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Abstract

This thesis involves the application of computational techniques to various problems in graph
theory and low dimensional topology. The first two chapters of this thesis focus on problems
in graph theory itself; in particular on graph decomposition problems. The last three chapters
look at applications of graph theory to combinatorial topology, focusing on the exhaustive
generation of certain families of 3-manifold triangulations.

Chapter 1 shows that the obvious necessary conditions are sufficient for the existence of a
decomposition of the complete graph into cycles of arbitrary specified lengths. This problem
was formally posed in 1981 by Brian Alspach, but has its origins in the mid 1800s. A complete
discussion of problem, as well as a full solution, is presented in Chapter 1. This work has been
published, see [34].

Chapter 2 solves a problem closely related to the Oberwolfach Problem, which was originally
posed by Gerhard Ringel at a graph theory conference in Oberwolfach in 1967. We show that
if a complete multipartite graph K has even degree, and F is a bipartite two factor of K, then
there exists a factorisation of K into F (with the exception that there is no factorisation of the
6-regular complete bipartite graph into the 2-factor consisting of two 6-cycles). This work has
been published, see [27].

The latter chapters of this thesis deal with the use of graph theory in combinatorial topology;
in particular combinatorial 3-manifold topology. Chapter 3 gives an introduction to the field
of combinatorial topology, especially to the graph theoretic structures required for this thesis.
Chapter 3 also gives an overview of the census enumeration problem, which we focus on for the
last two chapters, and outlines an existing state-of-the-art algorithm for this problem.

In Chapter 4 we look at face pairing graphs of 3-manifold triangulations. When enumerating
a census of triangulations, one often starts with a potential face pairing graph and attempts
to flesh it out into a full 3-manifold triangulation. Computationally however, much time is
spent on potential graphs which do not lead to any interesting triangulations. We show that
determining whether such a graph will lead to a 3-manifold triangulation is fixed parameter
tractable in the tree width of the graph. This work has been published, see [47].

In Chapter 5 we give a new census enumeration algorithm for 3-manifold triangulations. We
use graph decompositions as the basis for this algorithm, which topologically is equivalent to
identifying edges of tetrahedra together (as opposed to identifying faces together). We show that
this algorithm complements existing state-of-the-art algorithms, potentially reducing census
enumeration running times by a factor of two or more.
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Chapter 1

Cycle decompositions of complete
graphs

1.1 Introduction

A decomposition of a graph K is a set of subgraphs of K whose edge sets partition the edge
set of K. In 1981, Alspach [3] asked whether it is possible to decompose the complete graph
on n vertices, denoted Kn, into t cycles of specified lengths m1, . . . ,mt whenever the obvious
necessary conditions are satisfied; namely that n is odd, 3 ≤ mi ≤ n, and m1 + · · ·+mt =

(
n
2

)
.

He also asked whether it is possible to decompose Kn into a perfect matching and t cycles of
specified lengths m1, . . . ,mt whenever n is even, 3 ≤ mi ≤ n, and m1 + · · · + mt =

(
n
2

)
− n

2
.

Again, these conditions are obviously necessary.

In this chapter we solve Alspach’s problem by proving the following theorem.

Theorem 1.1.1. There is a decomposition {G1, . . . , Gt} of Kn in which Gi is an mi-cycle for

i = 1, . . . , t if and only if n is odd, 3 ≤ mi ≤ n for i = 1, . . . , t, and m1+· · ·+mt = n(n−1)
2

. There
is a decomposition {G1, . . . , Gt, I} of Kn in which Gi is an mi-cycle for i = 1, . . . , t and I is a

perfect matching if and only if n is even, 3 ≤ mi ≤ n for i = 1, . . . , t, and m1+· · ·+mt = n(n−2)
2

.

Let K be a graph and let M = (m1, . . . ,mt) be a list of integers with mi ≥ 3 for i = 1, . . . , t.
If each vertex of K has even degree, then an (M)-decomposition of K is a decomposition
{G1, . . . , Gt} such that Gi is an mi-cycle for i = 1, . . . , t. If each vertex of K has odd degree,
then an (M)-decomposition of K is a decomposition {G1, . . . , Gt, I} such that Gi is an mi-cycle
for i = 1, . . . , t and I is a perfect matching in K.

We say that a list (m1, . . . ,mt) of integers is n-admissible if 3 ≤ m1, . . . ,mt ≤ n and m1 + · · ·+
mt = nbn−1

2
c. Note that nbn−1

2
c =

(
n
2

)
if n is odd, and nbn−1

2
c =

(
n
2

)
− n

2
if n is even. Thus,

we can rephrase Alspach’s question as follows. Prove that for each n-admissible list M , there
exists an (M)-decomposition of Kn.

A decomposition of Kn into 3-cycles is equivalent to a Steiner triple system of order n, and a
decomposition of Kn into n-cycles is a Hamilton decomposition. Thus, the work of Kirkman
[67] and Walecki (see [6, 74]) from the 1800s addresses Alspach’s problem in the cases where
M is of the form (3, 3, . . . , 3) or (n, n, . . . , n). The next results on Alspach’s problem appeared
in the 1960s [69, 85, 86], and a multitude of results have appeared since then. Many of these
focused on the case of decompositions into cycles of uniform length [7, 9, 16, 19, 58, 62, 63, 87],
and a complete solution in this case was eventually obtained [5, 88].

1



There have also been many papers on the case where the lengths of the cycles in the decom-
position may vary. In recent work [28, 29, 31], the first two authors have made progress by
developing methods introduced in [30] and [32]. In [29], Alspach’s problem is settled in the
case where all the cycle lengths are greater than about n

2
, and in [31] the problem is completely

settled for sufficiently large odd n. Earlier results for the case of cycles of varying lengths can
be found in [1, 2, 14, 35, 36, 58, 60, 66]. See [23] for a survey on Alspach’s problem, and see
[39] for a survey on cycle decompositions generally.

The analogous problems on decompositions of complete graphs into matchings, stars or paths
have all been completely solved, see [15], [71] and [24] respectively. It is also worth mentioning
that the easier problems in which each Gi is required only to be a closed trail of length mi or
each Gi is required only to be a 2-regular graph of order mi have been solved in [13], [32] and
[37]. Decompositions of complete multigraphs into cycles are considered in [33].

Balister [14] has verified by computer that Theorem 1.1.1 holds for n ≤ 14, and we include this
result as a lemma for later reference.

Lemma 1.1.2 ([14]). Theorem 1.1.1 holds for n ≤ 14.

Our proof of Theorem 1.1.1 relies heavily on the reduction of Alspach’s problem obtained in
[31], see Theorem 1.1.3 below. Throughout this chapter, we use the notation νi(M) to denote
the number of occurrences of i in a given list M .

Definition A list M is an n-ancestor list if it is n-admissible and satisfies

(1) ν6(M) + ν7(M) + · · ·+ νn−1(M) ∈ {0, 1};

(2) if ν5(M) ≥ 3, then 2ν4(M) ≤ n− 6;

(3) if ν5(M) ≥ 2, then 3ν3(M) ≤ n− 10;

(4) if ν4(M) ≥ 1 and ν5(M) ≥ 1, then 3ν3(M) ≤ n− 9;

(5) if ν4(M) ≥ 1, then νi(M) = 0 for i ∈ {n− 2, n− 1}; and

(6) if ν5(M) ≥ 1, then νi(M) = 0 for i ∈ {n− 4, n− 3, n− 2, n− 1}.

Thus, an n-ancestor list is of the form

(3, 3, . . . , 3, 4, 4, . . . , 4, 5, 5, . . . , 5, k, n, n, . . . , n)

where k is either absent or in the range 6 ≤ k ≤ n − 1, and there are additional constraints
involving the number of occurrences of cycle lengths in the list. The following theorem was
proved in [31].

Theorem 1.1.3. ([31], Theorem 4.1) For each positive integer n, if there exists an (M)-
decomposition of Kn for each n-ancestor list M , then there exists an (M)-decomposition of
Kn for each n-admissible list M .

Our goal is to construct an (M)-decomposition of Kn for each n-ancestor list M . We split
this problem into two cases: the case where νn(M) ≥ 2 and the case where νn(M) ≤ 1. In
particular, we prove the following two results.
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Lemma 1.1.4. If M is an n-ancestor list with νn(M) ≥ 2, then there is an (M)-decomposition
of Kn.

Proof See Section 1.3.

Lemma 1.1.5. If Theorem 1.1.1 holds for Kn−3, Kn−2 and Kn−1, then there is an (M)-
decomposition of Kn for each n-ancestor list M satisfying νn(M) ≤ 1.

Proof The case νn(M) = 0 is proved in Section 1.4 (see Lemma 1.4.8) and the case νn(M) = 1
is proved in Section 1.5 (see Lemma 1.5.22).

Lemmas 1.1.4 and 1.1.5 allow us to prove our main result using induction on n.

Proof of Theorem 1.1.1 The proof is by induction on n. By Lemma 1.1.2, Theorem
1.1.1 holds for n ≤ 14. So let n ≥ 15 and assume Theorem 1.1.1 holds for complete graphs
having fewer than n vertices. By Theorem 1.1.3, it suffices to prove the existence of an (M)-
decomposition of Kn for each n-ancestor list M . Lemma 1.1.4 covers each n-ancestor list M with
νn(M) ≥ 2, and using the inductive hypothesis, Lemma 1.1.5 covers those with νn(M) ≤ 1.

1.2 Notation

We shall sometimes use superscripts to specify the number of occurrences of a particular integer
in a list. That is, we define (mα1

1 , . . . ,m
αt
t ) to be the list comprised of αi occurrences of mi

for i = 1, . . . , t. Let M = (mα1
1 , . . . ,m

αt
t ) and let M ′ = (mβ1

1 , . . . ,m
βt
t ), where m1, . . . ,mt are

distinct. Then (M,M ′) is the list (mα1+β1
1 , . . . ,mαt+βt

t ) and, if 0 ≤ βi ≤ αi for i = 1, . . . , t,
M −M ′ is the list (mα1−β1

1 , . . . ,mαt−βt
t ).

Let Γ be a finite group and let S be a subset of Γ such that the identity of Γ is not in S and
such that the inverse of any element of S is also in S. The Cayley graph on Γ with connection
set S, denoted Cay(Γ, S), has the elements of Γ as its vertices and there is an edge between
vertices g and h if and only if g = hs for some s ∈ S.

A Cayley graph on a cyclic group is called a circulant graph. For any graph with vertex set
Zn, we define the length of an edge xy to be x− y or y − x, whichever is in {1, . . . , bn

2
c}. It is

convenient to be able to describe the connection set of a circulant graph on Zn by listing only
one of s and n− s. Thus, we use the following notation. For any subset S of Zn \{0} such that
s ∈ S and n− s ∈ S implies n = 2s, we define 〈S〉n to be the Cayley graph Cay(Zn, S ∪ −S).

Let m ∈ {3, 4, 5} and let D = {a1, . . . , am} where a1, . . . , am are positive integers. If there is
a partition {D1, D2} of D such that

∑
D1 −

∑
D2 = 0, then D is called a difference m-tuple.

If there is a partition {D1, D2} of D such that
∑
D1 −

∑
D2 = 0 (mod n), then D is called

a modulo n difference m-tuple. Clearly, any difference m-tuple is also a modulo n difference
m-tuple for all n. We may use the terms difference triple, quadruple and quintuple respectively
rather than 3-tuple, 4-tuple and 5-tuple. For m ∈ {3, 4, 5}, it is clear that if D is a difference
m-tuple, then there is an (mn)-decomposition of 〈D〉n for all n ≥ 2 max(D) + 1, and that if D
is a modulo n difference m-tuple, then there is an (mn)-decomposition of 〈D〉n.

We denote the complete graph with vertex set V by KV and the complete bipartite graph with
parts U and V by KU,V . If G and H are graphs then G − H is the graph with vertex set
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V (G)∪ V (H) and edge set E(G) \E(H). If G and H are graphs whose vertex sets are disjoint
then G ∨H is the graph with vertex set V (G) ∪ V (H) and edge set E(G) ∪ E(H) ∪ {xy : x ∈
V (G), y ∈ V (H)}. A cycle with m edges is called an m-cycle and is denoted (x1, . . . , xm), where
x1, . . . , xm are the vertices of the cycle and x1x2, . . . , xm−1xm, xmx1 are the edges. A path with
m edges is called an m-path and is denoted [x0, . . . , xm], where x0, . . . , xm are the vertices of
the path and x0x1, . . . , xm−1xm are the edges. A graph is said to be even if every vertex of the
graph has even degree and is said to be odd if every vertex of the graph has odd degree.

A packing of a graph K is a decomposition of some subgraph G of K, and the graph K − G
is called the leave of the packing. An (M)-packing of Kn is an (M)-decomposition of some
subgraph G of Kn such that G is an even graph if n is odd and G is an odd graph if n is
even (recall that an (M)-decomposition of an odd graph contains a perfect matching). Thus,
the leave of an (M)-packing of Kn is an even graph and, like an (M)-decomposition of Kn, an
(M)-packing of Kn contains a perfect matching if and only if n is even. A decomposition of a
graph into Hamilton cycles is called a Hamilton decomposition.

