Accepted Manuscript

Title: In pursuit of the ideal antifungal agent for *Candida* infections: high-throughput screening of small molecules

Author: Sarah S.W. Wong Lakshman P. Samaranayake Chaminda J. Senevirate

 PII:
 S1359-6446(14)00243-8

 DOI:
 http://dx.doi.org/doi:10.1016/j.drudis.2014.06.009

 Reference:
 DRUDIS 1437

To appear in:

 Received date:
 12-3-2014

 Revised date:
 23-5-2014

 Accepted date:
 12-6-2014

Please cite this article as: Wong, S.S.W., Samaranayake, L.P., Senevirate, C.J.,In pursuit of the ideal antifungal agent for *Candida* infections: high-throughput screening of small molecules, *Drug Discovery Today* (2014), http://dx.doi.org/10.1016/j.drudis.2014.06.009

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1 In pursuit of the ideal antifungal agent for Candida infections: high-throughput

- 2 screening of small molecules
- 3 Sarah S.W. Wong¹[s1], Lakshman P. Samaranayake^{1,2} and Chaminda J. Senevirate^{1,3,*}
- 4
- ⁵ ¹Faculty of Dentistry, University of Hong Kong, Hong Kong
- ⁶ ²School of Dentistry, University of Queensland, Australia
- ³Oral Sciences, Faculty of Dentistry, National University of Singapore
- 8

9 **Corresponding author*: Senevirate, C.J. (jaya@nus.edu.sg, jaya@hku.hk).

10

11 *Keywords*: *Candida*; antifungal; drug discovery; small molecules; high-throughput screening.

Chemical compounds studied in this article: ETYA (PubChem CID: 1780); CGP-37157
(PubChem CID: 2688); shearinine D (PubChem CID: 16104602); shearinine E (PubChem
CID: 44423349); HWY289 (PubChem CID: 487138); D75-4590 (PubChem CID: 948175);
E1210 (PubChem CID: 16719049).

Teaser: High-throughput screening of small molecules, which enables rapid hit identification
 and increases hit rate, is particularly helpful in the pursuit of ideal antifungal for *Candida* infections.

1 2 Sarah S.W. Wong

Sarah Sze Wah Wong obtained her BSc (Bioinformatics) and PhD from the University of
Hong Kong (HKU). Her PhD project aimed at the discovery and development of novel
antifungal for *Candida* infections through high-throughput screening of small molecule
libraries. She is currently a post-doctoral fellow at HKU, where she continues her work on
antifungal drug discovery and the biology of *Candida* species.

8

9 Lakshman P. Samaranayake

10 Lakshman Perera Samaranayake was previously the Dean of the Faculty of Dentistry, University of Hong Kong 2003–2014; and is currently serving as the Head and the Professor 11 of Oral Microbiomics and Infection at the School of Dentistry, University of Queensland. 12 With over 400 publications, he is a world-renowned expert in the research of Candida; in 13 14 particular, oral candidal infection, oral microbiology and oral infections in immunocompromised populations. For his research, he has received a number of awards and 15 honors including the Distinguished Scientist Award of the International Association for 16 17 Dental Research, USA, and the King James IV Professorship of the Royal College of Surgeons of Edinburgh, UK. 18

2 Chaminda J. Seneviratne

3 C.J. 'Jaya' Seneviratne is an Assistant Professor affiliated to the Oral Sciences, Faculty of 4 Dentistry, National University of Singapore. Dr Seneviratne's major research interest is 5 antifungal drug discovery for *Candida* infections. His work has substantially contributed to 6 the understanding of the pathogenic mechanisms of *Candida* infections, proteomics and 7 antifungal drug discovery.

8

1 2 Candida infections have created a great burden on the public healthcare sector. The situation is worsened by recent epidemiological changes. Furthermore, the current 3 arsenal of antifungal agents is limited and associated with undesirable drawbacks. 4 Therefore, new antifungal agents that surpass the existing ones are urgently needed. 5 6 High-throughput screening of small molecule libraries enables rapid hit identification 7 and, possibly, increases hit rate. Moreover, the identified hits could be associated with unrecognized or multiple drug targets, which would provide novel insights into the 8 9 biological processes of the pathogen. Hence, it is proposed that high-throughput 10 screening of small molecules is particularly important in the pursuit of the ideal antifungal agents for Candida infections. 11

12

1

2 Introduction

Candida, the major fungal pathogen in humans, is the fourth-most prevalent [s2]pathogen of 3 nosocomial bloodstream infections surpassing most bacterial infections [1]. Candida 4 infections are opportunistic and are, therefore, common among immunocompromised 5 populations, such as neutropenic patients, patients under intensive care, organ-transplant 6 7 recipients, patients with underlying malignancy, HIV patients and patients with uncontrolled diabetes. Invasive candidiasis is associated with significant mortality [2,3] and is, therefore, a 8 serious threat to public health around the globe [4–6]. The recent shifting of the paradigm of 9 *Candida* infections further complicates the situation and highlights the need for novel classes 10 11 of antifungal agents, especially those with new mechanisms of action [7,8]. However, the 12 progress of antifungal drug discovery has been lagging. The last first-in-class antifungal drug, 13 caspofungin, was approved more than a decade ago in 2001 [9]. One of the reasons for the slow progress is the eukaryotic nature of fungi, which carry substantial similarities to human 14 cells limiting the number of fungal-specific drug targets [10–12]. To accelerate the progress 15 of antifungal drug discovery, the hit identification rate has to be significantly increased. 16 17 High-throughput screening is a powerful tool that incorporates synthetic chemistry and combinatorial chemistry to provide rich sources of small molecules of diverse structure to 18 increase the hit rate for discovering novel antimicrobial lead compounds. 19

20 The need for novel antifungal agents

The recent changes in the epidemiology of *Candida* infections have pressured the healthcare sector and highlighted an urgent need for novel classes of antifungal agents with different chemical structures and cellular targets [7,8]. These issues include the increased incidence of

- 1 invasive candidiasis, the shifting species distribution of *Candida* infections, the emergence of
- 2 antifungal resistance and the limitation of the current arsenal of antifungal agents.

3 Increased incidence of invasive candidiasis

The secular trends of incidence of *Candida* infections, in particular *Candida* bloodstream infections, have been increasing over the past few decades across the globe [13–22] (Table 1). This could be attributed to the increased number of immunocompromised patients due to the growing widespread use of medical procedures, for instance the use of immunosuppressive drugs and broad-spectrum antibiotics, as well as invasive surgical procedures such as solid organ transplantation [23].

10 Shifting species distribution of Candida infections

Candida albicans, the predominant disease-causing Candida species, possesses various 11 12 virulence factors that render it the most pathogenic of all the *Candida* species. Recently, the 13 continued increase in invasive candidiasis caused by non-albicans Candida (NAC), such as 14 Candida dubliniensis, Candida glabrata, Candida tropicalis, Candida krusei and Candida 15 *parapsilosis*, has been recognized [5,24–28]. This could be partly caused by the improvement 16 in the sensitivity of species identification methods, as well as the indiscriminate use of 17 antifungals [29]. Emergence of NAC raised a concern because they are often associated with 18 antifungal resistance and higher mortality [30,31]. For instance, C. glabrata and C. krusei are 19 intrinsically less susceptible to fluconazole [28], and lower susceptibility for amphotericin B and 5-fluorocytosine has also been observed in C. krusei [32]. 20

21 Emergence of antifungal resistance

The emergence of antifungal resistance, which is one of the major reasons for antifungal treatment failure, has been regarded as a significant clinical problem [33]. The increase in the

numbers of high-risk populations has raised the frequency of prophylactic treatment.
Prolonged exposure to the existing antifungals increases the selection pressure and, as a
result, drug resistance has become increasingly common from originally susceptible species
[34,35]. This phenomenon further restricts the available choice of treatment from the limited
arsenal of antifungal agents.

6 *Current antifungal agents and their limitations*

7 Up until 2012, existing antifungal agents for systemic candidiasis were mainly divided into 8 four classes: polyenes, azoles, echinocandins and pyrimidines [8] (Table 2). The classes of 9 antifungal agents refer to their distinct mode of action. In addition to the limited number of 10 available antifungal agents, there exist limitations for each antifungal class.

