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Abstract：High-energy storm-transported coral blocks are widespread on the reef flats 

of the Great Barrier Reef (GBR), Australia, and have the potential to be used as 

proxies for reconstructing past storm/cyclone events prior to historical or instrumental 

records. In this study, samples from 42 individual transported coral blocks were 

collected from the inshore Frankland Islands, northern GBR for high-precision 

MC-ICPMS U-Th dating with their surface mortality ages recording the timing of 

individual storms or cyclones responsible for their uplift from their original growth 

position. The dated mortality ages were found to match well with known historical 

storm/cyclone events in the last century, with 80% of them falling within episodes of 

increased storm activity (1910-1915, 1945-1950, 1955-1960, 1975-1990, 

1995-2000AD) captured by instrumental/historic records, confirming that transported 

coral blocks on inshore reefs can be used as proxies for past storm/cyclone 

occurrences. Using this approach, this study also identified 17 additional 

storm/cyclone events that occurred before European settlement in the 1850’s, 

including three oldest events at 758.4±3.7, 777.9±4.9, and 985.2±4.8 AD, respectively. 

Our results, despite still preliminary, suggest that the storm/cyclone activity in this 

region tends to broadly correlate with the positive modes of the Pacific Decadal 

Oscillation (PDO) during the last millennium. In addition, there appears to be a 

decreasing age trend from the shore to the reef edge (from 758.4±3.7AD to 

1988.3±1.6 AD), which can be attributed to sea-level fall and/or reef/island 

progradation over the last 2000 years. 

Key words: Storm activity; U-Th dating; Coral blocks; Great Barrier Reef 
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1. Introduction 

In tropical regions, strong storm events such as cyclones, hurricanes, typhoons 

and episodes of strong winds rank as one of the main threats to both economics and 

human life of any natural hazard after drought (Connell et al., 1997; Nott and Hayne, 

2001; Scheffers and Kelletat, 2003; Yu et al., 2004; Scheffers and Scheffers, 2006; 

Donnelly and Woodruff, 2007; Kleinen, 2007; Nott et al., 2007; Etienne et al., 2011; 

Gelfenbaum et al., 2011; McAdoo et al., 2011; Nott, 2011; Nott and Forsyth, 2012; Yu 

et al., 2012b; Haig et al., 2014). For example, Cyclone Gorky struck the southeast 

coast of Bangladesh, north of Chittagong, in April 1991, killing nearly 140,000 people 

(Haque and Blair, 1992). In August 2005, Hurricane Katrina caused an estimated $108 

billion of damage and more than 1833 casualties, making it one of the bloodiest 

hurricanes to have hit the United States in history (Blake et al., 2013). Moreover, 

strong storm and cyclone events also have a significant impact on reef systems 

(Madin and Connolly, 2006; De’ath et al., 2012), contributing significantly to coral 

mortality and the decline of coral cover on the mid-shelf reefs of the Great Barrier 

Reef (GBR)(De’ath et al., 2012). 

Globally tropical cyclones are predicted to increase in magnitude and frequency 

under an enhanced greenhouse climate (Henderson-Sellers et al., 1998; Walsh and 

Ryan, 2000; Nott and Hayne, 2001; Webster et al., 2005; IPCC, 2007). However, 

recent studies have demonstrated great regional variability on both millennial and 

shorter time scales (Donnelly and Woodruff, 2007; Nott et al., 2007; Nott and Forsyth, 

2012). Therefore, understanding and identifying past trends and frequencies of 
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palaeostorms on regional scales is of great importance for predicting future 

community ecological disturbances and economic loss. Yet, our ability to accurately 

understand variability in the occurrence of palaeostorms remains limited by the short 

(＜100 yr) instrumental record (Nott, 1997; Nott and Hayne, 2001; Nott et al., 2007; 

Zhao et al., 2009a; Roff et al., 2013) and insufficient field research concerning storm 

event reconstruction (Scheffers and Kelletat, 2003; Scheffers et al., 2009).  

Strong storms with extreme effects on sedimentary transport are known to be 

capable of transporting large coral blocks from reef slope environments to reef flats 

and shore platforms (Mastronuzzi and Sansò, 2000; Goto et al., 2009; Chagué-Goff et 

al., 2011; Etienne et al., 2011). To this end, storm-transported coral blocks have 

previously been identified as useful proxies for past storm occurrences (Mastronuzzi 

and Sansò, 2000; Yu et al., 2004; Goto et al., 2009; Yu et al., 2012b). However,  

research focusing on the reconstruction of palaeostorm events using U-Th dating is 

relatively rare, except for a few case studies carried out on transported blocks, storm 

ridge rubble and lagoon sediments from reefs in off-shore settings (Yu et al., 2004; Yu 

et al., 2006; Zhao et al., 2009a; Scheffers et al., 2012; Yu et al., 2012b).  

In this study, we present the first palaeostorm reconstruction using coral 

transported blocks on inshore reefs and high-precision U-Th dating techniques. 

Specifically, we report a new storm chronology based on high-precision U-Th dating 

of transported storm blocks on the Frankland Islands, northern GBR in an attempt to 

provide the underpinning data for correlation of known storm/cyclone events with 

transported block ages, and further use this correlation to determine similar events 
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back in recent geological history.  

Compared to offshore areas, the study of storm records in inshore areas is more 

important for understanding past land-falling cyclones (Haapkylä et al., 2013) and 

their impact on inshore reef health. It has been demonstrated that inshore reefs in the 

GBR have historically been subjected to high frequency, natural disturbance events as 

well as significant degradation and community structure change since European 

settlement (DeVantier et al., 2006; Roff et al., 2013).  

Moreover, compared to offshore settings, storm-transported coral blocks from 

high-turbidity inshore environments are usually contaminated by terrestrially-derived 

sediments, contributing to higher levels of non-radiogenic (or initial) 230Th (e.g. 

Burley et al., 2012; Yu et al., 2012b; Roff et al., 2013), posing a great challenge to 

their reliable and precise dating. This is especially true for young corals where the 

contribution of non-radiogenic 230Th is proportionally significantly greater. Although 

a bulk-Earth 230Th/232Th activity value of 0.82 (atomic value ~4.4 × 10-6) with a large 

arbitrarily assigned uncertainty of ± 50-100% has been commonly assumed to correct 

for the non-radiogenic 230Th contribution (e.g. Eisenhauer et al., 1993), the large 

associated uncertainty makes the age uncertainty of the corrected 230Th age for young 

corals too large to be meaningful (see Zhao et al., 2009b). As site-specific or 

region-specific initial 230Th/232Th values for non-radiogenic 230Th correction are more 

appropriate than the bulk-Earth value in coral 230Th age calculation (Clark et al., 

2012), a site-specific mean 230Th/232Th in the study area is needed to improve the 

accuracy and precision of 230Th ages. Moreover, for most inshore reef corals, 
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non-radiogenic 230Th is likely to be a mixture of two components each with its own 

isotopically distinct 230Th/232Th ratio: a hydrogenous (dissolved) and a detrital 

(particulate) component (Clark et al. 2014b). These challenges highlight a clear 

requirement for a site-specific non-radiogenic 230Th correction method for reliable 

dating of young coral samples from inshore coral reefs.  

Bearing the above-described challenges in mind, here we report the results of 

high-precision U/Th-dated storm-transported coral blocks from the Frankland Islands 

region and discuss their utility to reconstruct palaeostorm/cyclone events prior to 

instrumental monitoring. Further we discuss the importance of a site-specific 

non-radiogenic 230Th correction method for precise and accurate U-Th age 

determinations of young (usually <100 years) corals samples that enable meaningful 

interpretation of these storm events.  

