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Isolation of Contractile Cardiomyocytes from Human
Pluripotent Stem-Cell-Derived Cardiomyogenic Cultures

Using a Human NCX1-EGFP Reporter

Dmitry A. Ovchinnikov,1,* Alejandro Hidalgo,1,2,* Seung-Kwon Yang,3 Xinli Zhang,4 James Hudson,5

Stuart B. Mazzone,3 Chen Chen,3 Justin J. Cooper-White,2,6,7 and Ernst J. Wolvetang1

The prospective isolation of defined contractile human pluripotent stem cell (hPSC)–derived cardiomyocytes is
advantageous for regenerative medicine and drug screening applications. Currently, enrichment of cardio-
myocyte populations from such cultures can be achieved by combinations of cell surface markers or the labor-
intensive genetic modification of cardiac developmental genes, such as NKX2.5 or MYH6, with fluorescent
reporters. To create a facile, portable method for the isolation of contractile cardiomyocytes from cardiomyogenic
hPSC cultures, we employed a highly conserved cardiac enhancer sequence in the SLC8A1 (NCX1) gene to
generate a lentivirally deliverable, antibiotic-selectable NCX1cp-EGFP reporter. We show that human em-
bryonic stem cells (and induced pluripotent stem cells) transduced with the NCX1cp-EGFP reporter cassette
exhibit enhanced green fluorescent protein (EGFP) expression in cardiac progenitors from 5 days into the
directed cardiac hPSC differentiation protocol, with all reporter-positive cells transitioning to spontaneously
contracting foci 3 days later. In subsequent stages of cardiomyocyte maturation, NCX1cp-EGFP expression was
exclusively limited to contractile cells expressing high levels of cardiac troponin T (CTNT), MLC2a/v, and a-
actinin proteins, and was not present in CD90/THY1 + cardiac stromal cells or CD31/PECAM + endothelial
cells. Flow-assisted cytometrically sorted EGFP1 fractions of differentiated cultures were highly enriched in
both early (NKX2.5 and TBX5) and late (CTNT/TNNI2, MYH6, MYH7, NPPA, and MYL2) cardiomyocyte
markers, with a significant proportion of cells displaying a ventricular-like action potential pattern in patch-
clamp recordings. We conclude that the use of the cardiac-specific promoter of the human SLC8A1(NCX1) gene
is an effective strategy to isolate contractile cardiac cells and their progenitors from hPSC-derived cardio-
myogenic cultures.

Introduction

Human cardiomyocytes can be efficiently generated
from pluripotent stem cells in vitro through temporal

exposure of either monolayer cultures or embryoid bodies to
combinations of growth/differentiation factors or small
molecules and tailoring of the extracellular matrix and cul-
ture medium composition [1–6]. Generation of cardiomyo-
cytes from human pluripotent stem cells (hPSCs) represents a
reliable source of cardiac cells for modeling of heart disease
[7–12], identification of molecular pathways involved in

cardiac cell type specification [13,14], drug screening in vitro
and in vivo [15–18], and, perhaps, even for regenerative
medicine applications [19–23].

Despite the development of increasingly efficient differ-
entiation protocols, the final population inevitably contains a
mixture of cardiomyocytes, smooth muscle cells, stromal
cells, and endothelial cells [1,3,5,6,13,24–27]. Isolation of
pure functional cardiomyocytes and their committed precur-
sors from heterogeneous populations is therefore of signifi-
cant interest for further in vitro or in vivo applications and
cardiac regeneration [28–30]. To address this need, methods
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for flow-assisted cytometric isolation of cardiomyocytes and
their precursors based on cell surface markers, such as SIRPa
and HCN4, have been developed [31,32]. These protocols,
however, require labeling and sorting steps, use cell surface
markers that are also expressed in noncardiac cell types (eg,
SIRPa) [31], and generate cardiomyocyte-enriched cultures
that still contain low amounts of endothelial and stromal cells.

