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Saint Paul, Minnesota, metropolitan area and showed that adverse 
weather causes clear reductions in traffic speed: up to 6% for rain, 
13% for snow, and 12% for reduced visibility (1). Ibrahim and Hall 
(5) analyzed the effects of adverse weather on the speed–flow and 
flow–occupancy relationships for Canadian travelers and found the 
effects of snow to be much larger than those of rain and to cause a 
reduction in free-flow speed of 38 to 50 km/h. The effects of weather 
on traffic volume are also evident from empirical data. The research 
conducted by Datla and Sharma indicates that the impact of cold and 
snow on traffic volume varies with the type of trip and hour of the 
day (6). From traffic data collected in Canada, they observed that 
commute trips experience the lowest reductions in volume because 
of snowy weather, of up to 14%, while recreational trips experience 
the highest reductions, of up to 31%. They also found that reduc-
tions in commute trips during off-peak hours (−10% to −15%) were 
generally greater than those during peak hours (−6% to −10%); 
however, an opposite pattern was observed for recreational trips. All 
these studies show that inclement weather may have a significant and 
comprehensive impact on the transportation system that cannot be 
ignored by planners and decision makers.

To mitigate the impacts of adverse weather on highway travel, 
the FHWA Road Weather Management Program has been involved 
in research, development, and deployment of strategies and tools 
for weather-responsive traffic management. In a project completed 
in 2006, the Road Weather Management Program used data from 
Seattle, Washington; Minneapolis, Minnesota; and Baltimore, Mary-
land; to develop statistical models and adjustment factors to quan-
tify the impacts of weather on traffic flow (7). One of the challenges 
remaining is to integrate those models into decision support systems 
to help improve the performance of the transportation system dur-
ing inclement weather conditions. The traffic estimation and predic-
tion system (TrEPS) is a tool currently available for traffic planners 
and operators to assist with evaluating and implementing weather-
responsive traffic management strategies. Weather-sensitive TrEPS 
capabilities aim for accurate estimation and prediction of the traffic 
states under inclement weather conditions.

Mahmassani et al. identified several key components within the 
TrEPS framework for which the impact of weather must be incorpo-
rated on both the supply and demand sides (8). One such element on 
the supply side consists of well-calibrated weather-integrated traf-
fic flow models. Successful application of weather-sensitive TrEPS 
requires detailed calibration of weather effects on the underlying 
traffic flow models.

The main objectives of this paper are (a) to develop systematic 
procedures for calibrating traffic flow models under inclement 

Calibration of Traffic Flow Models Under 
Adverse Weather and Application in 
Mesoscopic Network Simulation

Tian Hou, Hani S. Mahmassani, Roemer M. Alfelor,  
Jiwon Kim, and Meead Saberi

The weather-sensitive traffic estimation and prediction system (TrEPS) 
aims for accurate estimation and prediction of the traffic states under 
inclement weather conditions. Successful application of weather-
sensitive TrEPS requires detailed calibration of weather effects on the 
traffic flow model. In this study, systematic procedures for the entire 
calibration process were developed, from data collection through model 
parameter estimation to model validation. After the development of the 
procedures, a dual-regime modified Greenshields model and weather 
adjustment factors were calibrated for four metropolitan areas across 
the United States (Irvine, California; Chicago, Illinois; Salt Lake City, 
Utah; and Baltimore, Maryland) by using freeway loop detector traffic 
data and weather data from automated surface-observing systems sta-
tions. Observations showed that visibility and precipitation (rain–snow) 
intensity have significant impacts on the value of some parameters of 
the traffic flow models, such as free-flow speed and maximum flow rate, 
while these impacts can be included in weather adjustment factors. The 
calibrated models were used as input in a weather-integrated simula-
tion system for dynamic traffic assignment. The results show that the 
calibrated models are capable of capturing the weather effects on traffic 
flow more realistically than TrEPS without weather integration.

Driving behaviors and the resulting traffic flow characteristics during 
inclement weather are different from those observed during so-called 
normal conditions. On the basis of type (rain, snow, frog, wind, etc.), 
duration, and intensity of the weather, its impact on the performance 
of traffic networks may vary under different scenarios.

