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Longwall Shearer Cutting Force
Estimation

Longwall mining is an underground coal mining method that is widely used. A shearer
traverses the coal panel to cut coal that falls to a conveyor. Operation of the longwall
can benefit from knowledge of the cutting forces at the coallshearer interface, particu-
larly in detecting pick failures and to determine when the shearer may be cutting outside
of the coal seam. It is not possible to reliably measure the cutting forces directly. This pa-
per develops a method to estimate the cutting forces from indirect measurements that are
practical to make. The structure of the estimator is an extended Kalman filter with aug-
mented states whose associated dynamics encode the character of the cutting forces. The
methodology is demonstrated using a simulation of a longwall shearer and the results
suggest this is a viable approach for estimating the cutting forces. The contributions of
the paper are a formulation of the problem that includes: the development of a dynamic
model of the longwall shearer that is suitable for forcing input estimation, the identifica-
tion of practicable measurements that could be made for implementation and, by numeri-
cal simulation, verification of the efficacy of the approach. Inter alia, the paper illustrates
the importance of considering the internal model principle of control theory when design-
ing an augmented-state Kalman filter for input estimation. [DOI: 10.1115/1.4026326]

The University of Queensland,
St. Lucia, Queensland 4072, Australia
e-mail: h.gurgenci@uq.edu.au

1 Introduction

The device depicted in Fig. 1 is the shearer of a longwall under-
ground coal mining system. The shearer is responsible for cutting
coal from the seam. Once cut, the coal falls onto an armored con-
veyor and is transported to the surface. This paper presents a
methodology for estimating the cutting forces at the shearer picks
where the cutter heads interact with the coal face.

Direct measurement of the cutting forces acting on an opera-
tional shearer has been attempted in the past with only limited
success. One approach is to instrument individual picks on the
cutter head with strain gauges [1]. This approach suffers from two
major drawbacks: the difficulty of maintaining sensors at the coal-
cutter interface for any length of time, and that only those picks
that are instrumented have their cutting forces measured and the
total load on the shearer is unknown. An alternate approach to
measure the net cutting forces without instrumenting the rotating
cutter head is described in Ref. [2]. In that work, six strain gauges
were attached to a single ranging arm and used to resolve the three
components of force and three moments acting on the cutter head.
Measurements of the hydraulic cylinder pressure, the vertical
acceleration of the chassis and tension in the haulage chain were
also made. The purpose of the study was to assess the structural
design of the ranging arm by applying the measured loads to an
associated finite element model, and only required the instrumen-
tation to survive a relatively short period of operation from the
commencement of a new coal panel. Sensor reliability was of
major concern to the researchers involved.

The current work uses a Kalman filter, based on a system model
augmenting the dynamics of the shearer with the dynamics of its
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forcing inputs, to estimate the cutting forces from indirect
measurements. The methodology described is a novel, practical,
approach to measuring shearer cutting forces in real-time that
overcomes the significant instrumentation challenges of direct
force measurement. A result of the paper beyond the specific
example of cutting force estimation is to show the benefit of ex-
plicitly describing the internal model of the cutting forces in the
estimator design. The paper presents several candidate cutting
force models designed to represent the mechanics of the force
generation process at increasing levels of detail. The models
include a constant or step cutting load on the cutter head as well
as variations to the cutting load as the cutter head rotates through
the seam. The candidate cutting force models are tested in simula-
tion and the results are compared on the basis of cutting force
mean and RMS errors.

The structure of the paper is as follows: Sec. 2 discusses the dy-
namics of the longwall shearer and presents a plant model to be
used by the cutting force estimator. In Sec. 3, the internal model
principle of control theory [3,4] is discussed in the context of the
input estimation problem. Section 4 describes the methodology
for input estimation. Section 5 introduces a simulation of a long-
wall shearer that is used as a testbed for the cutting force estima-
tor. Section 6 reviews the design of shaping filters required to
model the unknown cutting force inputs. Section 7 presents the
measurements required on the shearer to maintain observability of
the cutting force estimator. The approach is tested using the simu-
lation of the longwall shearer in Sec. 8. Finally, conclusions from
the work are drawn.

