# Author's Accepted Manuscript

Adsorption of CH<sub>4</sub> and CH<sub>4</sub>/CO<sub>2</sub> Mixtures in Carbon Nanotubes and Disordered Carbons: A Molecular Simulation Study

Lang Liu, David Nicholson, Suresh K. Bhatia



www.elsevier.com/locate/ces

PII:S0009-2509(14)00386-8DOI:http://dx.doi.org/10.1016/j.ces.2014.07.041Reference:CES11774

To appear in: Chemical Engineering Science

Received date: 30 April 2014 Revised date: 14 July 2014 Accepted date: 20 July 2014

Cite this article as: Lang Liu, David Nicholson, Suresh K. Bhatia, Adsorption of CH<sub>4</sub> and CH<sub>4</sub>/CO<sub>2</sub> Mixtures in Carbon Nanotubes and Disordered Carbons: A Molecular Simulation Study, *Chemical Engineering Science*, http://dx.doi.org/10.1016/j.ces.2014.07.041

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

# Adsorption of CH<sub>4</sub> and CH<sub>4</sub>/CO<sub>2</sub> Mixtures in Carbon Nanotubes and Disordered Carbons: A Molecular Simulation Study

Lang Liu, David Nicholson, Suresh K. Bhatia\* School of Chemical Engineering The University of Queensland Brisbane, QLD 4072, Australia

We report a comparison of the adsorption of  $CH_4$  and  $CO_2/CH_4$  mixtures of different composition in three different types of nanoporous carbons including carbon nanotubes, and activated carbon fiber (ACF-15) and silicon carbide derived carbon (SiC-DC) having distinctly different disordered structures, using Monte Carlo simulation. CO<sub>2</sub> is represented as a linear molecule, and both the united-atom and full-atom models are investigated for CH<sub>4</sub>. It is found that the united-atom model of CH<sub>4</sub> overestimates the adsorption capacity of CH<sub>4</sub> in all these adsorbents compared to the 5-site model, as a consequence of the enhanced 1-site CH<sub>4</sub>-adsorbent potential energy. Moreover, the selectivities of the nanoporous carbons for CO<sub>2</sub> relative to CH<sub>4</sub> calculated using the 1-site CH<sub>4</sub> model are underestimated compared to those from the 5-site model, at pressures up to 3.0 MPa. However, differences in the structural disorder of porous carbon models have little impact on CO<sub>2</sub> selectivity. Our simulations reveal that the selectivity of an adsorbent for a particular species is strongly dependant on adsorbate-adsorbate interaction effects, comprising the adsorbate-adsorbate potential interactions and an adsorbate sieving effect. As a balance between the confinement and adsorbate-adsorbate effects, it is found that increasing the concentration of CO<sub>2</sub> in the gas phase increases the selectivity of (10, 10) CNT dramatically, while having negligible impact on the selectivities in amorphous carbons. Further, it is shown that increasing the temperature reduces the performance of all the carbons in separating CO<sub>2</sub>, and that an isolated (7, 7) CNT has the best performance for  $CO_2/CH_4$  separation in comparison to the disordered nanoporous carbons investigated.

**Keywords:** Carbon dioxide; methane; Carbon nanotubes; porous carbons; Carbon dioxidemethane separation; simulation

<sup>\*</sup>To whom correspondence may be addressed. Email: s.bhatia@uq.edu.au.

#### **1** Introduction

Natural gas has been regarded as an ideal substitute for fossil fuels because of low emissions of greenhouse gases and particulate matter after combustion (Martín-Calvo et al., 2008). CO<sub>2</sub> is one of the major contaminants that must be removed from natural gas, since it reduces its energy content and corrodes pipelines in the presence of water. Consequently, a variety of approaches have been proposed to separate  $CO_2$  from natural gas, including chemical conversion, solvent absorption, membrane separation, and adsorptive separation. Among these, adsorptive separation has shown to be technically and economically favourable (Babarao et al., 2009). Porous carbons have long been studied as promising adsorbent materials for CO<sub>2</sub> capture (Lu et al., 2008; Pevida et al., 2008; Przepiórski et al., 2004) and separation from gas mixtures (Ducrot-Boisgontier et al., 2010; Heuchel et al., 1999), due to their high surface area, finely-tuneable pore size distribution and economical production (Presser *et al.*, 2011). It has been shown that suitable tailoring of the pore structure in porous carbons by controlling the synthesis process can improve the efficiency of separating  $CO_2$ from CO<sub>2</sub>/CH<sub>4</sub> mixtures (Dash et al., 2006; Gogotsi et al., 2003; Nicholson and Gubbins, 1996; Cracknell et al., 1996). However, not only the pore size distribution, but also the morphology of porous carbons can vary significantly depending on the synthesis procedure, and can range from extremely disordered materials, such as Silicon Carbide Derived Carbon (SiC-DC) (Farmahini et al., 2013; Nguyen et al., 2009), activated carbon fibre ACF15 (Nguyen et al., 2008) to materials that are intrinsically well defined such as carbon nanotubes (CNTs) (Presser et al., 2011). Consequently, understanding the effect of morphology on the adsorption of CH<sub>4</sub> and CO<sub>2</sub>/CH<sub>4</sub> mixtures in porous carbons is essential for optimizing adsorbent structure for both CH<sub>4</sub> storage and for CO<sub>2</sub>/CH<sub>4</sub> separation. Moreover, since CNTs have been shown to possess superior transport properties for  $CH_4$  and  $CO_2$  (Skoulidas *et al.*, 2002; Skoulidas et al., 2006), it is important to know the adsorption selectivity of CNTs for CO<sub>2</sub> over CH<sub>4</sub> in comparison to that of porous carbons having realistic structures.

As there are always technical challenges in performing experimental measurements of multicomponent adsorption in porous carbons, molecular simulation methods provide an efficient and rigorous alternative to investigate the multicomponent adsorption in all kinds of porous carbons by explicitly considering the intermolecular and pore-wall interactions. The choice of molecular models plays an essential role in predicting adsorption behaviour. Do and Do (2005) found the adsorption of  $CH_4$  in graphitic slit pores at both sub- and super-critical temperatures was over predicted by the 1-site model compared to the full-atom model; this

was ascribed by these authors to the more efficient packing of the 1-site CH<sub>4</sub>. Similarly, Bhatia and Nicholson (2012) also observed that adsorption of 1-site CH<sub>4</sub> was overestimated compared to 5-site  $CH_4$  in their study of the adsorption of  $CH_4$  in silica nanopores. However, these authors attributed this overestimation to the enhanced adsorbate-adsorbent potential energy for the 1-site CH<sub>4</sub>. Cracknell *et al.* (1993, 1994) studied the adsorption of ethane and methane from equimolecular mixtures in graphitic slit pores and found that the molecular model strongly influenced the calculated adsorption selectivity for ethane, which increased dramatically when ethane was modelled as two sites rather than a single site molecule. Moreover, increasing the bond length to create a pseudo-ethane reduced the selectivity significantly because of the increased hindrance to rotation in the confined space of the micropores. Despite these observations, in most simulations and theoretical investigations of CO<sub>2</sub>/CH<sub>4</sub> adsorption (Babarao et al., 2006; Babarao and Jiang, 2009; Bhatia et al., 2004; Heuchel et al., 1999; Liu and Smit, 2009; Palmer et al., 2011; Yang and Zhong, 2006), CH<sub>4</sub> is represented as a united atom and CO<sub>2</sub> is represented as a 3-site linear molecule. Little is known about the effect of the molecular model of  $CH_4$  on the adsorption of  $CH_4$  and CO<sub>2</sub>/CH<sub>4</sub> mixtures in CNTs and realistic porous carbons, which will be investigated in this work.

