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information into their operations to support the operational decisions 
about various WRTM strategies (4). There have been active efforts 
in states around the country to develop and implement a wide range 
of advisory, control, and treatment strategies under the framework 
of WRTM. A comprehensive overview of WRTM practices and a 
collection of case studies from municipal and state transportation  
agencies can be found in Gopalakrishna et al. (5) and Murphy et al. 
(6), respectively. Also there have been efforts to integrate the weather 
effects into decision support tools allowing improved traffic state 
prediction and estimation (7, 8).

To reduce the impacts of inclement weather events and prevent 
congestion before it occurs, weather-related advisory and control 
measures could be determined for predicted traffic conditions con-
sistent with the forecast weather, that is, anticipatory road weather 
information. A recent study identified levels of weather infor
mation integration in TMC operations and found that many TMCs 
viewed the desirable level of decision support strategies as using 
“response scenarios through software supply potential solutions with 
projected outcomes,” while the current levels were evaluated as 
“ad hoc implementation of weather management strategies” (4).

The goal of this study is to bridge this gap between the state of 
the practice and state of the art by integrating WRTM and a traffic 
estimation and prediction system (TrEPS). TrEPS models (9–12) 
are simulation-based decision support tools that provide predictive 
information on how traffic behaves in a given network under likely 
future conditions. In a previous FHWA project (7), a methodology 
for incorporating weather impacts in TrEPS was developed. The 
principal supply-side and demand-side elements affected by adverse 
weather were systematically identified and modeled in the TrEPS 
framework. The methodology was incorporated and tested in con-
nection with the DYNASMART-P simulation-based dynamic traffic 
assignment system (13), providing a tool for modeling the effect of 
adverse weather on traffic system properties and performance and 
for supporting the analysis and design of traffic management strate-
gies targeted at such conditions. The methodological development 
conducted to enable weather responsiveness of the simulation tools 
was further calibrated and validated and integrated in a real-time 
estimation and prediction capability (14) to support the goal of making 
WRTM an integral part of the traffic system management (15).

On the basis of the weather-sensitive TrEPS developed in the 
previous studies (7, 15), this paper establishes a general framework 
for incorporating TrEPS in actual TMC operations to support the 
design, implementation, and evaluation of WRTM strategies suitable 
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This study presents the development and application of methodologies  
to support weather-responsive traffic management (WRTM) strategies 
by building on traffic estimation and prediction system models. First, a 
systematic framework for implementing and evaluating WRTM strategies 
under severe weather conditions is developed. This framework includes 
activities for planning, preparing, and deploying WRTM strategies in 
three different time frames: long-term strategic planning, short-term 
tactical planning, and real-time traffic management center operations. 
Next, the evaluation of various strategies is demonstrated with locally 
calibrated network simulation-assignment model capabilities, and  
special-purpose key performance indicators are introduced. Three types 
of WRTM strategies [demand management, advisory and control variable 
message signs (VMSs), and incident management VMSs] are applied 
to multiple major U.S. areas, namely, Chicago, Illinois; Salt Lake City, 
Utah; and the Long Island area in New York. The analysis results illus-
trate the benefits of WRTM under inclement weather conditions and 
emphasize the importance of incorporating a predictive capability into 
selecting and deploying WRTM strategies.

The disruptive effect of inclement weather on traffic results in  
considerable congestion and delay, because of reduced service 
capacity, diminished reliability of travel, and greater risk of accident 
involvement. To mitigate the impacts of adverse weather on highway 
travel, the FHWA Road Weather Management Program has been 
involved in research, development, and deployment of weather-
responsive traffic management (WRTM) strategies and tools. The 
most ambitious initiative in this regard is the Clarus weather system, 
intended to provide traffic management centers (TMCs) with accurate 
real-time weather information (1–3). Recognizing the importance of 
tying weather and traffic management together in areas exposed 
to adverse weather situations, many TMCs have integrated weather 
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for anticipated local conditions. It is important to recognize that 
TMCs differ on the WRTM strategies that they can employ because 
of different network characteristics and the highly site-specific 
nature of weather conditions, thus requiring TrEPS models to flex-
ibly adapt to the local needs and interests. Therefore, this study also 
attempts to identify different WRTM strategies for different sites to 
investigate the usefulness of the tool in connection with practical 
problem-solving activities.

The paper is structured as follows. First, background information 
on the weather-sensitive TrEPS is presented. Then, a general frame-
work for implementing and evaluating WRTM strategies using 
TrEPS is established. A set of key performance indicators (KPIs) is 
identified to enhance the evaluation procedure. Next, local-specific 
WRTM strategies are tested and evaluated for three major U.S. areas 
under this framework, and simulation results and their interpretations 
are discussed. Finally, a summary, lessons learned, and insights from 
multinetwork experiments are given.