1.3 The case of at least two Hamilton cycles

The purpose of this section is to prove Lemma 1.1.4 which states that there is an (M)-
decomposition of Kn for each n-ancestor list M with νn(M) ≥ 2. We first give a general
outline of this proof. Theorem 1.1.1 has been proved in the case where M = (3a, nb) for some
a, b ≥ 0 [36], so we will restrict our attention to ancestor lists which are not of this form. The
basic construction involves decomposing Kn into 〈S〉n and Kn − 〈S〉n where, for some x ≤ 8,
the connection set S is either {1, . . . , x} or {1, . . . , x − 1} ∪ {x + 1} so that

∑
S is even. We

partition any given n-ancestor list M into two lists Ms and Ms = M −Ms, and construct an
(Ms)-decomposition of 〈S〉n and an (Ms)-decomposition of Kn − 〈S〉n. This yields the desired
(M)-decomposition of Kn. Taking S = {1, . . . , x − 1} ∪ {x + 1}, rather than S = {1, . . . , x},
is necessary when 1 + · · · + x is odd as many desired cycle decompositions of 〈{1, . . . , x}〉n do
not exist when 1 + · · ·+ x is odd, see [38].

If M = (3α3n+β3 , 4α4n+β4 , 5α5n+β5 , kγ, nδ) where αi ≥ 0 and 0 ≤ βi ≤ n − 1 for i ∈ {3, 4, 5},
6 ≤ k ≤ n−1, γ ∈ {0, 1}, and δ ≥ 2, then we usually choose Ms = (3β3 , 4β4 , 5β5 , kγ). However, if
this would result in

∑
Ms being less than 4n, then we sometimes adjust this definition slightly.

We always choose Ms such that
∑
Ms is at most 8n, which explains why we have |S| ≤ 8.

Our (Ms)-decompositions of 〈S〉n will be constructed using adaptations of techniques used in
[38] and [40]. We construct our (Ms)-decompositions of Kn − 〈S〉n using a combination of
difference methods and results on Hamilton decompositions of circulant graphs. In general, we
split the problem into the case ν5(M) ≤ 2 and the case ν5(M) ≥ 3. In the former case it will
follow from our choice of Ms that Ms = (3tn, 4qn, nh) for some t, q, h ≥ 0 and in the latter case
it will follow from our choice of Ms that Ms = (5rn, nh) for some r, h ≥ 0.

The precise definition of Ms is given in Lemma 1.3.1, which details the properties that we
require of our partition of M into Ms and Ms, and establishes its existence. The definition
includes several minor technicalities in order to deal with complications and exceptions that
arise in the above-described approach. Throughout the remainder of this section, for a given
n-ancestor list M such that νn(M) ≥ 2 and M 6= (3a, nb) for any a, b ≥ 0, we shall use the
notation Ms and Ms to denote the lists constructed in the proof of Lemma 1.3.1. If νn(M) ≤ 1
or M = (3a, nb) for some a, b ≥ 0, then Ms and Ms are not defined.

Lemma 1.3.1. If M is any n-ancestor list such that νn(M) ≥ 2 and M 6= (3a, nb) for any
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a, b ≥ 0, then there exists a partition of M into sublists Ms and Ms such that

(1)
∑
Ms ∈ {2n, 3n, . . . , 8n} and

∑
Ms 6= 8n when ν5(M) ≤ 2;

(2) if
∑
Ms = 2n, then νn(Ms) = 1 and Ms = (nh) for some h ≥ 1;

(3) if
∑
Ms = 3n, then νn(Ms) ∈ {0, 1} and Ms = (nh) for some h ≥ 1;

(4) if
∑
Ms ∈ {4n, 5n, . . . , 8n} and ν5(M) ≥ 3, then νn(Ms) = 0 and Ms = (5rn, nh) for

some r ≥ 0, h ≥ 2;

(5) if
∑
Ms ∈ {4n, 5n, . . . , 7n} and ν5(M) ≤ 2, then νn(Ms) = 0 and Ms = (3tn, 4qn, nh) for

some t, q ≥ 0, h ≥ 2; and

(6) Ms 6= (3
5n
3 ).

Proof Let M be an n-ancestor list. The conditions of the lemma imply n ≥ 7. We will first
define a list Me which in many cases will serve as Ms, but will sometimes need to be adjusted
slightly.

If

M = (3α3n+β3 , 4α4n+β4 , 5α5n+β5 , kγ, nδ)

where αi ≥ 0 and 0 ≤ βi ≤ n− 1 for i ∈ {3, 4, 5}, 6 ≤ k ≤ n− 1, γ ∈ {0, 1}, and δ ≥ 2, then

Me = (3β3 , 4β4 , 5β5 , kγ).

It is clear from the definition of n-ancestor list that if we take Ms = Me, then (4) and (5) are
satisfied.

We now show that
∑
Me ∈ {0, n, 2n, . . . , 8n}, and that

∑
Me 6= 8n when ν5(M) ≤ 2. Noting

that
∑
Me ≤ 3β3 + 4β4 + 5β5 + (n − 1) and separately considering the cases ν5(M) ≥ 3,

ν5(M) ∈ {1, 2} and ν5(M) = 0, it is routine to use the definition of (M)-ancestor lists to show
that

∑
Me < 9n, and that

∑
Me < 8n when ν5(M) ≤ 2. Thus, because it follows from

∑
M =

nbn−1
2
c and the definition of Me that n divides

∑
Me, we have that

∑
Me ∈ {0, n, 2n, . . . , 8n},

and that
∑
Me 6= 8n when ν5(M) ≤ 2.

If
∑
Me ∈ {4n, 5n, 6n, 7n, 8n}, then we let Ms = Me. If

∑
Me ∈ {0, n, 2n, 3n}, then we define

Ms by

Ms =



(Me, 4
n) if α4 > 0;

(Me, 5
n) if α4 = 0 and α5 > 0;

(Me, 3
n) if α4 = α5 = 0 and α3 > 0;

(Me, n) if α3 = α4 = α5 = 0 and
∑
Me ∈ {n, 2n};

Me otherwise.

Using the definition of Ms and the fact that M is an n-ancestor list with M 6= (3a, nb) for any
a, b ≥ 0, it is routine to check that Ms satisfies (1)–(6).

Before proving Lemma 1.1.4, we need a number of preliminary lemmas. The first three give us
the necessary decompositions of 〈S〉n where S = {1, . . . , x} or S = {1, . . . , x− 1} ∪ {x+ 1} for
some x ≤ 8. Lemma 1.3.3 was proven independently in [22] and [84], and is a special case of
Theorem 5 in [38]. Lemmas 1.3.2 and 1.3.4 will be proved in Section 1.6.
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Lemma 1.3.2. If

S ∈ {{1, 2, 3}, {1, 2, 3, 4}, {1, 2, 3, 4, 6}, {1, 2, 3, 4, 5, 7}, {1, 2, 3, 4, 5, 6, 7}, {1, 2, 3, 4, 5, 6, 7, 8}},

n ≥ 2 max(S) + 1, and M = (m1, . . . ,mt, k) is any list satisfying mi ∈ {3, 4, 5} for i = 1, . . . , t,
3 ≤ k ≤ n, and

∑
M = |S|n, then there is an (M)-decomposition of 〈S〉n, except possibly when

• S = {1, 2, 3, 4, 6}, n ≡ 3 (mod 6) and M = (3
5n
3 ); or

• S = {1, 2, 3, 4, 6}, n ≡ 4 (mod 6) and M = (3
5n−5

3 , 5).

Proof See Section 1.6.

Lemma 1.3.3. ([22, 84]) If n ≥ 5 and M = (m1, . . . ,mt, n) is any list satisfying mi ∈
{3, . . . , n} for i = 1, . . . , t, and

∑
M = 2n, then there is an (M)-decomposition of 〈{1, 2}〉n.

Lemma 1.3.4. If n ≥ 7 and M = (m1, . . . ,mt, k, n) is any list satisfying mi ∈ {3, 4, 5} for
i = 1, . . . , t, 3 ≤ k ≤ n, and

∑
M = 3n, then there is an (M)-decomposition of 〈{1, 2, 3}〉n.

Proof See Section 1.6.

We now present the lemmas which give us the necessary decompositions of Kn−〈S〉n. Lemma
1.3.5 was proved in [36] where it was used to prove Theorem 1.1.1 in the case where M = (3a, nb)
for some a, b ≥ 0. Lemmas 1.3.6 and 1.3.7 give our main results on decompositions of Kn−〈S〉n.
Lemma 1.3.6 is for the case ν5(M) ≤ 2 and Lemma 1.3.7 is for the case ν5(M) ≥ 3.

Lemma 1.3.5. ([36], Lemma 3.1) If 1 ≤ h ≤ bn−1
2
c, then there is an (nh)-decomposition of

Kn − 〈{1, . . . , bn−12 c − h}〉n.

Lemma 1.3.6. If S ∈ {{1, 2, 3, 4}, {1, 2, 3, 4, 6}, {1, 2, 3, 4, 5, 7}, {1, 2, 3, 4, 5, 6, 7}} and n ≥
2 max(S)+1, t ≥ 0, q ≥ 0 and h ≥ 2 are integers satisfying 3t+4q+h = bn−1

2
c−|S|, then there

is a (3tn, 4qn, nh)-decomposition of Kn−〈S〉n, except possibly when h = 2, S = {1, 2, 3, 4, 5, 6, 7}
and

• n ∈ {25, 26} and t = 1; or

• n = 31 and t = 2.

Proof See Section 1.7.

Lemma 1.3.7. If S ∈ {{1, 2, 3, 4}, {1, 2, 3, 4, 6}, {1, 2, 3, 4, 5, 7}, {1, 2, 3, 4, 5, 6, 7}, {1, 2, 3, 4, 5, 6, 7, 8}}
and n ≥ 2 max(S) + 1, r ≥ 0 and h ≥ 2 are integers satisfying 5r+ h = bn−1

2
c− |S|, then there

is a (5rn, nh)-decomposition of Kn − 〈S〉n.

Proof See Section 1.7.

We also need Lemmas 1.3.9 and 1.3.10 below to deal with cases arising from the possible
exceptions in Lemmas 1.3.2 and 1.3.6 respectively. To prove Lemma 1.3.9 we use the following
special case of Lemma 2.8 in [31].
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Lemma 1.3.8. If there exists an (M, 42)-decomposition of Kn in which there are two 4-cycles
intersecting in exactly one vertex, then there exists an (M, 3, 5)-decomposition of Kn.

Lemma 1.3.9. If M is an n-ancestor list such that νn(M) ≥ 2, Ms = (3
5n−5

3 , 5) and n ≡
4 (mod 6) then there is an (M)-decomposition of Kn.

Proof We will construct an (Ms, 3
5n−8

3 , 42)-decomposition of Kn in which two 4-cycles inter-
sect in exactly one vertex. The required (M)-decomposition of Kn can then be obtained by
applying Lemma 1.3.8.

By Lemma 1.3.6 there is an (Ms)-decomposition of Kn − 〈{1, 2, 3, 4, 6}〉n, so it suffices to

construct a (3
5n−8

3 , 42)-decomposition of 〈{1, 2, 3, 4, 6}〉n in which the two 4-cycles intersect in
exactly one vertex for all n ≡ 4 (mod 6) with n ≥ 16 (note that the conditions of the lemma
imply n ≥ 16). The union of the following two sets of cycles gives such a decomposition.

{ (0, 4, 2, 6), (2, 3, 5, 8), (1, 5, 7), (3, 4, 7), (3, 6, 9), (4, 5, 6) }

{ (x+ 6i, y + 6i, z + y6) : i ∈ {0, . . . , n−10
6
}, (x, y, z) ∈ {(4, 8, 10), (5, 9, 11), (6, 8, 12), (6, 7, 10),

(7, 11, 13), (7, 8, 9), (9, 12, 15), (9, 10, 13), (10, 11, 12), (8, 11, 14) }

Lemma 1.3.10. If M is an n-ancestor list such that ν5(M) ≤ 2, νn(M) = 2,
∑
Ms = 7n, and

• n = 25 and ν3(Ms) = 25;

• n = 26 and ν3(Ms) = 26; or

• n = 31 and ν3(Ms) = 62;

then there is an (M)-decomposition of Kn.

Proof We begin by showing that it is possible to partition Ms into two lists M1
s and M2

s such
that

∑
M1

s = 3n and
∑
M2

s = 4n. If ν3(Ms) ≥ n or ν4(Ms) ≥ n, then clearly such a partition
exists. Otherwise, νn(Ms) = 0 by Property (5) of Lemma 1.3.1, and so by the definition of
n-ancestor list and the hypotheses of this lemma, we have that

7n =
∑
Ms ≤ 3ν3(Ms) + 4ν4(Ms) + 10 + (n− 1).

It is routine to check, using 3ν3(Ms) ≤ 3n − 3 and 4ν4(Ms) ≤ 4n − 4, that ν4(Ms) ≥ 3n−6
4

and ν3(Ms) ≥ 2n−5
3

. Thus for n = 25, n = 26 and n = 31, we can choose M1
s = (3, 418),

M1
s = (32, 418), and M1

s = (33, 421) respectively. This yields the desired partition of Ms.

For n = 25 we note that 〈{1, 2, 3}〉n ∼= 〈{2, 4, 6}〉n (with x 7→ 2x being an isomorphism)
and 〈{1, 2, 3, 4}〉n ∼= 〈{1, 7, 8, 9}〉n (with x 7→ 8x being an isomorphism). Since {3, 10, 12}
is a modulo 25 difference triple and 〈{5, 11}〉25 has a Hamilton decomposition (by a result
of Bermond et al [18], see Lemma 1.7.1), this gives us a decomposition of K25 into a copy
of 〈{1, 2, 3}〉25, a copy of 〈{1, 2, 3, 4}〉25, twenty-five 3-cycles and two Hamilton cycles. By
Lemma 1.3.2, there is an (M1

s )-decomposition of 〈{1, 2, 3}〉25 and an (M2
s )-decomposition of

〈{1, 2, 3, 4}〉25, and this gives us the required (M)-decomposition of K25.

