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aminoheptanoic acid; Aoa, aminooctanoic acid; Cha, cyclohexylalanine; Nal, naphthylalanine; 

Boc, benzyloxycarbonyl; Bzl, benzyl. 
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Abstract 

Neuronal nicotinic acetylcholine receptors (nAChRs) are a diverse class of ligand-gated ion 

channels involved in neurological conditions such as neuropathic pain and Alzheimer’s disease. 

D-Conotoxin [A10L]PnIA is a potent and selective antagonist of the mammalian D7 nAChR with 

a key binding interaction at position 10. We now describe a molecular analysis of the receptor – 

ligand interactions that determine the role of position 10 in determining potency and selectivity 

for the D7 and D3E2 nAChR subtypes. Using electrophysiological and radioligand binding 

methods on a suite of [A10L]PnIA analogs we observed that hydrophobic residues in position 10 

maintained potency at both subtypes whereas charged or polar residues abolished D7 binding. 

Molecular docking revealed dominant hydrophobic interactions with several D7 and D3E2 

receptor residues via a hydrophobic funnel. Incorporation of norleucine (Nle) caused the largest 

(8-fold) increase in affinity for the D7 subtype (Ki = 44 nM) though selectivity reverted to D3E2 

(IC50 = 0.7 nM). It appears that that placement of a single methyl group determines selectivity 

between D7 and D3E2 nAChRs via different molecular determinants.  
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1. Introduction 

Nicotinic acetylcholine receptors (nAChRs), along with GABAA [1], 5-HT3 [2] and glycine 

receptors, are members of the Cys-loop ligand-gated ion channel superfamily [3]. Structurally, 

nAChRs are pentamers, consisting of 5 subunits that each contain an N-terminal extracellular 

domain (ligand-binding domain), a transmembrane domain containing four transmembrane 

helices, and an intracellular domain [4,5]. These subunits associate to form a central, solvated, 

cation-conducting pore [6]. Neuronal nAChRs consist of either homomeric D subunits (D7, D8 or 

D9) or a combination of D and E subunits. This diverse subunit combination creates receptors 

with distinct pharmacological properties [7]. 

Neuronal nAChRs have been implicated in a variety of disease states, including Alzheimer’s 

disease [8], schizophrenia [9], a genetically transmissible form of epilepsy [10], inflammation 

and pain [11], and the autoimmune disease myasthenia gravis [12]. As such, there is great interest 

in characterizing ligands that can discriminate between different subunit arrangements of this 

receptor. 

Conotoxins are a diverse group of disulfide-rich peptides with exquisite selectivity for many 

mammalian ion channel and receptor subtypes [13-16]. D-Conotoxins (D-Ctxs) range in size from 

9í14 amino acids and have an affinity for a variety of nAChR subtypes. Their small size, rigid 

framework consisting of four- and seven-residue loops conferred by two disulfide bonds, and 

ease of synthesis make them ideal for structureífunction studies (Table 1) [17-19]. 

We and others have previously reported that a single amino acid change at position 10 between 

two closely related D-Ctxs, PnIA and PnIB, caused nAChR subtype selectivity to change from 

the D3E2 to D7 [20-22]. In further studies, D-Ctx [A10L]PnIA, acted as an antagonist of chick 
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wild-type D7 nAChRs expressed in Xenopus oocytes, as well as being an D7-L247T receptor 

agonist [23]. The D7-L247T receptor renders the closed state of the receptor conductive, and can 

be used to probe ligand interactions with otherwise electropharmacologically silent states. This 

highlights the ability of selective ligands to dissect the structure-function of these receptors. 

Computational docking studies [24] and crystal structures of conotoxin analogues bound to the 

analogous acetylcholine binding protein (AChBP) have revealed how the toxins and receptors 

interact, including how the residue at position 10 interacts with the (+)-face of the ȕ subunit [25-

30]. 

To explore in more detail the nature of the intermolecular interactions of D-Ctx [A10L]PnIA that 

control selectivity between the Į7 and D3E2 nAChRs, we used a chemical peptide synthesis 

strategy to evaluate a range of coded and non-coded amino acids in position 10 that vary in 

polarity, shape and size (Figure 1). The strategy employed was to select the tightest binding 

analogues at the Į7 nAChR and evaluate their functional activity in Į7, D3E2 and D4E2 nAChR 

assays to determine the position 10 influence on nicotinic receptor subtype selectivity. 

 

2. Materials and Methods 

All Boc-amino acids (with the exception of Boc-aminoheptanoic acid and Boc-aminooctanoic 

acid) and 2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyl uronium hexafluorophosphate (HBTU) 

were from NovaBiochem (San Diego, CA). diethylisopropylamine (DIEA) and 

dimethylformamide (DMF) were purchased from Auspep (Melbourne, Australia). 4-

methylbenzylhydrylamine resin was purchased from Peptide Institute (Osaka, Japan). P-cresol, p-

thiocresol were from Sigma-Aldrich (Sydney, Australia). Anhydrous hydrogen fluoride was from 
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Boc Gasses (Sydney, Australia). HPLC grade acetonitrile (Lab Scan, Bangkok, Thailand) and 

distilled H2O (ELGA, Melbourne, Australia) were used throughout this work. All other organic 

reagents and solvents, unless stated otherwise, were purchased from Sigma-Aldrich (Sydney, 

Australia). 

