kDa) in comparison with GST-tagged wt-VP1 (about 69 kDa) was analysed using 

SDS-PAGE, as shown in Figure 5-3A. The analysis showed that the total fraction for VP1-

H3-H190-H190 was similar to that of wt-VP1. Furthermore, the majority of GST-tagged wt-

VP1 was found in the soluble fraction. However, a smaller proportion of GST-tagged VP1-

H3-H190-H190 was found in the soluble fraction, indicating that the modular VP1 protein 

had lower solubility under the chosen buffer conditions. Thus, the results show that 

modularisation of two copies of hydrophobic H190 did not affect the expression of the 

modular VP1, but lowered the fractional solubility of modular VP1, as might be predicted.  
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Figure 5-3. Properties of modular VP1 bearing two copies of H190 from A/Victoria/210/2009 (construct VP1-
H3-H190-H190). (A) Analysis of expression and solubility of GST-tagged wt-VP1 and VP1-H3-H190-H190 
using SDS-PAGE following an overnight expression at 26°C. Red arrows refer to GST-tagged VP1. Lanes: 
(L) Pre-stained protein marker, (T) Total protein, (S) Soluble protein; (B) SDS-PAGE analysis of GST 
removal using thrombin. Lanes: (1) GST-tagged wt-VP1, (2) Total protein of thrombin-digested GST-tagged 
wt-VP1, (3) Soluble protein of thrombin-digested GST-tagged wt-VP1, (4) GST-tagged VP1-H3-H190-H190, 
(5) Total protein of thrombin-digested GST-tagged VP1-H3-H190-H190, and (6) Soluble protein of thrombin-
digested GST-tagged VP1-H3-H190-H190. The soluble protein after thrombin digestion was then loaded into 
an SEC column. Blue arrows refer to the VP1 protein. Green arrows refer to secondary thrombin cleavage 
products. Orange arrows refer to the GST tag; and (C) Size-exclusion chromatograms of wt-VP1 and VP1-
H3-H190-H190 following treatment with thrombin.  
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Following purification using affinity chromatography, GST-tagged wt-VP1 and VP1-

H3-H190-H190 were incubated with thrombin to remove GST tag from VP1. Figure 5-3B 

shows SDS-PAGE analysis of GST removal using thrombin. For wt-VP1 (lane 1-3), two 

major products were observed after GST removal (Lipin et al. 2008, Middelberg et al. 

2011). These products were: (i) VP1 (bands at about 42 kDa; blue arrow), and (ii) GST tag 

(bands at about 25 kDa; orange arrow). A minor thrombin proteolysis product was 

observed at about 37 kDa (green arrow). The study by Connors et al. identified a similarly-

located 37-kDa band as a degraded VP1 fragment, designated VP1*, which resulted from 

secondary thrombin proteolysis at Arg58 of VP1 (Connors et al. 2013). A similar digestion 

profile was observed for VP1-H3-H190-H190 (lane 4-6). Three cleavage products were 

observed for the modular construct: (i) modular VP1 (bands at about 47 kDa; blue arrow), 

(ii) a GST tag (bands at about 25 kDa; orange arrow), and (iii) a cleavage product, which 

was represented as bands at approximately 39 kDa (green arrow). The molecular weight 

of product (iii) was comparable to the theoretical molecular weight of VP1* in wt-VP1 

added to the theoretical molecular weight of two copies of H190 (about 3.6 kDa). Based on 

this analysis, product (iii) was suggested to result from secondary thrombin proteolysis at 

Arg58, like VP1*. Furthermore, comparison of VP1* and VP1 in lanes 2 and 3 (Figure 5-

3B) showed that, for wt-VP1, the proportion of VP1* was considerably smaller than that of 

VP1. In contrast, for VP1-H3-H190-H190, lanes 5 and 6 in the figure showed that the 

proportion of VP1* was almost equal to that of VP1. This comparison showed that VP1-

H3-H190-H190 had a higher VP1* to VP1 ratio than wt-VP1. In other words, after thrombin 

proteolysis, the quality of VP1-H3-H190-H190 was lower than that of wt-VP1.  

The higher ratio of VP1* to VP1 for VP1-H3-H190-H190 indicated that, the thrombin 

secondary cleavage site at Arg58 of VP1 was more accessible in VP1-H3-H190-H190 than 

in wt-VP1. The different way in which thrombin accessed Arg58 in wt-VP1 and VP1-H3-

H190-H190 may indicate structural alterations between these proteins due to 

modularisation of two copies of hydrophobic H190. A possible structural alteration due to 

modularisation of an antigen module has also been highlighted in Chapter 4 (Section 

4.3.1) of this thesis. The chapter compared the stability of modular VP1 bearing three to 

five copies of H190 in Assembly Buffer 1, which has been optimised for wt-VP1. The 

results in the chapter show that modular VP1 bearing four and five copies of H190 were 

less stable than modular VP1 bearing three copies of H190. Analysis in the chapter 

interpreted this stability difference as a reflection of protein-protein interactions in a 

concentrated salt solution, which is dependent on the specific ion effects. Furthermore, the 

impacts of specific ion effects on a protein are determined by the amino acid sequence of 
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the protein. Modularisation of an antigen module can change the amino acid sequence of 

VP1, which can be attributed to (i) the modularised antigen module itself, as well as (ii) 

structural perturbation of the VP1 protein. Structural perturbation can result in the 

exposure of buried residues on the surface, and consequently changes in the amino acid 

sequence exposed on the surface. 

After incubation with thrombin, digested protein was centrifuged to remove any 

precipitate, and the supernatant was loaded onto an SEC column to separate capsomeres 

from soluble aggregates and GST tags. Figure 5-3C shows size-exclusion chromatograms 

for wt-VP1 and VP1-H3-H190-H190. The chromatogram of wt-VP1 consisted of three 

major peaks: (i) an excluded peak corresponding to soluble aggregates, which eluted at 

about 8.5 ml, (ii) a peak at about 11.5 ml corresponding to capsomeres, and (iii) a peak at 

about 16 ml corresponding to the released GST tag (Middelberg et al. 2011). Differently, 

for VP1-H3-H190-H190, only two peaks were observed. These peaks corresponded to 

soluble aggregates and GST tags. A peak corresponding to capsomeres was not 

observed, indicating that, following removal of the GST tag, VP1-H3-H190-H190 formed 

soluble aggregates under this buffer condition.  

Results in Figure 5-3 show two major problems associated with modular VP1 

bearing two copies of H190 from A/Victoria/210/2009. Firstly, the modular VP1 formed 

soluble aggregates after GST-tag removal in the standard buffer conditions optimised for 

wt-VP1; hence, modular VP1 capsomeres could not be obtained. Secondly, the modular 

VP1 had a lower quality following thrombin proteolysis for removal of the GST-tag from the 

modular VP1. The lower quality was assessed from the increased amount of secondary 

digestion product, designated VP1*. Before conducting investigations on these two 

problems, it is essential to note that the solubility analysis of GST-tagged VP1-H3-H190-

H190 in Figure 5-3A shows that the protein was highly expressed but had a relatively low 

fractional solubility. Structural, functional, and biochemical studies of proteins require 

proteins with good quality (Gopal and Kumar 2013). Therefore, there was a need to 

improve the solubility of GST-tagged VP1-H3-H190-H190. 

The formation of aggregates in vivo is determined by the rate of expression, folding, 

and aggregation. E. coli has a high rate of protein translation and transcription, meaning 

that protein concentration in the cytoplasm could reach 300-400 mg ml-1. In such an 

environment, protein folding is a great challenge, especially for high molecular weight 

proteins, which have slower folding kinetics and often require assistance during folding. 

Failure to achieve native folding in a timely manner can prompt the proteins to aggregate 

before folding (Esposito and Chatterjee 2006, Francis and Page 2010).  
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Various methods have been used to maximise production of soluble recombinant 

protein in E. coli. These methods can be classified into two main streams: (i) strategies 

where proteins of interest are modified, and (ii) strategies where proteins of interest are not 

modified. In the first stream, target proteins are genetically engineered to improve their 

solubility. Such strategies include the use of fusion tags and the generation of soluble 

variants through genomics and proteomics. In contrast, strategies in the second stream 

avoid any modification of target proteins. Strategies classified in this stream include 

reduced expression temperature, the selection of E. coli strains, modification of cultivation 

strategies (Sørensen and Mortensen 2005), the use of chaperones that interact with 

folding intermediates, and the use of foldases to accelerate rate-limiting steps during 

folding (Baneyx 1999).  

This chapter selected a strategy from the second stream, which is reduced 

expression temperature, in order to increase the fractional solubility of GST-tagged VP1-

H3-H190-H190. A decrease in expression temperature can slow down the growth rate of 

bacteria, resulting in a decreased amount of cells. It also reduces the transcription and 

translation rate. Consequently, the concentration of protein in the cytoplasm is decreased, 

and therefore proper folding and protein solubility can be improved (Baneyx and Mujacic 

2004, Esposito and Chatterjee 2006, Francis and Page 2010). Additionally, the use of a 

low expression temperature can also reduce the strength of hydrophobic interactions, 

which can cause the incorrect folding of proteins (Baneyx and Mujacic 2004). 

In an attempt to improve the solubility of GST-tagged VP1-H3-H190-H190, the 

expression temperature for GST-tagged modular VP1 was lowered from 26°C to 12°C. 

The density of harvested cells following expression at both temperatures was measured as 

absorbance at 600 nm (OD600 nm). The measurements were compared, and the results are 

shown in Table 5-4. For both wt-VP1 and VP1-H3-H190-H190, OD600 nm after expression at 

12°C was lower than OD600 nm at 26°C. OD600 nm at 12°C was about one-sixth the OD600 nm 

at 26°C. The decrease in OD600 nm following reduction in the expression temperature 

agreed with results from the aforementioned studies, which stated that the bacterial 

replication rate of E. coli is slower at a lower expression temperature.  

 
Table 5-4. Cell density of harvested cells following expression at 12°C and 26°C. 

 

Constructs OD600 nm, 12°C OD600 nm, 26°C 
wt-VP1 1.09 6.64 

VP1-H3-H190-H190 1.18 6.14 
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Harvested cell pellets were then resuspended in 40 ml of Lysis Buffer containing 

200 mM NaCl for cell lysis using sonication. After sonication, the suspension was clarified 

using centrifugation. Samples were taken before and after centrifugation, and were 

analysed using SDS-PAGE. Figure 5-4A and B show the SDS-PAGE analyses of samples 

at 26°C and 12°C, respectively. Comparison of total fractions for wt-VP1 in Figure 5-4A 

and B showed that the total fraction of wt-VP1 obtained from expression at 26°C was 

higher than that obtained at 12°C. Similar observations were also reported for the 

construct VP1-H3-H190-H190. The lower total fraction obtained from expression at 12°C 

was highly likely to be a result of a lower cell density. As described in Section 5.2.3, the 

harvested cells from 26°C and 12°C were resuspended in the same volume of Lysis 

Buffer. Because expression at 12°C resulted in a lower OD600 nm, the total fractions 

detected on the gels were also smaller. Furthermore, comparison of total fractions of GST-

tagged VP1-H3-H190-H190 and wt-VP1 in Figure 5-4A showed that when expressed at 

26°C, the total fraction of the modular construct was similar to that of wt-VP1. Similarly, the 

comparison in Figure 5-4B showed that when expression was performed at 12°C, both 

GST-tagged wt-VP1 and VP1-H3-H190-H190 had similar total fractions. This observation 

confirmed the finding shown in Figure 5-3A that modularisation of two copies of H190 

bearing a hydrophobic stretch did not affect the expression of the modular VP1.  

 

 
Figure 5-4. SDS-PAGE analysis showing the effect of overnight expression temperature on the solubility of 
GST-tagged wt-VP1 and modular VP1 bearing two copies of H190 from A/Victoria/2010/2009 (construct 
VP1-H3-H190-H190). (A) 26°C, and (B) 16°C. Lanes: (L) Pre-stained protein marker, (T) Total protein, and 
(S) Soluble protein. Red arrows refer to GST-tagged VP1.  
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Figure 5-4 also shows that GST-tagged VP1-H3-H190-H190 exhibited different 

solubility following expression at different temperatures. Figure 5-4A shows that a small 

proportion of GST-tagged VP1-H3-H190-H190 was found in the soluble fraction, indicating 

that the majority of the protein precipitated. In contrast, the majority of GST-tagged wt-VP1 

was found in the soluble fraction. This observation showed that when expression was 

performed at 26°C, the solubility of VP1-H3-H190-H190 was considerably lower than wt-

VP1. In contrast, Figure 5-4B shows that, for both GST-tagged wt-VP1 and VP1-H3-H190-

H190, the majority of the proteins were found in soluble fractions. This observation showed 

that when expression was performed at 12°C, the solubility of GST-tagged VP1-H3-H190-

H190 and wt-VP1 was similar. The results in Figure 5-4 show that reduced expression 

temperature improved the solubility of GST-tagged modular VP1 bearing two copies of 

H190 from A/Victoria/210/2009, confirming the above rationale that lowering the 

temperature during protein expression can increase protein solubility.  

 

5.3.2 The use of charged residues  
5.3.2.1 Effect of flanking ionic elements on the solubility of modular VP1  

Section 4.3.1 of this thesis explained that many protein phenomena, such as protein 

solubility and the formation of aggregates, are driven by protein-protein interactions (Curtis 

et al. 2002a). Thus, this section reasons that the formation of soluble aggregates of VP1-

H3-H190-H190 following GST-tag removal may also reflect protein-protein interactions.  

As explained in Section 4.3.1, in a dilute aqueous salt solution (<0.1 M), protein-

protein interactions can be modelled using DLVO theory (Deryaguin and Landau 1941, 

Verwey and Overbeek 1947), which is comprised of three types of forces: (i) the hard-

sphere potential (Whs), (ii) the attractive van der Waals force (Wdisp), and (iii) the electric 

double-layer repulsion (Welec). In the theory, protein-protein interactions are expressed in 

terms of the free energy between two protein molecules (W22) as a function of the centre-

to-centre separation (r) (Curtis et al. 1998, Curtis et al. 2002b). 

 

!!! ! =!!! ! +!!"#$ ! +!!"!#(!)      (1) 

 

Among these three forces, only the electric double-layer repulsion is affected by the 

ionic strength of salt ions (I) in a given solution. The ionic strength of salt ions is 

determined by both molar concentration of salt ions and the charge number of salt ions. 

The ionic strength of salt ions and the repulsion force are connected by the Debye length, 

which is given by:  
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!! = 2!!!!! !"!!!!         (2) 

 

where !  is the inverse of the Debye length, e is the elementary charge, !! is the 

Avogadro’s number, !!  is the Boltzmann’s constant, !  is temperature, !!  is dielectric 

permittivity of free space, and !! !is the relative dielectric permittivity of water. The Debye 

length is approximately 100 Å for 10-3 M electrolytes. It decreases to 10 Å for 10-1 M 

electrolytes. In a biological environment, such as in a concentrated salt solution, the Debye 

length is reduced to <8 Å (Ninham 1999). 

If the concentration of electrolyte is very low, less than about 100 mM, and salt ions 

therefore behave as point charges, the electric double-layer repulsion as a function of the 

Debye length can be approximated using the Debye-Hückle equation (Verwey and 

Overbeek 1947). This equation is given by: 

 

!!"!# ! = !!!! ! ! !"# !! !!!!
!!!!!! !!!!!/! ! !for!! > (!! + 2!)     (3) 

 

where z is the valence of the protein.  

While the DLVO theory accurately models protein-protein interactions at low salt 

concentrations (10-3 M – 5x10-2 M), it fails to predict protein solubility in concentrated salt 

solutions. This is because in such solution conditions, protein-protein interactions are 

affected by specific ion effects, which are determined by the position of anions and cations 

on the lyotropic (Hofmeister) series (Curtis et al. 2002a). The DLVO theory treats salt ions 

as point charges. Therefore, it cannot differentiate between the size and type of salt ions.  

To be applicable for concentrated salt solutions, non-DLVO forces have been 

defined and added into Eq. 1. These non-DLVO forces are called solvation forces (Wsolv). 

Thus, W22 is given by: 

 

!!!(!) =!!! ! +!!"#$ ! +!!"!# ! +!!"#$ !     (4) 

 

Wsolv is given by: 

 

!!"#$ ! != −!(!)(!!!! + !!!!)!
= 0!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!for!!! < ! < !! + !!
for!! > !!! + !! !!!!!!!!     (5) 
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where A is solvent accessible surface area, !! and !! are the surface fractions of nonpolar 

and polar groups, and !! and !! are the characteristic surface energies of nonpolar and 

polar groups in contact in water (Curtis et al. 1998, Curtis et al. 2002b).  

According to Eq. 5, solvation forces are composed of: (i) hydration effects, and (ii) 

hydrophobic effects. The hydration effects are the forces between hydrophilic surfaces, 

which are created by charged or polar residues; they absorb water. Therefore, they create 

repulsion and increase the distance between two hydrated protein molecules in water. 

Consequently, the free-energy changes required to remove water molecules around the 

polar or charged residues are positive (Curtis et al. 2002b). In contrast, hydrophobic 

effects are created by the attractive interactions between non-polar residues in water 

(Israelachvili and Pashley 1984). They decrease the distance between two non-polar 

protein surfaces in water, and consequently increase the free-energy change required to 

remove water molecules around the non-polar residues (Curtis et al. 2002b).  

Although hydration effects are the most widely studied force, the origin of hydration 

effects is still debatable. Currently, there are two proposed mechanisms. Firstly, the effects 

possibly result from the anomalous polarisation of water near the interfaces. Such 

polarisation consequently alters the dielectric responses of water. This mechanism 

suggests that hydration effects originate from an electrostatic interaction. Although 

computer simulations can prove such an anomalous dielectric response of water, the 

simulations indicate that the observed phenomenon is different from the proposed 

electrostatic theory. Additionally, experimental evidences regarding changes in water 

structure or dielectric responses of water close to the interfaces are not yet available. 

Secondly, the hydration effects are suggested to result from the entropic (osmotic) 

repulsion of thermally excited molecular groups that protrude from the surfaces. However, 

this concept is invalid for charged systems. Additionally, computer simulations predict that, 

in neutral systems, protrusions are insignificant (Liang et al. 2007).  

While many possible mechanisms have been proposed for hydration effects, 

currently, the origin and characteristics of hydrophobic effects are still unknown. Generally 

accepted theories on how the effects have developed are also not yet available. However, 

many believe that the effects are a result of overlapping solvation zones when two 

hydrophobic species are in close proximity (Liang et al. 2007).  

The results in Section 5.3.1 show that modularisation of H190 containing a 

hydrophobic stretch on the MuPyV VP1 resulted in the formation of soluble aggregates 

after GST-tag removal in the standard buffer conditions optimised for wt-VP1. Hence, 

modular VP1 capsomeres could not be obtained. Based on the rationale explained in 
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Section 5.1, this section explored the use of glutamic acids as ionic elements within an 

antigen module. The ionic elements were designed to flank the two copies of H190 tandem 

repeats, and were comprised of four glutamic acid residues (see Section 5.2.1). The 

addition of flanking ionic elements is hypothesised to minimise the formation of soluble 

aggregates VP1-H3-H190-H190 after GST-tag removal by affecting electrostatic double-

layer repulsion, as well as solvation forces. The addition of flanking ionic elements may 

change the surface charge of the protein. Consequently, it may affect protein valence (z) 

as well as the Debye length (!). According to Eq. 2 and 3, changes in z and ! will result in 

changes in the electric double-layer repulsion that are expected to reduce the tendency of 

the modular VP1 to form soluble aggregates. The addition of the ionic elements into the 

protein may also tune the surface fraction of nonpolar and polar groups (!! and !!), which, 

according to Eq. 5, will affect the solvation forces. Changes in solvation forces are also 

expected to reduce the tendency of modular VP1 to form soluble aggregates. 

In this chapter, investigation of the effects of glutamic acids was performed using 

established purification processes, which were developed for wt-VP1. These purification 

processes used Lysis Buffer (see Section 5.2.3 for details), which contains 200 mM NaCl. 

Based on its salt concentration, this buffer is classified as a concentrated salt solution. 

According to Eq. 2 and 3, such buffer conditions can suppress the Debye length and 

electric double-layer repulsion. Thus, the effects of the addition of glutamic acids may not 

be observable. Therefore, in order to observe the effects of glutamic acids, the salt 

concentration in Lysis Buffer was varied using two concentrations: (i) 50 mM NaCl, and (ii) 

200 mM NaCl. Lysis Buffer containing 50 mM NaCl was designated as LS Buffer and Lysis 

Buffer containing 200 mM NaCl was designated HS Buffer. The type of salt ions in the 

buffer was not changed.  

An antigen module comprising two copies of H190 from A/Victoria/210/2009, 

flanked with four glutamic acids, was genetically inserted into MuPyV VP1, yielding the 

modular construct VP1-H3-H190-H190-4E (Section 5.2.1). The effects of the addition of 

glutamic acids were observed by comparing the modular constructs VP1-H3-H190-H190-

4E and VP1-H3-H190-H190. Both modular constructs were expressed as GST-tagged 

VP1 side-by-side, with wt-VP1 as a control (Section 5.2.3). Based on the results in Figure 

5-4, the expression of these three constructs was performed at 12°C. Following overnight 

expression, the cultures were harvested, and cell pellets were then resuspended in 40 ml 

of LS Buffer or HS Buffer for cell lysis using sonication. After sonication, the suspensions 

were clarified using centrifugation. Samples were taken before and after centrifugation, 

and were analysed using SDS-PAGE. 
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Figure 5-5 shows SDS-PAGE analysis of expression and fractional solubility of 

GST-tagged wt-VP1, VP1-H3-H190-H190, and VP1-H3-H190-H190-4E at 200 mM and 50 

mM NaCl. The comparison of total fractions for these three constructs showed that VP1-

H3-H190-H190-4E had a similar total fraction to wt-VP1 and VP1-H3-H190-H190. This 

result indicates that the expression of VP1-H3-H190-H190-4E was similar to that of wt-

VP1 and VP1-H3-H190-H190. This result suggests that the use of glutamic acids did not 

affect the expression of modular VP1. Alternatively, it was possible that the use of glutamic 

acid affected the expression of modular VP1 but that the effects were only noticeable 

when more than four glutamic acids were used. No reports have been found on studies of 

modular VLPs, in which glutamic acid was used for solubility improvement. Therefore, the 

correlation between the number of glutamic acid residues present and the expression of 

the modular VP1 observed in this study cannot be compared with other studies. The most 

similar report available for comparison is the study by (Jung et al. 2011). In that study, 

arginine was used to improve the solubility of CalB protein. Arginine was used as a fusion 

tag in the C-terminal of the CalB protein. In contrast to the findings in this chapter, the 

study by Jung et al. showed that the number of arginine residues present affected the 

expression level of the protein. CalB protein bearing zero and two arginine residues had 

similar total protein levels. However, increasing the number of arginines to six and ten 

resulted in a lower total protein. A further decrease in the total protein of CalB was 

observed when the number of arginine residues was increased to eleven. The difference 

between the findings in this chapter and those reported by Jung et al. could be protein-

specific. The difference was also possible because this chapter used different charged 

residues in a different format.  
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Figure 5-5. SDS-PAGE analysis showing the effects of the addition of glutamic acids on the expression and 
solubility of GST-tagged VP1. (A) wt-VP1, (B) Modular VP1 bearing two copies of H190 from 
A/Victoria/210/2009 without flanking glutamic acids (construct VP1-H3-H190-H190), and (C) Modular VP1 
bearing two copies of H190 from A/Victoria/210/2009 with flanking glutamic acids (construct VP1-H3-H190-
H190-4E). Lanes: (L) Pre-stained protein marker, (T) Total fraction, (S) Soluble fraction, and (F) Flow-
through fraction from GST column during purification of GST-tagged VP1. Red arrows refer to the GST-
tagged VP1 proteins.  

 

 

Comparison of soluble fractions for wt-VP1 (Figure 5-5A) showed that the soluble 
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5-5B shows that GST-tagged VP1-H3-H190-H190 had a similar soluble fraction at both 
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Figure 5-3, confirming that modularisation of H190 bearing hydrophobic stretch resulted in 

the reduced solubility of GST-tagged modular VP1.  

In contrast, Figure 5-5C shows that the soluble fraction for VP1-H3-H190-H190-4E 

at 200 mM NaCl was slightly smaller than the soluble fraction at 50 mM NaCl. This 

observation suggested that GST-tagged VP1-H3-H190-H190-4E was less soluble at 200 

mM NaCl than at 50 mM NaCl. Because changes in the salt concentration did not affect 

the solubility of VP1-H3-H190-H190, the increase in the solubility of VP1-H3-H190-H190-

4E with a decrease in the salt concentration was suggested as an effect of the addition of 

the flanking ionic elements. This suggestion was supported by comparing soluble fractions 

of VP1-H3-H190-H190 and VP1-H3-H190-H190-4E at each salt concentration. The 

comparison showed that, at 200 mM NaCl, the soluble fractions of modular VP1 with and 

without flanking were similar. In contrast, at 50 mM NaCl, VP1-H3-H190-H190-4E had a 

larger soluble fraction than VP1-H3-H190-H190. These observations confirmed that 

modular VP1 bearing the flanking ionic elements, VP1-H3-H190-H190-4E, had an 

improved solubility. However, the improvement was more visible at 50 mM NaCl than 200 

mM NaCl, implying that the effects of glutamic acids were dependent on the salts 

concentration.  

The higher solubility of VP1-H3-H190-H190-4E at 50 mM NaCl than at 200 mM 

NaCl may reflect how ionic strength affects the electrostatic double-layer repulsion, as 

explained in the beginning of this section. As glutamic acid is a charged residue, the 

addition of this residue into modular VP1 bearing two copies of H190 tandem repeats may 

affect (i) the Debye length, as well as (ii) the valence of modular VP1 proteins. These two 

variables determine the strength of electrostatic double-layer repulsion (Eq. 2). At a high 

concentration of salt, such as 200 mM NaCl, the Debye length was supressed, and 

consequently, the electrostatic double-layer interactions were reduced. At such conditions, 

the effects of the addition of glutamic acids could not be observed. In other words, the 

solubility of VP1-H3-H190-H190-4E and VP1-H3-H190-H190 appeared to be similar. In 

contrast, at a lower salt concentration, in this case 50 mM NaCl, the Debye length was 

increased. Consequently, the electrostatic double-layer interactions were increased, and 

the effects of the addition of glutamic acids could be observed.  

The addition of glutamic acid into modular VP1 bearing two copies of H190 tandem 

repeats may also affect the proportion of hydrophobic and hydrophilic surface fractions. 

This variable determines the strength of salvation forces (Eq. 5), which may start to play a 

role in protein-protein interactions in a concentrated salt solution as explained at the 

beginning of this section. However, the findings in Figure 5-5 show that the solubility of 
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GST-tagged VP1-H3-H190-H190 and VP1-H3-H190-H190-4E at a concentration of 200 

mM NaCl was similar, indicating that the impact of solvation forces on the solubility of 

GST-tagged modular VP1 proteins was not observed. This was possibly because the 

number of added glutamic acids was not sufficient to modify the proportion of the 

hydrophobic and hydrophilic surface fractions in GST-tagged modular VP1. 

GST-tagged wt-VP1, VP1-H3-H190-H190, and VP1-H3-H190-H190-4E were 

purified using GST-affinity chromatography at respective salt concentrations. Fractions 

from the flow-through of the GST column were then analysed using SDS-PAGE, as shown 

in lane F of Figure 5-5. The analysis showed that, for all constructs, flow-through at 50 mM 

NaCl contained more GST-tagged VP1 than flow-through at 200 mM NaCl. This result 

indicates that when affinity purification was performed at 50 mM NaCl, GST-tagged VP1 

bound more weakly to the ligand. Furthermore, the SDS-PAGE analysis also showed that 

the addition of glutamic acids did not affect the binding of the GST-tagged VP1-H3-H190-

H190-4E to the ligand, as expected. 

