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ABSTRACT:  

Granule formation frequently occurs in denitrifying phosphorus (P) removal systems. 

The differences between granules and flocculants, including P removal capacities, 

bio-physiochemical properties, and microorganism distribution and diversity, are 

however still poorly understood. Physical and biochemical characteristics of 

granules and sludge flocs were investigated through two laboratory-scale sequencing 

batch reactors (SBRs). One reactor was operated as a flocculent SBR and the other 
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was operated as a granular SBR, using a granule diameter of 1.92 ± 0.78 mm. 

Granular sludge had a higher tolerance to inhibitors (nitrite/free nitrite acids (FNAs)), 

and a higher percentage of P accumulating organisms (PAOs) (72 % vs. 64 % in 

flocs) than flocculent sludge. The granule crush tests and higher PAOII (unable to 

use nitrate as an electron acceptor) to PAOs ratios (over 72 %) by fluorescent in situ 

hybridization showed that in both reactors, glycogen accumulating organisms (GAOs) 

were mainly responsible for nitrate to nitrite reduction, and PAOII further reduced 

nitrite to nitrogen gas in association with anoxic P uptake; GAOs wash-out 

weakened the mutual relationship between GAOs and PAOII to some extent, which 

made denitrification of nitrate to nitrite inefficient and weakened subsequent anoxic 

P removal. GAOs existed mainly on the surface of the granules, whereas PAOs 

(PAOI+PAOII ) were distributed both on the surface and in the interior of the 

granules. Thus, GAOs had easier access to carbon sources but were at risk of 

suffering from exposure to FNA. 

 

Keywords: Denitrifying phosphorus removal; Granule; Extracellular polymeric 

substances; Diffusion resistance; Microbial community structure; Nitrite 

 

1. Introduction 

Denitrifying phosphorus (P) accumulating organisms (DPAOs) have received much 

attention because of their many advantages, including effective use of organic 

carbon substrates and low sludge production [1,2]. DPAOs are enriched under 
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alternating anaerobic and anoxic conditions and are capable of using nitrate (NO3
-
-N) 

or nitrite (NO2
-
-N) as electron acceptors instead of oxygen to achieve satisfactory 

phosphate uptake and nitrogen (N) removal at the same time [2]. This, however, 

frequently leads to the accumulation of nitrite/free nitrous acids (FNAs) in DPAOs 

systems when the denitrification process is interrupted [3]. Nitrite and FNAs are 

toxic to a wide range of microorganisms, and PAOs are sensitive to FNAs at 

concentrations as low as 0.0017 mg NO2
--N/L [3,4]. The fact that P accumulating 

organism (PAO) activities tend to be inhibited by nitrite or FNAs makes the DPAOs 

process less stable than that of conventional biological P removal (BPR) systems [3], 

and is a challenge for the practical application of denitrifying P removal technology. 

Granular sludge has been proposed as a promising technology for biological 

wastewater treatment. It has been successfully formed in sequencing batch reactors 

(SBRs) designed for denitrifying P removal [1,5]. There are many advantages 

associated with the use of biogranulation technologies in wastewater treatment, 

including high biomass retention, strong microbial structures, the ability to withstand 

high-strength wastewater, shock loadings, and also a high tolerance to toxicity [6,7]. 

If DPAOs are enriched in granular sludge, it is thought that the constraints of the 

accumulated nitrite or FNA might be eliminated, primarily owing to (i) the dense 

distribution of biomass at the outer layer of the granular sludge, and (ii) the thicker, 

extracellular polymeric substance (EPS) matrix that is built up by biofilm cells, 

which means that granules are more resistant to hazardous materials (e.g., nitrite 

/FNA) [6]. These unique structural and bio-chemical properties of granular sludge 
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protect the functional organisms from the harsh external environment, and hence 

help maintain efficient nutrient removal and the stability of the processes. Further, if 

DPAOs granules build up a good resistance to nitrite/FNA, it may be possible to use 

nitrite as an acceptor instead of nitrate. Thus, the denitrifying P removal can be 

coupled with short-cut nitrification, which will result in more cost-effective and 

sustainable nutrient removal systems. 

Glycogen-accumulating organisms (GAOs) are recognized as the main 

competitors to PAOs in BPR systems. They take up carbon sources under anaerobic 

conditions but do not contribute to P removal. If GAO numbers increase, they can 

cause BPR failure [2]. A new method for separating PAOs from GAOs has been 

proposed from tests of granular sludge technology in lab-scale SBRs [8]. As PAOs 

accumulate high amounts of poly-P after aerobic/anoxic P uptake reactions, the 

settling velocity for PAO-dominated granules is higher than that of GAO-dominated 

granules. This means that biomass can be segregated by selectively removing sludge 

at different heights in a granular sludge bed. Using this method, competition between 

PAOs and GAOs can be controlled, and so it is a good method for manipulating P 

removal-related microbial populations. 

Our current understanding of denitrifying P accumulating microbial granules 

has been gathered from studies of P removal in aerobic granules [1,5]. To date, there 

is limited information available about the micro-scale characteristics of denitrifying 

P accumulating granules in an anaerobic/anoxic/aerobic SBR. Similarly, the 

differences in (1) denitrifying P removal efficiency, (2) resistance to nitrite/FNA, and 



  

 

5 

 

(3) the spatial distribution of organisms between flocs and granules are still unclear. 

Having this information would help us to better understand the advantages of 

granules for denitrifying P removal. 

This study was therefore conducted to assess how sludge morphology (granules 

or flocs) affected the performance and microbial community structures of 

denitrifying P removal systems. We compared the resistance capacity of flocculants 

and granules with nitrite/FNA through dosing with various concentrations of nitrite. 