 

2. Study site and environment 

 

As part of the Great Barrier Reef World Heritage Area, the Frankland Islands 

Group comprises five continental islands surrounded by fringing reefs, located 45 km 

south of Cairns, and 10 km offshore from the mouth of the Russell-Mulgrave River 

(Fig.1). The island group includes High, Normanby, Russell, Round and Mabel 

Islands (Alongi et al., 2007). The surrounding waters are part of either the Great 

Barrier Reef Marine Park (Commonwealth) or the Great Barrier Reef Coast Marine 

Park (State) with complementary zoning (see 
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http://elibrary.gbrmpa.gov.au/jspui/bitstream/11017/846/1/site-plan-frankland-islands-

2006.pdf). Normanby Island (17º12.5´S, 146º5.0´E) covers an area of 0.04 km2, and 

Russell Island (17º13.5´S, 146º5.5´E), 0.12 km2; High Island (17º09´S, 145º59.6´E), 

~1.0 km2. Normanby Island and Russell Island are located in the southeast of the 

Frankland Islands, ~18 km away from the mainland. High Island lies ~7.5 km 

northeast of the mouth of the Mulgrave-Russell Rivers, and thus highly impacted by 

river runoff (Alongi et al., 2007)(Fig.1). 

The fringing reefs around Normanby, High and Russell Islands support a diverse 

assemblage of corals. Branching and tabulate Acropora are common, together with a 

variety of massive corals such as Porites and numerous Faviids and Mussids. The 

reefs were surveyed by A. Chin and T. Ayling during 1994-1995, 1998-2000 and 

2001 (Chin and Ayling, 2002), and a benthic study was conducted by the Queensland 

Parks and Wildlife Service (QPWS) in 1999. The initial surveys in 1994 indicated that 

the Frankland Islands group supported rich coral communities with an average of 

almost 80% live coral cover (Chin and Ayling, 2002). However, subsequent surveys 

revealed widespread coral breakage and matrix exfoliation with many Acropora table 

corals overturned or broken across the tips. Further, there were many broken coral 

fragments dispersed throughout the rubble field indicating significant coral breakage 

from previous cyclones and storms(Chin et al., 2006). Due to differential mortality of 

the various coral groups in 2001, Porites is now the dominant coral genus on the 

western side of the Frankland Islands, accounting for almost 86% of hard coral cover 

(Chin and Ayling, 2002). 
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3. Sample collection and analytical methods  

 

During field surveys in November 2012, numerous storm-transported coral 

blocks were found to scatter on the reef flats of the Frankland Islands. As the majority 

of storm blocks were located within/below the low-tide zone, they could only be 

sampled during the low tide window. Forty two coral block sub-samples (3 from High 

Island, 25 from Normanby Island and 14 from Russell Island) were randomly 

collected from well-preserved growth surfaces of transported coral blocks using a 

hammer and chisel. Out of these samples, 30 were massive corals (e.g. Porites, 

Platygyra, Favia spp.) (Fig.2 and Table 1), varying from 0.1 to 1.8m3, with an average 

size of 0.6m3. 12 were large branching colonies of Acropora spp. with an average size 

of 0.2m3 (Table 1). Surfaces of most colonies were well-preserved without any visible 

sign of erosion (Fig.2).  

Using a diamond blade saw, 1-2 g of aragonite material was further removed 

from the larger sub-sample at an area free from any obvious signs of meteoric 

diagenesis or surficial organics. As some of the most pristine material was cut at a few 

centimeters below the surface of each sample, the sampling locations was recorded 

(i.e. distance from the surface in cm) and latter taken away from the U-Th age to 

estimate the mortality age or the timing of storm/cyclone uplift of the coral blocks. 

Following preliminary cleaning in Mili-Q water, sub-samples of the cleanest aragonite 

were crushed to a 1 mm grain size using an agate mortar and pestle, then cleaned 
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vigorously using procedures described in detail in Clark et al. (2014a,b).  

The detrital 230Th/232Th ratio for non-radiogenic 230Th correction was calculated 

using the two-component isochron method described by Clark et al. (2014a,b), 

utilizing six samples which were selected and coeval material treated with three 

different pre-treatment protocols. To achieve this, each of the six coral specimens was 

split into three sub-samples weighing approximately 1 g each. The first set of 

sub-samples were set aside as untreated (with only the removal of weathered/eroded 

surface). The second and third sets of sub-samples were ultrasonically cleaned in 

Milli-Q water 4-5 times and then soaked in 15% hydrogen peroxide (H2O2) for at least 

10 hours, rinsed and ultra-sonicated in Milli-Q water 3 times, after which the liquid 

was discarded. Following enhanced cleaning, the second set of sub-samples were 

collected without careful selection (normal cleaning), while the third set of 

sub-samples were then dried at   ~40˚C, visually inspected under a binocular 

microscope and only the best quality aragonitic grains selected for dating (i.e. no 

detritus or secondary calcite visible).  

Approximately 0.15-0.35g (most ~0.15g) of each sub-sample was spiked with a 

229Th-233U mixed tracer and dissolved in double-distilled nitric acid following the 

procedures described in Clark et al. (2012). After complete digestion, 5 drops of 30% 

H2O2 were added, and the sample beakers were tightly capped and placed on a 

hot-plate at 90˚C overnight to allow for complete decomposition of residual organic 

matters and homogenization of tracer-sample mixed solution. Samples were then 

dried on a hotplate at 60˚C.   For young samples, especially the vigorously cleaned 
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third set of sub-samples for isochrons, larger sample sizes (~0.3g) were used in order 

to achieve higher 230Th signals to improve the precision of the 230Th ages. These 

larger samples were treated with a Fe(OH)2 co-precipitated procedure to 

pre-concentrate U and Th. The hydroxide precipitates were re-dissolved in 0.7 ml 7 M 

double-distilled HNO3 and purified using a chemical separation process similar to that 

described by Zhao et al. (2009b), Yu et al. (2012) and Clark et al. (2012). All samples 

were measured for U and Th isotopes using a Nu Plasma Multi-Collector Inductively 

Coupled Plasma Mass Spectrometer (MC-ICPMS) at the Radiogenic Isotope Facility 

(RIF), the University of Queensland, following instrumental procedures described in 

detail in Clark et al. (2014a,b). 

After MC-ICP-MS measurements, U-Th ages were calculated using the 

Isoplot/Ex 3.0 program (Ludwig, 2003). Non-radiogenic 230Th was corrected using a 

calculated 230Th/232Th value based on a two-component mixing equation that accounts 

for: 1) the proportion of terrestrially derived particulates incorporated into the 

skeleton either post-mortem (major) or during coral growth (minor); and 2) the 

hydrogenous initial 230Th incorporated into the skeleton during growth (Clark et al 

2014a, b). In our approach, the hydrogenous 230Th/232Th can be determined by 

measuring initial 230Th/232Th ratios in live-collected Porites colonies of known 

age(Cobb et al., 2003; Shen et al., 2008; Clark et al., 2012). These measured ratios are 

likely to closely reflect the seawater 230Th/232Th ratios taken up by corals at the time 

when they are growing. In this study, the hydrogenous 230Th component was based on 

initial 230Th/232Th values obtained from live Porites colonies collected from central 
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GBR (Clark et al., 2012), and a more conservative uncertainty of ± 20% was used.  

