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Teaser: High-throughput screening of small molecules, which enables rapid hit identification 16

and increases hit rate, is particularly helpful in the pursuit of ideal antifungal for Candida17

infections.18
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1
Candida infections have created a great burden on the public healthcare sector. The 2

situation is worsened by recent epidemiological changes. Furthermore, the current 3

arsenal of antifungal agents is limited and associated with undesirable drawbacks. 4

Therefore, new antifungal agents that surpass the existing ones are urgently needed. 5

High-throughput screening of small molecule libraries enables rapid hit identification 6

and, possibly, increases hit rate. Moreover, the identified hits could be associated with 7

unrecognized or multiple drug targets, which would provide novel insights into the 8

biological processes of the pathogen. Hence, it is proposed that high-throughput 9

screening of small molecules is particularly important in the pursuit of the ideal 10

antifungal agents for Candida infections.11

12
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1

Introduction2

Candida, the major fungal pathogen in humans, is the fourth-most prevalent [s2]pathogen of 3

nosocomial bloodstream infections surpassing most bacterial infections [1]. Candida4

infections are opportunistic and are, therefore, common among immunocompromised 5

populations, such as neutropenic patients, patients under intensive care, organ-transplant 6

recipients, patients with underlying malignancy, HIV patients and patients with uncontrolled 7

diabetes. Invasive candidiasis is associated with significant mortality [2,3] and is, therefore, a 8

serious threat to public health around the globe [4–6]. The recent shifting of the paradigm of 9

Candida infections further complicates the situation and highlights the need for novel classes 10

of antifungal agents, especially those with new mechanisms of action [7,8]. However, the 11

progress of antifungal drug discovery has been lagging. The last first-in-class antifungal drug, 12

caspofungin, was approved more than a decade ago in 2001 [9]. One of the reasons for the 13

slow progress is the eukaryotic nature of fungi, which carry substantial similarities to human 14

cells limiting the number of fungal-specific drug targets [10–12]. To accelerate the progress 15

of antifungal drug discovery, the hit identification rate has to be significantly increased. 16

High-throughput screening is a powerful tool that incorporates synthetic chemistry and 17

combinatorial chemistry to provide rich sources of small molecules of diverse structure to 18

increase the hit rate for discovering novel antimicrobial lead compounds.19

The need for novel antifungal agents20

The recent changes in the epidemiology of Candida infections have pressured the healthcare 21

sector and highlighted an urgent need for novel classes of antifungal agents with different 22

chemical structures and cellular targets [7,8]. These issues include the increased incidence of 23
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invasive candidiasis, the shifting species distribution of Candida infections, the emergence of 1

antifungal resistance and the limitation of the current arsenal of antifungal agents.2

Increased incidence of invasive candidiasis3

The secular trends of incidence of Candida infections, in particular Candida bloodstream 4

infections, have been increasing over the past few decades across the globe [13–22] (Table 5

1). This could be attributed to the increased number of immunocompromised patients due to 6

the growing widespread use of medical procedures, for instance the use of 7

immunosuppressive drugs and broad-spectrum antibiotics, as well as invasive surgical 8

procedures such as solid organ transplantation [23].9

Shifting species distribution of Candida infections10

Candida albicans, the predominant disease-causing Candida species, possesses various 11

virulence factors that render it the most pathogenic of all the Candida species. Recently, the 12

continued increase in invasive candidiasis caused by non-albicans Candida (NAC), such as 13

Candida dubliniensis, Candida glabrata, Candida tropicalis, Candida krusei and Candida14

parapsilosis, has been recognized [5,24–28]. This could be partly caused by the improvement 15

in the sensitivity of species identification methods, as well as the indiscriminate use of 16

antifungals [29]. Emergence of NAC raised a concern because they are often associated with 17

antifungal resistance and higher mortality [30,31]. For instance, C. glabrata and C. krusei are 18

intrinsically less susceptible to fluconazole [28], and lower susceptibility for amphotericin B 19

and 5-fluorocytosine has also been observed in C. krusei [32].20

Emergence of antifungal resistance21

The emergence of antifungal resistance, which is one of the major reasons for antifungal 22

treatment failure, has been regarded as a significant clinical problem [33]. The increase in the 23



Page 7 of 40

Acc
ep

te
d 

M
an

us
cr

ip
t

7

numbers of high-risk populations has raised the frequency of prophylactic treatment. 1

Prolonged exposure to the existing antifungals increases the selection pressure and, as a 2

result, drug resistance has become increasingly common from originally susceptible species 3