2.1 Synthesis of 2-tert-Butyloxycarbonylaminoheptanoic acid  

The aliphatic amino acids were synthesized as described previously [31]. Diethyl 

acetamidomalonate (15 g, 69 mmol) and 1-bromopentane (12 mL, 97 mmol) were heated at 

reflux in a solution of sodium (1.9 g, 83 mmol) in ethanol (50 mL) for 24 h. Upon cooling, the 

reaction mixture was poured onto crushed ice (300 mL) and the precipitate was filtered and 

washed with water. The resulting solid was placed in a 500 mL round-bottom flask to which 

concentrated HCl (90 mL) and dimethylformamide (10 mL) were added. The mixture was heated 

at reflux overnight. After cooling, nitrogen was bubbled through the solution for 3 h to reduce the 

concentration of HCl. The reaction mixture was then diluted 2-fold with 50% ethanol (aq), which 

we had increased the pH to 5 through adding KOH(s). At this pH a precipitate began to form, and 

the solution was kept at 4oC overnight. The precipitate was collected, washed with ice cold 

ethanol, and air dried to afford 3.8 g, of white, needle-like crystals. The crystals (3.8 g, 26 mmol) 

and potassium carbonate (7.2 g, 52 mmol) were dissolved in water (30 mL). To this solution, di-

tert-butyldicarbonate (6.86 g, 31.4 mmol) dissolved in tetrahydrofuran (50 mL) was slowly 

added. The solution was then stirred vigorously for 3 h. Water (50 mL) and diethyl ether (50 mL) 

were added, and the aqueous layer collected and further extracted with ether (50 mL). The 

aqueous layer was then acidified to pH 2 with citric acid (50% solution w/v). The resulting 

precipitate was extracted with ethyl acetate (2 x 50 mL) and dried over magnesium sulfate before 

the solvent was removed under reduced pressure. The resulting oil was stored at 4oC overnight 
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and an amorphous solid formed. The product was recrystallized from ethyl acetate/hexane 

yielding 4.4 g, 70% of a white solid. 1H NMR (DMSO-d6, 300 MHz) G 0.96 (t, J=6.2 Hz, 3H), 

1.20 (m, 6H), 1.38 (s, 9H), 1.58 (m, 2H), 1.62 (m, 2H), 3.60 (m, 1H), 7.5 (d, J=9.0 Hz, 1H); 

HRMS [obs. M+H+ 245.1426 Da; calc. 245.1627 Da]. 

2.2 Synthesis of 2-tert-butyloxycarbonylaminooctanoic acid  

This synthesis used the same method used for Aha, with1-bromopentane being used instead of 1-

bromohexane. The yield of 2-aminooctanoic acid was 54%, whereas the yield of the title 

compound was 67%, and isolated as an amorphous white solid. 1H NMR (DMSO-d6, 300 MHz) 

G 0.85 (t, J=7.2 Hz, 3H), 1.23 (m, 8H), 1.38 (s, 9H), 1.55 (m, 2H), 1.60 (m, 2H), 3.88 (m, 1H), 

7.2 (d, J=9.1 Hz, 1H); HRMS [obs. M+H+ 259.1777 Da; calc. 259.1784 Da]. 

2.3 Peptide synthesis 

Peptides were synthesized manually on a 0.5 mM scale using Boc/Bzl chemistry with in situ 

neutralization protocols [32]. Amino acids were incorporated with the following side chain 

protecting groups: Cys(Meb), Asp(OcHex), Glu(OcHex), Lys(2-ClZ), Asn(Xan), Gln(Xan), 

Arg(Tos), Ser(Bzl), Thr(Bzl), Trp(For) and Tyr(2-BrZ). All other amino acids were incorporated 

unprotected.  

Deprotection of the N-terminal Boc group was afforded using neat trifluoroacetic acid (TFA; 2 x 

1 min), followed by a 1 min DMF flow wash. The amino acid (2 mmol) was dissolved in a 0.5 

mM solution of HBTU in DMF (4 mL). DIEA (460 PL, 2.6 mmol) was added to the amino acid 

solution immediately before the drained resin was added. The amino acid was allowed to couple 

for 10 min, whereby a ninhydrin reaction was performed. If the coupling was 99.6% complete or 

more, the coupling solution was drained, resin washed with DMF, and the Boc group removed 
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with TFA treatment (2 x 1 min). If the coupling was less than 99.6%, the coupling solution was 

drained, the resin washed with DMF and a fresh solution of activated amino acid was re-coupled. 

If coupling was less than 99.6 % after 2 coupling rounds, the free amino groups were acetylated. 

Residues 11í16 were manually assembled in one large batch on 4-methylbenzhydrylamine resin 

(Figure 2). After addition of asparagine 11 to the growing peptide chain, the resin was washed 

and dried. The large batch was then split 17 ways to provide the base sequence for all analogues 

(PnIA, [A10L]PnIA and 15 analogues). All peptides assembled smoothly, with average coupling 

efficiencies of 99.96% as determined by the quantitative ninhydrin assay [33].  