Detrital 230Th/232Th was determined using the 230Th/232Th vs 238U/232Th isochrons 

defined by multiple coeval samples with various concentrations of 232Th or 238U/232Th 

ratios reflecting varying proportions of sediment contaminants present in the samples 

(Clark et al. 2014a,b). The 230Th/232Th intercept value at 238U/232Th=0 from the 

isochron should reflect the detrital 230Th/232Th in sediments known to influence the 

area where the corals were collected (Clark et al. 2014a,b). In this study, an average 

isochron-inferred 230Th/232Th value with a conservative uncertainty of 20% to account 

for the variability in the region (as will be described in Section 5.1) was used. 

The hydrogenous and detrital 230Th/232Th ratios can be used in a two-component 

mixing model below to allow for sample-specific correction of non-radiogenic 230Th 

(Clark et al. 2014a,b): 
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Where 232Thlive and (230Th/232Th)live were obtained from the average values of 

live-collected Porites in the region. (230Th/232Th)live represents the hydrogenous 

component, and is based on an average activity ratio of 1.08 ± 20%obtained from 

live-collected Porites from the inshore region of the GBR (Clark et al. 2012). 

(230Th/232Th)sed is the detrital value obtained from the above-mentioned isochron 

method, and 232Thdead is the measured 232Th concentration (in ppb) in the dated dead 

coral sample. 
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4. Dating results 

 

The U-Th ages of 42 samples collected from storm transported coral blocks are 

presented in Table 1, and data for isochron calculations are shown in Table 2 and 

Figure 3. The U-Th data revealed uranium concentrations to be between 2.2 and 4.2 

ppm, and initial δ234U values within the range of 147±3‰ (Table 1 and Table 2), 

typical of pristine corals and modern seawater values, respectively (Robinson et al., 

2004; Shen et al., 2008; Andersen et al., 2010). 232Th concentrations in the 

ultra-cleaned samples listed in Table 1 vary from 0.04 to 2.69 ppb, with an average of 

0.76 ppb. 232Th levels in the sub-samples used for isochron calculations vary 

dramatically from 1.1 to 144 ppb, with 232Th in the untreated sub-samples being up to 

100 times higher than the ultra-cleaned sub-samples. Overall, 232Th levels in these 

corals from inshore settings are significantly higher than those from off-shore settings 

such as those from Heron Island in the southern GBR (Yu et al., 2012) as well as 

southern Pacific (e.g. Burley et al., 2012), suggesting that rigorous cleaning is 

essential for the removal of detrital Th for high-precision U-Th dating of corals from 

inshore reefs. 

Overall the age results indicate that all coral blocks, except for two samples 

collected on Normanby Island (NI-SB-H1-01, NI-SB-H1-02) and one sample 

collected on High Island (HI-SB-01), were transported up to the reef flat over the last 

millennium. Twenty-five colonies were transported onto the reef flat after 1900 AD. 
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For many samples, it was not possible to date the very surface of each coral block due 

to the presence of organics, internal bioerosion and alteration. Assuming that 

post-mortem erosion was minimal (Moore and Krishnaswami, 1972; Yu et al., 2004), 

the coral mortality age, which recorded the time of the storm/cyclone event 

responsible for the removal from its living site, was calculated by taking away the 

number of growth bands above the sampling location to the corrected 230Th date (Yu 

et al., 2006; Clark et al., 2012). A ±0.5 yr uncertainty associated with the sampling 

location was added to the 230Th age uncertainties as some sampling locations may be 

not clearly defined, and the sampling thickness of ~0.5cm is approximate to ~0.5 year 

of growth.  

 

5. Discussion  

 

5.1 Non-radiogenic 230Th correction 

Dating young coral samples only a few hundred years of age is challenging 

mainly due to: (1) extremely low radiogenic 230Th in the young carbonates 

complicated by contributions from procedural blanks and instrumental baselines and 

(2) the proportionally higher initial or detrital 230Th contribution resulting in a greater 

influence on age precisions compared to older samples (Zhao et al., 2009b). 

As discussed in detail in Clark et al. (2014b), for U-Th dating of very young 

samples, one of the main contributors to the age uncertainty is the procedural blank 

from sample preparation, column chemistry and mass spectrometric measurement. 
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With our simplified column chemistry procedure and the use of ultra-pure acids, the 

total 230Th procedural blanks in our MC-ICP-MS analytical protocol is 

1.18±0.24×10-10 nmol or 0.27±0.05 fg (N=12) (significantly lower than that of the 

TIMS protocol, e.g. Clark et al., 2012, 2014a,b), contributing <0.5 yrs to the 

calculated 230Th ages depending on both the sample weight and uranium 

concentration in the sample (Clark et al., 2014b). Blank contributions have been 

extracted from the calculation of the measured 230Th/232Th and 230Th/238U, and the 

corresponding uncorrected 230Th ages. The procedural blanks for 238U and 232Th were 

averaged at 1.4 ± 0.9×10-5nmol (3.3 ± 2.2 pg) and 3.0 ± 1.9×10-6 nmol ( 0.69 ± 0.41 

pg), respectively, which is considered negligible for coral samples which generally 

contain ~3 ppm U.Hydrogenous 230Th comes from seawater and is incorporated into 

the coral skeleton during growth. Detrital 230Th on the other hand, may be taken into 

the coral skeleton in one of two ways: 1) actively in particulate forms while the coral 

is still alive; and 2) passively via the infiltration of fine sediments post-mortem. While 

most detrital particulates incorporated post-mortem can be physically removed using 

our rigorous cleaning procedures and careful sample vetting described above, a small 

amount of detrital 230Th, as reflected by generally higher measured 232Th in treated 

dead corals than in live corals of the same species, still needs to be accounted for (see 

Clark et al. 2014a,b). To correct for the presence of non-radiogenic 230Th, 230Th/232Th 

ratios for both hydrogenous and detrital components need to be appropriately 

constrained. For precise and accurate dating of dead corals from the Frankland Islands 

region, it is important to constrain and correct for non-radiogenic hydrogenous and 
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detrital 230Th sources incorporated during growth and post-mortem using the equation 

in Section 3. As described previously, the live Porites colonies collected from central 

GBR were determined by (Clark et al., 2012) to have a corresponding 230Th/232Thlive 

activity ratio of 1.083 ± 0.082 (atomic value of 5.77±0.52×10-6), which is very similar 

to the mean value of live corals from whole length of inshore GBR, and was thus 

considered as being suitable for the correction of the hydrogenous 230Th in this study. 

To encompass the full range of variation, a more conservative uncertainty of 20% was 

used. 

    To estimate the detrital 230Th/232Th for the Frankland Islands region, we used the 

isochron approach. In this study, three sets of subsamples of varying 232Th levels or 

238U/232Th ratios were obtained by splitting one sample into three aliquots followed by 

different pre-treatment or cleaning procedures as described in Section 3. A total of 6 

coral specimens were processed this way. By plotting the data of the sub-samples onto 

the 230Th/232Th vs 238U/232Th diagram, sub-samples for each coral specimen showed a 

large spread in 238U/232Th ratios, yielding a well-defined isochron. A total of six 

isochrons were obtained, each giving an intercept value on the 230Th/232Th axis, 

approximating the detrital 230Th/232Th in that specific coral specimen (Table 2 and Fig. 

3). The six 230Th/232Th intercept values gave an unweighted mean of 0.64±0.11 (18%) 

(Fig. 3), which is similar to that previously reported for the Palm Islands region in the 

central GBR (Clark et al., 2014a,b)..  