2 Plant Model of the Longwall Shearer

Figure 2 illustrates the shearer plant model for the cutting force
estimator. Seven degrees-of-freedom (DOF) are used to describe
the five rigid bodies in the 2D shearer model. The first two DOF
represent the inertial position of the chassis within the current
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Fig. 1 A dual ranging arm shearer. Two cutter heads (laced
with picks) shear coal from the seam and load a conveyor as
the shearer moves laterally across the face.

plane of operation. The horizontal location is labeled x, and the
vertical location y. The in-plane orientation of the chassis, 0,
describes the pitching motion as the shearer traverses the face.
The chassis-local angles of elevation for the left and right ranging
arms are represented by f3; and f,, respectively. 6, and 6, are the
orientations of the cutter heads. The plant state vector, X,,, consists
of the body velocities in the seven generalized coordinates

=[50 (B-0) (h+0) 6ads]

A number of the forces acting on the shearer can be modeled
and/or measured. These include the haulage forces, F), and Fj,,
exerted by the left and right haulage drives via the haulage sprock-
ets and the cutting torques, T,; and T, developed by the left and
right cutter drives. Also modeled are the moments, M,; and M,,,
produced by the left and right hydraulic cylinders about their re-
spective arm pivots to react the cutting loads applied to the

ranging arms. The local component of gravity, g, acts through the
center of mass of each rigid body.

u=[Fy Fi Ta Taoy My M,, g]" 2)

Other forces act on the shearer that cannot be measured
directly. These are termed unknown forces, and will be estimated
using the method of state augmentation [5]. The unknown forces
include the two orthogonal cutting forces and the cutting torque
acting on each cutter head (F;, Fy;, and T, for the left cutter head
and F,,, F,, and T, for the right). These are the net cutting loads,
representing the cumulative effect of the individual pick forces.
Two normal forces, F,,; and F,,, are also included that support the
shearer chassis vertically. Coulomb friction forces, F; and F., act
on the skid supports, opposing shearer translation, and are
assumed to be a function of the chassis normal forces.

Yf = [Fnl Fnr F,\'l Fxr Fyl Fyr T('I T(:r ]T (3)

u from Eq. (2) and y; from Eq. (3) together form the plant input
vector u,. The shearer plant model takes the form

M, =, (%, 3,,u,0,) @

0, is introduced as a set of parameters upon which the dynamic
model of the plant depends, including the current orientations of
the chassis and the two ranging arms

9[) = [9: :BI ﬂ;] (5)

M is the rigid body inertia matrix, describing the coupling
between the various state derivatives