Resin (300 mg) was cleaved in 10 mL of anhydrous HF, in the presence of p-cresol and p-

thiocresol (18:1:1 HF:p-cresol:p-thiocresol). The reaction was carried out at 0oC for 1.5 h. The 

HF was removed under vacuum and deprotected peptides precipitated by adding ice cold 

diethyether. The solution was filtered through a polypropylene filter and the peptides were 

dissolved away from the resin by adding a 45% solution of acetonitrile in 0.1% TFA (aq) before 

lyophilization. Peptides were identified by analytical HPLC and mass spectrometric (MS) 

analysis, and purified further by preparative HPLC, if necessary. Oxidative folding was achieved 

by diluting peptides to 0.1 mg/mL in a 30% isopropanol/0.1 M ammonium bicarbonate solution, 

pH 8, in an open vessel and stirring. It was previously demonstrated that adding a water-miscible 

organic solvent promotes the formation of the desired native (globular (1í3, 2í4)) disulfide 

arrangement [21,34-36] with increased HPLC retention times indicating that the oxidized folded 

product was more hydrophobic than its reduced precursor. Presence of fully oxidized material 

was determined when MS analysis showed a loss of 4 amu. The oxidation solution was acidified 

to pH 2 with neat TFA and the volume of solution reduced at the rotary evaporator. The 

concentrated oxidized solution was then diluted with 0.05% TFA (aq) before being filtered 
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through a 0.45 PM disposable syringe filter. The major product was isolated by preparative 

HPLC and lyophilized. We synthesized all analogues in 20–30% yield of the peptides based on 

the initial resin loading. 

2.4 HPLC and MS Analysis 

Analytical HPLC was performed on a Shimadzu LC-2010a HPLC equipped with a dual 

wavelength UV detector monitoring at 214 nm and 280 nm, using a Vydac C18 250 mm x 4.6 

mm ID, 300 Å column, operating at a flow rate of 1 mL/min. A routine solvent gradient of 0–

40% buffer B (0.043% TFA in 90% CH3CN (aq)) in buffer A (0.05 % TFA (aq)) over 40 min 

was used. Preparative HPLC were performed using a Waters 600E solvent delivery system fitted 

with a 484 UV absorbance detector, using a Phenomenex Jupiter C18 250 mm x 21.2 mm ID 300 

Å column, operating at a flow rate of 10 mL/min. Absorbance was monitored at 230 nm. 

Fractions were taken manually, and analyzed by ESI-MS and analytical HPLC. 

Mass spectra were acquired using an LCT-TOF mass spectrometer (MicroMass, Manchester, 

UK) equipped with an electro-spray ionization source. Samples (10í20 PL) were injected into 

solvent flowing at 100 PL/min (70% acetonitrile (aq)/0.1% formic acid (aq)). The orifice 

potential was set to 90 V and, unless indicated otherwise, spectra were acquired over the mass 

range 500–2000 amu, with a resolution of 0.1 amu. Reconstructed molecular ions were calculated 

from the observed m/z values using MassLynx software (MicroMass, Manchester, UK). Masses 

for PnIA analogues were observed as follows (values in amu): PnIA 1622.93 (calc. 1622.85); 

[A10L] 1664.60 (calc. 1664.93); [A10Abu] 1637.06 (calc. 1636.88); [A10Nva] 1651.12 (calc. 

1650.91); [A10Nle] 1664.68 (calc. 1664.93); [A10V] 1650.86 (calc. 1650.91); [A10I] 1665.63 

(calc. 1664.93); [A10M] 1682.82 (calc. 1682.97); [A10Aha] 1678.14 (calc. 1678.63); [A10Aoa] 
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1691.12 (calc. 1691.25); [A10Cha] 1704.19 (calc. 1703.99); [A10F] 1698.76 (calc. 1698.95); 

[A10Nal] 1749.52 (calc. 1749.01); [A10S] 1638.96 (calc. 1638.85); [A10D] 1666.48 (calc. 

1666.86); [A10E] 1681.07 (calc. 1680.88); [A10K] 1680.38 (calc. 1679.95). 

2.5 Radioligand Displacement Assays 

Radioligand displacement assays were performed on a P2 rat brain membranes, prepared as 

described previously [37]. Non-specific binding was determined in the presence of 1 PM 

unlabeled D-bungarotoxin. Ten-fold serial dilutions of the test compounds were made in 

incubation buffer (50 mM HEPES, 100 mM NaCl, 0.2% BSA, pH 7.4). The test compound (100 

PL) was added to a 12 mm x 75 mm polypropylene culture tube along with 100 PL of 3 nM 

125ID-bungarotoxin (Amersham, Sydney Australia) and 100 PL of the P2 membrane. Compounds 

were incubated for 1 h. The membrane was collected and washed on Whatman GF/C filters 

(blocked with incubation buffer) with 3 x 2 mL volumes of ice cold wash buffer (incubation 

buffer without BSA). Radioactivity was determined by direct counting of the glass filters by a 

CliniGamma 1272 gamma counter (Wallac, Turku Finland). Results were analyzed using Prism 

v4.0b (GraphPad Software, Inc., San Diego, CA) and Ki was calculated using the One site – fit 

Ki function, with the radioligand concentration and Kd constrained to 1 nM. Data were analyzed 

using 1-way ANOVA analysis with Tukey’s test and were considered significantly different 

when  p < 0.05. 