Background

This section provides background information on methodologies for 
capturing weather effects in a dynamic traffic assignment model and 
various traffic advisory and control strategies that are implemented in 
TrEPS to support WRTM.

Modeling Weather Impacts on Supply- and 
Demand-Side Parameters

To represent the impacts of weather in a traffic simulation, various 
supply and demand parameters need to be adjusted. The supply-side 
parameters include traffic flow model parameters, service and satu-
ration flow rates, and operational parameters at junctions, while the 
demand-side parameters include the dynamic origin–destination (O-D) 
pattern and user responses to information and control measures.

To adjust supply-side parameters, the study uses a weather adjust-
ment factor (WAF), which is a multiplication factor that describes 
how much a parameter value under the normal weather condition is 
reduced in response to a given weather. A WAF is represented by a 
function of three weather parameters (visibility, rain intensity, and 
snow intensity) and is calibrated on the basis of historical weather 
and traffic data (7, 16). To implement WAFs in the traffic simulation, a 
weather scenario needs to be supplied in the form of the three weather 
parameters.

One way to address changes in demand patterns is to prepare a set 
of weather-specific O-D matrices that are estimated under different 
weather conditions. Alternatively, a demand reduction factor similar 
to WAF could be applied to determine the percent average reduction 
of traffic demand under a given weather condition, as proposed in 
Samba and Park (17). In the online TrEPS framework, however, it is 
possible to adaptively estimate and predict O-D and associated flow 
patterns based on real-time traffic observations, capturing changes 
in dynamic O-D patterns resulting from weather-related adjustments 
in trip making (14).

Weather-Responsive Traffic Advisory  
and Control Strategies

Road weather information, such as en route weather warning and 
route guidance, can be disseminated through radio, Internet, mobile 

devices, roadside variable message sign (VMS), and so on. Weather 
warning VMSs have been implemented in the field and shown to be  
effective in decreasing the average speed as well as the variance in 
speed and are therefore helpful in increasing safety and reliability 
for the traveling public (18, 19). Weather advisory VMSs, in the 
form of slippery road condition sign and fog (low visibility) sign, 
have been implemented and tested in Europe (20, 21). A compre-
hensive synthesis of recent developments and applications focusing 
on U.S. practice is presented in the FHWA report (5). Recently, the 
use of variable speed limit (VSL) systems during inclement weather 
conditions has received growing attention from local agencies and 
researchers. A recent report establishes guidelines for using VSL 
systems in wet weather, which include the design, installation, and 
operation of the system, as well as case studies of agencies that have 
implemented weather-responsive VSL strategies (22). In addition, 
there are other types of strategies, such as demand management and 
incident management, that can be developed or adjusted to address 
network performance impairment introduced by adverse weather 
conditions.

To evaluate the aforementioned WRTM strategies in TrEPS, 
DYNASMART had been enhanced to simulate various intervention 
scenarios under weather, such as optional or mandatory detour infor-
mation via VMS, weather-responsive VSL, and demand management 
via dynamic pricing. For detailed discussion of its modeling capa-
bilities and behavioral rules that govern travelers’ responses to the 
interventions, readers are referred to Mahmassani et al. (7, 9, 10).

Development of TrEPS-Supported  
WRTM Framework

Framework

A systematic framework for implementing and evaluating WRTM 
strategies in the event of inclement weather has been developed as 
shown in Figure 1. The framework identifies activities in three 
different time frames: long-term strategic planning, short-term tactical  
planning, and real-time operations. The long-term planning horizon 
involves establishing and maintaining historical weather scenarios 
and a library of WRTM strategies, which specifies available WRTM 
strategies for different weather conditions and the associated deploy-
ment rules based on existing guidelines and practices adopted by local 
operating agencies. Such scenario management schemes allow easy 
retrieval of any historically occurring weather scenario and the cor-
responding strategies for simulation analysis using TrEPS as well as 
systematic feedback loops between planning and operations.

The primary application of the TrEPS capability lies in the short-
term planning and real-time operations. Once an inclement weather 
event is predicted to occur in the next 12 to 48 h, TMC managers 
undertake short-term tactical planning, which aims at narrowing 
down the available WRTM strategies that are right for the expected 
weather condition and current roadway situations. At this level, 
the offline traffic simulation tool is used to perform a wide range 
of “what if” analyses to test various WRTM strategies under the 
weather scenario constructed from the weather forecast and historical 
weather patterns. Historical average demand is used for running the 
offline simulation.