For n = 26 we note that 〈{1, 2, 3, 4}〉n ∼= 〈{5, 6, 10, 11}〉n (with x 7→ 5x being an isomorphism).
Since {4, 8, 12} is a difference triple and 〈{7, 9}〉26 has a Hamilton decomposition (by a result
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of Bermond et al [18], see Lemma 1.7.1), this gives us a decomposition of K26 into a copy
of 〈{1, 2, 3}〉26, a copy of 〈{1, 2, 3, 4}〉26, twenty-six 3-cycles and two Hamilton cycles. By
Lemma 1.3.2, there is an (M1

s )-decomposition of 〈{1, 2, 3}〉26 and an (M2
s )-decomposition of

〈{1, 2, 3, 4}〉26, and this gives us the required (M)-decomposition of K26.

For n = 31 we note that 〈{1, 2, 3, 4}〉n ∼= 〈{4, 8, 12, 15}〉n (with x 7→ 4x being an isomorphism).
Since {5, 6, 11} is a difference triple, {7, 10, 14} is a modulo 31 difference triple, and 〈{9, 13}〉31
has a Hamilton decomposition (by a result of Bermond et al [18], see Lemma 1.7.1), this gives
us a decomposition of K31 into a copy of 〈{1, 2, 3}〉31, a copy of 〈{1, 2, 3, 4}〉31, sixty-two 3-cycles
and two Hamilton cycles. By Lemma 1.3.2, there is an (M1

s )-decomposition of 〈{1, 2, 3}〉31 and
an (M2

s )-decomposition of 〈{1, 2, 3, 4}〉31, which yields required (M)-decomposition of K31.

We can now prove Lemma 1.1.4 which states that if M is an n-ancestor list with νn(M) ≥ 2,
then there is an (M)-decomposition of Kn.

Proof of Lemma 1.1.4 If M = (3a, nb) for some a, b ≥ 0, then we can use the main result
from [36] to obtain an (M)-decomposition of Kn, so we can assume that M 6= (3a, nb) for any
a, b ≥ 0. By Lemma 1.1.2 we can assume that n ≥ 15. Partition M into Ms and Ms. The proof
splits into cases according to the value of

∑
Ms, which by Lemma 1.3.1 is in {2n, 3n, . . . , 8n}.

Case 1 Suppose that
∑
Ms = 2n. In this case, from Property (2) of Lemma 1.3.1 we have

νn(Ms) = 1 and Ms = (nh) for some h ≥ 1. The required decomposition of Kn can be
obtained by combining an (Ms)-decomposition of 〈{1, 2}〉n (which exists by Lemma 1.3.3) with
a Hamilton decomposition of Kn − 〈{1, 2}〉n (which exists by Lemma 1.3.5).

Case 2 Suppose that
∑
Ms = 3n. In this case, from Property (3) of Lemma 1.3.1 we have

νn(Ms) ∈ {0, 1} and Ms = (nh) for some h ≥ 1. The required decomposition of Kn can be
obtained by combining an (Ms)-decomposition of 〈{1, 2, 3}〉n (which exists by Lemma 1.3.2 or
1.3.4) with a Hamilton decomposition of Kn − 〈{1, 2, 3}〉n (which exists by Lemma 1.3.5).

Case 3 Suppose that
∑
Ms ∈ {4n, 5n, 6n, 7n, 8n} and ν5(M) ≥ 3. In this case, from Property

(4) of Lemma 1.3.1 we have νn(Ms) = 0 and Ms = (5rn, nh) for some r ≥ 0, h ≥ 2, and we also
have 3ν3(M) ≤ n− 10 from the definition of n-ancestor list. We let

S ∈ {{1, 2, 3, 4}, {1, 2, 3, 4, 6}, {1, 2, 3, 4, 5, 7}, {1, 2, 3, 4, 5, 6, 7}, {1, 2, 3, 4, 5, 6, 7, 8}}

such that |S| = 1
n

∑
Ms and obtain the required decomposition of Kn by combining an (Ms)-

decomposition of 〈S〉n (which exists by Lemma 1.3.2), with an (Ms)-decomposition of Kn−〈S〉n
(which exists by Lemma 1.3.7). Note that the condition 3ν3(M) ≤ n − 10 implies that the
required (Ms)-decomposition of 〈S〉n is not among the listed possible exceptions in Lemma
1.3.2. Note also that the condition n ≥ 2 max(S) + 1 required in Lemmas 1.3.2 and 1.3.7 is
easily seen to be satisfied because n ≥ 15 and

∑
Ms ≤ nbn−1

2
c.

Case 4 Suppose that
∑
Ms ∈ {4n, 5n, 6n, 7n, 8n} and ν5(M) ≤ 2. In this case we have

νn(Ms) = 0 and Ms = (3tn, 4qn, nh) for some t, q ≥ 0, h ≥ 2 (see Property (5) in Lemma 1.3.1),
and

∑
Ms 6= 8n (see Property (1) in Lemma 1.3.1). We let

S ∈ {{1, 2, 3, 4}, {1, 2, 3, 4, 6}, {1, 2, 3, 4, 5, 7}, {1, 2, 3, 4, 5, 6, 7}}

such that |S| = 1
n

∑
Ms. If Lemma 1.3.2 gives us an (Ms)-decomposition of 〈S〉n and Lemma

1.3.6 gives us an (Ms)-decomposition of Kn − 〈S〉n, then we have the required decomposition
of Kn. The condition n ≥ 2 max(S) + 1 required in Lemmas 1.3.2 and 1.3.6 is satisfied because
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n ≥ 15. This leaves only the cases arising from the possible exceptions in Lemma 1.3.2 and
Lemma 1.3.6, and these are covered by Lemmas 1.3.9 and 1.3.10 respectively.

1.4 The case of no Hamilton cycles

In this section we prove that Lemma 1.1.5 holds in the case νn(M) = 0. In this case, for
n ≥ 15, one of ν3(M), ν4(M) and ν5(M) must be sizable, and the proof splits into three cases
accordingly. Each of these three cases splits into subcases according to whether n is even or
odd. In each case we construct the required decomposition of Kn from a suitable decomposition
of Kn−1 or Kn−2.

1.4.1 Many 3-cycles and no Hamilton cycles

In Lemma 1.4.1 we construct the required decompositions of complete graphs of odd order and
in Lemma 1.4.2 we construct the required decompositions of complete graphs of even order.

Lemma 1.4.1. If n is odd, Theorem 1.1.1 holds for Kn−1, and (M, 3
n−1
2 ) is an n-ancestor list

with νn(M) = 0, then there is an (M, 3
n−1
2 )-decomposition of Kn.

Proof By Lemma 1.1.2 we can assume that n ≥ 15. Let U be a vertex set with |U | = n− 1,

let ∞ be a vertex not in U , and let V = U ∪ {∞}. Since (M, 3
n−1
2 ) is an n-ancestor list

with νn(M) = 0, it follows that M is (n − 1)-admissible. Thus, by assumption there is an
(M)-decomposition D of KU . Let I be the perfect matching in D. Then

D ∪D1

is an (M, 3
n−1
2 )-decomposition of KV , where D1 is a (3

n−1
2 )-decomposition of K{∞} ∨ I.

Lemma 1.4.2. If n is even, Theorem 1.1.1 holds for Kn−1, and (M, 3
n−2
2 ) is an n-ancestor list

with νn(M) = 0, then there is an (M, 3
n−2
2 )-decomposition of Kn.

Proof By Lemma 1.1.2 we can assume that n ≥ 16. Let U be a vertex set with |U | = n− 1,

let ∞ be a vertex not in U , and let V = U ∪ {∞}. Since (M, 3
n−2
2 ) is an n-ancestor list

with νn(M) = 0, it follows that (M,n − 2) is (n − 1)-admissible and so by assumption there
is an (M,n − 2)-decomposition D of KU . Let C be an (n − 2)-cycle in D, let {I, I1} be a
decomposition of C into two matchings, and let x be the vertex in U \ V (C). Then

(D \ {C}) ∪ {I +∞x} ∪ D1

is an (M, 3
n−2
2 )-decomposition of KV , where D1 is a (3

n−2
2 )-decomposition of K{∞} ∨ I1.

1.4.2 Many 4-cycles and no Hamilton cycles

Lemma 1.4.3. If n is odd, Theorem 1.1.1 holds for Kn−2, and (M, 4
n+1
2 ) is an n-ancestor list

with νn(M) = 0, then there is an (M, 4
n+1
2 )-decomposition of Kn.
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Proof By Lemma 1.1.2 we can assume that n ≥ 15. Let U be a vertex set with |U | = n− 2,

let ∞1 and ∞2 be distinct vertices not in U , and let V = U ∪ {∞1,∞2}. Since (M, 4
n+1
2 ) is an

n-ancestor list with νn(M) = 0, it follows from (5) in the definition of ancestor lists that any
cycle length in M is at most n− 3. Thus, it is easily seen that (M, 5) is (n− 2)-admissible and
by assumption there is an (M, 5)-decomposition D of KU .

Let C be a 5-cycle in D and let x, y and z be vertices of C such that x and y are adjacent in
C and z is not adjacent to either x or y in C. Then

(D \ {C}) ∪ D1 ∪ D2

is an (M, 4
n+1
2 )-decomposition of KV , where

• D1 is a (4
n−5
2 )-decomposition of K{∞1,∞2},U\{x,y,z}; and

• D2 is a (43)-decomposition of K{∞1,∞2},{x,y,z} ∪ [∞1,∞2] ∪ C.

These decompositions are straightforward to construct.

Lemma 1.4.4. If n is even, Theorem 1.1.1 holds for Kn−2, and (M, 4
n−2
2 ) is an n-ancestor list

with νn(M) = 0, then there is an (M, 4
n−2
2 )-decomposition of Kn.

Proof By Lemma 1.1.2 we can assume that n ≥ 16. Let U be a vertex set with |U | = n− 2,

let ∞1 and ∞2 be distinct vertices not in U , and let V = U ∪ {∞1,∞2}. Since (M, 4
n−2
2 ) is an

n-ancestor list with νn(M) = 0, it follows from (5) in the definition of ancestor lists that any
cycle length in M is at most n − 3. Thus, it is easily seen that M is (n − 2)-admissible and
by assumption there is an (M)-decomposition D of KU . Let I be the perfect matching in D.
Then

(D \ {I}) ∪ {I +∞1∞2} ∪ D1

is an (M, 4
n−2
2 )-decomposition of KV , where D1 is a (4

n−2
2 )-decomposition of K{∞1,∞2},U .

1.4.3 Many 5-cycles and no Hamilton cycles

We will make use of the following lemma in this subsection and in Subsection 1.5.5.

Lemma 1.4.5. If G is a 3-regular graph which contains a perfect matching and ∞ is a vertex
not in V (G), then there is a decomposition of K{∞} ∨G into 1

2
|V (G)| 5-cycles.

Proof Let I be a perfect matching in G. Then G − I is a 2-regular graph on the vertex set
V (G) and hence it can be given a coherent orientation O. Let

D = {(∞, a, b, c, d) : bc ∈ E(I) and (b, a), (c, d) ∈ E(O)}

be a set of (undirected) 5-cycles. Because O contains exactly one arc directed from each vertex
of V (G), |D| = |E(I)| = 1

2
|V (G)| and each edge of G appears in exactly one cycle in D.

Further, because O contains exactly one arc directed to each vertex of V (G), each edge of
K{∞},V appears in exactly one cycle in D. Thus D is a decomposition of K{∞}∨G into 1

2
|V (G)|

5-cycles.

Lemma 1.4.6. If n is odd, Theorem 1.1.1 holds for Kn−1, and (M, 5
n−1
2 ) is an n-ancestor list

with νn(M) = 0, then there is an (M, 5
n−1
2 )-decomposition of Kn.
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Proof By Lemma 1.1.2 we can assume that n ≥ 15. Let U be a vertex set with |U | = n− 1,
let ∞ be a vertex not in U , and let V = U ∪ {∞}. Since the list (M,n− 1) is easily seen to be
(n− 1)-admissible, by assumption there is an (M,n− 1)-decomposition D of KU . Let C be an
(n− 1)-cycle in D and let I be the perfect matching in D. Then

(D \ {C, I}) ∪ D1

is an (M, 5
n−1
2 )-decomposition of KV , where D1 is a (5

n−1
2 )-decomposition of K{∞} ∨ (C ∪ I)

(this exists by Lemma 1.4.5).

Lemma 1.4.7. If n is even, Theorem 1.1.1 holds for Kn−2, and (M, 5n−2) is an n-ancestor list
with νn(M) = 0, then there is an (M, 5n−2)-decomposition of Kn.