[34,35]. This phenomenon further restricts the available choice of treatment from the limited 4

arsenal of antifungal agents. 5

Current antifungal agents and their limitations6

Up until 2012, existing antifungal agents for systemic candidiasis were mainly divided into 7

four classes: polyenes, azoles, echinocandins and pyrimidines [8] (Table 2). The classes of 8

antifungal agents refer to their distinct mode of action. In addition to the limited number of 9

available antifungal agents, there exist limitations for each antifungal class.10
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Polyenes. The first antifungal, nystatin, isolated from Streptomyces noursei, was discovered 1

in 1950 through screening various cultures of actinomycetes from soil for antifungal activity 2

[36]. However, owing to its toxicity when injected intravenously and the lack of oral 3

bioavailability, nystatin remains a topical antifungal agent [37]. Amphotericin B was 4

developed in 1953 from a screening of Streptomyces cultures for antifungal activity [38]. 5

Amphotericin B binds directly to ergosterol, the component of the fungal plasma membrane, 6

and thereby causes the leakage of intracellular potassium and magnesium [39]. It is by far the 7

most potent antifungal agent for systemic candidiasis, and has been regarded as the ‘gold 8

standard’ [40]. Amphotericin B has a broad spectrum and fast onset of activity [41,42]. 9

However, it is associated with adverse nephrotoxicity that is cumulative and might not be 10

reversible [43]. Enhanced versions of amphotericin B have been developed by lipid 11

formulations to allow various administration routes and reduced toxicity [44,45].12

Pyrimidines. Flucytosine (or 5-fluorocytosine) is a synthetic compound, which was originally13

synthesized in 1957 as a potential antitumor drug; however, its antifungal activity was later 14

discovered and it was used to treat candidiasis from 1968 [46,47]. Flucytosine is converted to 15

5-fluorouracil in fungal cells, which then inhibits DNA and RNA synthesis. Because its target 16

is absent in mammalian cells, flucytosine is fungal-specific and has a narrow spectrum of 17

activity [46,48]. Flucytosine is very often used in combination with amphotericin B and 18

azoles rather than monotherapy because of the high prevalence of intrinsic and acquired 19

resistance observed in Candida spp. [49,50].20
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Azoles. Antifungal activity of azoles was first described in 1944 [51]; however, the first azole 1

antifungal, clotrimazole (topical antifungal), was not developed until 1958 [52]. An azole is a 2

fungistatic antifungal agent that depletes ergosterol in the fungal cell membrane by inhibiting 3

the enzyme 14α-demethylase [53]. Various derivatives have been developed since to 4

accommodate the growing burden of fungal diseases in the populace. These subclasses 5

include imidazoles and triazoles [52,54]. Imidazoles, except ketoconazole, are ineffective 6

systemically and are associated with toxicity. Therefore, imidazoles have been replaced by 7

triazoles as a first-line treatment of systemic candidiasis. Second-generation triazoles, such as 8

voriconazole, have a broader spectrum of activity than the first-generation triazoles 9

(fluconazole and itraconazole) [55]. Despite being the first choice of therapy, popular usage 10

and fungistatic properties of triazoles have led to a high incidence of resistance. Additionally, 11

azoles are slower regarding onset of action than amphotericin B [56].12

Echinocandins. Echinocandins are the latest class of antifungal and inhibit the synthesis of β-13

1,3-glucan, an important component in the fungal cell wall [57]. The first member in this 14

class, caspofungin, was approved by the FDA in 2001, two decades after the introduction of 15

the preceding antifungal class, the azoles, in 1981 [9]. Echinocandins were discovered from 16

the screening of natural products produced by fungal fermentation for antifungal activity in 17

1974 [58]. Similar to polyenes, echinocandins are fungicidal and fast-acting. Exposure to18

caspofungin for just five minutes causes the uptake of propidium iodide in Candida [42]. 19

This antifungal class has a narrow spectrum of activity because it is only active against 20

Candida spp. and Aspergillus spp. [57]. Besides having a narrow spectrum, echinocandins 21

have to be administered intravenously as a result of poor oral bioavailability [57]. However, 22

an orally bioavailable analog (enfumafungin) is currently under development [59].23