Maze et al. identified three predominant categories of variables 
that are affected by inclement weather: traffic safety, traffic flow 
relationships, and traffic demand (1). Andrey et al. found that, in 
Canadian cities, collision rates increase during precipitation by 50% 
to 100% relative to normal seasonal conditions (2). Similar findings 
are presented in the literature for cities in the United States (3, 4) and 
indicate that the duration and intensity of rainfall and snowfall have 
a positive and statistically significant relationship on the number of 
crashes. Maze et al. studied the freeway system in the Minneapolis–
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weather by using commonly available freeway loop detector data 
and weather data collected from automated surface observing sys-
tem (ASOS) stations and (b) to apply the calibrated models into a 
mesoscopic dynamic traffic assignment (DTA) framework. Accord-
ing to the developed procedure, traffic flow models in four U.S. 
cities (Irvine, California; Chicago, Illinois; Salt Lake City, Utah; 
and Baltimore) are calibrated, as are the quantitative weather impact 
on those models. The calibrated models are provided as input into an 
existing weather-integrated dynamic traffic simulation-assignment 
system, DYNASMART-P. The simulation results show that the cali-
brated models are capable of capturing the weather effects on traffic 
flow more realistically than TrEPS without weather integration.

The extensive set of parameter estimates compiled here, and the 
range of geographic and network situations considered, forms a rich 
library that could support future applications of simulation-based 
dynamic network models to address weather-related scenarios in 
locations where local data may not be available or where the time 
and resources available for a study may not allow full-blown local 
calibration.

Accordingly, the main contribution of the present work consists 
of (a) a systematic calibration process for capturing the weather 
impact on traffic flow relations, (b) an extensive calibration base 
confirming that an approach previously presented for one location 
is applicable in various locations in different regions of the United 
States, (c) a database that serves as a valuable library for application 
to locations where no local data may be available, (d) full integra-
tion of the weather-sensitive traffic flow models into mesoscopic 
DTA simulation framework, and (e) validation and application of 
the entire simulation-based DTA model under weather conditions.

Modeling Weather Impact on Traffic

Although the effect of adverse weather on traffic flow may appear 
evident and easy to perceive, for modeling purposes, development 
of an accurate quantitative description of the effect is still important. 
Hall and Barrow studied the effect of adverse weather conditions on 
the flow–occupancy relationship by using freeway traffic data for 
Ontario, Canada (9). They found that adverse weather affects the 
flow–occupancy function by reducing the slope of the curve that cor-
responds to the uncongested traffic state. Similar findings by Ibrahim 
and Hall indicated that the maximum flow rates of highways are 
reduced by inclement weather (5). They also observed that adverse 
weather causes a downward shift in the speed–flow function. These 
weather effects are modeled statistically by using regression anal
ysis, and the results are quantitatively documented for both rainy 
and snowy conditions. Rakha et al. studied the impacts of inclement 
weather on some key traffic stream parameters for several different 
metropolitan areas in the United States (10). They calibrated a Van 
Aerde traffic flow model by using loop detector data and concluded 
that the impacts of weather on traffic increase as rain and snow inten-
sities increase. In their study, they also proposed and developed so-
called weather adjustment factors (WAFs), which are to be multiplied 
by base clear-condition variables to compute parameters under the 
impact of weather. Parallel efforts have been ongoing in Europe to 
incorporate the effect of adverse weather in traffic models to support 
system management actions (11). In addition, some researchers have 
proposed and developed methods to incorporate weather effects into 
the DTA framework. Antoniou identified characteristics of a traffic 
flow model under different weather conditions (dry and wet), and 
proposed online calibration procedures for DTA models (12). Dong 

et al. recognized the application of DTA simulation tools to support 
transportation network planning under adverse weather conditions 
and developed a methodology to incorporate weather impacts into 
the DTA framework (13). Recently, Mahmassani et al. followed the 
methodology and demonstrated the use of weather-sensitive DTA 
models for different road networks (14).