During the inclement weather event, TMC managers perform 
real-time TrEPS operations using the online simulation tool (e.g., 
DYNASMART-X). Real-time TrEPS rely on real-time simulation 
of the traffic network as the basis of a state prediction capability that 
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fuses historical data with sensor information and uses a description 
of how traffic propagates in networks to predict future conditions 
and, accordingly, develop control measures (7–12). The identified 
strategies are further simulated and evaluated using real-time traffic 
and weather data in parallel with actual TMC operations to support 
the decision-making process for the strategy deployment. Travel 
demand for the simulation is constantly adjusted according to the 
real-time traffic data. Another important activity during this stage is 
to obtain feedback from the WRTM implementation and update the 
existing strategy library to achieve optimal performance, improved 
efficiencies, and better preparedness for future WRTM.

Evaluation Approaches for Assessing 
Effectiveness of WRTM

One of the benefits of using simulation tools is the ability to extract 
a variety of performance measures from the simulation output in any 
desirable format. This aspect greatly helps TMC managers analyze 
the effectiveness of tested WRTM strategies at different angles and 
levels of detail, which is often not possible from actual data from 
traffic surveillance systems or loop detectors. Focusing on the traffic 
efficiency (e.g., mobility and reliability) aspects of the transportation 
system, this section identifies a set of KPIs to evaluate the effective-
ness of particular WRTM strategies, which allow users to compare 
network performance overall or for particular portions of the net-
work, O-D pairs and segments, with and without WRTM, as well 

as for different WRTM strategies. This provides an understandable 
method to quantify and characterize the need for and effectiveness 
of WRTM and to communicate these impacts to other personnel and 
decision makers.

Table 1 presents a set of KPIs that are categorized into various levels 
of detail: network level, O-D or path level, cross-section level, and 
link level. Different KPIs suit different occasions depending on the 
purposes of applied WRTM strategies and network characteristics. 
For example, strategies applied to the entire network (e.g., demand 
management) or to major corridors (e.g., VSL) to improve the overall 
networkwide performances are best evaluated using the network-level 
KPIs, such as network throughput, total travel time, percentage of lane 
mile congested, and so on. Strategies deployed locally to mitigate con-
gestion caused by weather-related events (e.g., flood, snow plowing, 
and weather-related incidents) would be better assessed using path- or 
link-level KPIs. The network characteristics also provide important 
criteria in choosing proper KPIs. For instance, if critical O-D pairs 
exist, which account for a majority of overall demand, examining 
O-D–level KPIs for those critical O-D pairs might provide a more 
efficient way of evaluating strategies. Another important perspective 
through which performance measures may be envisioned is a cross 
section of a given network. For networks that have clear major flow 
directions (e.g., east- and westbound or north- and southbound), 
traffic management system operators might be interested in using 
cross section–level KPIs, which measure how well the overall traf-
fic flows pass through a certain cross section under different weather 
conditions and WRTM strategies.

FIGURE 1    TrEPS-supported WRTM framework.
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Application to Major U.S. Areas

This section presents analysis results for testing and evaluating vari-
ous WRTM strategies using the TrEPS model. The focus of these 
experiments is to identify local-specific issues and the associated 
WRTM strategies to address them with help of TrEPS models. This 
analysis can be viewed as part of the activities under the short-term 
tactical planning (see Figure 1), which intends to prepare a set of 
appropriate strategies for a given specific weather scenario using 
offline simulation tools.

Three major U.S. areas were selected for study sites (Chicago, 
Illinois; Salt Lake City, Utah; and the Long Island area in New York), 
where weather is one of the major disruptive factors in the local trans-
portation system. Local agencies were contacted: City of Chicago 
Department of Transportation (DOT), Utah DOT, New York State 

DOT, and New York City DOT. TMC personnel were surveyed 
and interviewed to obtain information on existing or recommended 
WRTM strategies for each site. On the basis of the discussion results, 
the study found that the following strategies were suitable for assess-
ing their effectiveness under local weather conditions and enhancing 
TMC managers’ understanding on the proposed framework:

•	 Chicago: advisory and control strategies,
•	 Salt Lake City: demand management, and
•	 Long Island: weather-responsive incident management.