 Using a detrital 230Th/232Th activity ratio [i.e. (230Th/232Th)sed] of 0.64±20% and a 

hydrogenous 230Th/232Th activity ratio [i.e. (230Th/232Th)live] of 1.08±20% to account 
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for contaminant sources of 230Th in the coral samples, we reliably determined the 

timing of mortality for 42 storm transported coral colonies to have occurred between 

758 ± 3.7 and 2004.4 ± 3.3 AD, with 60% of samples dated after 1900 AD (Tables 1 

and 2).Thus this site-specific mean value with the expanded error is much more 

constrained than the conservative bulk Earth value, and is a better alternative for 

230Thcorrection for inshore reef corals in the northern GBR. 

 

5.2 Correlation between transported storm block ages and the known 

storm/cyclone events 

How reliable the mortality ages of the transported coral blocks are in 

reconstructing past storm events is largely dependent upon how close these ages 

match with known cyclone and storm events. Yu et al. (2012) determined that the 

smaller sized blocks are more likely to be transported by localized storms or strong 

winds, suggesting that just 65% of the dated ages match with known cyclone events 

affecting Heron Reef, southern GBR. Considering this, small blocks were not 

considered in the present study.  

Using the information available from Australian Bureau of meteorology 

(http://www.bom.gov.au), WINDWORKER roof ventilator 

(http://www.windworker.com.au) and many other sources (e.g. Callaghan and Power, 

2011; Yu et al., 2012), at least 73 tropical cyclones were documented to have affected 

the Frankland Islands or passed within 200 km of the islands between 1900 and 

2010AD (Fig.4D). Based on these historic cyclone/storm events, six relatively stormy 
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periods (i.e. 1910-1915, 1925-1935, 1945-1950, 1955-1960, 1975-1990, 

1995-2000AD ) and four relatively less-stormy periods (i.e. 1900-1905, 1920-1925, 

1950-1955, 2000-2005AD) were identified between 1900 AD and 2005AD (Fig.4D). 

When comparing the mortality ages of the dated coral blocks dating to 

1900-2010AD with the histogram of historic cyclone events occurring during the 

same period, it appears that the frequency distribution of these mortality ages match 

well with that of the historic cyclone events (especially those < 50 km from the study 

area), with the majority of the age data falling into the 1970-1990 period. It is also 

worth noting that 80% (21 out of 24 coral blocks) of the mortality ages of the last 

century fall within five relatively stormy periods (except for the 1930-1935 AD 

period), and very few samples fall within the relatively less-stormy periods 

(1900-1905, 1920-1925, 1950-1955, 2000-2005AD) (Fig.4D), suggesting that these 

transported blocks are reliable indicators of past storm events.  

It is worth noting that ～15 of 24 (~60%) samples dating to the last century fall 

into the stormiest period (1975-1990 AD) with very few samples falling within the 

1930-1935 AD stormy period. Interestingly, no mortality ages obtained in this study 

appear to match with Cyclone Yasi in 2011, the most intense cyclone impacting on the 

region for the past century (Fig.4D). This discrepancy is most likely due to sampling 

bias as a result of an insufficient sample size. During our multi-purpose fieldwork in 

November 2012, we only managed to carry out opportunistic sampling of the 

transported blocks during a short day-time low-tide window, with transported blocks 

sitting near the reef front being preferentially missed due to the rapidly rising tide. 
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Another possibility could be related to the exact distance and track of individual 

cyclones in the vicinity of the study area. Cyclone Yasi crossed the coast at Mission 

Beach in 2011, approximately 80 km south of the Frankland Islands (Perry et al., 

2014), whereas Cyclone Larry of the same category with the highest wind speed of 

294 km/h (Ramsay and Leslie, 2008) made landfall around Innisfail in 2006, only ~40 

km south of the study area. It has been documented that the magnitude of damage is 

directly related to the distance from the cyclone track (GBRMPA., 2011; Perry et al., 

2014). Thus, the impact of Cyclone Larry on reefs in the Frankland Islands area 

would have been more severe than Cyclone Yasi. In this regard, it is possible that 

there were fewer living coral blocks available for transportation by Cyclone Yasi in 

2011, as the Frankland Islands were already subjected to high frequency disturbance 

events prior to Yasi, especially Cyclone Larry in 2006. Because of this, we consider it 

is the long-term trend and correlation, rather than short-term matching with individual 

cyclone events, which might be more meaningful in this study. 

 

5.3 Correlation between coral mortality and the Pacific Decadal Oscillation 

(PDO) during the last millennium 

The Pacific Decadal Oscillation (PDO) is a long-lived climatic phenomenon 

modulating ocean-atmosphere variability in the Pacific basin on multi-decadal time 

scales, analogous to the inter-annual El Nino-Southern Oscillation (ENSO) (Linsley et 

al., 2000; Viles and Goudie, 2003; Wang and Picaut, 2013). Australia’s   climatic 

variability has been shown to respond to the PDO and ENSO(Power et al., 1999; 
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Pezza et al., 2007; McGowan et al., 2009; Rodriguez-Ramirez et al., 2014), which has 

been heightened during the last major climate shift (from 1977 through to at least the 

mid-1990's) with a positive PDO and several ENSO events affecting climates over 

much of eastern Australia. Proxy records of rainfall, flood and river discharge 

affecting coral reefs in the GBR were found to show significant PDO and ENSO 

periodicity (Lough, 2007; Rodriguez-Ramirez et al., 2014). 

Despite sparse data coverage, results presented here indicate that at inter-decadal 

timescales, the PDO poses a major influence on storm/cyclone frequency with 

heightened activity during the positive modes of the PDO in the last millennium (Fig. 

4). Most coral mortality ages fall within the positive PDO phases (e.g. 1430-1600AD, 

1725-2010AD and the most recent 1977-1995AD), and are notably absent during the 

pronounced negative PDO phases (e.g. 1000-1300AD, 1375-1430AD, 1600-1725AD) 

(Fig.4). This is consistent with the results reported by Pezza et al (2007) and Grant 

and Walsh (2001) that show that mean tropical cyclone formation in Australia is 

significantly higher during positive PDO phases than during negative PDO phases. To 

a lesser degree, the massive coral mortality events in the South China Sea also appear 

to correlate with the PDO cycles (Yu et al., 2012a), suggesting it is a common feature 

across the Western Pacific region.  

This observation can be explained in terms of warmer conditions and increased 

sea surface temperatures (SST) in the tropical Western Pacific during the positive 

PDO phases (McGowan et al., 2009), which may enhance the likelihood of intense 

tropical cyclone formations (Emanuel, 2005; Webster et al., 2005; Hoyos et al., 2006). 
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This is consistent with observed global warming and an increased in storm frequency 

during the most recent positive PDO phase (1977-1995AD) resulting in intense 

rainfall and devastating floods in the study region (Fig.4A). However, this 

interpretation remains speculative until more regional data are obtained. 

It is worthwhile to note that while there appears to be a significant correlation 

between storm frequency and positive PDO phases on a broader time-scale, the 

correlation between transported coral block ages and the PDO index is lacking on 

shorter, inter-annual scales. For instance, the mortality ages for a number of 

transported storm blocks fall in between 1987-1990 AD, matching with a short 

episode of relatively negative PDO index values (or a strong La Nina phase) within a 

multi-decadal positive PDO phase (1977-1995AD) (Fig. 4C). This may reflect the 

inter-annual variability of storm activities related to ENSO (Solow and Nicholls, 1990; 

Basher and Zheng, 1995; Flay and Nott, 2007; Yu et al., 2012b). Indeed, on 

inter-annual timescales, good correlations were found between the mortality ages of 

the dated coral blocks in this study and the ENSO events that occurred during the 

period 1950-2010AD (Fig.4E). The inter-annual peaks identified from the relative 

probability frequency of coral mortality ages appear to coincide with strong El Niño 

and La Niña events in the historical record, similar to those found in the southern 

GBR (e.g. Yu et al., 2012). For example, the coral-based stormy periods identified 

here encompass the majority (8 out of 10) of the historically strong El Niño events 

(1957-1958, 1965-1966, 1972-1973, 1982-1983, 1991-1992, 1997-1998) and La Niña 

events (1955-1956, 1973-1974,1975-1976, 1988-1989) (Fig. 4E). This is consistent 
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with previous work in the Australia region (Nicholls, 1984; Basher and Zheng, 1995; 

Callaghan and Power, 2011). 

