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Abstract

If a graph G decomposes into edge-disjoint 4-cycles, then each vertex of G has
even degree and 4 divides the number of edges in G. It is shown that these obvious
necessary conditions are also sufficient when G is any simple graph having minimum
degree at least (3132 + on(1))n, where n is the number of vertices in G. This improves
the bound given by Gustavsson (1991), who showed (as part of a more general result)
sufficiency for simple graphs with minimum degree at least (1−10−94+on(1))n. On the
other hand, it is known that for arbitrarily large values of n there exist simple graphs
satisfying the obvious necessary conditions, having n vertices and minimum degree
3
5n− 1, but having no decomposition into edge-disjoint 4-cycles. We also show that if
G is a bipartite simple graph with n vertices in each part, then the obvious necessary
conditions for G to decompose into 4-cycles are sufficient when G has minimum degree
at least (3132 + on(1))n.

1 Introduction

There are several long-standing open conjectures concerning the existence of decompositions
of graphs with sufficiently high minimum degree into edge-disjoint subgraphs isomorphic to
a given graph. These include the 1-factorisation conjecture and two conjectures of Nash-
Williams concerning decompositions into Hamilton cycles and decompositions into 3-cycles.
This paper addresses the problem of decomposing graphs with high minimum degree into
4-cycles, see Theorem 1.

A decomposition of a graph G is a set {G1, G2, . . . , Gt} of subgraphs of G such that
E(Gi)∩E(Gj) = ∅ for i 6= j and E(G1)∪E(G2)∪ · · ·E(Gt) = E(G). If each subgraph in a
decomposition of G is isomorphic to a fixed graph H, then we say that G decomposes into
H. Obvious necessary conditions for G to decompose into H are E(H) divides E(G) and
the greatest common divisor of the degrees of the vertices in H divides the degree of each
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vertex in G. If these two conditions hold, then we say that G is H-admissible. Determining
whether a graph G decomposes into a graph H is known to be NP-complete in general [9].

All graphs considered here are simple and without loops. The number of vertices in a
graph is called its order and the number of edges in a graph is called its size. The degree
in G of a vertex x ∈ V (G) is denoted by degG(x). The minimum and maximum degree of
a graph G are denoted by δ(G) and ∆(G) respectively. A graph is even if each vertex has
even degree. A cycle of order m is called an m-cycle and denoted by Cm, and a complete
graph of order n is denoted by Kn.

Wilson [15] has shown that for any given graph H, there is a constant N(H) such that
every H-admissible complete graph of order greater than N(H) decomposes into H. Gus-
tavsson [13] has generalised Wilson’s result by showing that for any given graph H, there is
a constant N(H) and a positive constant γ(H) such that every H-admissible graph of order
greater than N(H) and with minimum degree at least (1− γ)n decomposes into H. In Gus-
tavsson’s result, the constant N(H) is extremely large and the constant γ(H) is extremely
small. For example, γ(K3) ≈ 10−24. Gustavsson’s result has been used to prove several
results on decompositions of graphs with high minimum degree. These include decomposi-
tions into closed trails of arbitrary specified lengths [1] and decompositions into subgraphs
isomorphic to a given list of graphs [4].

A remarkable result by Yuster [16] gives an asymptotically sharp lower bound on δ(G)
in the case H is bipartite graph with δ(H) = 1. Specifically, it is shown in [16] that if H is
any bipartite graph with δ(H) = 1, then every H-admissible graph of order n with minimum
degree at least (1

2
+on(1))n decomposes into H. It is shown in [17] that if H is any connected

graph with at least 3 vertices, then there exist H-admissible graphs of arbitrarily large order
n with minimum degree n

2
− 2 which do not decompose into H, and thus the bound of

(1
2

+ on(1))n is asymptotically sharp. Yuster’s result does not hold if the requirement that
δ(H) = 1 is removed. Yuster [16] gives examples, which are attributed to Winkler and Kahn,
of C4-admissible graphs of arbitrarily large order n and minimum degree 3

5
n − 1 that have

no decomposition into C4.
For decompositions into C3, a similar construction to that mentioned in the previous

paragraph shows that minimum degree of at least 3
4
n is necessary, and a conjecture of

Nash-Williams states that every C3-admissible graph of order n with this minimum degree
decomposes into C3. Apart from Gustavsson’s result, very little is known on this conjecture.
Colbourn and Rosa [7] have shown that C3-admissible graphs of order n > 9 with minimum
degree at least n− 3 decompose into C3. Except for extremely large values of n covered by
Gustavsson’s result, the problem is still open even for minimum degree n− 4.