Detailed discussions for each strategy are presented in the next 
subsections. For each study site, a simulation network was prepared 
as shown in Figure 2 and supply- and demand-side parameters were 
calibrated (15). The supply-side parameter calibration involves the 

TABLE 1    KPIs Used to Evaluate WRTM Strategies

Category KPI Interpretation

Network level Accumulated percentage of vehicles that have completed their respective trips: Time-dependent network throughput

t
t

t= ×%AccOutVeh
Out_Veh

Tot_Veh
100

	
(1)

  where Out_Veht = accumulated number of vehicles arriving at their  
  destinations from time 0 till time t and

  Tot_Veht = accumulated total number of vehicles loaded onto network 
  from time 0 till time t

Percentage change in average travel time: Relative average travel time with respect to  
given base-case scenario 

i
i=
−

×%Change_AvgTTime
AvgTTime AvgTTime

AvgTTime
100base

base 	
(2)

  where AvgTTimei
t = average travel time of all vehicles in network under 

  scenario i (subscript “base” represents a base-case scenario).

Percentage change in average stopped time: Relative stopped delay with respect to given 
base-case scenario =

−
×%Change_AvgSTime

AvgSTime AvgSTime

AvgSTime
100base

base
i

i

	
(3)

  where AvgSTimei = average stopped time of all vehicles in network  
  under scenario i (subscript “base” represents base-case scenario).

Total travel time Sum of travel times experienced by all vehicles 
in network

Time-dependent average travel time per mile Average travel time for each departure time 
interval (normalized)

Time-dependent standard deviation per mile Travel time variability for each departure time 
interval (normalized)

Time-dependent percentage of lane-miles congested Temporal evolution of network congestion level

O-D or path level Descriptive statistics from O-D or path travel time distribution Travel time characteristics for given O-D or path
    Mean; median; standard deviation; 25th, 75th, or 95th percentiles; etc.
    Mean of worst (or best) 20% of travel times
Reliability measures from O-D or path travel time distribution 

Buffer index, misery index, planning time index, percent on time, etc.  
    [see SHRP 2 Report (23) for comprehensive list and definitions of  
    reliability measures]

Degree of reliability or variability of travel time 
for given O-D or path 
 

Time-dependent average O-D or path travel time Average travel time for each departure time 
interval for given O-D or path

Time-dependent standard deviation of O-D or path travel time Travel time variability for each departure time 
interval for given O-D or path

Average link travel time per mile for each link along the path Link congestion level along given path; can 
identify bottleneck links

Cross-section level Cumulative number of vehicles passing through given cross section Time-dependent cross section throughput
Cross section vehicle flow rate

Link level Time-dependent traffic flow parameters Link performance level characteristics
    Speed, density, and flow rate
Time-dependent average link travel time Average travel time for each departure time 

interval for given link
Time-dependent standard deviation of link travel time Travel time variability for each departure time 

interval for given link
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(a)

(c)

(b)

FIGURE 2    Selected networks for the study: (a) Long Island, (b) Chicago, and (c) Salt Lake City.
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estimation of parameters in traffic flow models (e.g., speed–density  
relationship) and the weather adjustment factors (WAFs). The demand-
side parameter calibration involves the estimation of dynamic O-D 
matrices using a simulation-based optimization approach (24). The 
time periods of the estimated demand are 5 to 11 a.m. for Chicago, 
6 to 10 a.m. for Salt Lake City, and 6 to 11 a.m. for Long Island.

Advisory and Control Strategies: Chicago

The Chicago network is one of the busiest networks, where flow 
breakdown and gridlock phenomena are regularly observed during 
peak hours. TMC managers were interested in performing the what-if 
analysis with various supply-side WRTM strategies (i.e., testing new 
strategies that are not currently used). Supply-side WRTM strategies 
deployed to road traffic can be categorized into two types: advisory 
and control strategies. The former provides travelers with warning 
and route guidance through radio, Internet, mobile devices, and 
roadside VMS, whereas the latter directly regulates traffic flow or 
enforces certain rules to improve traffic states under severe weather 
conditions. In this section, strategies are selected from each type, 

namely, advisory VMS for the former and VSL for the latter, to 
evaluate their effectiveness in improving mobility under an inclement 
weather condition.

Weather Scenario

A moderate snow scenario based on historical data was constructed. 
The temporal profiles of snow intensity and visibility are presented 
in Figure 3a. This 6-h weather scenario is applied to the simulation 
horizon covering 5 to 11 a.m.