We analyzed the spatial distribution of PAOs and GAOs in granules by fluorescent 

in situ hybridization (FISH). We also examined the properties and PAO-GAO 

abundances in granules that were crushed through starvation tests to give an 

improved understanding of the mechanism for anoxic P removal in granules. 

 

2. Materials and methods 

2. 1. The formation of flocs and granular sludge in flocculent SBR (F-SBR) and 

granular SBR (G-SBR) 

DPAOs biomass was placed in two identical SBRs with a working volume of 7.5 L 

(an internal diameter of 16 cm and a height of 50 cm) [9] for acclimatization. Both 

SBRs were fed with synthetic wastewater (composition below) and were operated 

under alternating anaerobic-anoxic-aerobic conditions. They were operated at room 

temperature (20 ± 1 °C ) with a cycle time of 8 h, which was split into a 15-min 

filling period, a 120-min anaerobic period, a 210-min anoxic period, a 30-min 

aerobic period, a 20-min sludge settling period, a 15-min effluent decanting period, 
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and a 70-min idle phase. During the first 15-min feeding period, 5.5 L of synthetic 

wastewater was pumped into the reactors, and KNO3 solution was pulse added into 

the reactor at the end of the anaerobic period, giving an initial NO3
- -N concentration 

of 30 ± 6 mg/L. 

The rotation (mechanical mixers) speed was controlled at 150 ± 10 rpm during 

the reaction phases, and the airflow rate was controlled at 40 L/h via a gas-flow 

controller to keep the dissolved oxygen concentration at about 2–4 mg/L in the 

post-aerobic phases. Effluent was drawn from the port at 30 cm above the bottom, 

leaving 2.0 L of mixed liquor in the reactor. The solid retention time (SRT) of the 

two reactors was approximately 20 days. One hundred and twenty five microliters of 

mixed liquor was removed at the end of each aerobic period, and mixed liquid 

suspended solids (MLSS) were maintained at 4000 ± 200 mg/L. Liquid samples 

were collected at the end of the different phases of each cycle every 3 days. 

The two SBRs achieved stable removals of phosphate and nitrate after 90 days 

operation (called Period I). In the subsequent period (called Period II), the rotation 

speed and aerobic airflow rate in one of the reactors (G-SBR) were increased to 300 

rpm and 100 L/h, respectively, to facilitate the formation of granular sludge, while 

the other one (F-SBR) remained unchanged. After 240 days of operation (called 

Period IIb), the average diameter of the granules had reached equilibrium at 1.92± 

0.78mm, and stable and efficient denitrifying P removal was achieved in the two 

SBRs. To distinguish with Period IIb, the SBRs operation during days 90–240 was 

defined as Period IIa.  
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Cycle tests were conducted weekly by measuring the NH4
+
-N, PO4

3-
-P, NO3

-
-N, 

NO2
-
-N, volatile fatty acids (VFAs), dissolved N2O and internal polymers 

(poly-β-hydroxybutyrate (PHB), poly-β-hydroxyvalerate (PHV), 

poly-3-hydroxy-2-methylvalerate (PH2MV), and glycogen concentrations every 30 

min through the 8-h cycle. At the start of the cycle tests, the sludge in the two SBRs 

was washed three times with synthetic wastewater without propionate. Nitrogen gas 

was introduced into the headspace to ensure anaerobic conditions being maintained 

for P release. pH was continuously monitored online using a pH probe (pH 3310, 

WTW Inc., Munich, Germany) and was automatically controlled at 7.5 ± 0.1 by 

manual addition of 0.3 M HCl or 0.3 M NaOH. The MLSS and mixed liquor volatile 

suspended solids (MLVSS) concentrations were measured at the end of the aerobic 

phase every week (see section 2. 5). 

 

2. 2. Batch experiments 

2. 2. 1. Experiment 1: phosphate, nitrite, and internal polymer transformations and 

N2O production with nitrite as an electron acceptor in floc and granular sludges 

After mature P-removal granules were formed, we examined the response of the two 

different sludges (from F-SBR and G-SBR) to nitrite by measuring PO4
3--P, NO2

--N, 

dissolved/gaseous N2O, poly-β-hydroxyalkanoates (PHA), and glycogen on day 304. 

Batch experiments were conducted in four identical sealed reactors. These reactors 

had a working volume of 3.8 L and an overhead space of 0.2 L. At the start of each 

test, the reactor was first filled with fresh mixed liquor withdrawn from F-SBR and 
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G-SBR at the end of the post-aeration phase. 2.8 L synthetic water was added to 

these reactors after the seeded sludge was settled for 30 min (with the volume of 

approximately 1 L). Nitrogen gas was then introduced for 5 min to ensure anaerobic 

conditions for P release were maintained. Nitrite was pulse added into the reactors 

every 30 and 60 min, so that the nitrite concentrations were 5 and 10 mg/L, 

respectively, after each addition. The four group tests were called F-R5, F-R10, G-R5, 

and G-R10, depending on the sludge sources and the nitrite addition methods. All 

tests were carried out at 20 ± 1 °C with a cycle of anaerobic (2 h) and anoxic (5 h) 

reactions. The pH was manually controlled at 7.5 ± 0.1 by adding 0.3 M HCl or 0.3 

M NaOH. The MLVSS concentration was measured in triplicate at the end of each 

test. 

2. 2. 2. Experiment 2: phosphate, nitrite, and internal polymer transformations and 

N2O production in different layers of the short-term crushed sludge from G-SBR 

Granules were crushed to show the spatial distribution of PAOs and GAOs using a 

3-day starvation process (at 28 ± 1°C). The starvation process was initiated at the 

end of the first cycle on day 332, and the rotation speed was increased to 300 rpm. 