An important feature of the co-adsorption of mixture in confined space is that the selectivity is a result of the interplay of adsorbate-adsorbent and adsorbate-adsorbate interactions. Babarao et al. (2009) compared the equimolar adsorption of  $CO_2/CH_4$  mixture in a series of metal-organic frameworks (MOFs) and found that, except for IRMOF-13, the selectivities of all other MOFs for CO<sub>2</sub> over CH<sub>4</sub> increased monotonically with pressure, as the cooperative attractions between adsorbed CO<sub>2</sub> molecules promoted further adsorption of CO<sub>2</sub>. The initial decrease of the selectivity in IRMOF-13 is interpreted as a consequence of the reduced adsorbate-adsorbent interactions, since CO2 molecules tend to occupy larger pores with increasing pressure. Kurniawan *et al.* (2006) examined the effect of composition on  $CO_2/CH_4$ separation at 318 K in graphitic slit pores of width 1.5 nm. It was shown that at a pressure of 10 bar the selectivity increases significantly with increasing  $CO_2$  concentration in the bulk phase. Similarly, based on their experimental studies Heuchel et al. (1999) reported that increasing the fraction of  $CO_2$  in the bulk phase from 0.21 to 0.92 significantly increases the selectivity of activated carbon A35/4 for CO<sub>2</sub> over CH<sub>4</sub>, at pressures up to 15 bar. Martín-Calvo *et al.* (2008) found similar, but smaller, effects of composition on  $CO_2/CH_4$  separation in Cu-BTC. Thus, it is clear that effects related to adsorbate-adsorbate interactions play a

crucial role in determining the selectivity for a particular species. In most simulation studies these effects are interpreted as the balance between the energetic and entropic effects (Babarao *et al.*, 2006; Babarao and Jiang, 2009; Babarao *et al.*, 2009; Herm *et al.*, 2011; Liu and Smit, 2009, 2010; Palmer *et al.*, 2011). In terms of  $CO_2/CH_4$  adsorption, increasing the loading would increase the  $CO_2$ -adsorbates ( $CO_2+CH_4$ ) pair interactions more significantly than the counterparts for  $CH_4$ -adsorbates (Babarao *et al.*, 2009). This would subsequently promote the adsorption of  $CO_2$  over  $CH_4$ . On the other hand, the entropic effect is simply interpreted as the packing-related restrictions imposed by the pore walls or by neighbouring molecules on the orientational freedom of adsorbates, which may be expected to supress the adsorption of linear  $CO_2$  (Nicholson and Gubbins, 1996). Additionally, the more strongly adsorbed species will tend to apply a sieving effect on the components, enhancing the selectivity. Consequently, in this investigation, the effect of composition in CNTs and porous carbons is analysed with regard to the adsorbate sieving effect.

We report here a grand canonical Monte Carlo (GCMC) simulation study of the adsorption of  $CH_4$  and  $CO_2/CH_4$  mixtures in a variety of armchair CNTs, ACF-15 and SiC-DC, to investigate the effects of the morphology of porous carbons and of the molecular model of  $CH_4$  on the adsorption of  $CH_4$  and  $CO_2/CH_4$  mixture in porous carbons. Three compositions of  $CO_2/CH_4$  mixtures, having  $CO_2$  concentrations of 5%, 25% and 50% on a molar basis, are considered at 300 K to examine the effect of composition on separating  $CO_2$  from natural gas using CNTs and realistic porous carbons. In addition, the effect of temperature on the adsorption of  $CO_2/CH_4$  is examined, and the optimal diameter of CNTs for  $CO_2$  separation from natural gas using carbon based adsorbents.

#### **2** Simulation details

#### 2.1 Carbon Models

Carbon nanotubes are modelled as a graphite sheet wrapped into cylindrical shape, providing ordered cylindrical pores for adsorption. As indicated above, two types of disordered nanoporous carbons, ACF-15 and SiC-DC, having distinctly different structures, are also investigated to reveal the potential of the CNTs in separating CO<sub>2</sub> from natural gas. The atomistic configurations of the CNT, ACF-15 and SiC-DC are illustrated in Figure 1, and were treated as rigid structures with a Lennard-Jones (L-J) particle on each site. In the present work, the pore volume of each CNT studied is predetermined, since we exclusively consider

the adsorption of CH<sub>4</sub> and CO<sub>2</sub>/CH<sub>4</sub> mixtures in the internal space of isolated CNTs. However, for the disordered carbons, ACF-15 and Si-CDC, their geometric pore size distributions are determined using the method proposed by Gelb and Gubbins (1999), and depicted in Figure 1(d). The atomistic structures for both disordered carbons were previously modelled in our laboratory using hybrid reverse Monte Carlo (HRMC) simulations (Farmahini *et al.*, 2013; Nguyen *et al.*, 2009). For the ACF-15, the experimental material was an ACC-5092-15 activated carbon fiber, provided by Kynol Corporation. The SiC-DC was synthesised in our laboratory by oxidation of a  $\beta$ SiC precursor in a pure chlorine atmosphere at 1073K. The disordered nature of the ACF-15 and SiC-DC was confirmed by the results from X-ray diffraction and high-resolution transmission electron microscopy (HRTEM) characterization. The reconstructed atomistic structures for ACF-15 and SiC-DC have been validated by comparing the adsorption of Ar, CO<sub>2</sub>, and CH<sub>4</sub> against experimental data over a wide range of temperature and pressure (Farmahini *et al.*, 2013; Nguyen *et al.*, 2009).

The armchair CNTs had diameters ranging from 0.81 to 2.03 nm. The ACF-15 was modelled as a periodic porous material with dimension of its unit cell obtained as  $2.95 \times 2.98 \times 3.02 \text{ nm}^3$ . 1166 carbon atoms were placed in the unit cell, resulting in the bulk carbon density,  $\rho_{bc} = 0.88 \text{ g/cm}^3$ . In addition, the unit cell of SiC-DC was obtained as  $4.0 \times 4.0 \times 4.0 \text{ nm}^3$ , containing 3052 carbon atoms. The bulk carbon density for SiC-DC is 0.95 g/cm<sup>3</sup>. As illustrated in Figure 1, the structure of the porous carbons ranges from highly ordered to completely disordered.

#### 2.2 Molecular models

The 3-site (EPM2) linear model proposed by Harris and Yung (1995), which accounts for the quadrupole of CO<sub>2</sub> explicitly by assigning a point-charge on each atom, was chosen to represent CO<sub>2</sub>. The model has been shown to represent the packing configuration of CO<sub>2</sub> molecules in narrow carbon slits accurately (Bhatia *et al.*, 2004). Both the spherical model (Hirschfelder *et al.*, 1954) and the full-atom model proposed by Kollman and co-workers (Sun *et al.*, 1992) for CH<sub>4</sub> were investigated. In the spherical model, CH<sub>4</sub> is treated as a single L-J particle. In the 5-site model, all the atoms are explicitly included as L-J particles, each carrying a partial charge. The potential energy parameters and the atomistic configurational parameters of CO<sub>2</sub>, 1-site and 5-site CH<sub>4</sub> are given in Table 1. We adopted the Steele (1978)

parameters to represent the C atoms in the adsorbents, with  $\sigma_c = 0.34$  nm,  $\varepsilon_c / k_B = 28K$ . The potential energies of the adsorbate-adsorbate and adsorbate-adsorbent are described by the dispersion-repulsion and electrostatic interactions between sites *i* and *j*, following

$$u_{ij}^{(\alpha,\beta)} = 4\varepsilon_{ij}^{(\alpha,\beta)} \left[ \left( \frac{\sigma_{ij}^{(\alpha,\beta)}}{r_{ij}^{(\alpha,\beta)}} \right)^{12} - \left( \frac{\sigma_{ij}^{(\alpha,\beta)}}{r_{ij}^{(\alpha,\beta)}} \right)^{6} \right] + \frac{1}{4\pi\varepsilon_{0}} \frac{q_{i}^{\alpha}q_{j}^{\beta}}{r_{ij}^{(\alpha,\beta)}}$$
(1)