 

5.4 Spatial age distribution of the transported coral blocks on the reef flat 

In this study, the reef flat of Normanby Island where coral production is 

abundant was taken as an example to illustrate the spatial age distribution of 

transported coral blocks (Fig. 5). A total of 16 dated coral blocks were found to have a 

large age range o from 758.4±3.7 AD on the island side of the reef flat to 1988.3±1.6 

AD on the seaward side (Fig.5). Overall, there is a general increasing trend in the ages 

of storm blocks as the samples get increasingly closer to the island (i.e. farthest from 

the sea).  

This trend is consistent with sea-level change in the past 2000 years. It has been 

documented that sea-level in eastern Australia progressively fell from about +1 m to 

its present position over the past 2000 years (Larcombe et al., 1995; Baker et al., 2001; 

Lewis et al., 2008; Yu and Zhao, 2010), suggesting that the progressively lowering in 

sea level is most likely responsible for this trend in the 230Th age distribution. Another 

possible cause would be the progressive overlay of beach and intertidal deposits as a 

result of reef progradation. In this process, the earlier storm blocks may have been 

buried as the reef prograded seawards and by later-stage storm deposits.  

 

6. Conclusions 
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Based on detailed field observations and high-precision MC-ICPMS U-Th dating 

of 42 well-preserved transported coral blocks collected from the inshore Frankland 

Islands, northern Great Barrier Reef (GBR), we conclude that: 

(1) Mortality ages  for most (over 80%) of the coral blocks dated to within the 

last 100 years fell in the relatively stormy periods (1910-1915, 1945-1950, 1955-1960, 

1975-1990, 1995-2000AD) and very few samples fell within the relatively less stormy 

periods, confirming that transported coral blocks on inshore reefs can be useful as 

proxies for past cyclone/storm occurrences.  

(2) The MC-ICPMS U-Th age dating in this study allows identification of 17 

additional storm/cyclone events prior to European settlement of coastal northern 

Australia   in   the   1850’s   (i.e. at 758.4±3.7, 777.9±4.9, 985.2±4.8, 1450.2±3.7, 

1455.3±5.2, 1530.5±3.8, 1560.6±3.6, 1580.8±3.7, 1591.2±3.3, 1725.8±3.6, 

1742.2±5.1, 1751.9±5.3, 1767.2±3.6, 1769.3±4.5, 1786.3±3.5, 1816.9±5.1, 

1862.2±4.1AD).  

(3) Despite sparse data coverage, the results presented in this study indicate that 

storm/cyclone activity in the northern GBR was modulated by the multi-decadal PDO, 

with storms/cyclones occurring more frequently during the broadly positive phases of 

the PDO in the last millennium. On inter-annual timescales, there appears to be some 

correlation between ENSO cycles and storm/cyclone occurrences. 

(4) There appears to be a decreasing age trend from shore to reef edge (from 

758.4±3.7AD to 1988.3±1.6 AD) in mortality age distribution of the dated coral 

blocks, which can be attributed to sea-level fall and the effect of reef/island 
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progradation over the last 2000 years. 

Our study also demonstrates coral samples collected from inshore/near-shore 

settings usually contain high 232Th concentrations even after rigorous cleaning to 

remove sediments trapped in coral skeletons, indicative of high non-radiogenic 230Th 

contamination. Thus correction of both hydrogenous and detrital 230Th components 

present in the coral skeletons using a two-component mixing model was required for 

reliable dating of young coral samples from inshore/near-shore settings. This is in 

sharp to corals from off-shore settings such as Heron Island of the southern GBR (Yu 

et al., 2012) and Yongshu Reef of the southern South China Sea (Yu et al., 2004). 
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Collected figure captions 

Figure 1. Map showing the location of the Frankland Islands group and the 

distribution of coral block samples on the Frankland Islands, northern Great 

Barrier Reef. 

Figure 2. Photographs showing transported coral blocks on the Frankland Islands: (a) 

NI-SB-H6-06, massive coral (Favia); (b) NI-SB-H6-07, massive coral 

Platygyra; (c)NI-SB-H6-04, massive coral (Goniastrea); (d)NI-SB-001, 

massive Goniastrea block with well-preserved surface. 

Figure 3. 230Th/232Th vs. 238U/232Th isochron diagram defined by 18 sub-samples 

from 6 transported coral blocks collected on the Frankland Islands, northern 

GBR. Insert figure shows the isochron-inferred initial 230Th/232Th ratios 

representing the Th isotopic composition of the detrital component (average 

0.64). 

Figure 4. Diagrams showing: A. Global Sea Surface Temperature (from 

http://www.bom.gov.au/climate/change/?ref=ftr#tabs=Tracker&tracker=timeseri

es&tQ%5Bgraph%5D=sst&tQ%5Barea%5D=qld&tQ%5Bseason%5D=0112&t

Q%5Bave_yr%5D=0);;  B.  Summer  Rainfall  (from  the  book  of  “Queensland 

Rainfall  Data”);;  C.  PDO  index  since  1900AD,  

http://jisao.washington.edu/pdo/PDO.latest; D. cyclones crossing within 200 km 

from Frankland Reefs between 1900 and 2005AD (from http://www.bom.gov.au) 

for comparison with the surface (mortality) ages of transported coral blocks 

dated to this period; E. Relative probability plot defined by the mortality ages of 
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the transported coral blocks dated between 1900 and 2005AD; F. Relative 

probability plot defined by the mortality ages of all the dated transported coral 

blocks; G. PDO index in the last millennium (from 

ftp://ftp.ncdc.noaa.gov/pub/data/paleo/treering/reconstructions/pdo-macdonald2

005.txt) 

Figure 5. The surface mortality ages of the transported coral blocks on Normanby 

Island, northern GBR show a decreasing age trend from shore to reef edge 

(from 758.4±3.7AD to 1988.3±1.6 AD). 

 

  



AC
CE

PT
ED

 M
AN

US
CR

IP
T

ACCEPTED MANUSCRIPT

30 
 

 

Figure 1  



AC
CE

PT
ED

 M
AN

US
CR

IP
T

ACCEPTED MANUSCRIPT

31 
 

 

 

Figure 2 

  



AC
CE

PT
ED

 M
AN

US
CR

IP
T

ACCEPTED MANUSCRIPT

32 
 

 

 

Figure 3 

  



AC
CE

PT
ED

 M
AN

US
CR

IP
T

ACCEPTED MANUSCRIPT

33 
 

 

Figure 4  



AC
CE

PT
ED

 M
AN

US
CR

IP
T

ACCEPTED MANUSCRIPT

34 
 

 

 

Figure 5 

  



AC
CE

PT
ED

 M
AN

US
CR

IP
T

ACCEPTED MANUSCRIPT

35 
 

Collected table captions 

Table 1. MC-ICP-MS 230Th ages for storm-transported corals collected from the 

Frankland Islands, northern Great Barrier Reef. 