Fig. 2 Planar model of longwall shearer. Five rigid bodies are described by seven degrees of
freedom. Generalized coordinates, dimensions and frames of references are shown with thin
arrows and external and inertial forces are shown with thick arrows. Model parameters are
described in Table 1.
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[(M. 4 2M, + 2M, cos® 0.) 2M;, cos 0. sin 0. (—=2M,Q + 2M}R;,) cos 0.,
2M), cos 0. sin 0. (M +2M, +2Mysin® 0.)  (—2M,Q + 2M,Ry,) sin 0.
(=2M,Q + 2MyRy) cos 0. (—2M,Q + 2MR),) sin 0. (JL. +2Mu(P2 +Q2) +2MhR%)
M= Maya(B; — 0:) Maxa(B; — 0-) —Marra(B;)
My, (:B; + 0:) Maxa(ﬁr + H:) Marra(ﬁr)
0 0 0
L 0 0 0
Maya(B; — 0:) —Maya(B, +0:) 0 0]
Max.(p; — 0.) Myx,(B. +6.) 0 0
—Mrrq(f) Mrra(B,) 0 0
o (Ja+ Mo (K2 +K3)) 0 0 0 (©6)
0 (o + Mu (K} +K5)) 0 0
0 0 Ja 0
0 0 0 Ja]
The right side of Eq. (4) can be expressed in the form
S
fa
Vg
fp (Xp>}’_f7u79,a) = f4 (7)
f5
o
fr
Where the individual components are defined as follows, and model parameters are described in Table 1.
. AN . N2
fi = =2M,Qsin 0.0% — Myxa(By = 0:) (B — 0.) +Maxa (B, + 0:) (B, + 0:)
+ (Fhl +Fhr _Fﬂ _Fﬁ' _Fxl _F.\'r) COSH: - (Fnl +Fnr +Fyl +Fyr) Sing:
. . .\2 . .\2
fo = 2M,Q 03 0.0 + My (= 0:) (B — 0.) +Maya(B, + 0.) (B, + 0
+ (Fhl +Fhr _Fﬂ _Ffr _Fxl _Fxr) Sin@z + (Fnl +Fm- +Fy1 +Fyr) COS@Z - (M(_ +2M(1)g
. .\2 . N2
f3 = _Marrl'(ﬁl) (/))[ - 0:) +Murrc(ﬁr) (ﬁ) + 02) +Mrl - Mrr + Rh(Fh[ + F/H‘)
- Ss(Fnl - Fnr) - Rs (Fﬂ +Ffr) + Q(Fxl +F\)) - P(Fyl - Fyr) + 2MaQ sin 9:8
fo = —Marre(B)0? + My + Ta — Fuya(B) + Fyxa(B) — Maxa(B, — 0:)g
fS = _Marrz'(ﬁr)éf +M, =Ty + F,\fryd(/))r) + Fyrxd(ﬁr) - Maxa(ﬁr + ez)g
Jo=Tua—Ta
f 7 ="Ta —Ter |
The following simplifications have been incorporated in the x4(B) = L, cos(B) + Ly sin(f) (10)
model, exploiting the symmetry of the shearer. The subscripts / (B) = L, sin(B) — Lo cos(f) (11)
and r are added to the arm orientations in the equations of motion Yd " 0= )
to delineate between the left and right sides. Where global orienta- 174(B) = (PK, — QKp) cos f + (PKy + QK ) sin 8 (12)
tions are employed, the + and — signs in the *correspond to the rr.(p) = (PK, — QOKy) sin f — (PKy + OK,) cos f8 13)

right and left ranging arms, respectively.
3 The Internal Model Principle

X (fx0,) =K, cos(f=0.)+ Kpsin(f = 0,) 8) ) o )
) The internal model principle of control theory [3,4] provides
Ya(B£0:) = K, sin(f £ 0) — Kgcos(f = 0.) (9)  guidance on the design of controllers for the dual control
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Table 1 Parameters defining the rigid body dynamic model

Symbol Description
Chassis parameters

M. Mass of shearer chassis.

M, Effective mass of a haulage motor and transmission,
reflected to the haulage sprocket.

J. Mass moment of inertia of shearer chassis about chassis CM.

P Distance from chassis CM to arm pivots in chassis-local
horizontal direction.

0] Distance from chassis CM to arm pivots in chassis-local
vertical direction.

S Distance from chassis CM to skid supports in chassis-local
horizontal direction.

Ry Distance from chassis CM to skid supports in chassis-local

vertical direction.
Ry, Distance from chassis CM to haulage sprocket PCD in
chassis-local vertical direction.

Ranging arm parameters

M, Mass of the ranging arm including the cutter head.

Ja Mass moment of inertia of ranging arm including the
cutter head mass, about the arm CM.

Ju Mass moment of inertia of cutter drive reflected to the load.

K, Distance from ranging arm pivot to arm CM in arm-local
radial direction.

Ky Distance from ranging arm pivot to arm CM in arm-local
tangential direction.

L, Distance from ranging arm pivot to cutting axis in arm-local
radial direction.

Ly Distance from ranging arm pivot to cutting axis in arm-local

tangential direction.

problems of system disturbance compensation and tracking exter-
nal references. It states that controllers of this type require, as part
of their design, a replica or internal model of the disturbance or ex-
ogenous reference to guarantee zero steady-state error between the
controlled variable and its true value. It formalizes the following
design methodology: A controller that is required to reject distur-
bances affecting a system, or that has to track a structured reference
signal, must have a duplicate of the disturbance or reference gener-
ator in-built, in either the controller or the plant model [3,4].