Air was bubbled through the granular sludge for 30 min every 8 h so that microbial 

activity would continue. 

The granular sludge was crushed after the 3-day starvation, which resulted in 

flocs and granules coexisting in G-SBR. The rotation speed of the mixer was 

decreased to 80 rpm so that the mixed solid could be segregated, after which 2, 2.5, 

and 3.0 L of the mixed sludge were sequentially withdrawn from the bottom of the 
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G-SBR. After settling for 30 min, the settled sludges were transferred to three 

identical sealed reactors, each with a working volume of 2.5 L and an overhead 

space of 0.1 L. These three reactors were defined as G-Rbot. (the bottom part), G-Rmid. 

(the middle part), and G-Rupp. (the upper part). The measured MLSS concentrations 

were approximately 3.9g/L in G-Rupp., G-Rmid. and G-Rbot. Cycle tests were then 

conducted to investigate the denitrifying P removal dynamics in the different sludge 

layers, using the procedure outlined in section 2.1. 

 

2. 3. Synthetic wastewater 

The synthetic wastewater used in this study contained (per liter): 257.1 mg 

CH3CH2COONa (300 mg chemical oxygen demand (COD)), 32.9 mg of KH2PO4 

(7.5 mg of P), 55.3 mg of K2HPO4·3H2O (7.5 mg of P), 38.2 mg NH4Cl; 85.0 mg 

MgSO4·7H2O, and 10.0 mg CaCl2. Therefore, the ratio of VFAs to influent 

phosphorus was 10.8 mg C/mg P. Allylthiourea was added to the three batch reactors 

to inhibit nitrification [10]. The pH of the synthetic wastewater was maintained at 

7.5 ± 0.2 by adding NaHCO3. 

 

2. 4. Microbial community analysis by FISH 

2.4.1 Microbial community analysis of the floc and granular sludges 

FISH was used, as described by Wang et al. [3], to study the population dynamics of 

PAOs and GAOs in the reactors. In addition, Cy5-labeled Acc-I-444 was used to 

target PAOI, and FAM-labeled Acc-II-444 was used to target PAOIIA, IIC, and IID 
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Accumulibacter, respectively [11]. The standard error of the mean value (SEmean) 

was calculated as the standard deviation divided by the square root of the number of 

images. 

2.4.2 Spatial distribution in granules by FISH 

FISH was performed on granular slices. Granule samples were immediately fixed in 

freshly prepared paraformaldehyde solution (4 % paraformaldehyde in 

phosphate-buffered saline (PBS), pH 7.2) at 4 °C for 18 h and subsequently washed 

in PBS for the microbial distribution analysis in granules. A 20-mm-thick granule 

section was prepared from a frozen granule sample embedded in an OCT compound 

(Miles; Elkhart, IN, USA) using a cryostat (CM 3050; Leica, Germany) at –20 °C. 

Each slice was placed in hybridization wells on a gelatin-coated microscopic slide 

and immobilized by air drying and dehydrating in a graded series of ethanol (50 %, 

80 %, and 98 %). Samples were then hybridized with the probes as mentioned above. 

 

2. 5. Sampling and analytical methods 

Mixed liquor samples were taken using a syringe and were immediately filtered 

through Millipore filter units (0.45 µm pore size) for NH4
+ -N, NO3

- -N, NO2
- -N, 

PO4
3- -P, COD, and total phosphorus analysis [12]. Analysis methods for glycogen, 

PHA, and VFAs have been described in Wang et al. [9]. PHA in the samples were 

calculated as the sum of the measured PHB, PHV, and PH2MV. MLSS and MLVSS 

were measured using standard methods [12]. The free nitrous acid (FNA) 
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concentration was calculated using the formula ,
 
with Ka 

determined using the formula  for a given temperature T (°C) [13]. 

The N2O concentrations in the gas and liquid phases were measured using the 

method described in Wang et al. [9]. The detection limitation of N2O measurement is 

0.01 ppm. EPS were extracted by formaldehyde-NaOH using the method described 

by Liu et al. [14]. The total EPS content was defined as the sum of carbohydrates, 

proteins, and humic substances. The protein and humic substances in EPS were 

measured using the modified Lowry method [14]. Image analysis, granule size, and 

specific gravity of granular sludge were determined using the method described by 

Su et al. [15]. 

 

3. Results and Discussion 

3. 1. Performance and sludge morphology of F-SBR and G-SBR 

3.1.1 Physical properties and EPS composition of the flocculent and granular 

sludges from F-SBR and G-SBR 

During days 90–240 (Period IIa) (Fig. S1), granular sludge gradually formed in 

G-SBR (Fig. S2a), the reactor that had the higher mixer rotation speed (i.e., 300 rpm) 

(Fig. S2), while in F-SBR the mean diameter was 0.2 mm (Table 1). This indicates 

that the increase in the shear force rate caused larger granules to form in G-SBR 

[6,7]. 

The granular sludge in G-SBR had better settling properties (higher settling 
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velocity and lower SVI30) than the floccular sludge in F-SBR (Table 1). Su et al. [15] 

reported that the settling velocity and specific gravity were 37 m/h and 1.017, 

respectively, for an aerobic granular sludge. For this study, the settling velocity and 

specific gravity were 241 ± 29 m/h and 1.171, respectively, in G-SBR. PAOs, 

capable of storing poly-P, thrived in G-SBR, leading to an increase in the specific 

gravity and settling velocity. 