Alternatively, cardiomyocyte-specific fluorescent reporters
can be introduced into pluripotent stem cell lines through ho-
mologous recombination. While the genetic tagging of cardiac
developmental genes, such as NKX2.5, or usage of the promoter
elements of the late cardiomyocyte structural protein genes,
such as MYH6, MYL2, TNNI2, and TNNI3 [33,34], has created
useful tools for identifying and characterizing cardiac differ-
entiation stages in human and mouse pluripotent stem cells
[35,36], their utility is limited by (1) a very limited number of
hPSC lines that have been subjected to this technically chal-
lenging process, and (2) their limited accuracy, dictated by the
temporal and tissue-specific expression of the gene. Due to the
increasing number of human induced pluripotent stem cell
(iPSC) lines that are generated from patients with cardiac and
other genetic diseases, there is a need for a simple, portable
technology that allows the isolation of pure functional cardio-
myocytes from cardiomyogenic hPSC cultures.

The NCX1(SLC8A1) Ca2 + /Na + antiporter protein func-
tionally contributes to Ca2 + handling of contractile cardio-
myocytes [34,37,38] and is highly expressed in embryonic
and fetal cardiomyocytes. Although NCX1 is widely ex-
pressed, cardiac-specific expression of NCX1 is thought to
be directed by a highly conserved cardiac enhancer motif in
its promoter, as suggested by the observation that the feline
NCX cardiac enhancer motif is exclusively active in neonatal
rat ventricular cardiomyocytes [35]. We therefore hypothe-
sized that the human cardiac-specific enhancer of the NCX1/
SLC8A1 gene would be an attractive candidate for selective
marking of functional hPSC-derived cardiomyocytes.

Herein we report that lentiviral transduction of human em-
bryonic stem cell (hESC) lines (H9 and HES3) and human
iPSC lines, C32 and C11 [39], with a puromycin-selectable
NCX1cp–enhanced green fluorescent protein (EGFP) reporter,
based on the human upstream-most SLC8A1/NCX1 promoter
and noncoding exon (NCX1cp), allows for the rapid estab-
lishment of a cardiomyocyte reporter line. We demonstrate
that, independently of the cardiomyocyte differentiation pro-
tocol used, EGFP expression in every NCX1cp-hPSC reporter
line identifies an early cardiomyocyte population that homo-
geneously differentiates into contractile cardiomyocytes, ex-
hibiting high levels of cardiomyocyte-specific gene and protein
expression, and cardiac electrophysiological signatures. The
NCX1cp-EGFP + fraction thus allows for the isolation of a
pure, functional cardiomyocyte population that can be utilized
for tissue engineering or pharmacological applications.

Materials and Methods

hPSC culture

Human embryonic (H9 and HES3) and induced-pluripotent
(C11 and C32) stem cell lines were maintained as previously
reported [39,40]. Prior to differentiation, hPSC lines were
maintained in feeder-free conditions on Matrigel (BD/Life
Sciences)–coated plates in mTeSR1 medium (Stem Cell

Technologies) or MEF-conditioned medium supplemented
with bFGF (16 ng/mL for hES and 80 ng/mL for iPS) and
100 mM b-mercaptoethanol (both from Life Sciences/
Invitrogen).

Generation of the lentiviral reporter constructs

The upstream cardiac-specific promoter of the SLC8A1 gene
(located at coordinates chr2:40739418–40741429 in GRCh37/
hg19) was amplified from a BAC clone RP11-188E4 (supplied
by the Australian Genome Research Facility, Melbourne). The
promoter fragment was excised from the cloning vector using
PmeI and AscI restriction endonuclease sites introduced with
the primers used for its amplification, and cloned into EcoRV-
and AscI-digested pRRLSIN.cPPT.PGK-EGFP.WPRE (Ad-
dgene plasmid No. 12252) lentiviral backbone for efficient
delivery into primary rodent heart-derived cells (for functional
testing), thus creating the pRRL-NCX1cp-EGFP-WPRE lenti-
viral vector. After successful verification of the activity and
specificity of the promoter, the NCX1cp-EGFP-WPRE cassette
was excised using ClaI and SacII restriction endonucleases and
cloned into the digested, with same enzymes, pLenti6/V5-His
backbone (LifeTechnologies/Invitrogen), resulting in a Blasticidin-
selectable pL6-NCX1cp-EGFP-WPRE lentiviral vector.