 

5.3.2.2 Effect of flanking ionic elements on the ratio of VP1* to VP1 after GST 
removal 

Purified GST-tagged modular VP1 was then incubated with thrombin at respective 

salt concentrations to remove the GST-tag from the modular VP1. SDS-PAGE analyses of 

GST removal for wt-VP1, VP1-H3-H190-H190, and VP1-H3-H190-H190-4E at 200 and 50 

mM NaCl are shown in Figure 5-6A and B, respectively. The results were analysed for two 

aspects, i.e. (i) GST-removal efficiency, which is assessed as the proportion of undigested 

GST-tagged modular VP1, and (ii) the ratio of VP1* to VP1 after GST removal.  

Firstly, analysis was conducted to assess GST-removal efficiency. Lanes 2 and 3 of 

Figure 5-6A show that, after thrombin treatment, a very small amount of GST-tagged wt-

VP1 (red arrow; about 69 kDa) was detected in the gel. A similar observation is shown in 

lanes 2 and 3 of Figure 5-6B. These observations confirmed that GST was almost 

completely removed from wt-VP1 at both 50 mM NaCl and 200 mM NaCl, indicating that 

GST-removal efficiency for wt-VP1 was independent of the salt concentration. These 

observations further suggested that the activity of thrombin at both salt concentrations was 

similar.  
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Figure 5-6. SDS-PAGE analysis showing the effect of the addition of glutamic acids on the ratio of VP1* to 
VP1 following GST removal using thrombin for GST-tagged wt-VP1, modular VP1 bearing two copies of 
H190 from A/Victoria/210/2009 without flanking ionic elements (construct VP1-H3-H190-H190), and modular 
VP1 bearing two copies of H190 from A/Victoria/210/2009 with flanking ionic elements (construct VP1-H3-
H190-H190-4E) at different salt concentrations. (A) 200 mM NaCl, and (B) 50 mM NaCl. Lanes: (L) Pre-
stained protein marker, (1) GST-tagged wt-VP1, (2) Total protein of thrombin-digested GST-tagged wt-VP1, 
(3) Soluble protein of thrombin-digested GST-tagged wt-VP1, (4) GST-tagged VP1-H3-H190-H190, (5) Total 
protein of thrombin-digested GST-tagged VP1-H3-H190-H190, (6) Soluble protein of thrombin-digested 
GST-tagged VP1-H3-H190-H190, (7) GST-tagged VP1-H3-H190-H19-4E, (8) Total protein of thrombin-
digested GST-tagged VP1-H3-H190-H190-4E, (9) Soluble protein of thrombin-digested GST-tagged VP1-
H3-H190-H190-4E. Red arrows refer to GST-tagged VP1. Blue arrows refer to VP1. Green arrows refer to 
the secondary thrombin cleavage product. Orange arrows refer to GST. 
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In contrast to wt-VP1, observations of GST removal for VP1-H3-H190-H190 and 

VP1-H3-H190-H190-4E suggested that, for these modular constructs, GST removal by 

thrombin was lower at reduced salt concentrations. Comparisons between lanes 5 and 6 of 

Figure 5-6A and B show that, for VP1-H3-H190-H190, GST removal was more efficient at 

200 mM NaCl than at 50 mM NaCl. At 200 mM NaCl, bands corresponding to GST-tagged 

VP1-H3-H190-H190 were not detected in the gel, indicating that GST was removed 

completely. In contrast, at 50 mM NaCl, a small fraction of GST-tagged VP1-H3-H190-

H190 (red arrow) was detected in the gel, indicating that GST removal was not completed 

at such salt concentrations. Likewise, lanes 8 and 9 of Figure 5-6A and B show that GST 

removal for VP1-H3-H190-H190-4E was more efficient at 200 mM NaCl than at 50 mM 

NaCl. At 200 mM NaCl, bands corresponding to GST-tagged VP1-H3-H190-H190-4E 

(about 73.5 kDa) were not detected in the gel, while a small fraction of GST-tagged VP1-

H3-H190-H190-4E (red arrow) was detected in the gel for GST removal at 50 mM NaCl. 

These results indicate that GST removal efficiency for both modular constructs were lower 

at 50 mM NaCl than at 200 mM NaCl. The preceding paragraph has established that the 

analysis of GST removal for wt-VP1 suggested that changes in salt concentration did not 

affect thrombin activity. Therefore, the effect of salt concentration on the GST removal 

efficiency observed for both modular constructs was suggested to be due to the presence 

of hydrophobic stretches. It is possible that at different salt concentrations, the presence of 

hydrophobic stretches within the GST-tagged modular VP1 proteins affected the structures 

of the proteins, and consequently affected the accessibility of the engineered thrombin 

cleavage site. Furthermore, the comparison of GST removal for VP1-H3-H190-H190-4E 

and VP1-H3-H190-H190 at 200 mM NaCl showed that there was no noticeable difference 

in the efficiency of thrombin for both modular constructs. A similar observation was also 

noted for both modular constructs at 50 mM NaCl. This observation suggested that the 

added flanking ionic elements did not have any significant effect on GST-removal 

efficiency, which is expected because the glutamic acids were inserted at the AfeI 

recognition site close to position 293 of VP1 (see Section 4.2.1), while the thrombin 

cleavage site was in the N-terminal of VP1.  

Secondly, analysis was performed to assess the ratio of VP1* to VP1 after GST 

removal. The digestion profiles of wt-VP1 (lanes 2 and 3) and VP1-H3-H190-H190 (lanes 

5 and 6) in Figure 5-6A show that three products were observed after thrombin treatment 

at 200 mM: (i) VP1 protein (blue arrows), (ii) VP1* (green arrows), and (iii) GST tag 

(orange arrows). The ratio of VP1* to VP1 for wt-VP1 was lower than the ratio for VP1-H3-

H190-H190. This result is similar to the digestion profiles of both constructs reported in 



 128 

Section 5.3.1 (Figure 5-3B), although wt-VP1 and VP1-H3-H190-H190 in this section were 

expressed at different temperatures to those in Section 5.3.1. In this section, wt-VP1 and 

VP1-H3-H190-H190 were expressed at 12°C, and the modular GST-tagged VP1 exhibited 

a similar solubility to GST-tagged wt-VP1 at 200 mM NaCl. In contrast, in Section 5.3.1, 

wt-VP1 and VP1-H3-H190-H190 were expressed at 26°C, and the modular GST-tagged 

VP1 exhibited a considerably lower solubility than GST-tagged wt-VP1 at 200 mM NaCl. 

The similarities of digestion profiles between VP1-H3-H190-H190 in this section and that 

reported in Section 5.3.1 therefore suggested that an improvement in the solubility of GST-

tagged VP1-H3-H190-H190 did not affect the ratio of VP1* to VP1 for VP1-H3-H190-H190 

after GST removal using thrombin. Furthermore, the digestion profiles of wt-VP1 and VP1-

H3-H190-H190 at 200 mM shown in Figure 5-6A were similar to those at 50 mM NaCl, as 

shown in the corresponding lanes of Figure 5-6B. After digestion at the lower salt 

concentration, the three major products were observed, and the ratio of VP1* to VP1 for 

wt-VP1 was also lower than the ratio for VP1-H3-H190-H190. This observation suggested 

that a decrease in the salt concentration does not result in changes in the ratio of VP1* to 

VP1 for either construct.  

Similar to wt-VP1 and VP1-H3-H190-H190, GST removal of GST-tagged VP1-H3-

H190-H190-4E at 50 mM and 200 mM NaCl (Figure 5-6, lanes 8 and 9) resulted in the 

three products: (i) VP1 protein (blue arrows), (ii) VP1* (green arrows), and (iii) GST tag 

(orange arrows). However, unlike the two aforementioned constructs, the digestion profiles 

of VP1-H3-H190-H190-4E were affected by salt concentration. The ratio of VP1* to VP1 at 

200 mM NaCl was slightly higher than the ratio at 50 mM NaCl. Furthermore, the SDS-

PAGE analysis in Figure 5-6A showed that at 200 mM NaCl, the ratio of VP1* to VP1 for 

VP1-H3-H190-H190-4E (lanes 8 and 9) was lower compared to VP1-H3-H190-H190 

(lanes 5 and 6). Similarly, Figure 5-6B showed that VP1-H3-H190-H190-4E had a lower 

VP1* to VP1 ratio than VP1-H3-H190-H190 at 50 mM NaCl. These findings indicated that 

the addition of glutamic acid residues could reduce the ratio of VP1* to VP1, and 

consequently improve the quality of modular VP1 bearing two copies of H190 after GST 

removal. Although the effects were not considerable, they were more noticeable at the 

lower salt concentration than at the higher one. This dependency of VP1* to VP1 ratio on 

salt concentration is in an agreement with the observation reported in Section 5.3.2.1, that 

the solubility of GST-tagged VP1-H3-H190-H190-4E was higher than the solubility of GST-

tagged VP1-H3-H190-H190, and the solubility improvement was more noticeable at 50 

mM NaCl than at 200 mM NaCl. In the section, the solubility improvement and its 

dependency on salt concentration has been linked to how the addition of glutamic acid 
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may affect the electric double-layer repulsion included in DLVO theory. Therefore, it was 

appealing to conclude that the lower VP1* to VP1 ratio observed for VP1-H3-H190-H190-

4E correlated with improved solubility. Nevertheless, it has been observed that, for VP1-

H3-H190-H190, improvements in the solubility of GST-tagged VP1-H3-H190-H190 did not 

increase the quality of the modular VP1 after GST removal. Therefore, the increase in the 

quality of VP1-H3-H190-H190-4E after GST removal may not be correlated with the 

solubility improvement of GST-tagged VP1-H3-H190-H190-4E.  

 

5.3.2.3 Effect of flanking ionic elements on the aggregation of modular VP1 and 
isolation of modular VP1 capsomeres  

After incubation with thrombin, digested proteins were clarified using centrifugation 

to remove precipitates. The supernatants were then loaded into SEC to separate 

capsomeres from aggregates and GST tags. Figure 5-7 shows the size-exclusion 

chromatograms of wt-VP1, VP1-H3-H190-H190, and VP1-H3-H190-H190-4E at 200 and 

50 mM NaCl. The figure also shows SDS-PAGE analysis of peaks observed in the 

chromatograms. 

Figure 5-7A shows the SEC chromatograms for wt-VP1 at 200 mM and 50 mM 

NaCl. At 200 mM NaCl, three typical peaks were observed: (i) an excluded peak 

corresponding to soluble aggregates (A1), eluted at about 8.5 ml, (ii) a peak at about 11.5 

ml corresponding to capsomeres (A11), and (iii) a peak at about 16 ml corresponding to 

the released GST tag (Middelberg et al. 2011). This result is as reported in Section 5.3.1, 

although wt-VP1 in this section was expressed at 12°C and wt-VP1 in Section 5.3.1 was 

expressed 26°C. In contrast, at 50 mM NaCl, only two peaks were observed. These peaks 

were: (i) peak A1, containing soluble aggregates, and (ii) a peak containing the GST tag. 

At this lower salt concentration, a distinct peak containing capsomeres was not observed. 

Furthermore, peak A1 at 50 mM NaCl was bigger than the peak at 200 mM NaCl. 

Fractions collected from peaks A1 and A11 were then analysed using SDS-PAGE. The 

analysis showed that peak A11 majorly contained wt-VP1 (blue arrow), as expected. The 

analysis also showed that peak A1 at 200 mM NaCl was composed of equal amounts of 

VP1 (blue arrow) and VP1* (green arrow). Meanwhile, the peak at 50 mM NaCl was 

predominantly composed of VP1. This result suggests that, at 200 mM NaCl, the formation 

of soluble aggregates of wt-VP1 may be promoted by the ratio of VP1 to VP1*, while at 50 

mM NaCl, soluble aggregates of wt-VP1 may be due to instability of the VP1 protein at low 

salt concentrations. 
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Figure 5-7. Analysis using size-exclusion chromatography and SDS-PAGE showing the effects of the 
addition of glutamic acids on the aggregation of modular VP1 bearing H190 from A/Victoria/2010/2009 and 
feasibility to isolate the modular VP1 as capsomeres at 200 mM and 50 mM NaCl. (A) wt-VP1, (B) Modular 
VP1 bearing two copies of H190 from A/Victoria/210/2009 without flanking ionic elements, and (C) Modular 
VP1 bearing two copies of H190 from A/Victoria/210/2009 with flanking ionic elements. Red arrows refer to 
GST-tagged VP1 protein. Blue arrows refer to VP1 protein. Green arrows refer to the secondary thrombin 
cleavage product. Orange arrows refer to GST. 
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While three peaks were observed for wt-VP1 at 200 mM, the chromatograms for 

VP1-H3-H190-H190 in Figure 5-7B shows that, at the same salt concentration, two major 

peaks were observed. These peaks corresponded to soluble aggregates (A1) and GST. 

Peaks corresponding to capsomeres were not observed. Analysis of a fraction collected 

from peak A1 using SDS-PAGE revealed that the soluble aggregates were composed of 

VP1 (blue arrow) and VP1* (green arrow) at about 1:1 ratio, similar to peak A1 of wt-VP1 

at 200 mM NaCl. Furthermore, this chromatogram for VP1-H3-H190-H190 at 200 mM 

NaCl was similar to that reported in Section 5.3.1. However, in this section, VP1-H3-H190-

H190 was expressed at 12°C, and the modular GST-tagged VP1 exhibited a similar 

solubility to GST-tagged wt-VP1 at 200 mM NaCl. In contrast, in Section 5.3.1, VP1-H3-

H190-H190 was expressed at 26°C, and the modular GST-tagged VP1 exhibited a 

considerably lower solubility than GST-tagged wt-VP1 at 200 mM NaCl. The similarities of 

the chromatograms for VP1-H3-H190-H190 in this section and that reported in Section 

5.3.1 therefore suggested that an improvement in the solubility of GST-tagged VP1-H3-

H190-H190 did not reduce the propensity of VP1-H3-H190-H190 to form soluble 

aggregates. The chromatogram for VP1-H3-H190-H190 at 200 mM NaCl was also similar 

to that at 50 mM NaCl. The chromatogram for 50 mM showed two main peaks 

corresponding to soluble aggregates (A1) and GST. SDS-PAGE analysis of the A1 peak 

showed that the peak was composed of GST-tagged VP1, VP1, VP1*, and GST tag. 

Furthermore, two negligible peaks were observed at about 12.5 ml and 14 ml. 

Unfortunately, because these peaks had very low absorbance reading, they could not be 

analysed in SDS-PAGE, and therefore the content of these peaks remains unknown. 

Thus, the results in Figure 5-7B indicate that regardless of the variation in salt 

concentrations, modular protein VP1-H3-H190-H190 was prone to aggregation, which 

consequently prevented the isolation of modular VP1 capsomeres. This finding further 

suggested that reducing the salt concentration alone was not sufficient to reduce the 

aggregation of modular VP1 and increase the feasibility of obtaining modular VP1 

capsomeres. 

Similar to VP1-H3-H190-H190, the chromatograms for construct VP1-H3-H190-

H190-4E at both salt concentrations appear to be different from wt-VP1, as shown in 

Figure 5-7C. At 200 mM NaCl, three peaks were observed: (i) peak A1, corresponding to 

soluble aggregates, (ii) peak B5, which was eluted at about 14 ml, and (iii) a peak 

corresponding to the GST tag. Fractions from these peaks were then analysed using SDS-

PAGE. The analysis showed that peak A1 was composed of VP1 (blue arrow) and VP1* 

(green arrow) at an equal ratio, similar to the observation in VP1-H3-H190-H190. 
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Furthermore, the analysis showed that peak B5 contained VP1-H3-H190-H190-4E (blue 

arrow) with a negligible proportion of GST-tagged VP1-H3-H190-H190-4E (red arrow), 

indicating that the peak corresponded to the elution of capsomeres. Comparisons between 

the chromatogram of VP1-H3-H190-H190-4E and VP1-H3-H190-H190 at 200 mM showed 

that the size of peaks corresponding to the GST tag in both chromatograms were similar. 

However, peak A1 for VP1-H3-H190-H190-4E was smaller than the peak for VP1-H3-

H190-H190. This comparison showed that although the amount GST-tagged VP1-H3-

H190-H190 and VP1-H3-H190-H190-4E was similar, the amount of soluble aggregates in 

construct VP1-H3-H190-H190-4E was lower. Furthermore, the chromatogram of VP1-H3-

H190-H190-4E shows that peak B5 was eluted considerably later than the wt-VP1 

capsomeres (peak A9 in Figure 5-7A), which were eluted at about 11.5 ml. In SEC, 

proteins are separated based on their hydrodynamic radius. Thus, the shifted elution time 

may indicate that the hydrodynamic radius of VP1-H3-H190-H190-4E capsomeres was 

smaller than wt-VP1 capsomeres. In Section 5.3.1, the results in Figure 5-3B showed that 

the digestion of GST-tagged wt-VP1 and VP1-H3-H190-H190 resulted in a different ratio of 

VP1* to VP1. This finding suggested that thrombin had different access to its secondary 

cleavage site in both constructs, possibly due to structural alterations, which resulted from 

the modularisation of two copies of H190 bearing a hydrophobic stretch. It is possible that 

such structural alterations not only affected how thrombin accessed its secondary 

cleavage site, but also modified the tertiary structure, and consequently the hydrodynamic 

radius of VP1-H3-H190-H190 capsomeres. Alternatively, the later elution time for VP1-H3-

H190-H190-4E may have resulted from non-specific interactions between capsomeres and 

the stationary phase of the SEC column. Such non-specific interactions may also be a 

result of the aforementioned structural alterations. Unfortunately, data in this chapter were 

not sufficient to prove the hypothesis regarding structural alterations. 

Figure 5-7C also shows that the chromatogram for construct VP1-H3-H190-H190-

4E at 200 mM NaCl was similar to that at the lower salt concentration of 50 mM NaCl. 

While the same amount of GST-tagged VP1-H3-H190-H190-4E was digested at each salt 

concentration, the three peaks had higher absorbance readings at 50 mM NaCl than those 

at 200 mM NaCl. In addition, the chromatogram at 50 mM NaCl showed that a fourth peak 

was observed at about 12.5 ml (B11). SDS-PAGE analysis of a fraction from this peak 

showed that the negligible peak contained undigested GST-tagged modular protein. This 

observation probably resulted from the addition of the flanking ionic elements. Repulsion 

forces from the glutamic acids may become stronger at lower salt concentrations, and the 

stronger repulsion force may consequently minimise non-specific interactions between 
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proteins with ligands on the column. The way in which charged residues affect the 

separation of proteins in SEC has not been previously reported. The most similar study for 

a comparison in the study by Ejima et al. (Ejima et al. 2005). In their study, Ejima et al. 

used arginine as a buffer additive, which was different from the use of glutamic acid 

residues as flanking ionic elements in this chapter. They showed that the addition of 

arginine to a concentrated salt solution could suppress the hydrophobic binding of proteins 

in the stationary phase of the column, which was otherwise enhanced at a high salt 

concentration. As a result, the separation of the proteins could be improved and a larger 

amount of proteins could be recovered.  

Figure 5-7 shows that modular VP1 capsomeres were observed for VP1-H3-H190-

H190-4E, but not for VP1-H3-H190-H190 at both salt concentrations. The fact that 

modular VP1 capsomeres were not observed for VP1-H3-H190-H190 indicated that 

reducing the expression temperature alone, or changing the salt concentration alone, was 

not sufficient to minimise the formation of soluble aggregates of the modular VP1 and 

obtain modular VP1 capsomeres. In contrast, by using glutamic acid as flanking ionic 

elements, the formation of soluble aggregates was reduced. Furthermore, the flanking 

ionic elements allowed for the isolation of modular VP1 capsomeres bearing H190 from 

A/Victoria/210/2009. The modular VP1 capsomeres could be obtained at both 50 mM NaCl 

and 200 mM NaCl, suggesting that modular VP1 capsomeres could be obtained by using 

flanking ionic elements, without the need to change the salt concentration of the buffer. 

These results show that the use of glutamic acid as a flanking ionic element enabled the 

modification of forces between modular VP1, which otherwise may not be achieved by 

changing the salt concentration in both buffers, or reducing the expression temperature. 

As explained in Section 5.3.2.1, the addition of glutamic acids may affect (i) the 

electrostatic double-layer repulsion, and (ii) the solvation forces. Results in this section 

may indicate the role of the electrostatic double-layer repulsion from the added glutamic 

acids. At a lower salt concentration, such as 50 mM NaCl, the electrostatic double-layer 

repulsion dominates protein-protein interactions. Therefore, it is possible that the repulsion 

created by glutamic acid residues can overcome the aggregation of modular VP1; thus, 

modular VP1 capsomeres could be isolated. However, in concentrated salt solutions, such 

as at 200 mM NaCl, the electrostatic double-layer repulsion is supressed. Therefore, the 

fact that modular VP1 capsomeres could still be isolated at 200 mM NaCl may suggest 

that other forces were involved in the protein-protein interactions. The forces were likely to 

be solvation forces, as discussed in Section 5.3.2.1. Solvation forces are composed of 

hydration and hydrophobic effects. The addition of glutamic acid as a flanking ionic 
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element may modify the proportion of the surface fraction of nonpolar and polar groups (!! 

and !!) in VP1-H3-H190-H190-4E (Eq. 5), and consequently modify the solvation forces.  

In summary, the results in Section 5.3.2 indicate three important impacts of the use 

of flanking ionic elements on the modular VP1 bearing two copies of H190 from 

A/Victoria/210/2009 in a buffer condition that has been optimised for wt-VP1. These 

impacts were: 

1. The solubility of the GST-tagged modular VP1 bearing the flanking elements was 

improved, and the improvement was greater at lower salt concentrations.  

2. The flanking ionic elements slightly reduced the ratio of VP1* to VP1 after GST 

removal using thrombin.  

3. The modular VP1 bearing the flanking ionic elements had a lowered tendency to 

aggregate, and consequently the modular VP1 could be obtained as capsomeres.  
 

5.3.3 Mutation from a thrombin to TEVp cleavage site 
5.3.3.1 Effect of mutation from a thrombin to TEVp cleavage site on the expression 

and solubility of GST-tagged modular VP1 
Section 5.3.1 above has shown that VP1-H3-H190-H190 had a lower quality than 

wt-VP1 after enzymatic GST removal using thrombin. The lower quality of the modular 

VP1 was assigned based on the higher proportion of secondary thrombin digestion 

product VP1* to VP1. The VP1* fragment of VP1-H3-H190-H190 has a theoretical 

molecular weight of about 39 kDa. Analysis in Section 5.3.1 suggested that the VP1* of 

VP1-H3-H190-H190 resulted from the same cause as VP1* of wt-VP1, which was the non-

specific thrombin proteolysis at Arg58 of VP1. Connors et al. (Connors et al. 2013) showed 

that the VP1* fragment could be eliminated by replacing thrombin with tobacco etch virus 

protease (TEVp). The removal of VP1* was important because it has been shown to 

promote the formation of mis-formed VLPs. In the absence of this fragment, VLPs with a 

higher homogeneity could be obtained. Therefore, in order to improve the quality of 

modular VP1 bearing two copies of hydrophobic H190 following GST removal, this chapter 

investigated the use of thrombin in comparison to TEVp.  

The thrombin cleavage site in constructs wt-VP1, VP1-H3-H190-H190, and VP1-

H3-H190-H190-4E was mutated into a TEVp cleavage site (Section 5.2.1), yielding 

constructs TEVP-wt-VP1, TEVP-VP1-H3-H190-H190, and TEVP-VP1-H3-H190-H190-4E. 

Construct VP1-H190-H190 (reported in Chapters 3 and 4) was also modified, yielding 

construct TEVP-VP1-H190-H190, which was used for comparison. The antigen module in 

construct VP1-H190-H190 bears two copies of H190 from A/California/07/2009 (H1N1). 
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The modular constructs bearing a TEVp cleavage site were then expressed and purified 

side-by-side with those bearing a thrombin cleavage site. Based on the results shown in 

Figure 5-4, the overnight protein expression was conducted at 12°C. Furthermore, based 

on the findings in Section 5.3.2.3, purification of modular VP1 was performed using LS 

buffer, which was Lysis buffer containing 200 mM NaCl. 

Figure 5-8 compares SDS-PAGE analysis for the expression and solubility of GST-

tagged modular VP1 bearing thrombin or TEVp cleavage sites. The expression and 

solubility of thrombin-modular constructs were consistent with previous results outlined in 

Section 5.3.2. Figure 5-8A shows that as reported in Section 5.3.2, the solubility of GST-

tagged VP1-H3-H190-H190 and VP1-H3-H190-H190-4E in the buffer optimised for wt-VP1 

was lower than that of GST-tagged wt-VP1. In contrast, the proportion of soluble to total 

fraction of VP1-H190-H190 was similar to wt-VP1, suggesting that GST-tagged VP1-H190-

H190 had a higher solubility than VP1-H3-H190-H190 and VP1-H3-H190-H190-4E.  

 

 



 136 

  
 

  
Figure 5-8. SDS-PAGE analysis showing the effect of mutation from a thrombin to TEVp cleavage site on the 
solubility of GST-tagged VP1 proteins. (A) wt-VP1, modular VP1 bearing two copies of H190 from 
A/Victoria/210/2009 without flanking glutamic acids (construct VP1-H3-H190-H190), modular VP1 bearing 
two copies of H190 from A/Victoria/210/2009 with flanking glutamic acids (construct VP1-H3-H190-H190-
4E), and modular VP1 bearing two copies of H190 from A/California/07/2009 (construct VP1-H190-H190). 
Each protein bears a thrombin cleavage site, and (B) Same as (A), but each protein bears a TEVp cleavage 
site. Lanes: (L) Pre-stained protein marker, (T) Total protein, (S) Soluble protein, and (F) Flow-through 
fraction from the GST column during purification of GST-tagged VP1. Red arrows represent GST-tagged 
VP1.  

 

 

Similarly, Figure 5-8B shows that the proportion of GST-tagged TEVP-VP1-H3-

H190-H190 and TEVP-VP1-H3-H190-H190-4E found in soluble fractions was smaller than 

the proportion of TEVP-wt-VP1, confirming that both GST-tagged modular VP1 had a 

lower solubility than TEVP-wt-VP1. However, this was not the case for TEVP-VP1-H190-

H190, which was the modular VP1 bearing H190 from A/California/07/2009. The 

A 

 
kDa 

 
80 

60 

50 
40 

 

30 

20 
 
 

 
kDa 

 
80 

60 

50 
40 

 

30 

20 
 
 

L     T       S      F     T       S      F      T      S       F    T       S      F 

wt-VP1 

L     T       S      F     T       S      F      T      S       F    T     S      F 

VP1-H3-
H190-H190 

VP1-H3-H190-
H190-4E 

VP1-H190-
H190 

TEVP-
wt-VP1 

TEVP-VP1-
H3-H190-

H190 
 

TEVP-VP1-
H3-H190-
H190-4E 

TEVP-VP1-
H190-H190 

B 



 137 

proportion of GST-tagged TEVP-wt-VP1 and TEVP-VP1-H190-H190 found in soluble 

fractions was similar, indicating that the solubility of GST-tagged TEVP-VP1-H190-H190 

was higher than that of TEVP-VP1-H3-H190-H190 and TEVP-VP1-H3-H190-H190-4E. 