Advisory VMS Scenarios

Advisory VMS strategy represents activating VMSs that display the 
roadway information (e.g., traffic congestion ahead) as well as pos-
sible detour paths under the given snow event so that drivers could 
reevaluate their routes and divert if a better path exists. Two different 
scenarios were prepared: SN_VMS1, where advisory VMSs are  
deployed along the sections on Kennedy Expressway and Lake Shore 
Drive (Figure 4a), and SN_VMS2, where advisory VMSs are deployed 

0

2

4

6

8

10

0

0.05

0.1

0.15

0.2

0 60 120 180 240 300 360

V
is

ib
ili

ty
 (

m
ile

) 

S
n

o
w

 In
te

n
si

ty
* 

(i
n

/h
r)

 

Time (min)

Snow Intensity(in/hr)
Visibility(mile)

0

2

4

6

8

10

0

0.05

0.1

0.15

0.2

0 60 120 180 240 300 360

V
is

ib
ili

ty
 (

m
ile

) 

S
n

o
w

 In
te

n
si

ty
* 

(i
n

/h
r)

 

Time (min)

0

2

4

6

8

10

0

0.05

0.1

0.15

0.2

0 60 120 180 240 300 360

V
is

ib
ili

ty
 (

m
ile

) 

S
n

o
w

 In
te

n
si

ty
* 

(i
n

/h
r)

 

Time (min) 

(a)

(b)

(c)

FIGURE 3    Weather scenarios constructed from Automated Surface Observing 
System data: (a) Chicago, December 12, 2010, 10 a.m. to 4 p.m., moderate  
snow, WRTM strategy tested: VSL and advisory VMS; (b) Salt Lake City,  
December 29, 2010, 3:30 to 8:30 p.m., heavy snow, WRTM strategy tested: 
demand management; and (c) Long Island, January 26, 2011, 6 a.m. to noon, 
moderate snow, WRTM strategy tested: incident management advisory VMS  
(* = liquid equivalent precipitation intensity).
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on Kennedy Expressway only (Figure 4b). The response rate of 50% 
was assumed, indicating that 50% of all vehicles in the network will 
respond to a sign if they observe it along their respective paths.

VSL Scenarios

VSL strategy represents changing speed limits according to the 
prevailing weather conditions, aiming at improving both safety and 
mobility by reducing the speed and speed variance. The speed limits 
are changed in increments of 5 mph within the range of 35 to 55 mph 
on the basis of the prevailing visibility and snow intensity. The control 
rule was constructed on the basis of the guidelines and case studies 
presented in Katz et al. (22). Two different scenarios were tested: 
SN_VSL1, where VSL is applied to Lake Shore Drive (Figure 4c),  
and SN_VSL2, where VSL is applied to Kennedy Expressway 
(Figure 4d).

Other Scenarios

In addition to the four advisory and control strategy scenarios, two 
more scenarios were prepared for comparison: a base-case scenario 

with no snow and no strategy, which was labeled “Base,” and a 
scenario with snow but without strategy, which was labeled “SN.”

Analysis Results

Because the objective of the tested strategies is to improve the overall 
mobility, this paper focuses on networkwide measures for the evalu-
ation. First, travel time–related KPIs were examined. Figure 5a pre
sents total travel time for all six scenarios and indicates that the snow 
effect increased the total travel time by 102,807 h (i.e., 20.4% of the 
base case) when no strategy was implemented. Compared with SN, 
all four strategies improved the total travel time, but advisory VMS 
strategies performed better than VSL strategies in general. Figure 5, 
b and c, provides the average travel time per mile (TTPM) for each 
departure time interval for a selected time period. SN shows a jump 
in the TTPM at around 10 a.m., which was caused by an increase in 
the snow intensity, as shown in Figure 3a (Minute 300 corresponds to 
10 a.m. in the simulation horizon). All of the tested strategies except 
SN_VSL1 appeared to mitigate such snow impacts on the TTPM.

Second, a cross-section KPI was observed, which was the cumula-
tive number of vehicles passing through a given cross section. The 

(a) (b)

(d)(c)

FIGURE 4    Four scenarios for advisory and control strategies in Chicago: advisory 
VMS (warning, optional detour) on (a) both Kennedy Expressway and Lake Shore Drive 
(SN_VMS1) and (b) Kennedy Expressway only (SN_VMS2), and control VMS (VSL) 
along (c) Lake Shore Drive (SN_VSL1) and (d) Kennedy Expressway (SN_VSL2).
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selected cross section is presented in Figure 6. The horizontal bar 
selects all the northbound links, including freeways and arterials, and 
the time-dependent traffic flows aggregated over the selected links 
are measured. Figure 7 shows the cumulative cross-section through-
puts for the six scenarios. The cumulative throughput performance at 
the end of the simulation reveals that the patterns consistent with the 
previous analysis results with the travel time KPIs (i.e., SN_VMS1 
and SN_VSL1) improved the measure the most and the least, respec-
tively. From both Figure 5 and Figure 7, SN_VMS1 shows varied per-
formance over time: it performs poorly until 9:40 a.m. and becomes 
the best at the end. One reason for this can be that deploying warning 
VMSs on more corridors (compared with SN_VMS2) might have 
invoked unnecessary detours under the light snow condition, while 
such information became helpful under the heavier snow condition. 
This suggests that the timing of the strategy deployment is important 

and the real-time traffic and weather information can improve the 
effectiveness of the WRTM strategies.