Proof By Lemma 1.1.2 we can assume that n ≥ 16. Let U be a vertex set with |U | = n− 2,
let ∞1 and ∞2 be distinct vertices not in U , and let V = U ∪ {∞1,∞2}. Since (M, 5n−2) is
an n-ancestor list with νn(M) = 0, it follows from (6) in the definition of ancestor lists that
any cycle length in M is at most n − 5. Thus, it is easily seen that the list (M, (n − 2)3) is
(n−2)-admissible and by assumption there is an (M, (n−2)3)-decomposition D of KU . Let C1,
C2 and C3 be distinct (n− 2)-cycles in D and let I be the perfect matching in D. Let {I1, I2}
be a decomposition of C3 into two perfect matchings. Then

(D \ {C1, C2, C3, I}) ∪ {I +∞1∞2} ∪ D1 ∪ D2

is an (M, 5n−2)-decomposition of KV , where for i = 1, 2, Di is a (5
n−2
2 )-decomposition of

K{∞i} ∨ (Ci ∪ Ii) (these exist by Lemma 1.4.5).

1.4.4 Proof of Lemma 1.1.5 in the case of no Hamilton cycles

Lemma 1.4.8. If Theorem 1.1.1 holds for Kn−1 and Kn−2, then there is an (M)-decomposition
of Kn for each n-ancestor list M satisfying νn(M) = 0.

Proof By Lemma 1.1.2 we can assume that n ≥ 15. If there is a cycle length in M which is
at least 6 and at most n − 1, then let k be this cycle length. Otherwise let k = 0. We deal
separately with the case n is odd and the case n is even.

Case 1 Suppose that n is odd. Since n ≥ 15 and 3ν3(M) + 4ν4(M) + 5ν5(M) + k = n(n−1)
2

,
it can be seen that either ν3(M) ≥ n−1

2
, ν4(M) ≥ n+1

2
or ν5(M) ≥ n−1

2
. If ν3(M) ≥ n−1

2
, then

the result follows by Lemma 1.4.1. If ν4(M) ≥ n+1
2

, then the result follows by Lemma 1.4.3. If
ν5(M) ≥ n−1

2
, then the result follows by Lemma 1.4.6.

Case 2 Suppose that n is even. Since n ≥ 16, 3ν3(M) + 4ν4(M) + 5ν5(M) + k = n(n−2)
2

and
k ≤ n−1, it can be seen that either ν3(M) ≥ n−2

2
, ν4(M) ≥ n−2

2
or ν5(M) ≥ n−2. (To see this

consider the cases ν5(M) ≥ 3 and ν5(M) ≤ 2 separately and use the definition of n-ancestor
list.) If ν3(M) ≥ n−2

2
, then the result follows by Lemma 1.4.2. If ν4(M) ≥ n−2

2
, then the result

follows by Lemma 1.4.4. If ν5(M) ≥ n− 2, then the result follows by Lemma 1.4.7.

1.5 The case of exactly one Hamilton cycle

In this section we prove that Lemma 1.1.5 holds in the case νn(M) = 1. Again in this case,
for n ≥ 15, one of ν3(M), ν4(M) and ν5(M) must be sizable, and the proof splits into cases

11



accordingly. The case in which ν3(M) is sizable further splits according to whether ν4(M) ≥ 1,
ν5(M) ≥ 1, or ν4(M) = ν5(M) = 0. We first require some preliminary definitions and results.

1.5.1 Preliminaries

Let P be an (M)-packing of Kn, let P ′ be an (M ′)-packing of Kn and let S be a subset of
V (Kn). We say that P and P ′ are equivalent on S if we can write {G ∈ P : V (G) ∩ S 6= ∅} =
{G1, . . . , Gt} and {G ∈ P ′ : V (G) ∩ S 6= ∅} = {G′1, . . . , G′t} such that

• for i ∈ {1, . . . , t}, Gi is isomorphic to G′i;

• for each x ∈ S and for i ∈ {1, . . . , t}, x ∈ V (Gi) if and only if x ∈ V (G′i); and

• for all distinct x, y ∈ S and for i ∈ {1, . . . , t}, xy ∈ E(Gi) if and only if xy ∈ E(G′i).

The following lemma is from [29]. It encapsulates a key edge swapping technique which was
used in many of the proofs in [31], and which we shall make use of in this section.

Lemma 1.5.1. ([29]), Lemma 2.1) Let n be a positive integer, let M be a list of integers, let P be
an (M)-packing of Kn with a leave, L say, let α and β be vertices of L, let π be the transposition
(αβ), and let Z = Z(P , α, β) = (NbdL(α)∪NbdL(β)) \ ((NbdL(α)∩NbdL(β))∪{α, β}). Then
there exists a partition of the set Z into pairs such that for each pair {u, v} of the partition,
there exists an (M)-packing of Kn, P ′ say, with a leave, L′ say, which differs from L only in
that αu, αv, βu and βv are edges in L′ if and only if they are not edges in L. Furthermore, if
P = {C1, . . . , Ct} (n odd) or P = {I, C1, . . . , Ct} (n even) where C1, . . . , Ct are cycles and I is
a perfect matching, then P ′ = {C ′1, . . . , C ′t} (n odd) or P ′ = {I ′, C ′1, . . . , C ′t} (n even) where for
i = 1, . . . , t, C ′i is a cycle of the same length as Ci and I ′ is a perfect matching such that

• either I ′ = I or I ′ = π(I);

• for i = 1, . . . , t if neither α nor β is in V (Ci) then C ′i = Ci;

• for i = 1, . . . , t if exactly one of α and β is in V (Ci) then either C ′i = Ci or C ′i = π(Ci);
and

• for i = 1, . . . , t if both α and β are in V (Ci) then C ′i ∈ {Ci, π(Ci), π(Pi)∪P †i , Pi ∪ π(P †i )}
where Pi and P †i are the two paths in Ci which have endpoints α and β.

We say that P ′ is the (M)-packing obtained from P by performing the (α, β)-switch with origin
u and terminus v (we could equally call v the origin and u the terminus). For our purposes
here, it is important to note that P ′ is equivalent to P on V (L) \ {α, β}.
We will also make use of three lemmas from [31]. The original version of Lemma 1.5.2 (Lemma
2.15 in [31]) does not include the claim that P ′ is equivalent to P on V (L) \ {a, b}, this follows
directly from the fact that the proof uses only (a, b)-switches.

Lemma 1.5.2. Let n be a positive integer and let M be a list of integers. Suppose that there
exists an (M)-packing P of Kn with a leave L which contains two vertices a and b such that
degL(a)+2 ≤ degL(b). Then there exists an (M)-packing P ′ of Kn, which is equivalent to P on
V (L)\{a, b}, and which has a leave L′ such that degL′(a) = degL(a)+2, degL′(b) = degL(b)−2
and degL′(x) = degL(x) for all x ∈ V (L) \ {a, b}. Furthermore,
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(i) if a and b are adjacent in L, then L′ has the same number of non-trivial components as
L;

(ii) if degL(a) = 0 and b is not a cut-vertex of L, then L′ has the same number of non-trivial
components as L; and

(iii) if degL(a) = 0, then either L′ has the same number of non-trivial components as L, or L′

has one more non-trivial component than L.

Similarly, the original versions of Lemmas 1.5.3 and 1.5.4 (Lemmas 2.14 and 2.11 respectively
in [31]) did not include the claims that the final decompositions are equivalent to the initial
packings on V \U . However, these claims can be seen to hold as the proofs of the lemmas given
in [31] require switching only on vertices of positive degree in the leave, with one exception which
we discuss shortly. The lemmas below each contain the additional hypothesis that degL(x) = 0
for all x ∈ V \U , and this ensures all the switches are on vertices of U and hence that the final
decomposition is equivalent to the initial packing on V \ U .

The exception mentioned above occurs in the proof of the original version of Lemma 1.5.4 where
a switch on a vertex of degree 0 in the leave is required when 3 ∈ {m1,m2}. We can ensure
this switch is on a vertex in U because we have the additional hypothesis that degL(x) = 0
for some x ∈ U when 3 ∈ {m1,m2}. This additional hypothesis also allows us to omit the
hypothesis, included in the original version of Lemma 1.5.4, that the size of the leave be at
most n+1, because in the proof this was used only to ensure the existence of a vertex of degree
0 in the leave when 3 ∈ {m1,m2}. Thus the modified versions stated below hold by the proofs
presented in [31].

Lemma 1.5.3. Let V be a vertex set and let U be a subset of V . Let M be a list of integers
and let k, m1 and m2 be positive integers such that m1,m2 ≥ max({3, k + 1}). Suppose that
there exists an (M)-packing P of KV with a leave L of size m1 + m2 such that ∆(L) = 4,
exactly one vertex of L has degree 4, L has exactly k non-trivial components, L does not have
a decomposition into two odd cycles if m1 and m2 are both even, and degL(x) = 0 for all
x ∈ V \U . Then there exists an (M,m1,m2)-decomposition of KV which is equivalent to P on
V \ U .

Lemma 1.5.4. Let V be a vertex set and let U be a subset of V . Let M be a list of integers
and let m1 and m2 be integers such that m1,m2 ≥ 3. Suppose that there exists (M)-packing P
of KV with a leave L of size m1 +m2 such that ∆(L) = 4, exactly two vertices of L have degree
4, L has exactly one non-trivial component, degL(x) = 0 for all x ∈ V \ U , and degL(x) = 0
for some x ∈ U if 3 ∈ {m1,m2}. Then there exists an (M,m1,m2)-decomposition of KV which
is equivalent to P on V \ U .

We also require Lemma 1.5.5, which deals with some small order cases.

Lemma 1.5.5. Let n be an integer such that n ∈ {15, 16, 17, 18, 19, 20, 22, 24, 26} and let M be
an n-ancestor list such that νn(M) = 1, ν5(M) ≥ 3, and ν4(M) ≥ 2 if n = 24. Then there is
an (M)-decomposition of Kn.

Proof If there is a cycle length in M which is at least 6 and at most n− 1, then let k be this
cycle length. Otherwise let k = 0. Note that 3ν3(M) + 4ν4(M) + 5ν5(M) + k + n = nbn−1

2
c

and that, because M is an n-ancestor list with ν5(M) ≥ 3, it follows that 3ν3(M) ≤ n − 10,
2ν4(M) ≤ n− 6, and k ≤ n− 5.
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Using this, it is routine to check that if n = 15 then M must be one of 12 possible lists and if
n = 16 then M must be one of 26 possible lists. In each of these cases we have constructed an
(M)-decomposition of Kn by computer search.

If n ∈ {17, 18, 19, 20, 22, 24, 26}, then we partition {1, . . . , bn
2
c} into sets S1, S2 and S3 according

to the following table.

n S1 S2 S3

17 {1, 2, 3, 4, 5, 6, 7} ∅ {8}
18 {1, 2, 3, 4, 5, 6, 7} ∅ {8, 9}
19 {1, 2, 3, 4, 5, 6, 7, 8} ∅ {9}
20 {1, 2, 3, 4, 5, 6, 7, 8} ∅ {9, 10}
22 {1, 2, 3, 4} {6, 7, 8, 9, 10} {5, 11}
24 {1, 2, 3} {4, 6, 7, 8, 11} {5, 9, 10, 12}
26 {1, 2, 3, 4, 5, 7} {6, 8, 9, 10, 11} {12, 13}

Using 3ν3(M) ≤ n− 10, 2ν4(M) ≤ n− 6 and k ≤ n− 5, it is routine to check that ν5(M) ≥ n
when n ∈ {22, 26}, and that ν5(M) ≥ n + 8 when n = 24. By Lemma 1.3.2, there is an
(M ′)-decomposition of 〈S1〉n, where M = (M ′, n) when n ∈ {17, 18, 19, 20}, M = (M ′, 5n, n)
when n ∈ {22, 26}, and M = (M ′, 42, 5n+8, n) when n = 24. For n ∈ {22, 24, 26}, it is easy
to see that S2 is a modulo n difference 5-tuple, and so there is a (5n)-decomposition of 〈S2〉n.
For n ∈ {17, 18, 19, 20, 22, 26}, there is an (n)-decomposition of the graph 〈S3〉n, as it is either
an n-cycle or a connected 3-regular Cayley graph on a cyclic group, and the latter are well
known to contain a Hamilton cycle, see [50]. For n = 24, 〈{5, 9, 10}〉n ∼= 〈{1, 2, 3}〉n (with
x 7→ 5x being an isomorphism). Thus, by Lemma 1.3.4 there is a (42, 58, 24)-decomposition of
〈{5, 9, 10, 12}〉24 (as 〈{12}〉24 is a perfect matching). Combining these decompositions of 〈S1〉n,
〈S2〉n and 〈S3〉n gives us the required (M)-decomposition of Kn.

1.5.2 Many 3-cycles, one Hamilton cycle, and at least one 4- or 5-
cycle

In Lemmas 1.5.6 and 1.5.7 we construct the required decompositions of complete graphs of
odd order in the cases where the decomposition contains at least one 4-cycle or at least one
5-cycle, respectively. In Lemmas 1.5.8 and 1.5.9 we construct the required decompositions of
complete graphs of even order in the cases where the decomposition contains at least one 4-
cycle or at least one 5-cycle, respectively. These results are proved by constructing the required
decomposition of Kn from a suitable decomposition of Kn−1, Kn−2 or Kn−3.

Lemma 1.5.6. If n is odd, Theorem 1.1.1 holds for Kn−1, and (M, 3
n−5
2 , 4, n) is an n-ancestor

list with νn(M) = 0, then there is an (M, 3
n−5
2 , 4, n)-decomposition of Kn.