The difference between H190 element from A/Victoria/210/2009 and the one from 

A/California/07/2009 is the presence of a hydrophobic stretch within the element. The 

H190 element from A/Victoria/210/2009 contains a hydrophobic stretch, while the H190 

element from A/California/07/2009 does not. Therefore, the low solubility of GST-tagged 

modular VP1 bearing H190 element from A/Victoria/210/2009 was confirmed due to the 

presence of a hydrophobic stretch within the H190.  

Figure 5-8 also shows that the ratio of soluble to total fractions for GST-tagged 

VP1-H3-H190-H190 was higher than the ratio for GST-tagged TEVP-VP1-H3-H190-H190. 

A similar observation was also obtained for constructs VP1-H3-H190-H190-4E and TEVP-

VP1-H3-H190-H190-4E. The finding indicates that mutation from a thrombin to TEVp 

cleavage site caused the lower solubility of both GST-tagged TEVP-VP1-H3-H190-H190 

and TEVP-VP1-H3-H190-H190-4E. However, the same result was not obtained for 

constructs wt-VP1 and TEVP-wt-VP1, as well as constructs VP1-H190-H190 and TEVP-

VP1-H190-H190, suggesting that the decrease in solubility due to mutation from a 

thrombin to TEVp cleavage site was rather a construct-dependent phenomenon. This 

suggestion was also supported by the fact that the thrombin cleavage site is more 

hydrophobic than the TEVp cleavage site. The thrombin cleavage site (LVPRGS) has a 

GRAVY score of 0.117. In contrast, the GRAVY score of the TEVp cleavage site 

(ENLYFQGS) is -0.8. Analysis of both GRAVY scores indicated that the thrombin cleavage 

site is more hydrophobic than the TEVp cleavage site. Thus, it is expected that mutation 

from a thrombin to TEVp cleavage site can improve the solubility of GST-tagged VP1.  

SDS-PAGE analysis of flow-through fractions from the GST column (lane F, Figure 

5-8) showed that GST-tagged wt-VP1 and modular VP1 bearing thrombin and TEVp 

cleavage sites were effectively captured in the affinity column, and the capture efficiency 

was similar. This expected finding implied that the mutation did not affect the efficiency of 

the affinity purification.  

 

5.3.3.2 Effect of mutation from a thrombin to TEVp cleavage site on the ratio of VP1* 
to VP1 after GST removal 

Purified GST-tagged modular VP1 were then incubated with thrombin or TEVp 

accordingly to remove the GST tag from modular VP1. After incubation, digested proteins 
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were clarified by centrifugation to remove precipitates. Samples were taken before and 

after centrifugation, and analysed using SDS-PAGE, as shown in Figure 5-9. 

Figure 5-9A shows that the GST removal profiles for constructs bearing a thrombin 

cleavage site were consistent with the previous results in Section 5.3.2.1. After GST 

removal using thrombin, three products were observed: (i) VP1 protein (blue arrows), (ii) 

VP1* fragment (green arrows), and (iii) GST tag (orange arrows). The persistent VP1* 

bands at about 37 kDa were observed for all constructs. As reported in Section 5.3.2.1, the 

digestion profiles of wt-VP1 (lanes 3 and 4) were similar to the profiles of both VP1-H3-

H190-H190 (lanes 5 and 6) and VP1-H3-H190-H190-4E (lanes 8 and 9). However, a 

considerably higher VP1* to VP1 ratio was observed for both modular constructs. In 

addition, in this section, the modular construct VP1-H190-H190 was used as a 

comparison. Figure 5-9A shows that VP1-H190-H190 (lanes 11 and 12) had a 

considerably lower VP1* to VP1 ratio in comparison to both VP1-H3-H190-H190 (lanes 5 

and 6) and VP1-H3-H190-H190-4E (lanes 8 and 9). This finding indicated that specificity of 

thrombin proteolysis was lower for both modular VP1 bearing H190 from the 

A/Victoria/210/2009 than for modular VP1 bearing H190 from the A/Victoria/210/2009. The 

difference between H190 element from A/Victoria/210/2009 and the one from 

A/California/07/2009 is the presence of a hydrophobic stretch within the element. Hence, 

this finding further indicated that the higher VP1* to VP1 ratio for VP1-H3-H190-H190 and 

VP1-H3-H190-H190-4E was due to the hydrophobic stretch. Results in Section 5.3.1 show 

that the VP1* to VP1 ratio for wt-VP1 was lower than the ratio for VP1-H3-H190-H190. 

Based on this result, it was suggested that modularisation of two copies of H190 from the 

A/Victoria/210/2009 caused structural alterations, and thus resulted in an increase in non-

specific thrombin proteolysis. In this section, this suggestion was proven again by 

comparing the ratio of VP1* to VP1 between VP1-H3-H190-H190, VP1-H3-H190-H190-4E, 

and VP1-H190-H190. The difference of thrombin specificity for the modular VP1 proteins 

indicates that there was a modification of the structure of modular VP1 due to the 

presence of hydrophobic stretch. The modification may expose a secondary cleavage site 

that is otherwise less accessible by thrombin.  
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Figure 5-9. SDS-PAGE analysis showing the effect of mutation from a thrombin to TEVp cleavage site on the 
ratio of VP1* to VP1 following GST removal using thrombin or TEVp. (A) wt-VP1, modular VP1 bearing two 
copies of H190 from A/Victoria/210/2009 without flanking glutamic acids (construct VP1-H3-H190-H190), 
modular VP1 bearing two copies of H190 from A/Victoria/210/2009 with flanking glutamic acids (construct 
VP1-H3-H190-H190-4E), and modular VP1 bearing two copies of H190 from A/Victoria/210/2009 (construct 
VP1-H190-H190). Each protein bears a thrombin cleavage site, and (B) same as (A), but each protein bears 
a TEVp cleavage site. Lanes: (L) Pre-stained protein marker, (1) GST-tagged wt-VP1, (2) Total protein of 
digested GST-tagged wt-VP1, (3) Soluble protein of digested GST-tagged wt-VP1, (4) GST-tagged VP1-H3-
H190-H190, (5) Total protein of digested GST-tagged VP1-H3-H190-H190, (6) Soluble protein of digested 
GST-tagged VP1-H3-H190-H190, (7) GST-tagged VP1-H3-H190-H190-4E, (8) Total protein of digested 
GST-tagged VP1-H3-H190-H190-4E, (9) Soluble protein of digested GST-tagged VP1-H3-H190-H190-4E, 
(10) GST-tagged VP1-H190-H190, (11) Total protein of digested GST-tagged VP1-H190-H190, and (12) 
Soluble protein of digested GST-tagged VP1-H190-H190. Blue arrows refer to VP1 protein. Green arrows 
refer to the secondary thrombin cleavage product. Orange arrows refer to GST. Black arrow refers to the 
secondary TEVp cleavage product.  
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In contrast to the findings in Figure 5-9A, after GST removal using TEVp, the quality 

of wt-VP1 and the modular VP1 was considerably improved, as shown in Figure 5-9B. 

Lanes 2 and 3 in Figure 5-9B show that VP1* was not observed after GST removal from 

wt-VP1 using TEVp. This finding was in good agreement with the study by Connors et al. 

(Connors et al. 2013). Similarly, lanes 5 and 6 in Figure 5-9B show that VP1* was not 

observed for TEVP-VP1-H3-H190-H190 following treatment using TEVp. In addition, the 

absence of VP1* following TEVp treatment was also observed for TEVP-VP1-H190-H190, 

as shown in lanes 11 and 12 of the same figure. These results confirm that VP1* observed 

in Figure 5-6 was a result of non-specific thrombin proteolysis. The use of TEVp, which is 

more specific than thrombin (Connors et al. 2013), eliminated the generation of VP1*, and 

therefore increased the quality of modular protein. However, this was not the case for 

TEVP-VP1-H3-H190-H190-4E. While the VP1* fragment was eliminated following TEVp 

digestion, a fragment at approximately 35 kDa (black arrow) was observed for TEVP-VP1-

H3-H190-H190-4E.  

The 35-kDa fragment observed for TEVP-VP1-H3-H190-H190-4E was not observed 

for the other three constructs, showing that the fragment was not related to E. coli host 

proteins or proteins from the TEVp. This observation suggested that the 35-kDa fragment 

resulted from non-specific proteolysis of TEVp. This suggestion was also supported by the 

result shown in Figure 5-10. The figure shows SDS-PAGE analysis of GST-removal using 

TEVp for the constructs TEVP-VP1-H3-H190-H190, TEVP-VP1-H3-H190-H190-4E, and 

TEVP-VP1-H190-H190. The digestions were performed at various mass ratios of TEVp to 

VP1, in Lysis Buffer containing 200 mM NaCl. As described in Section 5.2.3, TEVp 

digestion was performed by adding TEVp at a certain concentration to protein solutions. At 

higher ratios of TEVp to VP1, the final volumes of digested proteins were expected to 

increase, resulting in a dilution factor. Therefore, for the same volume of samples taken 

from the final solutions, the amount of digested proteins was less due to the dilution. As 

can be seen in Figure 5-10, for all modular constructs, as the ratio of TEVp to VP1 

increased, the intensity of bands corresponding to TEVp (about 27 kDa, purple arrows) 

increased, and the amount of GST-tagged modular VP1 (red arrows) decreased, indicating 

that more GST-tagged VP1 was digested. Consequently, as the ratio of TEVp to VP1 

increased, the intensity of bands corresponding to VP1 (blue arrows) increased, even 

though the figure shows the opposite observation due to the aforementioned dilution 

factor. Based on these observations, it was expected that with increasing TEVp to VP1 

ratio, the intensity of bands corresponding to the 35-kDa fragment (black arrow) also 

subsided. However, the figure shows that the intensity of the 35-kDa fragment 
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strengthened with increases in the ratio of TEVp to VP1. This result shows that generation 

of the 35-kDa fragment for the modular construct TEVP-VP1-H3-H190-H190-4E was due 

to non-specific interactions between TEVp and modular VP1, which was aggravated by the 

increasing ratio of TEVp to VP1.  

 

 

 
 
Figure 5-10. SDS-PAGE analysis of GST removal for modular VP1 bearing two copies of H190 from 
A/Victoria/210/2009 without flanking glutamic acids (construct TEVP-VP1-H3-H190-H190), modular VP1 
bearing two copies of H190 from A/Victoria/210/2009 with flanking glutamic acids (construct TEVP-VP1-H3-
H190-H190-4E), and modular VP1 bearing two copies of H190 from A/California/07/2009 (construct TEVP-
VP1-H190-H190) using TEVp at various ratio of TEVp to VP1. Lanes: (L) Pre-stained protein marker, and 
(1/50, 1/00, 1/300, and 1/500) Mass ratio of TEVp to VP1. Red arrows refer to GST-tagged VP1 protein. Blue 
arrows refer to VP1 protein. Black arrow refers to TEVP secondary cleavage product. Purple arrows refer to 
TEVp. 

 

 

The molecular size of the fragment suggested that the 35-kDa fragment resulted 

from non-specific proteolysis of TEVp on the H190 elements flanked by glutamic acid 

residues. The amino acid sequence of H190 element of A/Victoria/210/2009 

(VTDKDQIFLYAQASGR) contains a similar amino acid sequence to the TEVp cleavage 

site (ENLYFQG). Furthermore, the fact that the fragment was not observed for VP1-H3-

H190-H190 indicates that the non-specific interaction was likely attributed to the presence 

of the flanking ionic elements. TEVp has a neutral net surface charge at pH 8.5 (Kapust 

and Waugh 1999). During GST removal, which was performed at pH 8, the net charge of 

TEVp was positive. The charge differences between TEVp and the flanking ionic elements 

may favour ionic interactions, and subsequently result in non-specific interactions of TEVp 

on the H190 element. 
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Interactions between proteins driven by electrostatic interaction have been known to 

be sensitive to salt concentrations (Golovanov et al. 2004, Zhang et al. 2007). Therefore, 

to prove the hypothesis that the 35-kDa fragment was the result of ionic interactions 

between TEVp and glutamic acid, the concentration of NaCl used during GST cleavage 

was increased. Increasing NaCl concentration can reduce the Debye length and 

subsequently suppress the electrostatic double-layer interactions between TEVp and the 

flanking ionic elements. GST removal at various concentrations of NaCl ranging from 200 

to 600 mM was tested and analysed using SDS-PAGE as shown in Figure 5-11. The 

analysis showed that with increasing salt concentration, the amount of the 35-kDa 

fragment was reduced, although the reduction was only slight. The slight reduction in the 

35-kDa fragment when the salt concentration was increased considerably suggested that 

increasing salt concentration was ineffective at reducing the non-specific ionic interactions. 

This finding further suggested that the 35-kDa fragment may not have resulted from ionic 

interactions between TEVp and glutamic acid.  

 

 

 
 

Figure 5-11. SDS-PAGE analysis of GST removal for wt-VP1 (construct TEVP-wt-VP1), modular VP1 
bearing two copies of H190 from A/Victoria/210/2009 without flanking glutamic acids (construct TEVP-VP1-
H3-H190-H190), modular VP1 bearing two copies of H190 from A/Victoria/210/2009 with flanking glutamic 
acids (construct TEVP-VP1-H3-H190-H190-4E), and modular VP1 bearing two copies of H190 from 
A/California/07/2009 (construct TEVP-VP1-H190-H190) using TEVp at various salt concentrations. (1) 200 
mM NaCl, (2) 400 mM NaCl, and (3) 600 mM NaCl. Red arrow shows GST-tagged VP1. Black arrow shows 
TEVp secondary cleavage product. 
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5.3.3.3 Effect of mutation from a thrombin to TEVp cleavage site on the aggregation 
of modular VP1 after GST removal 

Following GST removal, digested proteins were clarified using centrifugation to 

remove precipitates. The supernatants were then loaded into SEC. Figure 5-12 shows 

chromatograms for modular constructs bearing thrombin and TEVp cleavage sites.  

In general, the chromatograms for wt-VP1, VP1-H3-H190-H190, and VP1-H3-H190-

H190-4E, carrying thrombin cleavage sites (Figure 5-12A-C), were consistent with the 

results shown in Figure 5-7A-C. Furthermore, these chromatograms were similar to those 

for the same constructs but bearing the TEVp cleavage site.  

Figure 5-12A shows the chromatograms for TEVP-wt-VP1 and wt-VP1. Both 

chromatograms showed three peaks: (i) peak A1, which corresponded to soluble 

aggregates, (ii) peak A11, corresponding to capsomeres, and (iii) the GST tag. Peak A1 

for TEVP-wt-VP1 appeared to have a similar level of absorbance 280 nm to the peak for 

wt-VP1. However, the capsomere and GST peaks of TEVP-wt-VP1 had a smaller level of 

absorbance 280 nm than those of wt-VP1, indicating that TEVP-wt-VP1 had more 

aggregates. Fractions from these peaks were then analysed using SDS-PAGE. The 

analysis of peak A1 for wt-VP1 showed that the peak contained VP1 and VP1*. In 

contrast, peak A1 for TEVP-wt-VP1 contained VP1 (blue arrow) without VP1* (green 

arrow). This was probably because the VP1* was eliminated following GST removal using 

TEVp. Furthermore, the SDS-PAGE analysis showed that peak A11 of both wt-VP1 and 

TEVP-wt-VP1 majorly contained VP1.  
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Figure 5-12. Analysis using size-exclusion chromatography and SDS-PAGE showing the effects of mutation 
from a thrombin to TEVp cleavage site on the aggregation of modular VP1 bearing H190 from 
A/Victoria/2010/2009 and feasibility to isolate the modular VP1 as capsomeres. (A) wt-VP1 and TEVP-wt-
VP1, (B) Modular VP1 bearing two copies of H190 from A/Victoria/210/2009 without flanking ionic elements, 
(C) Modular VP1 bearing two copies of H190 from A/Victoria/210/2009 with flanking ionic elements, and (D) 
Modular VP1 bearing two copies of H190 from A/California/07/2009. Blue arrows refer to VP1. Green arrows 
refer to VP1*. Black arrow refers to TEVp secondary cleavage product.  
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Likewise, the chromatograms for VP1-H3-H190-H190 and TEVP-H3-H190-H190 

were similar, although a slight difference in absorbance 280 nm readings was detected 

(Figure 5-12B). Two peaks were observed in both chromatograms, which corresponded to 

soluble aggregates (peak A1) and the GST tag. Despite the elimination of VP1* by 

removing GST using TEVp in place of thrombin, peaks corresponding to capsomeres were 

not observed. SDS-PAGE analysis of a fragment from peak A1 of VP1-H3-H190-H190 

showed that the peak contained both VP1 (blue arrow) and VP1* (green arrow). In 

comparison, the analysis showed that peak A1 from TEVP-H3-H190-H190 only contained 

VP1. The lack of a peak corresponding to capsomeres following GST removal from TEVP-

VP1-H3-H190-H190, supported by the SDS-PAGE analysis, showed that the presence of 

VP1* was not correlated with aggregation. These findings showed that mutation from a 

thrombin to TEVp cleavage site did not reduce the tendency of modular VP1 to form 

soluble aggregates and did not increase the feasibility of isolating modular VP1 

capsomeres bearing hydrophobic H190.  

Comparable to the observations in Figure 5-12A and Figure 5-12B, the 

chromatograms for VP1-H3-H190-H190-4E and TEVP-VP1-H3-H190-H190-4E in Figure 

5-12C were similar. Three peaks were observed in both chromatograms, i.e. (i) soluble 

aggregates (peak A1), (ii) capsomeres (peak B5), and (iii) GST. However, Figure 5-12C 

shows that the absorbance 280 nm readings of each peak for TEVP-VP1-H3-H190-H190-

4E was about twice those for VP1-H3-H190-H190-4E, although the SEC analysis was 

performed for the same amount of proteins, as explained in Section 5.2.3. Such an 

observation was also reported in Section 5.3.2.3, where it was suggested that the higher 

absorbance readings was possibly due to the use of glutamic acids. SDS-PAGE analysis 

showed that peak A1 from VP1-H3-H190-H190-4E contained VP1 (blue arrow) and VP1* 

(green arrow) in an equal proportion. Meanwhile, A1 peak from TEVP-VP1-H3-H190-

H190-4E contained predominantly VP1. Moreover, the chromatogram of TEVP-VP1-H3-

H190-H190-4E shows that, peaks corresponding to capsomeres (B5) were observed for 

both VP1-H3-H190-H190-4E and TEVP-VP1-H3-H190-H190-4E. SDS-PAGE analysis of 

these peaks showed that peak B5 from VP1-H3-H190-H190-4E contained majorly VP1 

(blue arrow), while peak B5 from TEVP-VP1-H3-H190-H190-4E contained VP1 and the 

35-kDa fragment (black arrow). These findings confirmed that the heterogeneity of 

modular VP1 was not correlated to the aggregation of modular VP1 after GST removal. 

Figure 5-12D compares the chromatogram for VP1-H190-H190 and TEVP-VP1-

H190-H190. The chromatograms showed that three peaks were observed, similar to the 

chromatogram for wt-VP1. These peaks were (i) peak A1, corresponding to soluble 
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aggregates, (ii) peak A9, which corresponded to capsomeres, and (iii) the GST tag. Unlike 

VP1-H3-H190-H190 and VP1-H3-H190-H190-4E, both chromatograms showed that peaks 

containing capsomeres were eluted at about 12.5 ml (peak A9). The capsomere elution 

time was slightly later than the elution time for wt-VP1 capsomeres, which was about 11.5 

ml (peak A11). The changed elution time may represent capsomeres VP1-H190-H190 and 

wt-VP1 having different hydrodynamic radii. SDS-PAGE analysis for peaks from VP1-

H190-H190 indicated that peak A1 contained VP1 and VP1* at an equal ratio, while peak 

A9 contained VP1. In comparison, SDS-PAGE analysis for peaks from VP1-H190-H190 

indicated that peak A1 and A9 contained VP1. 

In summary, the results in this section show that mutation from a thrombin to TEVp 

cleavage site eliminated the generation of VP1*, and consequently improved the 

homogeneity of modular VP1 after GST removal. This finding confirmed that the increased 

heterogeneity of modular protein after GST removal was due to the non-specific 

proteolysis of thrombin. Furthermore, results in this section have shown that improved 

homogeneity of the modular protein was not correlated to the aggregation of modular VP1 

and the feasibility of obtaining modular VP1 capsomeres.  

 

5.4 Conclusion 
This chapter accomplished Objective 3 stated in Section 1.3, by demonstrating the 

applicability of tandem repeat display for modularisation of H190 from influenza virus 

A/Victoria/210/2009 (H3N2/X-187) into murine polyomavirus VP1. The H190 variant is 

hydrophobic and contains a hydrophobic stretch in the middle of its amino acid sequence.  

This chapter shows that modularisation of two copies of the hydrophobic H190 

affected the biophysical properties of modular proteins. Firstly, modularisation of the 

hydrophobic H190 increased the tendency of the modular VP1 to aggregate after GST 

removal, preventing isolation of the modular VP1 capsomeres. Secondly, modularisation of 

the hydrophobic H190 enhanced the thrombin non-specific proteolysis, resulting in an 

increase in the ratio of secondary cleavage product to VP1.  

Two approaches were explored simultaneously to minimise these two effects of 

modularisation of the hydrophobic H190 on the properties of modular VP1. The first 

approach was the addition of charged residues in the antigen module. This chapter 

showed that glutamic acids could: (i) improve the solubility of the GST-tagged modular 

VP1, (ii) reduce the tendency of the modular proteins to aggregate, and increase the 

feasibility of obtaining modular VP1 capsomeres, and (iii) slightly reduce the ratio of VP1* 

to VP1. By using the flanking ionic elements, it was possible to obtain modular VP1 
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capsomeres, which may otherwise not have been achievable by changing the salt 

concentration of Lysis Buffers or reducing the expression temperature alone.  

The second approach was the use of a protease with a higher specificity in order to 

reduce the heterogeneity of modular VP1 following GST removal. This chapter showed 

that by replacing thrombin with a more specific protease, in this case TEVp, the 

heterogeneity of modular VP1 after GST removal was successfully eliminated. However, 

this was not the case for all constructs. 

Furthermore, this chapter showed that the heterogeneity of modular proteins was 

not correlated with the aggregation of the modular VP1 and the feasibility of obtaining 

modular VP1 capsomeres. This finding confirmed that the aggregation of modular VP1 

capsomeres after GST removal and consequent recalcitrance to isolation resulted from the 

presence of a hydrophobic stretch within the H190 element rather than being due to the 

heterogeneity of modular VP1.  
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6 Chapter 6. Production of modular VP1 capsomeres with a high 
purity to screen the optimum condition for crystallisation 
 
6.1 Introduction 

Chapters 3 and 4 of this thesis have established that various display strategies used 

for the modularisation of helix 190 (H190) on murine polyomavirus (MuPyV VP1) have 

resulted in antibody induction of diverse qualities in mice. In Chapter 3, two display 

strategies were compared. The first display strategy exploited the use of helix promoter 

elements, which were derived from the GCN4 protein, to flank one H190 element. 

Meanwhile, in the second strategy, two copies of H190 were arrayed as a tandem repeat. 

The results showed that H190 modularised using both strategies were equally 

immunogenic; however, they induced antibodies of different quality. The two copies of 

H190 tandem repeats induced a high titre of IgGs recognising recombinant HA1 protein, 

up to a dilution of 104. In contrast, H190 flanked with helix promoter elements induced a 

HA1-specific IgG titre less than 103. The induction of different antibody quality by 

modularised H190 as a result of different display strategies was further verified in Chapter 

4. The chapter reports that modular VLPs bearing one to four copies of H190 tandem 

repeats induced different quality of antibodies, although these modularised H190 were 

equally immunogenic. A modular VLP bearing one copy of H190 was shown to be unable 

to induce antibodies that specifically recognised H190 element in recombinant HA1 

protein. In contrast, two to four copies of H190 induced a high titre of IgGs recognising the 

HA1 protein.  

These findings in Chapters 3 and 4 may reflect an affinity maturation process during 

antibody production against H190 displayed on a modular VLP. Antibodies that bind to an 

antigen with high affinity are developed during an affinity maturation process, which is the 

key characteristic of antibody production. The affinity maturation is achieved via two 

mechanisms, both of which are guided by antigens: (i) somatic hypermutation, and (ii) 

clonal selection. Initially, B cells that encounter an antigen for the first time will bind to the 

antigen with a low affinity. The antigen-recruited B cells then proliferate in germinal centres 

and undergo a period of somatic hypermutation. The mutation process results in the 

production of a small proportion of B cells that bind to the antigen with a higher affinity. 

Subsequently, both B cells with lower and higher affinity are exposed to the clonal 

selection process. B cells with a lower affinity are subjected to apoptosis, whereas those 

with a higher affinity are selectively expanded in an antigen-mediated process, repeating 
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the two mechanisms until B cells that bind to the antigen with a high affinity are obtained 

(Batista and Neuberger 1998).  

Because the affinity maturation is guided by antigens, the structure of antigens 

determines the affinity of the induced antibodies. If the affinity maturation is developed 

against flexible antigens, antibodies with a wide range of affinity may be obtained. This is 

because antibodies may trap flexible antigens in a conformation that fits with the antigen-

binding site. Consequently, the flexible peptide could guide the affinity maturation process 

down many alternative paths, not only those that optimise binding to the targeted surface 

in the pathogens of interest. Only a small proportion of these antibodies will be able to 

recognise the same antigens in the native proteins. In contrast, if the affinity maturation is 

developed against an antigen that stably presents a specific surface, antibodies that 

efficiently recognise the surface will be obtained (Dormitzer et al. 2008). Therefore, if the 

modularised H190 closely resembles the H190 within the native HA protein, the antibodies 

induced are likely to bind to the HA protein with high affinity. In contrast, if the modularised 

H190 is structurally different from the one in the HA protein, the antibodies may bind to the 

HA protein with low affinity. Based on this rationale, the findings in Chapters 3 and 4, 

which show that various H190 display strategies can result in induction of antibodies of 

diverse qualities, may suggest the antibodies are raised against modularised H190 of 

different structure. The structural difference may be a result of different display strategies.  

A possible approach to verify this suggestion is by determining the structure of 

displayed H190 on modular virus-like particles (VLPs) using, for example, X-ray 

crystallography. X-ray crystallography has long been the most favoured technique to 

determine the structure of proteins and biological macromolecules (Smyth and Martin 

2000). It is an established (Momany et al. 1996) and leading method to resolve structural 

information in proteins larger than 35 kDa (Pusey et al. 2005). Furthermore, it contributes 

to the resolution of most of protein structures in the Protein Data Bank archive (Pusey et 

al. 2005). In X-ray crystallography, a protein of interest is purified and crystallised at a high 

concentration. The crystal is then subjected to an X-ray beam at high intensity. It diffracts 

the beam into unique patterns of spots. Intensities and phase of the spots reflect electron 

distributions in the protein. The electron density maps are then analysed to determine the 

location of each atom of the protein, yielding an atomic model of the protein. 

Subsequently, it may be necessary to perform refinement on the crystallographic atomic 

model. During refinement, a crystallographic atomic model is restrained or constrained 

using database information of geometrical and stereochemical features, such as bond 

lengths and angles, planarity and chirality (Kleywegt and Jones 1998). The accuracy of an 
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atomic model is measured by: (i) resolution, and (ii) R-value. The resolution reflects how 

much detail can be obtained from a crystallographic atomic model. Meanwhile, the R-value 

indicates how well a refined atomic model is supported by experimental data on intensities 

and phase of a diffracted beam.  