The ideal antifungal [s3]agent for Candida infections24
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Deducing from the pros and cons of the existing antifungals discussed above, it is tempting to 1

speculate the properties of an ‘ideal’ antifungal agent for Candida infections. Although such 2

antifungal agents might be unattainable in reality, it could serve as a guideline for designing 3

newer drug discovery and development programs to seek optimal antifungals. A promising 4

lead compound should display properties close to the ideal antifungal agent in the preclinical 5

development stage, and this would also be crucial in increasing the success rate in clinical 6

trials. The ideal antifungal agent, besides potent antifungal activity, should possess several 7

properties as outlined below [60,61] (Table 3). An ideal antifungal agent for Candida8

infections should have a broad spectrum of activity (within the Candida genus), no 9

resistance, an ideal pharmacokinetic and pharmacodynamic profile and no toxicity or side 10

effects.11

Broad spectrum of activity within the Candida genus12

Broad-spectrum antifungal agents, which are effective against a wide range of species in the 13

fungus kingdom, are traditionally preferred, because this allows empirical therapy and the 14

start of treatment before the species identification of the responsible pathogen [62]. Recently, 15

it has been suggested that molecules with narrow-spectrum antifungal activity could be of 16

significant value and should not be neglected [63,64]. Narrow-spectrum antifungals that are 17

effective against certain fungal genera would enable the rational use of antifungals and,18

therefore, would slow the emergence of resistance strains. Various sensitive diagnostic 19

methods are now available that allow rapid species identification from blood cultures to 20

couple with the use of narrow-spectrum antifungals [65,66]. Therefore, an ideal antifungal 21

agent for Candida infections should possess a broad spectrum of activity within the Candida22

genus.23
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Absence of resistance1

The ideal antifungal agent should not associate with intrinsic or acquired resistance. Intrinsic 2

resistance can be easily avoided by screening the lead compounds with all the Candida3

species but acquired resistance is an inevitable outcome of evolution; however, its rate of 4

development is regulated by several artificial factors and can be slowed down. First, because5

fungistatic antifungal agents cannot completely eradicate the pathogens, survivors are 6

selected for after exposure and resistance then arises. Complete elimination of the pathogens 7

is clearly a safer option; therefore a fungicidal drug is preferred. Furthermore, drugs with 8

multiple targets were associated with higher toxicity and were not preferred in the past;9

however, drugs that strongly inhibit a single step in a pathway are likely to promote selective 10

pressure and resistance development [67]. Therefore, to minimize the emergence of acquired 11

drug resistance, the ideal antifungal agent should be fungicidal and possess multiple cellular 12

drug targets.13

Ideal pharmacokinetics profile14

The four determinants of pharmacokinetics are absorption, distribution, metabolism and 15

excretion (ADME) [68]. The ideal antifungal agent should have adequate bioavailability via 16

intravenous and oral routes of administration to ensure flexibility. Amphotericin B and 17

caspofungin are administered intravenously only, as a result of poor oral bioavailability [57]. 18

According to Lipinski’s Rule of Five, it is estimated that membrane permeability and oral 19

bioavailability can be achieved by molecules with not more than five hydrogen-bond donors 20

and ten hydrogen-bond acceptors, LogP <5 (a quantitation of the compound’s lipophilicity) 21

and molecular weight <500 Da [69,70]. Synthetic small molecule compounds have an 22

advantage over natural products here, because the molecular properties of natural products 23

cannot be controlled and the Rule of Five is often violated.24
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The ideal antifungal for systemic candidiasis should be well distributed to various organs and 1

exhibit a long plasma half-life to maximize and prolong its effect. Invasive candidiasis is 2

often seen deep in the organs of the patients; therefore good tissue penetration of the drugs is 3

necessary. For example, flucytosine diffuses well into the tissue [46].4

The metabolites of the ideal antifungal should not be toxic. Therefore, the pathway of 5

metabolism has to be investigated. Imidazoles are known for severe drug–drug interactions 6

by inhibiting cytochrome P450 enzymes [71]. The cytochrome P450 superfamily is essential 7

for catalyzing drug metabolism, and the inhibition of such enzymes will result in 8

accumulation of the drugs, leading to toxicity [72]. 9

Antifungal drug discovery10

Drug discovery is a lengthy process and it is estimated to take 14 years for the launching of a 11

new systemic antibiotic onto the market after its initial discovery from high-throughput 12

screening [73]. Preclinical drug discovery and development is the most challenging part that13

requires an extended period of time. Despite much effort invested in drug discovery and 14

development, only 20% of all projects proceed to clinical trial, and just 10% of these 15

successfully pass through the latter hurdle [74]. These failures are mainly biological (poorly 16

validated hits) and/or chemical (undesired chemical properties that lead to toxicity) [74].17