Proof By Lemma 1.1.2 we can assume that n ≥ 15. Let U be a vertex set with |U | = n− 1,

let ∞ be a vertex not in U , and let V = U ∪ {∞}. Since (M, 3
n−5
2 , 4, n) is an n-ancestor list

with νn(M) = 0, it follows that (M,n− 2) is (n− 1)-admissible and by assumption there is an
(M,n− 2)-decomposition D of KU .

Let H be an (n−2)-cycle in D, let I be the perfect matching in D, and let [w, x, y, z] be a path
in I ∪H such that w /∈ V (H), wx, yz ∈ E(I) and xy ∈ E(H). Then

(D \ {I,H}) ∪ {H ′, (∞, x, y, z)} ∪ D1

is an (M, 3
n−5
2 , 4, n)-decomposition of KV , where
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• H ′ = (H − [x, y]) ∪ [x,w,∞, y]; and

• D1 is a (3
n−5
2 )-decomposition of K{∞},U\{w,x,y,z} ∪ (I − {wx, yz}).

Lemma 1.5.7. If n is odd, Theorem 1.1.1 holds for Kn−1, and (M, 3
n−5
2 , 5, n) is an n-ancestor

list with νn(M) = 0, then there is an (M, 3
n−5
2 , 5, n)-decomposition of Kn.

Proof By Lemma 1.1.2 we can assume that n ≥ 15. Let U be a vertex set with |U | = n− 1,

let ∞ be a vertex not in U , and let V = U ∪ {∞}. Since (M, 3
n−5
2 , 5, n) is an n-ancestor list

with νn(M) = 0, it follows that (M,n− 1) is (n− 1)-admissible and so by assumption there is
an (M,n− 1)-decomposition D of KU .

Let H be an (n−1)-cycle in D, let I be the perfect matching in D, and let [w, x, y, z] be a path
in I ∪H such that wx, yz ∈ E(I) and xy ∈ E(H). Then

(D \ {I,H}) ∪ {H ′, (∞, w, x, y, z)} ∪ D1

is an (M, 3
n−5
2 , 5, n)-decomposition of KV , where

• H ′ = (H − [x, y]) ∪ [x,∞, y]; and

• D1 is a (3
n−5
2 )-decomposition of K{∞},U\{w,x,y,z} ∪ (I − {wx, yz}).

Lemma 1.5.8. If n is even, Theorem 1.1.1 holds for Kn−3, and (M, 3
3n−14

2 , 4, n) is an n-

ancestor list with νn(M) = 0, then there is an (M, 3
3n−14

2 , 4, n)-decomposition of Kn.

Proof By Lemma 1.1.2 we can assume that n ≥ 16. Let U be a vertex set with |U | = n− 3,
let ∞1, ∞2 and ∞3 be distinct vertices not in U , and let V = U ∪ {∞1,∞2,∞3}. Since

(M, 3
3n−14

2 , 4, n) is an n-ancestor list with νn(M) = 0, it follows from (5) in the definition
of ancestor lists that any cycle length in M is at most n − 3. Thus, it is easily seen that
(M, (n− 4)2, n− 3) is (n− 3)-admissible and so by assumption there is an (M, (n− 4)2, n− 3)-
decomposition D of KU .

Let C1 and C2 be distinct (n − 4)-cycles in D, let H be an (n − 3)-cycle in D, let {I, I1}
be a decomposition of C1 into two matchings, let {I2, I3} be a decomposition of C2 into two
matchings, let w be the vertex in U \ V (C1), and let [x, y, z] be a path in H ∪ I3 such that
x /∈ V (C2), xy ∈ E(H) and yz ∈ E(I3) (possibly w ∈ {x, y, z}). Then

(D \ {H,C1, C2}) ∪ {I + {∞1w,∞2∞3}, H ′, (∞3, x, y, z)} ∪ D1 ∪ D2 ∪ D3

is an (M, 3
3n−14

2 , 4, n)-decomposition of KV , where

• H ′ = (H − [x, y]) ∪ [x,∞2,∞1,∞3, y];

• for i = 1, 2, Di is a (3
n−4
2 )-decomposition of K{∞i} ∨ Ii; and

• D3 is a (3
n−6
2 )-decomposition of K{∞3},U\{x,y,z} ∪ (I3 − yz).

Lemma 1.5.9. If n is even, Theorem 1.1.1 holds for Kn−1, and (M, 3
n−6
2 , 5, n) is an n-ancestor

list with νn(M) = 0, then there is an (M, 3
n−6
2 , 5, n)-decomposition of Kn.
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Proof By Lemma 1.1.2 we can assume that n ≥ 16. Let U be a vertex set with |U | = n− 1,

let ∞ be a vertex not in U , and let V = U ∪ {∞}. Since (M, 3
n−6
2 , 5, n) is an n-ancestor list

with νn(M) = 0, it follows that (M,n − 2, n − 1) is (n − 1)-admissible and so by assumption
there is an (M,n− 2, n− 1)-decomposition D of KU .

Let H be an (n− 1)-cycle in D, let C be an (n− 2)-cycle in D, let {I, I1} be a decomposition
of C into two matchings, let [w, x, y, z] be a path in I1 ∪ H such that wx, yz ∈ E(I1) and
xy ∈ E(H), and let v be the vertex in U \ V (C). Then

(D \ {C,H}) ∪ {I + v∞, H ′, (∞, w, x, y, z)} ∪ D1

is an (M, 3
n−6
2 , 5, n)-decomposition of KV , where

• H ′ = (H − [x, y]) ∪ [x,∞, y]; and

• D1 is a (3
n−6
2 )-decomposition of K{∞},U\{v,w,x,y,z} ∪ (I − {wx, yz}).

1.5.3 Many 3-cycles, one Hamilton cycle and no 4- or 5-cycles

We show that the required decompositions exist in Lemma 1.5.13. We first require three
preliminary lemmas. These results are proved using the edge swapping techniques mentioned
previously.

Lemma 1.5.10. Let n and k be positive integers, and let M be a list of integers. If there exists
an (M)-packing of Kn whose leave has a decomposition into two 3-cycles, T1 and T2, and a
k-cycle C such that |V (T1)∩V (T2)| = 1, |V (T2)∩V (C)| = 1 and V (T1)∩V (C) = ∅, then there
exists an (M, 3, k + 3)-decomposition of Kn.

Proof Let P be an (M)-packing of Kn which satisfies the conditions of the lemma and let L
be its leave. Let [w, x, y, z] be a path in L such that w ∈ V (T1) \ V (T2), V (T1) ∩ V (T2) = {x},
V (T2) ∩ V (C) = {y}, and z ∈ V (C) \ V (T2). Let P ′ be the (M)-packing of Kn obtained from
P by performing the (w, z)-switch S with origin x. If the terminus of S is y, then the leave of
P ′ has a decomposition into the 3-cycle T2 and a (k + 3)-cycle. Otherwise the terminus of S is
not y and the leave of P ′ has a decomposition into the 3-cycle (x, y, z) and a (k + 3)-cycle. In
either case we complete the proof by adding these cycles to P ′.

Lemma 1.5.11. Let n and k be positive integers such that k ≤ n − 4, and let M be a list of
integers. Suppose that there exists an (M)-packing of Kn whose leave has a decomposition into
two 3-cycles, T1 and T2, and a k-cycle C such that |V (T1) ∩ V (C)| ≤ 1, |V (T2) ∩ V (C)| ≤ 1,
and |V (T1) ∩ V (T2)| = 1 if k = n− 4. Then there exists an (M, 3, k + 3)-decomposition of Kn.

Proof Let P be an (M)-packing of Kn which satisfies the conditions of the lemma and let L
be its leave.

Case 1 Suppose that ∆(L) = 2. Then T1, T2 and C are pairwise vertex disjoint. Let
x ∈ V (T1) and y ∈ V (C) and let z be a neighbour in T1 of x. Let P ′ be the (M)-packing of Kn

obtained from P by performing the (x, y)-switch S with origin z, and let L′ be the leave of P ′.
Then either the non-trivial components of L′ are a 3-cycle and a (k + 3)-cycle or ∆(L′) = 4,
exactly one vertex of L′ has degree 4, and L′ has exactly two nontrivial components. In the
former case we can add these cycles to P ′ to complete the proof. In the latter case we can
apply Lemma 1.5.3 to complete the proof.
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Case 2 Suppose that ∆(L) = 4. If exactly one vertex of L has degree 4, then L has exactly
two nontrivial components and we can complete the proof by applying Lemma 1.5.3. Thus we
can assume that L has at least two vertices of degree 4. We can further assume that P does not
satisfy the conditions of Lemma 1.5.10, for otherwise we can complete the proof by applying
Lemma 1.5.10. Noting that |V (T1) ∩ V (T2)| ∈ {0, 1}, it follows that |V (T1) ∩ V (C)| = 1 and
|V (T2) ∩ V (C)| = 1. Because k ≤ n − 4 and |V (T1) ∩ V (T2)| = 1 if k = n − 4, there is an
isolated vertex z in L. Let w be the vertex in V (T1) ∩ V (C), let x and y be the neighbours in
T1 of w. Let P ′ be the (M)-packing of Kn obtained from P by performing the (w, z)-switch
S with origin x, and let L′ be the leave of P ′. If the terminus of S is not y, then L′ has a
decomposition into a (k + 3)-cycle and a 3-cycle, and we complete the proof by adding these
cycles to P ′. Otherwise the terminus of S is y and either ∆(L′) = 4, exactly one vertex of L′ has
degree 4, and L′ has exactly two nontrivial components (this occurs when |V (T1)∩V (T2)| = 0)
or P ′ satisfies the conditions of Lemma 1.5.10 (this occurs when |V (T1) ∩ V (T2)| = 1). Thus
we can complete the proof by applying Lemma 1.5.3 or Lemma 1.5.10.

Case 3 Suppose that ∆(L) ≥ 6. In this case, exactly one vertex of L has degree 6 and every
other vertex of L has degree at most 2. Let w be the vertex of degree 6 in L, let x be a
neighbour in T2 of w, and let y and z be the neighbours in T1 of w. Let P ′ be the (M)-packing
of Kn obtained from P by performing the (w, x)-switch S with origin y, and let L′ be the
leave of P ′. If the terminus of S is z, then P ′ satisfies the conditions of Lemma 1.5.10 and we
complete the proof by applying Lemma 1.5.10. Otherwise the terminus of S is not z and L′ has
a decomposition into the 3-cycle T2 and a (k + 3)-cycle, and we complete the proof by adding
these cycles to P ′.
Lemma 1.5.12. Let n, k and t be positive integers such that 3 ≤ k ≤ n− 4. If there exists a
(3t, k, n)-decomposition of Kn, then there exists a (3t−1, k + 3, n)-decomposition of Kn.

Proof By Lemma 1.1.2 we can assume that n ≥ 15. Let V be a vertex set with |V | = n, let
D be a (3t, k, n)-decomposition of KV , and let C be a k-cycle in D. Let U = V \ V (C). The
n-cycle in D contains at most |U | − 1 edges of KU (as the subgraph of the n-cycle induced by
U is a forest). Also, if n is even, then the perfect matching in D contains at most b1

2
|U |c edges

of KU . The proof now splits into two cases depending on whether k = n− 4.

Case 1 Suppose that k ≤ n − 5. Then |U | ≥ 5 and, by the comments in the preceding
paragraph, the 3-cycles in D contain at least four edges of KU . Thus there are distinct 3-cycles
T1, T2 ∈ D such that each contains at least one edge of KU . We can remove C, T1 and T2 from
D and apply Lemma 1.5.11 to the resulting packing to complete the proof.

Case 2 Suppose that k = n− 4. Then |U | = 4, the n-cycle in D contains at most three edges
of KU and the perfect matching in D contains at most two edges of KU . This leaves at least
one edge of KU which occurs in a 3-cycle T1 ∈ D. Let U = {u1, u2, u3, u4} and let H be the
n-cycle in D. This case now splits into two subcases depending on whether V (T1)∩ V (C) = ∅.
Case 2a Suppose that V (T1) ∩ V (C) = ∅. Then we can assume without loss of generality
that T1 = (u1, u2, u3). If any of the three edges u1u4, u2u4, u3u4 is in a 3-cycle T2 ∈ D, then we
can remove C, T1 and T2 from D and apply Lemma 1.5.11 to the resulting packing to complete
the proof. Thus, we assume there is no such 3-cycle in D. Without loss of generality, it follows
that n is even, that u1u4 is an edge of the perfect matching in D, and that u2u4, u3u4 ∈ E(H).
Let z be a vertex in C which is not adjacent in H to a vertex in U (such a vertex exists as
n ≥ 15 implies |V (C)| ≥ 11 and there are only at most four vertices of C which are adjacent
in H to vertices in U).

Now let P ′ be the (3t−1, n)-packing of KV obtained from D\{C, T1} by performing the (u1, z)-
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switch S with origin u2. If the terminus of S is not u3, then the only non-trivial component
in the leave of P ′ is a (k + 3)-cycle and we can complete the proof by adding this cycle to P ′.
Otherwise, the terminus of S is u3 and the only non-trivial component in the leave of P ′ is
(u2, u3, z) ∪ C. Furthermore, since z is not adjacent in H to a vertex in U , the final dot point
in Lemma 1.5.1 guarantees that neither u1u2 nor u1u3 is an edge of the n-cycle in P ′. Since
u1u2 and u1u3 cannot both be edges of the perfect matching in P ′, this means that one of them
must be in a 3-cycle T ′2 ∈ P ′. Thus, we can remove T ′2 from P ′ and apply Lemma 1.5.11 to the
resulting packing to complete the proof.