In order to obtain an atomic model with high accuracy, a high-quality crystal is 

required. When a crystal with a high quality is used, the atomic model has a higher 

confidence that it correctly reflects the actual structure of a protein, and vice versa. One 

important factor that determines crystal quality, as well as X-ray beam diffraction, is the 

purity of the protein of interest. Impurities can affect protein solubility, nucleation, crystal 

morphology, and irreproducibility in crystallisation experiments. Studies using optical 

microscopy and interferometry have shown that impurities reduce the growth rate of 

crystals. Furthermore, they can cause dislocation and cracks, the formation of soluble 

aggregates, and the degradation of crystal mosaicism (Caylor et al. 1999). Studies on 

lysozyme using light scattering have shown that impurities could associate with lysozyme, 

promoting the formation of ill-shaped and twinned crystals (Lorber et al. 1993, Skouri et al. 

1995). Because crystal formation is sensitive to many factors, crystallisation of a protein 

can be the rate-determining step in protein structure determination using X-ray 

crystallography. It can be difficult and can limit the number of proteins that can be studied 

using X-ray crystallography (Dessau and Modis 2011, Smyth and Martin 2000).  

Of particular relevance to this study, X-ray crystallography has previously been 

utilised to resolve the molecular structure of various viral capsid proteins (Chen et al. 2000, 

Hogle et al. 1986, Lattman 1980, Prasad et al. 1999, Speir et al. 1995) including wild-type 

MuPyV VP1 (wt-VP1) (Stehle and Harrison 1996, Stehle and Harrison 1997). The 

molecular structure of wt-VP1 was resolved at a resolution of 3.65 Å from purified virions 

(wt-VP1 residues 1-384; Figure 6-1A) (Stehle and Harrison 1996). Additionally, the 

molecular structure of wt-VP1 was resolved from capsomeres (wt-VP1 residues 32-320; 

Figure 6-1B) (Stehle and Harrison 1997). The capsomeres were produced recombinantly 

using E. coli expression and were found to lack: (i) 31 residues from the N-terminus, and 

(ii) 63 residues from the C-terminus. The 31 N-terminal residues were removed because 

the flexibility of the residues was expected to generate structural heterogeneity, thus 

preventing the formation of crystals (Dale et al. 2003). In contrast, the 63 C-terminal 

residues were removed to prevent the capsomeres from self-assembling into VLPs. 

Compared to the aforementioned model of wt-VP1, this capsomere-based model has a 

higher resolution of 1.9 Å even though both resolved structures of wt-VP1 are highly 

similar. Additionally, the capsomere-based molecular structure provides more structural 
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details. For example, the capsomere-based model could show the conformation of 

residues 32-45 in the free capsomeres, which could not be obtained from the virion-based 

model.  

 

 
 
Figure 6-1. Crystal structures of wild-type murine polyomavirus VP1 capsomeres. (A) Crystal structure from 
purified virions (VP1 residues 1-384; 1SID.pdb). Red represents residues 1-31. Green represents residues 
321-384; and (B) Crystal structure from recombinant VP1 capsomeres (VP1 residues 32-320; 1VPN.pdb). 
Red represents residues 32-36. Green represents residues 316-320. Figures are generated using UCSF 
Chimera (Pettersen et al. 2004). 
 

 

This chapter reports the first steps towards obtaining H190 structure displayed on 

modular VLPs using X-ray crystallography. These first steps are: the production of 

homogenous and soluble modular VP1, and screening of conditions to obtain optimum 

crystals. The production of homogeneous modular VP1 capsomeres comprises five main 

steps: (i) the selection of modular constructs, (ii) design of the selected modular constructs 

for purification purposes, (iii) expression and purification of the selected modular 

constructs as Glutathione-S-transferase (GST)-tagged proteins, (iv) enzymatic removal of 

the GST tag from modular VP1, and (v) the removal of contaminants.  

This chapter selects three modular constructs, of which the molecular structures of 

the modularised H190 in these three constructs are yet to be resolved. These constructs 

are: (i) VP1-H190-H190 (reported in Chapters 3 and 4), (ii) VP1-GCN4-H190-GCN4 

(reported in Chapter 3), and (iii) VP1-H190 (reported in Chapter 4). The antigen module in 

construct VP1-H190-H190 comprises two copies of H190 arrayed as a tandem repeat 

(Figure 6-2A). In contrast, in the antigen module of construct VP1-GCN4-H190-GCN4, 

A B 
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H190 is modularised by exploiting the use of GCN4 helix promoter elements and GSGS 

spacer elements (Figure 6-2B). In the modular construct VP1-H190, one copy of H190 is 

modularised without incorporating any structural hypothesis (Figure 6-2C). Construct VP1-

H190 represent the simplest display strategy to modularise H190 element. The H190 

elements in these three selected constructs were from the influenza virus strain 

A/California/07/2009 (H1N1).  

 

 
 

Figure 6-2. A schematic diagram of antigen modules in the three modular constructs selected for 
crystallisation. (A) VP1-H190-H190, two copies of H190 were arrayed as a tandem repeat, (B) VP1-GCN4-
H190-GCN4, one copy of H190 was flanked with GCN4 helix promoter elements and GSGS spacer 
elements, (C) VP1-H190, the simplest display strategy to modularise H190. Numbers in white boxes refer to 
amino acid residue of the wt-VP1 protein. The diagram is not to scale. 
 

 

These three modular constructs were selected for the following reasons. Chapters 3 

and 4 of this thesis showed that the H190 element in the modular construct VP1-H190-

H190 was displayed in its immunogenic form, and induced a high titre of HA1-specific 

IgGs. VP1-H190-H190 VLPs were shown to be self-adjuvanting, and thus approaches to 

improve the quality of antibodies induced by the modular VLPs were shown to be 

unnecessary. In contrast, the modularised H190 in VP1-GCN4-H190-GCN4 induced a 

lower titre of IgGs recognising recombinant HA1 protein. Similarly, the H190 in modular 

construct VP1-H190 raised IgGs that bound to HA1 non-specifically. Comparison between 

resolved structures of H190 in construct VP1-H190-H190 against VP1-GCN4-H190-GCN4 

could provide indications on the effect of display strategy on the structure of modularised 

H190. Moreover, resolving structures of H190 within VP1-H190 could provide evidence to 

prove that when one copy of H190 is modularised without any structural hypothesis, H190 

could not assume its native conformation.  

The three selected modular constructs are then designed in order to increase the 

possibility of obtaining a high-resolution X-ray structure. The longer-term objective (see 
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Chapter 7) is an X-ray crystallisation study aiming to resolve the structures of H190 on 

modular VP1 proteins that are modularised using various display strategies. The resolved 

molecular structures will be compared to analyse whether the structure of H190 is 

determined by the display strategy. Finding structural differences of H190 in the three 

modular VP1 proteins may require atomic models with high resolution. The study by Stehle 

and Harrison (Stehle and Harrison 1997) showed that a higher resolution of VP1 molecular 

structure could be obtained from capsomeres (wt-VP1 residues 32-320) instead of purified 

virions. Therefore, the three selected modular constructs were produced as modular VP1 

capsomeres lacking 31 residues from N-terminus and 63 residues from the C-terminus.  

Modular VP1 proteins used for crystallisation are expressed as GST-tagged proteins 

and the GST-tagged modular VP1 are purified using affinity chromatography. These two 

processes are performed using the previously established methods of expression and 

purification of GST-tagged wt-VP1 (Chuan et al. 2008, Lipin et al. 2008, Middelberg et al. 

2011). Following purification of GST-tagged modular VP1, the GST-tag is enzymatically 

removed from the modular VP1. The removal of 63 residues from the C-terminal of 

modular VP1 is not anticipated to have a significant impact during purification. In contrast, 

the efficiency and rate of enzymatic removal of fusion tag has been shown to be 

dependent on the length of space between the fusion tag and target protein (Lee et al. 

2009). Therefore, the removal of 31 residues from the N-terminus was anticipated to 

remove a substantial space between GST and modular VP1 (refer to Figure 6-1). 

Removing 31 residues from the N-terminus may cause a protease to have difficulty 

accessing its cleavage site, which is located between GST and modular VP1. 

Consequently, GST removal might be inefficient and undigested GST-tagged modular VP1 

might be found in the solution. If the amount of undigested GST-tagged modular VP1 is 

substantial, the crystal quality and subsequently the resolution of the molecular structure 

may be decreased. 

In order to achieve efficient GST removal for modular constructs in this chapter, two 

proteases were compared: (i) thrombin and (ii) tobacco etch virus protease (TEVp). Unlike 

thrombin, TEVp is cost-effective and not involved in human physiological and biochemical 

networks. It has also been shown to have higher protease cleavage site specificity than 

thrombin (Connors et al. 2013). The high specificity of TEVp is also reported in Chapter 5 

of this thesis, which showed that the use of TEVp eliminated the generation of secondary 

cleavage product following GST removal. Thus, TEVp is a reasonable comparison for 

thrombin. Furthermore, the molecular weight of thrombin is rather big, about 37 kDa, 

compared to the molecular weight of TEVp, which is about 26 kDa. Due to its larger size, 



 154 

thrombin is anticipated to have difficulty accessing its cleavage site following the removal 

of 31 residues from the N-terminus. To compare the efficiency of thrombin and TEVp, the 

selected modular VP1 was designed to carry thrombin or TEVp cleavage sites, in addition 

to the removal of residues from the N- and C-termini. For modular VP1 bearing a thrombin 

cleavage site, two glycine residues were added in between GST and VP1 (Figure 6-3A) to 

provide thrombin with access to its cleavage site. In contrast, for modular VP1 bearing a 

TEVp cleavage site, no additional residues were added between GST and VP1 (Figure 6-

3B).  

 

 

 
 

Figure 6-3. A schematic diagram of the engineered cleavage sites in modular VP1 lacking 31 N-terminal 
residues and 63 C-terminal residues. (A) GST-tagged modular VP1 bearing a thrombin cleavage site, and 
(B) GST-tagged modular VP1 bearing a TEVp cleavage site. Green represents GST-tag. Blue represents 
thrombin or TEVp cleavage sites. Red represents modular VP1 protein lacking 31 N-terminal residues and 
63 C-terminal residues. The figure is not to scale.  
 

 

After the GST tag is enzymatically removed, modular VP1 capsomeres are separated 

from soluble aggregates and GST tag using size-exclusion chromatography (SEC) 

(Middelberg et al. 2011). A study on wt-VP1 (wt-VP1 residues 1-384) by Fan and 

Middelberg (Fan and Middelberg 2010) showed that SEC-purified wt-VP1 contained two 

contaminants, which were detected as bands at about 60 kDa and 70 kDa on SDS-PAGE 

analysis. Fan and Middelberg identified these bands as GroEL, and DnaK, respectively. 

Since the GST-tagged modular VP1 are expressed and purified using the same 

expression system and methods as GST-tagged wt-VP1, it is expected that the SEC-

purified modular VP1 also contain these two contaminants.  

GroEL and DnaK (reviewed in Chapter 2) are highly conserved E. coli proteins, which 

belong to the family of heat shock protein 60 (Hsp60) and 70 (Hsp70), respectively (Craig 

et al. 1993, Lindquist and Craig 1988). They act as chaperones, assisting protein folding 

(Boorstein et al. 1994, Checa and Viale 1997) by shielding hydrophobic surfaces exposed 

to the surface due to the non-native conformation of proteins (Calloni et al. 2012). They 

have also been previously shown to promote aggregation and size heterogeneity of 
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formed VLPs from wt-VP1 capsomeres (wt-VP1 residues 1-384) produced in E. coli (Fan 

and Middelberg 2010).  

The study by Fan and Middelberg (Fan and Middelberg 2010) showed two 

purification methods that could be employed to effectively remove GroEL and DnaK from 

wt-VP1 capsomeres (wt-VP1 residues 1-384). The first method was ion-exchange 

chromatography (IEX) using QFF and SP chromatography columns. Purification of the 

thrombin-treated GST-tagged wt-VP1 using QFF has been shown to reduce the proportion 

of GroEL in the protein mixture. Similarly, DnaK was decreased after purification of QFF-

purified wt-VP1 capsomeres using SP resin. The second method was precipitation using 

ammonium sulphate, (NH4)2SO4. The study showed that precipitation using 25% (v/v) 

(NH4)2SO4 could reduce the proportion of DnaK in SEC-purified wt-VP1 capsomeres. The 

precipitation step also reduced the proportion of DnaK following purification using QFF. 

Furthermore, precipitation using 15% (v/v) (NH4)2SO4 was able to reduce the proportion of 

GroEL and DnaK in a mixture of SEC-purified wt-VP1 capsomeres and thrombin-treated 

GST-tagged wt-VP1. 

Although these two methods worked effectively to remove GroEL and DnaK, they 

were developed for wt-VP1 capsomeres (wt-VP1 residues 1-384). This chapter attempts to 

remove GroEL and DnaK from modular VP1 proteins lacking 31 residues from the N-

terminus and 63 residues from the C-terminus. The modular VP1 proteins bear H190, 

which is modularised using a different display strategy. In addition, in this chapter, the 

modular VP1 proteins lack 31 residues from the N-terminus and 63 residues from the C-

terminus. These differences may diminish the efficiency of those methods to remove 

GroEL and DnaK from the modular VP1 proteins. Therefore, this chapter exploits another 

purification method that is hydrophobic interaction chromatography (HIC) to remove GroEL 

and DnaK. Unlike SP and Q columns, which separate proteins based on the net surface 

charge of proteins, HIC separates proteins based on their hydrophobicity. 

The quaternary structure of the high purity modular VP1 capsomeres are analysed 

using SEC coupled with multi-angle light scattering (MALS). In SEC, high purity modular 

VP1 capsomeres were separated from any remaining impurities based on size. In addition, 

the use of MALS allows the detection of soluble aggregates. High purity modular VP1 

capsomeres were then concentrated and sent to the Australian Synchrotron (Melbourne, 

Australia) for screening of the optimum conditions for crystallisation. Unfortunately, at the 

time at which this thesis was written, the conditions required to obtain optimum crystals 

had not been achieved.  
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6.2  Materials and methods 
6.2.1 Generation of modular constructs  

Six modular constructs were generated in this chapter: H190-H190, GCN4-H190-

GCN4, H190, TEVP-H190-H190, TEVP-GCN4-H190-GCN4, and TEVP-H190. The first 

three modular constructs, H190-H190, GCN4-H190-GCN4, and H190, were generated by 

the Protein Expression Facility (the University of Queensland, Australia).  

Plasmid pGEX-VP1 (reported in Section 4.2.1) and plasmid pGEX-TEVP-VP1 

(reported in Section 5.2.1) were digested using BamHI and XhoI according to the 

manufacturer’s recommendations. Digestion of plasmid pGEX-VP1 yielded linearised DNA 

fragments pGEX and VP1, while digestion of plasmid pGEX-TEVP-VP1 yielded linearised 

DNA fragments pGEX-TEVP and VP1. Fragments pGEX and pGEX-TEVP were separated 

from fragment VP1 using agarose gel electrophoresis, and purified using the PureLinkTM 

Quick Gel Extraction Kit (Life Technologies, Carlsbad, CA, USA).  

DNA fragments encoding modular VP1 lacking 31 N-terminal residues and 63 C-

terminal residues in plasmids pGEX-VP1-H190-H190, pGEX-GCN4-H190-GCN4, and 

pGEX-VP1-H190 were amplified using two sets of primers. The first set of primers was: (i) 

5’ ctggttccgcgtggatccgggggtgggggtatggaggtgctg 3’ and (ii) 5’ 

cgggaattccggggatcctcagggatagggatttttgaccc 3’. Amplification using the first set of primers 

resulted in DNA fragments carrying additional glycine residues at the 5’ end and stop 

codon at the 3’ end. Additionally, the amplified DNA fragments carried 18 bp of DNA 

sequences homologous to fragment pGEX at both the 5’ and 3’ ends. The amplifications 

were performed in a polymerase chain reaction (PCR) mixture (1 U KOD DNA 

polymerase‡, 1x KOD Buffer, 25 mM MgSO4, 1 µl template, 12.5 µM primers, and 2 mM 

dNTPs). PCR was performed at annealing temperature of 58°C.  

The second set of primers was: (i) 5’ gatgaaaacttgtacttccaagggggtatggaggtgctggac 
3’ and (ii) 5’ cagtcagtcacgatgcggccgctcgagtcagggatagggatttttgacccatct 3’. Amplification 

using the second set of primers resulted in DNA fragments carrying a stop codon at the 5’ 

end and 21 bp of DNA sequences homologous to fragment pGEX-TEVP at both 5’ and 3’ 

ends. The amplifications were performed in a PCR mixture (1 U Phusion Hot Start II DNA 

polymerase§, 1x Phusion HF Buffer, 1 µl template, 25 µM primers, and 200 µM dNTPs). 

PCR was performed at annealing temperature of 62°C.  

                                            
‡ EMD Millipore, Merck KGaA, Darmstadt, Germany. 
§ Thermo Scientific, Pittsburgh, PA, USA. 
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The amplified DNA fragments were then purified using PureLinkTM Quick Gel 

Extraction Kit. Purified DNA fragments, which were amplified using the first set of primers, 

were cloned into purified linearised pGEX, yielding modular constructs H190-H190, GCN4-

H190-GCN4, and H190. These constructs carried a thrombin cleavage site. Similarly, 

purified DNA fragments, which were amplified using the second set of primers, were 

cloned into purified linearised pGEX-TEVP, yielding modular constructs TEVP-H190-H190, 

TEVP-GCN4-H190-GCN4, and TEVP-H190. These constructs carried a TEVp cleavage 

site. Cloning was performed using the in vivo homologous recombination as described in 

Chapter 4 (Section 4.2.1). DNA sequences of the designated constructs were confirmed 

by sequencing DNA inserts, which was conducted by Australian Genome Research 

Facility (AGRF, Brisbane, Australia). Modular constructs generated in this chapter were 

summarised in Table 6-1.  

 
Table 6-1. List of modular constructs bearing thrombin or TEVp cleavage sites generated in Chapter 6. 

 

 

 

6.2.2 Expression and purification of GST-tagged modular VP1 

Expression and purification of GST-tagged modular VP1 were conducted as 

previously described in Section 4.2.1 (Chuan et al. 2008, Lipin et al. 2008, Middelberg et 

al. 2011), unless stated otherwise. Briefly, plasmids were transformed into E. coli Rosetta 

(DE3) pLysS cells (EMD Millipore, Merck KGaA, Darmstadt, Germany). Modular VP1 

protein was expressed as a GST-tagged protein at 26°C after induction at OD600 nm of 0.5 

with 0.2 mM isopropyl � -D-1-thiogalactopyranoside (IPTG). Harvested cells were 

resuspended in 40 ml of Lysis Buffer (40 mM Tris-base, 200 mM NaCl, 1 mM EDTA, 5% 

(v/v) glycerol, 5 mM DTT, pH 8.0), and lysed by sonication (Branson Ultrasonics 

Corporation, Connecticut, USA) at output 30 for 4 cycles of 40 s. The supernatant was 

separated from cell debris by centrifugation, and filtered through 0.45 µm filters (Pall, New 

York, USA). GST-tagged modular VP1 was isolated from the supernatant using GST-

affinity chromatography. The flow rates of sample loading and elution were reduced to 0.2 

Construct names Protease 
cleavage site 

Templates to amplify DNA fragments 
encoding modular VP1 lacking 31 N-terminal 

residues and 63 C-terminal residues 
H190-H190 Thrombin Plasmid pGEX-VP1-H190-H190 

(reported in Chapter 3) TEVP-H190-H190 TEVp 
GCN4-H190-GCN4 Thrombin Plasmid pGEX-VP1-GCN4-H190-GCN4  

(reported in Chapter 3) TEVP-GCN4-H190-GCN4 TEVp 
H190 Thrombin Plasmid pGEX-VP1-H190 

(reported in Chapter 4) TEVP-H190 TEVp 
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ml min-1 to facilitate maximum capture of GST-tagged modular VP1. Bound GST-tagged 

modular VP1 was eluted using Lysis Buffer containing 10 mM GSH (40 mM Tris-base, 200 

mM NaCl, 1 mM EDTA, 5% (v/v) glycerol, 5 mM DTT, 10 mM GSH, pH 8.0). 

 

6.2.3 Enzymatic GST tag removal from modular VP1 
GST tag removal using thrombin was conducted as previously described (Chuan et 

al. 2008). GST-tagged modular VP1 proteins were incubated with thrombin (Catalogue# 

27-0846-02, GE Healthcare, UK) at room temperature for 2 h. The ratio of GST-tagged 

modular VP1 to thrombin was 40:1 (thrombin unit/ml protein). 

GST tag removal using TEVp was conducted as previously described (Connors et 

al. 2013), unless stated otherwise. GST-tagged modular VP1 proteins were incubated with 

TEVp at a ratio of 1:5 (TEVp mass/protein mass) for 4 h at room temperature or in a ratio 

of 1:10 for 2 h at 30°C.  

 

6.2.4 Modular VP1 capsomere purification by size-exclusion chromatography (SEC) 
Following enzymatic GST tag removal, the protein solutions were centrifuged and 

the supernatants were subsequently loaded into SEC column Superdex 200 10/300 GL 

(GE Healthcare, UK). SEC was conducted at a flow rate of 0.5 ml min-1, as previously 

described in Section 4.2.1 (Chuan et al. 2008, Lipin et al. 2008, Middelberg et al. 2011). 

Here, X-ray Buffer (50 mM Tris-base, 100 mM NaCl, pH 8.0) was used to perform SEC.  

 

6.2.5 Purification using GST-affinity chromatography for SEC-purified modular VP1 
capsomeres 
SEC-purified modular VP1 capsomeres in X-ray Buffer were loaded into serially-

connected GSTrap HP 1 ml and GSTrap FF 1 ml (GE Healthcare, UK) at a flow rate of 0.2 

ml min-1. Modular VP1 capsomeres were collected in the flow-through fractions at 1 ml 

volume continuously.  

 

6.2.6 Purification using hydrophobic interaction chromatography (HIC) for GST-
purified modular VP1 capsomeres 

6.2.6.1 HIC in batch mode  
Saturated (NH4)2SO4 solution was added into X-ray Buffer containing SEC-purified 

modular VP1 capsomeres (Section 6.2.4) to final concentrations (v/v) of 0%, 2.5%, 5%, 

7.5%, 10%, 12.5%, and 15%. Similarly, X-ray Buffer containing (NH4)2SO4 at these 

concentrations were also prepared for resin equilibration.  
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A 500 µl of Phenyl Sepharose HP resin (GE Healthcare, UK) suspension in 20% 

ethanol was rinsed with 1 ml of filtered and deionised water. The resin was then cleaned 

with 1 ml of 0.5 M NaOH, rinsed three times with 1 ml of filtered and deionised water, and 

subsequently equilibrated three times with 1 ml of X-ray Buffers containing (NH4)2SO4 at 
various concentrations (v/v) (0%, 2.5%, 5%, 7.5%, 10%, 12.5%, and 15%).  

A 50 µl of SEC-purified modular VP1 capsomeres containing (NH4)2SO4 prepared 

as described in the beginning of this session was incubated with 50 µl of resin, which had 

been equilibrated with X-ray Buffer containing (NH4)2SO4 at the corresponding 

concentration. The incubation was performed for 20 min at room temperature with gentle 

agitation. After incubation, the resin and proteins mixture was centrifuged. The supernatant 

was decanted.  

 

6.2.6.2 HIC in bed mode 

A HiTrap Phenyl HP 1 ml column (GE Healthcare, UK) stored in 20% ethanol was 

cleaned with 5-10 CV of filtered and deionised water, 0.5 M NaOH, and filtered and 

deionised water, consecutively. The column was pre-equilibrated with 5-10 CV X-ray 

Buffer containing 10% (v/v) (NH4)2SO4. Saturated (NH4)2SO4 solution was added into X-ray 

Buffer containing GST-purified modular VP1 capsomeres (Section 6.2.5) to final 

concentrations of 10% (v/v). The mixture was then loaded into the equilibrated column at a 

flow rate of 1 ml min-1. After sample loading was completed, the column was washed with 

X-ray Buffer containing 10% (v/v) (NH4)2SO4 until the UV absorbance reading returned to 

baseline.  

X-ray Buffers with four different concentrations of (NH4)2SO4 (9%, 7%, 5% and 0% 

(v/v)) were prepared for elution. The elution started with 6-7 CV of X-ray Buffer containing 

9% (v/v) (NH4)2SO4, and continued step-by-step using the same volume of X-ray Buffer in 

decreasing concentrations of (NH4)2SO4. The eluted fractions were collected as 1 ml 

volumes continuously.  

 

6.2.7 Concentrating HIC-purified modular VP1 capsomeres by precipitation 

Saturated (NH4)2SO4 solution was added to HIC-purified modular VP1 capsomeres 

(from Section 6.2.6.2) to a final concentration of 50% (v/v). The mixtures were then 

incubated at 4°C, with gentle rolling. After at least 2 h of incubation, the mixtures were 

centrifuged and the precipitants were subsequently dissolved in X-ray Buffer.  
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6.2.8 Protein concentration measurement  
Protein concentration was determined using UV absorbance at 280 nm, based on 

the Beer-Lambert Law (Aitken and Learmonth 1996): 

! = !!!!!! 
! is the measured absorbance at 280 nm, ! is the extinction coefficient of protein (M-1 cm-

1) at 280 nm measured in water, !  is sample path length (10 mm), and !  is protein 

concentration (M). Theoretical molecular weight and extinction coefficient of each modular 

protein was obtained using the ProtParam tool (Gasteiger et al. 2005), and summarised in 

Table 6-2. 

 
Table 6-2. Theoretical molecular weights and extinction coefficients of proteins used in Chapter 6. 

 

Protein 
Theoretical molecular weight 

of monomeric protein 
(g mol-1) 

Extinction coefficient of 
monomeric protein,  

at 280 nm in water (M-1 cm-1) 
H190-H190 35585.8 60975 TEVP-H190-H190 
GCN4-H190-GCN4 36211.7 57995 TEVP-GCN4-H190-GCN4 
H190 33855.1 57995 TEVP-H190 
wt-VP1 (wt-VP1 residues 1-384) 

42763.6 58057 TEVP-wt-VP1  
(wt-VP1 residues 1-384) 
TEVp 28600 30035 

 

 

6.2.9 SDS-PAGE 
Protein analysis using sodium dodecyl sulphate polyacrylamide gel electrophoresis 

(SDS-PAGE) was performed as described in Section 4.2.4. Each SDS-PAGE gel picture in 

Figures 6-4 – 6-6, Figure 6-10, Figure 6-11, and Figure 6-15 was taken from one gel. 

Relevant sample lanes were selected and positioned on the right hand side of the ladder. 

The SDS-PAGE gel pictures in Figure 6-8 were taken from different gels which were 

aligned to a ladder. 

 

6.2.10 SEC-MALS  
The quaternary structure of HIC-purified modular VP1 capsomeres was analysed 

using SEC coupled with multi-angle light scattering (MALS). Samples in X-ray Buffer were 

loaded isocratically into Superdex 200 10/300 GL (GE Healthcare, UK) at a flow rate of 0.5 

ml min-1.  
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6.2.11 Western blot 
Proteins were resolved in SDS-PAGE gel as described in Section 6.2.9. The 

resolved protein was then transferred onto Amersham Hybond ECL nitrocellulose 

membranes (GE Healthcare, UK). Membranes were blocked with blocking buffer (PBS, 

0.5% (v/v) Tween 20, 5% (w/v) milk) for 1 h at room temperature. After six 5-min washes 

with PBST (PBS, 0.5% (v/v) Tween 20), membranes were incubated with mouse GST 

monoclonal antibody (Catalogue No. 13-6700, Novex®, Life Technologies, Carlsbad, CA, 

USA) 200-fold diluted in PBSTM (PBS, 0.5% (v/v) Tween 20, 0.5% (w/v) milk) for 1 h at 

room temperature. The membranes were washed 6 times (5 min each) with PBST, and 

further incubated with horseradish peroxidase (HRP)-conjugated goat anti-mouse IgG 

antibodies (Sigma Aldrich, St. Louis, MO, USA) at a 10,000-fold dilution in PBSTM. The 

incubation was performed for 1 h at room temperature. HRP activity was probed by 

membrane staining using Novex® Chemiluminescent Substrate (Life Technologies, 

Carlsbad, CA, USA). After 5-min development in the dark, the stained membrane was 

placed on the imaging surface of a Molecular Imager® Gel Doc™ XR System (Bio-Rad, 

Hercules, CA, USA) and digital acquisition of the luminescence signal was recorded.  