Modified Greenshields Traffic Flow Model

The dynamic traffic assignment system used in this study, 
DYNASMART-P, has two types of modified Greenshields models 
for simulating traffic propagation (15). The first type is a dual-regime 
model in which constant free-flow speed is specified for the free-
flow conditions (first regime) and a modified Greenshields model is 
specified for congested-flow conditions (second regime) as shown 
in Figure 1. Dual-regime models are generally used for freeways 
because freeways typically have more capacity than arterials and can 
accommodate dense traffic (up to 2,300 passenger cars per hour per 
lane) at near free-flow speeds (16). In contrast, arterials have signal-
ized intersections, and therefore a slight increase in traffic would 
elicit more deterioration in their prevailing speeds than for those of 
freeways. Therefore, arterial traffic relations are better explained by  
using the other type of modified Greenshields model, the single-
regime model. All the traffic data used in this study come from loop 
detectors installed on highways. Therefore, the dual-regime model 
is chosen to fit the collected historical data.

The mathematical expression of the dual-regime modified Green-
shields is shown in Equation 1. Six parameters affect the shape of 
the model: breakpoint density (kbp), free-flow speed on link i (uf), 
speed intercept (vf), minimum speed on link i (v0), jam density on 
link i (kjam), and shape parameter (power term, α):
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where vi is the speed on link i, and ki is density on link i.

Description of WAF

WAF, proposed by Rakha et al. to quantify the effect of inclement 
weather on traffic flow model parameters, is computed as the ratio 
of the parameter under inclement weather conditions relative to the 
parameter obtained during normal weather (10):

f

f
i

i

i

=WAF (2)
weather event

normal

where

	 WAFi	=	WAF for parameter i,
	f i

weather event	=	� value of parameter i under certain weather event, 
and

	 f i
normal	=	value of parameter i under normal condition.

As many researches have found that the variation in the weather 
effects on traffic flow is associated with the type of weather condi-
tion (5, 7), the current authors assume that WAF is closely related 
to three variables that are representative of severity of the weather 



94� Transportation Research Record 2391

condition: visibility, rain intensity, and snow intensity. Specifically, 
a linear functional form is used to model WAF as follows:

i i i i i i iv r s v r v si i i i i i i= β + β + β + β + β + βWAF (3)0 1 2 3 4 5

where

	 v	=	visibility (mi),
	 r	=	precipitation intensity of rain (in./h),
	 s	=	� precipitation intensity of snow (in./h), and
	βi0, βi1, βi2, βi3, βi4, βi5	=	� weather adjustment coefficients to be 

estimated.

Study Areas and Data Description

The data used in this study were obtained from the four metropolitan 
areas of Irvine, Chicago, Salt Lake City, and Baltimore. These four 
areas were chosen because their locations are distributed across the 
continental United States, from the West Coast to the East Coast, and 
each can represent the weather and traffic conditions in its own geo-
graphical territory. Calibration of weather-sensitive TrEPS models 
requires availability of both weather data and traffic data.

Two major public sources archive weather data in the United States: 
ASOS stations located at airports and roadside environmental sensor 
stations (ESSs) available from the Clarus initiative. As the historical 
weather data from ESSs have a time resolution of 20 min and have 
been available only since 2009, ASOS data with 5-min resolution were 
used in conjunction with traffic detector data collected and aggregated 
over 5-min intervals. ASOS 5-min weather data are available on the 
National Oceanic and Atmospheric Administration’s National Cli-
matic Data Center (NOAA NCDC) site (ftp://ftp.ncdc.noaa.gov/pub/
data/asos-fivemin). The weather data recorded by ASOS stations are 
reported in METAR (meteorological terminal aviation routine weather 

report) format, a prevailing format used by aviation organizations, 
which includes various weather information such as visibility, precipi-
tation type and intensity, temperature, dew point, wind direction and 
speed, and the like. Table 1 summarizes the airports at which ASOS 
stations are located for the four study sites and the periods for which 
5-min ASOS data are available from the NOAA NCDC website.

The primary source of traffic data used in this study for calibration 
of traffic flow models is loop detectors installed in freeway lanes. 
They are available from several web-based data archive systems (like 
PeMS, GCM, CATT Lab, etc.). Historical traffic data with 5-min  
aggregation interval from 2005 through 2009 are used. The distribu-
tion of selected loop detector locations in the four study areas are 
presented in Figure 2. In the selection of detector locations and the 
collection of data, the following criteria were mainly considered:

•	 Choose detectors as close as possible to ASOS stations, ideally, 
no farther than 10 mi from ASOS.