where  $r_{ii}^{(\alpha,\beta)}$  is the distance between two sites *i* and *j* of molecules  $\alpha$  and  $\beta$ . The L-J size parameter  $\sigma_{ij}^{(\alpha,\beta)}$  and well depth parameter  $\varepsilon_{ij}^{(\alpha,\beta)}$  for the unlike interactions were estimated using the Lorentz-Berthelot mixing rules (Allen and Tildesley, 1989). In eqn.(1), the first term on the right hand side represents the dispersive-repulsive component and the second term corresponds to the electrostatic interactions. In the second term,  $q_i^{\alpha}$  and  $q_j^{\beta}$  are the partial charges on sites i and j of molecules  $\alpha$  and  $\beta$ , and  $\varepsilon_0$  is the permittivity of free space  $(\varepsilon_0 = 8.8543 \times 10^{-12} C^2 / J \cdot m)$ . As confirmed in our previous simulations, the adsorption of multisite CO2 and CH4 in ACF-15 and SiC-CDC agreed well with the experimental data without any long-range corrections for the coulombic interactions (Farmahini et al., 2013; Nguyen et al., 2008) because the neutrality of CO<sub>2</sub> and CH<sub>4</sub> and the short-range of the quadrupole moments, leads to the rapid convergence of the electrostatic interactions with molecule-molecule distance. In ACF-15 and SiC-DC, the L-J and coulombic interactions were therefore calculated using center-of-mass cutoff radii of 1.47 and 1.95 nm respectively. However, in the absence of prior results that we could compare with to exclude the effect of long range corrections in CNTs, the Dot Line Method (Tang and Chan, 2004; Zhang et al., 2009), which has been proved to be effective for representing the periodic charges of ions in cylindrical pores, was used in present work to capture the adsorbate-adsorbate coulombic interactions in CNTs. Accordingly, the periodic boundary condition is applied only in the axial direction of the CNT, and only the adsorbate-adsorbate and adsorbate-adsorbent interactions within the CNT are considered, while external adsorption is excluded.

#### 2.3 Grand canonical Monte Carlo simulations

GCMC simulations were used to study the adsorption of CH<sub>4</sub> and CO<sub>2</sub>/CH<sub>4</sub> mixture in the three different carbon materials at 300 K, 325 K and 350 K, at pressure up to 3.0 MPa. In GCMC simulations, the adsorbate chemical potential  $\mu_a$  and the system volume V and

temperature *T* are held constant, while the number of adsorbate molecules as well as the location and the orientation of each adsorbed molecule are allowed to fluctuate. Trial moves, included insertion, deletion and displacement of particles, and the numbers of insertion and deletion attempts were set equal to maintain microscopic reversibility. The fugacities corresponding to the selected compositions were determined from the natural gas equation of state (EOS) given by Kunz and Wagner (2012). Each simulation point was averaged over a total of  $1.0 \times 10^8$  configurations, after rejecting the first  $3 \times 10^7$  to equilibrate the system.

#### **3** Results and Analysis

#### 3.1 Effect of molecular model on the adsorption of CH<sub>4</sub>

We first studied the adsorption of pure  $CH_4$  in a (10, 10) CNT, ACF15 and Si-CDC using both the spherical and full-atom models at 300 K to explore the reasons for the enhanced adsorption of spherical  $CH_4$ . It is noted that that the bulk densities of  $CH_4$  obtained from the 1-site and 5-site models are quantitatively similar at 300 K, for pressures up to 3.0 MPa, as demonstrated in Figure 2, confirming that the two models are equivalent in the bulk phase.

As illustrated in Figure 3, the adsorbed amount of 1-site  $CH_4$  is higher in all the cases than that of the 5-site  $CH_4$ , which accords with the earlier results of Do and Do (2005) and Bhatia and Nicholson (2012). In addition, at high pressures, the deviation between the adsorption of 1-site and 5-site  $CH_4$  in the (10, 10) CNT diminishes with increasing pressure, as the adsorption of  $CH_4$  approaches saturation. However, in ACF-15 and SiC-DC, which have larger adsorption capacities, the adsorption of  $CH_4$  continues to increase with pressure, and the deviation between the adsorbed amounts of 1-site and 5-site  $CH_4$  is maintained over the pressure range investigated.

To determine whether packing or potential energy causes this enhanced adsorption, we investigated the variation in the CH<sub>4</sub>-adsorbent and CH<sub>4</sub>-CH<sub>4</sub> interaction energies with CH<sub>4</sub> loading. Figure 4, shows the ensemble average values of these interaction energies, computed from the simulations by evaluating the decrement in the potential energy of the system on the successful insertion of an adsorbate molecule. In the (10, 10) CNT, at loadings lower than 2.3 mol/kg, the CH<sub>4</sub>-CH<sub>4</sub> interaction energies are almost identical for both models which implies that the packing does not have any significant impact on the adsorption at low loading. As the loading is increased further, the packing effect becomes more important for both models, which is evident from the increase in CH<sub>4</sub>-CH<sub>4</sub> interaction energies, indicating that the

intermolecular repulsive interactions are beginning to dominate and the 1-site CH<sub>4</sub> experiences a stronger intermolecular repulsive interaction than the 5-site CH<sub>4</sub>. The radial distribution functions for the two models at a loading of 3.75 mol/kg are shown in Figure 5(a) where it is seen that the 5-site CH<sub>4</sub> molecules can pack more closely due to their tetrahedron structure but have a weaker repulsive interaction. This reveals that the packing configuration of 1-site CH<sub>4</sub> is less favorable in the high loading regime, which is associated with the enhanced adsorption of 1-site CH<sub>4</sub>. So, the enhanced adsorption of 1-site CH<sub>4</sub> that is observed in the (10, 10) CNT cannot be explained by the packing effect within the pressure range studied. On the other hand, the 1-site CH4-CNT interaction is much stronger than the counterpart of 5-site CH<sub>4</sub>-CNT We also plotted the center-of-mass density distributions of the 1-site and 5-site  $CH_4$  in the (10, 10) CNT at a loading of 3.75 mol/kg in Figure 5 (b). It is shown that the density distributions for both models are nearly identical and the near coincidence of the density peaks confirms that the effective diameters of these two models are very similar despite the variable orientation of the 5-site model (Bhatia and Nicholson, 2012). It can be concluded that the enhanced adsorption of 1-site  $CH_4$  in CNTs is caused by the lower CH<sub>4</sub>-adsorbent energy. However, in disordered ACF15 and SiC-DC with less confinement, the 1-site CH<sub>4</sub>-CH<sub>4</sub> energy is marginally stronger than the 5-site CH<sub>4</sub>-CH<sub>4</sub> energy. In these adsorbents, the orientations of the 5-site CH<sub>4</sub> molecules at low pressure are more randomly distributed in spaces where there is lower confinement. The slightly enhanced CH<sub>4</sub>-CH<sub>4</sub> interaction cannot be responsible for the considerably enhanced 1-site CH<sub>4</sub> adsorption, since it is negligible compared to the CH<sub>4</sub>-adsorbent interaction. These results demonstrate that the enhanced adsorption of 1-site CH<sub>4</sub> in ordered and disordered porous carbons can be attributed to the enhanced CH<sub>4</sub>-adsorbent energy.

Due to the similarities of the bulk carbon density and pore size distribution for ACF-15 and SiC-DC (Farmahini *et al.*, 2013; Nguyen *et al.*, 2008), the simulated adsorption isotherms of CH<sub>4</sub> in ACF-15 and SiC-DC are found to be quantitatively similar, both for the 1-site and 5-site CH<sub>4</sub>, as shown in Figure 3. It is also observed that for pressures below 0.7 MPa, the adsorption of CH<sub>4</sub> in the (10, 10) CNT having diameter of 1.36 nm is comparable to that in the ACF-15 and SiC-DC, whose pore sizes range from 0.3 nm to 1.1 nm and 0.2 nm to 1.3 nm, respectively (Farmahini *et al.*, 2013; Nguyen *et al.*, 2008). Note that, both sides of the pore walls are available for the adsorption of CH<sub>4</sub> in ACF-15 and SiC-DC. On the other hand our simulations only consider adsorption in the internal space for CNTs. Consequently, the comparable adsorption of CH<sub>4</sub> in (10, 10) CNT at low pressure is attributed to the enhanced

fluid-solid interaction energy in the nanotube, which is evident from Figure 4(a). It is seen that CH<sub>4</sub>-adsorbent interaction energies are quite similar in ACF-15 and SiC-DC, indicating similarity in the degree of confinement in these two structures, and these are much weaker than that in the (10, 10) CNT. The stronger interaction with the CNT is due to its high carbon density  $(2.25 \text{ g/cm}^3)$  and strong confinement resulting from the high curvature of the carbon wall. In summary, our simulations show that the level of disorder of the carbon structure does not significantly affect the adsorption of  $CH_4$  in porous carbons when the pore size distributions as well as the densities of the carbon structures are similar. For the same pore size, the adsorption of CH<sub>4</sub> will be enhanced in the pores formed by curved walls in comparison to the slit pores, due to the overlap of the potential field exerted by the curved walls, and the symmetric molecular structure of methane. Nevertheless, CH<sub>4</sub> adsorbs onto the both sides of the carbon layers in the disordered carbons. As we increase the curvature of a carbon wall, the adsorption of CH<sub>4</sub> will increase on the concave side, but the adsorption on the convex side is too complex to be predicted, which is dependent on the size of the pore located on the convex side and the curvature of the adjacent wall (Palmer et al., 2011). Consequently, the effect of curvature on the adsorption of CH<sub>4</sub> in disordered carbons remains an open question, and will be further studied in our future work.