Case 2b Suppose that |V (T1) ∩ V (C)| = 1. Let T1 = (x, y, z) with x ∈ V (C) and y, z ∈ U ,
and let w ∈ U \ {y, z}. Let P ′ be the (3t−1, n)-packing of KV obtained from D \ {C, T1} by
performing the (w, x)-switch S with origin y, and let L′ be the leave of P ′. If the terminus of
S is not z, then the only non-trivial component in the leave of P ′ is a (k+ 3)-cycle and we can
complete the proof by adding this cycle to P ′. Otherwise the terminus of S is z, and the only
non-trivial components in the leave of P ′ are C and (w, y, z). By adding these cycles to P ′ we
obtain a (3t, k, n)-decomposition of KV which contains a 3-cycle and an (n−4)-cycle which are
vertex disjoint, and we can proceed as we did in Case 2a.

We are now ready to prove the main result of this subsection.

Lemma 1.5.13. If n, k and t are positive integers such that 3 ≤ k ≤ n − 1, Theorem 1.1.1
holds for Kn−3, Kn−2 and Kn−1, and (3t, k, n) is an n-ancestor list, then there is a (3t, k, n)-
decomposition of Kn.

Proof By Lemma 1.1.2 we can assume that n ≥ 15. Let r ∈ {3, 4, 5} such that r ≡ k (mod 3).

It suffices to find a (3t+
k−r
3 , r, n)-decomposition of Kn, since we can then obtain a (3t, k, n)-

decomposition of Kn by repeatedly applying Lemma 1.5.12 (k−r
3

times). If r = 3 then the

existence of a (3t+
k−r
3 , r, n)-decomposition of Kn follows from the main result of [36], so we may

assume r ∈ {4, 5}. Thus, the existence of the required (3t+
k−r
3 , r, n)-decomposition of Kn is

given by one of Lemmas 1.5.6, 1.5.7, 1.5.8 and 1.5.9, provided that t+ k−r
3
≥ 3n−14

2
(the number

of 3-cycles in the decompositions given by Lemma 1.5.8 is at least 3n−14
2

and the number is
smaller for the other three lemmas for n ≥ 15). However, it follows from 3t+ k + n = nbn−1

2
c,

k ≤ n− 1 and n ≥ 15 that t ≥ 3n−14
2

.

1.5.4 Many 4-cycles and one Hamilton cycle

In Lemma 1.5.14 we construct the required decompositions of complete graphs of odd order and
in Lemma 1.5.15 we construct the required decompositions of complete graphs of even order.
In each case we construct the required decomposition of Kn from a suitable decomposition of
Kn−2.

Lemma 1.5.14. If n is odd, Theorem 1.1.1 holds for Kn−2, and (M, 4
n−3
2 , n) is an n-ancestor

list with νn(M) = 0, then there is an (M, 4
n−3
2 , n)-decomposition of Kn.

Proof By Lemma 1.1.2 we can assume that n ≥ 15. Let U be a vertex set with |U | = n− 2,

let ∞1 and ∞2 be distinct vertices not in U , and let V = U ∪ {∞1,∞2}. Since (M, 4
n−3
2 , n) is

an n-ancestor list with νn(M) = 0, it follows from (5) in the definition of ancestor lists that any
cycle length in M is at most n− 3. Thus, it is easily seen that (M,n− 3) is (n− 2)-admissible
and so by assumption there is an (M,n− 3)-decomposition D of KU .
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Let H be an (n− 3)-cycle in D, let z be the vertex in U \ V (H), and let x and y be adjacent
vertices in H. Then

(D \ {H}) ∪ {H ′, (∞1, y, x,∞2)} ∪ D1

is an (M, 4
n−3
2 , n)-decomposition of KV , where

• H ′ = (H − [x, y]) ∪ [x,∞1, z,∞2, y]; and

• D1 is a (4
n−5
2 )-decomposition of K{∞1,∞2},U\{x,y,z}.

Lemma 1.5.15. If n is even, Theorem 1.1.1 holds for Kn−2, and (M, 4
n−2
2 , n) is an n-ancestor

list with νn(M) = 0, then there is an (M, 4
n−2
2 , n)-decomposition of Kn.

Proof By Lemma 1.1.2 we can assume that n ≥ 16. Let U be a vertex set with |U | = n− 2,

let ∞1 and ∞2 be distinct vertices not in U , and let V = U ∪ {∞1,∞2}. Since (M, 4
n−2
2 , n) is

an n-ancestor list with νn(M) = 0, it follows from (5) in the definition of ancestor lists that any
cycle length in M is at most n−3. Thus, it is easily seen that (M, 3, n−3) is (n−2)-admissible
and so by assumption there is an (M, 3, n− 3)-decomposition D of KU .

Let H be an (n− 3)-cycle in D, let C be a 3-cycle in D, and let I be the perfect matching in
D. Let z be the vertex in U \ V (H), let w and x be distinct vertices in V (C) ∩ V (H), let u be
the vertex in V (C) \ {w, x} (possibly u = z), and let y be a vertex adjacent to x in H. Then

(D \ {I, C,H}) ∪ {I +∞1∞2, H
′, (∞1, y, x, w), (∞2, x, u, w)} ∪ D1

is an (M, 4
n−2
2 , n)-decomposition of KV , where

• H ′ = (H − [x, y]) ∪ [x,∞1, z,∞2, y]; and

• D1 is a (4
n−6
2 )-decomposition of K{∞1,∞2},U\{w,x,y,z}.

1.5.5 Many 5-cycles and one Hamilton cycle

In Lemma 1.5.20 we construct the required decompositions of complete graphs of odd order and
in Lemma 1.5.21 we construct the required decompositions of complete graphs of even order.
We first require four preliminary lemmas.

Lemma 1.5.16. Every even graph has a decomposition into cycles such that any two cycles in
the decomposition share at most two vertices.

Proof It is well known that every even graph has a decomposition into cycles. Let G be
an even graph. Amongst all decompositions of G into cycles, let D be one with a maximum
number of cycles. We claim that any pair of cycles in D shares at most two vertices. Suppose
otherwise. That is, there are distinct cycles A and B in D and distinct vertices x, y and z of G
such that {x, y, z} ⊆ V (A)∩V (B). Let A = A1∪A2 and B = B1∪B2, where A1, A2, B1 and B2

are paths from x to y such that z ∈ V (A2) and z ∈ V (B2). Then it is easy to see that A1 ∪B1

and A2 ∪B2 are both nonempty even graphs. For i = 1, 2, let Di be a decomposition of Ai ∪Bi

into cycles, and note that |D2| ≥ 2 because degA2∪B2
(z) = 4. Then (D \ {A,B})∪D1 ∪D2 is a

decomposition of G into cycles which contains more cycles than D, contradicting our definition
of D.
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Lemma 1.5.17. Let V be a vertex set and let U be a subset of V such that |U | ≥ 10. Let M
be a list of integers, let m ∈ {3, 4, 5}, and let P be an (M)-packing of KV with a leave L such
that degL(x) = 0 for all x ∈ V \ U . If there exists a spanning even subgraph G of L such that
at least one of the following holds,

(i) ∆(G) = 4, exactly one vertex of G has degree 4, G has at most two nontrivial components,
|E(G)| ≥ m+ 3, and G does not have a decomposition into two odd cycles if m = 4;

(ii) ∆(G) = 4, exactly two vertices of G have degree 4, G has exactly one nontrivial compo-
nent, |E(G)| ≥ m+ 3, and degG(x) = 0 for some x ∈ U if m = 3;

(iii) m = 4, G has exactly one nontrivial component, G has a decomposition into three cycles
each pair of which intersect in exactly one vertex, and degG(x) = 0 for some x ∈ U ; or

(iv) m = 5, ∆(G) ≥ 4, and G has a decomposition into three cycles such that any two intersect
in at most two vertices, and such that any two which intersect have lengths adding to 6
or 7;

then there exists (M,m)-packing P ′ of KV which is equivalent to P on V \ U .

Proof Suppose that there is a spanning even subgraph G of L which satisfies one of (i), (ii),
(iii) or (iv). Because L and G are both even graphs, it follows that L − G is an even graph
and hence has a decomposition A = {A1, . . . , At} into cycles. Let ai = |V (Ai)| for i = 1, . . . , t
and let M † = (a1, . . . , at). So P ∪A is an (M,M †)-packing of KV which is equivalent to P on
V \ U . The leave of P ∪ A is G. Let e = |E(G)|.
If we can produce an (M,M †,m, e −m)-decomposition D of KV which is equivalent to P on
V \U , then there will be cycles in D with lengths a1, . . . , at, e−m whose vertex sets are subsets
of U , and we can complete the proof by removing these cycles from D. So it suffices to find
such a decomposition. The proof now splits into cases.

Case 1 Suppose that G satisfies (i). Then we can apply Lemma 1.5.3 to obtain the required
decomposition.

Case 2 Suppose that G satisfies (ii). Then we can apply Lemma 1.5.4 to obtain the required
decomposition. The only non-trivial thing to check is that there is an x ∈ U with degG(x) = 0
when m ∈ {4, 5} and e −m = 3. In this case we have e ∈ {7, 8} and, because G is even and
|U | ≥ 10, there is indeed an x ∈ U with degG(x) = 0.

Case 3 Suppose that G satisfies (iii). Either exactly one vertex of G has degree 6 and every
other vertex of G has degree at most 2, or exactly three vertices of G have degree 4 and every
other vertex of G has degree at most 2. In the former case we apply Lemma 1.5.2, choosing b
to be the vertex of degree 6 in G and a to be a neighbour in G of b. In the latter case we apply
Lemma 1.5.2, choosing b to be a vertex of degree 4 in G and a to be a vertex in U which has
degree 0 in G. In either case we obtain an (M,M †)-packing P ′ of KV , which is equivalent to
P on V \ U , with a leave G′ such that ∆(G′) = 4, exactly two vertices of G′ have degree 4, G′

has exactly one nontrivial component, and |E(G′)| ≥ 9. Thus we can apply Lemma 1.5.4 to
obtain the required decomposition.

Case 4 Suppose that G satisfies (iv). Since ∆(G) ≥ 4 there is at least one pair of intersecting
cycles in any cycle decomposition of G. Thus, there exists a decomposition {B1, B2, B3} of G
into three cycles such that |V (B1) ∩ V (B2)| ∈ {1, 2} and |E(B1)|+ |E(B2)| ∈ {6, 7}.
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Case 4a Suppose that B3 is a component of G. If |V (B1) ∩ V (B2)| = 1, then we can apply
Lemma 1.5.3 to obtain the required decomposition, so we may assume that |V (B1)∩V (B2)| = 2.
Let x ∈ V (B1) ∩ V (B2), let y ∈ V (B3), and let z be a neighbour in G of x. Let P ′ be the
(M,M †)-packing of Kn obtained from P by performing the (x, y)-switch S with origin z and let
G′ be its leave. Then P ′ is equivalent to P on V \U , G′ has exactly one nontrivial component,
∆(G′) = 4, exactly two vertices of G′ have degree 4, and |E(G′)| ≥ 9. Thus we can apply
Lemma 1.5.4 to obtain the required decomposition.

Case 4b Suppose that B3 is not a component of G. Then B3 intersects with B1 or B2 and
so |E(B3)| ∈ {3, 4}. Thus, e ∈ {9, 10, 11} as we have |E(B1)| + |E(B2)| ∈ {6, 7}. Let P ′ be
the (M,M †)-packing of Kn obtained from P by repeatedly applying Lemma 1.5.2, each time
choosing b to be a vertex maximum degree in the leave and a to be a vertex in U of degree 0
in the leave, until the leave has maximum degree 4 and has exactly one vertex of degree 4 (a
suitable choice for a will exist each time since e ≤ 11 and |U | ≥ 10). Let G′ be the leave of
P ′. Then P ′ is equivalent to P on V \ U , ∆(G′) = 4, exactly one vertex of G′ has degree 4,
|E(G′)| ∈ {9, 10, 11}, and G′ has at most two components (because |E(G′)| ≤ 11). Thus we
can apply Lemma 1.5.3 to obtain the required decomposition.

Lemma 1.5.18. Let V be a vertex set and let U be a subset of V such that |U | ≥ 10. Let
m ∈ {3, 4, 5}, let M be a list of integers, and let P be an (M)-packing of KV with a leave
L such that |E(L)| ≥ |U | + m and degL(x) = 0 for all x ∈ V \ U . Then there exists an
(M,m)-packing of KV which is equivalent to P on V \ U .

Proof Since L is an even graph, Lemma 1.5.16 guarantees that there is a decomposition D
of L such that any pair of cycles in D intersect in at most two vertices. Let e = |E(L)|. Since
e ≥ |U | + m ≥ 13 it follows that D contains at least three cycles. Also, since e > |U |, there
is at least one pair of intersecting cycles in D. We now consider separately the cases m = 3,
m = 4 and m = 5.