Generation of stable hPSC reporter lines

Because transgene delivery via transduction or transfection
of hPSCs can vary substantially depending on culture method
and viral titers, the presence of a selectable cassette (driven by
a ubiquitously expressed promoter) is essential for the rapid
and reliable generation of stable, clonally derived pools of
human pluripotent cells. The cassette consisting of the NCX1
cardiac promoters EGFP and WPRE was thus recloned into a
backbone of a selectable and transcriptionally neutral (ie, de-
void of extraneous strong transcriptional enhancer elements)
vector of the pLenti6 family (Invitrogen/Life Sciences), re-
sulting in generation of the final pL6-NCX1cp-EGFP-WPRE-
Blastr lentiviral vector (see schematic in Fig. 1A).

Human ES (H9 and Hes3) and nonviral, integration-free
iPSC lines (C32 and C11) [39] were transduced with the
pL6-NCX1cp-EGFP-WPRE-Blastr lentiviral particles, and
Blasticidin selection was applied 5 days after transduction in
a ramping-up pattern (1 mg/mL on days 5–8 up to 2.5 mg/mL
from day 10). Both pools and single-cell-derived clones
were generated from two hES and two iPS lines, and at least
six individual Blasticidin-resistant clones for each hPSC line
were isolated, expanded, and cryopreserved. After subject-
ing each clone to cardiomyocyte differentiation, clones with
lentiviral transgene integration site(s) favorable to cardiac-
specific expression were selected. This approach allowed us
to rapidly establish NCX1cp-EGFP reporter lines from both
the hESC and iPSC lines outlined earlier.

HPSC cardiac differentiation

Human embryonic and iPSC lines were differentiated
following two protocols. First, following as previously de-
scribed by Hudson et al. [4]. Briefly, bulk cultures of plu-
ripotent hES and iPS cells were differentiated toward
mesodermal fates by culture for 3 days in RPMI medium
with B27 supplement (Life Sciences/Invitrogen) and Activin
A (20 ng/mL) and BMP4 (6 ng/mL). Next, cells were grown
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in RPMI/B27 medium supplemented with a WNT signaling
antagonist IWP-4 for up to 13 days (a detailed protocol is
described in the Supplementary Data; Supplementary Data
are available online at www.liebertpub.com/scd). A second
protocol, which involved manipulation of the canonical
WNT signaling pathway using small-molecule inhibitors,
was performed essentially as described in reference [41].

Immunofluorescence and confocal imaging

HPSC cultures were fixed with RostiFix 4% for 10 min at
room temperature. Following that samples were blocked/
permeabilized with 10% goat serum and 0.5% Triton-X100
in PBS for 30 min at room temperature. Samples were in-
cubated with primary antibodies against myosin heavy
chain/MYH (clone [3,42]; Abcam), CTNT (RV-C2, DSHB),
or a-actinin (A7811; Sigma-Aldrich) for 30 min at 4�C.
Secondary antibody labeling was performed at room tem-
perature for 30 min.

Flow-cytometric analysis

Cells were detached and dissociated into single-cell sus-
pension using tryptic or accutase digestion, and each sample

was split 1:1 for isotype control and staining with antibodies
(details in Supplementary Extended Experimental Proce-
dures). Next, samples were washed twice and incubated
with secondary antibody (goat anti-mouse IgG-Alexa Flour
488, 10 mg/mL [Invitrogen] and goat anti-mouse-Alexa
Flour 633, 10mg/mL [Invitrogen]) for 30 min at room tem-
perature. FACS analysis was performed on a CFlow Accuri
system and data were analyzed using the CFlow Sampler
Software. FACS for isolation of the NCX1cp-EGFP cells
was performed using the Influx Cell Sorter (BD Bio-
sciences) at the FACS facility of the Queensland Brain In-
stitute, University of Queensland.

Reverse transcription–quantitative
polymerase chain reaction

RNA extraction and cDNA synthesis was performed as
described previously [4], with use of additional random
priming for cDNA synthesis when detection of upstream
cardiac NCX1/SLC8A1 promoter was intended. For cDNA
amplification, ‘‘SsofastEvaGreen supermix’’ (172–5200;
BioRad) was used for the amplification, carried out on the
BioRad CFX96 real-time PCR machine. Data analysis was