#### 3.2 Effect of the molecular model of CH<sub>4</sub> on CO<sub>2</sub>/CH<sub>4</sub> mixture adsorption

Typically, the concentration of  $CH_4$  in natural gas is around 95% (Martín-Calvo *et al.*, 2008), consequently we investigated the adsorption of  $CO_2/CH_4$  mixture in (10, 10) CNT, ACF-15 and SiC-DC using the linear  $CO_2$  and 1-site and 5-site  $CH_4$ , with 5%  $CO_2$  in the bulk phase. The mixture isotherms at 300 K for the three adsorbents studied are shown in Figure 6. It was found the adsorption of  $CH_4$  is dominant in all the cases, primarily because of its high concentration in the bulk phase. In addition, the adsorption of 1-site  $CH_4$  in all these adsorbents is significantly enhanced by its stronger  $CH_4$ -adsorbent potential energy. We note that the adsorption isotherms of  $CO_2$  mixtures with the 1-site and 5-site  $CH_4$  are quite similar in all these carbons, when the pressure is below 0.5 MPa. This indicates that the molecular model of  $CH_4$  does not impose a significant influence on the adsorption of  $CO_2$  mixing with the1-site  $CH_4$  is slightly suppressed compared to the 5-site  $CH_4$  at high pressures. As adsorption progresses, the dominant adsorption of  $CH_4$  will further reduce the adsorption volume available for  $CO_2$ , and this effect is more significant for the adsorption of  $CO_2$  mixing with 1-site  $CH_4$ . As a consequence, at relatively high pressures, the adsorption of  $CO_2$  mixing

with the 1-site  $CH_4$  is further reduced in all the carbons, but especially in the (10, 10) CNT because of its smaller adsorption volume. The reduction in the amount of  $CO_2$  is also a consequence of the enhanced 1-site  $CH_4$ -adsorbent potential energy.

While the adsorption of 1-site  $CH_4$  is enhanced by the stronger adsorbate-adsorbent potential energy, the adsorption of coexisting  $CO_2$  remains almost unaffected at low pressure and decreases slightly at high pressure in these adsorbents. The equilibrium selectivity of the adsorbent for  $CO_2$  relative to  $CH_4$  is calculated as

$$S_{CO_2} = \frac{x_{CO_2} / y_{CO_2}}{x_{CH_4} / y_{CH_4}}$$
(2)

where  $x_i$  and  $y_i$  are the mole fractions of species *i* in the adsorbed phase and the bulk phase, respectively. As illustrated in Figure 7, the selectivity for CO<sub>2</sub> is greatly underestimated by the 1-site CH<sub>4</sub> model in all the adsorbents studied, and it is likely that this observation is somewhat general, and not specific to the adsorbents under study.

It is interesting to note that while the selectivity of (10, 10) CNT increases with bulk pressure, the selectivity in ACF-15 and SiC-DC decreases with pressure. To explore this phenomenon, we first investigated the variation of CO<sub>2</sub>-adorbent and CH<sub>4</sub>-adsorbent energies versus pressure in (10, 10) CNT, ACF-15 and SiC-DC, illustrated in Figure 8. It is observed that the adsorbate-adsorbent energies in the (10, 10) CNT decrease slightly with increasing pressure. Therefore, the increase of the selectivity of the (10, 10) CNT with pressure could be caused by two factors: either cooperative CO<sub>2</sub>-adsorbate interactions or the adsorbate sieving effect. As total loading is increased, the adsorbate-adsorbate energies are enhanced. The increase in the CO<sub>2</sub>-adsorbate energy is greater than the CH<sub>4</sub>-adsorbate energy as illustrated in Figure 9 and therefore adsorption of CO<sub>2</sub> is promoted over adsorption of CH<sub>4</sub> (Babarao et al., 2009). On the other hand,  $CO_2$  has a much smaller effective diameter (0.3033 nm) in its axial direction than the tetrahedral  $CH_4$  (0.381nm for the spherical  $CH_4$  and an approximately similar effective diameter for the tetrahedral CH<sub>4</sub>). As adsorption progresses, adsorbates in the nanotube tend to form discrete aggregates, which merge to fill the volume at high pressure. The rotational freedom of  $CO_2$  is almost unconstrained in the (10, 10) CNT, so that CO<sub>2</sub> can adjust its orientation to achieve sterically and energetically favourable configurations that can be accommodated into existing aggregates, as the insertion of  $CH_4$  is rejected. This is analogous to a molecular sieving effect imposed by the pre-adsorbed

molecules. To support this explanation, we conducted simulations in which the CH<sub>4</sub>-adorbate energy was calculated at any simulation step where a CO<sub>2</sub> insertion was accepted, with a randomly generated orientation for CH<sub>4</sub> placed at the same position as the centre of mass as the inserted CO<sub>2</sub>. We also calculated interaction energies for a CH<sub>4</sub> molecule with a randomly generated orientation placed at the same position as the centre of mass as the inserted  $CO_2$ . The insets of Figure 9 (a) and (b) show these specific CO<sub>2</sub>-adsorbate and CH<sub>4</sub>-adsorbate interaction energies as a function of bulk pressure for the 3-site CO<sub>2</sub> and 5-site CH<sub>4</sub> in the (10, 10) CNT, ACF-15 and SiC-DC. It is clear that this adsorbate sieving effect is greatly enhanced as pressure is increased, as confirmed by the strong repulsive interactions suffered by the virtually inserted CH<sub>4</sub> molecules. As a consequence of both the adsorbate sieving effect and the additional  $CO_2$ -adsorbate interactions, the selectivity of the (10, 10) CNT increases with pressure although the adsorbate-adsorbent interactions do not change significantly. The selectivity only increases slightly with pressure as adsorption approaches saturation at high pressure, because the cooperative interactions and the adsorbate sieving effect change less rapidly with pressure, and the increase in the entropic effect due to packing restrictions tends to offset the contributions from these two factors. One can expect that the selectivity of a (10, 10) CNT will actually decrease with increase in pressure at high enough pressures when the adsorbate sieving effect will disappear, and the entropic effect will take over completely, as can be seen in the results of Palmer et al.(2011).

From Figure 8, it is clear that the co-adsorption of  $CO_2/CH_4$  in AC-F15 and SiC-DC occurs preferentially in the narrow pores at low pressure, and shifts to larger pores at high pressures. Initially, the selectivities of ACF-15 and SiC-DC are even higher than in the (10, 10) CNT, which can be attributed to the molecular sieving effect. Since both disordered carbons have pores with widths smaller than 0.40 nm, which can only accommodate  $CO_2$  in a linear orientation, the molecular sieving effect is dominant. Since ACF-15 has a larger volume of these narrow pores than SiC-DC, it exhibits a higher selectivity for  $CO_2$  (Farmahini *et al.*, 2013; Nguyen *et al.*, 2008). It is notable that varying the morphology of these porous carbons does not significantly affect the selectivity of  $CO_2$  relative to  $CH_4$ . The insets in Figure 9 show that the adsorbate sieving effect in ACF-15 and SiC-DC is much weaker than in the (10, 10) CNT. Although the adsorption isotherms of  $CO_2$  and  $CH_4$  in the (10, 10) CNT are lower than in the ACF-15 and SiC-DC above 1.0 MPa, the number densities of  $CO_2$  and  $CH_4$  in the (10, 10) CNT are actually much higher than that in the other two porous carbons, due to the high carbon atom density and high degree of confinement in the CNT. Consequently, the

adsorbate sieving effect is much weaker in disordered carbons, compared to the (10, 10) CNT. Accordingly, as illustrated in Figure 8 the rapid reduction in the adsorbate-adsorbent interactions offsets the contribution from the cooperative CO<sub>2</sub>-adsorbates interactions and adsorbate sieving effect completely, and leads to the decrease in selectivity with pressure.