1 **Polyenes.** The first antifungal, nystatin, isolated from *Streptomyces noursei*, was discovered 2 in 1950 through screening various cultures of actinomycetes from soil for antifungal activity 3 [36]. However, owing to its toxicity when injected intravenously and the lack of oral 4 bioavailability, nystatin remains a topical antifungal agent [37]. Amphotericin B was developed in 1953 from a screening of *Streptomyces* cultures for antifungal activity [38]. 5 Amphotericin B binds directly to ergosterol, the component of the fungal plasma membrane, 6 7 and thereby causes the leakage of intracellular potassium and magnesium [39]. It is by far the most potent antifungal agent for systemic candidiasis, and has been regarded as the 'gold 8 9 standard' [40]. Amphotericin B has a broad spectrum and fast onset of activity [41,42]. However, it is associated with adverse nephrotoxicity that is cumulative and might not be 10 reversible [43]. Enhanced versions of amphotericin B have been developed by lipid 11 12 formulations to allow various administration routes and reduced toxicity [44,45].

Pyrimidines. Flucytosine (or 5-fluorocytosine) is a synthetic compound, which was originally 13 synthesized in 1957 as a potential antitumor drug; however, its antifungal activity was later 14 15 discovered and it was used to treat candidiasis from 1968 [46,47]. Flucytosine is converted to 5-fluorouracil in fungal cells, which then inhibits DNA and RNA synthesis. Because its target 16 17 is absent in mammalian cells, flucytosine is fungal-specific and has a narrow spectrum of activity [46,48]. Flucytosine is very often used in combination with amphotericin B and 18 azoles rather than monotherapy because of the high prevalence of intrinsic and acquired 19 resistance observed in Candida spp. [49,50]. 20

1 Azoles. Antifungal activity of azoles was first described in 1944 [51]; however, the first azole 2 antifungal, clotrimazole (topical antifungal), was not developed until 1958 [52]. An azole is a fungistatic antifungal agent that depletes ergosterol in the fungal cell membrane by inhibiting 3 the enzyme 14 α -demethylase [53]. Various derivatives have been developed since to 4 accommodate the growing burden of fungal diseases in the populace. These subclasses 5 include imidazoles and triazoles [52,54]. Imidazoles, except ketoconazole, are ineffective 6 7 systemically and are associated with toxicity. Therefore, imidazoles have been replaced by triazoles as a first-line treatment of systemic candidiasis. Second-generation triazoles, such as 8 voriconazole, have a broader spectrum of activity than the first-generation triazoles 9 (fluconazole and itraconazole) [55]. Despite being the first choice of therapy, popular usage 10 and fungistatic properties of triazoles have led to a high incidence of resistance. Additionally, 11 12 azoles are slower regarding onset of action than amphotericin B [56].

13 *Echinocandins*. Echinocandins are the latest class of antifungal and inhibit the synthesis of β -1,3-glucan, an important component in the fungal cell wall [57]. The first member in this 14 15 class, caspofungin, was approved by the FDA in 2001, two decades after the introduction of the preceding antifungal class, the azoles, in 1981 [9]. Echinocandins were discovered from 16 17 the screening of natural products produced by fungal fermentation for antifungal activity in 1974 [58]. Similar to polyenes, echinocandins are fungicidal and fast-acting. Exposure to 18 19 caspofungin for just five minutes causes the uptake of propidium iodide in *Candida* [42]. 20 This antifungal class has a narrow spectrum of activity because it is only active against Candida spp. and Aspergillus spp. [57]. Besides having a narrow spectrum, echinocandins 21 22 have to be administered intravenously as a result of poor oral bioavailability [57]. However, 23 an orally bioavailable analog (enfumafungin) is currently under development [59].

24 The ideal antifungal [s3]agent for *Candida* infections

1 Deducing from the pros and cons of the existing antifungals discussed above, it is tempting to 2 speculate the properties of an 'ideal' antifungal agent for *Candida* infections. Although such 3 antifungal agents might be unattainable in reality, it could serve as a guideline for designing 4 newer drug discovery and development programs to seek optimal antifungals. A promising lead compound should display properties close to the ideal antifungal agent in the preclinical 5 6 development stage, and this would also be crucial in increasing the success rate in clinical 7 trials. The ideal antifungal agent, besides potent antifungal activity, should possess several properties as outlined below [60,61] (Table 3). An ideal antifungal agent for Candida 8 9 infections should have a broad spectrum of activity (within the *Candida* genus), no resistance, an ideal pharmacokinetic and pharmacodynamic profile and no toxicity or side 10 11 effects.

12 Broad spectrum of activity within the Candida genus

13 Broad-spectrum antifungal agents, which are effective against a wide range of species in the 14 fungus kingdom, are traditionally preferred, because this allows empirical therapy and the 15 start of treatment before the species identification of the responsible pathogen [62]. Recently, 16 it has been suggested that molecules with narrow-spectrum antifungal activity could be of 17 significant value and should not be neglected [63,64]. Narrow-spectrum antifungals that are effective against certain fungal genera would enable the rational use of antifungals and, 18 19 therefore, would slow the emergence of resistance strains. Various sensitive diagnostic methods are now available that allow rapid species identification from blood cultures to 20 21 couple with the use of narrow-spectrum antifungals [65,66]. Therefore, an ideal antifungal 22 agent for Candida infections should possess a broad spectrum of activity within the Candida 23 genus.

1 Absence of resistance

2 The ideal antifungal agent should not associate with intrinsic or acquired resistance. Intrinsic 3 resistance can be easily avoided by screening the lead compounds with all the Candida 4 species but acquired resistance is an inevitable outcome of evolution; however, its rate of development is regulated by several artificial factors and can be slowed down. First, because 5 fungistatic antifungal agents cannot completely eradicate the pathogens, survivors are 6 7 selected for after exposure and resistance then arises. Complete elimination of the pathogens is clearly a safer option; therefore a fungicidal drug is preferred. Furthermore, drugs with 8 9 multiple targets were associated with higher toxicity and were not preferred in the past; however, drugs that strongly inhibit a single step in a pathway are likely to promote selective 10 pressure and resistance development [67]. Therefore, to minimize the emergence of acquired 11 12 drug resistance, the ideal antifungal agent should be fungicidal and possess multiple cellular 13 drug targets.

14 Ideal pharmacokinetics profile

15 The four determinants of pharmacokinetics are absorption, distribution, metabolism and 16 excretion (ADME) [68]. The ideal antifungal agent should have adequate bioavailability via 17 intravenous and oral routes of administration to ensure flexibility. Amphotericin B and caspofungin are administered intravenously only, as a result of poor oral bioavailability [57]. 18 19 According to Lipinski's Rule of Five, it is estimated that membrane permeability and oral bioavailability can be achieved by molecules with not more than five hydrogen-bond donors 20 21 and ten hydrogen-bond acceptors, Log P < 5 (a quantitation of the compound's lipophilicity) 22 and molecular weight <500 Da [69,70]. Synthetic small molecule compounds have an 23 advantage over natural products here, because the molecular properties of natural products cannot be controlled and the Rule of Five is often violated. 24

The ideal antifungal for systemic candidiasis should be well distributed to various organs and exhibit a long plasma half-life to maximize and prolong its effect. Invasive candidiasis is often seen deep in the organs of the patients; therefore good tissue penetration of the drugs is necessary. For example, flucytosine diffuses well into the tissue [46].

5 The metabolites of the ideal antifungal should not be toxic. Therefore, the pathway of 6 metabolism has to be investigated. Imidazoles are known for severe drug–drug interactions 7 by inhibiting cytochrome P450 enzymes [71]. The cytochrome P450 superfamily is essential 8 for catalyzing drug metabolism, and the inhibition of such enzymes will result in 9 accumulation of the drugs, leading to toxicity [72].

10 Antifungal drug discovery

Drug discovery is a lengthy process and it is estimated to take 14 years for the launching of a new systemic antibiotic onto the market after its initial discovery from high-throughput screening [73]. Preclinical drug discovery and development is the most challenging part that requires an extended period of time. Despite much effort invested in drug discovery and development, only 20% of all projects proceed to clinical trial, and just 10% of these successfully pass through the latter hurdle [74]. These failures are mainly biological (poorly validated hits) and/or chemical (undesired chemical properties that lead to toxicity) [74].