FIG. 1. Design and characterization of the
lentiviral NCX1cp–enhanced green fluorescent
protein (EGFP) reporter. (A) Schematic of the
lentiviral NCX1cp-EGFP reporter construct.
The NCX1cp-EGFP lentiviral vector contains
the upstream-most SLC8A1 promoter (light-
blue line). Yellow box delineates the cardiac-
specific 1st exon/5¢ UTR. (B) High magnification
of immunofluorescent staining (in a low-
efficiency cardiomyogenic differentiation
assay) illustrating colocalization of NCX1cp-
EGFP with CTNT and a-actinin, showing
highly organized striated arrangements of
contractile proteins (square insets) in reporter-
positive H9 NCX1cp-EGFP-derived cardio-
myocytes. (C) qPCR analysis of SLC8A1/
NCX1 and NKX2.5 mRNA expression during
cardiac differentiation. Total NCX1 represents
all, and cpNCX1-only, cardiac-promoter-
derived SLC8A1/NCX1 transcripts (N = 3,
mean – SEM). (D) Increase in the fraction
of NCX1cp-EGFP + cells based on a flow-
cytometric analysis of a cardiac differentia-
tion time course of (N = 3, mean% – SD).
Scale bar = 20 mm. Color images available
online at www.liebertpub.com/scd

NCX1CP-EGFP REPORTER FOR CONTRACTILE CARDIOMYOCYTE ISOLATION 3



performed as detailed in Supplementary Methods; primers
used are listed in the Supplementary Table S1A.

Electrophysiological recordings on cardiomyocytes

Spontaneous action potentials were recorded from iso-
lated individual cells using whole-cell patch-clamp config-
uration, as described previously [43]. After isolation via
FACS, NCX1cp-EGFP-reporter-positive cells were plated
on the Matrigel (Sigma-Aldrich)–coated glass or plastic
coverslips. The patch-clamp pipette solution contained
120 mM KCl, 1 mM MgCl2, 3 mM ATP, 10 mM EGTA, and
10 mM HEPES (pH 7.4). The bath recording solution con-
tained 140 mM NaCl, 5.4 mM KCl, 1.8 mM CaCl2, 1 mM
MgCl2, 10 mM glucose, and 10 mM HEPES (pH 7.4). Re-
cordings were performed with whole-cell capacitance com-
pensation and changes in membrane potential were measured
under current-clamp condition (Axopatch 200A), digitized
(Digidata1200 A-D converter), and recorded on a PC run-
ning pClamp8 software (Axon, Burlingame). All mem-
brane potentials were corrected for liquid junction potential
( - 5.8 mV) determined via pClamp software, and the re-
cordings were performed at room temperature (similar to
methods described in Refs. [44–46]).

Transcription factor binding site
conservation analysis

Analysis of the promoter/enhancer overall sequence and
transcription factor binding site conservation was performed
using ECR browser (ecrbrowser.dcode.org), MULAN multiple-
sequence alignment, and conservation analysis software (mulan
.dcode.org), and transcription factor binding site conservation
was analyzed using the CONREAL (Conserved Regulatory
Elements anchored Alignment) tool (conreal.knaw.nl) and
TRANSFAC and MATCH resources (available through www
.gene-regulation.com). Prediction of the likelihood of actual
transcription factor binding was performed using the Phys-
Binder online resource (http://bioit.dmbr.ugent.be/physbinder/
predict.php).

Statistical analysis

All data are presented as a mean – standard error of the
mean (SEM). To determine statistical differences, two-tailed
Student’s t-tests were used with P < 0.05 deemed as signif-
icant. Standard designation of confidence levels was used in
figure labeling: * for P < 0.05, ** for P < 0.01, and *** for
P < 0.001.

Results

Identification, cloning, and validation of the human
cardiac-specific promoter of the SLC8A1 gene

Based on our analysis of the features and evolutionary con-
servation of the neighborhood of the first cardiac-specific
exon of SLC8A1/NCX1 gene, we identified a high degree of
conservation in the proximal promoter, with 100% cross-
species identity of > 80% of bases in a *200-bp region
upstream from the start of the 1st exon (Fig. 1A and Sup-
plementary Fig. S1A). This promoter fragment contains
several conserved binding sites for cardiac transcription