This theory is consistent with the results of this paper for the
problem of observing the input to a dynamic system. The steady-
state performance of the cutting force estimator improves as the fi-
delity of the model describing the dynamics of the unknown
inputs increases, and the best performance is achieved when the
dynamic structure of the input is duplicated in the augmented-
state model of the estimator. This illustrates the importance of
considering the internal model principle of control theory when
designing an augmented-state Kalman filter for input estimation.

4 Input Estimation Using State Augmentation

The problem of quantifying the forcing inputs to the longwall
shearer can be cast in an optimal estimation framework. It is well
established that a combination of information from both measure-
ments and a system model provides better estimates than those
generated from either source alone, provided neither is biased and
their uncertainties are quantified. A practical solution that can be
readily adapted is the Kalman filter [6]. The Kalman filter is applied
in a wide range of fields including control, communications, image
processing, biomedical science, meteorology, and geology, to esti-
mate the state of dynamic systems. The problem at hand, however, is
not to estimate the state of the longwall shearer, but rather its forcing
input. To achieve this, state augmentation is employed whereby the
exogenous forcing inputs are modeled as stochastic systems and their
states are estimated along with the state of the shearer plant.

Various researchers have applied the approach to estimate exter-
nal excitation in other applications. Notably, Bayless and Brigham
[7] derive the Kalman inverse filter and apply it to the problem of
restoring (deconvolving) continuous geophysical signals that have

031008-4 / Vol. 136, MAY 2014

been affected by the dynamics of the seismic measurement process.
The discrete-time equivalent followed in Ref. [8]. In Ref. [9], the
technique is applied to estimate road roughness. Ray applies the
method to the problem of tyre force and road friction estimation
[10], as well as to adaptive friction compensation in Ref. [11]. Cui
and Ge [12] use the same approach in a combined state-parameter
estimation scheme to assist with global positioning system (GPS)
navigation in urban canyon environments. Siegrist [13] addresses
the problem of estimating tyre forces in off-highway mining trucks,
and includes a succinct treatment of the approach.

In a more closely related setting to the rotating cutter head of
the longwall shearer, Kim et al. [14] use a Kalman filter disturb-
ance observer to indirectly measure the cutting forces on a com-
mercial horizontal machining center. Here, the model-based
estimator is rejected in favor of an artificial neural network
(ANN), for its ability to better cope with the complex nonlinear
dynamics of the plantz. The disadvantage of the ANN, and other
data driven estimation methods, is the requirement to provide accu-
rate training data from which the ANN learns the causal relation-
ships between the inputs and the resulting system measurements.
An indirect force estimator is desirable because it is not practical to
directly measure the forces acting on the longwall shearer to gener-
ate a comprehensive training set. For this reason, the model-based
approach is more applicable to the problem at hand.

The methodology assumes the plant has known linear (or linear-
ized) dynamics and measurement processes described by the follow-
ing continuous-time stochastic disturbance and measurement models:

(14)
)

X, (1) = F, ()%, (1) + G (1)u, (1) + Ly (1) W, (2)
z(r) = Hy ()%, (1) + Jp (1), (1) + v(7)

X, (#) is the current state of the plant, u,(f) is the vector of plant
inputs, and z() is the plant measurement vector. The standard def-
initions apply for the various system and measurement matrices.
The noise terms w),(¢) and v(¢) describe uncertainty in the model
of the plant and imprecision in the process of taking measure-
ments. They are assumed to be Gaussian, zero-mean, and white.
The plant input vector contains both known and unknown com-
ponents. These are represented by u(#) and y,(¢), respectively

(16)

Expressions equivalent to Eqs. (14) and (16) for the longwall
shearer were presented as Eqs. (1)—(7) in Sec. 2. The measurement
model for the cutting force estimator is introduced in Sec. 7.