Traditionally, antimicrobial drug discovery is based on phenotype-based screening assays of 18

natural products, the so-called ‘classical pharmacology’ or ‘forward pharmacology’ [75,76]. 19

It refers to the screening of small molecules that could result in a certain phenotype, for 20

example inhibition of growth or cell death. This approach is, however, considered to be 21

relatively irrational.22
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During the genomic era, with the advances of recombinant technology and synthetic organic 1

chemistry, the target-based approach (also called reverse pharmacology or rational drug 2

design) has become the dominant paradigm [64,77]. The term target-based approach refers to 3

the rational and careful design of a predefined drug target (i.e. a specific gene or protein of 4

interest). It is then followed by either de novo synthesis of chemical compounds or the 5

screening of a library of natural products, as well as synthetic small molecules that effectively 6

interact with the predefined drug target. Interestingly, it has been shown that the classical 7

phenotype-based approach still produces more first-in-class small molecule drugs than this 8

seemingly more rational target-based approach [78]. The two main reasons for this could be: 9

(i) the inadequate understanding of the mechanisms of disease, which might lead to the poor 10

validation of the predefined drug target that the target-based approach relies heavily on [77]; 11

(ii) other possible binding sites might be ignored by the de novo synthesis of lead compounds, 12

which would lead to undesirable toxicity that is only discovered in later stages of drug 13

development [79]. Moreover, the target-based approach cannot accommodate complex 14

molecular pathways that involve several genes or proteins. The limitations of the target-based 15

approach have led to a search for alternative and optimal strategies in the post-genomic era. 16

High-throughput screening of small molecules with antifungal activity17

Phenotype-based and target-based drug discovery approaches involve the screening of small 18

molecule libraries. It could be hypothesized that, given a large enough number of small 19

molecules in the library for screening, more hits can be identified. Coupled with modern 20

high-throughput screening technology, rapid hit identification is enabled and the hit rate is 21

likely to increase significantly. Subsequently, with a careful hit-to-lead process and lead 22

optimization, eventually the ideal antifungal agent will be discovered. In other words, the 23
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focus of antifungal drug discovery should be placed on the quantity and quality of the small 1

molecules from chemical libraries and the translation of hit-to-lead and lead-to-drug [80].2

High-throughput screening of small molecules is advantageous to antifungal drug discovery.3

(i) The utilization of small molecules can bridge drug discovery with chemical biology to 4

study biological processes of the pathogens. (ii) Synthetic organic chemistry and 5

combinatorial chemistry have allowed the rapid and cost-effective generation of a large 6

amount of compounds with diverse structures [76,81]. (iii) Most importantly, high-7

throughput phenotype-based screening of small molecules with antifungal activity could 8

allow the identification of hits that target multiple proteins [82].9

Quantity and quality of small molecules10

Small molecules can be defined very differently according to application. In antimicrobial 11

drug discovery, small molecules are defined as non-peptide organic compounds that are 12

synthetic or obtained from natural product extracts and are of low molecular weight (~200–13

500 Da) according to Lipinski’s rule [69], thus binding to biopolymers such as proteins and 14

nucleic acids and altering their normal functions [82–85]. Small molecules are also used in 15

these disciplines to probe biological pathways and gain new insights into unclear mechanisms 16

[85,86]. Academic investigators have an advantage over the developers from the 17

pharmaceutical companies by acquiring and coupling the first-hand knowledge from basic 18

research with drug development [80,87]. The data of small molecules obtained from probing 19

assays, including chemical structure and predicted solubility, are now stored in open 20

databases, such as ChemBank, PubChem (currently contains information of over 700 000 21

compounds) [88,89] and ChemDB (contains over 4 million small molecules) [90].22

Theoretically, there is an estimation of up to 1060 different chemical structures in the 23

chemical space [91,92]. Although not all of these theoretical structures can be successfully 24
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synthesized, it is suggested that an ideal small molecule library should contain all the small 1

molecules that can be synthesized, fulfill the Rule of Five and interact with biopolymers [80]. 2

There are two main sources of small molecules: commercial libraries and in-house libraries. 3

There are many commercially and publicly available small molecule libraries that are made 4

up of many thousands of existing drugs, extracts of natural products and bioactive 5

compounds of known or unknown action. These libraries provide a convenient source of 6

ready-to-use small molecules. To fit different screening assays, in-house small molecule 7

libraries can be generated, and this should be done objectively in a diversity-oriented or 8

target-oriented manner [93]. A diversity-oriented small molecule library comprises 9

compounds that are diverse in structure and, thus, increases the probability that a lead 10

compound could be discovered. A target-oriented small molecule library contains analogs 11

that are built around a specific structure, called the scaffold, to optimize the binding to the 12

target [94]. The quality of small molecule libraries, which governs the successful rate of hit 13

identification, is achieved by the purity or lead-like characteristics of the small molecules 14