The EPS content per VSS in G-SBR was approximately 92.5 % higher than that 

in F-SBR (Table 1). Previous studies have shown that operational conditions such as 

high aeration intensities, short settling times, high volume exchange ratios, and toxic 

substances are favorable for EPS production and granule formation [6]. In the 

present study, the high EPS production in G-SBR may be due to the stressful culture 

conditions, including the high shear forces (in Period II) and FNA accumulation 

(mainly in adaptation Period I) (Fig. S1a and b). 

3. 1. 2 Cycle tests under normal reactor operating conditions for the two SBRs 

Figure 1 shows typical steady state cycles (on day 272, Period IIb) in F-SBR and 

G-SBR. The maximum rates of P release and uptake were 76.3 and 10.5 mg P/g 

VSS·h, respectively, in F-SBR, and 51.5 and 9.6 mg P/gVSS·h, respectively, in 

G-SBR (Fig. 1e and f). Maximum denitrifying rates were 9.5 and 12.5 mg NO3
--N /g 

VSS·h in G-SBR and F-SBR, respectively (Fig. 1a and B). The low denitrification 

rate observed in G-SBR can be attributed to the limitations on nitrate transfer to the 

biomass within the granules. The different maximum denitrifying rates also 

contributed to the different maximum NO2
-
-N accumulations in the two SBRs, i.e., 
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0.11 mg/L in F-SBR and 0.56 mg/L in G-SBR. It seems that the granular sludge did 

not have a higher denitrifying rate (i.e., microbial activity). 

During anaerobic phases, the trend in VFA uptake was similar for the two 

cycles, in that VFAs were completely depleted within 15 min in F-SBR and 30 min 

in G-SBR (Fig. 1e and f). The amount of PHA synthesis per VFA uptake (PHA/VFA) 

was almost equal in F-SBR and G-SBR (Table 2). During the sequential anoxic 

phases, the maximum rates of PHA degradation in F-SBR (8.8 mmol C/L·h) were 

higher than in G-SBR (5.4 mmol C/L·h). Moreover, the amount of NO3
--N reduction 

in F-SBR (31.4 mg/L) was greater than in G-SBR (26.8 mg/L) (Fig. 1a and b). This 

suggests that there may have been greater constraints on nitrate diffusion to biomass 

within the granules than flocs, resulting in lower PHA degradation dynamics in 

G-SBR than in F-SBR. The lower PHA degradation further resulted in lower 

denitrification and P removal efficiencies in G-SBR than in F-SBR (Fig. 1a, b, e and 

f), although the amount of anaerobically synthesized PHA in the two SBRs was 

similar (Table 2). 

The amount of glycogen that was anaerobically consumed in G-SBR (glycogen 

consumption per VFA uptake (Gly/VFA) of 0.41 mmol C/mmol C) was higher than 

that in F-SBR (Gly/VFA of 0.24 mmol C/mmol C). Because glycogen is the sole 

energy source for VFA uptake by GAOs, GAOs tend to consume more glycogen for 

uptake per unit VFAs compared with PAOs [2]. Thus, a high GAOs activity for the 

G-SBR biomass may have been the result of a higher level of anaerobic glycogen use 

in G-SBR. However, this finding is contrary to the FISH results, for which a higher 
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PAOs contents was obtained in G-SBR rather than in F-SBR (see section 3.2.1). 

 

3. 2 FISH in the two SBRs and microorganism distribution in the granules 

3. 2. 1. FISH in the two SBRs 

FISH analysis shows that Accumulibacter, bounded with PAOMIX probe, were the 

dominant organisms and represented 64 % (SEmean=1.5 %) of all the biomass in 

F-SBR and 72 % (SEmean=1.1 %) in G-SBR (Table 2). Competibacter-related GAOs 

represented approximately 21 % (SEmean=0.5 %) of biomass in G-SBR and 16 % 

(SEmean=0.7 %) in F-SBR, while Defluvicoccus-related GAOs represented less than 

1 % (SEmean=0.4 %) in both SBRs (Table 2). 

PAOI can reduce nitrate and perform anoxic P removal simultaneously; from a 

substrate diffusion point of view, the nitrite produced by PAOI are favor for being 

further reduced to N2 by themselves. PAOII can only use nitrite but not nitrate as 

electron acceptors [11]. In F-SBR and G-SBR, the ratios of PAOII to PAOs were 

72 % (SEmean=1.4 %) and 76 % (SEmean=0.9 %), respectively. This means that the 

main mechanism of DPAOs denitrification in the present study was via nitrite 

reduction. The fact that PAOII rather than PAOI was the dominant PAO subgroup in 

both of the SBRs suggests that other organisms (e.g., DGAOs) might be responsible 

for reducing nitrate to nitrite, which could then be used by PAOII for anoxic 

phosphate uptake.  

3. 2. 2. Microorganism spatial distribution in the granules 

The FISH images of granule slices showed that GAOs were mainly found near the 
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granule surfaces (at approximately 0–400 µm from the outer layer), whereas PAOs 

were found near the surface of the granules and also in the inner layer of the granules 

(Fig. 2a). Similar results were also reported by Naohiro et al. [17] who found that 

PAOs existed in both the outer and inner (anaerobic/oxic) layers of the granular 

sludge. GAOs therefore were able to absorb substrates (i.e., VFA) more easily, but 

also were more susceptible to suffering from higher FNA exposure. These two 

opposite effects controlled the number of GAOs and enabled GAOs not to become 

the dominant microorganisms in G-SBR (Table 2). The exact mechanism controlling 

spatial variation between PAOs and GAOs in granules remains unclear. It may be 

related to the different metabolisms of GAOs and PAOs, especially in the starvation 

cases (details see section 3.5). 