18 Traditionally, antimicrobial drug discovery is based on phenotype-based screening assays of 19 natural products, the so-called 'classical pharmacology' or 'forward pharmacology' [75,76]. 20 It refers to the screening of small molecules that could result in a certain phenotype, for 21 example inhibition of growth or cell death. This approach is, however, considered to be 22 relatively irrational.

1 During the genomic era, with the advances of recombinant technology and synthetic organic 2 chemistry, the target-based approach (also called reverse pharmacology or rational drug design) has become the dominant paradigm [64,77]. The term target-based approach refers to 3 4 the rational and careful design of a predefined drug target (i.e. a specific gene or protein of interest). It is then followed by either *de novo* synthesis of chemical compounds or the 5 screening of a library of natural products, as well as synthetic small molecules that effectively 6 7 interact with the predefined drug target. Interestingly, it has been shown that the classical phenotype-based approach still produces more first-in-class small molecule drugs than this 8 9 seemingly more rational target-based approach [78]. The two main reasons for this could be: (i) the inadequate understanding of the mechanisms of disease, which might lead to the poor 10 validation of the predefined drug target that the target-based approach relies heavily on [77]; 11 12 (ii) other possible binding sites might be ignored by the *de novo* synthesis of lead compounds, 13 which would lead to undesirable toxicity that is only discovered in later stages of drug 14 development [79]. Moreover, the target-based approach cannot accommodate complex molecular pathways that involve several genes or proteins. The limitations of the target-based 15 approach have led to a search for alternative and optimal strategies in the post-genomic era. 16

17 High-throughput screening of small molecules with antifungal activity

Phenotype-based and target-based drug discovery approaches involve the screening of small molecule libraries. It could be hypothesized that, given a large enough number of small molecules in the library for screening, more hits can be identified. Coupled with modern high-throughput screening technology, rapid hit identification is enabled and the hit rate is likely to increase significantly. Subsequently, with a careful hit-to-lead process and lead optimization, eventually the ideal antifungal agent will be discovered. In other words, the

1 focus of antifungal drug discovery should be placed on the quantity and quality of the small

2 molecules from chemical libraries and the translation of hit-to-lead and lead-to-drug [80].

High-throughput screening of small molecules is advantageous to antifungal drug discovery. (i) The utilization of small molecules can bridge drug discovery with chemical biology to study biological processes of the pathogens. (ii) Synthetic organic chemistry and combinatorial chemistry have allowed the rapid and cost-effective generation of a large amount of compounds with diverse structures [76,81]. (iii) Most importantly, highthroughput phenotype-based screening of small molecules with antifungal activity could allow the identification of hits that target multiple proteins [82].

10 Quantity and quality of small molecules

11 Small molecules can be defined very differently according to application. In antimicrobial 12 drug discovery, small molecules are defined as non-peptide organic compounds that are 13 synthetic or obtained from natural product extracts and are of low molecular weight (~200-14 500 Da) according to Lipinski's rule [69], thus binding to biopolymers such as proteins and 15 nucleic acids and altering their normal functions [82–85]. Small molecules are also used in 16 these disciplines to probe biological pathways and gain new insights into unclear mechanisms [85,86]. Academic investigators have an advantage over the developers from the 17 pharmaceutical companies by acquiring and coupling the first-hand knowledge from basic 18 19 research with drug development [80,87]. The data of small molecules obtained from probing assays, including chemical structure and predicted solubility, are now stored in open 20 21 databases, such as ChemBank, PubChem (currently contains information of over 700 000 22 compounds) [88,89] and ChemDB (contains over 4 million small molecules) [90].

Theoretically, there is an estimation of up to 10^{60} different chemical structures in the chemical space [91,92]. Although not all of these theoretical structures can be successfully

synthesized, it is suggested that an ideal small molecule library should contain all the small
 molecules that can be synthesized, fulfill the Rule of Five and interact with biopolymers [80].

There are two main sources of small molecules: commercial libraries and in-house libraries. 3 4 There are many commercially and publicly available small molecule libraries that are made up of many thousands of existing drugs, extracts of natural products and bioactive 5 compounds of known or unknown action. These libraries provide a convenient source of 6 7 ready-to-use small molecules. To fit different screening assays, in-house small molecule libraries can be generated, and this should be done objectively in a diversity-oriented or 8 target-oriented manner [93]. A diversity-oriented small molecule library comprises 9 compounds that are diverse in structure and, thus, increases the probability that a lead 10 compound could be discovered. A target-oriented small molecule library contains analogs 11 that are built around a specific structure, called the scaffold, to optimize the binding to the 12 13 target [94]. The quality of small molecule libraries, which governs the successful rate of hit 14 identification, is achieved by the purity or lead-like characteristics of the small molecules 15 [95].

16 Hit-to-lead and lead optimization

Hits are defined as the positive output of a screen having sufficient potency and are of known structure. Some of the hits identified from the primary screening can be false positives. Therefore, a secondary screen (hit validation) is required for validation to ensure that the resulting phenotype was caused by the responsible small molecule.

Leads are defined as the molecules, on top of the potency, with sufficient potential (e.g. pharmacokinetics, specificity, patentability) to be developed as drugs [96]. The lead compounds should be tested in an effective way to eliminate the ones that are unlikely to be

developed early in the development process. The lead compounds can be optimized by
 chemical modifications to increase potency and to ensure *in vivo* efficacy [80].

Although the discovery of hits is accelerated by high-throughput screening, there seems to be a big gap in the bridging of hits to lead compounds. About 60% of the small molecule drug discovery projects have failed as a result of poor lead optimization (because the lead does not possess drug-like properties) [74]. In addition, there seems to be a lack of medicinal chemists to translate the promising hits into leads [97]. Therefore, it has been suggested that the future of drug discovery should be focused on assessing the 'therapeutic utilities' of the leads [98].

9 Animal models

Animal models have contributed significantly to the study of the pathogenicity of Candida 10 11 and new therapies [99,100]. In vivo models for systemic and oral candidiasis are well 12 established [101,102]. Infection is established in systemic candidiasis murine models by 13 injecting the fungal cells intravenously, and the mice eventually die of progressive sepsis 14 [103]. Yeast cells are mostly retrieved from the kidneys [104]. Although neutropenia is often 15 induced in the murine model to mimic the immune status of the high-risk immunocompromised population, systemic candidiasis can also be induced in non-16 neutropenic mice. 17

A vast number of new drug candidates fail in the *in vivo* studies owing to undesirable toxicity and/or poor pharmacokinetics. Therefore, the *in vivo* efficacy of a lead compound should be tested thoroughly in the early stages of antifungal drug development. It is important to note that *Candida* is not a constituent of the normal microbiota of mice [99]. Also, there exist variations between the immune systems of mice and the human host [105]. Therefore, the outcome of a drug could differ in mice and in humans. This difference can be best demonstrated by triazole, which is metabolized faster in mice than in humans by cytochrome

P450, thereby increasing the *in vivo* efficacy of azole in mice [99]. Importantly, *in vitro*minimum inhibitory concentration does not correlate with the outcome of the therapy. A
detailed pharmacodynamics-pharmacokinetics profile is therefore needed for downstream
clinical trials.

5 **Potential new drug targets**

6 One of the reasons for the slow progress in this field is the eukaryotic nature of fungi. This is 7 a major hurdle in development of antifungals because they carry substantial similarities to 8 human cells. Therefore, finding a suitable fungal-specific drug target is not a trivial task.

9 Cell wall

The cell wall has remained an attractive area of study as an antifungal drug target, because it 10 comprises a number of key molecules that are not present in humans. The cell wall is an 11 12 essential *Candida* component and is the first contact site of the pathogen with the host [106]. 13 The C. albicans cell wall is rich in carbohydrate, and mainly comprises glucose (glucans), N-14 acetyl-D-glucosamine (chitin) and mannose (mannan) [107]. Beta-glucan is the most 15 abundant constituent, followed by mannan and chitin [107]. The inner layer is enriched with chitin and the outer layer enriched with mannoprotein [108]. Two classes of antifungal 16 17 agents, echinocandins and nikkomycin Z[s4], target the fungal cell wall. Echinocandins target 18 the β -1,3-glucan biosynthesis and nikkomycin Z targets chitin synthesis [109].