Given that so little is known on the Nash-Williams conjecture concerning decompositions
into C3, and given that C4 is the smallest graph not covered by Yuster’s result, it is natural
to ask about decompositions into C4. This brings us to our main result.

Theorem 1. If G is a simple C4-admissible graph with n vertices and minimum degree at
least (31

32
+ on(1))n, then G decomposes into C4.

Our precise lower bound on minimum degree is given in the proof of Theorem 1, see (1) and

(13), and is 31
32
n + O(n

3
4 ). In Section 3 we show that our result can be strengthened in the
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case where G is bipartite with the same number of vertices in each part, see Theorem 2. In
[5] it is shown that if G is a simple even bipartite graph with parts X and Y such that |Y |
is even, the size of G is divisible by 4, and the degree of each vertex in Y is at least 95

96
|X|,

then G decomposes into 4-cycles. Theorem 2 gives a similar result with an improved lower
bound on the minimum degree, but only in the special case where the parts of G have the
same cardinality.

For decompositions into C4, Theorem 1 improves on the above-mentioned result of Gus-
tavsson in two ways. Firstly, the bound on the minimum degree is dramatically reduced.
In Gustavsson’s result, the constant γ(C4) ≈ 10−94, giving a bound of (1 − 10−94)n on the
minimum degree. The bound on minimum degree in Theorem 1 is asymptotically 31

32
n which

is not significantly far from optimal, given that we know it cannot be reduced beyond 3
5
n.

Secondly, Gustavsson’s proof is non-constructive; it does not provide an algorithm which
will determine the decomposition. The proof of Theorem 1 contains a straightforward al-
gorithm which produces the required decomposition. Fu et al [10, 11] have shown that all
C4-admissible graphs of order n > 9 having minimum degree at least n− 4 decompose into
4-cycles.

We mention two well-known conjectures concerning decompositions of graphs with suffi-
ciently high minimum degree into spanning subgraphs, rather than into fixed subgraphs as
discussed thus far. The 1-factorisation conjecture states that every regular graph of even
order n with degree at least n

2
decomposes into 1-factors. By considering the union of two

vertex-disjoint complete graphs of odd order, it is easy to see that the lower bound on degree
cannot be reduced. The 1-factorisation conjecture is known to hold for graphs with minimum
degree at least 1

2
(
√

7−1) ≈ 0.823 [6]. There is a similar conjecture, due to Nash-Williams, on
decompositions into Hamilton cycles. It states that every regular graph of order n with even
degree at least n

2
decomposes into Hamilton cycles. Buchanan [3] has shown that regular

graphs of odd order n with degree n− 3 decompose into Hamilton cycles, but the conjecture
is unresolved even for degree n− 4.

2 Proof of Theorem 1

The condition that G is even with size divisible by 4 is clearly necessary if G decomposes
into 4-cycles. For the proof of the converse, let G be a simple even graph of order n with size
divisible 4. We first prove that if n is even and G has minimum degree δ(G) > (31

32
+ g(n))n,

where
g(n) = 1

2
n−

1
4 + 5

8
n−

3
4 + 55

16
n−1, (1)

then G decomposes into 4-cycles. Observe that the complement G of G has maximum degree

∆(G) 6 h(n)− 1 (2)

where
h(n) = ( 1

32
− g(n))n. (3)
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Since δ(G) > 1
2
n, G has a Hamilton cycle H by Dirac’s Theorem [8]. Let G − H be

the graph obtained from G be removing the edges of H, let P be a partition of V (G)
into pairs, and let C0 be the set of all 4-cycles in G − H of the form (x1, y1, x2, y2) where
{x1, x2}, {y1, y2} ∈ P . Then let G′ be the graph obtained from G−H by removing the edges
of the 4-cycles of C0, let D0 be a (greedy) maximal set of edge-disjoint 4-cycles in G′, let G′′

be the graph obtained from G′ by deleting the edges of the 4-cycles of D0, and define F0 to
be the graph obtained by adding the edges of the Hamilton cycle H to G′′. Observe that F0

is an even connected graph with size divisible by 4 (F0 is obtained by deleting the edges of
edge-disjoint 4-cycles from G). Thus, F0 has an Euler tour T0 = [v1, v2, . . . v4k].