factors, including those from the GATA family and
NKX2.5. A 2011-bp fragment containing this and a more
distal upstream region was sequence verified and cloned into
lentiviral vectors (see Supplementary Extended Experi-
mental Procedures for more details). Functionality of the
promoter was validated in neonatal rat cardiomyocytes
transduced with the pseudotyped lentiviral reporter (Sup-
plementary Fig. S2). High-titer pseudotyped lentiviral
preparations containing the selectable lentiviral reporter
were next used to transduce H9 and HES3 hESCs and C32
and C11 iPSCs. Upon selection, both pools and single-cell-
derived clones were established in 2 weeks, expanded, and
used for differentiation assays, with *90% of clones con-
taining the expressible cardiomyocyte-specific lentiviral
reporter (see Supplementary Table S1B for number of
clones generated from each line and Supplementary Ex-
tended Experimental Procedures for further detail). Since
the H9 hESC line is one of the most widely used by the
international research community, results from the stably
transduced pools derived from this line are shown (unless
indicated otherwise). Essentially identical results were ob-
tained with HES3 and the iPSC lines.

NCX1cp-EGFP expression marks functional
early cardiac cells in heterogeneous populations
derived from human stem pluripotent cells

We next subjected the H9, HES3, C32, and C11 NCX1cp-
EGFP-transgenic hESC/iPSC lines to two different estab-
lished cardiomyocyte differentiation protocols, using methods
based on BMP/activin [4] and small-molecule modulators
of Wnt signaling [3,41]. Initial NCX1cp-EGFP expression
was observed from day 7 of differentiation. From days 11–
12, EGFP intensity and the number of cells expressing
EGFP increased (Fig. 1D), followed by initiation of beat-
ing at day 12 (Supplementary Movie S1). In all cultures,
EGFP expression preceded contractions of individual cells
or isolated foci by 24–48 h. By day 16 of differentiation, all
beating clusters expressed EGFP (Supplementary Movies S1–
S4), and all EGFP-expressing cells were beating synchro-
nously (Supplementary Movies S1–S5). With both protocols,
NCX1cp-EGFP expression was observed in cardiomyocytes
derived from all four hPSC lines tested (two hES and two iPS),
at levels correlating with the efficiency of cardiomyocyte
differentiation.

While the SLC8A1/NCX1 protein itself is widely ex-
pressed and implicated in many important physiological
processes, the upstream-most cardiac-specific promoter ap-
pears to be highly cardiomyocyte specific [47,48]. Analysis
of the transcription from this promoter, as well as the pro-
files of induction of expression of genes associated with
various stages of cardiac differentiation, revealed that the
basal level of cardiac promoter expression is below detec-
tion limits until the day 5 of cardiac differentiation in
hPSCs, while NKX2.5 and total SLC8A1/NCX1 transcripts
are detectable from earliest time points (eg, day 0, Fig. 1C).
Similarly, expression of the EGFP reporter is first seen from
day 5, and reaches its maximum at day 16 (Fig. 1D) and
precedes the expression of cardiac troponin T (TNNI2) that
commences at day 7 and then steadily increases with dif-
ferentiation (Supplementary Fig. S1C). Activity of the
NKX2.5 promoter, on the other hand, peaked at day 9
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without showing any further increase (Fig. 1C), while HCN4
was significantly upregulated between days 5 and 7 (Sup-
plementary Fig. S1C).

To further define the nature of the subpopulation marked
by EGFP expression, immunofluorescent staining for the
late cardiac structural marker CTNT was performed at day
16 (Fig. 1 and Supplementary Fig. S1). As expected, beating
foci expressed CTNT, which was colocalized with EGFP
expression (Fig. 1B and Supplementary Fig. S1B and Sup-
plementary Movies S1–S4). Remixing of the reporter-
positive and -negative populations was performed to ensure
presence of noncardiomyocytic cells and illustrate the car-
diomyocyte specificity of the reporter (bottom panel in Fig.
2). The majority of EGFP2 cells lacked expression of

CTNT, exhibited a fibroblast-like morphology, and ex-
pressed THY1/CD90 (a marker of stromal cells). We found
that in contrast to the EGFP - fraction, EGFP-expressing
cardiomyocyte populations (isolated at day 16) tolerated
multiple passaging rounds, could be replated as single cells
at low density, and continued to express cardiac structural
markers CTNT and a-actinin (Fig. 2), exhibiting highly
organized striations characteristic of contractile cardio-
myocytes (Fig. 1B).