 

6.2.12 Expression and purification of TEVp 
TEVp was expressed as a His-tagged protein and purified using affinity 

chromatography as previously described (Cabrita et al. 2007). Plasmids were transformed 

into E. coli Rosetta (DE3) pLysS cells (EMD Millipore, Merck KGaA, Darmstadt, Germany) 

using the heat shock method (Sambrook and Russell 2001). A single colony of the 

transformed cells was inoculated in 5 ml Luria Bertani (LB) medium overnight at 30ºC, 180 

rpm. Then, 400 µl of the seed culture was cultivated in 400 ml of LB medium at 37ºC, 180 

rpm. When the cell OD600 nm value reached 0.5, culture was cooled down to 26ºC and 

subsequently induced with isopropyl β-D-1-thiogalactopyranoside (IPTG) at a final 

concentration of 1 mM. The culture was then incubated at 26ºC, 180 rpm for 16 h, and 

harvested by centrifugation at 4ºC, 6000g for 20 min. All cultures were supplemented with 

100 mg L-1 of ampicillin and 34 mg L-1 of chloramphenicol.  

The harvested cell pellet from 800 ml culture was resuspended in 40 ml of TEVp-

Lysis Buffer (20 mM sodium phosphate, 500 mM NaCl, 1% (v/v) Triton X-100, 20 mM 

imidazole, pH 8). One tablet of cOmplete, EDTA-free Protease Inhibitor Cocktail Tablet 

(Catalogue No. 05056489001; Roche, Mannheim, Germany) was added into the buffer 

prior to cell resuspension. Then, the suspension was sonicated for 4 cycles of 40 s using a 

Branson Sonifier 250 cell disruptor mounted with a microtip (Branson Ultrasonics 
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Corporation, Connecticut, USA), and subsequently clarified by centrifugation at 4ºC, 

18500g for 30 min. The supernatant was collected and filtered using a 0.45 µm filter (Pall, 

New York, USA).  

A HisTrap FF 1 ml column (GE Healthcare, UK) was equilibrated with 10 CV of 

TEVp-Lysis Buffer. The clarified supernatant was then loaded into the column at a flow 

rate of 1 ml min-1. Meanwhile, TEVp-Lysis Buffers containing 39.2 mM and 500 mM 

imidazole were prepared for elution. After the supernatant was completely loaded, the 

column was washed with 5 CV of TEVp-Lysis Buffer containing 39.2 mM Imidazole. 

Afterwards, the column was washed with an increasing concentration of imidazole to 500 

mM. The increasing concentration was performed gradually over 15 CV. Finally, the 

column was washed with 7 CV of TEVp-Lysis Buffer containing 500 mM imidazole.  

Selected fractions of purified His-tagged TEVp were applied to a Superdex 75 10/300 

GL column (GE Healthcare, UK). The column was pre-equilibrated with Running Buffer (20 

mM sodium phosphate, 200 mM NaCl, 10% (v/v) glycerol, 5 mM DTT, pH 8) before 

sample loading. The purified His-tagged TEVp was loaded at 0.8 ml min-1. TEVp was 

eluted at a volumetric outflow of approximately 11.5 ml after injection.  

 

6.3 Results and Discussion 
6.3.1 Solubility of GST-tagged modular VP1 bearing thrombin and TEVp cleavage 

sites  
The six modular constructs of modular VP1 generated in this chapter (see Section 

6.2.1) were expressed as GST-tagged proteins, as described in Section 6.2.2. For the 

expression of modular VP1 proteins bearing a thrombin cleavage site, wt-VP1 (wt-VP1 

residues 1-384) was used as a comparison, while for the expression of modular VP1 

proteins bearing a TEVp cleavage site, TEVP-wt-VP1 (wt-VP1 residues 1-384) was used 

as a comparison. Construct TEVP-wt-VP1 was previously reported in the study by 

Connors et al. (Connors et al. 2013). As described in Section 6.2.2, following an overnight 

induction, cell cultures were harvested. The harvested cells were resuspended in Lysis 

Buffer, and lysed by sonication. After sonication, the suspensions were centrifuged to 

remove cell debris. Protein solutions were sampled before and after centrifugation, and the 

samples were analysed using SDS-PAGE.  

Figure 6-4 and Figure 6-5 show the SDS-PAGE analysis results for the GST-tagged 

modular VP1 bearing thrombin and TEVp cleavage sites, respectively. Figure 6-4 shows 

that after centrifugation, the majority of GST-tagged wt-VP1 was found in the soluble 

fractions, showing the high solubility of the protein (Chuan et al. 2008, Lipin et al. 2008, 
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Middelberg et al. 2011). Similar observation was also obtained for GST-tagged GCN4-

H190-GCN4. The majority of GST-tagged GCN4-H190-GCN4 was found in the soluble 

fractions after centrifugation, indicating that the protein had a similar solubility to GST-

tagged wt-VP1. In comparison, a smaller proportion of soluble to total protein was 

observed for GST-tagged H190. These observations indicated that the removal of 31 

residues from the N-terminus and 63 residues from the C-terminus affect the solubility of 

GST-tagged modular VP1, but the effect is a construct-dependent. Furthermore, the figure 

shows that the smallest proportion of soluble to total protein was observed for GST-tagged 

H190-H190, indicating that the majority of the protein had precipitated. The lower solubility 

of GST-tagged H190-H190 compared to the other two modular VP1 proteins was possibly 

due to a single amino acid mutation that occurred during cloning. The mutation was from 

Ser81 to Asn81.  

 

 

 
 

Figure 6-4. SDS-PAGE analysis of the solubility of GST-tagged modular VP1 and wt-VP1 each bearing a 
thrombin cleavage site. (L) Pre-stained protein marker, (T) Total protein, and (S) Soluble protein. Red arrows 
represent GST-tagged VP1. 

 

 

Similar to the observation for GST-tagged wt-VP1 in Figure 6-4, Figure 6-5 shows 

that after centrifugation, the majority of GST-tagged TEVP-wt-VP1 was found in the 

soluble fraction. The figure also shows that the majority of GST-tagged TEVP-H190-H190 

and TEVP-GCN4-H190-GCN4 was found in the soluble fractions. In contrast, a small 
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proportion of GST-tagged TEVP-H190 was found in the soluble fraction, showing that the 

protein had a lower solubility than the other proteins.  

 

 
 

Figure 6-5. SDS-PAGE analysis of the solubility of GST-tagged modular VP1 and wt-VP1 each bearing a 
TEVp cleavage site. Lanes: (L) Pre-stained protein marker, (T) Total protein, and (S) Soluble protein. The 
dominant bands represent GST-tagged VP1 proteins. 

 

 

The solubility analysis result in Figure 6-5 was compared with the result in Figure 6-

4. The comparison was applied for all constructs except H190-H190 and TEVP-H190-

H190. The solubility result of H190-H190 could not be compared to the solubility result of 

TEVP-H190-H190 because construct H190-H190 had a single amino acid mutation. 

Comparison between wt-VP1 and TEVP-wt-VP1 showed that both proteins had a similar 

solubility. This observation indicated that mutation from a thrombin to TEVp cleavage site 

did not affect the solubility of GST-tagged wt-VP1. In contrast, the solubility of GST-tagged 

TEVP-GCN4-H190-GCN4 and TEVP-H190 was lower than the solubility of GST-tagged 

GCN4-H190-GCN4 and H190. It has been shown that mutation from a thrombin to TEVp 

cleavage site did not affect the solubility of GST-tagged wt-VP1. Thus, the lower solubility 

for the modular VP1 bearing TEVp cleavage site may rather be a construct-dependent 

effect. Such observation has been reported in Chapter 5 of this thesis (Section 5.3.3.1). 

Results in the section show that the solubility of GST-tagged modular VP1 bearing two 

copies of H190 from A/Victoria/210/2009 influenza was lower when a thrombin cleavage 

site in the protein was mutated into a TEVp cleavage site. In contrast, the solubility of 
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GST-tagged modular VP1 bearing two copies of H190 from A/California/07/2009 influenza 

was not affected by the mutation.  

Figure 6-5 shows that GST-tagged TEVP-H190 had the lowest solubility compared 

to GST-tagged TEVP-H190-H190 and TEVP-GCN4-H190-GCN4. Protein solubility has 

been linked to the ability of the protein to form crystals. Increased solubility has been 

correlated to a decrease in the crystal-liquid surface tension, resulting in a reduction in the 

energetic barrier to nucleation and an improved ability of the protein to form crystals (Izaac 

et al. 2006). Therefore, the solubility of GST-tagged TEVP-H190 required improvement. In 

this chapter, in an attempt to improve the solubility of GST-tagged TEVP-H190, IPTG 

induction during protein expression (refer to Section 6.2.2) was performed at two different 

OD600 nm values: 0.5 and 0.8. The effect of IPTG induction at different OD600 nm values on 

the solubility of the modular VP1 is shown in Figure 6-6. The figure shows that, following 

induction at OD600 nm value of 0.5, the majority of GST-tagged TEVP-H190 precipitated. In 

contrast, following induction at a higher OD600 nm value of 0.8, the majority of GST-tagged 

TEVP-H190 was found in the soluble fraction. This result shows that IPTG induction at 

OD600 nm of 0.8 resulted in an improved solubility of GST-tagged TEVP-H190. Based on 

this finding, IPTG induction for the expression of GST-tagged TEVP-H190 was performed 

at OD600 nm of 0.8. 

 

 
 

Figure 6-6. SDS-PAGE analysis showing the impact of OD600 nm values during IPTG induction on the 
solubility of GST-tagged modular VP1 bearing one copy of H190 and a TEVp cleavage site (construct TEVP-
H190). Lanes: (L) Pre-stained protein marker, (T) Total protein, and (S) Soluble protein. Red arrows 
represent GST-tagged TEVP-H190. 
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The impact of OD600 nm value during IPTG induction on the solubility of proteins 

during expression has also been reported by two other studies. The study by Galloway et 

al. (Galloway et al. 2003) reported that the solubility of recombinant ACF expressed in E. 

coli BL21 cells was higher when IPTG induction was performed at a late-log phase (OD600 

nm value of 1.7) than at a mid-log phase (OD600 nm value of 0.6). Galloway et al. reported 

that they did not know why a higher OD600 nm value could increase the solubility of 

recombinant ACF, but they suggested two possible explanations. Firstly, at a late-log 

phase, the bacteria cells have undergone a metabolic and growth shift, thus they become 

more tolerant towards foreign and potentially toxic proteins. Secondly, at a late-log phase, 

the cells grow slower, thus the rate of protein synthesis decreases. Hence, less 

aggregation will occur. In agreement with Galloway et al., the study by Choi et al. (Choi et 

al. 2000) showed that the solubility of recombinant E. coli HB101 harbouring pTrcS1PhoA 

was higher when IPTG induction was performed at OD600 nm value of 150 than OD600 nm 

value of 50. Like Galloway et al., Choi et al. reported that the reason of such observation 

was unclear; however, they suggested that the final concentration of IPTG per cell is 

possibly lower at a higher OD600 nm value. Hence, induction at a higher cell density gives 

the same effects as induction with a lower IPTG concentration. Although the recombinant 

proteins studied by Galloway et al. and Choi et al. were not related to MuPyV VP1, these 

studies provided possible explanations for the observations regarding the solubility of 

GST-tagged TEVP-H190.  

 

6.3.2 GST tag removal efficacy of TEVp and thrombin  
Following purification of GST-tagged modular VP1 using affinity chromatography, 

GST was enzymatically removed from modular VP1 using thrombin or TEVp. The purified 

GST-tagged modular VP1 was incubated with thrombin or TEVp, accordingly, as 

described in Section 6.2.3. 

GST tag removal from modular VP1 using thrombin was performed according to the 

protocol optimised for wt-VP1 (VP1 residue 1-384) (Chuan et al. 2008). Using this 

protocol, thrombin digestion was performed for 2 h at room temperature with the ratio of 

GST-tagged modular VP1 to thrombin of 40:1 (thrombin unit/ml protein). Figure 6-7 shows 

SDS-PAGE analysis of GST tag removal from modular VP1 using the aforementioned 

digestion condition. Lanes 1 and 2 of the figure show that after incubating GST-tagged wt-

VP1 (red arrow) with thrombin, two major products were observed. These products were 

(i) wt-VP1, which was shown as a band at about 40 kDa in the gel (blue arrow), and (ii) the 

GST tag, which was shown as a band at about 25 kDa in the gel (green arrow). 
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Furthermore, GST-tagged wt-VP1 was not detected in lane 2 of the figure, indicating that 

thrombin effectively removed GST from the wt-VP1.  

 
 

Figure 6-7. SDS-PAGE analysis of GST-tag removal from modular VP1 and wt-VP1 (wt-VP1 residues 1-384) 
using thrombin. Lanes: (L) Pre-stained protein marker, (1) GST-tagged wt-VP1, (2) Thrombin treated GST-
tagged wt-VP1, (3) GST-tagged H190-H190, (4) Thrombin treated GST-tagged H190-H190, (5) GST-tagged 
GCN4-H190-GCN4, (6) Thrombin treated GST-tagged GCN4-H190-GCN4, (7) GST-tagged H190, (8) 
Thrombin treated GST-tagged H190. Red, blue, and green arrows refer to GST-tagged VP1, VP1, and GST 
tag, respectively. Yellow arrows refer to thrombin secondary products. 
 

 

In contrast, GST tag removal using thrombin for modular constructs H190-H190, 

GCN4-H190-GCN4, and H190 was less effective. The lower effectiveness of thrombin is 

shown in lanes 3-8 of Figure 6-7. The lanes show that for each modular construct, a 

considerable amount of GST-tagged modular VP1 (red arrows) was detected after 2 h 

treatment with thrombin. Increasing both the ratio of thrombin to modular VP1 and 

incubation time during the treatment did not increase the effectiveness of thrombin to 

remove GST (data not shown). The lower thrombin effectiveness to remove GST from the 

three modular VP1 was likely due to the removal of 31 residues from the N-terminal of 

VP1. Although two glycine residues were added before Gly31, removal of these 31 

residues may cause the elimination of a considerable space between GST and VP1, 

making it difficult for thrombin to access its cleavage site. In addition, it was possible that 

the addition of two glycine residues before Gly32 may cause a higher flexibility near the 
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cleavage site; thus, it was difficult for thrombin to access its cleavage site. Furthermore, 

lanes 3-8 show that, in addition to GST tag (green arrows), GST removal using thrombin 

for the three modular constructs resulted in: (i) modular VP1, which was shown by blue 

arrows, and (ii) secondary digestion product, which was shown by yellow arrows. These 

results show that GST removal using thrombin for modular constructs H190-H190, GCN4-

H190-GCN4, and H190 was not only ineffective, but also resulted in heterogeneous 

products.  

This chapter also explored the use of TEVp as a comparison to thrombin. TEVp has 

been used to remove GST from wt-VP1 (wt-VP1 residues 1-384) in the study by Connors 

et al. (Connors et al. 2013). The study shows that TEVp efficiently removed GST from wt-

VP1 at 30°C. The digestion temperature is within the range of temperature for an optimum 

enzymatic activity of TEVp, which is 30-34°C (Connors et al. 2013). Based on this study, 

GST removal optimisation in this chapter was performed at 30°C. In addition, the study by 

Connors et al. also showed the ratio of TEVp to VP1 and incubation time required to 

remove GST from wt-VP1, which was 50:1 (mass ratio) for 2 h. However, in contrast to the 

study by Connors et al., in this chapter, TEVp was utilised to remove GST from modular 

VP1 lacking 31 residues from the N-terminus and 63 residues from the C-terminus. 

Therefore, in this chapter, the TEVp/VP1 ratio and incubation times were optimised for 

each modular construct.  

GST removal for modular constructs TEVP-H190-H190, TEVP-GCN4-H190-GCN4, 

and TEVP-H190 using TEVp was then analysed using SDS-PAGE, as shown in Figure 6-

8A-C. Figure 6-8 shows that for all three modular constructs, two major products were 

observed following treatment with TEVp. These products were: (i) modular VP1, as shown 

by the blue arrows, and (ii) the GST tag, as shown by the green arrows. This result shows 

that TEVp could remove GST from modular VP1 for all three modular constructs, and 

homogeneous products were obtained. This observation was in contrast to the observation 

of GST removal using thrombin (Figure 6-7). Thrombin was shown to be ineffective for 

removing GST from the three modular VP1, and heterogeneous products were obtained.  
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Figure 6-8. SDS-PAGE analysis showing the impacts of incubation time and TEVp to VP1 mass ratio on 
GST removal at 30°C. (A) TEVP-H190-H190, (B) TEVP-GCN4-H190-GCN4, and (C) TEVP-H190. Lanes: (L) 
Pre-stained protein marker, (G) GST-tagged modular VP1, (1/3, 1/5, 1/10, 1/15) Mass ratio of TEVp to 
modular VP1, and (1 h, 2 h, and 4 h) Incubation times. Red, blue, orange, and green arrows refer to GST-
tagged modular VP1, modular VP1, TEVp, and GST tag, respectively.  
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Figure 6-8 also shows that, for all three modular constructs, as the ratio of TEVp to 

VP1 increased, the amount of undigested GST-tagged modular VP1 (red arrow) detected 

on the gels decreased. This result indicates that a higher efficiency of GST removal was 

achieved at a higher TEVp to VP1 ratio. Similarly, a higher efficiency of GST removal was 

achieved at a longer incubation time. The figure shows that, for each TEVp/VP1 ratio, the 

amount of undigested GST-tagged modular VP1 for 4 h digestion was less than 2 h and 1 

h digestions. Thus, the results in the figure show that an effective GST removal using 

TEVp could be achieved at a higher TEVp to VP1 ratio and longer incubation time. 

Furthermore, the results in Figure 6-8 show that, at a digestion temperature of 30°C, the 

optimum GST removal for all three modular constructs was achieved at TEVp/VP1 ratio of 

1:10 with incubation time of 4 h. The optimum TEVp/VP1 ratio and incubation time, 

however, was considerably higher than the ratio required to remove GST from wt-VP1 (wt-

VP1 residues 1-384) efficiently. Such a difference was expected, and most likely due to 

the removal of 31 residues from the N-terminus.  

During optimisation, it was also noticed that, after 1 h treatment at 30°C, 

precipitations were observed for all modular constructs, as indicated from the turbidity of 

the protein solutions. Table 6-3 compares the turbidity of protein solutions for the three 

modular VP1 constructs and TEVP-wt-VP1. As can be seen from the table, protein 

solutions for the three modular constructs were visually more turbid than the solution of 

TEVP-wt-VP1, indicating that the modular constructs precipitated more than TEVP-wt-

VP1. Furthermore, precipitation of the three modular VP1 suggested that the proteins 

became unstable at 30°C during extended incubation in the chosen buffer. Unfortunately, 

the results in this chapter are not sufficient to conclude what caused such instability, but it 

is likely that the intermolecular factors discussed in Chapters 4 and 5 also operate here. 

The observed precipitation may be a manifestation of protein-protein interactions under the 

determined buffer condition, X-ray Buffer. Chapters 4 and 5 have extensively explained 

that in a concentrated salt solution, such as the X-ray Buffer used during GST removal, 

protein-protein interactions are determined by the specific ion effects. The impacts of 

specific ion effects on protein-protein interactions are dependent on the amino acid 

sequence of the proteins, as outlined in Chapter 4. It is possible that, in the same buffer 

conditions, the specific ion effects affected protein-protein interactions for TEVP-wt-VP1 

and the three modular VP1 proteins differently, and consequently a different degree of 

precipitation was observed. To minimise precipitations, GST removal of the three modular 

constructs was alternatively performed at room temperature with a higher TEVp/VP1 ratio 

of 1:5 for 4 h (data not shown). Because the enzymatic activity of TEVp is not optimum at 
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room temperature, the higher TEVp to protein ratio was required to achieve effective GST 

removal.  

 
Table 6-3. Observation of modular VP1 precipitation during GST removal using TEVp at 30°C. 

 
Modular protein Precipitation 

TEVP-H190-H190 ++++ 
TEVP-GCN4-H190-GCN4 ++++ 
TEVP-H190 ++++ 
TEVP-wt-VP1 (VP1 residues 1-384) + 

 

 

Comparison between the use of thrombin and TEVp to remove GST for three 

modular constructs showed that GST removal using thrombin was ineffective, leaving a 

substantial amount of undigested GST-tagged modular VP1. Additionally, the thrombin 

treatment also resulted in heterogeneous products. In contrast, GST removal using TEVp 

was effective, and resulted in homogeneous modular VP1. Therefore, the three modular 

constructs bearing a thrombin cleavage site, which were H190-H190, GCN4-H190-GCN4, 

and H190, were not investigated further.  

 

6.3.3 Contamination of SEC-purified modular VP1 capsomeres with undigested 
GST-tagged modular VP1, GST tag, and 70-kDa contaminant 
Following the incubation of GST-tagged modular VP1 with TEVp, digested proteins 

were clarified using centrifugation to remove precipitates. The supernatants were then 

loaded into an SEC column to separate modular VP1 capsomeres from soluble 

aggregates and the GST tag. The size-exclusion chromatograms of TEVP-H190-H190, 

TEVP-GCN4-H190-GCN4, and TEVP-H190 are shown in Figure 6-9. The figure shows 

that the chromatograms for all three modular constructs look similar. Furthermore, for all 

three modular constructs, three major peaks were observed: (i) a peak corresponding to 

soluble aggregates, which was observed at about 8 ml, (ii) a peak corresponding to 

capsomeres, which was observed at about 13.5 ml, and (iii) a peak corresponding to the 

elution of GST tag, which was at about 16 ml. Figure 6-9 shows that for all three modular 

constructs, capsomeres were eluted at around 13.5 ml. This elution time was later 

compared to the typical elution time of capsomere wt-VP1 (wt-VP1 residues 1-384), which 

was at approximately 12.5 ml (Chuan et al. 2010). In SEC, proteins are separated 

according to their hydrodynamic radius. Proteins with a bigger hydrodynamic radius are 

eluted earlier than those with a smaller radius. Therefore, the shifted elution time for the 

three modular constructs suggested that capsomeres TEVP-H190-H190, TEVP-GCN4-
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H190, and TEVP-H190 had a smaller hydrodynamic radius than capsomere wt-VP1 (wt-

VP1 residues 1-384). The difference in the hydrodynamics radius between the modular 

VP1 capsomeres and wt-VP1 capsomeres was likely attributed to the removal of residues 

from both N- and C-termini.  

 

  
 
Figure 6-9. Size-exclusion chromatograms of modular VP1 following treatment with TEVp. Left panels show 
three major peaks on the chromatograms. Right panels show the fractions of capsomere peaks (B10, B8, 
B6, B4, and B2).  
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Fractions collected from the soluble aggregate and capsomere peaks were then 

analysed using SDS-PAGE, as shown in Figure 6-10. The SDS-PAGE analysis results are 

similar for all three modular constructs. The analysis showed that the soluble aggregates 

contained both VP1 (blue arrows) and GST (green arrows) in equal proportions. These 

results are different from those reported in Section 5.3.3.3. In the section, SDS-PAGE 

analysis result showed that soluble aggregates from SEC purification of modular VP1 

bearing two copies of H190 from A/Victoria/2010/2009 influenza were mainly comprised of 

the modular VP1 protein. Similar results were also obtained for the soluble aggregate peak 

of modular VP1 bearing two copies of H190 from A/California/07/2009 influenza. The 

difference between modular VP1 in Section 5.3.3.3 and modular VP1 in this chapter is that 

the modular VP1 in this chapter lacks of N- and C-terminal residues. Therefore, the 

difference in the content of the soluble aggregates is likely because of the removal of 

those N- and C-terminal residues.  

The presence of the GST tag was not only observed in fractions from the soluble 

aggregate peaks, but also in the fractions from the capsomere peaks. Analysis of fractions 

from capsomere peaks showed that the peaks mainly contained VP1, with a smaller 

proportion of GST tag detected on the gel. The proportion of GST tag was higher for the 

later fractions (fractions B6 – B2) than the earlier fractions (fractions B10 – B6). The 

presence of GST on the fractions of capsomeres indicated that modular VP1 capsomeres 

were poorly separated from GST during SEC, which was possibly because the capsomere 

peak was eluted closer to the peak corresponding to the GST tag. This suggestion was 

supported by the fact that such a high proportion of GST tag in the purified capsomeres 

was not previously observed in wt-VP1 (wt-VP1 residue 1-384) (Connors et al. 2013). In 

their study, Connors et al. analysed SEC-purified capsomere wt-VP1 using SDS-PAGE. 

The analysis showed that the capsomere mainly contained VP1 protein, with a negligible 

proportion of GST tag. Similarly, a study by Wibowo et al. (Wibowo et al. 2013) showed 

that following purification in SEC, modular VP1 capsomere lacking 63 residues from the C-

terminus contained only a small proportion of GST tag. In the studies by Connors et al. 

and Wibowo et al., the molecular weight of the monomeric VP1 was bigger than 42 kDa. 

This molecular weight is bigger than the molecular weight of modular VP1 in this chapter, 

which was shown to be smaller than 36 kDa. The elution time of wt-VP1 capsomeres in 

the study by Connors et al. or modular VP1 capsomeres in the studies by Wibowo et al. 

were farther from the GST compared to modular VP1 capsomeres in this chapter.  

In addition, protein separation in SEC is also determined by physical parameters, 

such as the volume of loaded samples and the buffer flow rate during separation. 
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Therefore, the poor separation between capsomeres and GST was also possible because 

optimisation was required for one or both of these physical parameters. Results in Figure 

6-9 are obtained by loading about 250 µl of digested proteins to Superdex 200 10/300 GL 

(GE Healthcare, UK) at a flow rate of 0.5 ml min-1. According to the manufacturer’s 

recommendations, the column can be used to separate 25 – 500 µl samples a flow rate of 

0.25 – 0.75 ml min-1. Although the determined conditions are within the recommended 

values, it may be necessary to further reduce the volume of loaded samples as well as the 

flow rate during sample loading to increase the resolution of protein separation. 

 

 
 

Figure 6-10. SDS-PAGE analysis of eluted peaks on SEC for modular VP1. (A) TEVP-H190-H190, (B) 
TEVP-GCN4-H190-GCN4, and (C) TEVP-H190. Lanes: (L) Pre-stained protein marker, (1) GST-tagged 
modular VP1, (2) TEVp-treated GST-tagged modular VP1, (3) Samples analysed in SEC, (4) A fraction from 
soluble aggregate peak, (5) Fraction B10, (6) Fraction B8, (7) Fraction B6, (8) Fraction B4, and (9) Fraction 
B2. Red, blue, and green arrows refer to GST-tagged modular VP1, VP1, and GST tag. Orange and pink 
arrows refer to 70-kDa and 60-kDa contaminants. 
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Analysis of the fractions from the capsomere peaks also showed that the modular 

VP1 capsomeres for all three modular constructs contained two other contaminants, which 

were detected as bands at about 60 kDa (pink arrows) and 70 kDa (orange arrows). These 

60-kDa and 70-kDa contaminants were also observed in the study by Fan and Middelberg 

(Fan and Middelberg 2010). In their study, Fan and Middelberg observed two minor 

contaminants of SEC-purified wt-VP1 (VP1 residues 1-384) in an analysis using heavily 

overloaded SDS-PAGE. Peptide mass fingerprinting analysis of these two bands showed 

that the 60-kDa band matched the GroEL protein from E. coli, and the 70-kDa band 

matched the DnaK protein from E. coli. Thus, based on the study by Fan and Middelberg, 

the 60-kDa and 70-kDa bands observed in Figure 6-10 were suggested to be GroEL and 

DnaK from E. coli, respectively. Alternatively, the 60-kDa contaminant was possibly 

undigested GST-tagged modular VP1. Analysis using ProtParam Tool (Gasteiger et al. 