 

3. 3. Anoxic metabolism characteristics of floc and granular sludges using 

nitrite as an electron accepter 

As mentioned in sections 3. 1. 2 and 3. 2. 1, in G-SBR and F-SBR, PAOII dominated 

in PAOs and there was almost no nitrite accumulations in the stable cycles (Fig. 1a 

and b). This made it possible to achieve high nitrite reduction rates and resulted in 

more suitable conditions for N removal via the nitrite pathway. When granular 

sludge has a higher tolerance to nitrite, N removal via the nitrite pathway will be 

increasingly common in granular sludge, driven by energy and carbon savings [18]. 

Therefore, the nitrite shock tests designed for F-SBR and G-SBR sludges focused on 

anoxic metabolisms of DPAOs. 
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3. 3. 1. Comparison of the denitrifying P removal efficiency 

When fed with nitrite as electron acceptors, the denitrifying and P uptake rates in the 

anoxic batch tests were much lower than those observed in typical cycles (Fig. 4 and 

1). This can be due to the inhibitory effect of high nitrite concentrations produced in 

the anoxic batch experiments (i.e., higher nitrite accumulations did not occur in 

typical cycles). The maximum FNA concentrations reached 0.4 and 0.8 µg 

HNO2-N/L, respectively, in F-R5/G-R5 and F-R10/G-R10, with the maximum NO2
--N 

concentrations of 5 and 10 mg/L, respectively. These higher FNA concentrations 

might have inhibited P uptake, as an FNA concentration of 0.7 µg HNO2-N/L was 

previously reported to cause a sharp decrease in the P uptake rate [18]. 

In the 5-h anoxic reaction, the total NO2
-
-N reduction in F-R5 was 50 and 37 mg 

N/L in G-R5. The difference in the NO2
-
-N reduction rates led to the further different 

N2O accumulation rates observed in F-R5 (26 mg N2O-N/L) and G-R5 (7 mg N2O-N 

/L) (Fig. 3a and c), which represented 54 % and 19 % of the reduced NO2
-
-N, 

respectively, at the end of the anoxic phases. When compared with F-R5 and G-R5, 

the denitrifying efficiencies in F-R10 and G-R10, were 24 % and 16 % lower, 

respectively. N2O accumulation reached 58 % and 54 % of the reduced NO2
--N, 

owing to the higher inhibition by FNA. Previous studies have also reported that FNA 

inhibits the activity of nitrous oxide reductase (Nos), which causes the accumulation 

of N2O in denitrification processes [19]. 

The anoxic P uptake was higher in F-R5 (53 mg PO4
3--P/L) than in G-R5 (36 mg 

PO4
3-

-P /L) (Fig. 3e-h). In F-R10 and G-R10, P uptake was 20 and 26 mg PO4
3-

-P/L, 
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respectively. Compared with F-R5 and G-R5, the P removal efficiencies in F-R10 and 

G-R10 were 62 and 28 % lower, respectively. These findings demonstrate that, with 

the low NO2
-/FNA (e.g., 5 mg NO2

--N/L), microbial activities were still higher in the 

floc sludge than in the granular sludge; however, after the NO2
-/FNA ratio increased 

to a certain level (e.g., 10 mg NO2
--N /L in the present study), the granular sludge 

system exhibited a stronger tolerance to the inhibitor (i.e., nitrite/FNA). This 

observation is consistent with former studies, and confirms that biogranulation 

technologies are able to withstand high-strength wastewater and shock loadings, and 

are tolerant to toxicity [6,7]. 

At higher nitrite/FNA ratios (i.e., 10 mg NO2
-
-N /L), the ratios of 

Puptake/NO2
-
-Nreduction for the flocs and granules decreased from 1.1 to 0.5 mg P/mg N, 

and from 1.0 to 0.8 mg P/mg N, respectively (Fig. 3). Clearly, a relatively higher 

Puptake/NO2
-
-Nreduction ratio was still maintained by G-SBR after being exposed to 

higher nitrite/FNA. In the granules, the concentration gradient of the nitrite/FNA 

ratio decreased from peripheral to central granules. Because GAOs were mainly on 

the surface of the granules (Fig. 2a and b), nitrite/FNA presented a more direct and 

distinct inhibitory effect on GAOs than on PAOs. Therefore, PAOs activity was 

sustained at a higher level than that of GAOs, which in turn contributed to the higher 

Puptake/NO2
--Nreduction [20] in granules even with higher nitrate/FNA exposure. If 

granules have a dense structure, the obstructive reaction caused by hazardous 

substances can be avoided, which protects some sensitive microorganisms (e.g., 

PAOs) from negative impacts and hence improves the operating stability of DPAO 



  

 

18 

 

systems. 

3. 3. 2. Effect of FNA on PHA consumption and glycogen production during anoxic 

phases 

When fed with nitrite, PHA consumption and glycogen production decreased in all 

reactors during the anoxic phases. Moreover, nitrite/FNA posed greater constraints 

on internal polymer transformations in floc sludge than in granular sludge (Fig. 

3e–h). The PHA consumption was 48 % and 13 % lower in F-R10 and G-R10 than in 

F-R5 and G-R5, respectively, and the glycogen production reduced by 100% and 62%, 

respectively. Interestingly, glycogen consumption even occurred anoxically in F-R10, 

indicating that glycogen was degraded to supply energy in the case of FNA 

inhibition (ATP production process was inhibited by FNA).   

Above findings showed when nitrite accumulation is low (e.g., under normal 

SBR operating conditions) or when nitrite additions are low (e.g., adding 5 mg N/L 

of nitrite), the denitrifying P removal efficiency was higher for flocs than for 

granules (Fig. 3a, c, e and g). Increasing the nitrite dose to 10 mg N/L, however, 

resulted in a higher denitrifying P removal efficiency in granules than in flocs, 

mainly due to the granules being more resistant to nitrite/FNA transfer into the 

bacterial aggregates (Fig. 3b, d, f and h). 