2.6 Electrophysiological recordings from exogenously expressed nAChRs in Xenopus 

oocytes 

RNA preparation, oocyte preparation and expression of nAChR subunits in Xenopus oocytes 

were performed as described previously [38,39]. Briefly, capped RNA was synthesized from 
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cDNA encoding the rat Į7 and Į3ȕ2 and human Į7 and Į4ȕ2 nAChR subunits using an in vitro 

transcription kit (Ambion mMessage mMachine, Austin, TX). cRNA yield was determined by 

spectrophotometry.  

Xenopus laevis were anaesthetized using tricaine methanesulfonate (1.3 g/L). Oocytes were 

surgically removed, then placed in OR2 buffer (82.5 mM NaCl, 2 mM KCl, 1 mM CaCl2, 1 mM 

MgCl2 and 5 mM HEPES at pH 7.4) with 3 mg/mL collagenase at room temperature for 1–2 h. 

Collagenase was removed by rinsing 3 times in the same OR2 solution, followed by a further 3 

rinses in the final ND96 solution (96 mM NaCl, 2 mM KCl, 1 mM CaCl2, 1 mM MgCl2 and 5 

mM HEPES at pH 7.4), supplemented with 50 mg/L gentamycin, 5 mM pyruvic acid and 5% 

horse serum. Defolliculated oocytes were injected with ~ 5 ng cRNA for each subunit (1:1 

subunit ratio for D3E2 and D4E2) in 50 nL volume using a microinjector (Nanoject II™, 

Drummond Scientific Co., Broomall, PA), then kept at 18°C in the supplemented ND96 solution 

for 2í7 d before recording.  

Membrane currents were recorded from oocytes using the two-electrode (virtual ground circuit) 

voltage-clamp technique. Oocytes were placed in a bath (~ 200 µL) containing ND96 solution, 

impaled with glass microelectrodes and voltage-clamped at a holding potential of �80 mV using 

a GeneClamp 500B amplifier (Molecular Devices, Sunnyvale, CA). Microelectrodes were pulled 

from borosilicate glass (GC150TF-7.5, Harvard Apparatus, Holliston MA) and had resistances 

between 0.2 � 1.5 Mȍ when filled with 3M KCl. All recordings were conducted at room 

temperature (22°C). Acetylcholine (100 µM) was applied via a gravity-fed perfusion system for 3 

s (at ~ 2 mL/min), with 5 min washout periods between successive applications. Į-Ctx 

[A10L]PnIA analogues were applied directly into the bath and incubated for at least 5 min, 

before a further application of agonist [23]. Directly adding peptides to the bath conserved 
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material and avoided any potential adhesion to tubing surfaces. Data were sampled at 1 kHz and 

filtered at 200 Hz. Peak current amplitude was measured before and after incubation of 

[A10L]PnIA analogues. Concentrationíresponse curves for peptide inhibition of ACh-evoked 

peak current amplitude were fitted to the empirical Hill equation. IC50 and Hill coefficients (nH) 

were determined and t-tests were used to determine significance.  

2.7 Computational Modeling and Docking Simulation 

Based on the co-crystal structures of AChBP, no significant backbone movements were observed 

upon ligand binding, except for C-loop and F-loop located at the interface between the two 

subunits. Therefore, homology models of Į7 and Į3ß2-nAChR with open and closed C-loop 

conformations were created first, using the co-crystal structure of PnIA-Ac-AChBP (PDB ID 

2BR8) [28] and HEPES-Ls-AChBP (PDB ID 1I9B) [25] as described in Jin et al. 2008 [39] and 

Luo et al. 2010 [40], respectively. To search for the suitable binding site conformation for each 

PnIA analogue, 20 intermediate Į7 and Į3ß2-nAChR conformers with 0.5 Å RMSD between the 

open and closed C-loop conformation were generated using Morphing server [41]. All homology 

models were subjected for energy minimization using GROMOS 96 [42], with 500 steps of 

steepest descent followed by 1,000 cycles of conjugated gradient to remove steric 

incompatibilities.� All models were then evaluated using the online server Verify3D [43] and 

Ramachandran plots available from the ProFunc [44] database.�Each PnIA analogue (except for 

[A10K], [A10E], [A10D] and [A10Nal]PnIA) was docked to the ensemble of 20 intermediate 

conformers of Į7 and Į3ß2 nAChR using HEX 6.1 [45]. The Į7 and Į3ß2 nAChR binding site 

conformations with the least minimal energy and ligand binding mode with typical Į-Ctx binding 

[46] were chosen. To optimize the ligandíreceptor interactions, each PnIA analogue was then re-

docked to the chosen Į7 and Į3ß2 nAChR conformations using Autodock Vina [47]. All of the 
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PnIA analogue side chains and the binding site of Į7 nAChR were set to be fully rotatable. The 

center of the docking grid map was set as the center of the ligand binding site, with dimensions of 

20 x 20 x 20 Å covering the predicted binding site and searching resolution of 0.375 Å. Solutions 

with minimal energies less than 5 kcal/mol in difference from the best solution were selected for 

analysis. 