#### 3.3 Effect of composition on the adsorption of CO<sub>2</sub>/CH<sub>4</sub>

As shown above (Figures 3 and 6(b)), the adsorption isotherms of pure CH<sub>4</sub> and CO<sub>2</sub>/CH<sub>4</sub> mixture in SiC-DC and ACF-15 are quite similar, so SiC-DC will be chosen to represent the disordered carbons in further discussions. Boutin *et al.* (1994) and Lachet *et al.* (1996) reported that unlike the 5-site model, the 1-site model failed to reproduce the experimental isotherms of CH<sub>4</sub> in AlPO<sub>4</sub>-5. In addition, we have shown the 1-site CH<sub>4</sub> overestimated the adsorption of CH<sub>4</sub> and underestimated the selectivity for CO<sub>2</sub> in CNTs, ACF-15 and SiC-DC, and further discussion will therefore be based on the 5-site CH<sub>4</sub> and 3-site CO<sub>2</sub>. The composition of natural gas found in different reservoirs varies significantly, such that the ratio of CO<sub>2</sub>/CH<sub>4</sub> in natural gas has a wide range of distribution (Rojey *et al.*, 1997). We investigated three compositions, having CO<sub>2</sub> contents of 5%, 25%, and 50% to reveal the effect of composition on the adsorptive and selective properties of the CNT and SiC-DC.

Figures 10 (a) and (b) respectively depict the isotherms of  $CO_2$  and  $CH_4$  in (10, 10) CNT and in Si-CDC at 300 K for different compositions. The adsorption of  $CO_2$  is completely dominant for adsorption from equimolar mixtures due to the energetic and adsorbate sieving effects. When the concentration of  $CH_4$  is increased to 75%, it is found that the adsorbed amounts of  $CH_4$  in the (10, 10) CNT and in SiC-DC have increased, but are still far below that of  $CO_2$ . However, on further increase to 95%  $CH_4$ , the adsorption of  $CH_4$  becomes dominant. At a fixed bulk pressure, increasing the concentration of  $CH_4$  in the bulk phase reduces the total adsorbed amount of  $CO_2$  and  $CH_4$ . Because  $CH_4$  has a less energetically and sterically favourable molecular configuration for adsorption, the increase in the amount of  $CH_4$  adsorbed fails to compensate for the reduction in the amount of  $CO_2$  in the adsorbed phase.

Varying the composition of the gas mixture affects the tendency of the adsorbate to form clusters, and will therefore change the selectivity. Figure 10 (c) shows how the selectivity of the (10, 10) CNT increases dramatically with increasing concentration of  $CO_2$  in the gas phase. At equimolar bulk concentration, more  $CO_2$  is adsorbed and most of the adsorption space is occupied by aggregates of the linear  $CO_2$  molecules, as is evident from snapshots

presented in Figure 11. This adsorbate structure will preferentially adsorb additional  $CO_2$  molecules and will tend to reject the tetrahedral  $CH_4$  molecules. It is noted that, at a fixed bulk pressure, increasing the concentration of  $CO_2$  in bulk phase increases the adsorbate loading as well as the fraction of  $CO_2$  in adsorbed phase, which subsequently enhances the adsorbate-adsorbate lateral interactions. The combination of increased concentration of  $CO_2$ . In addition, the gas phase and the adsorbate sieving effect increases the selectivity in favour of  $CO_2$ . In addition, the selectivity increases even more rapidly with increase in pressure for the cases having higher concentration of  $CO_2$  in bulk phase. However, at high pressure, the selectivity of CNT increases only slightly for all the compositions, as the co-adsorption approaches saturation. Moreover, for the equimolar bulk mixture, the selectivity of the (10, 10) CNT tends to decrease above a pressure of 2.5 MPa, which is because of the onset of entropic effects.

As noted earlier, for the gas mixture containing 5% CO<sub>2</sub>, the selectivity of SiC-DC decreases with increase in bulk pressure, which is because the adsorbate sieving effect and the cooperative CO<sub>2</sub>-adsorbate interactions are too weak to overcome the reduction in the adsorbate-adsorbent interactions. However, as the concentration of CO<sub>2</sub> increases to 25%, it is observed that the selectivity starts to increase slightly above a pressure of 1.5 MPa, which is caused by the enhanced  $CO_2$ -adsorbate interactions and the adsorbate sieving effect. Accordingly, for the equimolar bulk mixture, the selectivity starts to increase at lower pressure (0.4 MPa), and increases more rapidly compared to the case of low  $CO_2$ concentrations in bulk phase. We note that changing the composition of gas mixture has less significant influence on the selectivity of SiC-DC for  $CO_2$  compared to the (10, 10) CNT. This is because the confinement in SiC-DC is much weaker than in the CNT (lower intrinsic selectivity for  $CO_2$ , excluding the molecular sieve effect). Consequently, as the  $CO_2$ concentration in the bulk phase increases, the increase in the total loading and the fraction of  $CO_2$  in the adsorbed phase is less significant than that in the CNT; this subsequently leads to weaker enhancement in the cooperative CO<sub>2</sub>-adsorbates interactions and the adsorbate sieving effect. However, the lower adsorbate density in SiC-DC is also responsible for the weak influence of composition on the selectivity in SiC-DC.

At low bulk pressure, the adsorbed amount of a component is determined by its partial pressure and Henry constant (Nicholson and Parsonage, 1982), and the selectivity for CO<sub>2</sub> follows  $S_{CO_2} = K_{CH_4} / K_{CO_2}$ . The Henry constant for a specific component is only dependent

on the adsorbate-adsorbent interactions (Nicholson and Parsonage, 1982), and therefore, as observed in Figure 10 (c) and (d), the selectivities of the CNT and SiC-DC for different compositions converge to their corresponding constants, which are independent of the composition of gas mixture. In particular, the selectivity of Si-CDC decreases with increase in the concentration of  $CO_2$  when the bulk pressure is below 0.4 MPa, as shown in Figure 10 (d). Note that, the high selectivity of Si-CDC at low pressures is attributed to a molecular sieving effect, but since the total volume of these narrow pores is very limited, the amount of  $CO_2$  adsorbed into the narrow pores does not increase proportionally when the concentration of  $CO_2$  is increased from 5% to 50%. As a consequence, the selectivity of Si-CDC decreases with  $CO_2$  concentration at low pressures.

#### 3.4 Effects of temperature and diameter on the adsorption of CO<sub>2</sub>/CH<sub>4</sub> mixture in CNTs.

We investigated the adsorption of  $CO_2/CH_4$  in the (10, 10) CNT at 300 K, 325 K and 350 K, at a bulk phase mole fraction of  $CO_2$  of 5%. As depicted in Figure 12 (a), the adsorbed amounts of  $CO_2$  and  $CH_4$  both decrease with increase in temperature due to the exothermic nature of adsorption. However, the selectivity of the (10, 10) CNT decreases with increase in temperature as well, indicating the most effective separation of  $CO_2$  from natural gas using CNTs would be conducted at near-ambient temperatures. Similar effects of temperature on the adsorption and separation of  $CO_2/CH_4$  mixtures in ACF-15 and SiC-DC, not shown here, were observed in our simulations.