To quantify cardiomyocyte induction efficiency and re-
porter specificity in our differentiation experiments, the
distribution of CTNT and NCX1cp-EGFP expression was
assessed by flow-cytometric analysis using costaining with
the cardiac marker CTNT, the stromal cell marker THY1/

FIG. 2. Colocalization of NCX1cp-EGFP
expression with cardiac cell markers. Immu-
nostaining for cardiomyocyte and fibroblast
markers in replated, mixed, flow-cytometrically
sorted, H9 NCX1cp-EGFP-negative and
- positive populations at day 30 of cardiac
differentiation. Analysis was performed at 2
days (top four rows) or 8 days (bottom row)
after replating. Reporter expression corre-
lates well with cardiomyocyte-specific pro-
teins of the contractile complex (CTNT and
a-actinin), marker of the early first heart
field (HCN4), and pan-cardiac transcription
factor NKX2.5 (note a number of NKX2.5 + ;
NCX1cp-EGFP - cells). No coexpression of
NCX1cp-EGFP and cardiac fibroblast mar-
ker THY1 could be detected in cultures of
mixed, replated, EGFP-negative and -positive
fractions (bottom row). A representative ex-
periment of three is shown. Similar results
were obtained with NCX1cp-EGFP-tagged
HES3 and hiPS cell lines. Scale bar = 20mm.
Color images available online at www.liebertpub
.com/scd
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CD90, and the endothelial marker CD31/PECAM (Fig. 3A,
C, D). Flow-cytometric analyses performed at day 16
showed that all NCX1cp-EGFP + cells express CTNT with a
total percentage of double-positive cells of 43% – 4.4%
(n = 3, mean – SD) (Fig. 3A) and that the NCX1cp-EGFP -

fraction contained all of the stromal and endothelial fraction,
with a total percentage of CD31/PECAM endothelial-like
cells of 2.9% – 1.3% (Fig. 3C), and CD90/THY1 + cardiac
fibroblast-like cells of 18.3% – 4.6% (n = 3, mean – SD (Fig.
3D). These observations, in combination with immunocyto-
chemical evidence (Figs. 1 and 2), confirm that contraction-
capable, CTNT-positive cardiomyocytes can be readily identified
and isolated from hPSC cultures by NCX1/SLC8A1 cardiac-
specific promoter-driven EGFP expression. Positional var-
iegation of the lentiviral reporter in the pooled transgenic
H9 population used in these experiments and its potential
differentiation-associated silencing are likely contributors to
emergence of the small fraction of CTNT-positive cells that
no longer express the reporter (Fig. 3A, lower-right quadrant
of the FACS plot).

To further confirm cardiomyocyte commitment of the
NCX1cp-EGFP-reporter-expressing population, EGFP-
expression-based flow-cytometric cell sorting was per-
formed at day 16, followed by analysis of gene expression at
the transcript level. Separation of both populations was
easily achieved due to the high intensity of the signal from
the NCX1cp-EGFP1 fraction, which provided almost two
orders of magnitude separation between the EGFP-expressing

and negative populations. Gene expression analysis for pro-
genitor and late cardiac structural markers as well as for
endothelial and stromal cell markers revealed that all pan-
cardiomyocytic marker genes were expressed at signifi-
cantly (greater than fourfold) higher levels in the EGFP +

fraction when compared with the EGFP - fraction (Fig. 3B).
Late cardiac structural markers TNNI2, MYL2, MLC2v, and
MYH7 were highly upregulated, as were transcription fac-
tors TBX5 and NKX2.5 and natriuretic peptide A (NPPA). In
contrast, the stromal markers PDGFrb, Vimentin, and THY1/
CD90 were significantly enriched in the EGFP- fraction, and
expressed in the EGFP+ fraction at levels approaching the lower
assay detection limits (Fig. 3B and Supplementary Fig. S2).