19 Targeting virulence factors

Although none of the current antifungal drugs target virulence factors of the yeasts, targeting virulence factors as therapeutic options has been proposed as a new paradigm for antifungal drug discovery [11,110,111]. This is a compelling paradigm because virulence-inhibiting small molecules would exert much lower selective pressure and, hence, lead to less

1 resistance, as compared with growth inhibitory small molecules [11,110]. Moreover, 2 virulence factors are usually pathogen-specific and, therefore, these small molecules would be narrow spectrum with only a few side effects [11,110,112]. Yet, there are some 3 4 disadvantages that render this paradigm arguably controversial. For example, nonfilamentous C. albicans mutants were shown to be avirulent in a mouse infection model [113]; therefore, 5 it is hypothesized that disabling hyphal formation, one of the major virulence factors of C. 6 7 albicans, would result in attenuation of virulence in C. albicans. As a result, small molecules that inhibit hyphal formation would be tremendously narrow spectrum and would only be 8 effective for two Candida species that are able to form true hyphae: C. albicans and C. 9 dubliniensis [114]. Although C. albicans is the predominant species of Candida infections, as 10 discussed above the incidence of infections caused by non-albicans species is on the rise. 11 12 Different virulence factors can be required by Candida depending on the type and site of 13 infections [114,115]. For example, the deletion of the gene *CHK1* results in impaired hyphal 14 formation and attenuated virulence in a systemic candidiasis mouse model [116]; but, 15 discouragingly, it does not affect the virulence in a vaginal candidiasis (mucosal candidiasis) rat model [117]. Therefore, it is suggested that some virulence-inhibiting small molecules 16 17 could possibly be limited to certain species and type of or site of infection.

By contrast, one of the most important questions in this context is whether virulenceinhibiting small molecule inhibitors will be effective in immunocompromised patients [110], who constitute the major group of the population prone to *Candida* infections. *In vivo* studies are awaited to examine the consequences of the presence of avirulent pathogens in the host. Therefore, virulence-inhibiting drugs might only be able to act as a prophylactic or an adjuvant therapy [118], or as a pretreatment for medical devices that are at high risk of *Candida* colonization.

1 Novel small molecule antifungals

A literature search was performed to look for novel small molecule antifungals (excluding new derivatives of existing antifungal agents). A handful of small molecule antifungals were identified and their discovery approach, antifungal activities, spectrum of activity, mechanism of action and their latest development are reviewed and classified below. However, these small molecules were evaluated mainly for their *in vitro* inhibition of growth, virulence factors, such as yeast-to-hypha transition, or bioffilm formation. *In vivo* evaluation of these molecules is, at best, scant.

9 Virulence processes

Yeast-to-hypha transition- and biofilm-inhibiting small molecules. Toenjes et al. have studied a ChemBridge[™] small molecule library that contained 72 molecules using a microplate-based morphological screening assay [119]. These researchers noted that seven of the small molecules (five noncytotoxic small molecule inhibitors and two structural derivatives of unknown nature) inhibited yeast-to-hypha transition without affecting normal budded growth, possibly by affecting the expression of hyphal-specific gene *HWP1* [119].

In another study, a microplate-based morphological screening assay was performed to find fungicidal small molecules from the BIOMOL Institute of Chemistry and Cell Biology (ICCB) Known Bioactives collection with 480 small molecules with known cellular targets and processes [120]. The screening revealed 53 molecules that were cytotoxic to *C. albicans*, and 16 that were yeast-to-hypha inhibitors.

By investigating the efficacies of 21 of the 23 yeast-to-hypha small molecules from the above studies (excluding the two structural derivatives), it was suggested that they either act on the Efg1[s5] or Cph1 pathways [121] that govern the filamentation of *C. albicans* [122].

Biofilm inhibition of the 23 yeast-to-hypha-inhibiting small molecules from the two studies above (including the structural derivatives) was examined and three (ETYA, CGP-37157, buhytrinA) were found to be biofilm inhibitors [123]. ETYA, an inhibitor of eicosanoid synthesis, was the most potent out of the three, followed by CGP-37157, which affects calcium homeostasis, and buhytrinA, a novel molecule with no known target.

Nineteen biofilm-inhibiting small molecules. More recently, 19 *C. albicans* biofilm
inhibitors (effective alone or in synergy with clotrimazole) were discovered by screening 120
000 molecules from the NIH Molecular Libraries Small Molecule Repository [124]. The
underlying mechanism of action of these small molecules is not known.

Shearinines D and E: biofilm inhibitors. Isolated from *Penicillium* spp., shearinines D and E
 suppress *C. albicans* biofilm formation by blocking yeast-to-hypha transition. These
 molecules also enhance the antibiofilm activity of amphotericin B [125].

13 Small molecules that target cell wall and/or cell membrane

14 HWY-289. HWY-289 was discovered from the screening of 515 synthetic or semi-synthetic protoberberine derivatives and displayed the most potent anti-Candida activity with no 15 16 toxicity in rats [126]. Protoberberine is an extract from a Korean medicinal plant that was shown to inhibit the growth of *C. albicans* by inhibiting ergosterol and chitin synthesis [127]. 17 Multiple molecular targets of HWY-289 were reported, which included sterol 24-methyl 18 19 transferase, acyl CoA, [s6]sterol acyltransferase and chitin synthase isozymes [128]. This extract also inhibited yeast-to-hypha transition by disrupting the prohyphal RAS [s7]signaling 20 [129]. 21

22 *Pyridobenzimidazole derivatives*. D75-4590 was discovered from a high-throughput cell-23 based screening of a chemical library of synthetic compounds that target β -1,6-glucan

synthesis [130]. However, owing to its unsatisfactory physiochemical profile, D75-4590 lacks significant efficacy in animal models [130]. Derivatives of D75-4590 (D11-2040 and D21-6076) are inhibitors of β -1,6-glucan synthesis with *in vivo* efficacy [131]. D21-6076 also inhibits hyphal elongation and adherence to mammalian cells [131]. D11-2040 inhibits vegetative growth and hyphal development as a single drug or in synergy with caspofungin or fluconazole [132].

Tamoxifen and structural analogs. A library with 4505 compounds of known biological
activity and natural products was screened in a microplate-based setting for cell lysis inducers
identifying tamoxifen and its structural analog. These agents disrupt the cell wall integrity
possibly by interfering with calmodulin [133,134].

11 E1210. A small molecule, BIQ, was discovered from a high-throughput cell-based screening of a chemical library for cell wall glycosylphosphatidylinositol (GPI) biosynthesis inhibitors 12 13 that target the GWT1_[s8] protein [135]. Following pharmacological optimization of the hit, 14 E1210 was discovered as the potential drug candidate [136]. E1210 is a fungistatic small 15 molecule with potent activity against most *Candida* species except *C. krusei* [136]. The low cytotoxicity of E1210 against a primary human kidney cell line was comparable to that of 16 17 fluconazole (IC₅₀ >32 μ g/ml) [136]. Through inhibition of GPI biosynthesis, E1210 also 18 inhibits germ-tube formation, adherence and biofilm formation of Candida [137]. In vivo, 19 E1210 is effective in mouse models of oropharyngeal and disseminated candidiasis via oral administration [138]. 20

SCH A, SCH B, SCH C and SCH D. A high-throughput screening was performed to look for antifungal small molecules. The mechanistic studies revealed that the primary hits were β -1,3-D-glucan inhibitors [139]. In addition, the identified molecules were also effective in treating disseminated *C. glabrata* infection in a mouse model [139].

Aminopiperidine derivatives. Aminopiperidine derivatives, namely compound 1a and 1b[s9],
have been shown to inhibit C-14 reduction in ergosterol synthesis [140,141]. These
compounds are fungistatic *in vitro* and extend the survival of a murine model with
disseminated *C. albicans* infection.

5 Novel mechanism of action

UK-118005. Two synthetic small molecules, UK-118005 and its structural analog ML-60218,
are broad-spectrum antifungal compounds that inhibit RNA polymerase (Pol) III in yeasts
and human cells [142].