The unknown component of the plant input vector cannot be
calculated explicitly. It is instead assumed to be a continuous random
process, generated by a linear dynamic system perturbed by white
noise. The structure of the process model, or shaping filter, is deter-
mined by any a priori knowledge of the input generation mechanism,
or from the assumed statistics of y(f). In state space form

X¢ (1) = Fr(0)x¢ (1) + Ly (1) wy (1)
¥y (1) = By (1)x¢ (1)

A7)
(18)

x¢(1) is the shaping filter state vector (the force states). The noise
on these states, wf(t), is assumed to be Gaussian, zero-mean and
white, implying that the shaping filter encapsulates the complete
dynamic structure of the immeasurable inputs.

The augmented system state vector is defined

x(1) = {X"(I)}

(19)
Xy (1)

The augmented system is driven only by deterministic inputs and
is perturbed by Gaussian white noise, satistying the assumption of

2This highlights a need to accurately model the plant dynamics.
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Fig. 3 Kalman filter estimating the state of an augmented system. Note that G,,/G;and J,,/J; represent partitions
of G, and J,,, respectively, relating to the known and estimated inputs. The Kalman gain is similarly partitioned.
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Fig. 4 The structure of the shearer simulation software

the Kalman filter that the plant model is faithful to the real system
dynamics. When the augmented model is applied in a Kalman filter
(see Ref. [5]), the state estimates include the states of the shaping fil-
ters describing the unknown inputs, in addition to the states of the
plant. Figure 3 illustrates the structure of the augmented system in a
linear continuous-time observer. As the longwall shearer plant model
is nonlinear, an extended Kalman filter is applied requiring the linea-
rization of the dynamics about the current state estimate.

5 Simulation of a Longwall Shearer

Figure 4 shows the structure of a longwall shearer simulation
that is capable of predicting the forces generated by the shearer in
a variety of cutting scenarios. The motivation for the simulation is
twofold. First, it acts as the testbed for the shearer cutting force
estimator by providing a set of realistic measurements to serve as
inputs as well as the fiducial cutting forces against which the force
estimates can be compared. Second, it facilitates an investigation
into the characteristic structure of the shearer cutting forces in order
to duplicate that structure within the design of the shaping filters.

Journal of Dynamic Systems, Measurement, and Control

A rigid body assembly incorporating the geometry and inertial
properties of the major structures of the shearer is modeled in Vis-
ual Nastran 4D and is interfaced with models of the external forc-
ing inputs in the MATLAB Simulink environment. Visual Nastran
4D solves the forward dynamics of the shearer and measurements
of the shearer state are made and returned in a feedback loop to
the input models. The shearer inputs are divided into four groups:

(1) The fiducial cutting forces and torques experienced by the
operational shearer are calculated by a finite-element model
of the uncut coal surface around each cutter head. As the
cutter drums translate and rotate, the simulation computes
the relative motion of each pick through the coal seam and
the force that each pick generates [15,16]. The model can
be configured for arbitrary pick lacings on the cutter head
and for heterogeneous coal seam hardness profiles.

The torques developed by the four AC motors within the
shearer are modeled using a vector-based representation
[17]. The AC motor models compute the haulage forces
required to propel the shearer at the specified haulage
speed, and the cutting torques generated to overcome the
coal cutting loads. The vector representation is chosen to
capture the unsteady motor operation in response to the
variable cutting loads experienced by the shearer.

The ranging arm reaction moments are computed from the
supporting hydraulic cylinder forces and incorporate a
spring model where the cylinder stiffness is derived from
the bulk modulus of the hydraulic oil and the internal ge-
ometry of the cylinder.

The skid support forces are computed using a spring-damper
model to represent the compliance of the supporting struc-
tures under the shearer and a Coulomb model for friction.

3)

“

6 Modeling Shearer Cutting Forces

To ensure that the cutting force estimates contain no steady-
state error, the characteristic structure of the true cutting forces
must be duplicated in the design of the shaping filters for the aug-
mented Kalman filter. Figure 5 illustrates the horizontal cutting
forces (F, F.,) and chassis support forces (F,; F,,) predicted
using the shearer simulation in a typical cutting scenario. The hor-
izontal forces are representative of the vertical cutting forces (Fy,,
F,,) and cutting torques (T, T.,). The simulation commences