2005) showed that the theoretical molecular weight of GST-tagged modular VP1 were 

about 60 kDa, which was similar to the molecular weight of monomeric GroEL. In an 

attempt to identify the 60-kDa contaminant, western blot analysis using mouse GST 

monoclonal antibody was performed using SEC-purified modular VP1 capsomeres (Figure 

6-11). The result shows that the mouse GST monoclonal antibody recognised the 60-kDa 

contaminant and GST tag, but not the 70-kDa contaminant. Thus, the analysis suggested 

that the 60-kDa contaminant was likely to be undigested GST-tagged modular VP1, 

instead of GroEL protein from E. coli.  

 

 
 

 
Figure 6-11. Identification of the 60-kDa contaminant in the SEC-purified modular VP1 capsomeres using 
western blot analysis. (A) SDS-PAGE analysis of SEC-purified modular VP1, and (B) Western blot analysis 
showing reactivity of mouse GST monoclonal antibody to undigested GST-tagged modular VP1 (red arrows, 
at about 60 kDa) and GST tag (green arrows, at about 25 kDa). Orange and, blue arrows refer to 70-kDa 
contaminant and modular VP1. Lane: (L) Pre-stained protein marker, (1) SEC-purified TEVP-H190-H190, (2) 
SEC-purified TEVP-GCN4-H190-GCN4, and (3) SEC-purified TEVP-H190.  
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The SDS-PAGE analysis in Figure 6-10 showed that the undigested GST-tagged 

modular VP1 was detected in earlier fractions of the peaks (fractions B10-B8), but not in 

later fractions (fractions B6 - B2). The results suggest that the undigested GST-tagged 

modular VP1 could be removed from purified VP1 capsomeres using SEC, integrated into 

the purification step where capsomeres were separated from GST tags and soluble 

aggregates by collecting the later fractions of capsomeres (fractions B6 - B2). However, as 

mentioned in the preceding paragraph, the later fractions of capsomeres contained a 

higher proportion of GST tag. Therefore, removal of the undigested GST-tagged modular 

VP1 using SEC was compensated for by the presence of GST tag. In addition, the SDS-

PAGE analysis results show that the 70-kDa contaminant was detected in all fractions for 

all three modular constructs, indicating that the contaminant could not be removed using 

SEC.  

 

6.3.4 Removal of GST tag and undigested GST-tagged modular VP1 using tandem 
GST columns  
Section 6.3.3 shows that SEC purified modular VP1 capsomeres contained three 

contaminants. These contaminants were: (i) undigested GST-tagged modular VP1, which 

was represented as bands at about 60 kDa, (ii) the GST tag, and (iii) a 70-kDa 

contaminant. The section also shows that the removal of undigested GST-tagged modular 

VP1 using SEC was compensated for by contamination of GST tag. Therefore, an 

alternative purification method was explored to remove both undigested GST-tagged 

modular VP1 and the GST tag from SEC-purified capsomeres. The alternative purification 

method was the use of tandem GST-affinity chromatography columns.  

Removal of these two contaminants from SEC-purified modular VP1 capsomeres 

was maximised by increasing the capacity of the columns to capture GST. In this chapter, 

the increased capture of GST was achieved using two approaches, i.e. (i) the lowered flow 

rate of sample loading, and (ii) the use of serially-connected GST-affinity chromatography 

columns. The first approach focuses on the reduction of flow rate during sample loading 

down to 0.2 ml min-1. The binding of GST to glutathione occurs with slow binding kinetics 

(Habig et al. 1974). Thus, the reduced flow rate increased the contact time between GST 

and immobilised glutathione, and consequently allowed more GST to be captured. In the 

second approach, tandem GST-affinity chromatography columns were used. The first 

GST-affinity chromatography column was expected to remove the majority of undigested 

GST-tagged modular VP1 and GST tags from the sample. Exposing the sample containing 

a residual amount of undigested GST-tagged modular VP1 and GST tag to the second 
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GST-affinity chromatography column was expected to completely remove both 

contaminants.  

Fractions B10-B2 from the capsomere peak of SEC were pooled and loaded into 

tandem GST-affinity chromatography columns. Flow-through fractions were collected 

during sample loading and analysed using SDS-PAGE. Figure 6-12 shows the SDS-PAGE 

analysis results of fractions of the flow-through from tandem GSTrap columns for modular 

constructs TEVP-H190-H190, which looked highly similar to the results for TEVP-GCN4-

H190-GCN4 and TEVP-H190. The analysis showed that undigested GST-tagged modular 

VP1 and GST tag was not detected in the flow-through fractions. This result indicated that 

both contaminants could be removed to below the detection limit from the SEC-purified 

modular VP1 capsomeres using tandem GSTrap columns. In addition, the analysis 

showed that the 70-kDa contaminant could not be removed using tandem GST columns, 

as expected.  

 

 

 
 
Figure 6-12. SDS-PAGE analysis of flow-through fractions from tandem GST-affinity chromatography 
columns for modular VP1 bearing two copies of H190 (construct TEVP-H190-H190). Lanes: (L) Pre-stained 
protein marker, (1) SEC-purified modular VP1 capsomeres, (2-13) Flow-through fractions from tandem 
GSTrap columns. Orange, red, blue, and green arrows refer to 70-kDa contaminant, undigested GST-tagged 
modular VP1, modular VP1, and GST tag, respectively.  
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of H190 in Assembly Buffer 1, which has been optimised for wt-VP1. The chapter also 

showed that modification of the type and concentration of salt ions, as well as pH, of 

Assembly Buffer 1 affected the solubility and the assembly capability of modular VP1 

bearing four copies of H190 in the buffer. The results presented in the chapter suggest that 

these observations reflected protein-protein interactions in a concentrated salt solution, 

which were dependent on the specific ion effects. The specific ion effects are determined 

by the position of anions and cations on the lyotropic (Hofmeister) series (Curtis et al. 

2002a). The Hofmeister series are shown in Figure 6-13. As explained in Chapter 4, in the 

series, ions are positioned according to their surface tension, which is their ability to 

change the hydrogen-binding properties of water (Baldwin 1996). There are two classes of 

ions in the series, chaotropes and kosmotropes (Curtis et al. 2002a). Chaotropes are salts 

with low surface tension. They decrease the surface tension between water and proteins, 

because they interact weakly with water, and break the structure of water molecules. 

Therefore, chaotropes promote salting-in effects, where the solubility of proteins is 

increased. In contrast, kosmotropes are salts with high surface tension. They increase the 

surface tension between water and proteins because they interact strongly with water, 

forming highly ordered shells. In the presence of kosmotropes, water molecules around 

the salt ions are more structured than bulk water. Kosmotropes promote salting-out 

effects, where proteins are forced to merge to minimise the total hydrophobic area of the 

shells and consequently the solubility of proteins is reduced (Zhang and Cremer 2006). 

 

 
 

Figure 6-13. The Hofmeister series of anions and cations. 
 

 

The change in the structure of water molecules is the principal of protein separations 

in hydrophobic interaction chromatography (HIC). In HIC, interactions occur between 

hydrophobic regions of proteins and immobilised hydrophobic ligands. The interactions are 

caused by the salting out effects of salt ions; thus, these interactions are promoted by the 

addition of kosmotropic salt ions. At high concentrations of kosmotropes, proteins are 
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adsorbed on the ligand. In contrast, at low concentrations of kosmotropes, proteins are 

desorbed from the ligand (Xia et al. 2004). However, the increase in kosmotropes 

concentration is limited up to a point at which proteins precipitate. Furthermore, as flagged 

by the results in Chapter 4, changes in the structure of water molecules due to the addition 

of kosmotropes are also dependent on the amino acid sequence of proteins. The addition 

of a certain kosmotrope at a certain concentration will change the structure of water 

molecules to a different degree for different proteins. Therefore, at a pre-determined type 

and concentration of salt ions, interactions between proteins and immobilised hydrophobic 

ligands will differ from one protein to another, meaning that the proteins can be separated.  

Various theories have been developed to explain the adsorption mechanism of 

proteins on the ligand. The first theory is solvophobic theory by Melander and Horváth 

(Melander and Horvath 1977) and Melander et al. (Melander et al. 1984). This theory 

focuses on the association and solvation of salts, proteins, and the ligands. It assumes 

that the molal surface tension increment of the salts determines protein adsorption (Xia et 

al. 2004). In this theory, hydrophobic interactions between proteins and ligands are 

proposed to comprise of two mechanisms: (i) the formation of a cavity in the water above 

the ligand, and (ii) a protein fills the cavity and adsorbs onto the ligand. The importance of 

this theory is that it considers the most important parameters on the effects of salt on 

protein adsorption to be: the salt molality and the molal surface increment of the salt. This 

theory indicates that, at a high salt concentration, the effect of salt concentrations on the 

adsorption of proteins should be proportional to the molal surface tension increment of the 

salt. This indication means that the higher the surface tension increment of the salt, the 

higher the retention time of a protein (Perkins et al. 1997, Queiroz et al. 2001).  

The second theory is based on preferential interaction analysis by Roettger et al. in 

1989 (Roettger et al. 1989). This theory correlates protein adsorption to the preferential 

interactions of salts, proteins, and the ligands. Roettger et al. showed that kosmotropic 

salts have negative preferential interactions with proteins and stationary phases. 

Therefore, these salts promote adsorption. This preferential behaviour is in contrast to the 

behaviour of chaotropic salts. Chaotropic salts have a positive preferential with proteins 

and the stationary phase, and promote desorption (Queiroz et al. 2001). The advantage of 

this theory is that, as for the solvophobic theory, this theory is valid for a wide range of salt 

concentrations. In addition, this theory allows the effects of salts on the observed 

equilibrium constant to be interpreted in the term of a stoichiometric displacement model 

(Perkins et al. 1997). This model describes that adsorption of proteins is followed by 

replacement of a stoichiometric number of water molecules from the interface between 



 180 

proteins and ligands to the bulk (Geng et al. 1990). Furthermore, preferential interaction 

analysis has been used to explain various different phenomena, such as protein 

stabilisation, precipitation, aggregation, ligand binding, and adsorption (Arakawa 1986, 

Fraaije et al. 1991, Ha et al. 1992).  

The third theory is the one by Oscarsson (Oscarsson 1995), which proposes that 

protein adsorption occurs due to conformational changes. Unlike the other two theories, 

this theory describes that the effects of salts on protein adsorption is not a simple 

correlation. According to this theory, protein adsorption occurs because proteins constantly 

modify their conformations. The conformational changes are enhanced by certain types of 

ligands and salts, promoting protein interactions with ligands (Queiroz et al. 2001).  

The fourth theory was proposed by Lin et al. (Lin et al. 2000), based on the 

calorimetric studies on the interactions of imidazole (Chen et al. 1996, Wu et al. 1996) and 

lysozyme (Chen et al. 1997, Lin et al. 1999) in immobilised metal ion affinity 

chromatography at various pH values and salt concentration ranges. This theory suggests 

that the adsorption of proteins is comprised of five mechanisms: (i) dehydration or 

deionisation of proteins, (ii) dehydration or deionisation of the ligand, (iii) hydrophobic 

interactions between proteins and the ligands, (iv) the structural modification of proteins, 

and (v) rearrangement of the excluded water molecules in the bulk solution.  

In this chapter, HIC was explored to remove the 70-kDa contaminant from GST-

purified modular VP1 capsomeres (Section 6.4.3). Hydrophobic ligand Phenyl Sepharose 

HP (GE Healthcare, UK) was selected, because this resin is based on a 34 µm matrix, 

which is ideal for laboratory scale separation processes, offering good resolution and 

capacity trade-off. In addition, a kosmotropic salt, (NH4)2SO4, was selected. (NH4)2SO4 is 

one of the biggest Hofmeister kosmotropes. It has a high solubility and is effective over a 

wide pH range, between 2 and 10 (Yamniuk et al. 2013). Additionally, (NH4)2SO4 was 

selected because it has been known to effectively promote hydrophobic interactions 

between proteins and ligands due to its bigger surface tension increment (Mahn et al. 

2007). At a high concentration, this kosmotropic salt promotes self-association of native 

hydrophobic surfaces in proteins, and consequently promotes the formation of aggregates 

(Yamniuk et al. 2013). Furthermore, the sulphate anions have been shown to have a 

stabilising effect on the native structure of proteins (Arakawa and Timasheff 1982).  

A batch mode purification was performed to determine the optimum concentration of 

(NH4)2SO4, which allowed modular VP1 to be adsorbed to the resin. The purification 

utilised SEC-purified capsomere TEVP-H190-H190 as a model. In this simple experiment, 

saturated (NH4)2SO4 was added into X-ray Buffer containing capsomere TEVP-H190-H190 
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to final concentrations of 0%, 2.5%, 5%, 7.5%, 10%, 12.5%, and 15% (v/v). After the 

addition of (NH4)2SO4, precipitates were observed for protein solutions containing 12.5% 

and 15% of (NH4)2SO4, but not for other concentrations. The protein solutions were then 

centrifuged to remove precipitates, and the supernatants were incubated with Phenyl 

Sepharose HP resin. After incubation, the mixtures were centrifuged to separate the resin 

from the solutions. Samples were taken from the protein solutions before and after 

incubation with the resin. SDS-PAGE analysis of these samples is shown in Figure 6-14. 

The analysis shows that that the total protein before incubation with the resin at 12.5% and 

15% of (NH4)2SO4 was less than the total proteins at other concentrations. This result 

confirmed the aforementioned observation that the modular VP1 precipitated at these two 

concentrations of (NH4)2SO4. Additionally, the analysis showed that as the concentration of 

(NH4)2SO4 increased, the proportion of TEVP-H190-H190 (blue arrow) in the solutions 

after incubation decreased. This decrease indicated an increase in the proportion of 

TEVP-H190-H190 adsorbed to the ligand. The effects of (NH4)2SO4 concentrations on the 

amount of TEVP-H190-H190 adsorbed to the ligand was in good agreement with literature, 

which showed that the hydrophobic interactions between proteins and ligands are 

enhanced at increasing salt concentration (Perkins et al. 1997). The result may also reflect 

the protein-protein interaction phenomenon discussed at the beginning of this section, as 

well as in Chapter 4. The X-ray Buffer in this chapter contained 100 mM NaCl. Therefore, 

the buffer is classified as a concentrated salt solution, in which protein-protein interactions 

are driven by specific ion effects. Here, the specific ion effects were represented by the 

variations of the concentration of (NH4)2SO4 in X-ray Buffer. Furthermore, the SDS-PAGE 

analysis showed that a complete adsorption of TEVP-H190-H190 to the ligand was 

achieved at 10% (v/v) of (NH4)2SO4. The concentration of (NH4)2SO4 was also optimum, 

because TEVP-H190-H190 did not precipitate at this concentration.  
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Figure 6-14. SDS-PAGE analysis showing the impact of (NH4)2SO4 concentrations on the adsorption of 
modular VP1 bearing two copies of H190 (modular construct TEVP-H190-H190) to Phenyl Sepharose HP 
resin. Lanes: (L) Pre-stained protein marker, (F) Total protein before incubation with the resin, and (S) Total 
protein after incubation with the resin. Blue arrow refers to the modular VP1.  
 

 

6.3.5.2 In bed mode 
The results in Section 6.3.5.1 show that it was possible to bind the capsomeres 

TEVP-H190-H190 in X-ray Buffer to Phenyl Sepharose HP resin, and that complete 

binding was achieved at 10% (v/v) of saturated (NH4)2SO4. This finding was then 

translated into a bed mode purification to remove the 70-kDa contaminant from modular 

VP1 capsomeres for all three modular constructs: TEVP-H190-H190, TEVP-GCN4-H190-

GCN4, and TEVP-H190. Pooled fractions of modular VP1 capsomeres from purification 

using SEC in X-ray Buffer (as described in Section 6.2.4) were loaded into tandem GST 

columns (Section 6.2.5). Afterwards, pooled flow-through fractions from the GST columns 

were mixed with saturated (NH4)2SO4 to a final concentration of 10% (v/v). The mixtures 

were then loaded into a HiTrap Phenyl HP column, which was pre-equilibrated with X-ray 

Buffer containing 10% (v/v) (NH4)2SO4. Bound proteins were eluted step by step in X-ray 

Buffer containing 9%, 7%, 5%, and 0% (v/v) (NH4)2SO4. 

Figure 6-15, Figure 6-16, and Figure 6-17 show the chromatograms for modular 

constructs TEVP-H190-H190, TEVP-GCN4-H190-GCN4, and TEVP-H190, respectively. 

These figures show that the chromatogram profiles for modular constructs TEVP-H190-

H190 and TEVP-H190 were similar, and they were different from the chromatogram profile 

for TEVP-GCN4-H190-GCN4. This observation indicated that at the determined buffer 

condition, in this case X-ray Buffer containing 10% (v/v) (NH4)2SO4, capsomeres for each 

modular construct interacted differently with the phenyl ligand. As mentioned in Section 

6.3.5.1, the adsorption of a protein to a ligand is enhanced by the presence of a 
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kosmotrope. A kosmotrope interacts strongly with water molecules, forming highly ordered 

shells. These shells cause the proteins to be thermodynamically unstable, promoting them 

to adsorb onto the ligand. Therefore, the difference in the capability of modular VP1 

capsomeres to adsorb the phenyl ligand under the same buffer composition may reflect 

the difference in salting out effects of (NH4)2SO4 on capsomeres from the three modular 

constructs. The kosmotrope, in this case (NH4)2SO4, may change the surface tension 

between water and modular VP1 capsomere molecules differently. Such differences may 

be caused by possible structural differences of modular VP1 capsomeres for the three 

constructs. Modularisation of different antigen modules may change the structural integrity 

of the VP1 protein, exposing residues that were otherwise buried and inaccessible from 

the surface. However, this possibility is yet to be answered from the resolved crystal 

structures of capsomeres of the three modular constructs. 

Figure 6-15A shows that no peak was observed for TEVP-H190-H190-GCN4 during 

sample loading, indicating that at the defined buffer condition, the modular VP1 adsorbed 

strongly onto the Phenyl ligand. Furthermore, during elution, only one peak was observed. 

The peak was eluted at 0% (v/v) of (NH4)2SO4, and the peak skewed to the left side 

(Figure 6-15B). Fractions from this peak were then analysed using SDS-PAGE, as shown 

in Figure 6-15C. Comparison between lane 1 and 2 in the figure shows that after 

purification using tandem GST columns, the modular VP1 contained a considerably 

smaller proportion of undigested GST-tagged TEVP-H190-H190 (red arrow) and GST tag 

(green arrow). This result was consistent with the findings in the previous section. 

Furthermore, the SDS-PAGE analysis showed that a small proportion of the 70-kDa 

contaminant (orange arrow) was detected in the earlier fractions of the eluted peak, which 

were fractions F1-F3 (lanes 4-6). The proportion of the 70-kDa contaminant was 

considerably smaller than the proportion of the contaminant in the SEC-purified (lane 1) 

and GST-purified (lane 2) capsomeres. Furthermore, the contaminant was not detected in 

the later fractions, which were fractions F4-F7 (lanes 7-10). This result indicates that the 

contaminant could be removed using a HiTrap Phenyl HP column.  
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Figure 6-15. Removal of 70-kDa contaminant using HiTrap Phenyl HP for modular VP1 bearing two copies of 
H190 (construct TEVP-H190-H190). (A) A chromatogram showing sample loading and step elution during 
purification, (B) A chromatogram showing fractions of the peak eluted at 0% (v/v) (NH4)2SO4, and (C) SDS-
PAGE analysis showing the removal of 70-kDa contaminant. Lanes: (L) Pre-stained protein marker, (1) SEC-
purified modular VP1 capsomeres, (2) GST-purified modular VP1 capsomeres, (3) GST-purified modular 
VP1 capsomeres containing 10% (v/v) (NH4)2SO4, and (4) Fraction F1, (5) Fraction F2, (6) Fraction F3, (7) 
Fraction F4, (8) Fraction F5, (9) Fraction F6, and (10) Fraction F7. Orange, red, blue, and green arrows refer 
to 70-kDa contaminant, undigested GST-tagged modular VP1, modular VP1, and GST tag, respectively. 
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Different from the chromatogram for TEVP-H190-H190, the chromatogram for 

TEVP-GCN4-H190-GCN4 in Figure 6-16A shows that two peaks were observed. The first 

peak was eluted during sample loading until the elution step using X-ray Buffer containing 

7% (v/v) of (NH4)2SO4, indicating that the modular VP1 capsomeres adsorbed weaker to 

the phenyl ligand. Unfortunately, due to its low absorbance reading, the first peak was not 

analysed in SDS-PAGE, thus the content of this peak remains unknown. Furthermore, the 

second peak was eluted at 0% (v/v) of (NH4)2SO4. Figure 6-16B shows that the eluted 

peak appears to be a merger of two peaks that were close each other. SDS-PAGE 

analysis (Figure 6-16C) of fractions from the eluted peak at 0% (v/v) of (NH4)2SO4 for 

TEVP-GCN4-H190-GCN4 showed that this peak mainly contained modular VP1, with a 

negligible amount of the 70-kDa contaminant. Furthermore, the analysis showed that the 

purity of all fractions from the peak was similar, although Figure 6-16B shows that the peak 

was comprised of two peaks. This observation was in contrast to the observations in 

construct TEVP-H190-H190, which showed that the earlier fraction of the peak contained a 

higher proportion of the 70-kDa contaminant than the later fraction. In addition, the finding 

shown in Figure 6-16, that the peak eluted at 0% (v/v) of (NH4)2SO4 contained high purity 

modular VP1, was in agreement with the findings for TEVP-H190-H190. This suggests that 

modular VP1 adsorbing strongest to the medium was of high purity.  
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Figure 6-16. Removal of 70-kDa contaminant using HiTrap Phenyl HP for modular VP1 (VP1 residue 32-
320) bearing one copy of H190, flanked by GCN4 helix promoter elements (construct TEVP-GCN4-H190-
GCN4). (A) A chromatogram showing sample loading and step elution during purification, (B) A 
chromatogram showing fractions of the peak eluted at 0% (v/v) (NH4)2SO4, and (C) SDS-PAGE analysis 
showing the removal of 70-kDa contaminant. Lanes: (L) Pre-stained protein marker, (1) SEC-purified 
modular VP1 capsomeres, (2) GST-purified modular VP1 capsomeres, (3) GST-purified modular VP1 
capsomeres containing 10% (v/v) (NH4)2SO4, and (4) Fraction F1, (5) Fraction F2, (6) Fraction F3, (7) 
Fraction F4, (8) Fraction F5, (9) Fraction F6, and (10) Fraction F7. Orange, red, blue, and green arrows refer 
to 70-kDa contaminant, undigested GST-tagged modular VP1, modular VP1, and GST tag, respectively. 
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Similar to the chromatogram profile for TEVP-H190-H190, Figure 6-17A shows that 

for TEVP-H190, the UV absorbance level was maintained at the baseline during sample 

loading. Like the other two modular constructs, a peak was eluted at 0% (v/v) (NH4)2SO4 

(Figure 6-17B). The chromatogram of TEV-H190 indicated that like capsomere TEVP-

H190-H190, capsomere TEVP-H190 bound more strongly to the phenyl ligand than TEVP-

GCN4-H190-GCN4. Furthermore, SDS-PAGE analysis (Figure 6-17C) showed that the 

peak eluted at 0% (v/v) (NH4)2SO4 mainly contained modular VP1, with a negligible 

proportion of impurities. Additionally, the analysis showed that the purity of all fractions 

from the peak was similar. This finding was in good agreement with the analysis result for 

the other two modular constructs, confirming that modular VP1 bound the strongest to the 

ligand was of high purity. It is reasonable to suggest that such an observation was linked 

to the function of a chaperone. In this chapter, the 70-kDa contaminant was not identified, 

but it was suggested to be the E. coli protein, DnaK (Fan and Middelberg 2010). DnaK is 

the major bacterial Hsp70, which prevents the aggregation of misfolded proteins and 

promotes refolding. It acts as a chaperone and binds to unfolded polypeptides via 

hydrophobic regions on the proteins (reviewed in Chapter 2). It was possible that in the 

presence of 10% (v/v) (NH4)2SO4, modular VP1 preferred the ligand to DnaK. DnaK binds 

via hydrophobic regions on the modular VP1; therefore, the lower the proportion of DnaK 

on the proteins indicates that the more hydrophobic regions are exposed on the proteins. 

In HIC, protein adsorption to the ligand is modulated via the hydrophobic surfaces on 

proteins. Thus, the more hydrophobic surfaces available on the proteins, the stronger the 

protein will be adsorbed to the ligand. Therefore, proteins bound the strongest to the 

ligands were those with the lowest proportion of DnaK, or in the other words, with the 

highest purity.  
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Figure 6-17. Removal of 70-kDa contaminant using HiTrap Phenyl HP for modular VP1 bearing one copy of 
H190 (construct TEVP-H190). (A) A chromatogram showing sample loading and step elution during 
purification, (B) A chromatogram showing fractions of the peak eluted at 0% (v/v) (NH4)2SO4, and (C) SDS-
PAGE analysis showing the removal of 70-kDa contaminant. Lanes: (L) Pre-stained protein marker, (1) SEC-
purified modular VP1 capsomeres, (2) GST-purified modular VP1 capsomeres, (3) GST-purified modular 
VP1 capsomeres containing 10% (v/v) (NH4)2SO4, and (4) Fraction F1, (5) Fraction F2, (6) Fraction F3, (7) 
Fraction F4, (8) Fraction F5, (9) Fraction F6, and (10) Fraction F7. Orange, red, blue, and green arrows refer 
to 70-kDa contaminant, undigested GST-tagged modular VP1, modular VP1, and GST tag, respectively. 
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For all three modular constructs, the majority of the modular VP1 capsomeres was 

eluted at 0% (v/v) (NH4)2SO4. For modular constructs TEVP-GCN4-H190-GCN4 and 

TEVP-H190, SDS-PAGE analysis of fractions from peaks eluted at 0% (v/v) (NH4)2SO4 

showed that the 70-kDa contaminant was not detected. These results indicate that HIC 

effectively removed the 70-kDa contaminant from capsomeres of both modular constructs, 

consequently yielding high-purity modular VP1 proteins. However, for TEVP-H190-H190, a 

considerably smaller proportion of the contaminant was detected. This may indicate that 

the purification strategy using HIC was less slightly effective for removing the 70-kDa 

contaminant for the modular VP1 capsomeres. This observation was not in agreement with 

a previous discussion, which suggested that the chromatogram profiles of TEVP-H190-

H190 and TEVP-H190 were similar, but were different to the profile of TEVP-GCN4-H190-

GCN4.  

HIC purification for modular constructs TEVP-GCN4-H190-GCN4 and TEVP-H190 

was then performed on a large scale for crystallisation. Fractions from the peak eluted at 

0% (v/v) (NH4)2SO4 were analysed using SDS-PAGE (Figure 6-18). The analysis showed 

that, consistent with the results from small-scale purification, for both modular constructs, 

the eluted peaks contained high purity modular VP1 proteins. The 70-kDa contaminant 

was not detected in the gel, confirming the effectiveness of HIC at removing the E. coli 

protein from the modular VP1 both on small and large scales.  