 

3. 4. Batch experiments for the crushed granular sludge 

Batch experiments were conducted on crushed granules, to further confirm the 

spatial distribution of the functional microorganisms in granules and determine the 
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roles of GAOs and PAOs (e.g., their cooperative relationship) in the present 

denitrifying P removal process. Three layers of crushed granules containing floccular 

and granular sludge were distinguished according to their different settling velocities 

and densities (Fig. S2c). 

3. 4. 1. Changes in EPS contents and settleability of the crushed granules 

The granular sludge was crushed after 3 days of famine exposure (Fig. S2c), caused 

by the degradation of EPS, typically used as a carbon and energy source by bacteria 

during substrate shortages [6]. The EPS content of granular sludge decreased from 

336.1 to 147.6 mg/g VSS, representing a decrease of 56 % (data not shown). More 

specifically, the carbohydrate, protein and humic substance contents were reduced 

by 48 %, 31 %, and 72 %, respectively, when compared with their contents prior to 

famine exposure. EPS are fundamental to the structure of microbial aggregates and 

the interactions between cells, and thus are expected to control the stability of 

microbial aggregates [16]. Once EPS are removed from the sludge surface, the outer 

region of the granular sludge is likely to disperse (Fig. 2c) [16], resulting in fewer 

attached microbial cells and more free microbial cells [21]. 

The SVI3 was 15.1 mL/g in G-Rbot., compared with 35.7 mL/g in G-Rupp. and 25.5 

mL/g in G-Rmid. (data not shown). This difference in SVI3 between the three reactors 

is due to differences in the density and radius of the granules (Fig. S2c). 

3. 4. 2. Comparison of the denitrifying phosphorus removal efficiencies 

Even though the mass transfer efficiency rate was lower in G-Rbot., a higher 

Prelease/VFAuptake ratio of 0.36 mmol P/mmol C was still maintained in this reactor 
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(Table 2). The Prelease/VFAuptake ratio was 0.30 mmol P/mmol C in G-Rupp. and 0.32 

mmol P/mmol C in G-Rmid (Table 2). These results suggest that there were more 

active PAOs in G-Rbot. where more granules containing inner part of the seeding 

granules from G-SBR was remained (Oehmen et al., 2006). Compared with 

maximum P release and uptake rates of 51.5 and 10.5 mg/g VSS·h in G-SBR, the P 

release rates in these three crushed sludge reactors were higher (Table 3), mostly due 

to the substrate and nutrients being less resistant to diffusion after the granules were 

crushed. 

During the anoxic phases, concentrations of NO3
-
-N decreased by 22.7, 20.7, and 

18.3 mg N/L, respectively, in G-Rupp., G-Rmid., and G-Rbot. (Fig. 4a–c). The 

maximum NO2
-
-N accumulations were lower than 0.1 mg/L in all three batch 

reactors. The corresponding N removal efficiencies were 66.7 % (G-Rupp.), 60.9 % 

(G-Rmid.), and 53.8 % (G-Rbot.). As expected, the highest ratio for the maximum 

anoxic P uptake per NO3
-
-N reduction (Puptake /Nreduction) was observed for G-Rbot. 

(Table 3), which confirms that, from the three reactors, the ratio of DPAOs/DGAOs 

was highest in G-Rbot.. This finding is consistent with the highest Prelease/VFAuptake 

ratio occurring in G-Rbot.. 

The relatively low N removal efficiencies (53.8 %) observed in G-Rbot. may be 

due to the lower cooperative efficiency between DGAOs and PAOII, i.e., the 

percentage of DGAOs was lower in G-Rbot., which resulted in less efficient nitrate to 

nitrite reduction than in G-Rupp. and G-Rmid.. The higher denitrification rates, but low 

Puptake /Nreduction, observed for G-Rupp., indicate that there were more DGAOs in 
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G-Rupp, and that they occupied a niche more efficiently, because DGAOs were the 

main organisms responsible for nitrate to nitrite reduction, which could subsequently 

be used by PAOII for anoxic phosphate uptake (Fig. 2b). 

3. 4. 3. Transformations of PHA and glycogen for the different layer sludges 

There were distinct biochemical transformations in PHA and glycogen in anaerobic 

phases, comparing to those in anoxic phases (Fig. 4g). In the anaerobic phase, the 

PHA/VFA ratios were almost equal in G-Rupp., G-Rmid. and G-Rbot. with values of 

1.58, 1.55, and 1.60 mmol C/mmol C, respectively (Fig. 4g). However, more 

glycogen was consumed in G-Rupp. during the anaerobic period. The ratio of 

glycogen hydrolyses per VFA uptake (PHA/VFA) was 0.44 mmol C/mmol C in 

G-Rupp., and was 0.40 and 0.33 mmol C/mmol C in G-Rmid. and G-Rbot., respectively 

(Fig. 4g). The higher level of glycogen use observed in G-Rupp. implies that GAOs in 

this reactor may have been more active. 

3. 4. 4. Biomass characterization of the different layer sludges 

FISH was performed to determine the populations of GAOs and PAOs in the three 

sludges. Accumulibacter-related PAOs dominated in the three sludges, with 56 % 

(SEmean = 1.5 %), 68 % (SEmean = 1.7 %), and 78 % (SEmean=1.3 %) of the biomass in 

G-Rupp., G-Rmid. and G-Rbot., respectively. Competibacter-related GAOs made up 

approximately 28 % (SEmean = 0.5 %), 17 % (SEmean = 0.7 %), and 12 % (SEmean = 

0.5 %), in G-Rupp., G-Rmid. and G-Rbot., respectively. Defluvicoccus-related GAOs 

made up less than 2.5 % (SEmean = 0.4 %) of the biomass in all three reactors. 