Electrophysiological signatures of NCX1cp-EGFP-
reporter-expressing cardiomyocytes indicate
presence of multiple cardiomyocyte phenotypes

To further exemplify the functionality and identity of the
NCX1cp-EGFP + cardiomyocytes, we FAC sorted EGFP +

cells from day-32 cardiomyocytes, and recorded action po-
tentials using the whole-cell patch-clamp configuration.
Three types of action potential signatures were observed in
sorted NCX1cp-EGFP + cells (Fig. 4A), namely, ventricu-
lar-like type, with a prolonged depolarization plateau phase,
in agreement with the robust expression of MLC2v (Fig.
4B), as well as atrial-like and nodal-like types, displaying
characteristic slower-onset (for atrial-like) and shorter-duration

FIG. 3. Characterization of the NCX1cp-EGFP-reporter-expressing populations in cardiac differentiation. (A) A repre-
sentative FACS analysis showing the correlation between NCX1cp-EGFP and CTNT expression in NCX1cp-H9 hESCs.
Approximately 80% of CTNT + cells are marked with the NCX1cp-EGFP reporter, while virtually all ( > 99%) reporter-
positive cells were CTNT + [the isotype control is shown in panel (C), left plot]. (B) Gene expression (mRNA) analysis of
H9 NCX1cp-EGFP-sorted cell fractions at day 16 of the cardiac induction protocol. Gene expression is presented as mean
levels relative to GAPDH; error bars represent the SEM of at least three biological replicates. (C) An FACS plot dem-
onstrating full segregation of the expression of endothelial cell marker CD31/PECAM and the NCX1cp-EGFP reporter. (D)
A representative FACS dot plot demonstrating lack of the reporter expression in cells labeled with a fibroblast/stromal
marker THY1.
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(for both types) depolarization phases (electrophysiological
parameters listed in Table 1). These data suggest that the
reporter allows for isolation of the three prevalent contrac-
tile cell types found in normal heart [49].

Discussion

This study exemplifies the utility of a portable cardio-
myocyte-specific reporter that allows for the isolation of a
committed functional cardiomyocyte population from human
ES and iPS cell lines before and after commencement of
beating activity. Using four cell lines and two cardiac in-
duction protocols, the appearance of EGFP1 cells (observed
from days 6 to 9 of the cardiac induction protocol) preceded
beating of individual cells and clusters by 24–48 h. We ob-
served sustained expression of EGFP in beating cardiomyo-
cytes derived from all tested cell lines that further increased
with cardiomyocyte differentiation. An obvious advantage of
the cardiomyocyte-specific NCX1 promoter is its high ac-
tivity in embryonic cardiomyocytes, well before they exhibit
beating, and suggests that this selectable, lentiviral-vector-
based reporter has the potential to become a robust, widely
applicable, and portable system for isolation of contraction-
capable cardiomyocytes and their precursors, such as those
required for cardiac regenerative medicine [49–51]. Im-
munodetection of cardiac structural markers in EGFP + cells
and gene expression confirmed that cell clusters marked by
EGFP coexpressed cardiomyocyte-specific and sarcomeric
proteins, such as CTNT. This is perhaps not surprising since
NCX1 activity accounts for a significant portion of the cal-
cium efflux, triggering the Ca2 + -induced Ca2 + release
(CICR) from the sarcoplasmic reticulum [37,38], and Ca2 +

homeostasis is critical during excitation-contraction coupling
through Ca2 + -dependent cTnI-Tropomyosin positional re-
configuration [52,53].

We demonstrate that the NCX1cp-EGFP reporter facili-
tates the identification and isolation of functional cells from
heterogeneous populations, even at early stages of the in-
duction protocol, consistent with the observation that NCX1
is known to contribute to mediation of Ca2 + transients
during the early stages of in vivo differentiation of hPSC-
derived cardiomyocytes [34,49]. The reporter further per-
mits monitoring of cardiomyocyte induction efficiency in
real time, providing a useful tool to rank cardiac differen-
tiation protocols. The breadth of the reporter expression (in
all 3 major cardiomyocyte types: ventricular, atrial, and
pacemaker/nodal like) is in keeping with the observation

FIG. 4. NCX1cp-EGFP + cardiomyocytes display action
potentials characteristic of the three major contractile cardio-
myocyte types. (A) Representative patch-clamp recordings
from NCX1cp-EGFP+ H9 cardiomyocytes. Spontaneous ac-
tion (AP) potential waveforms of ventricular-, atrial-, and
nodal-like characteristics recorded from the reporter-positive
cardiomyocytes (day 32). Higher-temporal-resolution-scale
traces (see bars on bottom of the panel) are shown on the right.
Recordings were performed on 17 NCX1cp-EGFP + H9 hES
reporter pool–derived cardiomyocytes. (B) Immunofluorescent
detection of the ventricular-specific contractile protein MLC2v
in NCX1cp-EGFP+ cardiomyocytes at day 32. Scale bar = 10
mm. Color images available online at www.liebertpub.com/scd