MAY 2014, Vol. 136 / 031008-5
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Fig. 5 Horizontal cutting forces (F,,, Fy,) and chassis support forces (F,; F,,) predicted from the shearer plain coal simulation
showing the progression of forces from stationary shearer, with cutter heads disengaged from the seam, to steady-state fully-

engaged cutting operation. Refer to Fig. 2 for force definition.
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Fig. 6 Spectral density of the unknown shearer inputs. Each of
the inputs has a series of harmonics at integer multiples of a
base frequency of 9.3 rad/s, twice the angular speed of the cut-
ter head. Beyond the seventh harmonic, the density peaks are
less than 5% of their maximum values.

with the shearer stationary and finishes with the shearer cutter
heads fully engaged with the coal seam under steady-state operat-
ing conditions. The simulation shows that the fiducial cutting
forces exhibit a steady-state offset, combined with a significant
periodic component resulting from the rotation of the cutter head
through the seam. The periodic component of the force deviates
as much as 40% from the steady-state mean. By contrast, the chas-
sis support forces do not contain a significant periodic component
(varying between 2% and 8% from the steady-state mean).

Two different shaping filter designs are employed for the cutting
loads and for the chassis support forces. In accordance with the inter-
nal model principle, both shaping filter designs require a fiee integra-
tor representing a step to ensure no steady-state estimate bias. This
forms the preliminary shaping filter design for the chassis support
forces. The design of the filter for the cutting forces and torques also
includes one or more additive sinusoids, at harmonics commencing
from twice the cutter head speed3, that were identified from a spectral

The pick lacing is repeated twice on the cutter head, resulting in a fundamental
frequency of the forcing harmonics that is twice the cutter head angular speed.

031008-6 / Vol. 136, MAY 2014

Wrsiep ! > J. |

Wrfund

wf,hnrm "‘
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l—————— e

Fig. 7 Shaping filter design combining a step, a sinusoidal
input at the fundamental frequency and the second harmonic at
twice the fundamental frequency. Additional harmonics (not
shown) can be included in the same manner at the summing
junction. Uncertainty on the individual shaping filters is repre-
sented by independent, Gaussian white noise processes Westep,
Wtsunds and Wenarm as described in Sec. 4 for application within
a Kalman filter framework.

analysis of the cutting loads, see Fig. 6. The basic design is illustrated
in Fig. 7 for a step and two harmonic frequencies.

7 Required Measurements for Input Estimation

The minimum set of measurements required to estimate the
eight unknown forces, and hence make the augmented system
completely observable®, includes direct measurements of the plant
model state and a single strain measurement of the net force trans-
fer along the chassis. A larger measurement set is defined for re-
dundancy of information sources. It should be noted that the full
set of measurements is practicable and can be made with commer-
cial off-the-shelf sensors.

“Determined by verifying that the observability matrix is full-rank, see [5].
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The measurements to be made from the shearer are divided into
three groups: state measurements, strain measurements and accel-
eration measurements. These measurements form the plant mea-
surement model from Eq. (15), and are a non-linear function h,, of
the plant state and inputs

Z= [Zx 2 Za]T: hp <Xp:5‘p7yf7u39p> (20)

Seven state measurements are made from the shearer
zZ, = |:d h 0. <ﬂ] - 02> <ﬁ1 + 0:> 0(11 Odr:| =h, (Xp7 0[)) (21

The velocity of the chassis in the chassis-local horizontal direc-
tion is d, and is measured indirectly from motor encoders or tach-
ometers in the haulage drives. The velocity of the chassis in the
chassis-local vertical direction is /. Position measurement using
an inertial navigation system has been successfully demonstrated
on an operational shearer [18], and could be adapted to measure
both chassis translational velocities. The angular velocity meas-
urements, 0., (; — 6,) and (f5, + 0.) are assumed to be measured
using rate gyroscopes mounted on the three structural bodies. The
angular velocities of the left and right cutter heads, 0,4 and 0,,, are
measured using motor encoders or tachometers in the cutter
drives. The state measurement model is

xcos 0, + ysin 0,
—xsinf, + ycos 0,
0.