 

3. Results  

We designed and synthesized 17 D-Ctx PnIA position 10 analogues. We first tested their ability 

to compete with radiolabelled Į-bungarotoxin (an D7 nAChR-specific ligand) in a rat brain 

homogenate and then assessed their inhibition of ACh-induced currents in pure populations of 

recombinant receptors expressed in Xenopus oocytes. The analogues contained aliphatic 

(aminobuteric acid (Abu), norvaline (Nva), norleucine (Nle), valine, isoleucine, methionine, 

cyclohexylalanine (Cha), aminoheptanoic acid (Aha), and aminooctanoic acid), aromatic 

(phenylalanine and naphthylalanine (Nal)), polar (serine), or charged amino acid (aspartic acid, 

glutamic acid and lysine) residues. We synthesized the hydrophobic Aha and aminooctanoic acid 

from diethyl acetamidomalonate and the corresponding alkyl bromide as described by 

Blanchfield et al [31] (Figure 1). 

  

3.1 Radioligand Studies 

To evaluate the affinity of each analogue for D7 nAChR, we tested the ability of each to compete 

with 125I-D-bungarotoxin in a rat brain homogenate (Figure 3A and Table 2). D-Bungarotoxin 
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was used because it is known to bind selectively to the D7 nAChR subtype [48].. All analogues 

displayed Ki values less than 100 PM with the exception of [A10K], [A10E], [A10D] and 

[A10Nal]PnIA which indicates that extremely bulky or charged residues were not tolerated at 

position 10.  

More specifically, incorporating the small polar residue serine severely reduced affinity more 

than 7-fold to 2.2 ȝM. We also observed reduced affinity for isoleucine (Ki 571 nM), Cha (Ki 

594 nM), aminooctanoic acid (Ki 756 nM), and Abu (Ki 908 nM). An aromatic side chain 

reduced affinity for D7 nAChR, with phenylalanine (Ki 1.28 ȝM), which has a similar shaped 

side chain as Cha, displaying decreased affinity. D-Ctx PnIA, with an alanine side chain at 

position 10, had a Ki of 1.03 ȝM. In contrast, incorporating Nle, which differs from leucine by a 

one carbon atom extension at the J carbon atom, at position 10 increased affinity approximately 

8-fold more than [A10L]PnIA and gave the lowest Ki observed (44 nM). Small changes to the 

side chain also improved affinity over [A10L] PnIA (Ki 292 nM), but not significantly. These 

changes included aminoheptaonic acid (Ki 136 nM), methionine (Ki 132 nM) and valine (Ki  234 

nM). Interestingly, removing the J branch of leucine to give Nva (Ki 327 nM) did not 

significantly affect affinity.  

3.2 Electrophysiological assays of nAChR subunits expressed in Xenopus oocytes 

We tested D-Ctx PnIA and analogues for their ability to inhibit D7, D3E2 and Į4ȕ2 nAChRs 

expressed in Xenopus oocytes. The nAChR subtype selectivity profile was determined first by 

measuring PnIA and [A10L]PnIA inhibition of ACh-evoked current amplitude at D7 and D3E2 

nAChRs, and each analogue at a single concentration (10 nM). D-Ctx PnIA (10 nM) inhibited the 

ACh-evoked peak current amplitude mediated by D3E2 nAChRs by approximately 65%, whereas 
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the same concentration inhibited only about 20% of the D7 nAChR-mediated current (data not 

shown). 

To quantify the potency of PnIA and selected analogues, we determined concentration–response 

relationships, calculated IC50 values, and compared the D7 (Figure 3B) and D3E2 (Figure 3C) 

nAChR subtypes. Concentration–response curves determined for D-Ctx PnIA inhibition of D7 

and D3E2 nAChRs gave IC50 values of 62.7 ± 22.9 nM (nH= 1.0) and 7.9 ± 3.7 nM (nH =0.7), 

respectively, confirming that PnIA preferentially inhibits D3E2 nAChRs[22,49]. Substituting 

leucine for alanine at position 10, forming the analogue [A10L]PnIA, substantially reduced 

potency at D3E2, with an IC50 of 369 ± 176 nM (nH=0.8). However, there was no significant 

change in potency compared with that of PnIA at D7 (50.4 ± 38.8 nM; nH=1.0). The difference in 

potency of [A10L]PnIA at the two nAChR subtypes indicates a switch in selectivity and that 

[A10L]PnIA is D7-selective.  

The analogue [A10M]PnIA was similar to PnIA, with concentration–response relationships 

giving IC50 values of 52.1 ± 7.2 nM (nH=1.0) and 13.0 ± 0.0 (nH=1.0) nM at the D7 and D3E2 

nAChRs, respectively. Although potency slightly increased at D7 with [A10M]PnIA, this 

analogue remained D3E2-selective. Incorporating Nle at position 10 ([A10Nle]PnIA) 

significantly increased potency at D7 and D3E2 nAChRs, giving IC50 values of 4.3 ± 0.1 nM 

(nH=1.4) and 0.7 ± 0.5 nM (nH=1.0), respectively. Substituting Aha at position 10 also increased 

potency at D7 (IC50 9.8 ± 3.2 nM; nH=0.7), but its potency at D3E2 remained relatively 

unchanged (IC50 11.5 ± 4.6 nM; nH=1.0). This resulted in a lack of selectivity between the 

nAChR subtypes. Interestingly, recovery of the ACh-evoked current amplitude from inhibition 

by [A10Aha]PnIA at D7 nAChR to pre-incubation (control) levels took almost 20 min, which 
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was substantially longer than for the other PnIA analogues. Recovery from block by 

[A10L]PnIA, [A10M]PnIA and [A10Nle]PnIA occurred within 4 min after peptide washout. All 

[A10L]PnIA analogues were tested at 150 nM at human Į4ȕ2 nAChRs, but did not exhibit any 

significant difference to PnIA; [A10L]PnIA normalized current value 0.50 ± 0.15 compared to 

PnIA normalized current value 0.52 ± 0.13 (n = 5). This indicates that activity at human Į4ȕ2 

receptors was unaffected by changing the properties of the side chain at position 10 of PnIA. 