[95]. 15

Hit-to-lead and lead optimization16

Hits are defined as the positive output of a screen having sufficient potency and are of known 17

structure. Some of the hits identified from the primary screening can be false positives. 18

Therefore, a secondary screen (hit validation) is required for validation to ensure that the 19

resulting phenotype was caused by the responsible small molecule. 20

Leads are defined as the molecules, on top of the potency, with sufficient potential (e.g. 21

pharmacokinetics, specificity, patentability) to be developed as drugs [96]. The lead 22

compounds should be tested in an effective way to eliminate the ones that are unlikely to be 23
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developed early in the development process. The lead compounds can be optimized by 1

chemical modifications to increase potency and to ensure in vivo efficacy [80].2

Although the discovery of hits is accelerated by high-throughput screening, there seems to be 3

a big gap in the bridging of hits to lead compounds. About 60% of the small molecule drug 4

discovery projects have failed as a result of poor lead optimization (because the lead does not 5

possess drug-like properties) [74]. In addition, there seems to be a lack of medicinal chemists 6

to translate the promising hits into leads [97]. Therefore, it has been suggested that the future 7

of drug discovery should be focused on assessing the ‘therapeutic utilities’ of the leads [98]. 8

Animal models9

Animal models have contributed significantly to the study of the pathogenicity of Candida 10

and new therapies [99,100]. In vivo models for systemic and oral candidiasis are well 11

established [101,102]. Infection is established in systemic candidiasis murine models by 12

injecting the fungal cells intravenously, and the mice eventually die of progressive sepsis 13

[103]. Yeast cells are mostly retrieved from the kidneys [104]. Although neutropenia is often 14

induced in the murine model to mimic the immune status of the high-risk 15

immunocompromised population, systemic candidiasis can also be induced in non-16

neutropenic mice.17

A vast number of new drug candidates fail in the in vivo studies owing to undesirable toxicity 18

and/or poor pharmacokinetics. Therefore, the in vivo efficacy of a lead compound should be 19

tested thoroughly in the early stages of antifungal drug development. It is important to note 20

that Candida is not a constituent of the normal microbiota of mice [99]. Also, there exist21

variations between the immune systems of mice and the human host [105]. Therefore, the 22

outcome of a drug could differ in mice and in humans. This difference can be best 23

demonstrated by triazole, which is metabolized faster in mice than in humans by cytochrome 24
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P450, thereby increasing the in vivo efficacy of azole in mice [99]. Importantly, in vitro 1

minimum inhibitory concentration does not correlate with the outcome of the therapy. A 2

detailed pharmacodynamics–pharmacokinetics profile is therefore needed for downstream 3

clinical trials.4

Potential new drug targets5

One of the reasons for the slow progress in this field is the eukaryotic nature of fungi. This is 6

a major hurdle in development of antifungals because they carry substantial similarities to 7

human cells. Therefore, finding a suitable fungal-specific drug target is not a trivial task.8

Cell wall9

The cell wall has remained an attractive area of study as an antifungal drug target, because it 10

comprises a number of key molecules that are not present in humans. The cell wall is an 11

essential Candida component and is the first contact site of the pathogen with the host [106]. 12

The C. albicans cell wall is rich in carbohydrate, and mainly comprises glucose (glucans), N-13

acetyl-D-glucosamine (chitin) and mannose (mannan) [107]. Beta-glucan is the most 14

abundant constituent, followed by mannan and chitin [107]. The inner layer is enriched with 15

chitin and the outer layer enriched with mannoprotein [108]. Two classes of antifungal 16

agents, echinocandins and nikkomycin Z[s4], target the fungal cell wall. Echinocandins target 17

the β-1,3-glucan biosynthesis and nikkomycin Z targets chitin synthesis [109].18

Targeting virulence factors19

Although none of the current antifungal drugs target virulence factors of the yeasts, targeting 20

virulence factors as therapeutic options has been proposed as a new paradigm for antifungal21

drug discovery [11,110,111]. This is a compelling paradigm because virulence-inhibiting 22

small molecules would exert much lower selective pressure and, hence, lead to less 23
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resistance, as compared with growth inhibitory small molecules [11,110]. Moreover, 1

virulence factors are usually pathogen-specific and, therefore, these small molecules would 2

be narrow spectrum with only a few side effects [11,110,112]. Yet, there are some 3

disadvantages that render this paradigm arguably controversial. For example, nonfilamentous4