•	 Remove the influence of other external events such as incidents–
accidents, work zones, and special planned events.
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FIGURE 1    Modified Greenshields model [dual-regime model (ki = density on link i; 
vi = speed on link i; pc = passenger cars)].

TABLE 1    Airports with ASOS Stations and  
Available Periods for Data

Airport Location
Available  
ASOS Data

John Wayne Irvine, Calif. 2005–present

Midway International Chicago, Ill. 2005–present

O’Hare International Chicago, Ill. 2000–present

Salt Lake City International Salt Lake City, Utah 2000–present

Baltimore–Washington  
International

Baltimore, Md. 2000–present 
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FIGURE 2    Maps of selected detector locations in four study areas: (a) Irvine, (b) Chicago, (c) Salt Lake City, and (d) Baltimore.

(a) (b)

(c) (d)
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•	 Include various facility–lane types and calibrate them sepa-
rately for each type. For instance, types can be classified as main 
lines, on-ramps, off-ramps, and high-occupancy vehicle; the number 
of lanes could be further distinguished.

•	 Find segments that experience a wide range of traffic regimes 
(i.e., free-flow, stop-and-go, and congested states).

Calibration Procedure

Data Preparation

Three major variables of traffic states used for TrEPS calibration are 
link volume (or flow rates), occupancy, and speed. To calibrate the 
modified Greenshields traffic flow model, occupancy data need to 
be further converted into density. Cassidy and Coifman have shown 
that occupancy is linearly related to density by the effective aver-
age vehicle length (17). The exact relationship between these two 
variables can be expressed as follows:

k
L L

o
v s

i=
+

52.8
(4)

where

	 k	=	density [vehicles per mile per lane (vpmpl)],
	Lv	=	average vehicle length (ft),
	Ls	=	average sensor length (ft), and
	 o	=	occupancy (%).

In this study, Lv is assumed to be 5 m (approximately 16.4 ft) and Ls 
is set to 2 m (approximately 6.5 ft).

The traffic and weather data at 5-min intervals are then matched 
together in relation to the time stamps to classify each traffic obser-
vation into different weather categories. Weather categories are 
defined on the basis of precipitation type and the intensity. With nor-
mal weather (in which no precipitation is observed) as the base case, 
three levels of precipitation intensities (light, moderate, and heavy) 
are used for both rain and snow. Table 2 shows the seven weather 
categories and the corresponding precipitation intensity ranges: nor-
mal (no precipitation), light rain (intensity less than 0.1 in./h), mod-
erate rain (0.1 to 0.3 in./h), heavy rain (greater than 0.3 in./h), light 
snow (less than 0.05 in./h), moderate snow (0.05 to 0.1 in./h), and 
heavy snow (greater than 0.1 in./h). The values for the intensity range 
are based on the literature (1, 7, 18). For the Irvine network, no snow 
precipitation was observed for the years 2005 through 2009. For the 
Salt Lake City and Chicago networks, the moderate and heavy cate

gories were merged for both rain and snow because traffic data for 
heavy rain–snow did not sufficiently cover the whole density range 
to enable calibration. A complete description of weather categoriza-
tion for different networks is given in Table 2, where a check mark 
indicates that the collected data were sufficient to calibrate the traffic 
flow model for that corresponding weather category.

Procedure for Calibrating Traffic Flow Model

After traffic data are categorized, parameters in the modified Green-
shields model are estimated for each weather condition by using 
a nonlinear regression approach. The following steps describe the 
procedures for calibrating the dual-regime model, which is used in 
most cases when traffic data are collected from freeways:

1.	 Plot the graph of speed versus density, and set initial values for 
all the parameters (kbp, vf, v0, kjam, and α) on the basis of observations.

2.	 Calculate the predicted speed value (v̂i) for each observed den-
sity (ki) by using Equation 1 and the parameters initialized in Step 1.

3.	 Compute the squared difference between observed speed 
value (vi) and predicted speed value (v̂i), for each data point, and 
sum the squared error over the entire data set.