This experiment showed that both types of strategies prevented 
flow breakdown by reducing or slowing down inflows into heavily 
congested links. Therefore, identifying such breakdown-prone spots 
is critical in developing effective strategies, and TMC managers’ 
knowledge about local traffic is one of the most important inputs in 
the TrEPS-supported WRTM framework.

Demand Management: Salt Lake City

Cities like Salt Lake City often experience severe winter storms and 
TMC managers encounter situations where travel demand needs 
to be managed for the mobility and safety purposes during such 

FIGURE 5    Comparison of travel time–related measures for advisory and control strategies in Chicago: 
(a) total travel time for all six scenarios, (b) average TTPM for VSL scenarios, and (c) average TTPM 
for VMS scenarios (avg. = average).
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(a) (b)

FIGURE 6    Selected cross section for measuring traffic throughput in Chicago: (a) DYNASMART Chicago network and  
(b) Google map.
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FIGURE 7    Cumulative cross-section throughput over time in Chicago.

severe snow events. Managing demand involves providing travelers 
with information, aiming at a shift of their departure times or trip 
cancelation so that the total travel demand during the peak periods 
can be reduced. The key research question here was to study how 
much demand should be reduced under different weather conditions 
to maintain a certain level of network performance. Therefore, the 
goal in using TrEPS here was to provide TMC managers with the 
information on the optimal level of demand that can improve network 
performance without negatively affecting productivity under a given 
weather condition. To achieve this goal, the concept of equivalent 
demand reduction was employed; equivalent demand reduction is the 

amount of demand reduction needed to offset network performance 
impairment introduced by particular inclement weather conditions 
and to maintain the level of service expected in normal weather 
conditions.

Weather Scenario

In Salt Lake City, severe winter storms in the recent past moti-
vated local agencies to consider the demand management strategy. 
Therefore, the weather scenarios were constructed on the basis of 
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the historical data representing heavy snow conditions. Figure 3b 
shows the temporal profiles of snow intensity and visibility for the 
heavy snow scenario used for demand management strategies.

Demand Scenario

Twelve demand scenarios were prepared: one for the benchmark case, 
which was 100% of the demand under the normal weather condition 
(i.e., no snow), and 11 scenarios with different demand levels under 
the heavy snow condition. The generation of the 11 scenarios started 
with the full demand (100%) and reduced the total demand by 5% until 
the reduction percentage reached 50%.

Analysis Results

Figure 8 shows analysis results from the simulation study. Figure 8a 
represents the accumulated percentage of vehicles that had completed 
their respective trips for each time t (i.e., Equation 1 in Table 1), 
which measures the percentage of total vehicles loaded onto the  
network up to time t that reached their destinations. Compared with 
the base case (i.e., 100% demand under no snow), the snow event 
significantly degraded the network throughput when the full demand 
was loaded under heavy snow [i.e., heavy snow (100% demand)]. 
The charts suggest an approximately 15% drop in throughput at 
the end of the simulation. As the demand reduction percentage 
increased, the throughput measure improved. Figure 8b shows the 

FIGURE 8    Analysis results for demand management in Salt Lake City: (a) time-dependent network 
throughput measure and (b) percentage change in performance measures for different demand levels 
relative to base case.
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percentage changes in two selected measures, %Change_AvgTTime 
and %Change_AvgSTime (i.e., Equations 2 and 3 in Table 1), which 
represent how average travel time and stopped delay worsened 
(positive changes) or improved (negative changes) relative to the 
base case. The snow effect increased the former by 86.5% and the 
latter by 181.1% when the full demand was loaded. The equivalent 
demand reduction was found to be about 20% (i.e., 80% of original 
demand), at which point the percentage changes became nearly zero 
(Figure 8b). These values depend on the severity and duration of the 
weather conditions as well as the network demand patterns.

The results provide TMC managers with insights into the com-
bined effect of demand and weather on traffic. These results can be 
used to identify the equivalent demand reduction and accordingly 
set a target that TMC managers can try to achieve through vari-
ous information dissemination approaches, activity cancelation or 
rescheduling, and possible incentive schemes.