Table 2. MC-ICP-MS 230Th data for uncleaned, normal-cleaned and ultra-cleaned 

storm-transported coral blocks collected from the Frankland Islands, northern Great 

Barrier Reef. 

Table 3. The potentially responsible storms/cyclones from 1941AD to 2005 AD within 

200 km of the Frankland Islands, northern Great Barrier Reef 
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Table 1. MC-ICP-MS 230Th ages for storm-transported corals collected from the Frankland Islands, northern Great Barrier Reef. 
 

Sample 

Name 

Block 

Size (m3) 

Coral Family 

Name 

U (ppm) 232Th (ppb) (230Th/ 

232Th)meas 

(230Th/238U) (234U/238U) Uncorr. 230Th 

age (a) 

Corr.230Th 

age (a) 

Time of 

chemistry 

Corr. 230Th 

Age (AD) 

Annual 
bands 

 

Mortality 

yr in AD 

HI-SB-01 0.12 Poritidae 2.6412±0.0013 0.7838±0.0009 111.1±0.39 0.010868±0.000037 1.1459±0.0009 1040.4±3.6 1029.4±4.3 2013.11 983.7±4.3 1 985.2±4.8 

HI-SB-02 1.05 Poritidae 2.6630±0.0014 1.1614±0.0013 1.69±0.03 0.000243±0.000005 1.1438±0.0010 23.2±0.5 9.5±2.8 2013.41 2003.9±2.8 0 2004.4±3.3 

HI-SB-03 1.20 Poritidae 2.3665±0.0012 1.8318±0.0017 1.90±0.03 0.000486±0.000009 1.1440±0.0008 46.4±0. 8 25.2±4.3 2013.41 1988.2±4.3 1 1989.7±4.8 

NI-SB-001/1 0.24 Faviidae 2.7050±0.0014 0.2647±0.0006 24.85±0.63 0.000802±0.000020 1.1488±0.0010 76.2±1.9 69.4±2.4 2013.04 1943.7±2.4 2 1946.2±2.9 

NI-SB-001B/1 0.20 Faviidae 2.4575±0.0011 1.3824±0.0013 12.14±0.18 0.002251±0.000033 1.1485±0.0009 214.2±3.1 197.6±4.6 2013.04 1815.4±4.6 1 1816.9±5.1 

NI-SB-002/1 0.54 Faviidae 4.2450±0.0025 0.8721±0.0019 5.24±0.13 0.000355±0.000009 1.1419±0.0008 33.9±0.8 26.7±1.7 2013.41 1986.7±1.7 1 1988.2±2.2 

NI-SB-002R02-03/1 0.42 Acroporidae 3.1867±0.0012 0.4195±0.0008 111.19±0.70 0.004824±0.000029 1.1456±0.0010 460.7±2.8 453.9±3.1 2013.04 1559.1±3.1 1 1560.6±3.6 

NI-SB-003-OG/1 0.28 Poritidae 2.2341±0.0007 0.1308±0.0005 57.53±0.97 0.001110±0.000018 1.1469±0.0012 105.7±1.7 98.6±2.3 2013.04 1914.4±2.3 0 1914.9±2.8 

NI-SB-004/1 0.48 Poritidae 3.1507±0.0010 1.8619±0.0016 15.02±0.19 0.002925±0.000037 1.1474±0.0010 262.7±4.8 262.7±4.8 2013.04 1750.4±4.8 1 1751.9±5.3 

NI-SB-005/1 0.56 Faviidae 2.2842±0.0013 0.0401±0.0003 117.3±2.5 0.000678±0.000014 1.1470±0.0011 64.5±1.3 58.4±1.8 2013.04 1954.6±1.8 1 1956.1±2.3 

NI-SB-006/1 1.12 Faviidae 3.0724±0.0011 0.4339±0.0005 24.75±0.54 0.001152±0.000025 1.1469±0.0008 109.7±2.4 102.6±2.8 2013.04 1910.4±2.8 1 1911.9±3.3 

NI-SB-007/1 0.24 Faviidae 2.5471±0.0012 0.0647±0.0003 44.5±1.3 0.000373±0.000011 1.1468±0.0010 35.5±1.0 29.8±1.6 2013.04 1983.2±1.6 1 1984.7±2.1 

NI-SB-H1-01 0.33 Faviidae 2.4319±0.0011 0.1375±0.0003 707.4±2.3 0.013181±0.000029 1.1461±0.0010 1262.8±3.0 1256.3±3.2 2013.11 756.9±3.2 1 758.4±3.7 

NI-SB-H1-02 0.28 Acroporidae 3.4419±0.0015 1.1078±0.0016 122.64±0.41 0.013009±0.000040 1.1464±0.0008 1246.0±3.9 1235.7±4.4 2013.11 777.4±4.4 0 777.9±4.9 

NI-SB-H3-01 0.72 Faviidae 2.9536±0.0012 0.2416±0.0004 167.0±1.0 0.004503±0.000026 1.1470±0.0010 429.5±2.5 423.4±2.8 2013.11 1589.7±2.8 1 1591.2±3.3 

NI-SB-H3-02 0.28 Faviidae 2.1688±0.0009 1.0734±0.0013 16.72±0.15 0.002728±0.000025 1.1442±0.0011 260.7±2.4 244.6±4.0 2013.41 1768.8±4.0 0 1769.3±4.5 

NI-SB-H3-03 0.36 Faviidae 3.5501±0.0018 1.9760±0.0025 17.17±0.12 0.00315±0.000022 1.1477±0.0007 300.1±2.1 288.8±3.1 2013.08 1724.3±3.1 1 1725.8±3.6 

NI-SB-H3-04 0.28 Acroporidae 3.3091±0.0012 1.9179±0.0028 9.17±0.10 0.001752±0.000019 1.1466±0.0007 167.0±1.8 151.4±3.6 2013.11 1861.7±3.6 0 1862.2±4.1 

NI-SB-H4-01 0.84 Faviidae 3.2515±0.0017 2.4387±0.0027 1.92±0.05 0.000476±0.000011 1.1451±0.0009 45.4±1.1 26.2±4.0 2013.11 1986.9±4.0 0 1987.4±4.5 

NI-SB-H5-01 0.22 Faviidae 2.7756±0.0017 1.3488±0.0015 2.66±0.04 0.000426±0.000006 1.1421±0.0008 40.7±0.6 26.1±3.0 2013.41 1987.3±3.0 0 1987.8±3.5 

NI-SB-H5-02 0.16 Acroporidae 3.7310±0.0023 0.5026±0.0010 8.26±0.13 0.000367±0.000006 1.1450±0.0011 35.0±0.5 28.7±1.4 2013.41 1984.7±1.4 0 1985.2±1.9 

NI-SB-H6-01 0.15 Faviidae 2.5027±0.0015 0.3869±0.0006 10.13±0.17 0.000516±0.000009 1.1489±0.0010 49.1±0.8 40.7±1.9 2013.11 1972.4±1.9 0 1972.9±2.4 

NI-SB-H6-02 0.14 Faviidae 3.8152±0.0021 0.4403±0.0005 11.03±0.26 0.000419±0.000010 1.1486±0.0010 39.9±0.9 34.1±1.5 2013.11 1979.0±1.5 1 1980.5±2.0 

NI-SB-H6-03 0.64 Faviidae 3.6977±0.0023 0.2147±0.0003 16.90±0.33 0.000323±0.000006 1.1448±0.0008 30.8±0.6 26.1±1.1 2013.41 1987.3±1.1 0.5 1988.3±1.6 