4.	 Minimize the sum of squared error obtained in Step 3 by 
changing the values of the model parameters.

Research by Mahmassani et al. uses an approach that divides the 
data into two parts (free-flow and congested parts) and estimates the 
two regimes separately (8). The main advantage of the nonlinear 
regression method used in this paper is that it estimates the model as 
a whole, which gives a smooth joint point at the breakpoint density. 
Step 4 is implemented by Microsoft Excel Solver, which uses the gen-
eralized reduced-gradient algorithm to find the optimal solution. After 
examination of the observed traffic data, the minimum speed (v0) and 
jam density (kjam) appear to be insensitive to weather conditions. For 
the Irvine and Baltimore networks, the minimum speed is assumed to 
be 10 mph, while for Chicago and Salt Lake City, a minimum speed 
of 2 mph is used. The selection of a minimum speed value is based on 
long-term observations obtained from loop detector data at selected  
locations. The jam density is assumed to be 225 vehicles per mile per 
lane (vpmpl) for all four networks.

Procedure for Calibrating WAF

Once speed–density functions for the seven weather conditions are 
obtained for each location, linear regression is conducted to estimate 

TABLE 2    Weather Categorization for Four Studied Networks

Weather Condition (precipitation intensity)

Network
Normal
(no precipitation)

Light Rain
(<0.1 in./h)

Moderate Rain
(0.1–0.3 in./h)

Heavy Rain
(>0.3 in./h)

Light Snowa

(<0.05 in./h)
Moderate Snowa

(0.05–0.1 in./h)
Heavy Snowa

(>0.1 in./h)

Irvine ✓ ✓ ✓ ✓

Salt Lake City ✓ ✓ ✓ ✓ ✓

Chicago ✓ ✓ ✓ ✓ ✓

Baltimore ✓ ✓ ✓ ✓ ✓ ✓ ✓

Note: ✓ = data sufficient for calibration; blank cells = data not sufficient for calibration.
aLiquid equivalent snowfall intensity.
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the weather adjustment coefficients in Equation 3. The detailed steps 
in the calibration procedure are as follows:

1.	 For each weather condition c, calculate WAF for each param-
eter i such that WAFi = f i

c/f i
normal ∀c, where f i

c denotes the value of 
i under condition c, f i

normal denotes the value of i under the normal 
(no-precipitation) condition.

2.	 Assign WAFi to corresponding traffic–weather data such that 
each observation has a structure similar to the following: [time, traf-
fic data (volume, speed, density), weather data (v, r, s), WAFi].

3.	 For each parameter i, estimate coefficients βi0, βi1, βi2, βi3, βi4, 
and βi5 by using Equation 3 to conduct the regression analysis given 
WAFi as a dependent variable and weather data (v, r, s) for all obser-
vations as independent variables.

Calibration Results

The procedures developed in the previous section are applied to 
calibrate the traffic flow model and WAFs in the four selected study 
areas. Mahmassani et al. have followed similar steps to calibrate 
weather-sensitive traffic flow models by using data collected from 
the Hampton Road network in Virginia (8). Their research showed 
that different weather conditions do not have significant impact on the 
magnitude of the shape parameter (α). As a result, in this study, the 
shape parameter was considered a decision variable only under clear 
weather conditions in the optimization process, as described in Step 4 
of the calibration process for the traffic flow model, while under other 
weather conditions (i.e., rainy and snowy), it is set as a constant that 
is equal to the value obtained under clear weather.

The goodness of fit of the nonlinear regression model, used for 
evaluating the estimation results, can be measured by the root mean 
square error (RMSE). The smaller the RMSE is, the better the model 
represents the data:

N
v vi i

i

N

∑( )= −
=

RMSE
1 ˆ (5)

2

1

where

	vi	=	observed speed value,
	v̂i	=	predicted speed value, and
	N	=	number of observations.