The PAO number quantified by FISH supports the observed chemical 
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transformations, i.e., the highest ratio of Prelease/VFAuptake occurred in G-Rbot. and was 

linked to the highest ratio of PAOs/GAOs (Table 3). PAOII were the dominant 

organisms in the three reactors, representing 67 % (SEmean = 1.2 %) of PAOs in 

G-Rupp., 72 % (SEmean = 1.5 %) in G-Rmid, and 73.0 % (SEmean = 0.7 %) in G-Rbot. The 

PAOs/GAOs percentage for the different layers of crushed sludge was in good 

agreement with the FISH results for the granule slices, i.e., there were more GAOs 

on the surface of the granules and they tended to be crushed from the granules, while 

PAOs were found both on the surface and inside the granules. 

In a previous study of an aerobic granular sludge system [8], to prioritize PAOs 

over GAOs, the excess sludge was removed mainly from the GAOs-rich top of the 

sludge bed for SRT control, while minimal proportions of bottom granules were 

removed. For granular (denitrifying) P removal systems similar to this study, a novel 

method for crushing granules was proposed and applied to GAOs wash-out easily by 

removing the upper layer of the crushed granular sludge. Nevertheless, the wash-out 

of GAOs may reduce the denitrifying P removal efficiency because GAOs played an 

important role in nitrate reduction in the present two DPAOs SBRs, despite the fact 

that GAOs are generally considered to be undesirable organisms in BPR processes. 

 

3. 5. Proposed mechanism of microorganism spatial distribution in denitrifying 

P removal granules 

PAOs/DPAOs can use poly-P and/or glycogen to supply energy, while 

GAOs/DGAOs have no poly-P pool and so can only use glycogen to supply energy 
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[22]. EPS are a potential energy supply for organisms in starvation situations [6]. 

GAOs therefore may have a tendency to use EPS rather than PAOs in a starvation 

scenario, and tend to crush from granules in situations where EPS are consumed as 

an energy and carbon source for GAOs aggregation [22]. 

In G-SBR and F-SBR, famine conditions occurred frequently, e.g., in idle 

phases (210 min per day), during which EPS were able to be used by PAOs and 

GAOs to supply endogenous energy. High GAO ratios were maintained in the 

crushed, dispersed EPS layer as GAOs were found on the outer layer of the granules 

(Fig. 2a and Table 3), and were easily washed out from the system due to their low 

settling velocity. The higher GAOs ratio in G-Rupp. than that in G-Rbot in the test of 

crushed granular sludge strongly supported this speculation (Table 2). This 

contributed to the unique spatial distribution of PAOs and GAOs and the relatively 

high percentage of PAOs and GAOs in the granules (Table 1). 

Similar to what was proposed by Sheng et al. [16], we suggest that the granules 

are comprised of two distinct parts, i.e., a dispersible part and a stabile part (Fig. 2c). 

The stabile part is found in the inner layer of granules and contains biomass in a 

stable structure tightly glued by EPS, whereas the dispersible part contains 

dispersible cells loosely held together with EPS [6] in the outer layer of granules 

(Fig. 2c). The dispersed EPS layer broke down more easily from the granules and 

coexisted in the mixed sludge. The stabile part of the granules may be made up of 

PAOs that have denser EPS. GAOs may have less EPS (EPS tends to be consumed 

to supply energy) and may be dynamically adsorbed and transmitted, and so are 
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found in the most dispersible part, i.e., the outer layer of the granules (Fig. 2c). 

DPAOs granules with a dense structure and a higher EPS content appeared to 

be more tolerant to higher nitrite/FNA, which could be due to a higher resistance to 

the transfer of nitrite/FNA into the bacterial aggregates. This suggests that the DPAO 

granules may be useful for wastewater treatment applications with higher nitrate or 

nitrite concentrations. 

 

4. Conclusions 

DPAO granules with a dense structure and a higher EPS content appeared to be more 

tolerant to higher nitrite/FNA, which may be due to a higher resistance to the transfer 

of nitrite/FNA into the bacterial aggregates. This suggests that the DPAO granules 

may be useful for wastewater treatment applications with higher nitrate or nitrite 

concentrations. A higher PAOs content was achieved in the granules. Higher 

PAOII/PAO ratios were achieved in both flocculated and granulated SBRs, and the 

main mechanism for anoxic P removal was through reduction of nitrate mainly by 

DGAOs, while further reduction of nitrite (and P uptake) was mainly by PAOII. In 

granules, PAOs were found near the granule surface and also in the inner part of the 

granule, whereas GAOs mostly remained near the granule surface. Thus, GAOs were 

able to absorb substrates (i.e., VFA) more easily, but also were more susceptible to 

suffering from higher FNA exposure. A novel method for crushing granules was 

proposed and applied to help understand the mechanism that determined the spatial 

distribution of PAO-GAOs and the pathway of anoxic P removal in granules. 
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Figure captions 

Fig. 1. Typical parameters profiles during one cycle in F-SBR and G-SBR (at day 

272, period IIb) 

 

Fig. 2. The FISH images of granule slices (Bar=200 µm) (All bacteria - yellow; 

PAOs - green; GAOs - red) (a); Schematic representation of the denitrifying P 

removal route in the granular sludge structure (b); A proposed multi-layer structural 

model for the granular sludge (modified from Sheng et al., [16]) (c). 