9 *ECC145 and ECC188*. ECC145 and ECC188 were identified from a high-throughput 10 screening of a synthetic small molecule library (ChemBridgeTM) by fitness test on *OLE1*-11 deleted *C. albicans*. The gene *OLE1* encodes the fungal fatty acid Δ -9 desaturase. ECC145 12 and ECC188 inhibit the unsaturated fatty acid synthesis and hyphal development [143]. 13 *OLE1* is a potential antifungal target because it is essential for virulence.

MGCD290. MGCD290, currently in Phase II clinical trials, is a novel oral small molecule that inhibits the Hos2 fungal histone deacetylase (HDAC). MGCD290 enhances the activity and broadens the antifungal spectrum of azoles. When administrated to the systemic candidiasis mouse model together with fluconazole the survival of the mice increased [144,145].

Zinc homeostasis modulators. In this target-based drug discovery, a small molecule library was screened in a *Saccharomyces cerevisiae* model for fungal zinc homeostasis modulators [146]. The library contained 2000 small molecules that had been preselected to cover a wide range of biological processes and structures. The 80 small molecules that were found to affect

- 1 the zinc homeostasis in the S. cerevisiae screening model were further tested on C. albicans,
- 2 and three were shown to be strong zinc homeostasis modulators.

3 Unknown mechanism

A novel antifungal, SM21, was identified by high-throughput phenotype-based screening of a
library of 50 240 small molecules for growth inhibitors and hyphal formation inhibitors of *C*. *albicans* by our group [147]. Subsequent assays revealed that SM21 is fungicidal against a
wide range of *Candida* species. *In vivo*, SM21 is able to treat systemic and oral candidiasis in
murine models. The exact mechanism of action of SM21 is still to be elucidated.

9 Concluding remarks

The serious threat that *Candida* infections are posing to public health urgently requires rapid and effective screening programs for antifungal drug discovery. The drawbacks of the current limited arsenal of antifungal agents have prompted the search for the ideal antifungal agent targeting *Candida* infections. High-throughput screening technology, coupled with synthetic chemistry and combinatorial chemistry, has been shown to be a promising approach in providing rich sources of small molecules of diverse structures and accelerating the hit discovery rate and significantly benefitting downstream drug development.

17 **Conflicts of interest**

18 The authors declare no conflict of interest related to this manuscript.

1 **References**

2	1	Wisplinghoff, H. et al. (2004) Nosocomial bloodstream infections in US hospitals:
3		analysis of 24,179 cases from a prospective nationwide surveillance study. Clin.
4		Infect. Dis. 39, 309–317
5	2	Gudlaugsson, O. et al. (2003) Attributable mortality of nosocomial candidemia,
6		revisited. Clin. Infect. Dis. 37, 1172-1177
7	3	McNeil, M.M. et al. (2001) Trends in mortality due to invasive mycotic diseases in
8		the United States, 1980–1997. Clin. Infect. Dis. 33, 641–647
9	4	Hobson, R.P. (2003) The global epidemiology of invasive Candida infectionsis the
10		tide turning? J. Hosp. Infect. 55, 159–168; quiz 233
11	5	Pfaller, M.A. and Diekema, D.J. (2007) Epidemiology of invasive candidiasis: a
12		persistent public health problem. Clin. Microbiol. Rev. 20, 133-163
13	6	Eggimann, P. et al. (2003) Epidemiology of Candida species infections in critically ill
14		non-immunosuppressed patients. Lancet Infect. Dis. 3, 685-702
15	7	de Pauw, B. (2000) Is there a need for new antifungal agents? Clin. Microbiol. Infect.
16		6 (Suppl. 2), 23–28
17	8	Butts, A. and Krysan, D.J. (2012) Antifungal drug discovery: something old and
18		something new. PLoS Pathog. 8, e1002870
19	9	Graybill, J. (2001) The echinocandins, first novel class of antifungals in two decades:
20		will they live up to their promise? Int. J. Clin. Pract. 55, 633-638
21	10	Williams, D.W. et al. (2011) Candida biofilms and oral candidosis: treatment and
22		prevention. Periodontol. 2000 55, 250-265
23	11	Pierce, C.G. and Lopez-Ribot, J.L. (2013) Candidiasis drug discovery and
24		development: new approaches targeting virulence for discovering and identifying new
25		drugs. Expert Opin. Drug Discov. 8, 1117–1126

1	12	Ostrosky-Zeichner, L. et al. (2010) An insight into the antifungal pipeline: selected
2		new molecules and beyond. Nat. Rev. Drug Discov. 9, 719-727
3	13	Fortun, J. et al. (2012) Emerging trends in candidemia: a higher incidence but a
4		similar outcome. J. Infect. 65, 64–70
5	14	Chen, L.Y. et al. (2011) Changes in the incidence of candidaemia during 2000-2008
6		in a tertiary medical centre in northern Taiwan. J. Hosp. Infect. 78, 50-53
7	15	Yap, H.Y. et al. (2009) Epidemiology and outcome of Candida bloodstream infection
8		in an intensive care unit in Hong Kong. Hong Kong Med. J. 15, 255-261
9	16	Arendrup, M.C. et al. (2008) Semi-national surveillance of fungaemia in Denmark
10		2004-2006: increasing incidence of fungaemia and numbers of isolates with reduced
11		azole susceptibility. Clin. Microbiol. Infect. 14, 487-494
12	17	Zilberberg, M.D. et al. (2008) Secular trends in candidemia-related hospitalization in
13		the United States, 2000–2005. Infect. Control. Hosp. Epidemiol. 29, 978–980
14	18	Marchetti, O. et al. (2004) Epidemiology of candidemia in Swiss tertiary care
15		hospitals: secular trends, 1991-2000. Clin. Infect. Dis. 38, 311-320
16	19	Macphail, G. et al. (2002) Epidemiology, treatment and outcome of candidemia: a
17		five-year review at three Canadian hospitals. Mycoses 45, 141-145
18	20	Asmundsdottir, L.R. et al. (2002) Increasing incidence of candidemia: results from a
19		20-year nationwide study in Iceland. J. Clin. Microbiol. 40, 3489-3492
20	21	Sandven, P. et al. (1998) Constant low rate of fungemia in norway, 1991 to 1996. The
21		Norwegian Yeast Study Group. J. Clin. Microbiol. 36, 3455–3459
22	22	Chen, Y.C. et al. (1997) Secular trends in the epidemiology of nosocomial fungal
23		infections at a teaching hospital in Taiwan, 1981 to 1993. Infect. Control. Hosp.
24		Epidemiol. 18, 369–375

1	23	Ortega, M. et al. (2011) Candida species bloodstream infection: epidemiology and
2		outcome in a single institution from 1991 to 2008. J. Hosp. Infect. 77, 157-161
3	24	Sardi, J.C. et al. (2013) Candida species: current epidemiology, pathogenicity,
4		biofilm formation, natural antifungal products and new therapeutic options. J. Med.
5		Microbiol. 62, 10–24
6	25	Snydman, D.R. (2003) Shifting patterns in the epidemiology of nosocomial Candida
7		infections. Chest 123 (5 Suppl.), 500–503S
8	26	Falagas, M.E. et al. (2010) Relative frequency of albicans and the various non-
9		albicans Candida spp among candidemia isolates from inpatients in various parts of
10		the world: a systematic review. Int. J. Infect. Dis. 14, e954-966
11	27	Nguyen, M.H. et al. (1996) The changing face of candidemia: emergence of non-
12		Candida albicans species and antifungal resistance. Am. J. Med. 100, 617-623
13	28	Krcmery, V. and Barnes, A.J. (2002) Non-albicans Candida spp. causing fungaemia:
14		pathogenicity and antifungal resistance. J. Hosp. Infect. 50, 243-260
15	29	Berrouane, Y.F. et al. (1999) Trends in antifungal use and epidemiology of
16		nosocomial yeast infections in a university hospital. J. Clin. Microbiol. 37, 531-537
17	30	Pfaller, M.A. et al. (2011) Candida bloodstream infections: comparison of species
18		distribution and resistance to echinocandin and azole antifungal agents in intensive
19		care unit (ICU) and non-ICU settings in the SENTRY Antimicrobial Surveillance
20		Program (2008–2009). Int. J. Antimicrob. Agents 38, 65–69
21	31	Silva, S. et al. (2012) Candida glabrata, Candida parapsilosis and Candida
22		tropicalis: biology, epidemiology, pathogenicity and antifungal resistance. FEMS
23		Microbiol. Rev. 36, 288–305