Another measurement is the R2 value, which is computed in the 
same way as in linear regression models. The R2 value is the ratio 
of the regression sum of squared errors (SSE) to the total sum of 
squares [SST (Equation 5)], which explains the proportion of vari-
ance taken into account in the dependent variable by the model. The 
closer R2 is to 1, the better the model fits the data.
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Examples of calibrated speed–density curves for each network are 
presented in Figure 3. Observations have shown that the overall 
speed for both uncongested and congested regimes decreases as 
weather conditions become severe. A snow event, especially moder-
ate or heavy snow, causes significant reductions in speed, as shown 
in the Chicago, Salt Lake City, and Baltimore networks. The quan-

titative values of the calibrated model parameters are tabulated in 
Table 3 for some selected highway segments.

On the basis of the calibrated traffic model of the four networks, 
the WAFs for several key parameters [maximum flow rate (qmax), 
speed intercept (vf), breakpoint density (kbp), and free-flow speed (uf)] 
are computed by using Equation 2. The maximum service flow rate 
(qmax), and free-flow speed (uf), were found to be sensitive to the inten-
sity of both rain and snow. As the rain or snow intensity increases, 
maximum flow rate, speed intercept, and free-flow speed are reduced. 
The literature shows similar findings (5, 10). Increasing snow inten-
sity has also been found to reduce breakpoint density; however, the 
effect of rain on breakpoint intensity is not as clear as that for snow, as 
in some networks it decreases with rain intensity (e.g., Irvine), while 
in other cases it increases (e.g., Baltimore). In summary, the effects 
of rain intensity and snow intensity, respectively, on different traffic 
flow model parameters are presented in Figures 4 and 5. The calibra-
tion results of WAF for the four networks are provided in Table 4. The 
significance of model parameters ( p-values) is presented in paren-
theses under each point estimator in the table. The low R2 values of 
breakpoint density (kbp) suggest that this parameter is insensitive to 
visibility and precipitation intensity levels.

Validation

Besides the supply side traffic flow model and WAF calibration, 
some other components of weather-sensitive TrEPS must be tuned 
before DTA simulation can be conducted, including estimation of 
the demand side parameters, driver behavior modeling, and the like. 
Detailed implementation of those tasks are beyond the scope of this 
paper; however, some relevant studies can be found in the literature 
(19–21). In this study, the origin–destination matrix is calibrated 
by using a bilevel optimization method (22, 23) that is based on the 
historical static origin–destination matrix and time-dependent count 
data on selected links.

After the supply side and demand side parameters are obtained, 
the capability of capturing weather effects on the traffic flows is 
tested by performing simulations with specific weather scenarios. 
Given the time required for full calibration of the network model, 
the weather-related validation is conducted on one of the networks. 
The Chicago network is selected for this purpose. First, days with 
rain or snow events between 5 and 10 a.m. are identified, and the 
traffic observations are collected for each identified day. Each 
weather scenario is simulated with the calibrated origin–destination 
matrix with and without WAFs in DYNASMART-P. Then the simu-
lated results are compared with the actual observations under the 
specified weather condition.

Performance measure of simulation is considered at two levels: 
aggregated network level and individual link level. At the network 
level, two measures of error are used: RMSEflows and RMSEspeeds. 
RMSEflows represents the discrepancy between the observed and 
the simulated link counts for all periods for all links. Similarly, 
RMSEspeeds represents the discrepancy between the observed and the 
simulated link speed for all periods for all links. These two quantities 
are calculated by means of the following equations:
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FIGURE 3    Examples of raw traffic data (left column) and calibrated speed–density curves (right column) under different 
weather conditions for (a, b) Irvine, (c, d) Salt Lake City, (e, f ) Chicago, and (g, h) Baltimore networks.



TABLE 3    Traffic Flow Model Calibration Results of Selected Highway Segments in Each Network

Weather 
Condition

qmax 

(vehicles/5 min)
vf 

(mph)
kbp 

(vpmpl)
uf 

(mph)
v0  
(mph)

kj  
(vpmpl)

No. of 
Observations  
by Regime

Network Highway Alpha 1 2 RMSE R2

Irvine I-405 Normal 835 110.75 7.13 16.03 69.45 10 225 513 1,775 4.81 .90
Light rain 735 103.96 7.13 15.59 66.30 10 225 163 298 4.67 .92
Moderate rain 647 98.15 7.13 14.89 64.07 10 225 75 46 5.68 .84
Heavy rain 605 90.15 7.13 10.90 66.24 10 225 13 19 5.13 .78