Case 1 Suppose that m = 3. We can assume that there are no 3-cycles in D (otherwise we
can simply add one to P to complete the proof). Let C1, C2 and C3 be distinct cycles in D such
that C1 and C2 intersect. If |V (C1) ∩ V (C2)| = 1, then we can apply Lemma 1.5.17 (i) (with
E(G) = E(C1 ∪ C2)) to complete the proof, so we may assume that |V (C1) ∩ V (C2)| = 2. If
|E(C1)|+ |E(C2)| ≤ |U |+ 1, then there is at least one vertex of U that is not in V (C1)∪V (C2)
and we can apply Lemma 1.5.17 (ii) (with E(G) = E(C1 ∪ C2)) to complete the proof. Thus,
we may assume |E(C1)|+ |E(C2)| = |U |+ 2, and it follows from this that V (C1)∪ V (C2) = U .
This means that V (C3) ⊆ V (C1)∪ V (C2). Thus, since we have V (C3) ≥ 4, V (C1)∩ V (C3) ≤ 2
and V (C2)∩V (C3) ≤ 2, it follows that V (C3) = 4, V (C1)∩V (C3) = 2 and V (C2)∩V (C3) = 2.
We can assume without loss of generality that |E(C1)| ≤ |E(C2)| and hence that |E(C2)| ≥ 5
(since |U | ≥ 10). This means that there is at least one vertex of U that is in neither C1 nor
C3, and so we can apply Lemma 1.5.17 (ii) (with E(G) = E(C1 ∪ C3)) to complete the proof.

Case 2 Suppose that m = 4. If two cycles in D intersect in exactly two vertices, then we can
apply Lemma 1.5.17 (ii) (with the edges of G being the edges of two such cycles) to complete the
proof. So we may assume that any two cycles in D intersect in at most one vertex. Let {C1, C2}
be a pair of intersecting cycles in D such that |E(C1∪C2)| ≤ |E(Ci∪Cj)| for any pair {Ci, Cj}
of intersecting cycles in D. If there is a cycle in D which is vertex disjoint from C1 ∪ C2, then
we can apply Lemma 1.5.17 (i) (with the edges of G being the edges of C1, C2 and this cycle) to
complete the proof. If there is a cycle in D which intersects with exactly one of C1 and C2, then
we can apply Lemma 1.5.17 (ii) (with the edges of G being the edges of C1, C2 and this cycle)
to complete the proof. So we may assume that every cycle in D\{C1, C2} intersects (in exactly
one vertex) with C1 and with C2. Let C3 be a shortest cycle in D \ {C1, C2} and note that
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|V (Ci)| ≤ |V (C3)| for i = 1, 2 by our definition of C1 and C2. If V (C1 ∪C2 ∪C3) 6= U , then we
can apply Lemma 1.5.17 (iii) (with E(G) = E(C1∪C2∪C3)) to complete the proof. Otherwise
V (C1 ∪ C2 ∪ C3) = U which means that |V (C1)| + |V (C2)| + |V (C3)| ∈ {|U | + 2, |U | + 3}.
However, we have e ≥ |U |+4 and so there is a cycle C4 ∈ D\{C1, C2, C3}. Thus C4 is a 3-cycle
(as V (C1 ∪ C2 ∪ C3) = U and C4 intersects each of C1, C2 and C3 in exactly one vertex). It
then follows from the minimality of C3 and from |V (Ci)| ≤ |V (C3)| for i = 1, 2 that C1, C2 and
C3 are also 3-cycles. Since |U | ≥ 10, this is a contradiction and the result is proved.

Case 3 Suppose that m = 5. Let C1, C2 and C3 be three cycles in D such that C1 and C2

intersect. If there are a pair of cycles in {C1, C2, C3} which intersect and whose lengths add to
at least 8, then the union of this pair of cycles has at least m+3 edges and we can apply Lemma
1.5.17 (i) or Lemma 1.5.17 (ii) (with the edges of G being the edges of this pair of cycles) to
complete the proof. Otherwise we can apply Lemma 1.5.17 (iv) to complete the proof.

Lemma 1.5.19. Let u and k be integers such that u is even, u ≥ 16 and 6 ≤ k ≤ u− 1, let U
be a vertex set such that |U | = u, and let x and y be distinct vertices in U . Then there exists a
packing of KU with a perfect matching, a u-cycle, a (u − 1)-path from x to y, a k-cycle, three
(u− 2)-cycles each having vertex set U \ {x, y}, and a 2-path from x to y.

Proof Let U = Zu−3 ∪ {∞, x, y}. For i = 0, . . . , 5, let

Hi = (∞, i, i+ 1, i+ (u− 4), i+ 2, i+ (u− 5), . . . , i+ u−6
2
, i+ u

2
, i+ u−4

2
, i+ u−2

2
),

and let
I = [u−6

2
, u−2

2
] ∪ [u−8

2
, u
2
] ∪ · · · ∪ [0, u− 4] ∪ [∞, u−4

2
],

so that {I,H0, . . . , H5} is a packing of Zu−3 ∪ {∞} with one perfect matching and six (u− 2)-
cycles (recall that u ≥ 16). Then

{I+xy, (H0−[∞, 0, 1])∪[∞, x, 0, y, 1], (H1−[1, 2])∪[1, x]∪[2, y], P∪[a, x, b], H3, H4, H5, [x, c, y]}
is the required packing, where P is a (k − 2)-path in H2 with endpoints a and b such that
a, b ∈ Zu−3 \ {0, 1} (P exists as there are u − 2 distinct paths of length k − 2 in H2, and at
most six having ∞, 0 or 1 as an endpoint), and c is any vertex in Zu−3 \ {0, 1, 2, a, b}.
Lemma 1.5.20. If n is odd and (M, 5

3n−11
2 , n) is an n-ancestor list with νn(M) = 0, then there

is an (M, 5
3n−11

2 , n)-decomposition of Kn.

Proof By Lemma 1.1.2 (for n ≤ 13) and Lemma 1.5.5 (for n ∈ {15, 17}) we may assume that

n ≥ 19 (Lemma 1.5.5 can indeed be applied as ν5(M, 5
3n−11

2 , n) ≥ 3 when n ∈ {15, 17}). Let U
be a vertex set with |U | = n− 3, let x and y be distinct vertices in U , let ∞†, ∞1 and ∞2 be
distinct vertices not in U , and let V = U ∪ {∞†,∞1,∞2}.

Since (M, 5
3n−11

2 , n) is an n-ancestor list with νn(M) = 0, it follows from (6) in the definition of
ancestor lists that any cycle length in M is at most n− 5. If there is a cycle length in M which
is at least 6, then let k be this cycle length. Otherwise let k = 0 (so k ∈ {0} ∪ {6, . . . , n− 5}).
By Lemma 1.5.19, there exists a packing P of KU with a perfect matching I, an (n− 4)-path
P1 from x to y, a k-cycle (if k 6= 0), three (n − 5)-cycles C1, C2 and C3 each having vertex
set U \ {x, y}, and a 2-path P2 from x to y. Let {I1, I2} be a decomposition of C3 into two
matchings.

Let

P ′ = (P \ {I, P1, P2, C1, C2, C3})∪ {P1 ∪ [x,∞1,∞†,∞2, y], P2 ∪ [x,∞2,∞1, y]} ∪D ∪D1 ∪D2,

where
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• D is a (3
n−3
2 )-decomposition of K{∞†} ∨ I;

• for i = 1, 2, Di is a (5
n−5
2 )-decomposition of K{∞i}∨(Ci∪Ii) (this exists by Lemma 1.4.5).

Then P ′ is a (3
n−3
2 , 5n−4, k, n)-packing of KV (a (3

n−3
2 , 5n−4, n)-packing of KV if k = 0) such

that

(i) n−3
2

3-cycles in P ′ contain the vertex ∞†;

(ii) ∞†∞1 and ∞†∞2 are edges of the n-cycle in P ′; and

(iii) ∞†, ∞1 and ∞2 all have degree 0 in the leave of P ′.

Since (M, 5
3n−11

2 , n) is an n-ancestor list with νn(M) = 0, it can be seen that by beginning with

P ′ and repeatedly applying Lemma 1.5.18 we can obtain an (M, 3
n−3
2 , 5n−4, n)-packing of KV

which is equivalent to P ′ on V \ U . Note that the leave of this packing has n− 3 edges. Thus,

by then repeatedly applying Lemma 1.5.2 we can obtain an (M, 3
n−3
2 , 5n−4, n)-packing P ′′ of

KV which is equivalent to P ′ on V \U and whose leave L′′ has the property that degL′′(x) = 0
for each x ∈ {∞†,∞1,∞2} and degL′′(x) = 2 for each x ∈ U . Because P ′′ is equivalent to P ′
on V \ U , it follows from (i) and (ii) that there is a set T of n−3

2
3-cycles in P ′′ each of which

contains the vertex ∞† and two vertices in U . Let T be the union of the 3-cycles in T . Then

(P ′′ \ T ) ∪ D′′

is an (M, 5
3n−11

2 , n)-decomposition of KV where D′′ is a (5
n−3
2 )-decomposition of T ∪ L′′ (this

exists by Lemma 1.4.5, noting that E(T ∪ L′′) = E(K{∞†} ∨G) for some 3-regular graph G on
vertex set U which contains a perfect matching).

Lemma 1.5.21. If n is even and (M, 52n−9, n) is an n-ancestor list with νn(M) = 0, then there
is an (M, 52n−9, n)-decomposition of Kn.

Proof By Lemma 1.1.2 (for n ≤ 14) and Lemma 1.5.5 (for n ∈ {16, 18}) we may assume that
n ≥ 20 (Lemma 1.5.5 can indeed be applied as ν5(M, 52n−9, n) ≥ 3 when n ∈ {16, 18}). Let U
be a vertex set with |U | = n− 4, let x and y be distinct vertices in U , let ∞†1, ∞†2, ∞1 and ∞2

be distinct vertices not in U , and let V = U ∪ {∞†1,∞†2,∞1,∞2}.
Since (M, 52n−9, n) is an n-ancestor list with νn(M) = 0, it follows from (6) in the definition of
ancestor lists that any cycle length in M is at most n− 5. If there is a cycle length in M which
is at least 6 then let k be this cycle length. Otherwise let k = 0 (so k ∈ {0} ∪ {6, . . . , n− 5}).
By Lemma 1.5.19, there exists a packing P of KU with a perfect matching I, an (n− 4)-cycle
B, an (n− 5)-path P1 from x to y, a k-cycle (if k 6= 0), and three (n− 6)-cycles C1, C2 and C3

each having vertex set U \ {x, y}, and a 2-path P2 from x to y. Let {I†1, I†2} be a decomposition
of B into two matchings and {I1, I2} be a decomposition of C3 into two matchings.

Let

P ′ = (P \ {B,P1, P2, C1, C2, C3})∪
{I + {∞1∞†2,∞2∞†1}, P1 ∪ [x,∞1,∞†1,∞†2,∞2, y], P2 ∪ [x,∞2,∞1, y]} ∪ D†1 ∪ D†2 ∪ D1 ∪ D2,

where

• for i = 1, 2, D†i is a (3
n−4
2 )-decomposition of K{∞†i}

∨ I†i ;
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• for i = 1, 2, Di is a (5
n−6
2 )-decomposition of K{∞i}∨(Ci∪Ii) (this exists by Lemma 1.4.5).

Then P ′ is a (3n−4, 5n−5, k, n)-packing of KV (a (3n−4, 5n−5, n)-packing of KV if k = 0) such
that

(i) for i = 1, 2, n−4
2

3-cycles in P ′ contain the vertex ∞†i ;

(ii) ∞†1∞1, ∞†1∞†2 and ∞†2∞2 are edges of the n-cycle in P ′;

(iii) ∞†1∞2 and ∞†2∞1 are edges of the perfect matching in P ′; and

(iv) ∞†1, ∞†2, ∞1 and ∞2 all have degree 0 in the leave of P ′.

Since (M, 52n−9, n) is an n-ancestor list with νn(M) = 0, by beginning with P ′ and repeatedly
applying Lemma 1.5.18 we can obtain an (M, 3n−4, 5n−5, n)-packing of KV , which is equivalent
to P ′ on V \U . Note that the leave of this packing has 2n− 8 edges. Thus, by then repeatedly
applying Lemma 1.5.2 we can obtain an (M, 3n−4, 5n−5, n)-packing P ′′ of KV which is equivalent
to P ′ on V \U and whose leave L′′ has the property that degL′′(x) = 0 for x ∈ {∞†1,∞†2,∞1,∞2}
and degL′′(x) = 4 for all x ∈ U . By Petersen’s Theorem [81], L′′ has a decomposition {H1, H2}
into two 2-regular graphs, each with vertex set U . Because P ′′ is equivalent to P ′ on V \ U ,
it follows from (i), (ii) and (iii) that, for i = 1, 2 there is a set Ti of n−4

2
3-cycles in P ′′ each of

which contains the vertex ∞†i and two vertices in U . For i = 1, 2, let Ti be the union of the
3-cycles in Ti. Then

(P ′′ \ (T1 ∪ T2)) ∪ D′′1 ∪ D′′2
is an (M, 52n−9, n)-decomposition of KV where, for i = 1, 2, D′′i is a (5

n−4
2 )-decomposition of Ti∪

Hi (these decompositions exist by Lemma 1.4.5, noting that for i = 1, 2, E(Ti∪Hi) = E(K{∞†i}
∨

G) for some 3-regular graph G with vertex set U that contains a perfect matching).

1.5.6 Proof of Lemma 1.1.5 in the case of one Hamilton cycle

Lemma 1.5.22. If Theorem 1.1.1 holds for Kn−1, Kn−2 and Kn−3, then there is an (M)-
decomposition of Kn for each n-ancestor list M satisfying νn(M) = 1.

Proof By Lemma 1.1.2 we can assume that n ≥ 15. If there is a cycle length in M which
is at least 6 and at most n − 1 then let k be this cycle length. Otherwise let k = 0. We deal
separately with the case n is odd and the case n is even.