We also investigated the selectivity in a variety of armchair CNTs with diameters ranging from 0.81 nm to 2.03 nm at 300 K, in order to determine the optimum diameter for separating  $CO_2$  from natural gas. As the diameter was increased from 1.36 nm to 2.03 nm, the selectivity of CNT decreased, as seen in Figure 13. In contrast to the (10, 10) CNT, the contribution of the adsorbate-adsorbent energy to the total energy decreases significantly with adsorbate loading in the (12, 12) and (15, 15) CNTs, since these CNTs are wide enough to accommodate multilayers (Liu and Bhatia, 2013). So, in the (12, 12) and (15, 15) CNTs, the selectivity increases only slightly with bulk pressure, as the reduced confinement partly offsets the contribution from the  $CO_2$ -adsorbate pair interactions and the adsorbate sieving effect to enhance the selectivity for  $CO_2$ . However, the selectivity does not increase monotonically as diameter is reduced: in the (6, 6) CNT, selectivity is found to increase at pressures close to zero because of the high degree of confinement. At this diameter, the rotational freedom of  $CO_2$  is highly restricted, which dramatically reduces the selectivity with

increase in total loading (Nicholson and Gubbins, 1996). In the larger (7, 7) CNT, the restriction on the orientational configurations of CO<sub>2</sub> is less significant, and therefore the selectivity is higher than in the (6, 6) CNT, even though the confinement is less. However, the selectivity of the (7, 7) CNT increases more rapidly with pressure than that of the (10, 10)CNT, but less rapidly than in the (8, 8) CNT. In comparison to the (10, 10) CNT, the intrinsic selectivity of the (7, 7) CNT is much higher, so that the mole fraction of CO<sub>2</sub> in the adsorbed phase in the (7, 7) CNT is much higher than that in the (10, 10) CNT. Consequently, the adsorbate sieving effect and the CO<sub>2</sub>-adsorbates interactions are enhanced in the (7, 7) CNT with increasing the pressure. On the other hand, the restriction on the rotational freedom of  $CO_2$  in the (7, 7) CNT is still strong, as confirmed by the total density distribution of adsorbates in the (7, 7) CNT at 1.0 MPa, depicted in Figure 14. It is seen that while the adsorbates accommodate themselves into a single layer in the (8, 8) CNT at 1.0 MPa, there is insufficient space to form a complete adsorbate layer in the (7, 7) CNT. The interplay between the entropic effect and the adsorbate-adsorbent energy means that the selectivity of the (7, 7) CNT increases less rapidly than in the (8, 8) CNT, but more rapidly than in the (10, 10) CNT.

The separation of  $CO_2$  from natural gas is generally conducted at ambient temperature and atmospheric pressure, with the concentration of  $CH_4$  being around 95% (Martín-Calvo *et al.*, 2008). In Figure 15 (a), we have plotted the selectivity and the adsorbed amount of  $CO_2$  as a function of the diameter of the CNT, at a pressure of 0.1MPa and a temperature of 300 K; the selectivity of CNT increases as the diameter increases from 0.81 nm to 0.95 nm, and then decreases with further increase in diameter. The selectivity achieves a maximum value of 8.31 in the (7, 7) CNT with a diameter of 0.95 nm, which also corresponds to the maximum in the amount of  $CO_2$  adsorbed (Figure 15 (b)). Both the selective and the adsorptive properties of the (7, 7) CNT are superior to the disordered carbons. Thus, based on our results, the (7, 7) CNT having diameter of 0.95 nm has the greatest potential for separating  $CO_2$  from natural gas.

#### 4. Conclusions

We have presented a detailed study of the adsorption of  $CH_4$  and  $CO_2/CH_4$  mixture in CNTs and realistic porous carbons, ACF-15 and SiC-DC. It is found that the united atom model of  $CH_4$  always over predicts the adsorption of  $CH_4$  in CNTs and disordered porous carbons compared to the all-atom model, which is attributed to its enhanced potential energy with

pore walls in the united atom model. Further, for the adsorption of  $CO_2/CH_4$  mixtures, while the adsorption of 1-site  $CH_4$  is enhanced in all the carbons, the adsorption of co-existing  $CO_2$ is slightly reduced at high pressure because of loss of adsorption space that is occupied by the additionally adsorbed 1-site  $CH_4$ . Consequently, the selectivities of CNTs and disordered carbons for  $CO_2$  relative to  $CH_4$  are severely underestimated compared to the co-adsorption of  $CO_2$  and 5-site  $CH_4$ . However, the similarity between the adsorption isotherms of pure  $CH_4$ and  $CO_2/CH_4$  mixtures in ACF-15 and in the much more disordered SiC-DC demonstrates that the morphology of porous carbons has little impact on the adsorptive and selective properties of porous carbons when the pore size distributions as well as the carbon framework densities are similar.

In a (10, 10) CNT the selectivity for  $CO_2$  is an increasing function of pressure, while the selectivity of amorphous AC-F15 and SiC-DC decreases with increase in pressure. This phenomenon is a result of the competition between the adsorbate-adsorbent interaction and the adsorbate-adsorbate interplays. It is also found that increasing the concentration of  $CO_2$  in the gas phase increases the selectivity of the (10, 10) CNT but has an insignificant influence on selectivity in amorphous porous carbons. The adsorbate density in and selectivity of the (10, 10) CNT are much higher than in the other two porous carbons, due to its high carbon density and uniform confined space having high pore wall curvature. Additionally, the adsorbate-adsorbate pair configurations create an adsorbate sieving effect which is dramatically enhanced for the linear  $CO_2$  as the concentration of  $CO_2$  in gas phase is increased. Consequently, the selectivity of the (10, 10) CNT is almost doubled at high pressures when the concentration of  $CO_2$  is increased from 5% to 50%.

Increasing the temperature reduces the selectivity of these carbons. We find that the (7, 7) CNT having a diameter of 0.95 nm adsorbs the maximum amount of CO<sub>2</sub> and has the highest selectivity for CO<sub>2</sub>, at 0.1 MPa.

#### Acknowledgement

One of us (SKB) acknowledges an Australian Professorial Fellowship from the Australian Researches Council. Lang Liu gratefully acknowledges the Chinese Government for a CSC (China Scholarship Council) scholarship. This research has been supported by the Australian Research Council through a grant under the Discovery scheme.

#### Reference

Allen, M.P., Tildesley, D.J., 1989. Computer simulation of liquids. Oxford University Press, Oxford.

Babarao, R., Hu, Z., Jiang, J., Chempath, S., Sandler, S.I., 2006. Storage and separation of  $CO_2$  and  $CH_4$  in silicalite, C168 schwarzite, and IRMOF-1: a comparative study from Monte Carlo simulation. Langmuir. 23, 659-666.

Babarao, R., Jiang, J., 2009. Unprecedentedly high selective adsorption of gas mixtures in rho zeolite-like metal–organic framework: a molecular simulation study. J. Am. Chem. Soc. 131, 11417-11425.

Babarao, R., Jiang, J., Sandler, S.I., 2009. Molecular simulations for adsorptive separation of CO<sub>2</sub>/CH<sub>4</sub> mixture in metal-exposed, catenated, and charged metal-organic frameworks. Langmuir. 25, 5239-5247.

Bhatia, S.K., Nicholson, D., 2012. Adsorption and diffusion of methane in silica nanopores: a comparison of single-site and five-site models. J. Phys. Chem. C. 116, 2344-2355.

Bhatia, S.K., Tran, K., Nguyen, T.X., Nicholson, D., 2004. High-pressure adsorption capacity and structure of CO<sub>2</sub> in carbon slit pores: theory and simulation. Langmuir. 20, 9612-9620.

Boutin, A., Pellenq, R.J.-M., Nicholson, D., 1994. Molecular simulation of the stepped adsorption isotherm of methane in AlPO<sub>4</sub>-5. Chem. Phys. Lett. 219, 484-490.

Cracknell, R.F., Nicholson, D., Quirke, N., 1993. A grand canonical Monte-Carlo study of Lennard-Jones mixtures in slit shaped pores. Mol. Phys. 80, 885-897.

Cracknell, R.F., Nicholson, D., Quirke, N., 1994. A grand canonical Monte Carlo study of Lennard-Jones mixtures in slit pores; 2: mixtures of two centre ethane with methane. Mol. Simulat. 13, 161-175.

Cracknell, R. F., Nicholson, D., Tennison, S. R., Bromhead, J., 1996 Adsorption selectivity of carbon dioxide with methane and nitrogen in slit shaped carbonaceous micropores: simulation and experiment. Adsorption 2, 193-203.

Dash, R., Chmiola, J., Yushin, G., Gogotsi, Y., Laudisio, G., Singer, J., Fischer, J., Kucheyev, S., 2006. Titanium carbide derived nanoporous carbon for energy-related applications. Carbon. 44, 2489-2497.

Do, D.D., Do, H.D., 2005. Evaluation of 1-site and 5-site models of methane on its adsorption on graphite and in graphitic slit pores. J. Phys. Chem. B. 109, 19288-19295.