3.3 Molecular Docking Studies 

Studies have shown that the dominant interaction involved in binding PnIB, a closely related Į-

conotoxin that differs from [A10L]PnIA by a single amino acid at position 10, to the human Į7 

nAChR is between Leu-10 and Trp-149 [50]. Our docking simulations showed that the residue at 

position 10 in all 12 high-affinity D-Ctx PnIA analogues and Į-Ctx PnIA interacted with a 

hydrophobic pocket between the two D7 subunits. This hydrophobic pocket resembles a funnel 

structure comprising the highly conserved hydrophobic residues Val-130(-), Tyr-140(–), Leu-

141(–), Pro-143(–) and Trp-171(+), plus flanking polar residues Thr-128(–) and Ser-172(+) 

(Figures 4A–4C). Our results revealed extensive hydrophobic interactions between the funnel 

residues Val-130(–), Leu-141(–) and Trp-171(+) and position 10 residues of all 12 PnIA 

analogues. However, weak hydrophobic and van-der-Waal’s interactions were found for PnIA. 

This suggests that a longer hydrophobic side chain at position 10 of PnIA can increase contacts 

with this region of the D7 nAChR. This result is consistent with our experimental data, where all 

12 analogues have the same binding affinity for Į7 nAChR that PnIA does – or higher. It may 

also explain the large reduction in the affinity of PnIA analogues with charged or polar side 

chains at position 10.  
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Closer examination of the docking results indicated that the funnel width accommodates linear 

and branched side chains, not aromatic chains. This may explain the slightly lower affinity of 

[A10F]PnIA and [A10Cha]PnIA for the D7 nAChR than PnIA analogues with linear or branched 

side chains. Structural analysis also suggests that D-Ctx [A10Nal]PnIA loses its binding affinity 

because the fused aromatic rings are too large for the binding site or funnel. The depth of the 

funnel is also pivotal in accommodating the position 10 side chains of D-Ctx PnIA analogues. 

When extended, the side chain length of [A10Aha]PnIA is roughly 5.5Å from the CD to the tip, 

with the [A10Nle] side chain a bond shorter. Our D-Ctx [A10Aha]PnIA docking solution shows 

that this tip extends into the funnel, while the long chain of D-Ctx [A10Aoa]PnIA, with five 

methylene groups, needs the overall ligand to bind slightly shallower so it can extend its side 

chain. This may perturb the binding mode for D-Ctx PnIA.  

Studies of PnIA, [A10L]PnIA, [A10M]PnIA, [A10Aha]PnIA and [A10Nle]PnIA docking to 

Į3ȕ2 nAChR generated similar outcomes to the Į7 nAChR docking studies. Our results showed 

that the position 10 residue of [A10M]PnIA, [A10Aha]PnIA, [A10Nle]PnIA and PnIA interact 

with the hydrophobic funnel formed between the Į3 and ȕ2 subunit (Figures 4E and 4F). This 

hydrophobic funnel, located at the equivalent position in the Į7 nAChR (Figures 4B and 4C), is 

formed by six conserved hydrophobic residues Val-111(–), Phe-119(–), Leu-121(–), Pro-122(–), 

Pro-123(–) and Trp-149(+).  

Docking simulations revealed that linear hydrophobic side chains favorably interact with the 

Į3ȕ2 subtype, consistent with Į7 nAChR docking outcomes. Unexpectedly, [A10L]PnIA docked 

in a different orientation, where the position 10 residue interacts with the hydrophobic patch (Ile-

186, Tyr-188, Try-195) on the C-loop of Į3 subunit (Figure 4D). Interestingly, the corresponding 
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hydrophobic patch residues in Į7 nAChR are Arg-208, Tyr-210 and Tyr-217, respectively. This 

suggests that the residue at position 208 in Į7 (186 in Į3) plays a role in accommodating 

branched and bulky side chain residues from linear side chain residues at position 10. This is in 

agreement with the recently published mutational studies on Į3ȕ2 and Į4ȕ2 nAChR, which 

demonstrated that Į3[I186R]ȕ2 impairs binding of Į-conotoxins MII, TxIA and [A10L]TxIA, 

while the Į4[R185I]ȕ2 mutant enhances binding[51] In addition, a structural comparison between 

ACh binding pockets of Į7 and Į3ȕ2 nAChRs showed that the entrance of the hydrophobic 

funnel in the Į3ȕ2 nAChR is narrower than that of the Į7 nAChR funnel, increasing the 

likelihood of steric clashes with branched side chain residues. A significantly altered 

[A10L]PnIA binding mode at Į3ȕ2 nAChRs provides a plausible explanation for the significant 

reduced affinity of [A10L]PnIA for the Į3ȕ2 nAChR. 