 

 
 
Figure 6-18. SDS-PAGE analysis of fractions from peaks eluted at 0% (v/v) (NH4)2SO4 at a large scale HIC 
purification of modular VP1 capsomeres. (L) Pre-stained protein marker, (1-6) TEVP-H190, and (7-10) 
TEVP-GCN4-H190-GCN4. Black arrows refer to VP1. 
 

 

kDa 
160 

80 

60 

50 
40 

 

30 
 

20 

L   1     2     3    4     5    6      7     8    9   10 



 190 

HIC-purified modular VP1 capsomeres were then analysed using SEC coupled with 

MALS (Figure 6-19). The SEC-MALS analysis results showed that, for both modular 

constructs, peaks corresponding to soluble aggregates were not observed. The peak 

should be eluted at approximately 8 ml after sample injection. This observation indicated 

that following purification using HIC, capsomeres for both modular constructs were stable 

in solution (20 mM Tris-base, 100 mM NaCl, pH 8.0), and did not form soluble aggregates. 

Furthermore, Figure 6-19A shows that two major peaks were detected for construct TEVP-

GCN4-H190-GCN4. These peaks corresponded to modular VP1 capsomeres and dimeric 

modular VP1 capsomeres. In contrast, Figure 6-19B shows that one major peak was 

detected for construct TEVP-H190. The peak corresponded to modular VP1 capsomeres. 

For TEVP-H190, peaks corresponding to dimeric modular VP1 capsomeres were 

negligible. The SEC-MAS analysis results showed that under the same buffer conditions, 

capsomeres for TEVP-GCN4-H190-GCN4 and TEVP-H190 had different quaternary 

structures. Capsomere TEVP-GCN4-H190-GCN4 had a higher tendency to form dimeric 

capsomeres than capsomere TEVP-H190. The different quaternary structures between 

both modular VP1 capsomeres may be because the determined buffer conditions 

promoted stronger intermolecular interactions for capsomere TEVP-GCN4-H190-GCN4 

than for capsomere TEVP-H190.  
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Figure 6-19. Analysis of quaternary structure of HIC-purified modular VP1 capsomeres using SEC-MALS. 
(A) TEVP-GCN4-H190-GCN4, and (B) TEVP-H190. Continuous lines represent UV absorbance at 280 nm 
(UV) and dashed lines represent light scattering (LS). 
 

 

HIC-purified modular VP1 capsomeres were then concentrated using saturated 

(NH4)2SO4 at a concentration above 2 mg ml-1 to screen for the optimum conditions for 

crystallisation. These samples were sent to the Australian Synchrotron (Melbourne, 

Australia) for crystallisation screening to be performed in collaboration with the Beamline 

team of Macromolecular crystallography (Protein crystallography), Dr Tom Caradoc-Davis 

and Dr Santosh Panjikar. However, this work could not be completed within the timescale 

of this thesis; thus, it is considered to be future work and is discussed in Chapter 7. 
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6.4 Conclusions 
This chapter accomplished Objective 4 by (i) demonstrating a mild and satisfactory 

process for the production of high-purity of modular VP1 capsomeres, and (ii) sending the 

purified proteins for screening of optimal conditions for crystallisation. Three modular 

constructs were selected, of which the molecular structures of the modularised H190 in 

these three constructs are yet to be resolved. VP1 of these modular constructs comprised: 

(i) one copy of H190, (ii) two copies of H190 tandem repeats, and (iii) one H190 flanked by 

helix promoter elements. The three selected modular VP1 were also designed to lack the 

31 N-terminal residues and 63 C-terminal residues. 

The mild and satisfactory process by which to achieve high-purity modular VP1 

capsomeres was developed based on the previously reported processes for the 

expression and purification of wt-VP1 (wt-VP1 residues 1-384) (Chuan et al. 2008, Lipin et 

al. 2008, Middelberg et al. 2011). Using the previously reported processes, the three 

modular VP1 were expressed as a GST-tagged protein. The GST tag was then removed 

using thrombin, and modular VP1 capsomeres were separated from soluble aggregates 

and GST tag using gel filtration. This chapter shows that these processes were unable to 

produce high-purity modular VP1 capsomeres, which is mandatory to obtain a high quality 

crystal. Two obstacles were faced, i.e. (i) ineffective GST removal by thrombin, and (ii) a 

lower purity of purified modular VP1 capsomeres due to the presence of undigested GST-

tagged modular VP1, GST tag, and 70-kDa contaminant.  

These obstacles were overcome by performing three key modifications on the 

previously reported processes. The first modification was the use of a protease of a 

smaller molecular weight than thrombin to achieve efficient enzymatic removal of the GST 

tag. In this chapter, tobacco etch virus protease was used to replace thrombin. TEVp was 

shown to remove GST from modular VP1 more effectively, and resulted in proteins with a 

higher homogeneity. The second modification was the use of serially connected GST-

affinity chromatography columns, comprising GSTrap HP and GSTrap FF columns. This 

modification was to remove undigested GST-tagged modular VP1 and GST tag from SEC-

purified modular VP1 capsomeres using a flow-through purification strategy. The third 

modification was the use of hydrophobic interaction chromatography (HIC) to remove the 

70-kDa contaminant from GST-purified modular VP1 capsomeres. The contaminant was 

suggested to be DnaK protein from E. coli.  

The developed purification process for the production of high-purity modular VP1 

capsomeres utilised chromatographic systems, of which the media were chemically stable 

and commercially available. No invasive methods were used during the production 
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process. This chapter shows that the process could easily be scaled up. Furthermore, the 

production process was applicable for three modular constructs, indicating that the 

process could potentially be used to produce other modular VP1 capsomeres of high-

purity.  
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7 Chapter 7. Conclusions and future work 
 

7.1 Summary of research findings 
Virus-like particle (VLP) technology based on a microbial platform is a promising 

alternative to vaccine production from live viruses in chicken eggs and cell culture. A VLP 

is a macromolecular assembly of viral capsid proteins. It is tolerant to insertions of peptide 

antigen elements from foreign pathogens, yielding modular VLPs. Such insertions can be 

performed via genetic recombination technology. Additionally, the absence of genomic 

material makes VLPs a safe vaccine for humans. The Centre for Biomolecular Engineering 

has extensively studied VLPs from murine polyomavirus (MuPyV) VP1 protein, which is 

produced as a Glutathione S-transferase (GST)-tagged protein using an E. coli expression 

system. VLPs are assembled in vitro from purified subunits, yielding pure homogenous 

VLPs. The microbial platform has been optimised for scaled-up production at a gram-per-

litre level. Therefore, it allows for fast vaccine production to respond rapidly in a case of a 

nascent pandemic.  

In this thesis, MuPyV VP1 VLPs are exploited to present antigen modules containing 

a peptide antigen element from influenza A virus, i.e. helix 190 (H190). H190 is a 

hypervariable helical element that borders the highly conserved receptor-binding site in the 

globular domain of the haemagglutinin (HA) protein. It also overlaps an antigenic site that 

induces B-cell responses. Many studies on VLPs presume that when a peptide antigen is 

removed from the context of the intact protein and modularised on an unrelated VLP it may 

not be able to assume its native conformation. However, the native conformation of a 

peptide antigen is important for the induction of high-quality antibodies. In this thesis, 

antibody quality is defined as the ability of antibodies to recognise the intact proteins. 

Presentation of a peptide antigen on a modular VLP is not yet fully understood and the 

impacts of antigen display strategy approaches on the quality of the induced antibodies 

are not understood. This thesis aims to understand the presentation of H190 on a modular 

MuPyV VP1 VLP necessary for the induction of high-quality antibodies. 

 

The studies discussed in this thesis were designed to answer four major unknowns in the 

presentation of H190 on a modular VLP: 

 

1. Effect of display strategy on the quality of antibodies 

The experimental work compared two display strategies to modularise peptide antigen 

H190 from the influenza virus strain A/California/07/2009. These strategies are: (i) the use 
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of helix promoter elements to flank one H190 element, and (ii) tandem repeat arraying of 

two copies of H190. The work highlighted that the two display strategies resulted in 

different antibody qualities even though their immunogenicities were similar. 

Modularisation of H190 using the tandem repeat display strategy induced higher quality 

antibodies than modularisation using flanking helix promoter elements (Chapter 3).  

 

2. Improvements to the tandem repeat display strategy for induction of higher quality 

antibodies 

The experimental work investigated what improvements to the tandem repeat display 

strategy can be made to induce higher quality antibodies. Two approaches were explored, 

i.e. (i) increasing the number of H190 tandem repeats, and (ii) the use of adjuvant. The 

work highlighted that the quality of antibodies induced by two copies of H190 tandem 

repeats was optimised; therefore, further improvements to the display strategy were not 

required (Chapter 4).  

 

3. Challenging the tandem repeat display strategy with a hydrophobic H190 variant 

The applicability of the tandem repeat display strategy for a hydrophobic H190 variant from 

influenza virus strain A/Victoria/210/2009 was investigated (Chapter 5). The H190 is 

hydrophobic, and the hydrophobic residues are centred in the middle of its amino acid 

sequence. The experimental work revealed that following GST tag removal using 

thrombin, modular VP1 bearing two copies of the hydrophobic H190 tandem repeats had 

an increased tendency to form soluble aggregates; thus, modular VP1 capsomeres could 

not be obtained. The modular VP1 also had an increased proportion of a secondary 

digestion product. In an attempt to minimise the tendency of modular VP1 to form soluble 

aggregates, charged residues were utilised to flank two copies of the H190. 

Simultaneously, to minimise the proportion of the secondary digestion product, two 

proteases, i.e. thrombin and TEVp, were compared. This work opened the way to further 

studies based around the novel finding that the inclusion of anionic repeat residues within 

an inserted antigen module could allow the recovery of modular VP1 capsomeres, even for 

those elements having high hydrophobicity.  

 

4. Structural determination of H190 element on a modular VLP 

The first steps toward obtaining the crystal structures of H190 modularised on MuPyV VP1 

using three different display strategies were carried out (Chapter 6). The three modular 

VP1 proteins were designed to lack 31 N-terminal residues and 63 C-terminal residues. 
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The purification process for wt-VP1 (Chuan et al. 2008, Lipin et al. 2008, Middelberg et al. 

2011) was shown to encounter two challenges when it was used to produce highly pure 

preparations of the three modular VP1 proteins. These challenges were: (i) the 

ineffectiveness of thrombin in removing the GST tag from the modular VP1, and (ii) the 

presence of undigested GST-tagged modular VP1, GST tag, and 70-kDa contaminant in 

the modular VP1 capsomeres after purification using gel filtration. To address these 

challenges, two modifications were made to the purification process for wt-VP1, i.e. (i) 

replacement of the thrombin protease with TEVp, (ii) additional purification of modular VP1 

capsomeres using tandem GST affinity chromatography columns followed by hydrophobic 

interaction chromatography. With these modifications, the purification process produced 

high-purity modular VP1 capsomeres suitable for crystallisation. 

 

The following sections summarise key findings obtained from the experimental work in this 

thesis: 

 

7.1.1 Effects of the display strategy on the quality of the antibodies 
This experimental work (Chapter 3) was conducted to investigate the effects of the 

display strategy on the quality of the antibodies. Two modular VLP constructs were 

generated; i.e.: (i) VP1-GCN4-H190-GCN4, and (ii) VP1-H190-H190. These two 

constructs represented modularisation of H190 from A/California/07/2009 influenza on 

MuPyV VP1 VLPs using two display strategies. These strategies were: (i) the use of 

flanking helix promoter elements, and (ii) a tandem repeat display. In the first display 

strategy (modular construct VP1-GCN4-H190-GCN4), one copy of H190 was flanked by 

helix promoter elements derived from the GCN4 protein. The flanked H190 was connected 

to the VP1 protein via GSGS spacer elements comprised of amino acid residues Gly-Ser-

Gly-Ser. Glycine and serine have often been used as the major components of linkers 

used to connect two domains and provide flexibility to peptide epitopes that are genetically 

inserted into a viral capsid protein (Huston et al. 1988). In the second strategy (modular 

construct VP1-H190-H190), two copies of H190 tandem repeats were displayed. Tandem 

repeat arraying of peptide epitopes has been proven to effectively present the peptide 

epitope folded into its native conformation (Fontenot et al. 1995, Fontenot et al. 1993).  

Analysis of the modular VLPs using asymmetric flow-field flow fractionation (AF4) 

and transmission electron microscopy (TEM) showed that both modular VLPs were 

morphologically indistinguishable and similar to wild-type (wt)-VP1 VLPs. Additionally, the 

proportions of soluble aggregates for both modular constructs and wt-VP1 were negligible. 
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This validation of the quaternary structures for both modular VLPs underlined that any 

difference in results between the two modular VLPs from the in vivo study were due to the 

difference in the display strategy rather than differences in the morphology of the VLPs or 

the presence of soluble aggregates. 

The immunogenicity of modularised H190 and the quality of the induced antibodies 

were evaluated in vivo using mice. Groups of mice were immunised with wt-VP1, VP1-

GCN4-H190-GCN4, and VP1-H190-H190 VLPs. Sera from the mice then were analysed 

against various antigens in dot blot immunoassay, as well as indirect and competitive 

ELISA. The immunogenicity of the modularised H190 was analysed by testing the mouse 

sera against peptide H190. Meanwhile, antibody quality was assessed by testing the 

mouse sera against recombinant HA1 protein produced in insect cells. The in vivo study 

showed three important results.  

First, both modular VLPs were equally able to induce high titre IgGs specific to the 

H190 peptide (>105). This result was in agreement with other studies showing that 

modularisation of a peptide antigen on a VLP could promote the immunogenicity of a 

peptide antigen which otherwise may not be immunogenic (Neirynck et al. 1999). 

Additionally, the similar H190 sequence-specific IgG titres between the two modular VLPs 

confirmed that the display strategy of H190 did not affect its immunogenicity. Second, both 

modular VLPs were able to induce IgGs recognising recombinant HA1 protein produced 

from insect cells. VP1-H190-H190 VLPs induced IgGs recognising the recombinant HA1 

protein at a titre of higher than 104. In contrast, VP1-GCN4-H190-GCN4 VLPs induced 

HA1-specific IgGs at a titre of less than 103. This difference in the titre of the IgGs 

recognising the HA1 protein suggested that the two modular VLPs induced antibodies of 

different quality. Furthermore, glycoprotein staining confirmed that the HA1 protein carried 

N-glycans. The ability of the induced IgGs to bind to the HA1 protein was not abolished 

when the N-glycans were removed from the protein by treatment with PNGase F enzyme. 

This result showed that the binding of IgGs induced by modular VLPs was not affected by 

the glycosylation of the native protein. Third, VP1-H190-H190 VLPs were shown able to 

induce IgGs recognising the trivalent influenza vaccine, Fluvax®, containing split influenza 

virions. In contrast, binding of IgGs induced by VP1-GCN4-H190-GCN4 VLPs to Fluvax® 

was similar to the binding induced by wt-VP1 VLPs. This result confirmed the finding that 

the two modular VLPs induced antibodies of different quality. Since the display strategy of 

H190 affected neither the morphology of the modular VLPs nor the immunogenicity of the 

H190, the in vivo study suggested that the antibody quality difference was due to the 

difference in the display strategy. 
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These results showed that the key finding of the experimental work in Chapter 3 

was that the display strategy used to modularise H190 on the MuPyV VP1 protein did not 

affect the its immunogenicity, but did affect the quality of antibodies induced against the 

modular VLPs.  

The study by Alvarez et al. showed that the quality of the antibodies reflects the 

protective efficacy of the antibodies (Alvarez et al. 2010). A higher antibody quality 

indicates a greater potential protection efficacy. Therefore, the key finding in this 

experimental work leads to the question: What improvements can be made to the tandem 

repeat display strategy to induce antibodies of a higher quality? The following 

experimental work (Chapter 4) was performed to address this question.  

 

7.1.2 Improvements in the display strategy to induce higher quality antibodies 
Motivated by the findings in Chapter 3, the experimental work in Chapter 4 

compared two approaches in an attempt to improve the antibody quality obtained from two 

copies of H190 tandem repeats (VP1-H190-H190 VLPs). These approaches were: (i) the 

use of AdvaxTM-1 as an adjuvant for VP1-H190-H190 VLPs, and (ii) increasing the copy 

number of H190 tandem repeats from one to five copies. The experimental work in this 

chapter indicated two major findings, which are related to (i) the solubility and assembly 

capability of modular VP1, and (ii) the antibody quality induced by modular VLPs. Modular 

VLPs bearing five copies could not be obtained; thus, this modular construct was not 

investigated in the in vivo study.  

The results in this chapter showed that increasing the number of H190 tandem 

repeats from one to five copies (i) reduced the capacity of the modular VP1 to self-

assemble to form VLPs, and (ii) increased the tendency of the modular VP1 to precipitate 

in Assembly Buffer 1, which was optimised for wt-VP1. When assembled in Assembly 

Buffer 1, modular VP1 bearing four and five copies of H190 precipitated more than 

modular VP1 bearing three copies of H190. Furthermore, while modular VP1 bearing three 

copies of H190 assembled into VLPs under the established assembly conditions, only a 

small proportion of modular VLPs bearing four copies of H190 was obtained and modular 

VLPs bearing five copies of H190 could not be obtained at all. In order to increase the 

solubility and assembly capability of modular VP1 bearing four or five copies of H190, two 

parameters of protein-protein interactions were manipulated, i.e. (i) the net surface charge 

of the proteins (zeta potential), and (ii) specific ion effects. Manipulation of the zeta 

potential for each modular VP1 was performed by modifying the pH of Assembly Buffer 1 

and hence the ionisation state of residues on the capsomere surface. Meanwhile, 
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variations in specific ion effects were achieved by changing both the type and 

concentration of salts in Assembly Buffer 1. The results in Chapter 4 showed that pH 

modification greatly affected the assembly capability of modular VP1 bearing four copies of 

H190, but affected the solubility of the modular VP1 only slightly. In contrast, changes in 

the pH of Assembly Buffer 1 did not affect the assembly capability or solubility of modular 

VP1 bearing five copies of H190. Furthermore, the results in this chapter showed that both 

the type and concentration of salt ions in Assembly Buffer 1 affected the assembly 

capability and solubility of modular VP1 bearing four copies of H190 significantly. These 

results showed that in Assembly Buffer 1 the influence of specific ion effects on the 

assembly capability and solubility of modular VP1 was greater than the influence of pH, as 

expected from literature on protein-protein interactions in a concentrated salt solution. 

Nevertheless, the result showing how pH changes greatly affected the assembly capability 

of modular VP1 bearing four copies of H190 was an exception. This indicated that the 

protein-protein interactions are a complex phenomenon involving electrostatic forces and 

changes in the amino acid sequence of the modular VP1, which could be due to the amino 

acid sequence of the modularised H190 and/or a possible structural perturbation. 

Mouse immunisation with modular VLPs bearing two copies of H190 (VP1-H190-

H190 VLPs) with AdvaxTM-1 induced a slightly higher titre of H190 sequence-specific IgG 

than non-adjuvanted VP1-H190-H190 VLPs. This increase in immunogenicity was also 

seen in the result from competitive ELISA assay. In the competitive ELISA, peptide H190 

in solution at about 240 µM inhibited approximately 80% of IgG binding to immobilised 

peptide H190 for non-adjuvanted VLPs. However, the same concentration of peptide H190 

in solution inhibited only about 60% of IgG binding for adjuvanted VLPs. Nevertheless, 

statistical analysis showed that the difference in IgG titres was not significant (p=0.602), 

suggesting the modular VLPs bearing two copies of H190 were self-adjuvanting and able 

to induce optimum immune responses without the need for adjuvant. Furthermore, results 

from the in vivo study showed that adjuvanted VLPs induced HA1-specific IgG at a titre 

slightly less than 105, while the HA1-specific IgG titre from non-adjuvanted VLPs was 

slightly higher than 104. Statistical analysis showed that the titre difference had an 

adjusted P value of 0.0552, indicating that the increase was marginal, and the significance 

of the increase was dependent on the selected significance level. If the family-wise 

significance level was determined at 5%, the increase was not statistically significant. In 

contrast, at a 10% family-wise significance level, the increase can be concluded to be 

statistically significant. These results suggested the use of AdvaxTM-1 increased the 
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immunogenicity of H190 and consequently the quality of antibodies, although the increase 

was statistically not significant.  

A similar observation was obtained from the in vivo study of modular VLPs with 

increasing copy numbers of H190 tandem repeats. The results in this chapter showed that 

modular VLPs bearing one to four copies of H190 were equally effective at inducing high 

titres of H190 sequence-specific IgGs (> 104). These results suggested that increasing the 

copy number of the H190 tandem repeats did not increase the antigen element’s 

immunogenicity. In contrast, the in vivo study showed that an increase in the copy number 

of H190 tandem repeats did affect the quality of the induced antibodies. Modular VLPs 

bearing one copy of H190 induced the lowest HA1-specific IgG titre, which was slightly 

less than 103, and the IgGs were shown to bind non-specifically to HA1 rather than via the 

H190 element. To the knowledge of the author, this is the first reported scientific attempt to 

demonstrate the presumption in modular VLP studies that it is nearly impossible for a 

peptide element to assume its conformational integrity when it is presented on a modular 

VLP (Jennings and Bachmann 2007, Roldão et al. 2010, Tissot et al. 2010). The HA1-

specific IgG titres increased with increasing H190 copy number from one to three copies, 

with the highest and most consistent HA1-specific IgG titre achieved by modular VLPs 

bearing three copies of H190 tandem repeats. Modular VLPs bearing four copies of H190 

induced a slightly lower HA1-specific IgG titre than modular VLPs bearing three copies of 

H190. Nevertheless, statistical analysis showed that the IgG titre differences for modular 

VLPs bearing one to four copies of H190 were not statistically significant. The presented 

results suggested that, without taking the statistical analysis into account, the highest 

antibody quality could be achieved by increasing the number of H190 tandem repeats to 

three copies. However, when the statistical analysis was taken into account, the results 

suggested that this increase in the copy number of H190 did not increase the 

immunogenicity of H190 or the antibody quality. 

The key findings from the presented results were that the use of AdvaxTM-1 and 

increasing the number of H190 tandem repeats did not increase the immunogenicity of 

H190, and the impacts of these approaches on antibody quality were rather dependent on 

whether the statistical analysis was taken into account. Without considering the results 

from the statistical analysis, both approaches increased the quality of the resulting 

antibodies, although the increases were marginal. Taking into account the statistical 

analysis, the results in this chapter suggested that modular VLPs bearing two copies of 

H190 was sufficient to induce a high titre of H190-sequence specific IgGs and HA1-
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specific IgGs. Therefore, further improvements to the tandem repeat display strategy to 

increase the quality of the antibodies were not necessary.  

 

7.1.3 Challenging the tandem repeat display strategy with a hydrophobic H190 
variant 
The findings in Chapter 4 showing that modular VLPs bearing two copies of H190 

were sufficient to induce a high titre of H190 sequence-specific and HA1-specific IgGs 

using H190 from the influenza strain A/California/07/2009. However, H190 is a 

hypervariable region, although its secondary structure is maintained. Of particular interest 

as an extreme test case is the H190 from influenza strain A/Victoria/210/2009, which is 

hydrophobic, and its hydrophobic stretches are centred in the middle of the H190 amino 

acid sequence. Therefore, the experimental work included a challenge of the tandem 

repeat display using this hydrophobic H190 variant (Chapter 5). The findings in Chapter 5 

answered two questions: (i) To what extent does modularisation of H190 containing a 

hydrophobic stretch affect the properties of the modular VLPs? (ii) How can these effects 

be minimised?  

The work showed that, under the previously established expression and purification 

conditions for wt-VP1, GST-tagged modular VP1 bearing two copies of H190 containing a 

hydrophobic stretch (modular construct VP1-H3-H190-H190) had a considerably lower 

solubility than GST-tagged wt-VP1. Furthermore, following GST tag removal using 

thrombin, two difficulties were observed. First, the modular VP1 formed soluble 

aggregates, and consequently modular VP1 capsomeres could not be obtained. Second, 

the VP1-H3-H190-H190 was of a lower quality than wt-VP1, assessed from the higher 

proportion of a secondary cleavage product known as VP1*. A study by Connors et al. 

(Connors et al. 2013) identified VP1* (approximately 37 kDa) in wt-VP1 as a secondary 

cleavage product by thrombin at Arg58. A molecular weight analysis suggested that the 

VP1* in the VP1-H3-H190-H190 may also have resulted from thrombin cleavage at Arg58 

of VP1-H3-H190-H190.  

The results in the chapter showed that the solubility of GST-tagged VP1-H3-H190-

H190 was improved by lowering the protein expression temperature from 26°C to 12°C. 

Following expression at 12°C, GST-tagged VP1-H3-H190-H190 had a similar solubility as 

GST-tagged wt-VP1 in a buffer that was previously optimised for wt-VP1. This result 

indicated that the solubility of GST-tagged VP1-H3-H190-H190 was a function of the 

protein expression temperature.  
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To minimise the formation of soluble aggregates, an approach utilising glutamic 

acid was explored. In this approach, two copies of the hydrophobic H190 were flanked by 

ionic elements comprising four glutamic acid residues (modular construct VP1-H3-H190-

H190-4E). The results from the experimental work showed that the solubility of GST-

tagged VP1-H3-H190-H190-4E was higher than that of GST-tagged VP1-H3-H190-H190. 

However, the improvement in solubility was only observed when the salt concentration 

was lowered from 200 mM to 50 mM NaCl. In addition, the use of the flanking ionic 

elements slightly reduced the ratio of VP1* to VP1. Unlike the increase in the solubility of 

the GST-tagged modular VP1, the reduction in the ratio of VP1* to VP1 could be observed 

at both 200 mM and 50 mM NaCl but the reduction was greater at the lower salt 

concentration. Furthermore, at both 200 mM and 50 mM NaCl the flanking ionic elements 

reduced the formation of soluble aggregates, therefore allowing isolation of modular VP1 

capsomeres. The key finding of these results was that the use of the glutamic acid as ionic 

flanking elements was necessary to in order to obtain modular capsomeres of VP1 bearing 

two copies of hydrophobic H190.  

In an attempt to increase the quality of the modular VP1 after GST tag removal, two 

proteases were compared: (i) thrombin, and (ii) tobacco etch virus protease (TEVp), which 

has a higher specificity than thrombin (Connors et al. 2013). The results in Chapter 5 

showed that GST-tagged modular VP1 bearing a thrombin cleavage site (modular 

constructs VP1-H3-H190-H190 and VP1-H3-H190-H190-4E) had slightly higher solubility 

than GST-tagged modular VP1 bearing a TEVp cleavage site (modular constructs TEVP-

VP1-H3-H190-H190 and TEVP-VP1-H3-H190-H190-4E). This reduced solubility was 

shown to be a construct-dependent behaviour, since mutation from the thrombin to the 

TEVp cleavage site did not affect the solubility of GST-tagged wt-VP1 and modular VP1 

bearing two copies of H190 from A/California/07/2009 influenza (modular construct VP1-

H190-H190, reported in Chapters 3 and 4). Furthermore, following treatment using TEVp, 

the secondary cleavage product VP1* was not observed for both TEVP-wt-VP1 and TEVP-

VP1-H3-H190-H190. However, this was not the case for TEVP-VP1-H3-H190-H190-4E. A 

secondary cleavage product was observed at approximately 35 kDa for the modular 

construct. The experimental work suggested that this 35-kDa fragment was a result of non-

specific interactions between TEVp and the modular VP1 that were exacerbated by the 

increase in the ratio of TEVp to VP1 protein. In addition, the salt concentration of the buffer 

was shown to slightly affect the non-specific interactions. Nevertheless, the presence of 

the 35-kDa fragment did not affect isolation of the modular VP1 as capsomeres. The 

results in the chapter showed that capsomeres could be obtained for TEVP-VP1-H3-H190-
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H190-4E but not TEVP-VP1-H3-H190-H190. The key finding of these results was that the 

quality of modular VP1 after GST cleavage could be improved by replacing thrombin with 

TEVp. Nevertheless, the improved homogeneity of the modular protein was not followed 

by a reduction in the formation of soluble aggregates or an increase in the likelihood of 

obtaining modular VP1 capsomeres. This finding highlighted that the aggregation of 

modular VP1 was not due to heterogeneity of the modular VP1 after GST removal, but 

rather possibly to the hydrophobic stretch within the H190.  