At this stage, we have a decomposition C0 ∪D0 ∪ {F0} of G where C0 is a set of 4-cycles
of the form (x1, y1, x2, y2) where {x1, x2}, {y1, y2} ∈ P , D0 is a set of 4-cycles, and F0 has an
Euler tour T0 = [v1, v2, . . . , v4k]. For convenience, we define the graph Y0 by V (Y0) = P and
E(Y0) = {{P, P ′} : P, P ′ ∈ P , P ∪P ′ = V (C), C ∈ C0}. Thus, {P, P ′} ∈ E(Y0) if and only if
there is a 4-cycle in C0 with vertex set P ∪ P ′.

We now describe an iterative process that can be applied to complete the decomposition.
Set T = T0, F = F0, C = C0, D = D0 and Y = Y0. As we proceed, T , F , C, D and Y
shall be modified, with Y always being defined by V (Y ) = P and E(Y ) = {{P, P ′} : P, P ′ ∈
P , P ∪ P ′ = V (C), C ∈ C}. Each major step in the process involves removing a number, t
say, of 4-cycles from C, adding t + 1 4-cycles to D, and reducing the number of edges in F
by 4. Eventually, F contains no edges and C ∪ D is the required decomposition of G into
4-cycles. As described below, other minor steps are also involved in the process. First we
describe how the major step works.

The Major Step: We find a subtrail [u0, u1, . . . , u6] in T (this means u0, u1, . . . , u6 are
consecutive vertices in T ) such that u0, u2, u4 and u6 are pairwise distinct. We shall show
later that we can guarantee the existence of such a subtrail, and we shall also add a further
constraint on how the subtrail is chosen. Let R be the minimal set of pairs of P such that
{u0, u2, u4, u6} ⊆

⋃
P∈R P (we note that clearly |R| ∈ {2, 3, 4}). Define R =

⋃
P∈R P . We

next find a pair Q = {q1, q2} ∈ P such that {Q,P} ∈ E(Y ) for each P ∈ R. Again, we shall
show later that such a Q can be found at each stage of the process we are describing, and
we shall impose extra constraints on our choice of Q. Consider the subgraph X of G with
edge set

E(X) = {{ui, ui+1} : i ∈ {0, 1, . . . , 5}} ∪ {{x, y} : x ∈ Q, y ∈ R}.
We now modify T , F , C, D and Y as follows. Firstly, for each P ∈ R we remove the

edge {Q,P} from Y , and we remove the corresponding 4-cycle from C. Secondly, in F we
replace the edges {u0, u1}, {u1, u2}, . . . , {u5, u6} with {u0, q1} and {u6, q1}, and we modify T
as follows, which ensures that T remains an Euler tour in F .

[. . . , u0, u1, u2, u3, u4, u5, u6, . . .]→ [. . . , u0, q1, u6, . . .]

Thirdly, we add the following three 4-cycles to D (note that {q1, q2}∩{u1, u3, u5} = ∅ because
the edges of the cycles of C are disjoint from the edges of T ).

(q2, u0, u1, u2) (q1, u2, u3, u4) (q2, u4, u5, u6)
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Finally, the edges of X which occur in neither the modified F nor these three 4-cycles
induce a complete bipartite graph with parts Q and R \ {u0, u2, u4, u6}. This graph has a
decomposition into 4-cycles and we also add the 4-cycles of this decomposition to D. This
completes the major step.

It is clear that repeated applications of the major step will produce a decomposition of G
into 4-cycles. It remains to show that we can indeed repeatedly apply the major step until
the desired decomposition is obtained. We now proceed to describe how this is achieved. We
need to take care to ensure that F remains connected throughout. After each application of
the major step, and before the next, we shall apply the following procedure which we call
the minor step.

The Minor Step: If at any stage vi = vi+4 for some i ∈ {1, 2, . . . , 4k} (where T =
[v1, v2, . . . , v4k] is the Euler tour at the current stage and the subscripts are taken modulo
4k), then (vi, vi+1, vi+2, vi+3) is a 4-cycle in F and we add this 4-cycle to D, remove its edges
from F , and redefine T as

T = [. . . , vi−1, vi, vi+5, . . .].