C. albicans mutants were shown to be avirulent in a mouse infection model [113]; therefore, 5

it is hypothesized that disabling hyphal formation, one of the major virulence factors of C. 6

albicans, would result in attenuation of virulence in C. albicans. As a result, small molecules 7

that inhibit hyphal formation would be tremendously narrow spectrum and would only be 8

effective for two Candida species that are able to form true hyphae: C. albicans and C. 9

dubliniensis [114]. Although C. albicans is the predominant species of Candida infections, as 10

discussed above the incidence of infections caused by non-albicans species is on the rise. 11

Different virulence factors can be required by Candida depending on the type and site of 12

infections [114,115]. For example, the deletion of the gene CHK1 results in impaired hyphal 13

formation and attenuated virulence in a systemic candidiasis mouse model [116]; but, 14

discouragingly, it does not affect the virulence in a vaginal candidiasis (mucosal candidiasis) 15

rat model [117]. Therefore, it is suggested that some virulence-inhibiting small molecules 16

could possibly be limited to certain species and type of or site of infection.17

By contrast, one of the most important questions in this context is whether virulence-18

inhibiting small molecule inhibitors will be effective in immunocompromised patients [110], 19

who constitute the major group of the population prone to Candida infections. In vivo studies 20

are awaited to examine the consequences of the presence of avirulent pathogens in the host.21

Therefore, virulence-inhibiting drugs might only be able to act as a prophylactic or an 22

adjuvant therapy [118], or as a pretreatment for medical devices that are at high risk of 23

Candida colonization.24
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Novel small molecule antifungals1

A literature search was performed to look for novel small molecule antifungals (excluding 2

new derivatives of existing antifungal agents). A handful of small molecule antifungals were 3

identified and their discovery approach, antifungal activities, spectrum of activity, 4

mechanism of action and their latest development are reviewed and classified below.5

However, these small molecules were evaluated mainly for their in vitro inhibition of growth, 6

virulence factors, such as yeast-to-hypha transition, or biofilm formation. In vivo evaluation 7

of these molecules is, at best, scant.8

Virulence processes9

Yeast-to-hypha transition- and biofilm-inhibiting small molecules. Toenjes et al. have 10

studied a ChemBridge small molecule library that contained 72 molecules using a 11

microplate-based morphological screening assay [119]. These researchers noted that seven of 12

the small molecules (five noncytotoxic small molecule inhibitors and two structural 13

derivatives of unknown nature) inhibited yeast-to-hypha transition without affecting normal 14

budded growth, possibly by affecting the expression of hyphal-specific gene HWP1 [119].15

In another study, a microplate-based morphological screening assay was performed to find 16

fungicidal small molecules from the BIOMOL Institute of Chemistry and Cell Biology 17

(ICCB) Known Bioactives collection with 480 small molecules with known cellular targets 18

and processes [120]. The screening revealed 53 molecules that were cytotoxic to C. albicans, 19

and 16 that were yeast-to-hypha inhibitors.20

By investigating the efficacies of 21 of the 23 yeast-to-hypha small molecules from the above 21

studies (excluding the two structural derivatives), it was suggested that they either act on the 22

Efg1[s5] or Cph1 pathways [121] that govern the filamentation of C. albicans [122].23
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Biofilm inhibition of the 23 yeast-to-hypha-inhibiting small molecules from the two studies 1

above (including the structural derivatives) was examined and three (ETYA, CGP-37157, 2

buhytrinA) were found to be biofilm inhibitors [123]. ETYA, an inhibitor of eicosanoid 3

synthesis, was the most potent out of the three, followed by CGP-37157, which affects 4

calcium homeostasis, and buhytrinA, a novel molecule with no known target.5

Nineteen biofilm-inhibiting small molecules. More recently, 19 C. albicans biofilm 6

inhibitors (effective alone or in synergy with clotrimazole) were discovered by screening 120 7