 

4. Discussion 

Compounds that bind potently and selectively to distinct subtypes of ion channels and receptors 

have great potential as pharmacological probes and drug leads [13,14,16,18]. Neuronal nAChRs 

are a diverse class of ligand-gated ion channels involved in neurological conditions such as 

neuropathic pain [52,53] and Alzheimer’s disease [54,55]. Therefore, a suite of potent and 

selective ligands would be an invaluable pharmacological tool to identify the physiological role 

of nAChR subunit combinations.  

D-Ctx discovery in conjunction with chemical peptide synthesis has provided an increasing array 

of biologically active compounds with varying subtype selectivity [13,14,16-23,56]. Based on the 

observation that the residue at position 10 of the 4/7 class of Į-Ctxs can influence nAChR 
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subtype selectivity between Į7 and D3E2 nAChRs, we initially investigated the effects of coded 

and non-coded position 10 mutants of varying shape, size and polarity on D-Ctx PnIA analogue 

affinity for the D7 nAChR. Each analogue was synthesized in good yield and tested for its ability 

to compete with radiolabelled D-bungarotoxin for the D7 nAChR in a rat brain homogenate 

(Figure 3A and Table 2). We also tested all analogues for inhibition of ACh-induced currents in 

a pure population of receptors expressed in Xenopus oocytes, to evaluate their functional activity 

(Figures 3B and 3C).  

Modest molecular changes to the side chain at position 10 significantly changed receptor affinity. 

Based on sequence identity between the 4/7 D-conotoxins at position 10 (Table 1), mutations 

were made to hydrophobic residues with different structural characters – focusing on linear or 

beta-branched aliphatic, or aromatic ring-containing residues. We compared the changes in the 

affinity of these analogues with D-Ctx [A10L]PnIA, because the introduction of a branched 

aliphatic residue at position 10 was previously reported [20-22,56] to be responsible for the 

switch in subtype selectivity from D3E2 to D7. In our binding assay, Į-Ctx [A10L]PnIA had 4-

fold higher affinity for D7 nAChR than did PnIA, with Ki values of 292 nM and 1.03 ȝM, 

respectively. To confirm the need for hydrophobicity at position 10, we included analogues that 

incorporated lysine, aspartic acid and glutamic acid. As expected, incorporating a charged residue 

at position 10 severely affected affinity, decreasing it to > 100 µM. This was 50-fold less than Į-

Ctx PnIA and almost 150-fold less than the D7-selective analogue D-Ctx [A10L]PnIA. 

Incorporating the bulky aromatic Nal side chain also disrupted binding, with its IC50 values 

increasing to > 100 PM. 
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All other analogues maintained significant though varying levels of affinity for the D7 nAChR. 

Of particular interest was a series of analogues for which the side chain at position 10 was 

increased one carbonícarbon bond length at a time, from 1 (alanine) through 6 (aminooctanoic 

acid) (Figure 1). Lengthening the side chain stepwise from alanine to Abu to Nva, also restored 

affinity in steps, from PnIA back to the level seen for [A10L]PnIA. Rearranging the side chain 

from Nva to valine slightly increased affinity. However, lengthening the side chain by one 

carbon-carbon bond, from Nva to Nle, dramatically improved affinity by 7.5-fold, considering 

the conservative nature of the change with D-Ctx [A10Nle]PnIA having the highest affinity for 

D7 nAChR, with  Ki 44 nM. Extending the side chain past Nle to Aha and aminooctanoic acid 

decreased affinity to 136 nM and 756 nM, respectively.  

Any change to the hydrophobicity of the position 10 residue always decreased affinity. This was 

evident when comparing Abu with serine, and Nle with methionine. Each pair of side chains were 

of similar size and polarity except for the hydroxyl group of serine, which decreased the affinity 

of Abu from 908 nM to 2.2 PM, and the sulfur atom in the methionine, which reduced Nle’s 

affinity from 44 nM to 132 nM. Although the phenylalanine analogue’s affinity was much higher 

than that of Nal, its affinity was approximately 50% weaker than that of Cha. This indicates that 

the binding environment prefers hydrophobic side chains to aromatic ones.  

Electrophysiology experiments demonstrated that [A10L]PnIA and PnIA retained the greatest 

functional selectivity for the D7 and D3E2 subtypes, respectively. In agreement with the binding 

data, the D-Ctx [A10Nle]PnIA potency also greatly increased, though unlike D-Ctx [A10L]PnIA, 

selectivity reverted from D7 to D3E2. In contrast to the leucine-alanine selectivity switch, the 

leucine-Nle switch in selectivity demonstrates the importance of subtle changes in the position 10 
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side chain, where the exact placement of a single methyl group determines selectivity. Any 

further increase in the side chain size eliminated selectivity between the two receptor subtypes, 

while maintaining low nanomolar potency. These results indicate it is primarily the size and 

shape of the side chain, not its chemical properties, that determine selectivity.  

The versatility of chemical peptide synthesis has enabled us to employ coded and non-coded 

amino acids to explore different side chains at position 10 of PnIA. This has greatly expanded the 

diversity of side chain space explored. Our findings suggest that Nle is the ideal length of the side 

chain at position 10 for improved affinity for the D7 nAChR subtype. Importantly, computational 

studies provide a molecular basis for ligand selectivity between D7 and Į3ȕ2 nAChRs, where the 

residue located at the equivalent position to Arg 208 in D7 (equivalent to Ile 186 in D3) is one of 

the key determinants for ligand selectivity. Structurally, it appears that a highly conserved 

hydrophobic funnel in these nAChRs accommodates residues with a longer and more 

hydrophobic linear or branched side chain than alanine. The high similarity between our 

computational and experimental data indicates that hydrophobicity of the position 10 residue in 

D-Ctx PnIA is critical for its recognition of the D7 and Į3ȕ2 nAChRs. Our finding that a single 

methyl group is needed for subtype selectivity may be useful in the design of selective peptides 

that distinguish between D7 and D3E2 nAChRs. 
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Figures 

Figure 1. Side chain representations of amino acids used in this study. All side chains begin at 

the D-carbon. Single and triple letter codes are given for coded and non-coded amino acids, 

respectively. 