Ducrot-Boisgontier, C., Parmentier, J., Faour, A., Patarin, J., Pirngruber, G.D., 2010. FAUtype zeolite nanocasted carbon replicas for CO<sub>2</sub> adsorption and hydrogen purification. Energ Fuels. 24, 3595-3602.

Farmahini, A.H., Opletal, G., Bhatia, S.K., 2013. Structural modelling of silicon carbidederived nanoporous carbon by hybrid reverse Monte Carlo simulation. J. Phys. Chem. C. 117, 14081-14094.

Gelb, L.D., Gubbins, K.E., 1999. Pore size distributions in porous glasses: a computer simulation study. Langmuir. 15, 305-308.

Gogotsi, Y., Nikitin, A., Ye, H., Zhou, W., Fischer, J.E., Yi, B., Foley, H.C., Barsoum, M.W., 2003. Nanoporous carbide-derived carbon with tunable pore size. Natural Materials. 2, 591-594.

Harris, J.G., Yung, K.H., 1995. Carbon dioxide's liquid-vapor coexistence curve and critical properties as predicted by a simple molecular model. J. Phys. Chem. 99, 12021-12024.

Herm, Z.R., Swisher, J.A., Smit, B., Krishna, R., Long, J.R., 2011. Metal–organic frameworks as adsorbents for hydrogen purification and precombustion carbon dioxide capture. J. Am. Chem. Soc. 133, 5664-5667.

Heuchel, M., Davies, G.M., Buss, E., Seaton, N.A., 1999. Adsorption of carbon dioxide and methane and their mixtures on an activated carbon: simulation and experiment. Langmuir. 15, 8695-8705.

Hirschfelder, J.O., Curtiss, C.F., Bird, R.B., 1954. Molecular theory of gases and liquids. John Wiley, New York.

Kunz, O., Wagner, W., 2012. The GERG-2008 wide-range equation of state for natural gases and other mixtures: an expansion of GERG -2004. J. Chem. Eng. Data. 57, 3032-3091.

Kurniawan, Y., Bhatia, S.K., Rudolph, V., 2006. Simulation of binary mixture adsorption of methane and CO<sub>2</sub> at supercritical conditions in carbons. AIChE J. 52, 957-967.

Lachet, V., Boutin, A., Pellenq, R.J.-M., Nicholson, D., Fuchs, A.H., 1996. Molecular simulation study of the structural rearrangement of methane adsorbed in aluminophosphate AlPO<sub>4</sub>-5. J. Phys. Chem. 100, 9006-9013.

Liu, B., Smit, B., 2009. Comparative molecular simulation study of  $CO_2/N_2$  and  $CH_4/N_2$  separation in zeolites and metal–organic frameworks. Langmuir. 25, 5918-5926.

Liu, B., Smit, B., 2010. Molecular simulation studies of separation of  $CO_2/N_2$ ,  $CO_2/CH_4$ , and  $CH_4/N_2$  by ZIFs. J. Phys. Chem. C. 114, 8515-8522.

Liu, L., Bhatia, S.K., 2013. Molecular simulation of CO<sub>2</sub> adsorption in the presence of water in single-walled carbon nanotubes. J. Phys. Chem. C. 117, 13479-13491.

Lu, C., Bai, H., Wu, B., Su, F., Hwang, J.F., 2008. Comparative study of CO<sub>2</sub> capture by carbon nanotubes, activated carbons, and zeolites. Energ Fuels. 22, 3050-3056.

Martín-Calvo, A., García-Pérez, E., Manuel Castillo, J., Calero, S., 2008. Molecular simulations for adsorption and separation of natural gas in IRMOF-1 and Cu-BTC metal-organic frameworks. Phys. Chem. Chem. Phys. 10, 7085-7091.

Nguyen, T.X., Bae, J.-S., Bhatia, S.K., 2009. Characterization and adsorption modeling of silicon carbide-derived carbons. Langmuir. 25, 2121-2132.

Nguyen, T.X., Cohaut, N., Bae, J.-S., Bhatia, S.K., 2008. New method for atomistic modeling of the microstructure of activated carbons using hybrid reverse Monte Carlo simulation. Langmuir. 24, 7912-7922.

Nicholson, D., Gubbins, K.E., 1996. Separation of carbon dioxide–methane mixtures by adsorption: effects of geometry and energetics on selectivity. J. Chem. Phys. 104, 8126-8134.

Nicholson, D., Parsonage, N.G., 1982. Computer simulation and the statistical mechanics of adsorption. Academic Press, New York.

Palmer, J.C., Moore, J.D., Roussel, T.J., Brennan, J.K., Gubbins, K.E., 2011. Adsorptive behavior of CO<sub>2</sub>, CH<sub>4</sub> and their mixtures in carbon nanospace: a molecular simulation study. Phys. Chem. Chem. Phys. 13, 3985-3996.

Pevida, C., Plaza, M.G., Arias, B., Fermoso, J., Rubiera, F., Pis, J.J., 2008. Surface modification of activated carbons for CO<sub>2</sub> capture. Appl. Surf. Sci. 254, 7165-7172.

Presser, V., Heon, M., Gogotsi, Y., 2011. Carbide-derived carbons – from porous networks to nanotubes and graphene. Adv. Funct. Mater. 21, 810-833.

Przepiórski, J., Skrodzewicz, M., Morawski, A.W., 2004. High temperature ammonia treatment of activated carbon for enhancement of CO<sub>2</sub> adsorption. Appl. Surf. Sci. 225, 235-242.

Rojey, A., Jaffret, C., Cornot-Gandolphe, S., Durand, B., Jullian, S., Valaris, M., 1997. Natural gas: production, process, transport. Editions Technip, Paris.

Skoulidas, A.I., Ackerman, D.M., Johnson, J.K., Sholl, D.S., 2002. Rapid transport of gases in carbon nanotubes. Phys. Rev. Lett. 89, 185901.

Skoulidas, A.I., Sholl, D.S., Johnson, J.K., 2006. Adsorption and diffusion of carbon dioxide and nitrogen through single-walled carbon nanotube membranes. J. Chem. Phys. 124, 054708.

Steele, W.A., 1978. The interaction of rare gas atoms with graphitized carbon black. J. Phys. Chem. 82, 817-821.

Sun, Y., Spellmeyer, D., Pearlman, D.A., Kollman, P., 1992. Simulation of the solvation free energies for methane, ethane, and propane and corresponding amino acid dipeptides: a critical test of the "bond-pmf" correction, a new set of hydrocarbon parameters, and the gas phase-water hydrophobicity scale. J. Am. Chem. Soc. 114, 6798-6801.

Tang, Y.W., Chan, K.Y., 2004. The dot and line method: a long range correction to coulomb interaction in a cylindrical pore. Mol. Simulat. 30, 63-70.

Zhang, Q., Chan, K.Y., Quirke, N., 2009. Molecular dynamics simulation of water confined in a nanopore of amorphous silica. Mol. Simulat. 35, 1215-1223.

#### List of Tables

**Table 1.** Lennard–Jones parameters, partial charges and configurational parameters for the EPM2  $CO_2$ , 1-site and 5-site  $CH_4$ 

# Table 1. Lennard–Jones parameters, partial charges and configurational parameters for the EPM2 CO<sub>2</sub>, 1-site and 5-site CH<sub>4</sub>

| Molecule       | $\varepsilon / k_{B}(K)$ | $\sigma$ (nm) | <i>q</i> (e) | l(nm)  | $\theta$ (deg) |
|----------------|--------------------------|---------------|--------------|--------|----------------|
| Carbon dioxide |                          |               |              |        |                |
| С—С            | 28.129                   | 0.2757        | +0.6512      |        |                |
| 0-0            | 80.507                   | 0.3033        | -0.3256      |        |                |
| С—О            | 47.588                   | 0.2895        |              | 0.1149 |                |
| 0—C—0          |                          |               |              |        | 180.0          |
| Methane 1-site |                          |               |              |        |                |
| $CH_4$         | 148.1                    | 0.381         |              |        |                |
| Methane 5-site |                          |               |              |        |                |
| С—С            | 55.055                   | 0.34          | -0.66        |        |                |
| Н—Н            | 7.901                    | 0.265         | +0.165       |        |                |
| С—Н            | 20.856                   | 0.3025        |              | 0.109  |                |
| Н—С—Н          |                          |               |              |        | 109.5          |
| ceptednic      |                          |               |              |        |                |
| R              |                          |               |              |        |                |

#### **List of Figures**

**Figure 1.** Atomistic configurations of (a) CNT, (b) ACF-15, and (c) SiC-DC, and (d) the geometric pore size distributions of ACF-15 and SiC-DC.