Thus, T remains an Euler tour in F . We repeat this until vi and vi+4 are distinct for all i,
and then proceed as follows.

If vi = vi+6 and vi+2 = vi+8, then (vi, vi+1, vi+2, vi+7) is a 4-cycle in F and we add this
4-cycle to D, remove its edges from F , and redefine T as

T = [. . . , vi−1, vi, vi+5, vi+4, vi+3, vi+2, vi+9, . . .].

Again, T remains an Euler tour in F . We repeat this until there is no i such that vi = vi+6

and vi+2 = vi+8 both hold. The process described in this paragraph may mean that the
process of the preceding paragraph needs to be repeated to ensure that vi and vi+4 are
distinct, but it is clear that we can repeat the two processes until for each i ∈ {1, 2, . . . , 4k},
either vi, vi+2, vi+4 and vi+6 are pairwise distinct or vi+2, vi+4, vi+6 and vi+8 are pairwise
distinct (or until T is a 4-cycle in which case our decomposition is complete). This completes
the minor step.

The minor step is applied before and after each application of the major step. It guar-
antees that if T = [v1, v2, . . . , v4k], then for any i ∈ {1, 2, . . . , 4k} at least one of the choices

[u0, u1, . . . , u6] = [vi, vi+1, . . . , vi+6] or [u0, u1, . . . , u6] = [vi+2, vi+3, . . . , vi+8] (4)

is available for the next application of the major step (recall that we require u0, u2, u4 and
u6 to be distinct). The application of the minor step which occurs immediately after the
j-th application of the major step will be called the j-th application of the minor step.

In each application of the major step, we remove |R| edges incident with Q from Y ,
and we call each of these incidences a Q-type incidence on Q. Similarly, for each P ∈ R
we remove an edge incident with P from Y , and we call each of these incidences an R-type
incidence on P . Thus, each application of the major step involves |R| Q-type incidences on
Q and one R-type incidence on P for each P ∈ R. At any stage and for each P ∈ P we
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define rQ(P ) to be the number of Q-type incidences on P that have occurred thus far, and
we define rR(P ) to be the number of R-type incidences on P that have occurred thus far.
Thus, at any stage for all P ∈ P we have

degY (P ) = degY0
(P )− rQ(P )− rR(P ). (5)

Now, we mentioned above that in the major step we impose an additional restriction on
our choice of Q. Our restriction is that for any P ∈ P , rQ(P ) must never exceed 1

2
n

3
4 + 3.

rQ(P ) 6 1
2
n

3
4 + 3 (6)

Thus, we say that a pair P is full if rQ(P ) ∈ {1
2
n

3
4 , 1

2
n

3
4 +1, 1

2
n

3
4 +2, 1

2
n

3
4 +3}, and we demand

that no full pair is ever chosen as Q.
We now proceed to obtain an upper bound for rR(P ). We must be careful because in

each application of the major step the subtrail [u0, q1, u6] is inserted into the Euler tour T .
With this in mind, we next describe an additional constraint on the selection of our subtrail
[u0, . . . , u6] for the major step. We seek to ensure that for each R-type incidence on P , there
is at least one corresponding reduction by 2 of degF (P ), where degF (P ) is defined by

degF (P ) = degF (x) + degF (y)

when P = {x, y}.
In the j-th application of the major step, there is an R-type incidence on each P ∈ R.

That is, each pair containing u0, u2, u4 or u6. For i ∈ {0, 2, 4, 6}, let Pi be the pair containing
ui. It is possible that {ui, uj} ∈ P for distinct i, j ∈ {0, 2, 4, 6} in which case Pi = Pj, but
the following argument still works if this is the case. We seek reductions by 2 of degF (P0),
degF (P2), degF (P4) and degF (P6). The desired reductions of degF (P2) and degF (P4) are
achieved during the j-th application of the major step (because degF (u2) and degF (u4) are
each reduced by 2 in the major step). So we are concerned with reducing degF (P0) and
degF (P6).