1	32	Pfaller, M.A. et al. (2008) Candida krusei, a multidrug-resistant opportunistic fungal
2		pathogen: geographic and temporal trends from the ARTEMIS DISK Antifungal
3		Surveillance Program, 2001 to 2005. J. Clin. Microbiol. 46, 515-521
4	33	Nucci, M. and Perfect, J.R. (2008) When primary antifungal therapy fails. Clin. Infect.
5		Dis. 46, 1426–1433
6	34	Kontoyiannis, D.P. and Lewis, R.E. (2002) Antifungal drug resistance of pathogenic
7		fungi. Lancet 359, 1135–1144
8	35	Pfaller, M.A. (2012) Antifungal drug resistance: mechanisms, epidemiology, and
9		consequences for treatment. Am. J. Med. 125 (1 Suppl.), S3-13
10	36	Dobias, B. and Hazen, E.L. (1961) Nystatin. Chemotherapy 3, 108-119
11	37	Carrillo-Munoz, A.J. et al. (1999) In-vitro antifungal activity of liposomal nystatin in
12		comparison with nystatin, amphotericin B cholesteryl sulphate, liposomal
13		amphotericin B, amphotericin B lipid complex, amphotericin B desoxycholate,
14		fluconazole and itraconazole. J. Antimicrob. Chemother. 44, 397-401
15	38	Dutcher, J.D. (1968) The discovery and development of amphotericin B. Dis. Chest
16		54 (Suppl. 1), 296–298
17	39	Gray, K.C. et al. (2012) Amphotericin primarily kills yeast by simply binding
18		ergosterol. Proc. Natl. Acad. Sci. U. S. A. 109, 2234-2239
19	40	Sarosi, G.A. (1990) Amphotericin B. Still the 'gold standard' for antifungal therapy.
20		Postgrad. Med. 88, 151–152; 155–161; 165–156
21	41	Ellis, D. (2002) Amphotericin B: spectrum and resistance. J. Antimicrob. Chemother.
22		49 (Suppl. 1), 7–10
23	42	Green, L.J. et al. (1999) LY303366 exhibits rapid and potent fungicidal activity in
24		flow cytometric assays of yeast viability. Antimicrob. Agents Chemother. 43, 830-835

1	43	Deray, G. (2002) Amphotericin B nephrotoxicity. J. Antimicrob. Chemother. 49
2		(Suppl. 1), 37–41
3	44	Tiphine, M. et al. (1999) Amphotericin B and its new formulations: pharmacologic
4		characteristics, clinical efficacy, and tolerability. Transpl. Infect. Dis. 1, 273-283
5	45	Ibrahim, F. et al. (2012) Assessment of novel oral lipid-based formulations of
6		amphotericin B using an in vitro lipolysis model. Eur. J. Pharm. Sci. 46, 323-328
7	46	Vermes, A. et al. (2000) Flucytosine: a review of its pharmacology, clinical
8		indications, pharmacokinetics, toxicity and drug interactions. J. Antimicrob.
9		Chemother. 46, 171–179
10	47	Tassel, D. and Madoff, M.A. (1968) Treatment of Candida sepsis and Cryptococcus
11		meningitis with 5-fluorocytosine. A new antifungal agent. JAMA 206, 830-832
12	48	Fass, R.J. and Perkins, R.L. (1971) 5-Fluorocytosine in the treatment of cryptococcal
13		and candida mycoses. Annal. Int. Med. 74, 535-539
14	49	Pfaller, M.A. et al. (2002) In vitro activities of 5-fluorocytosine against 8,803 clinical
15		isolates of Candida spp.: global assessment of primary resistance using national
16		committee for clinical laboratory standards susceptibility testing methods. Antimicrob.
17		Agents Chemother. 46, 3518–3521
18	50	Barchiesi, F. et al. (2000) Primary resistance to flucytosine among clinical isolates of
19		Candida spp. J. Antimicrob. Chemother. 45, 408–409
20	51	Woolley, D.W. (1944) Some biological effects produced by benzimidazole and their
21		reversal by purines J. Biol. Chem. 152, 225–232
22	52	Maertens, J.A. (2004) History of the development of azole derivatives. Clin.
23		Microbiol. Infect. 10 (Suppl. 1), 1-10
24	53	Bodey, G.P. (1992) Azole antifungal agents. Clin. Infect. Dis. 14 (Suppl. 1), S161-
25		169

1	54	Sheehan, D.J. et al. (1999) Current and emerging azole antifungal agents. Clin.
2		Microbiol. Rev. 12, 40–79
3	55	Donnelly, J.P. and De Pauw, B.E. (2004) Voriconazole-a new therapeutic agent with
4		an extended spectrum of antifungal activity. Clin. Microbiol. Infect. 10 (Suppl. 1),
5		107–117
6	56	Graybill, J.R. (1992) Future directions of antifungal chemotherapy. Clin. Infect. Dis.
7		14 (Suppl. 1), S170–181
8	57	Denning, D.W. (2003) Echinocandin antifungal drugs. Lancet 362, 1142-1151
9	58	Adam, R.R. (2007) The echinocandins: total and semi-synthetic approaches in
10		antifungal drug discovery. Anti-Infective Agents in Medicinal Chemistry 6, 201-212
11	59	Heasley, B.H. et al. (2012) Synthesis and biological evaluation of antifungal
12		derivatives of enfumafungin as orally bioavailable inhibitors of beta-1,3-glucan
13		synthase. Bioorg. Med. Chem. Lett. 22, 6811-6816[s10]
14	60	Chapman, S.W. et al. (2008) In search of the holy grail of antifungal therapy. Trans.
15		Am. Clin. Climatol. Assoc. 119, 197–215; discussion 215–196
16	61	Marriott, M. (1990) Rational design of a magic bullet: antifungal drugs. Rev. Med.
17		Microbiol. 1, 151–159
18	62	Walsh, C. (2003) Where will new antibiotics come from? Nat. Rev. Microbiol. 1, 65-
19		70
20	63	DiDomenico, B. (1999) Novel antifungal drugs. Curr. Opin. Microbiol. 2, 509-515
21	64	Brown, E.D. and Wright, G.D. (2005) New targets and screening approaches in
22		antimicrobial drug discovery. Chem. Rev. 105, 759-774
23	65	Spanu, T. et al. (2012) Direct MALDI-TOF mass spectrometry assay of blood culture
24		broths for rapid identification of Candida species causing bloodstream infections: an

1		observational study in two large microbiology laboratories. J. Clin. Microbiol. 50,
2		176–179
3	66	Aittakorpi, A. et al. (2012) Accurate and rapid identification of Candida spp.
4		frequently associated with fungemia by using PCR and the microarray-based Prove-it
5		Sepsis assay. J. Clin. Microbiol. 50, 3635–3640
6	67	Frantz, S. (2005) Drug discovery: playing dirty. <i>Nature</i> 437, 942–943
7	68	Jang, G.R. et al. (2001) Pharmacokinetics and its role in small molecule drug
8		discovery research. Med. Res. Rev. 21, 382–396
9	69	Lipinski, C.A. et al. (2001) Experimental and computational approaches to estimate
10		solubility and permeability in drug discovery and development settings. Adv. Drug
11		Deliv. Rev. 46, 3–26
12	70	Lipinski, C.A. (2004) Lead- and drug-like compounds: the rule-of-five revolution.
13		Drug Discov. Today: Technol. 1, 337–341
14	71	Zhang, W. et al. (2002) Inhibition of cytochromes P450 by antifungal imidazole
15		derivatives. Drug Metab. Dispos. 30, 314-318
16	72	Zhang, L. et al. (2009) Predicting drug-drug interactions: an FDA perspective. AAPS
17		J. 11, 300–306
18	73	Payne, D.J. et al. (2007) Drugs for bad bugs: confronting the challenges of
19		antibacterial discovery. Nat. Rev. Drug Discov. 6, 29-40
20	74	Brown, D. and Superti-Furga, G. (2003) Rediscovering the sweet spot in drug
21		discovery. Drug Discov. Today 8, 1067–1077
22	75	Persidis, A. (1999) Antibacterial and antifungal drug discovery. Nat. Biotechnol. 17,
23		1141–1142
24	76	Drews, J. (2000) Drug discovery: a historical perspective. Science 287, 1960–1964