This experimental work showed that a tandem repeat display comprising two copies 

of H190 was applicable for a hydrophobic H190 from A/Victoria/210/2009 influenza. 

Nevertheless, the modularisation of two copies of such a hydrophobic H190 into MuPyV 

VP1 affected the biophysical properties of the VP1 protein and therefore modifications 

were required to minimise these effects.  

 

7.1.4 Structural determination of the H190 element on modular VLPs 
Chapters 3 and 4 of this thesis have shown that modularisation of H190 on MuPyV 

VP1 using various display strategies resulted in the induction of antibodies of diverse 

quality in mice. The results in these chapters may suggest that antibodies are raised 

against modularised H190 elements with different structures. A possible approach to 

verifying this suggestion is by determining the structure of modularised H190 using X-ray 

crystallography.  

Three modular constructs were selected: (i) VP1-H190-H190, (ii) VP1-GCN4-H190-

H190, and (iii) VP1-H190. The H190 elements in these constructs were yet to be resolved 

using X-ray crystallography. In construct VP1-H190-H190, two copies of H190 are arrayed 

as a tandem repeat. In contrast, in construct VP1-GCN4-H190-GCN4, one copy of H190 is 

modularised by exploiting the use of GCN4 helix promoter elements and GSGS spacer 

elements. In modular construct VP1-H190, one copy of H190 is modularised without 

incorporating any structural hypothesis. In order to obtain crystal structures with high 

resolution, the first 31 residues were removed from the N-terminus and 63 residues were 

removed from the C-terminus.  

This chapter (Chapter 6) reports the first steps toward obtaining crystal structure of 

the three selected modular constructs. These initial steps were (i) production of modular 

VP1 capsomeres lacking 31 N-terminal residues and 63 C-terminal residues with high 

purity and (ii) determination of the optimum crystallisation conditions for modular VP1 

capsomeres.  
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The production of highly pure assembly-incompetent modular VP1 relied on 

previously reported processes to produce high yield wt-VP1 in E. coli (Chuan et al. 2008, 

Lipin et al. 2008, Middelberg et al. 2011). Modular VP1 for the three selected modular 

constructs were expressed as GST-tagged modular VP1 in E. coli. The GST tag was then 

removed enzymatically from the modular VP1. In this chapter, two proteases were 

compared: (i) thrombin, and (ii) TEVp. TEVp has a molecular weight of about 26 kDa, 

which is smaller than the molecular weight of thrombin (about 37 kDa). Its smaller 

molecular weight is advantageous because the modular VP1 in this chapter lacked 31 

residues from the N-terminus, which meant a significant space between the GST tag and 

VP1 was removed. The results showed that thrombin was ineffective in removing GST 

from modular VP1, leaving a considerable proportion of undigested GST-tagged modular 

VP1. In addition, GST tag removal using thrombin resulted in the generation of secondary 

cleavage products, which are undesirable for crystallisation. In contrast, GST tag removal 

using TEVp was effective and the digestion products were homogeneous. The optimum 

GST tag removal using TEVp was achieved at a ratio of 1:5 (TEVp mass/protein mass) at 

30°C for 4 h.  

Following GST removal, modular VP1 capsomeres were then separated from 

soluble aggregates and GST tags using size exclusion chromatography (SEC). SDS-

PAGE analysis showed that the SEC-purified modular VP1 capsomeres contained three 

major contaminants. These contaminants were: (i) a 60-kDa contaminant, which was 

verified to be undigested GST-tagged modular VP1, (ii) GST tags, and (iii) a 70-kDa 

contaminant, which was suggested to be the E. coli protein DnaK according to the study 

by Fan and Middelberg (Fan and Middelberg 2010). The presence of GST tags as a 

contaminant was correlated with the removal of 31 residues from the N-terminus and 63 

residues from the C-terminus. Removing these resides caused a shift in the elution time of 

modular VP1 capsomeres in SEC. This shift in elution time consequently resulted in a poor 

separation between modular VP1 capsomeres and cleaved GST tags, and contamination 

of modular VP1 capsomeres with GST tags. The results in this chapter showed that both 

undigested GST-tagged modular VP1 and GST tags could be removed effectively and 

simultaneously from SEC-purified modular VP1 capsomeres using tandem GST affinity 

columns. However, the 70-kDa contaminant was still present.  

To remove the 70-kDa contaminant, following the purification step using tandem 

GST-affinity columns, modular VP1 capsomeres were subjected to a further step of 

purification, which was hydrophobic interaction chromatography (HIC). The result showed 

that HIC effectively removed the 70-kDa contaminant from modular VP1 capsomeres for 
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the three selected constructs. Following purification using HIC, the modular VP1 had a 

high purity and the presence of the 70-kDa contaminant was no longer detected by SDS-

PAGE analysis. In this HIC purification, the results showed that the chromatogram profiles 

for the three modular constructs were different. The profiles for modular VP1 bearing one 

or two copies of H190 were similar, but distinct from the profile for modular VP1 bearing 

H190 flanked with helix promoter elements. In addition, although the binding profiles 

between modular VP1 bearing one and two copies were similar, HIC was less effective in 

removing the 70-kDa contaminant from modular VP1 bearing two copies than from 

modular VP1 bearing just one copy of H190.  

Using these processes, modular VP1 bearing one copy of H190 or H190 flanked by 

helix promoter elements were produced in a large scale. These modular VP1 capsomeres 

with high purity were then sent to a collaborator in Synchrotron Australia for screening of 

crystallisation conditions.  

The experimental work showed the production of high purity modular VP1 

capsomeres utilising the developed chromatographic process. The media were chemically 

stable and commercially available. The chromatography-based process could be easily 

scaled up and no invasive method was used during the production process. Furthermore, 

the production process was applicable for two modular constructs, indicating that the 

process could be applied to produce highly pure modular VP1 capsomeres from other 

constructs. 

 

7.2 Future work 
This thesis has provided the first steps toward understanding how to provide 

structurally authentic presentation of helical peptide antigens on a VLP, using VP1 from 

MuPyV displaying H190 from influenza. H190 was presented using display strategies that 

encouraged the peptide antigen element to assume its native conformation. The effects of 

the display strategy on the quality of the antibodies induced were evaluated. Additionally, 

approaches to improving the quality of the antibodies were explored and, subsequently, 

the preferred display strategy was determined. Furthermore, the applicability of the 

preferred display strategy for H190 bearing a hydrophobic stretch was also investigated. 

Finally, the first steps toward obtaining the atomic structure of the presented H190 have 

been performed.  

Nevertheless, further investigations on the following points are required in order to 

better understand the presentation of a peptide antigen element on MuPyV VP1 VLPs. 
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1. In vivo studies in this thesis demonstrated that the display strategy for presenting 

H190 on modular VLPs affected the quality of the induced antibodies, and further 

suggested that the display strategy affected the structure of the modularised H190. 

A promising technology to determine the atomic structure of modularised H190 is X-

ray crystallography. This thesis initiated the first steps toward resolving atomic 

structures of H190 on modular VP1 capsomeres using X-ray crystallography. 

However, at the time this thesis was written, crystals of modular VP1 capsomeres 

had not yet been obtained, and thus the atomic structures of H190 on modular 

capsomeres have not been resolved. Therefore, further investigations to resolve the 

atomic structure of modularised H190 are required. In addition, the purification 

processes reported in Chapter 6 could be further improved and optimised to 

increase capsomere yield and purity, and hence increase the chances of obtaining 

high quality crystals. This thesis has shown the production of high purity proteins 

from for constructs VP1-H190-H190, VP1-GCN4-H190-GCN4 and VP1-H190. 

Based on the findings in Chapters 3 and 4, it may be necessary to produce high-

purity proteins for modular constructs VP1-H190-3x, VP1-H190-4x, and VP1-H190-

5x.  

 

2. Chapter 3 in this thesis showed that modular VLPs presenting two copies of H190 

(VP1-H190-H190 VLPs) were able to induce high quality antibodies. Furthermore, 

Chapter 4 in this thesis has shown that the quality of antibodies induced by the 

modular VLPs could be marginally increased by (i) increasing the number of H190 

tandem repeats to three copies, and (ii) using AdvaxTM-1 as an adjuvant for the 

modular VLPs. However, the protective efficacy of the antibody has not been 

determined in this study. If the antibodies do not provide protection, then the 

antibody quality may need further improvement, and thus further examination of the 

use of other types of adjuvants may be necessary. Various adjuvants have been 

studied in VLP-based vaccines, such as AAHS (aluminium hydroxylsulfate), and 

AS04 (combination of AAHS and monophosphoryl lipid or MPL). Determination of 

whether these adjuvants can be used with VP1-H190-H190 VLPs and whether 

these adjuvants can increase the quality of the resulting antibodies may be useful 

and necessary.  

 

In regards to the protective efficacy studies, the studies could be done by detecting 

the presence of neutralising antibodies in the sera from immunised mice using 
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various neutralisation assays. Investigation and optimisation studies on the 

appropriate assays to best assess the protective efficacy of the antibodies 

generated are also required.  

 

3. Chapter 5 in this thesis showed that flanking ionic elements comprising four 

glutamic acid residues reduced the formation of soluble aggregates for modular 

VP1 bearing two copies of hydrophobic H190, and consequently reduced the 

possibility of obtaining modular VP1 capsomeres. The yield of modular VP1 

capsomeres, however, still needs improvement. Such improvements can be made 

by exploring two types of approaches. The first approach includes optimisations of: 

(i) the type of ionic residues, such as arginine, histidine, and lysine, (ii) the number 

of ionic residues, and (iii) the position of the ionic elements. The second approach 

includes: (i) screening to determine the optimum buffer composition for the modular 

VP1, or (ii) point mutations within the hydrophobic stretch. Furthermore, once a 

sufficient yield is achieved, the effects of these optimised approaches on the 

molecular structure of modularised H190 and the antibody quality will need to be 

assessed.  

 

4. This thesis has shown that the display strategy comprising two copies of H190 

tandem repeats is preferable for modularisation of the helical peptide antigen 

element on MuPyV VP1 VLPs. This strategy was also shown to be applicable for 

modularisation of a hydrophobic H190 variant, in which flanking ionic elements were 

included to allow isolation of modular VP1 capsomeres. Therefore, the display 

strategy can be explored further for modularisation of a range of helical peptide 

antigen elements. In addition, exploration of the strategy for (i) antigens with a 

similar secondary structure, (ii) antigens with a different secondary structure, such 

as �-sheet antigens, or (iii) non-structural antigens can also be conducted. Further 

optimisation of the display strategy may be required because it is expected that 

different antigens and antigens with different secondary structures will behave 

differently from the H190 modelled in this thesis.  

 

5. This thesis has pursued a rational design approach to the modularisation of a 

peptide antigen element on MuPyV VP1. The designs were examined in vivo and 

the results from the studies were then used to improve the designs. However, the 

target antigens from influenza viruses that are able to induce neutralising antibodies 
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undergo continuous hypervariability. Similar phenomena have also been observed 

for other pathogens. Therefore, processes that allow for a rational design without 

the need for in vivo studies are increasingly desirable. Such processes can be 

developed by combining the advantages of resolved atomic structures and 

molecular modelling. The atomic structures of antigens presented on modularised 

VLPs can be resolved using various technologies such as NMR and X-ray 

crystallography. The resolved structures can then be used to verify parameters that 

are used in molecular modelling to yield a highly accurate molecular model. The 

verified parameters can then be used to model various antigen designs.  

 

7.3 Concluding thought 
Vaccination has significantly reduced the burden of various infectious diseases. One 

advance in vaccination is the use of selected peptide antigens rather than whole 

pathogens. The peptide antigens targeted are those that are able to elicit protective 

immune responses, and these antigens are selected based on available structural 

information. Furthermore, the omission of other unnecessary proteins from the pathogens 

has been shown able to increase the safety of the vaccines. Nevertheless, peptide 

antigen-focusing vaccination has many challenges, including its poor immunogenicity. In 

addition, protective antigens are usually hypervariable, and change continuously in order 

to aid pathogens in escaping the immune system. This challenge in the immunogenicity of 

peptide-based vaccines has been answered by another advance in vaccination, which is 

the development in VLPs. VLPs are able to promote vigorous immune responses, even 

without adjuvant (Rivera-Hernandez et al. 2013), and can be formulated to be 

thermostable (Mohr et al. 2013). Additionally, VLPs have been used as carriers of peptide 

antigen elements, which can either be genetically inserted into viral capsid proteins or 

chemically conjugated onto pre-formed VLPs. Various VLP production systems have been 

studied, including production via bacteria that allows for rapid response vaccines. 

However, the challenge posed by the hypervariability of protective antigens has not yet 

been addressed.  

Combining peptide antigen-focusing vaccination and VLPs, this thesis has shown the 

utilisation of VLPs from murine polyomavirus VP1 protein as a carrier for a hypervariable 

influenza peptide antigen, H190. The use of H190 as a model peptide antigen element 

shows that an alternative paradigm in vaccinations, targeting the use of hypervariable 

peptide antigen elements in place of broadly cross-protective peptide antigen elements, is 

possible. The use of hypervariable peptide antigen elements is empowered by fast and 
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rapid VLP production using a bacterial platform. The rapid vaccine engineering and 

production make it possible for new vaccines to be made available at a faster rate than the 

spread of the viruses and the hypervariablity of the peptide antigen elements can 

undermine (Wibowo et al. 2014).  

Furthermore, this thesis also contributed to answering one of the unknowns in the 

modularisation of a peptide antigen element on a VLP, i.e. the structural engineering of the 

modularised peptide antigen element. The structures of the modularised peptide antigen 

elements were shown to be rationally engineered via designing appropriate display 

strategies. Antigen display strategies have been shown to be important in order for high 

quality antibodies to be induced. In addition, antigen display strategies have been shown 

to be an effective tool to control the aggregation and solubility of modular VP1 displaying 

peptide antigen elements. Thus, it is suggested that the use of a rational design can 

enable, not only the generation of an effective and protective modular VLP-based vaccine 

candidate, but also control the quality of the vaccine candidate. 
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Appendix A 
Supporting information 
SI Material and Methods 
 
Molecular dynamics simulation for structural prediction of H190 element on modular 
VLPs 
 Two peptides used in this simulation were:  

(i) GCN4-H190-GCN4 peptide, Ac-VKQLEDKVSTSADQQSLYQNADAYVKQLEDKV-NH2; 

(ii) H190-H190 peptide, Ac-STSADQQSLYQNADAYSTSADQQSLYQNADAY-NH2. 

  Protein data bank ID codes 2WPZ.pdb and 3MLH.pdb were used as structural 

templates for GCN4 and H190 elements, respectively. Homology models of the peptides 

were created using Accelrys Discovery Studio® 3.0 (Accelrys, Inc., San Diego, USA) 

based on the templates. Molecular dynamics (MD) simulations were performed using 

GROMACS version 3.3.3 (Berendsen et al. 1995, Hess et al. 2008, Lindahl et al. 2001, 

Van Der Spoel et al. 2005) with Gromos96 43a1 force field for peptides and the simple 

point charge (SPC) model for water. Each molecular system was first solvated in a cubic 

box (5nm3 for H190-H190 peptide; 8nm3 for GCN4-H190-GCN4 peptide), with solvent 

molecules added randomly around the peptides. The system was neutralized by adding 

Na+ and Cl- as counter ions. Simulations were run in a solution containing 137 mM NaCl 

and SPC model water atoms. Berendson method (Berendsen et al. 1984) was used to 

control temperature at 298 K with time constant of 0.1 ps and pressure at 1 atm with 

coupling constant of 1.0 ps. MD algorithm was used with an integration time step of 2 fs. 

Particle-mesh Ewald (PME) algorithm was used to account for electrostatic interactions. 

The cutoffs of neighbour atom list, Coulomb potential, and Lennard-Jones (LJ) potential 

energies were all set to 1.0 nm. The initial velocities of particles were generated according 

to a Maxwell distribution at 298.15 K. Then, 5000 steps of steepest descent energy 

minimization was performed, followed by 100 ps equilibration with position restraints on 

the protein heavy atoms. The MD simulations were then performed for 20 ns, three times 

for each peptide.  

Accelrys Discovery Studio® 3.0 was used to calculate the root-mean-square 

deviation (RMSD) of H190 element structures. Final conformations of H190 element of the 

simulated peptides were compared with the conformation of H190 region in the reference 

homology template structure 3MLH.pdb. RMSD was calculated for Cα atoms, main-chain 

atoms (N, Cα, C, and O), side-chain atoms and all heavy atoms (non-hydrogen), and was 

reported in Angstroms. 
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Cloning  
Plasmid pGEX-VP1 (Middelberg et al. 2011) containing gene encoding murine 

polyomavirus VP1 protein (M34958) in the commercial pGEX-4T-1 (Novagen, Billerica, 

MA, USA) vector was generously provided by Professor Robert Garcea (University of 

Colorado). An AfeI site was introduced at position 293 of VP1 by site directed mutagenesis 

as described elsewhere (Middelberg et al. 2011), giving plasmid pGEX-VP1-S4. Plasmid 

pGEX-VP1-S1S4 was constructed by introducing NaeI site at position 86 of VP1 of 

plasmid pGEX-VP1-S4. Plasmid pGEX-VP1-S4-GSGS was constructed by inserting DNA 

sequence encoding spacers GSGS at the AfeI restriction site of plasmid pGEX-VP1-S4. 

DNA sequences encoding for H190 element (STSADQQSLYQNADAY) from influenza 

A(H1N1)pdm09 (A/California/07/2009) or the flanking GCN4 element (VKQLEDKV) were 

codon-optimized for E. coli. Complementary oligos for H190 element flanked with GCN4 

elements 

(5’GTGAAACAGCTGGAAGATAAAGTGAGCACCAGCGCGGATCAACAGAGCCTGTATC

AGAACGCGGATGCGTATGTGAAACAGCTGGAAGATAAAGTG 3’), 

and tandem repeats of H190 element  

(5’TCTACCTCTGCGGATCAGCAATCTCTGTACCAGAACGCGGACGCCTATAGCACCTC

CGCCGACCAGCAGAGCCTGTATCAAAATGCAGACGCGTAC3’)  

were annealed and phospohorylated using standard protocol (Sambrook and Russell 

2001). These oligos were ligated into AfeI-linearized pGEX-VP1-S4-GSGS and pGEX-

VP1-S1S4, respectively, using a standard conventional ligation method (Sambrook and 

Russell 2001), yielding plasmids pGEX-VP1-GCN4-H190-GCN4 and pGEX-VP1-H190-

H190. DNA sequences of designated constructs VP1-GCN4-H190-GCN4 and VP1-H190-

H190 were verified by Australian Genome Research Facility (AGRF, Brisbane, Australia).  

 

Expression, purification and assembly of modular proteins VP1-GCN4-H190-GCN4 
and VP1-H190-H190 

Plasmids pGEX-VP1, pGEX-VP1-GCN4-H190-GCN4 and pGEX-VP1-H190-H190 were 

transformed into E. coli Rosetta (DE3) pLysS cells (EMD Millipore, Billerica, MA, USA). 

GST-tagged VP1 protein was expressed, followed by affinity and size-exclusion 

chromatographic purification yielding VP1 capsomeres (Chuan et al. 2008). Endotoxins 

were removed from the purified capsomeres using Vivapure Q Mini M spin column 

(Sartorious Stedim, Goettingen, Germany) as described (Middelberg et al. 2011). In an 

endotoxin-free condition, capsomeres were assembled into VLPs in Assembly Buffer 1 

and the formed VLPs were dialyzed against PBS as described (Middelberg et al. 2011).  
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Enzymatic removal of N-Glycans from recombinant HA1  

The recombinant H1N1 A/California/07/2009 HA1 protein (residue 1-313) was obtained 

from the Protein Expression Facility, The University of Queensland (Australia). The protein 

was expressed in Trichoplusia ni insect cell. HA1 was deglycosylated with PNGase F 

(New England Biolabs) or Glycopeptidase A from almonds (PNGase A) (Sigma Aldrich, St. 

Louis, USA) following the suppliers’ instructions. Briefly, 3 µg protein was incubated with 

500 U of PNGase F for 2 h at 37°C. For digestion with PNGase A, 3 µg of protein was 

incubated with 0.25 mU of PNGase A for 16 h at 37°C. The deglycosylated samples were 

analysed using SDS-PAGE gel electrophoresis, followed by total protein staining using 

Coomasie Blue (GE Healthcare, Piscataway Township, NJ, USA) and glycoprotein 

staining using Pierce® Glycoprotein Staining Kit (Thermo Scientific, Waltham, MA, USA) 

according to manufacturer’s recommendation.  

 

Dot blot immunoassay for detecting antigen specific IgG  

Proteins or peptides (3 µg) were applied by pipetting onto Amersham Hybond ECL 

nitrocellulose membranes (GE Healthcare, Piscataway Township, NJ, USA). Membranes 

were air-dried and then blocked with blocking buffer (PBS, 0.5% v/v Tween 20, 5% w/v 

milk) for 1 h at 37°C. Sera from 8 mice were pooled. After six 5-min washes with PBST 

(PBS, 0.5% v/v Tween 20), membranes were incubated with serum 200-fold diluted in 

PBSTM (PBS, 0.5% v/v Tween 20, 0.5% w/v milk) for 1 h at 37°C. The membranes were 

washed 6 times (5 min each) with PBST and further incubated with horseradish 

peroxidase (HRP)-conjugated goat anti-mouse IgG antibodies (Sigma Aldrich, St. Louis, 

USA) at 10,000-fold dilution in PBSTM for 1 h at 37°C. HRP activity was probed by 

membrane staining using Novex® Chemiluminescent Substrate (Life Technologies, 

Carlsbad, CA, USA). After 5-min development in the dark, the stained membrane was 

placed on the imaging surface of a Molecular Imager® Gel Doc™ XR System (Bio-Rad, 

Hercules, CA, USA) and digital acquisition of luminescence signal was recorded.  

 

Peptide-based ELISA to determine antibody titers 

Biotinylated-synthetic peptides used in ELISA were purchased from Peptide 2.0 

(Chantilly, VA, USA). Sequences of the peptides were as follows:  

(i) biotin-GGGGSVKQLEDKVSTSADQQSLYQNADAYVKQLEDKV-NH2 (peptide GCN4-

H190-GCN4); and (ii) biotin-GGGGSSTSADQQSLYQNADAY-NH2 (peptide H190). 

Pierce® Streptavidin High Binding Capacity Coated 96-Well Plates (Thermo Scientific, 

Waltham, MA, USA) were washed 3 times with wash buffer (25 mM Tris-HCl, 150 mM 
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NaCl, pH 7.2, 0.1% w/v BSA, 0.05% v/v Tween-20). Biotinylated-synthetic peptide H190 in 

wash buffer was incubated on plates (1 µg/well) for 2 h at room temperature to allow 

coupling of the biotinylated-synthetic peptides to the immobilized streptavidin. Plates were 

then washed 3 times with wash buffer. Sera were serially diluted, each time at 4-fold 

dilution, in PBSTM and added to the plates (100 µl/well). Plates were incubated at 37°C for 

1.5 h. After washing 4 times with PBST, 100 µl of HRP-conjugated goat anti-mouse IgG 

antibodies (10,000-fold diluted in in PBSTM) was added to each well and plates were 

incubated at 37°C for 1.5 h. Plates were washed 4 times with PBST and HRP activity was 

detected using 0.4 mg/ml o-phenylenediamine dihydrochloride (OPD) substrate (Sigma 

Aldrich, St. Louis, USA) in 50 mM phosphate citrate buffer containing 0.03% sodium 

perborate (Sigma Aldrich, St. Louis, USA). Plates were incubated in the dark for 20 min. 

The absorbance of each well was measured at 450 nm with an Infinite® 200 plate reader 

(Tecan, Durham, NC, USA). Endpoint titer was defined as the lowest dilution that gave an 

absorbance higher than 3 times the standard deviation above the mean absorbance 

obtained from wells containing pre-immunized mouse sera (Relf et al. 1996). 

 

HA1-based ELISA to determine antibody titers 

HA1-based ELISA was performed as described (Bommakanti et al. 2010) with minor 

changes. Briefly, HA1 in 20 mM sodium phosphate, 20 mM NaCl, pH 7 was adsorbed onto 

Nunc MaxiSorp ELISA plates (Thermo Scientific, Waltham, MA, USA) overnight at 4°C 

(300 ng/well). Plates were blocked with blocking buffer for 1.5 h at 37°C and were then 

washed twice with PBST. Plate incubation with sera and HRP-conjugated goat anti-mouse 

IgG antibodies and HRP activity detection were done as described in peptide-based ELISA 

procedures.  

 

Split virion-based ELISA   

Fluvax® vaccine 2011 (CSL Limited, Victoria, Australia) was diluted in PBS giving 

equivalent total HA ranging from 0 to 9 µg. Fluvax® was adsorbed onto MaxiSorp ELISA 

plates overnight at 4°C (100 µl/well). Plates were blocked with blocking buffer for 1.5 h at 

37°C and then washed twice with PBST. Plate incubation with sera and HRP-conjugated 

goat anti-mouse IgG antibodies and HRP activity detection were done as described in 

peptide-based ELISA protocol.  
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Competitive binding of sera to peptides or HA1 
Pierce® Streptavidin High Binding Capacity Coated 96-Well Plates were coated with 

biotinylated-synthetic peptide GCN4-H190-GCN4 as described in peptide-based ELISA 

procedures. Sera from 8 mice were pooled and diluted in PBSTM. The pooled sera (50 µl) 

was mixed with an equal volume of peptide GCN4-H190-GCN4 or peptide H190 as the 

inhibitor at concentrations of 0, 2.39, 23.9, 50, 100, and 239 µM and incubated for 1.5 h at 

37°C. To each well, mixtures of serum-peptide were then added (100 µl/well), and the 

plates were incubated for 1.5 h at 37°C. Plates were washed 4 times with PBST. Plate 

incubation with HRP-conjugated goat anti-mouse IgG antibodies and HRP activity 

detection was done as described in peptide-based ELISA protocol. Competitive binding to 

HA1 was conducted similarly, except plates were coated with HA1 as described and the 

pooled sera was mixed only with peptide H190 as the inhibitor at concentrations of 0, 

0.008, 0.02, 0.24, 2.4, and 24 µM.  
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Fig. S1. Characterization of HA1. (A) Quaternary structure analysis using size-exclusion 

chromatography coupled with multi-angle light scattering in Superdex® 75 100/300 GL 

(GE Healthcare). Lysozyme, blue dextran and acetone were used as calibration standards. 

(B) Detection of total proteins using Coomassie blue; and (C) Detection of glycoproteins 

using Pierce® Glycoprotein Staining Kit following electrophoresis in reduced SDS-PAGE 

gel. Soybean trypsin inhibitor and horseradish peroxide (HRP) were included as negative 

and positive controls, respectively, for glycoprotein staining. Lanes: (L) protein standards; 

(1) HA1; (2) HA1 treated with PNGase F; (3) HA1 treated with PNGase A; (4) Soybean 

trypsin inhibitor; and (5) HRP. Each lane contains about 1 µg of HA1 or controls. 

 

 