Incident Management VMS: Long Island

For the Long Island area, it was found that TMC managers focused 
more on preventing and minimizing weather-related disruptions such 
as incidents rather than trying to manage travel demand because 
of the limitation on adjustable demand portions. For the incident 
management in the current framework, the TMC managers can try 
various strategies dealing with incidents at known black spots under 
different weather conditions in the offline simulation environment. 
A set of selected strategies then can be prepared and considered 
for the deployment during weather events with the support of the 
real-time TrEPS. On the basis of historical incident data, the authors 
identified and tested different VMS strategies to investigate their 
effects on reducing congestion on the incident-affected area.

Weather Scenario

A moderate snow scenario was constructed on the basis of the his-
torical data. The temporal profiles of snow intensity and visibility are 
presented in Figure 3c. This 6-h weather scenario was applied to the 
simulation horizon covering 6 a.m. to noon.

Incident Scenario

The incident scenario was constructed on the basis of the actual 
observations on the snowy day selected for the weather scenario. 
The historical data show that there were three accidents that happened 
along westbound Long Island Expressway (I-495) between 6 a.m. 
and noon on January 26, 2011, as shown in Figure 9a.

Optional Detour VMS Scenarios

Optional detour VMS is the same type of advisory VMS tested in 
the previous subsection, but deployed only upstream of the incident 
links during the accident duration to inform drivers of the event and 
to suggest reevaluating their routes. Two scenarios were prepared: 
SN_ACC_VMS1, in which the VMSs were located at every exit along 
the adjacent upstream segments (Figure 9a), and SN_ACC_VMS2, in  
which only selected exits were used for a diversion point (Figure 9b). 
The former represents a static type of deployment scheme that uses the 

predetermined VMS locations, while the latter represents a dynamic 
type of scheme that determines the locations on the basis of the 
prevailing traffic conditions. To implement this dynamic scheme, 
SN_ACC_VMS1 was simulated and the traffic conditions on detour 
routes at each diversion point were examined. If downstream arteri-
als of a particular exit were already experiencing a certain level of 
congestion and did not have sufficient room to absorb the diverted 
traffic, the VMS was eliminated from the exit. Consequently, only 
the exits that led traffic to relatively less-congested arterials were 
used for the VMS locations in SN_ACC_VMS2.

Other Scenarios

In addition to the two optional detour VMS scenarios, three more sce-
narios were prepared for comparison: Base, a scenario with no snow, 
no accident, and no strategy; SN, a scenario with snow only; and 
SN_ACC, a scenario with snow and accidents but with no strategy.

Analysis Results

In evaluating the strategies, this study focused on investigating how 
incident-affected traffic can benefit from the incident management 
strategies under snow and used path-level KPIs for the incident-
affected corridor [i.e., the travel time distribution between two points 
(i.e., A and B in Figure 9b)]. Figure 10 shows a radar chart that 
compares travel time characteristics under all five scenarios by 
using six descriptive measures: the mean, median, and standard 
deviation of travel times; the 95th percentile travel time; the mean 
of the worst 20% of travel times; and the mean of the best 20% of 
travel times. The chart suggests that snow and incidents increased 
the travel time variability rather than the mean travel time, as notice-
able increases were observed mainly in the average of the worst 
20% of travel times (i.e., Worst20%) and the 95th percentile. For the 
intervention effect, SN_ACC_VMS2 improved the overall perfor-
mance because it reduced all six measures compared with SN and 
SN_ACC. SN_ACC_VMS1, however, had the poorest performance 
of all five scenarios [i.e., worsened the situation even more than 
the do-nothing scenario (i.e., SN_ACC)]. These results imply that 
statically configured strategies might not work as intended and that 
deployment schemes need to be dynamically determined and modified 
on the basis of the prevailing traffic conditions. This conclusion again 
stresses the importance of incorporating the prediction and decision 
support capabilities of real-time TrEPS into WRTM.

During this experiment, the TMC managers raised two important 
questions in the context of weather-responsive incident management: 
what is the probability of having incidents under the given weather 
condition, and how much congestion is expected? These questions 
can be effectively addressed by implementing the proposed frame-
work, in which historical incident patterns can be maintained as 
strategic scenarios in connection with weather and other strategies. 
This step will allow the rapid creation of multiple likely incident 
scenarios that can be used to test WRTM strategies to obtain a more 
complete picture of their effectiveness.

Conclusion and Lessons Learned

This study provides an important milestone in the development and 
application of methodologies to support WRTM. It brings WRTM 
applications into the mainstream of network modeling and simulation 
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tools and demonstrates the potential of both WRTM and TrEPS tools 
to evaluate and develop strategies on an ongoing basis, as part of the 
routine functions of planning and operating agencies.