NI-SB-H6-04 0.44 Faviidae 2.4587±0.0009 0.0725±0.0004 47.31±0.87 0.000460±0.000008 1.1462±0.0009 43.8±0.8 37.8±1.4 2013.11 1975.3±1.4 1 1976.8±1.9 

NI-SB-H6-05 0.32 Faviidae 2.3833±0.0006 0.0450±0.0002 98.1±2.4 0.000610±0.000014 1.1478±0.0008 58.1±1.4 52.2±1.8 2013.11 1960.9±1.8 1 1962.4±2.3 

NI-SB-H6-06 1.32 Faviidae 2.4826±0.0013 0.1106±0.0003 33.72±0.72 0.000495±0.000011 1.1472±0.0009 47.1±1.0 40.9±1.6 2013.11 1972.2±1.6 0.5 1973.2±2.1 

NI-SB-H6-07 1.08 Faviidae 2.2615±0.0012 1.2280±0.0017 16.90±0.18 0.003025±0.000033 1.1463±0.0009 288.5±3.1 271.7±4.6 2013.41 1741.7±4.6 0 1742.2±5.1 

RI-SB-H1-01 0.14 Acroporidae 3.2844±0.0012 0.3112±0.0007 78.35±0.94 0.002447±0.000029 1.1467±0.0006 233.2±2.8 227.3±3.0 2013.11 1785.8±3.0 0 1786.3±3.5 
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RI-SB-H1-02 0.14 Acroporidae 3.5556±0.0024 0.1357±0.0006 209.6±2.6 0.002635±0.000031 1.1485±0.0009 250.8±2.9 246.4±3.1 2013.11 1766.7±3.1 0 1767.2±3.6 

RI-SB-H1-03 0.12 Acroporidae 2.4689±0.0012 0.3125±0.0004 123.18±0.81 0.005139±0.000033 1.1451±0.0009 491.1±3.2 483.2±3.6 2013.11 1530.0±3.3 0 1530.5±3.8 

RI-SB-H2-01 0.16 Acroporidae 3.4475±0.0019 0.7563±0.0017 64.05±0.42 0.004631±0.000029 1.1463±0.0010 442.0±2.8 433.8±3.2 2013.11 1579.3±3.2 1 1580.8±3.7 

RI-SB-H2-02 0.15 Acroporidae 3.8501±0.0027 2.6873±0.0022 26.27±0.14 0.006042±0.000032 1.1468±0.0010 576.8±3.1 559.3±4.7 2013.11 1453.8±4.7 1 1455.3±5.2 

RI-SB-H2-03 0.18 Acroporidae 4.0184±0.0020 1.0911±0.0030 66.99±0.36 0.005995±0.000028 1.1469±0.0009 572.2±2.7 563.4±3.2 2013.11 1449.7±3.2 0 1450.2±3.7 

RI-SB-H3-01 0.18 Faviidae 3.2709±0.0012 0.8690±0.0023 4.30±0.10 0.000377±0.000009 1.1463±0.0008 35.9±0.8 26.5±2.1 2013.11 1986.6±2.1 0 1987.1±2.6 

RI-SB-H3-02 0.12 Acroporidae 2.3974±0.0011 0.1342±0.0005 19.99±0.88 0.000369±0.000016 1.1477±0.001 35.1±1.5 28.5±2.1 2013.11 1984.7±2.1 0 1985.2±2.6 

RI-SB-H3-03 0.12 Acroporidae 1.9940±0.0011 1.0521±0.0012 2.66±0.04 0.000462±0.000007 1.1459±0.0008 44.0±0.7 26.8±3.5 2013.41 1986.6±3.5 0 1987.1±4.0 

RI-SB-H4-01 0.23 Faviidae 2.3401±0.0015 0.0963±0.0003 27.91±0.79 0.000378±0.000011 1.1458±0.0009 36.1±1.0 29.6±1.7 2013.11 1983.5±1.7 1 1985.0±2.2 

RI-SB-H4-02 0.18 Faviidae 2.3474±0.0016 0.1120±0.0003 27.53±0.39 0.000433±0.000006 1.1488±0.0012 41.1±0.6 34.6±1.4 2013.11 1978.5±1.4 1.5 1980.5±1.9 

RI-SB-D1-E1 1.80 Faviidae 2.6001±0.0009 0.0560±0.0005 46.9±1.7 0.000333±0.000012 1.1470±0.0010 31.7±1.1 26.2±1.6 2013.11 1982.2±1.1 0 1982.7±1.6 

RI-SB-D1-E2 1.80 Faviidae 2.3872±0.0012 0.0521±0.0003 45.6±1.3 0.000328±0.000009 1.1466±0.0009 31.2±0.9 25.3±1.5 2013.11 1982.8±0.9 0 1983.3±1.4 

RI-SB-D2-E1 1.36 Faviidae 2.8839±0.0016 1.4643±0.0018 2.48±0.04 0.000415±0.000006 1.1457±0.0010 39.6±0.6 24.8±3.0 2013.41 1988.6±3.0 1 1990.1±3.5 

Note: Ratios in parentheses are activity ratios calculated from atomic ratios using decay constants of Cheng et al. (2000). All values have been corrected for laboratory procedural lanks. All errors reported in this table are 

quoted as  2σ.  Uncorrected  230Th age was calculated using Isoplot/EX 3.0 program (Ludwig, 2003b).Assuming that post-mortality erosion was minimal, the exact time of the coral mortality was calculated by adding the 

number of growth bands above the sampling location to the U-Th age. Considering the uncertainties in sampling location, ±0.5 year was added to the mortality age uncertainties. The number of annual bands was 

identified from the sampling location to the mortality surface.  

 

Table 2. MC-ICP-MS 230Th data for uncleaned, normal-cleaned and ultra-cleaned storm-transported coral blocks collected from the Frankland 

Islands, northern Great Barrier Reef. 

Sample Name Block Size 

(m3) 

Coral 

Family 

U (ppm) 232Th (ppb) (230Th/ 232Th)meas (230Th/238U) (234U/238U) Uncorr. 

230Th age (a) 

Corr. 230Th 

age (a) 

Time of 

chemistry 

Corr. 230Th 

Age (AD) 

Annual 
bands 

 

Mortality yr 

 in AD 

HI-SB-02(C) 1.05 Poritidae 2.5806±0.0014 4.0935±0.0047 1.03±0.02 0.000537±0.000012 1.1485±0.0014 51.1±1.2 14.2±7.6 2013.11 1999.0±7.6 0 1999.5±8.1 

HI-SB-02 (E) 1.05 Poritidae 2.6630±0.0014 1.1614±0.0013 1.69±0.03 0.000243±0.000005 1.1438±0.0010 23.2±0.5 9.5±2.8 2013.41 2003.9±2.8 0 2004.4±3.3 

HI-SB-02 (U) 1.05 Poritidae 2.7696±0.0021 20.804±0.081 0.76±0.01 0.001876±0.000022 1.1464±0.0013 178.8±2.1 23±31 2013.41 1990±31 0 1991±32 

NI-SB-H3-02(C) 0.28 Faviidae 2.9807±0.0015 10.601±0.015 2.83±0.03 0.003317±0.000034 1.1477±0.0011 316.1±3.3 240±16 2013.11 1773±16 0 1773±16 

NI-SB-H3-02 (E) 0.28 Faviidae 2.1688±0.0009 1.0734±0.0013 16.72±0.15 0.002728±0.000025 1.1442±0.0011 260.7±2.4 244.6±4.0 2013.41 1768.8±4.0 0 1769.3±4.5 