(5
<&+@)

Our

Our

h,(x,,0,) = (22)

Three strain measurements are made from the operational shearer

2, = [Kucte Kutr Koo ]'= (v, 0,0, 23)

The first of these is assumed to be taken from within the main
shearer body in such a way as to capture the net force transfer
along the chassis. Single strain measurements are also taken from
both ranging arms to calculate the net axial forces. The constants
K..,K,, and K,, transform the physical strain measurements (¢,
¢, and ¢,) into equivalent net forces. It is assumed that the strain
measurements are not dependent on the cutting torque, gravity or
the dynamics of the arms. The strains are modeled as linear func-
tions of known and unknown inputs, with tensile strains defined to
be positive

d — R0, + S,0°

= 8,0. — R,0?
d — Ry, 0. — 8,0°
1'.1. + Saé).z - Ra/‘(;?

ha(x,,,f(,,,H,,) =
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Fig. 8 Acceleration measurements made with sensors
mounted in the shearer chassis (symmetrically located S, from
the CM) and ranging arms (at the cutter axis)
Fp—Fp —Fy+Fpy+Fy—F,
h, <yf7 u, 0,,) = ¢ Fycosf;+ Fysin
—F,.cos B, + F,,sin f3,

(24)

Bilinear accelerations are measured from the shearer at four
locations, illustrated in Fig. 8, in order to capture both the transla-
tional and rotational motions of the chassis and ranging arms

Z, = [d('l hcl d('r hw‘ ag drp dor arr]T: ha (XINXIN Hﬂ) (25)

The first two accelerometers are located at either end of the shearer
chassis. From each, two orthogonal acceleration measurements are
made in the chassis-local Cartesian coordinate frame. Accelerometers
are also mounted at the cutting axes of each ranging arm. These mea-
sure orthogonal accelerations in the arm-local polar coordinate frame.

To simplify the acceleration measurement models, the transla-
tional acceleration of the chassis CM, transformed to the chassis-
local frame of reference, is introduced

d = icos0, + ysin 0,

h = —isin0, + jcos 0,

(26)
27

For the arm acceleration measurement models, a further simpli-
fication defines the translational accelerations of the ranging arm
pivots (in the chassis-local frame of reference) as functions of the
chassis states and state derivatives. The left arm pivot is denoted
by subscript p/ and the right arm pivot by pr

dy = d — 0, + PO? (28)
Iyt = I — PO, — Q0 (29)
dyr = d — Q0. — P? (30)
hpr = b+ PO. — Q6? 31)
The acceleration measurement model is
dpy sin ; + hyycos f; + L, <ﬁ, - 0_,) + Ly (ﬁ, - 92> (32)

,d'],] cos fi; + I:ipl sin f§; + Ly (ﬁ, — 9.> —L, ([3, — 9;)2
,L'jp,. sin 8, + fl'p,, cos . + L, <ﬁr + 9) + Ly (ﬁr + 92)2

éf[,,. cos B, + fip,. sin 8. + Ly (/3, + 9> —L, </3, + 9;)2
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Fig.9 Steady-state estimates of right side cutting loads versus drum orientation using the offset harmonic 7 filter. Refer to Fig.
2 for force definition. The fiducial forces are indiscernible from the noisy estimates, i.e., the estimates track the fiducial forces

well over all drum angles.

The dependence of the acceleration measurements on the state de-
rivative of the plant model, X,, in addition to the plant state, X, is
addressed by utilizing the plant dynamics directly from Eq. (4).

8 Test Results Using Longwall Shearer Simulation

The simulation of the longwall shearer was used as a testbed
for the cutting force estimator. Data recorded from the shearer
simulation, and corrupted by additive Gaussian white noise, are
treated as measurements made from an operational longwall
shearer. The noise covariances were selected to represent that of
commercially available, off-the-shelf sensors.

Figure 9 shows the steady-state estimates of the right side cut-
ting loads (15x,471:“y,., and Tlr) computed using a shaping filter
including a step and sinusoids at seven harmonic frequencies. In
each plot, estimates of the cutting loads over multiple drum rota-
tions are plotted against the fiducial loads predicted by the shearer
simulation. The performance of the estimator on the right side cut-
ting loads is representative of the estimator performance for the
left side.