During the application of the major step, if a pair P contains u1, u3 or u5, then degF (P )
is reduced by 2, or by an additional 2 if the other element of P is in {u1, u2, u3, u4, u5}.
Reductions of degF (P ) may also occur during applications of the minor step. The reductions
of degF (P ) described in this paragraph will be called bonus reductions. We need to ensure
that there is a corresponding bonus reduction of degF (P0) and degF (P6) for the R-type
incidences on P0 and P6 in the j-th application of the major process.

If there are bonus reductions of both degF (P0) and degF (P6) during the j-th application
of the minor step then we are done. If there is no bonus reduction of degF (P0) nor degF (P6)
during the j-th application of the minor step, then either [u0, q1, u6] or [u6, q1, u0] is a subtrail
of our Euler tour when we perform the (j+1)-th application of the major step. Thus, by (4)
we can ensure that a bonus reduction of both degF (P0) and degF (P6) occurs in the (j + 1)-
th application of the major step (by choosing our subtrail [u′0, u

′
1, . . . , u

′
6] for the (j + 1)-th

application of the major step so that either {u0, u6} = {u′1, u′3} or {u0, u6} = {u′3, u′5}).
Finally, if there is a bonus reduction of exactly one of degF (P0) and degF (P6) in the j-th
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application of the minor step, then again by (4) we can ensure that a bonus reduction of the
other occurs in the (j + 1)-th application of the major step.

We have shown that we can ensure that for each R-type incidence on P , there is at least
one corresponding reduction by 2 of degF (P ). We now obtain an upper bound on degF0

(P )
for any pair P ∈ P . Let P = {a, b} be an arbitrary pair in P . We partition the pairs of
P \ {a, b} into three sets T1, T2 and T3 as follows, and for i = 1, 2, 3 we let |Ti| = ti.

• {x, y} is in T1 if {a, x}, {a, y}, {b, x} or {b, y} is in E(H).

• {x, y} is in T2 if it is not in T1 and |{{a, x}, {a, y}, {b, x}, {b, y}} ∩ E(G)| 6 3.

• {x, y} is in T3 if it is not in T1 and |{{a, x}, {a, y}, {b, x}, {b, y}} ∩ E(G)| = 4.

There are no edges of F0 joining a or b to any vertex in the pairs of T3. Since G′′ contains
no 4-cycles, there is at most one pair {x, y} in T1∪T2 such that |{{a, x}, {a, y}, {b, x}, {b, y}}∩
E(G′′)| = 3. Hence, degF0

(P ) 6 4 + 2(t1 + t2) + 1 (the term 4 is present because there are up
to 4 edges of H incident with a or b). Since t1 6 4, we have degF0(P ) 6 13 + 2t2. Now, if
{x, y} ∈ T2, then at least one of the edges {a, x}, {a, y}, {b, x} or {b, y} is in the complement
G of G. Thus, t2 6 2∆(G) 6 2(h(n)− 1) (see (2)), and we have

degF0
(P ) 6 13 + 4(h(n)− 1) = 4h(n) + 9. (7)

Since we ensure that for each R-type incidence on P , there is at least one corresponding
reduction by 2 of degF (P ), and since the only time degF (P ) increases is when there is a
Q-type incidence on P (that is, q1 ∈ P in an application of the major step), by (7) we can
conclude that rR(P ) 6 1

2
(4h(n) + 9) + rQ(P ), and hence using (6) that

rR(P ) 6 2h(n) + 1
2
n

3
4 + 15

2
. (8)

Now consider an arbitrary fixed pair P = {a, b} ∈ P . If P ′ = {x, y} ∈ P \ {P} and
{P, P ′} /∈ E(Y0), then at least one of the edges {a, x}, {a, y}, {b, x}, {b, y} is in G−H.
Since there are at most 2∆(G−H) edges of G−H incident with a or b, we have degY0

(P ) >
n
2
− 1− 2∆(G−H). Since ∆(G) 6 h(n)− 1 (see (2)), we have ∆(G−H) 6 h(n) + 1, and

it follows that
degY0

(P ) > n
2
− 2h(n)− 3. (9)

Combining the lower bound on degY0
(P ) from (9) with the upper bounds on rQ(P ) and

rR(P ) from (6) and (8) respectively, (5) gives us

degY (P ) > n
2
− 4h(n)− n

3
4 − 27

2
. (10)