Figure 2. Bulk isotherms of 5-site and 1-site CH<sub>4</sub>, at 300 K.

**Figure 3.** Adsorption isotherms of 1-site and 5-site  $CH_4$  in (10, 10) CNT, ACF-15, and SiC-DC at 300 K.

**Figure 4.** Loading variation of (a) CH<sub>4</sub>-adsorbent, and (b) CH<sub>4</sub>-CH<sub>4</sub> interaction energies, in (10, 10) CNT, SiC-DC and ACF-15 at 300 K, from GCMC simulations.

**Figure 5.** (a) Radial distribution functions, and (b) density distributions of the1-site and 5-site CH<sub>4</sub> in (10, 10) CNT.

**Figure 6.** Adsorption isotherms of  $CO_2$  and  $CH_4$  in (a) (10, 10) CNT, (b) SiC-DC and ACF-15 at 300 K. The molar content of  $CO_2$  in the  $CO_2/CH_4$  bulk mixture phase is 5%.

**Figure 7.** Pressure variation of  $CO_2$  selectivities of (10, 10) CNT, SiC-DC and ACF-15, for 1-site and 5-site CH<sub>4</sub> at 300 K. The bulk phase  $CO_2/CH_4$  mixture has 5%  $CO_2$ .

**Figure 8.** Variation of  $CO_2$ -adsorbent and 5-site-CH<sub>4</sub>-adsorbent interaction energies with pressure in (10, 10) CNT, SiC-DC and ACF-15 at 300 K. The bulk phase has 5% (mole percent)  $CO_2$ .

**Figure 9.** Pressure variation of  $CO_2$ -adsorbate and 5-site-CH<sub>4</sub>-adsorbate interaction energies, in (a) (10, 10) CNT, and (b) SiC-DC, ACF-15, at 300 K. The insets compare CO<sub>2</sub>-adsorbate and 5-site-CH<sub>4</sub>-adsorbate interaction energies using CH<sub>4</sub> to replace the CO<sub>2</sub> at the same adsorption site. The bulk phase has 5% (mole percent) CO<sub>2</sub>.

**Figure 10.** Adsorption isotherms of CO<sub>2</sub> and CH<sub>4</sub> in (a) (10, 10) CNT, (b) SiC-DC, and pressure variation of the selectivities of (c) (10, 10) CNT, and (d) SiC-DC, 300 K. Three  $CO_2/CH_4$  mixture compositions are considered, having CO<sub>2</sub> contents of 5%, 25% and 50%.

**Figure 11.** Snapshots of configuration of adsorbed  $CO_2/CH_4$  mixtures of different composition in (10, 10) CNT, at 0.1MPa bulk pressure and 300 K.

Figure 12. (a) Adsorption isotherms of  $CO_2$  and  $CH_4$  in (10, 10) CNT, and (b) pressure variation of the  $CO_2$  selectivity of (10, 10) CNT, at 300 K, 325 K and 350 K. The mole fraction of  $CO_2$  is 5% in gas phase.

**Figure 13.** Pressure variation of the  $CO_2$  selectivity of CNTs of different diameter at 300 K, for 5%  $CO_2$  in gas phase.

Figure 14. Total adsorbate density distribution in CNTs, at 1.0 MPa bulk pressure.

**Figure 15.** Variation of (a)  $CO_2$  selectivity of CNT, and (b) adsorbed amount of  $CO_2$ , with CNT diameter, at 0.1 MPa and 300 K, for  $CO_2/CH_4$  bulk mixture having 5%  $CO_2$ .



**Figure 1.** Atomistic configurations of (a) CNT, (b) ACF-15, and (c) SiC-DC, and (d) the geometric pore size distributions of ACF-15 and SiC-DC.



Figure 2. Bulk isotherms of 5-site and 1-site CH<sub>4</sub>, at 300 K.

- and



**Figure 3.** Adsorption isotherms of 1-site and 5-site  $CH_4$  in (10, 10) CNT, ACF-15, and SiC-DC at 300 K.



**Figure 4.** Loading variation of (a) CH<sub>4</sub>-adsorbent, and (b) CH<sub>4</sub>-CH<sub>4</sub> interaction energies, in (10, 10) CNT, SiC-DC and ACF-15 at 300 K, from GCMC simulations.



**Figure 5.** (a) Radial distribution functions, and (b) density distributions of the1-site and 5-site CH<sub>4</sub> in (10, 10) CNT.



**Figure 6.** Adsorption isotherms of  $CO_2$  and  $CH_4$  in (a) (10, 10) CNT, (b) SiC-DC and ACF-15 at 300 K. The molar content of  $CO_2$  in the  $CO_2/CH_4$  bulk mixture phase is 5%.



**Figure 7.** Pressure variation of  $CO_2$  selectivities of (10, 10) CNT, SiC-DC and ACF-15, for 1-site and 5-site CH<sub>4</sub> at 300 K. The bulk phase  $CO_2/CH_4$  mixture has 5%  $CO_2$ .

Accei



Figure 8. Variation of  $CO_2$ -adsorbent and 5-site  $CH_4$ -adsorbent interaction energies with pressure in (10, 10) CNT, SiC-DC and ACF-15 at 300 K. The bulk phase has 5% (mole percent)  $CO_2$ .

Accepter



**Figure 9.** Pressure variation of CO<sub>2</sub>-adsorbate and 5-site CH<sub>4</sub>-adsorbate interaction energies, in (a) (10, 10) CNT, and (b) SiC-DC, ACF-15, at 300 K. The insets compare CO<sub>2</sub>-adsorbate and 5-site CH<sub>4</sub>-adsorbate interaction energies using CH<sub>4</sub> to replace the CO<sub>2</sub> at the same adsorption site. The bulk phase has 5% (mole percent) CO<sub>2</sub>.



**Figure 10**. Adsorption isotherms of CO<sub>2</sub> and CH<sub>4</sub> in (a) (10, 10) CNT, (b) SiC-DC, and pressure variation of the selectivities of (c) (10, 10) CNT, and (d) SiC-DC, 300 K. Three  $CO_2/CH_4$  mixture compositions are considered, having CO<sub>2</sub> contents of 5%, 25% and 50%.

Accei



**Figure 11.** Snapshots of configuration of adsorbed  $CO_2/CH_4$  mixtures of different composition in (10, 10) CNT, at 0.1MPa bulk pressure and 300 K.

Accel



Figure 12. (a) Adsorption isotherms of  $CO_2$  and  $CH_4$  in (10, 10) CNT, and (b) pressure variation of the  $CO_2$  selectivity of (10, 10) CNT, at 300 K, 325 K and 350 K. The mole fraction of  $CO_2$  is 5% in gas phase.



Figure 13. Pressure variation of the  $CO_2$  selectivity of CNTs of different diameter at 300 K, for 5%  $CO_2$  in gas phase.



Figure 14. Total adsorbate density distribution in CNTs, at 1.0 MPa bulk pressure.



**Figure 15.** Variation of (a)  $CO_2$  selectivity of CNT, and (b) adsorbed amount of  $CO_2$ , with CNT diameter, at 0.1 MPa and 300 K, for  $CO_2/CH_4$  bulk mixture having 5%  $CO_2$ .

# **Research Highlights**

- Simulation of adsorption of CH<sub>4</sub> and CH<sub>4</sub>/CO<sub>2</sub> mixtures in nanoporous carbons.
- CO<sub>2</sub> selectivities are underestimated using a single site molecular model of CH<sub>4</sub>.
- Extent of disorder of porous carbon models has little impact on CO<sub>2</sub> selectivity
- Increased CO<sub>2</sub> fraction improves selectivity in a CNT but not in disordered carbons.
- A (7, 7) carbon nanotube offers best performance for  $CO_2/CH_4$  separation.

# **Graphical Abstract**