1	77	Sams-Dodd, F. (2006) Drug discovery: selecting the optimal approach. Drug Discov.
2		<i>Today</i> 11, 465–472
3	78	Swinney, D.C. and Anthony, J. (2011) How were new medicines discovered? Nat.
4		<i>Rev. Drug Discov.</i> 10, 507–519
5	79	Apic, G. et al. (2005) Illuminating drug discovery with biological pathways. FEBS
6		Lett. 579, 1872–1877
7	80	Ohlmeyer, M. and Zhou, M.M. (2010) Integration of small-molecule discovery in
8		academic biomedical research. Mt. Sinai J. Med. 77, 350-357
9	81	Edwards, P.J. et al. (1999) Applications of combinatorial chemistry to drug design
10		and development. Curr. Opin. Drug Discov. Dev. 2, 321-331
11	82	Cong, F. et al. (2012) Chemical genetics-based target identification in drug discovery.
12		Annu. Rev. Pharmacol. Toxicol. 52, 57–78[s11]
13	83	Jeffery, D.A. and Bogyo, M. (2003) Chemical proteomics and its application to drug
14		discovery. Curr. Opin. Biotechnol. 14, 87-95
15	84	Spring, D.R. (2005) Chemical genetics to chemical genomics: small molecules offer
16		big insights. Chem. Soc. Rev. 34, 472-482
17	85	Ward, G.E. et al. (2002) Using small molecules to study big questions in cellular
18		microbiology. Cell Microbiol. 4, 471-482
19	86	Workman, P. and Collins, I. (2010) Probing the probes: fitness factors for small
20		molecule tools. Chem. Biol. 17, 561–577
21	87	Strausberg, R.L. and Schreiber, S.L. (2003) From knowing to controlling: a path from
22		genomics to drugs using small molecule probes. Science 300, 294-295
23	88	Lazo, J.S. et al. (2007) Building a pharmacological lexicon: small molecule discovery
24		in academia. Mol. Pharmacol. 72, 1–7

1	89	Wang, Y. et al. (2009) PubChem: a public information system for analyzing
2		bioactivities of small molecules. Nucleic Acids Res. 37, W623-633
3	90	Chen, J. et al. (2005) ChemDB: a public database of small molecules and related
4		chemoinformatics resources. Bioinformatics 21, 4133-4139
5	91	Dobson, C.M. (2004) Chemical space and biology. <i>Nature</i> 432, 824–828
6	92	Lipinski, C. and Hopkins, A. (2004) Navigating chemical space for biology and
7		medicine. <i>Nature</i> 432, 855–861
8	93	Bevan, P. et al. (1995) Identifying small-molecule lead compounds: the screening
9		approach to drug discovery. Trends Biotechnol. 13, 115-121
10	94	Schreiber, S.L. (2000) Target-oriented and diversity-oriented organic synthesis in
11		drug discovery. Science 287, 1964–1969
12	95	Gordon, E.J. (2007) Small-molecule screening: it takes a village. ACS Chem. Biol. 2,
13		9–16
14	96	Valler, M.J. and Green, D. (2000) Diversity screening versus focussed screening in
15		drug discovery. Drug Discov. Today 5, 286–293
16	97	Kozikowski, A.P. et al. (2006) Why academic drug discovery makes sense. Science
17		313, 1235–1236
18	98	Hopkins, A.L. and Groom, C.R. (2002) The druggable genome. Nat. Rev. Drug
19		Discov. 1, 727–730
20	99	Szabo, E.K. and MacCallum, D.M. (2011) The contribution of mouse models to our
21		understanding of systemic candidiasis. FEMS Microbiol. Lett. 320, 1-8
22	100	Andes, D. (2005) Use of an animal model of disseminated candidiasis in the
23		evaluation of antifungal therapy. In Antifungal Agents (Erika, J. et al., eds[s12]), pp.
24		111–128, Springer

1	101	Samaranayake, Y.H. and Samaranayake, L.P. (2001) Experimental oral candidiasis in
2		animal models. Clin. Microbiol. Rev. 14, 398-429
3	102	Solis, N.V. and Filler, S.G. (2012) Mouse model of oropharyngeal candidiasis. Nat.
4		Protoc. 7, 637–642
5	103	Spellberg, B. et al. (2005) Mice with disseminated candidiasis die of progressive
6		sepsis. J. Infect. Dis. 192, 336-343
7	104	Lionakis, M.S. et al. (2011) Organ-specific innate immune responses in a mouse
8		model of invasive candidiasis. J. Innate Immun. 3, 180–199
9	105	Rehli, M. (2002) Of mice and men: species variations of Toll-like receptor
10		expression. Trends Immunol. 23, 375–378
11	106	Bishop, C. et al. (1960) The cell wall polysaccharides of Candida albicans: glucan,
12		mannan, and chitin. Canadian J. Chem. 38, 869-881
13	107	Chaffin, W.L. et al. (1998) Cell wall and secreted proteins of Candida albicans:
14		identification, function, and expression. Microbiol. Mol. Biol. Rev. 62, 130-180
15	108	Chaffin, W.L. (2008) Candida albicans cell wall proteins. Microbiol. Mol. Biol. Rev.
16		72, 495–544
17	109	Chapman, T. et al. (1992) Chitin biosynthesis in Candida albicans grown in vitro and
18		in vivo and its inhibition by nikkomycin Z. Antimicrob. Agents Chemother. 36, 1909-
19		1914
20	110	Alekshun, M.N. and Levy, S.B. (2004) Targeting virulence to prevent infection: to
21		kill or not to kill? Drug Discov. Today: Therapeutic Strategies 1, 483–489
22	111	Gauwerky, K. et al. (2009) Targeting virulence: a new paradigm for antifungals. Drug
23		Discov. Today 14, 214–222
24	112	Jacobsen, I.D. et al. (2012) Candida albicans dimorphism as a therapeutic target.
25		Expert Rev. Anti Infect. Ther. 10, 85–93

1	113	Lo, H.J. et al. (1997) Nonfilamentous C. albicans mutants are avirulent. Cell 90, 939-
2		949
3	114	Calderone, R.A. and Fonzi, W.A. (2001) Virulence factors of Candida albicans.
4		Trends Microbiol. 9, 327–335
5	115	Naglik, J.R. et al. (2003) Candida albicans secreted aspartyl proteinases in virulence
6		and pathogenesis. Microbiol. Mol. Biol. Rev. 67, 400-428
7	116	Yamada-Okabe, T. et al. (1999) Roles of three histidine kinase genes in hyphal
8		development and virulence of the pathogenic fungus Candida albicans. J. Bacteriol.
9		181, 7243–7247
10	117	Calera, J.A. et al. (1999) Avirulence of Candida albicans CaHK1 mutants in a murine
11		model of hematogenously disseminated candidiasis. Infect. Immun. 67, 4280-4284
12	118	Saville, S.P. et al. (2006) Inhibition of filamentation can be used to treat disseminated
13		candidiasis. Antimicrob. Agents Chemother. 50, 3312-3316
14	119	Toenjes, K.A. et al. (2005) Small-molecule inhibitors of the budded-to-hyphal-form
15		transition in the pathogenic yeast Candida albicans. Antimicrob. Agents Chemother.
16		49, 963–972
17	120	Toenjes, K.A. et al. (2009) Inhibitors of cellular signalling are cytotoxic or block the
18		budded-to-hyphal transition in the pathogenic yeast Candida albicans. J. Med.
19		Microbiol. 58, 779–790
20	121	Midkiff, J. et al. (2011) Small molecule inhibitors of the Candida albicans budded-to-
21		hyphal transition act through multiple signaling pathways. PLoS One 6, e25395
22	122	Braun, B.R. and Johnson, A.D. (2000) TUP1, CPH1 and EFG1 make independent
23		contributions to filamentation in Candida albicans. Genetics 155, 57-67
24	123	Grald, A. et al. (2012) Small-molecule inhibitors of biofilm formation in laboratory
25		and clinical isolates of Candida albicans. J. Med. Microbiol. 61, 109-114