NI-SB-H3-02 (U) 0.28 Faviidae 2.9894±0.0014 36.005±0.088 1.30±0.01 0.005173±0.000045 1.1466±0.0008 493.7±4.3 247±50 2013.41 1766±50 0 1767±50 
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NI-SB-H5-01(C) 0.22 Faviidae 3.4720±0.0015 13.275±0.010 0.93±0.01 0.001177±0.000018 1.1486±0.0009 111.9±1.7 31±16 2013.11 1982±16 0 1982±17 

NI-SB-H5-01(E) 0.22 Faviidae 2.7756±0.0017 1.3488±0.0015 2.66±0.04 0.000426±0.000006 1.1421±0.0008 40.7±0.6 26.1±3.0 2013.41 1987.3±3.0 0 1987.8±3.5 

NI-SB-H5-01(U) 0.22 Faviidae 3.3891±0.0019 58.372±0.061 0.70±0.01 0.003950±0.000042 1.1459±0.0012 377.0±4.1 26±71 2013.41 1987±71 0 1988±71 

NI-SB-H6-07(C) 1.08 Faviidae 3.0163±0.0014 34.310±0.086 1.36±0.01 0.005101±0.000035 1.1482±0.0008 486.2±3.4 253±47 2013.11 1760±47 0 1760±47 

NI-SB-H6-07(E) 1.08 Faviidae 2.2615±0.0012 1.2280±0.0017 16.9±0.18 0.003025±0.000033 1.1463±0.0009 288.5±3.1 271.7±4.6 2013.41 1741.7±4.6 0 1742.2±5.1 

NI-SB-H6-07(U) 1.08 Faviidae 3.1100±0.0022 144.28±0.80 0.81±0.01 0.012438±0.000100 1.1452±0.0015 1192.3±9.8 251±190 2013.41 1762±190 0 1762±190 

RI-SB-H3-03(C) 0.12 Acroporidae 2.5417±0.0013 4.0155±0.012 1.33±0.02 0.000690±0.000010 1.146±0.0009 65.8±1.0 28.8±7.5 2013.11 1984.3±7.5 0 1984.8±8.0 

RI-SB-H3-03(E) 0.12 Acroporidae 1.9940±0.0011 1.0521±0.0012 2.66±0.04 0.000462±0.000007 1.1459±0.0008 44.0±0.7 26.8±3.5 2013.41 1986.6±3.5 0 1987.1±4.0 

RI-SB-H3-03(U) 0.12 Acroporidae 2.9209±0.0016 37.705±0.078 0.71±0.01 0.003001±0.000027 1.1458±0.0011 286.4±2.6 22±53 2013.41 1991±53 0 1992±54 

RI-SB-D2-E1(C) 1.36 Faviidae 2.6470±0.0014 9.6071±0.0088 0.90±0.02 0.001075±0.000024 1.1482±0.0009 102.3±2.3 24±16 2013.11 1989±16 1 1990±16 
RI-SB-D2-E1(E) 1.36 Faviidae 2.8839±0.0016 1.4643±0.0018 2.48±0.04 0.000415±0.000006 1.1457±0.0010 39.6±0.6 24.8±30 2013.41 1988.6±3.0 1 1990.1±3.5 
RI-SB-D2-E1(U) 1.36 Faviidae 2.9165±0.0017 9.1709±0.023 0.98±0.02 0.001012±0.000016 1.1449±0.0012 96.6±1.6 29±14 2013.41 1985±14 1 198±14 

Note: Ratios in parentheses are activity ratios calculated from atomic ratios using decay constants of Cheng et al. (2000). All values have been corrected for laboratory procedural lanks. All errors reported in this table are 

quoted as  2σ.    
aC, E, U are replicate samples taken from within the same growth band. C means common-cleaned subsample; E means enhance-cleaned subsample; U means uncleaned sample. 



AC
CE

PT
ED

 M
AN

US
CR

IP
T

ACCEPTED MANUSCRIPT

39 
 

 

Table 3. The potentially responsible storms/cyclones from 1941AD to 2005 AD within 

200 km of the Frankland Islands, northern Great Barrier Reef 

Period 0-50km 50-100 km 100-200 km 

2001-2
007 

Larry: 
14-20/03/2006 (5) 

Jim: 23-30/1/2006 (3) 
Abigail: 24/2-8/3/2001 
(3) 

 

1991-2
000 

 Justin: 6-23/3/1997 (3) 
Joy: 18-27/12/1990 (4) 
Rona-Frank: 9/12/1999 
(3) 

Steve: 27/2-11/3/2000 (3) 
Gillian: 10-12/2/1997 (1) 
Tessi: 1-2/4/2000 (2) 

1981-1
990 

Felicity: 
13-20/12/1989 (2) 
Ivor: 16-26/3/1990 
(4) 
Winifred:27/1-5/2/
1986 (3) 

Vernon: 21-24/1/1986 (1) Pierre: 18-24/2/1985 (1); Freda: 
24/2-7/3/1981 (2) 
Des:14-23/1/1983(2); 
Ingrid:20-25/2/1984 (5); 
Dominic:4-14/4/1982(2); 
Delilah:28/12/1988-01/1/1989 (2) 

1971-1
980 

Dawn: 3-6/3/1976 
(1) 

Otto: 6-10/3/1977 (2) 
Keith: 29-31/1/1977 (1) 
Gertie: 10-16/2/1971 (2) 

Kerry:12/2-04/3/1979(4); 
Hal:6-11/4/1978(unknown) 
Una:14-20/12/73(unknown); 
Gloria:15-19/1/1975 (3) 
Yvonne: 8-11/2/1974 (1); Althea: 
19-29/12/1971 (4) 
Peter: 29/12/78-3/1/1979 (3) 

1961-1
970 

Judy:25/1-5/2/196
5 (unknown) 

Elaine: 13-19/3/1967 
(unknown) 
Flora: 30/11-08/12/1964 
(unknown) 

Unnamed#13:02-08/3/1961(unknown);Bri
dget:23-26/1/1969 (unknown); Unnamed 
#3: 2-6/1/1961 (unknown) 

1951-1
960 

Unnamed#7:01-18
/3/1955 (unknown) 
Bertha:4-22/1/195
9 (unknown) 
Unnamed#1:6-12/
2/1956 (unknown) 

Unnamed#2:24-31/12/19
59 (unknown) 
 

Agnes: 23/2-11/3/1956 (unknown) 
Unnamed #10: 06-12/2/1956 (unknown) 
 

1941-1
950 

Unnamed#4:6-11/2
/1946 (unknown) 
Unnamed#3:10-15
/1/1948 (unknown) 
Unnamed#6:27/2-
03/3/1946 
(unknown) 

Unnamed#5:15-21/2/194
2(unknown) 
Unnamed#1:1-14/2/1947 
(unknown) 
 

Unnamed#2:12-16/1/1950(unknown);Unn
amed#7:4-11/3/1950 (unknown);Unnamed 
#8: 15-21/12/1942 (unknown); Unnamed 
#9: 29/1-2/2/1945 (unknown) 
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The style of cyclone is this table: Cyclone Name: time (Category). The categories of cyclones are 
indentified with the data from Wikipedia, Australian Government Bureau of Meteorology and 
http://australiancyclones.com/Cyclone-List.php. 
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Highlights 

● We present the first palaeostorm reconstruction using U-Th dating of inshore blocks 

● 17 additional storm events prior to 1850’s were identified 

●  The storm activities were modulated by the multi-decadal PDO index 

● There is a decreasing age trend from shore to reef edge in mortality age distribution 