000 molecules from the NIH Molecular Libraries Small Molecule Repository [124]. The 8

underlying mechanism of action of these small molecules is not known.9

Shearinines D and E: biofilm inhibitors. Isolated from Penicillium spp., shearinines D and E 10

suppress C. albicans biofilm formation by blocking yeast-to-hypha transition. These 11

molecules also enhance the antibiofilm activity of amphotericin B [125].12

Small molecules that target cell wall and/or cell membrane13

HWY-289. HWY-289 was discovered from the screening of 515 synthetic or semi-synthetic 14

protoberberine derivatives and displayed the most potent anti-Candida activity with no 15

toxicity in rats [126]. Protoberberine is an extract from a Korean medicinal plant that was 16

shown to inhibit the growth of C. albicans by inhibiting ergosterol and chitin synthesis [127]. 17

Multiple molecular targets of HWY-289 were reported, which included sterol 24-methyl 18

transferase, acyl CoA, [s6]sterol acyltransferase and chitin synthase isozymes [128]. This 19

extract also inhibited yeast-to-hypha transition by disrupting the prohyphal RAS [s7]signaling 20

[129].21

Pyridobenzimidazole derivatives. D75-4590 was discovered from a high-throughput cell-22

based screening of a chemical library of synthetic compounds that target β-1,6-glucan 23



Page 21 of 40

Acc
ep

te
d 

M
an

us
cr

ip
t

21

synthesis [130]. However, owing to its unsatisfactory physiochemical profile, D75-4590 1

lacks significant efficacy in animal models [130]. Derivatives of D75-4590 (D11-2040 and 2

D21-6076) are inhibitors of β-1,6-glucan synthesis with in vivo efficacy [131]. D21-6076 also 3

inhibits hyphal elongation and adherence to mammalian cells [131]. D11-2040 inhibits 4

vegetative growth and hyphal development as a single drug or in synergy with caspofungin or 5

fluconazole [132].6

Tamoxifen and structural analogs. A library with 4505 compounds of known biological 7

activity and natural products was screened in a microplate-based setting for cell lysis inducers 8

identifying tamoxifen and its structural analog. These agents disrupt the cell wall integrity 9

possibly by interfering with calmodulin [133,134].10

E1210. A small molecule, BIQ, was discovered from a high-throughput cell-based screening 11

of a chemical library for cell wall glycosylphosphatidylinositol (GPI) biosynthesis inhibitors 12

that target the GWT1[s8] protein [135]. Following pharmacological optimization of the hit, 13

E1210 was discovered as the potential drug candidate [136]. E1210 is a fungistatic small 14

molecule with potent activity against most Candida species except C. krusei [136]. The low 15

cytotoxicity of E1210 against a primary human kidney cell line was comparable to that of 16

fluconazole (IC50 >32 µg/ml) [136]. Through inhibition of GPI biosynthesis, E1210 also 17

inhibits germ-tube formation, adherence and biofilm formation of Candida [137]. In vivo, 18

E1210 is effective in mouse models of oropharyngeal and disseminated candidiasis via oral 19

administration [138].20

SCH A, SCH B, SCH C and SCH D. A high-throughput screening was performed to look for 21

antifungal small molecules. The mechanistic studies revealed that the primary hits were β-22

1,3-D-glucan inhibitors [139]. In addition, the identified molecules were also effective in 23

treating disseminated C. glabrata infection in a mouse model [139].24
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Aminopiperidine derivatives. Aminopiperidine derivatives, namely compound 1a and 1b[s9], 1

have been shown to inhibit C-14 reduction in ergosterol synthesis [140,141]. These 2

compounds are fungistatic in vitro and extend the survival of a murine model with 3

disseminated C. albicans infection.4

Novel mechanism of action5

UK-118005. Two synthetic small molecules, UK-118005 and its structural analog ML-60218, 6

are broad-spectrum antifungal compounds that inhibit RNA polymerase (Pol) III in yeasts 7

and human cells [142].8

ECC145 and ECC188. ECC145 and ECC188 were identified from a high-throughput 9

screening of a synthetic small molecule library (ChemBridge) by fitness test on OLE1-10

deleted C. albicans. The gene OLE1 encodes the fungal fatty acid Δ-9 desaturase. ECC145 11

and ECC188 inhibit the unsaturated fatty acid synthesis and hyphal development [143]. 12

OLE1 is a potential antifungal target because it is essential for virulence.13

MGCD290. MGCD290, currently in Phase II clinical trials, is a novel oral small molecule 14

that inhibits the Hos2 fungal histone deacetylase (HDAC). MGCD290 enhances the activity 15

and broadens the antifungal spectrum of azoles. When administrated to the systemic 16

candidiasis mouse model together with fluconazole the survival of the mice increased 17