1	124	LaFleur, M.D. et al. (2011) Novel high-throughput screen against Candida albicans
2		identifies antifungal potentiators and agents effective against biofilms. J. Antimicrob.
3		Chemother. 66, 820–826
4	125	You, J.L. et al. (2013) Small-molecule suppressors of Candida albicans biofilm
5		formation synergistically enhance the antifungal ativity of amphotericin B against
6		clinical Candida isolates. ACS Chem. Biol. 8, 840–848
7	126	Park, K.S. et al. (2001) HWY-289, a novel semi-synthetic protoberberine derivative
8		with multiple target sites in Candida albicans. J. Antimicrob. Chemother. 47, 513-
9		519
10	127	Park, K.S. et al. (1999) Differential inhibitory effects of protoberberines on sterol and
11		chitin biosyntheses in Candida albicans. J. Antimicrob. Chemother. 43, 667-674
12	128	Kim, K.Y. et al. (2004) Molecular cloning and biochemical characterization of
13		Candida albicans acyl-CoA:sterol acyltransferase, a potential target of antifungal
14		agents. Biochem. Biophys. Res. Commun. 319, 911–919
15	129	Kim, K.Y. et al. (2009) Proteomic profiling of yeast- and hyphal-specific responses of
16		Candida albicans to the antifungal agent, HWY-289. Proteomics Clin. Appl. 3, 452-
17		461
18	130	Kitamura, A. et al. (2009) Discovery of a small-molecule inhibitor of {beta}-1,6-
19		glucan synthesis. Antimicrob. Agents Chemother. 53, 670-677
20	131	Kitamura, A. et al. (2009) Effect of beta-1,6-glucan inhibitors on the invasion process
21		of Candida albicans: potential mechanism of their in vivo efficacy. Antimicrob.
22		Agents Chemother. 53, 3963–3971
23	132	Kitamura, A. et al. (2010) In vitro antifungal activities of D11-2040, a beta-1,6-
24		glucan inhibitor, with or without currently available antifungal drugs. Biol. Pharm.
25		Bull. 33, 192–197

1	133	Krysan, D.J. and Didone, L. (2008) A high-throughput screening assay for small
2		molecules that disrupt yeast cell integrity. J. Biomol. Screen. 13, 657-664
3	134	Dolan, K. et al. (2009) Antifungal activity of tamoxifen: in vitro and in vivo activities
4		and mechanistic characterization. Antimicrob. Agents Chemother. 53, 3337-3346
5	135	Tsukahara, K. et al. (2003) Medicinal genetics approach towards identifying the
6		molecular target of a novel inhibitor of fungal cell wall assembly. Mol. Microbiol. 48,
7		1029–1042
8	136	Miyazaki, M. et al. (2011) In vitro activity of E1210, a novel antifungal, against
9		clinically important yeasts and molds. Antimicrob. Agents Chemother. 55, 4652-4658
10	137	Watanabe, N.A. et al. (2012) E1210, a new broad-spectrum antifungal, suppresses
11		Candida albicans hyphal growth through inhibition of glycosylphosphatidylinositol
12		biosynthesis. Antimicrob. Agents Chemother. 56, 960-971
13	138	Hata, K. et al. (2011) Efficacy of oral E1210, a new broad-spectrum antifungal with a
14		novel mechanism of action, in murine models of candidiasis, aspergillosis, and
15		fusariosis. Antimicrob. Agents Chemother. 55, 4543–4551
16	139	Walker, S.S. et al. (2011) Discovery of a novel class of orally active antifungal beta-
17		1,3-D-glucan synthase inhibitors. Antimicrob. Agents Chemother. 55, 5099-5106
18	140	Hata, M. et al. (2010) Inhibition of ergosterol synthesis by novel antifungal
19		compounds targeting C-14 reductase. Med. Mycol. 48, 613-621
20	141	Hata, M. et al. (2010) In vitro and in vivo antifungal activities of aminopiperidine
21		derivatives, novel ergosterol synthesis inhibitors. Biol. Pharm. Bull. 33, 473-476
22	142	Wu, L. et al. (2003) Novel small-molecule inhibitors of RNA polymerase III.
23		Eukaryot. Cell 2, 256–264

1	143	Xu, D. et al. (2009) Chemical genetic profiling and characterization of small-
2		molecule compounds that affect the biosynthesis of unsaturated fatty acids in Candida
3		albicans. J. Biol. Chem. 284, 19754–19764

- 4 144 Nguyen, D. *et al.* (2009) MGCD290: A novel small molecule, modulates azole
 5 antifungal activity through specific inhibition of the histone deacetylase HOS2[s13].
 6 pp. 12–15
- Pfaller, M.A. *et al.* (2009) Activity of MGCD290, a Hos2 histone deacetylase
 inhibitor, in combination with azole antifungals against opportunistic fungal
 pathogens. *J. Clin. Microbiol.* 47, 3797–3804
- 10 146 Simm, C. *et al.* (2011) High-throughput screen for identifying small molecules that
 11 target fungal zinc homeostasis. *PLoS One* 6, e25136
- 12 147 Wong, S.S.W. *et al.* (2014) *In vitro* and *in vivo* activity of a novel antifungal small
 13 molecule against *Candida* infections. *PloS One* 9, e85836

- 1 Table 1. The change in incidence of *Candida* bloodstream infections in various parts of
- 2 the world from 1980 to 2009

Ç

Area	Publication year	Study period	Type of population	Trend or change in % incidence	Refs
Spain	2012	2000–2009	General hospital	Increased	[13]
Taiwan	2011	2000–2008	Tertiary medical center	Increased	[14]
Hong Kong	2009	1998–2006	Intensive care unit	+66%	[15]
Denmark	2008	2004–2006	Multiple general hospitals covering about 65% of Danish population	+17%	[16]
United States	2008	2000–2005	General populations	+52%	[17]
Switzerland	2003	1991–2000	General hospitals covering about 80% of Swiss population	Unchanged	[18]
Canada	2002	1992–1996	Three general hospitals	+155%	[19]
Iceland	2002	1980–1999	General populations	+250%	[20]
Norway	1998	1991–1996	General hospitals	Unchanged	[21]
Taiwan	1997	1981–1993	Single general hospital	Increased	[22]

1 Table 3. Properties of an ideal antifungal agent for *Candida* infections

Ideal antifungal agent Potent antifungal property Broad spectrum of activity within the *Candida* genus Ease of administration No association with intrinsic or acquired resistance Fungicidal Nontoxic No side effects No drug–drug interactions

1 Table 2. Timeline of discovery of new and current major antifungals

Antifungal	Year of FDA approval	Molecular weight (g/mol)	Fungicidal and/or fungistatic	Route of administration	Advantage(s)	Disadvantage(s)			
Polvene									
Nystatin	1954	926	Fungicidal and fungistatic	Oral and topical	Broad spectrum	No intravenous injectable formulation owing to toxicity profile for mucocutaneous fungal infections only			
Amphotericin B	1958	924	- Fungicidal	Intravenous only	High potency, rapid onset of action, broad spectrum	Nephrotoxicity			
Amphotericin B lipid complex	1995	924			Less toxic than conventional amphotericin B	Cost			
Amphotericin B cholesteryl sulfate	1996	924							
Liposomal amphotericin B	1997	924							
Pyrimidine	-								
Flucytosine	1972	129	Fungistatic	Oral and intravenous	Minor side effects, good tissue distribution	Narrow spectrum			
Incidencia									
Imidazole				Oral and					
Ketoconazole	1981	531	Fungistatic	intravenous	N/A[s1]	Toxicity			
Triazole									
Fluconazole	1990	306		Oral and intravenous	Minimal toxicity	High rates of resistance, narrow spectrum of activity			
Itraconazole	1992	705	Fungistatic		Extended spectrum more than first generation	Low bioavailability			
Voriconazole	2002	349				Class-related side effects			
Posaconazole	2006	700		Oral only		Cost			
Echinocandin									
Caspofungin	2001	1213				Narrow spectrum: fundicidal adainst			
Micafungin	2005	1292	Fundicidal	Intravenous only	Low toxicity	most <i>Candida</i> spp. and fungistatic against <i>Aspergillus</i> spp.			
Anidulafungin	2006	1140	. angloidal						
Enfumafungin	N/A[s2]	708		Oral only					