 

Figure 2. Representative synthetic strategy used to synthesize all 17 peptides. The purified 

reduced peptide was subject to aerial oxidation for 24 h before further purification. The major 

product in all cases had the correct ‘globular’ disulfide connectivity. 

 

Figure 3. Concentrationíresponse relationships for D-Ctx PnIA and selected PnIA analogues at 

the D7 nAChR in a radioligand binding assay, and D7 and D3E2 nAChRs expressed in Xenopus 

oocytes. (A) Displacement of 125ID-bungarotoxin (1 nM) is plotted as a normalized function of 

increasing peptide concentration. Response to ACh (100 µM) in the absence and presence of the 

peptide is plotted as normalized current amplitude for D7 (B), and D3E2 (C) nAChR subtypes as 

a function of peptide concentration. Data points represent mean ± SD (n � 3). 

 

Figure 4. Docking simulation of PnIA analogues to D7 and D3E2 nAChR homology models, 

with position 10 residue in stick and hydrophobic residues in the funnel in orange. (A) 

Superimposition of all PnIA analogues (except for [A10K]PnIA, [A10D]PnIA, [A10E]PnIA, 

[A10Nal]PnIA) and PnIA docking to D7 nAChR, with position 10 residues pointing towards the 

conserved hydrophobic funnel between the two subunits. (B) Surface view of PnIA analogues 
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showing the hydrophobic funnel. The surface was cropped for clarity. (C) Dissection view of 

PnIA analogues docking to Į7 nAChR, showing the width and depth of the hydrophobic funnel. 

(D) Molecular surface complementarity of Leu-10 on [A10L]PnIA (green) to C-loop of D3 

subunit. Only the interface surface is shown for clarity. (E) Surface view of PnIA, [A10M]PnIA, 

[A10Aha]PnIA and [A10Nle]PnIA docking to D3E2 nAChR, showing a similar binding mode to 

that observed for Į7 nAChR (B). (F) Dissection view of PnIA, [A10M]PnIA, [A10Aha]PnIA and 

[A10Nle]PnIA in D3E2 nAChR, showing the relative width and depth of the hydrophobic funnel. 
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Table 1. Sequence and subtype selectivity of some 4/7 D-conotoxins. The residue at position 10 
is shown in bold. All peptides are C-terminally amidated. All cysteines are disulfide-bonded in 
the globular 1-3, 2-4 arrangement. All selectivities are reported for recombinantly expressed 
receptors, except where indicated (*native tissues). 

 

Conotoxin Sequence# Selectivity Reference 

PnIA    GCCSLPPCAANNPDYC D3E2 > D7 [57] 

PnIB    GCCSLPPCALSNPDYC D7 > D3E2 [57] 

[A10L] PnIA    GCCSLPPCALNNPDYC D7 > D3E2 [20-23,56] 

EpI    GCCSDPRCNMNNPDYC D3E2* / D7 [58,59] 

GID IRDECCSNPACRVNNPHVC D7 # D3E2 [60] 

Vc1.1    GCCSDPRCNYDHPEIC D3E2 > D7 [61] 

MII    GCCSNPVCHLEHSNLC D6E2 # D3E2 [62] 

��
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Table 2. Results of 125ID-Bungarotoxin displacement by additional Į-Ctx PnIA analogues. 
Each position 10 analogue is indicated by its one or three letter amino acid code. Affinity is 
presented as Ki ± SD in nM; nH, Hill coefficient; n = 3-5 experiments. �

 

 Radioligand binding 

Peptide D7 (Ki nM) nH 

V 234 ± 72 –1.2

Nva 327 ± 167 –0.9

I 571 ± 142 –1.0

Cha 594 ± 188 –0.8

Aoa 756 ± 226 –0.9

Abu 908 ± 412 –1.0

F 1,280 ± 466 –0.6

S 2,200 ± 795 –0.8

�
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http://ees.elsevier.com/bcp/download.aspx?id=365541&guid=741570c9-6473-47b9-a5e3-94605a593763&scheme=1
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http://ees.elsevier.com/bcp/download.aspx?id=365544&guid=0898d7ed-86a9-40ae-9672-87139d1913f3&scheme=1
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http://ees.elsevier.com/bcp/download.aspx?id=365545&guid=0ebbd88b-9414-40cb-93ba-d3a82975158b&scheme=1
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Figure 3

http://ees.elsevier.com/bcp/download.aspx?id=365546&guid=2862e04e-1b0a-4a04-9edb-d6f4c1bf1d3e&scheme=1
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Figure 4

http://ees.elsevier.com/bcp/download.aspx?id=365547&guid=dea280c7-b8a8-4092-ad5f-4cc14f433dea&scheme=1
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