Chicago I-94 Normal 591 89.15 3.92 20.88 61.48 2 225 654 1,074 6.37 .78
Light rain 579 90.10 3.92 23.51 57.11 2 225 727 1,002 5.79 .86
Moderate rain 486 78.46 3.92 21.43 52.90 2 225 78 166 4.42 .80
Light snow 576 99.10 3.92 20.65 60.27 2 225 306 418 9.09 .79
Moderate snow 399 78.96 3.92 23.00 52.41 2 225 5 86 13.30 .68

Salt Lake City I-15 Normal 735 87.24 4.38 19.66 59.14 2 225 2,041 381 1.86 .88
Light rain 675 82.11 4.38 17.53 58.18 2 225 622 182 2.91 .78
Moderate rain 690 82.84 4.38 19.04 56.90 2 225 368 20 3.09 .37
Light snow 565 69.51 4.38 11.92 55.20 2 225 417 721 9.16 .53
Moderate snow 514 68.08 4.38 13.37 52.54 2 225 96 62 7.41 .49

Baltimore I-695 Normal 676 85.34 4.81 12.84 66.80 10 225 743 265 5.52 .58
Light rain 653 85.60 4.92 13.94 65.19 10 225 178 440 4.05 .94
Moderate rain 559 80.21 4.72 14.91 60.79 10 225 17 52 3.36 .93
Heavy rain 589 97.48 5.66 21.63 59.39 10 225 80 20 3.91 .90
Light snow 608 85.39 5.18 15.45 62.14 10 225 209 65 5.53 .57
Moderate snow 489 73.70 6.03 13.14 54.33 10 225 389 62 7.42 .16
Heavy snow 425 79.41 6.90 16.14 51.53 10 225 133 31 6.18 .28

Note: No. = number.
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FIGURE 4    Effect of rain intensity on WAFs for (a) maximum flow rate (qmax), (b) speed intercept (vf), (c) breakpoint density (kbp),  
and (d) free-flow speed (uf).
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FIGURE 5    Effect of snow intensity on WAFs for (a) maximum flow rate (qmax) and (b) speed intercept (vf). 
� (continued)
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FIGURE 5 (continued)    Effect of snow intensity on WAFs for (c) breakpoint density (kbp) and (d) free-flow speed (uf).
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TABLE 4    Calibration Results of WAF

Network Parameter β0 β1 β2 β3 β4 β5 R2

Irvine qmax 0.8424 0.0154 0.0244 0 −0.1942 0 .7251
(<.001) (<.001) (.159) (<.001)

vf 0.9188 0.008 −0.0665 0 −0.0965 0 .7227
(<.001) (<.001) (<.001) (<.001)

kbp 0.8203 0.0178 −0.5202 0 −0.2078 0 .4305
(<.001) (<.001) (<.001) (<.001)

uf 0.9778 0.0022 0.0033 0 −0.0268 0 .3704
(<.001) (<.001) (.069) (<.001)

Salt Lake City qmax 0.9202 0.0077 −0.1242 −2.8739 −0.0801 −0.3076 .6361
(<.001) (<.001) (<.001) (<.001) (<.001) (<.001)

vf 0.7887 0.0209 0.8547 −0.6376 −0.1641 −0.8786 .8187
(<.001) (<.001) (.041) (<.001) (<.001) (<.001)

kbp 0.6933 0.0305 1.4373 0.8021 −0.2161 −1.3046 .4389
(<.001) (<.001) (<.001) (<.001) (<.001) (<.001)

uf 0.8993 0.0098 0.411 −0.6111 −0.0887 −0.4044 .8748
(<.001) (<.001) (<.001) (<.001) (<.001) (<.001)

Chicago qmax 0.9979 0.0003 −0.3312 −3.0583 −0.0436 −0.0046 .6919
(<.001) (<.001) (<.001) (<.001) (<.001) (<.001)

vf 0.9254 0.0071 −0.1071 −1.6901 −0.1026 −0.1902 .9061
(<.001) (<.001) (<.001) (<.001) (<.001) (<.001)

kbp 0.8713 0.0122 0.5052 0.1758 −0.17 −0.2138 .2413
(<.001) (<.001) (<.001) (<.001) (.071) (<.001)

uf 0.9702 0.0029 −0.2695 −1.8068 −0.0437 −0.115 .7569
(<.001) (<.001) (<.001) (<.001) (<.001) (<.001)