The fiducial forces are indiscernible from the noisy estimates,
i.e., the estimates track the fiducial forces well over all drum
angles. Force estimate variability is moderate relative to the
underlying signal. The steady-state performance of the estimator

031008-8 / Vol. 136, MAY 2014

is quantified in Table 2 for different shaping filter designs, includ-
ing: a step filter for all unknown forces, a step and a sinusoid (off-
set sine filter) for all unknown forces, a step and sinusoids at
seven harmonic frequencies (offset harmonic 7 filter) for all
unknown forces, and a combination of the offset harmonic 7 filter
for the cutting loads and a simplified step filter for the normal forces.
Estimator performance is presented in terms of the mean error and
RMS error, each as a percentage of the fiducial force mean.

The estimates are all unbiased, resulting from the inclusion of a
step model in all shaping filter designs. The best performing filter
for the cutting forces and torques, on the basis of highest RMS
error, is the offset harmonic 7 filters and step filters (F, F ). The
highest RMS error is 1.25% of the force mean in F,,. The offset
harmonic 7 filters performance is broadly equivalent for the six
cutting loads, and the RMS error improves for the chassis support
forces, making this the preferred design for the ensemble of
unknown shearer inputs.

With only a single frequency sinusoid, the worst RMS error
increases to 2.12% in T, and the estimates lag the fiducial forces dur-
ing rapid changes of force magnitude. An example of the increased
RMS error and lag in the estimate of T, is presented in Fig. 10.

With only a step filter, the worst RMS error is 2.59% in T,.
These results validate the inclusion of all seven harmonic frequen-
cies in the forcing filters, and show the effect of explicitly
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Table 2 Steady-state performance of the force estimator on plain coal using various shaping filter designs

F, nl F nr F xl F xr F vl F yr T('I T('r

Fiducial forces u(F) 305kN  152kN  284kN 21.1kN —293kN 40.8kN 383 kNm —49.2kNm
Step filters u(ﬁ), % 0.00 0.01 0.00 —-0.02 —0.04 0.00 0.04 0.04
RMSE, %  0.24 0.46 0.84 1.56 1.65 0.97 2.59 1.92
Offset sine filters w(F),% 000 001 000 -002  —004 000 004 0.05
RMSE, %  0.25 0.46 0.75 1.50 1.55 0.91 2.12 1.50
Offset harmonic 7 filters u(ﬁ) % 0.00 0.01 0.00 —0.02 —0.04 0.00 0.04 0.04
RMSE, %  0.21 0.37 0.59 1.28 1.14 0.54 1.19 0.88
Offset harmonic 7 filters and step filters (F,,;, F,,) u(l*:), % 0.00 0.01 0.00 —0.02 —0.03 0.00 0.04 0.04
RMSE, %  0.27 0.49 0.58 1.25 1.13 0.55 1.19 0.88

4521 Cutting torque It is noted that although the method proposes measurements that

— - Fiducial torque
—— Torque estimate

can be made from within the body of the machine, and hence are pro-
tected from the mining environment, careful engineering design will

-46F . PP :

be required to ensure the long-term reliability of the sensing hardware.
4.7
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Fig. 10 Steady-state estimates of right side cutting torque ver-
sus drum orientation using the offset sine filter. Arrows indicate
lagging estimates of T., due to an incomplete model of the esti-
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describing the internal model of estimated exogenous inputs on
the RMS errors of the input estimates.

9 Conclusions

This paper presented a methodology for the real-time estima-
tion of longwall shearer cutting forces from indirect, practical
measurements. The methodology was tested using simulated
measurements from a longwall shearer and the estimator was eval-
vated with a series of shaping filter designs, incrementally
improving the detail with which the dynamic structure of the cut-
ting force inputs are modeled.

The estimator with the lowest RMS error contained the most
complete model of the unknown cutting forces, showing the
benefit of explicitly describing the internal model of the cut-
ting forces in the estimator design and the importance of con-
sidering the internal model principle of control theory when
designing an augmented-state Kalman filter for input
estimation.
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