Now, since each application of the major step reduces the number of edges in F by 4, and
since the number of Q-type incidences in each application of the major step is at most 4, the
total number of Q-type incidences never exceeds |E(F0)|. Since G′′ has no 4-cycles, since F0

is obtained from G′′ by adding the edges of the Hamilton cycle H, and since Reiman [14]
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has shown that a graph of order n with no 4-cycles has at most 1
4
n + 1

2
n

3
2 edges (see [12]),

we have |E(F0)| 6 5
4
n+ 1

2
n

3
2 . Thus, the total number of Q-type incidences never exceeds

5
4
n+ 1

2
n

3
2 . (11)

Let m be the number of full pairs at a particular stage. Since each full pair P satisfies
rQ(P ) > 1

2
n

3
4 , by (11) we have 1

2
n

3
4m 6 5

4
n+ 1

2
n

3
2 . That is,

m 6 5
2
n

1
4 + n

3
4 . (12)

We are now ready to show that we can always find a suitable choice for Q when applying
the major step. We require a Q in P \ R such that Q is adjacent in Y to each pair P ∈ R,
and such that Q is not already full. Let k = |R| and let P ∈ R. There are k− 1 other pairs
in R, none of which can be chosen as Q, and there are at most m full pairs, none of which
can be chosen as Q. Thus, for each pair P ∈ R, we have degY (P ) − (k − 1) −m suitable
choices for Q. Since |R| ∈ {2, 3, 4}, it is sufficient to show that for each k ∈ {2, 3, 4}

k(degY (P )− (k − 1)−m) > (k − 1)(n
2
− k) + 1.

Showing this is routine using (10) and (12) (and the values of g(n) and h(n) given in (1) and
(3)). This completes the proof for the case n is even.

Now assume that n is odd and that G has minimum degree δ(G) = (31
32

+ f(n))n where

f(n) = g(n) + 97
32
n−1. (13)

Let ∞ ∈ V (G) and let P be a partition of V (G) \ {∞} into pairs such that for each P ∈ P
the number of vertices in P that are adjacent to ∞ is either 0 or 2. Let Z be the graph
with vertex set V (Z) = P and an edge joining {x1, y1} ∈ P to {x2, y2} ∈ P if and only if
(x1, x2, y1, y2) is a 4-cycle in G.

It follows easily from δ(G) > (31
32

+f(n))n, that δ(Z) > 1
2
|V (Z)|, and so Z has a Hamilton

cycle by Dirac’s Theorem. Thus, there exists a derangement π of P such that {P, π(P )} ∈
E(Z) for each P ∈ P . For each P = {x, y} ∈ P such that {∞, x}, {∞, y} ∈ E(G), there
is a 4-cycle CP = (∞, x, w, y) in G where w ∈ π(P ). Let B = {CP : P = {x, y} ∈
P , {∞, x}, {∞, y} ∈ E(G)}. The 4-cycles in B are edge disjoint and contain every edge of
G that is incident with ∞. Moreover, any other vertex of G is in at most two 4-cycles of B.
Thus, if G∗ is the graph obtained from G by deleting the edges of the 4-cycles in B, then

δ(G∗) > (31
32

+ f(n))n− 4

and G∗ is an even graph with size divisible by 4. It is routine to check that

(31
32

+ f(n))n− 4 = 31
32

(n− 1) + ng(n) > (31
32

+ g(n− 1))(n− 1).

Thus, G∗ is a simple even graph of even order n′ = n−1 with size divisible by 4 and minimum
degree δ(G∗) > (31

32
+g(n′))n′. We have already shown that such graphs have decompositions

into 4-cycles. Thus, the union of B and a decomposition of G∗ into 4-cycles is the required
decomposition of G into 4-cycles. This completes the proof.
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3 Decompositions of bipartite graphs

In this section we observe that essentially the same proof gives us a stronger result in the
case where G is bipartite with the same number of vertices in each part. Our aim is to
prove Theorem 2 below. We employ the terminology and method of the previous section,
mentioning only the differences.