Baltimore qmax 0.9874 0.0015 −0.3753 −3.3884 −0.0243 −0.1267 .6397
(<.001) (<.001) (<.001) (<.001) (<.001) (<.001)

vf 0.957 0.0044 −0.0738 −1.8262 −0.0294 −0.1302 .6987
(<.001) (<.001) (<.001) (<.001) (.012) (<.001)

kbp 1.0894 −0.0081 0.3924 −3.5266 0.1371 0.1888 .2572
(<.001) (<.001) (<.001) (<.001) (<.001) (.188)

uf 0.9303 0.0068 −0.1044 −1.1713 −0.0733 −0.1662 .8466
(<.001) (<.001) (<.001) (<.001) (<.001) (<.001)

Note: p-values are in parentheses.
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TABLE 5    RMSE Values for 
Selected Snow Scenario, Chicago, 
January 7, 2010

Weather Features Presence Value

RMSEspeeds

With 22.69

Without 35.56

RMSEflows

With 53.24

Without 67.35

FIGURE 6    Observed and simulated speeds on selected link in Chicago network.
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where

	 Ml,t	=	simulated link flow on link l at time t,
	 Ol,t	=	observed link flow on link l at time t,
	MSl,t	=	simulated link speed on link l at time t, and
	OSl,t	=	observed link speed on link l at time t.

Table 5 shows the results based on the test from using a snow 
scenario observed on January 7, 2010, in Chicago. The lower 
RMSEspeeds value with weather features indicates that the discrep-
ancy between the overall simulated and the observed link speeds is 
much smaller when weather specific parameters are used. In other 
words, the use of the WAFs captures the weather effect on the  
road traffic and therefore produces more realistic simulation results. 
Similarly, for the link counts, an equivalent pattern is observed;  
that is, the counts are matched better in the simulation by using 
weather features. The overall experiment results reveal that the 
weather-sensitive TrEPS indeed has the ability to model the effect 
of weather conditions.

Graphical comparison is made at the individual link level. Fig-
ure  6 presents observed and simulated speeds with and without 
weather-specific parameters on a selected link. Figure 7 presents 

observed counts versus simulated counts with and without weather-
specific parameters on a selected link. The link level comparisons 
show that the simulation results that consider the snow effects are 
closer to actual traffic conditions than those that ignore the weather 
effects.

Conclusion

Systematic procedures for calibrating weather-sensitive traffic flow 
models for application in a TrEPS mesoscopic network simulation 
model were developed in this paper, from data collection through 
model parameter estimation to model validation. The methods are 
demonstrated and applied in four networks in the United States 
by using publicly available traffic and weather data. The results 
show that inclement weather can affect traffic flow by changing the 
values of some model parameters (e.g., heavy snow could reduce 
free-flow speed and the maximum service flow rate on highways by 
30% to 40%). Observations have shown that impact increases with 
the severity of weather condition (visibility, rain–snow intensity), 
results that are consistent with findings in the literature. The results 
of the DTA simulation-based model validation show that, when a 
well-calibrated traffic flow model is integrated in TrEPS, it can pro-
duce more realistic traffic conditions under weather conditions than 
without considering any weather effect. The methodology devel-
oped in this paper could be incorporated with weather-responsive 
traffic management systems and therefore provide a tool for better 
modeling of the effect of adverse weather on traffic system proper-
ties and performance and for supporting the analysis and design of  
traffic management strategies targeted at such conditions. Given the 
diverse range of geographic regions of the site locations consid-
ered in this study, the extensive set of parameter estimates compiled 
here provides a rich library that could support future applications 
of simulation-based dynamic network models to address weather-
related scenarios in locations where local data may not be available  
or where the time and cost available for the study may not allow full-
blown local calibration. Additional validation and consideration of 
more sites would contribute to expanding the database and advanc-
ing the state of the art and practice in modeling of weather-response 
network traffic.
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FIGURE 7    Observed and simulated counts on selected link in Chicago network.
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