 

Fig. 3. Denitrifying P removal efficiency (a-d) and intracellular compound 

transformations (e-h) with nitrite as an electron accepter (F-R5 and F-R10 were floc 

sludge systems with once nitrite addition of 5 and 10 mg N/L, respectively; G-R5 and 

G-R10 were granular sludge systems with once nitrite addition of 5 and 10 mg N/L, 

respectively) 

 

Fig. 4. Typical cycle tests with different layers of crushed granular sludge from 

G-SBR ( a and b for G-Rupp.: the upper layer sludge; c and d for G-Rmid.: the middle 

layer sludge; e and f for G-Rbot.: the bottom layer sludge; g: PHA and glycogen 

transformations for G-Rupp., G-Rmid and G-Rbot.) 
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Table 1 Physical characteristics of the flocs and granular Sludge (at day 298) 

 F-SBR 

(Floc sludge) 

G-SBR 

(Granular Sludge) 

Diameter (mm)  0.10 ± 0.05 1.92 ± 0.78 

SVI30 (mL/g) 25.5 ± 1.7 13.7 ± 1.2 

Settling velocity (m/h) 30 ± 7 241 ± 29 

Specific gravity 1.012 ± 0.001 1.171 ± 0.001 

Carbohydrate (mg/g VSS) 69.7 ± 0.3 90.2± 0.2 

Protein (mg/g VSS) 87.3 ± 0.3 211.4 ± 0.5 

Humic substance (mg/g VSS) 17.6 ± 0.2 34.5 ± 0.4 

Total EPS (mg/g VSS) 174.6± 0.8 336.1± 1.1 
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Table 2  Comparison of the anaerobic carbon transformations, P release and biomass compositions with literature 

studies and metabolic model predictions, with propionate as carbon sources 

Study FISH quantification P/ 

VFA
a
 

Gly/ 

VFA
b
 

PHA/ 

VFA
b
 

PHB/ 

VFA
b
 

PHV/ 

VFA
b
 

PH2MV/ 

VFA
b
 Ac (%)  Co

 
(%) De (%) 

Carvalho et al. (2007) 76 - <1 0.40 0.32 0.97 0 0.40 0.57 

PAO metabolic models 

Lu et al. (2006) - - -  0.29 1.22 0 0.56 0.66 

Oehmen et al. (2005) 63 <1 <1 0.34 0.04 1.23 0 0.56 0.67 

GAO metabolic model 

Oehmen et al. (2005) <1 <1 >96 0 0.70 1.83 0.13 0.71 0.99 

This study          

Flocs (F-SBR) 64
 c
 21 <1 0.37 0.24 1.48 0.08 0.68 0.72 

Granules (G-SBR) 72
 d

 16 <1 0.32 0.41 1.54 0.11 0.63 0.80 

Crashed granules from G-SBR 

Upper layer (G-Rupp.) 56 28 <1 0.30 0.44 1.58 0.10 0.63 0.85 

Middle layer (G-Rmid.) 68 17 <1 0.32 0.40 1.55 0.09 0.62 0.83 

Bottom layer (G-Rbot.) 77 12 <1 0.36 0.33 1.60 0.12 0.61 0.87 
a
Units P mmol/C mmol; 

b
Units C mmol/C mmol; - No data 

c
The PAOII ratio maintained at 72% in F-SBR; 

d
The PAOII ratio maintained at 76% in G-SBR. 
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Table 3 Nitrate and P removal in the typical cycles in F-SBR, G-SBR and batch 

tests 

Sludges 

Maximum  

phosphate release 

/uptake rate
*
 

(mg·gVSS
-1

h
-1

) 

Maximum  

NO3
-
-N 

reduction* rate 

(mg·gVSS
-1

h
-1

) 

P/N ratio 

Flocs sludge (F-SBR) 76.3/10.5 12.5 0.84 

Granular sludge (G-SBR) 51.5/9.6 9.5 1.01 

G-SBR 

G-Rupp.  64.4/5.2 7.0 0.74 

G-Rmid. 57.3/5.9 3.6 1.64 

G-Rbot. 53.7/8.1 3.4 2.4 

* Rates and ratios calculated based on the anoxic reactions of first 15 min 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Figure captions 

 

Fig. S1. Long-term variations of nutrient removal efficiency and biomass in F-SBR 

and G-SBR (a, c, e and g for F-SBR; b, d, f and h for G-SBR). 

 

Fig. S2. Granules and cells on the surface of granules. The images of the mature 

granular sludge at the end of aerobic phase at day 302 (a); SEM image for the mature 

granular sludge at day 302 (b); the three parts of crushed sludge from G-SBR (c). 

 

Fig. S3. FISH images (PAOs/GAOs) from the SBRs. Red—Accumulibacter (targeted 

by Cy3-PAOmix probes); Green—Competibacter (targeted by Cy5-GAOmix probes). 

All bacteria are shown in blue—(targeted by FITC-EUBmix probes) (Bar=10 µm). 

 

Fig. S4. FISH images (PAOI/PAOII) from the SBRs. Red—PAOI (targeted by 

Cy5-Acc-I-444 probes); Green—PAOII (targeted by Cy5-Acc-II-444 probes). All 

PAOs are shown in blue—(targeted by Cy3-PAOmix probes) (Bar=10 µm).
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Fig. S1 
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Fig. S2 
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 Fig. S3 

 

 

(a) F-SBR 

 

(b) G-SBR 



  

 

40 

 

 

Fig. S4 
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Highlights (maximum 85 characters) 

 

► Denitrifying P removal and nitrite tolerance was compared between 

flocs and granules  

► Granules had higher resistance to nitrite/FNA due to the mass transfer 

resistance 

► Granular sludge had a higher PAOs content than flocs sludge 

► PAOII dominated in both systems and performed anoxic P removal 

cooperated with DGAOs 

► PAOs and GAOs existed in different depths in granules 
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Graphical Abstract 
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