Let G be a simple even bipartite graph with parts of cardinality n and size divisible by
4. We first prove that if n is even and G has minimum degree δ(G) > (31

32
+ g(n))n, where

g(n) =
(1+2

√
2)

4
n−

1
4 + 5

4
n−

3
4 + 67

16
n−1, (14)

then G decomposes into 4-cycles. Observe that the complement G of G has maximum degree

∆(G) 6 h(n) (15)

where h(n) is given in (3). Since δ(G) > (n+1)/2, G has a Hamilton cycle H by the bipartite
version of the Bondy-Chvátal Theorem (Theorem 6.2 in [2]). We define P as in the previous
section with the extra condition that any pair from P contains two vertices from the same
part of G.

The bound in (15) above effects the following changes in the expressions (7), (8), (9) and
(10) from the previous proof (with change only to the constant terms):

degF0
(P ) 6 4h(n) + 13; (16)

rR(P ) 6 2h(n) + 1
2
n

3
4 + 19

2
; (17)

degY0
(P ) > n

2
− 2h(n)− 4 (18)

and
degY (P ) > n

2
− 4h(n)− n

3
4 − 33

2
. (19)

Since G has 2n vertices and H has the same number of edges, |E(F0)| 6 5
2
n+
√

2n
3
2 . In

turn, (12) changes to:

m 6 5n
1
4 + 2

√
2n

3
4 . (20)

Next, when choosing Q, we choose a pair from the opposite part of G to that containing
the pairs in R. Thus, for each pair P ∈ R, we have at least degY (P ) −m suitable choices
for Q (in the worst case scenario, all full pairs belongs to the same part of G). Thus, it is
sufficient to show for each pair k ∈ {2, 3, 4}

k(degY (P )−m) > (k − 1)(n/2) + 1.

This follows from (14), (19) and (20) above.
Now assume that n is odd and that G has minimum degree δ(G) = (31

32
+ f(n))n where

f(n) = g(n) + 97
32
n−1. (21)
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Let∞1,∞2 ∈ V (G) be from distinct parts of G and let P be a partition of V (G)\{∞1,∞2}
into pairs such that for i ∈ {1, 2} and for each P ∈ P , the number of vertices in P that are
adjacent to ∞i is either 0 or 2. Moreover, let P be such that the two vertices from any pair
in P are from the same part of G. Let Z be the graph with vertex set V (Z) = P and an
edge joining {x1, y1} ∈ P to {x2, y2} ∈ P if and only if (x1, x2, y1, y2) is a 4-cycle in G.

It follows easily from δ(G) > (31
32

+f(n))n, that δ(Z) > 1
2
|V (Z)|, and so Z has a Hamilton

cycle by the bipartite version of the Bondy-Chvátal Theorem (Theorem 6.2 in [2]). Thus,
there exists a derangement π of P such that {P, π(P )} ∈ E(Z) for each P ∈ P . For each
P = {x, y} ∈ P and ∞ ∈ {∞1,∞2} such that {∞, x}, {∞, y} ∈ E(G), there is a 4-cycle
CP = (∞, x, w, y) in G where w ∈ π(P ). Let B = {CP : P = {x, y} ∈ P , {∞, x}, {∞, y} ∈
E(G),∞ ∈ {∞1,∞2}}. The 4-cycles in B are edge disjoint and contain every edge of G that
is incident with ∞1 or ∞2. Moreover, any other vertex of G is in at most two 4-cycles of B.
Thus, if G∗ is the graph obtained from G by deleting the edges of the 4-cycles in B, then

δ(G∗) > (31
32

+ f(n))n− 4

and G∗ is an even bipartite graph with parts of cardinality n−1 and size divisible by 4. The
remainder of the proof follows as in the previous section.

Theorem 2. If G is a simple bipartite C4-admissible graph with n vertices in each part and
minimum degree at least (31

32
+ on(1))n, then G decomposes into C4.
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[14] I. Reiman, Über ein Problem von K. Zarankiewicz (German), Acta. Math. Acad. Sci.
Hungar., 9 (1958) 269–273.

[15] R. M. Wilson, Decompositions of complete graphs into subgraphs isomorphic to a given
graph, Congr. Numer., 15 (1976) 647–659.

[16] R. Yuster, The decomposition threshold for bipartite graphs with minimum degree one,
Random Struct. Alg., 21 (2002) 121–134.

[17] R. Yuster, Tree decomposition of graphs, Random Structures Algorithms, 12 (1998)
237-251.

11