[144,145].18

Zinc homeostasis modulators. In this target-based drug discovery, a small molecule library 19

was screened in a Saccharomyces cerevisiae model for fungal zinc homeostasis modulators 20

[146]. The library contained 2000 small molecules that had been preselected to cover a wide 21

range of biological processes and structures. The 80 small molecules that were found to affect 22
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the zinc homeostasis in the S. cerevisiae screening model were further tested on C. albicans, 1

and three were shown to be strong zinc homeostasis modulators.2

Unknown mechanism3

A novel antifungal, SM21, was identified by high-throughput phenotype-based screening of a 4

library of 50 240 small molecules for growth inhibitors and hyphal formation inhibitors of C. 5

albicans by our group [147]. Subsequent assays revealed that SM21 is fungicidal against a 6

wide range of Candida species. In vivo, SM21 is able to treat systemic and oral candidiasis in 7

murine models. The exact mechanism of action of SM21 is still to be elucidated.8

Concluding remarks9

The serious threat that Candida infections are posing to public health urgently requires rapid 10

and effective screening programs for antifungal drug discovery. The drawbacks of the current 11

limited arsenal of antifungal agents have prompted the search for the ideal antifungal agent12

targeting Candida infections. High-throughput screening technology, coupled with synthetic 13

chemistry and combinatorial chemistry, has been shown to be a promising approach in 14

providing rich sources of small molecules of diverse structures and accelerating the hit 15

discovery rate and significantly benefitting downstream drug development.16
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Table 1. The change in incidence of Candida bloodstream infections in various parts of 1

the world from 1980 to 20092

Area Publication 
year

Study period Type of population Trend or change 
in % incidence

Refs

Spain 2012 2000–2009 General hospital Increased [13]

Taiwan 2011 2000–2008 Tertiary medical center Increased [14]

Hong Kong 2009 1998–2006 Intensive care unit +66% [15]

Denmark 2008 2004–2006 Multiple general 
hospitals covering 
about 65% of Danish 
population

+17% [16]

United States 2008 2000–2005 General populations +52% [17]

Switzerland 2003 1991–2000 General hospitals 
covering about 80% of 
Swiss population

Unchanged [18]

Canada 2002 1992–1996 Three general hospitals +155% [19]

Iceland 2002 1980–1999 General populations +250% [20]

Norway 1998 1991–1996 General hospitals Unchanged [21]

Taiwan 1997 1981–1993 Single general hospital Increased [22]

3

4
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Table 3. Properties of an ideal antifungal agent for Candida infections1

Ideal antifungal agent
Potent antifungal property
Broad spectrum of activity within the Candida genus
Ease of administration
No association with intrinsic or acquired resistance
Fungicidal
Nontoxic
No side effects
No drug–drug interactions

2

3
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Table 2. Timeline of discovery of new and current major antifungals1

Antifungal Year of FDA 
approval

Molecular 
weight (g/mol)

Fungicidal
and/or 
fungistatic

Route of 
administration

Advantage(s) Disadvantage(s)

Polyene

Nystatin 1954 926
Fungicidal 
and
fungistatic

Oral and topical Broad spectrum
No intravenous injectable formulation 
owing to toxicity profile for 
mucocutaneous fungal infections only

Amphotericin B 1958 924 High potency, rapid onset of 
action, broad spectrum

Nephrotoxicity

Amphotericin B lipid 
complex

1995 924

Amphotericin B 
cholesteryl sulfate 1996 924

Liposomal 
amphotericin B 1997 924

Fungicidal Intravenous only
Less toxic than conventional 
amphotericin B

Cost

Pyrimidine

Flucytosine 1972 129 Fungistatic Oral and
intravenous

Minor side effects, good 
tissue distribution

Narrow spectrum

Imidazole

Ketoconazole 1981 531 Fungistatic Oral and
intravenous

N/A[s1] Toxicity

Triazole

Fluconazole 1990 306 Minimal toxicity High rates of resistance, narrow 
spectrum of activity

Itraconazole 1992 705 Low bioavailability 
Voriconazole 2002 349

Oral and
intravenous

Class-related side effects
Posaconazole 2006 700

Fungistatic

Oral only

Extended spectrum more 
than first generation

Cost

Echinocandin
Caspofungin 2001 1213 
Micafungin 2005 1292 
Anidulafungin 2006 1140 

Intravenous only

Enfumafungin N/A[s2] 708

Fungicidal

Oral only

Low toxicity
Narrow spectrum: fungicidal against 
most Candida spp. and fungistatic 
against Aspergillus spp.