Table 1. Electrophysiological Characteristics of Three Types of Cardiomyocytes

Isolated Based on NCX1cp-EGFP Expression

MDP
(mV)

RP
(mV)

APD50
(ms)

APD90
(ms)

Amplitude
(mV)

Frequency
(bpsec)

Frequency
(bpmin)

Upstroke Vel
(mV/ms)

Mean
Ventricular - 57.2 - 51.5 603.3 919.9 76.5 0.2 12.2 11.3
Atrial - 54.8 - 48.1 257.3 327.3 62.0 0.2 13.5 10.5
Nodal - 54.8 - 47.1 468.2 571.5 74.6 0.5 30.4 10.4

SEM
Ventricular 2.0 1.1 72.5 175.7 2.2 0.0 2.4 0.9
Atrial 2.9 2.0 12.3 8.0 4.8 0.0 1.5 0.4
Nodal 1.3 0.8 55.7 58.2 5.3 0.1 2.9 0.5

EGFP, enhanced green fluorescent protein; MDP, maximum diastolic potential; RP, resting potential; APD, action potential duration.
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that in transgenic mice carrying the rat NCX1-EGFP pro-
moter reporter, expression of EGFP is initially pan-cardiac
and thereafter becomes progressively restricted to the
pacemaker/nodal cardiomyocytes during late gestation and
postparturition [50]. It remains to be determined whether the
NCX reporter can be used for this purpose to specifically
isolate human pacemaker cells from late cardiac differenti-
ation cultures.

While many characteristics of the EGFP + fraction at day
16 resembled developmentally immature functional cardio-
myocytes described previously [4,51], this population already
expresses mature cardiomyocyte markers, such as MYH6,
MYH7, and NPPA (Fig. 3B) and MLC2v, at day 32 (Fig. 4B)
(when compared with the starting cells and EGFP- popula-
tion). Importantly, the EGFP - population expressed high
levels of the cardiac stromal cell markers THY1/CD90, DDR2,
and Vimentin, consistent with flow cytometry and immuno-
fluorescence analyses for THY1/CD90 on mixed populations,
and contained the entirety of the endothelial-like CD31/PE-
CAM+ cells [52], another common contaminant in hESC-
derived, cardiac-differentiated populations. In this respect, the
NCX1cp-EGFP reporter appears to be at least as specific to
cardiomyocytes as the NKX2.5-knock-in hESC lines. Indeed,
while NKX2.5 is predominantly cardiomyocyte specific, it is
known to also mark stromal cells in hESC-derived cardio-
myogenic cultures [36,53]. We show that NCX1cp-EGFP
does not mark the stromal compartment and that all NCX1cp-
EGFP-positive cells express CTNT (Figs. 2 and 3) and
NKX2.5 (Fig. 2 and Supplementary Fig. S3). While for some
applications the presence of other cardiac cell types might be
desirable, the NCX1cp-EGFP reporter allows for experimen-
tation on a more defined population, and permits investiga-
tions into the interactions of the cardiomyocyte population
with other (eg, stromal) cell types.

The current lentiviral delivery of the NCX1cp-EGFP re-
porter does have the drawback that it has the potential to
lead to insertional mutagenesis. Therefore, individual clones
should be assessed for appropriate upregulation of EGFP
following cardiomyogenic differentiation (eg, through co-
labeling with CTNT and FACS).

Isolation of cardiomyocytes from cardiomyogenic cultures
using cell surface antigens remains an attractive strategy
[31,32], despite the fact that such FAC-sorted populations
do not yield pure cardiomyocyte populations. As such, we
envisage that NCX1cp-EGFP-reporter-sorted cardiomyo-
cyte populations could indeed be used to identify and test
additional cell surface markers that will further enhance the
purity of such cultures.

We conclude that the ability to easily purify NCX1cp-
GFP+ cells that display very high propensity to spontaneously
contract and progress to long-term-beating cardiomyocytes is
both a valuable tool for regenerative medicine approaches, as
was recently exemplified by Huang and colleagues [22], and
allows for testing of, for instance, cardiotoxic drugs on defined
contractile cardiomyocyte populations.
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