In particular, this paper addresses the following aspects. First, a 
general framework for implementing and evaluating WRTM strate-
gies under severe weather conditions is developed, where activi-
ties for planning, preparing, and deploying WRTM strategies are 
identified in three different time frames. The long-term strategic 
planning involves establishing and maintaining a library of WRTM 
strategies, which specifies available WRTM strategies under differ-
ent weather conditions based on local needs. The short-term tactical  
planning is to prepare a set of strategies using offline simulation tools 
12 to 24 h in advance when a severe weather event is predicted. The 
real-time TrEPS operations then take place during the weather event 

to support the implementation of the selected WRTM strategies by 
proving predicted information on traffic states based on real-time 
traffic and weather data. Next, the framework is applied to three 
major U.S. areas (Chicago, Salt Lake City, and the Long Island area 
of New York), focusing on developing and evaluating local-specific 
WRTM strategies to investigate the usefulness of the tool in con-
nection with practical problem-solving activities. For each network, 
WRTM strategies are selected according to the local needs and tested 
using the TrEPS model. The analysis results illustrate the benefits 
of WRTM under inclement weather conditions and emphasize the 
importance of incorporating the predictive capability of TrEPS into 
selecting and deploying WRTM strategies.

Several important findings were reached through this study about 
the role that network models and simulation methodologies can play 

FIGURE 9    Incident management VMS strategies on Long Island: (a) detour option at every exit 
and (b) detour option at selected exits (WB = westbound).
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in the further development and deployment of WRTM strategies 
and the process through which such tools could be most effective in 
helping agencies attain their objectives within available resources:

1.	 Most agencies in states and regions that experience severe 
weather believe there is a need for methods to help predict the impact 
of weather on operations and develop plans to mitigate the disruptive 
impact of such weather.

2.	 Needs vary across different agencies and areas, according to 
factors that include the size of the area, demand pressure on the net-
work, and the extent to which the population may be used to inclement 
weather. Similarly, user responses and levels of acceptability and 
compliance vary accordingly.

3.	 In all cases, it was evident that the greatest value of the TrEPS 
methodologies lies in operations planning and preparedness for 
weather-related events, rather than in minute-to-minute traffic inter-
ventions. Given that most weather forecasts can look ahead from a 
few hours to a few days, with fairly reliable 12- to 24-h projections, 
agencies have sufficient time to use the TrEPS methodology offline 
to predict the impact of the contemplated weather as well as develop 
the best strategy to mitigate the negative impact.

4.	 In all areas, the responses of travelers to information, messages, 
guidance, and controls are an essential ingredient to the overall 
effectiveness of these measures. Although the TrEPS methodology 

provides the necessary framework and structure to capture these 
decisions, as well as their evolution, it became clear during the study 
that a stronger observational basis is needed with regard to what 
users actually do in bad weather and under different interventions. 
Nonetheless, the model results exhibit considerable consistency 
and sufficient robustness in relative terms to support analysis and 
implementation of effective weather-related traffic management 
measures in practice.

Acknowledgments

The material presented in this paper is based in part on work funded 
by the U.S. Department of Transportation under a contract with 
Northwestern University’s Transportation Center through a sub
contract to SAIC, Inc. The authors acknowledge the helpful com-
ments on the overall project provided by David Yang of the U.S. 
Department of Transportation, Robert Haas at SAIC, Inc., and 
Byungkyu (Brian) Park at the University of Virginia. The authors 
greatly appreciate the willing contribution of time and experience 
from members of the TMCs in the Utah Department of Trans
portation, the New York State Department of Transportation, the 
New York City Department of Transportation, and the City of Chicago 
Department of Transportation.

Scenario #Obs Mean Median Std.Dev 95th Worst20% Best20% 

Base 3940 7.08 6.9 0.48 8.4 7.71 6.90 
SN 3873 7.97 7.7 1.47 11.5 10.28 6.93 

SN_ACC 3872 8.03 7.7 1.57 12.2 10.56 6.93 

SN_ACC_VMS1 3727 8.25 7.6 2.00 13.6 11.67 6.93 

SN_ACC_VMS2 3740 7.84 7.6 1.21 10.6 9.74 6.92 

0

2

4

6

8

10

12

14
Mean (min)

Median
(min)

Std.Dev
(min)

95th (min)

Worst20%
(min)

Best20%
(min)

Base SN SN_ACC SN_ACC_VMS1 SN_ACC_VMS2

FIGURE 10    Comparison of path travel time statistics for different scenarios  
on Long Island (obs. = observations; std. dev = standard deviation).
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