Case 1 Suppose that n is odd. Since n ≥ 15 and 3ν3(M)+4ν4(M)+5ν5(M)+k+n = n(n−1)
2

,
it can be seen that either

(i) n ∈ {15, 17, 19} and ν5(M) ≥ 3;

(ii) ν3(M) ≥ n−5
2

;

(iii) ν4(M) ≥ n−3
2

; or

(iv) ν5(M) ≥ 3n−11
2

.
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(To see this consider the cases ν5(M) ≥ 3 and ν5(M) ≤ 2 separately and use the definition of
n-ancestor list.) If (i) holds, then the result follows by Lemma 1.5.5. If (ii) holds, then the
result follows by one of Lemmas 1.5.6, 1.5.7 or 1.5.13. If (iii) holds, then the result follows by
Lemma 1.5.14. If (iv) holds, then the result follows by Lemma 1.5.20.

Case 2 Suppose that n is even. Since n ≥ 16 and 3ν3(M)+4ν4(M)+5ν5(M)+k+n = n(n−2)
2

,
it can be seen that either

(i) n ∈ {16, 18, 20, 22, 24, 26}, ν5(M) ≥ 3, and ν4(M) ≥ 2 if n = 24;

(ii) ν3(M) ≥ 3n−14
2

;

(iii) ν4(M) ≥ n−2
2

; or

(iv) ν5(M) ≥ 2n− 9.

(To see this consider the cases ν5(M) ≥ 3 and ν5(M) ≤ 2 separately and use the definition of
n-ancestor list.) If (i) holds, then the result follows by Lemma 1.5.5. If (ii) holds, then the
result follows by one of Lemmas 1.5.8, 1.5.9 or 1.5.13 (note that 3n−14

2
≥ n−6

2
for n ≥ 16). If

(iii) holds, then the result follows by Lemma 1.5.15. If (iv) holds, then the result follows by
Lemma 1.5.21.

1.6 Decompositions of 〈S〉n
Our general approach to constructing decompositions of 〈S〉n follows the approach used in [38]
and [40]. For each connection set S in which we are interested, we define a graph Jn for each
positive integer n such that there is a natural bijection between E(Jn) and E(〈S〉n), and such
that 〈S〉n can be obtained from Jn by identifying a small number (approximately |S|) of pairs
of vertices. Thus, decompositions of Jn yield decompositions of 〈S〉n.

The key property of the graph Jn is that it can be decomposed into a copy of Jn−y and a copy
of Jy for any positive integer y such that 1 ≤ y < n, and this facilitates the construction of
desired decompositions of Jn for arbitrarily large n from decompositions of Ji for various small
values of i. For example, in the case S = {1, 2, 3} we define Jn by V (Jn) = {0, . . . , n + 2}
and E(Jn) = {{i, i + 1}, {i + 1, i + 3}, {i, i + 3}} : i = 0, . . . n − 1}. It is straightforward to
construct a (3)-decomposition of J1, a (4, 5)-decomposition of J3, a (43)-decomposition of J4
and a (53)-decomposition of J5. Moreover, since Jn decomposes into Jn−y and Jy, it is easy
to see that these decompositions can be combined to produce an (M)-decomposition of Jn for
any list M = (m1, . . . ,mt) satisfying

∑
M = 3n and mi ∈ {3, 4, 5} for i = 1, . . . , t. For all

n ≥ 7, an (M)-decomposition of 〈{1, 2, 3}〉n can be obtained from an (M)-decomposition of Jn
by identifying vertex i with vertex i+ n for i = 0, 1, 2.

In what follows, this general approach is modified to allow for the construction of decompositions
which, in addition to cycles of lengths 3, 4 and 5, contain one arbitrarily long cycle or, in the
case S = {1, 2, 3}, one arbitrarily long cycle and one Hamilton cycle. The constructions used
to prove Lemma 1.3.2 proceed in a similar fashion for each connection set S.

1.6.1 Proof of Lemma 1.3.2

In this section we prove Lemma 1.3.2, which we restate here for convenience.
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Lemma 1.3.2 If

S ∈ {{1, 2, 3}, {1, 2, 3, 4}, {1, 2, 3, 4, 6}, {1, 2, 3, 4, 5, 7}, {1, 2, 3, 4, 5, 6, 7}, {1, 2, 3, 4, 5, 6, 7, 8}},

n ≥ 2 max(S) + 1, and M = (m1, . . . ,mt, k) is any list satisfying mi ∈ {3, 4, 5} for i = 1, . . . , t,
3 ≤ k ≤ n, and

∑
M = |S|n, then there is an (M)-decomposition of 〈S〉n, except possibly when

• S = {1, 2, 3, 4, 6}, n ≡ 3 (mod 6) and M = (3
5n
3 ); or

• S = {1, 2, 3, 4, 6}, n ≡ 4 (mod 6) and M = (3
5n−5

3 , 5).

Let

S = {{1, 2, 3}, {1, 2, 3, 4}, {1, 2, 3, 4, 6}, {1, 2, 3, 4, 5, 7}, {1, 2, 3, 4, 5, 6, 7}, {1, 2, 3, 4, 5, 6, 7, 8}}.

We shall show that the required decompositions exist for each S ∈ S separately.

Our proof is essentially inductive and requires a large number of specific base decompositions,
and these are given in the appendix. Some of the constructions could possibly have been
completed using a smaller number of base decompositions, but since these were found using a
computer search, we decided to keep the inductive steps themselves as simple as possible, at
the cost of requiring a larger number of base decompositions.

S = {1, 2, 3}

In this section we show the existence of required decompositions for the case S = {1, 2, 3} in
Lemma 1.3.2. We first define Jn by

E(Jn) = {{i, i+ 1}, {i+ 1, i+ 3}, {i, i+ 3} : i = 0, . . . , n− 1}}

and V (Jn) = {0, . . . , n+ 2}. We note the following basic properties of Jn. For a list of integers
M , an (M)-decomposition of Jn will be denoted by Jn →M .

• For n ≥ 7, if for each i ∈ {0, 1, 2} we identify vertex i of Jn with vertex i + n of Jn
then the resulting graph is 〈{1, 2, 3}〉n. This means that for n ≥ 7, we can obtain an
(M)-decomposition of 〈{1, 2, 3}〉n from a decomposition Jn →M , provided that for each
i ∈ {0, 1, 2}, no cycle in the decomposition of Jn contains both vertex i and vertex i+ n.

• For any integers y and n such that 1 ≤ y < n, the graph Jn is the union of Jn−y and the
graph obtained from Jy by applying the permutation x 7→ x+ (n− y). Thus, if there is a
decomposition Jn−y → M and a decomposition Jy → M ′, then there is a decomposition
Jn → M,M ′. We will call this construction, and the similar constructions that follow,
concatenations.

Lemma 1.6.1. If n is a positive integer and M = (m1, . . . ,mt) is a list such that
∑
M = 3n,

mi ∈ {3, 4, 5} for i = 1, . . . , t, then there is a decomposition Jn →M .

Proof Since J1 is a 3-cycle, the result holds trivially for n = 1, so let n ≥ 2 and suppose
by induction that the result holds for each integer n′ in the range 1 ≤ n′ < n. The following
decompositions are given in Table A.3 in the appendix.

J1 → 3 J3 → 4, 5 J4 → 43 J5 → 53
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It is routine to check that if M satisfies the hypotheses of the lemma, then M can be written
as M = (X, Y ) where Jy → Y is one of the decompositions above and X is some (possibly
empty) list. If X is empty, then we are finished immediately. If X is nonempty then we can
obtain a decomposition Jn → M by concatenating a decomposition Jn−y → X (which exists
by our inductive hypothesis) with a decomposition Jy → Y .

Lemma 1.6.2. For 6 ≤ k ≤ 10, if n ≥ k is an integer and M = (m1, . . . ,mt) is a list such
that

∑
M +k = 3n and mi ∈ {3, 4, 5} for i = 1, . . . , t, then there is a decomposition Jn →M,k

such that the k-cycle is incident upon vertices {0, 1, . . . , k − 1}.

Proof First we note that Table A.1 in the appendix lists a number of decompositions contain-
ing a k-cycle Ck for some 6 ≤ k ≤ 10 such that V (Ck) ⊆ {0, . . . , k − 1}. For each k, it is easy
to use the value of k (mod 3) to check that for n ≥ k and any M that satisfies the hypotheses
of the lemma we can write M as (X, Y ) where Jx → X, k is one of the decompositions in Table
A.1, and Y is some (possibly empty) list with the property

∑
Y = 3y for some integer y. If Y

is empty we are done, else Lemma 1.6.1 gives us the existence of a decomposition Jy → Y and
the required decomposition can be obtained by concatenation of Jx → X, k with Jy → Y .

The k-cycle in the resulting decomposition will be incident on vertices {0, 1, . . . , k − 1} as this
property held in the decomposition Jx → X, k and thus the resulting decomposition satisfies
the condition in the lemma. Let M = (m1, . . . ,mt) be a list of integers with mi ≥ 3 for

i = 1, . . . , t. A decomposition {G1, . . . , Gt, C} of Jn such that

• Gi is an mi-cycle for i = 1, . . . , t; and

• C is a k-cycle such that V (C) = {n− k + 3, . . . , n+ 2} and {n, n+ 2} ∈ E(C);

will be denoted Jn →M,k∗.

In Lemma 1.6.4 we will form new decompositions of graphs Jn by concatenating decompositions
of Jn−y with decompositions of graphs J+

y which we will now define. For y ∈ {3, . . . , 8}, the
graph obtained from Jy by adding the edge {0, 2} will be denoted J+

y . Let M = (m1, . . . ,mt)
be a list of integers with mi ≥ 3 for i = 1, . . . , t. A decomposition {G1, . . . , Gt, A} of J+

y such
that

• Gi is an mi-cycle for i = 1, . . . , t;

• A is a path from 0 to 2 such that 1 /∈ V (A); and

• |E(A)| = l + 1;

will be denoted J+
y →M, l+. Moreover, if l = y and {n, n+2} ∈ E(A) , then the decomposition

will be denoted J+
y →M, y+∗.

For y ∈ {3, . . . , 8} and n > y, the graph Jn is the union of the graph obtained from Jn−y by
deleting the edge {n− y, n− y+ 2} and the graph obtained from J+

y applying the permutation
x 7→ x+ (n− y). It follows that if there is a decomposition Jn−y →M,k∗ and a decomposition
J+
y → M ′, l+, then there is a decomposition Jn → M,M ′, k + l. The edge {n, n + 2} of the
k-cycle in the decomposition of Jn−y is replaced by the path in the decomposition of J+

y to form
the (k+ l)-cycle in the new decomposition. Similarly, if there is a decomposition Jn−y →M,k∗

and a decomposition J+
y →M ′, y+∗, then there is a decomposition Jn →M,M ′, (k + y)∗.
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Lemma 1.6.3. For 11 ≤ k ≤ 16, if n ≥ k is an integer and M = (m1, . . . ,mt) is a list
such that

∑
M + k = 3n and mi ∈ {3, 4, 5} for i = 1, . . . , t, then there is a decomposition

Jn →M,k∗.

Proof First we note the existence of decompositions of the form Jx → X, k∗ listed in Table
A.2 in the appendix. For each k, it is routine to use the value of k (mod 3) to check that for
n ≥ k and any M that satisfies the hypotheses of the lemma we can write M as (X, Y ) where
Jx → X, k∗ is one of the decompositions in Table A.2, and Y is some (possibly empty) list with
the property

∑
Y = 3y for some integer y. If Y is empty we are done, else Lemma 1.6.1 gives

us the existence of a decomposition Jy → Y and the required decomposition can be obtained
by concatenation of Jy → Y with Jx → X, k∗.

Lemma 1.6.4. If n ≥ 11 is an integer and M = (m1, . . . ,mt) is a list such that
∑
M = 2n

and mi ∈ {3, 4, 5} for i = 1, . . . , t, then there is a decomposition Jn →M,n∗.

Proof Lemma 1.6.3 shows that the result holds for 11 ≤ n ≤ 16. So let n ≥ 17 and suppose
by induction that the result holds for each integer n′ in the range 11 ≤ n′ < n. The following
decompositions can be seen in Table A.3 in the appendix.

J+
5 → 52, 5+∗ J+

6 → 43, 6+∗ J+
6 → 34, 6+∗

It is routine to check, using
∑
M = 2n ≥ 34, that if M satisfies the hypotheses of the lemma,

then M can be written as M = (X, Y ) where J+
y → Y, y+∗ is one of the decompositions above

and X is some nonempty list. We can obtain a decomposition Jn → M,n∗ by concatenating
a decomposition Jn−y → X, (n − y)∗ (which exists by our inductive hypothesis, since n − y ≥
n− 6 ≥ 11) with a decomposition J+

y → Y, y+∗.

Lemma 1.6.5. If n and k are integers such that 6 ≤ k ≤ n and M = (m1, . . . ,mt) is a list
such that

∑
M = 3n − k and mi ∈ {3, 4, 5} for i = 1, . . . , t, then there is a decomposition

Jn → M,k. Furthermore, for n ≥ 7 all cycles in this decomposition have the property that for
i ∈ {0, 1, 2} no cycle is incident upon both vertex i and vertex n+ i.

Proof We first note that if n ≥ 7 it is clear that any 3-, 4- or 5-cycle in such a decomposition
cannot be incident on two vertices i and i+n for any i ∈ {0, 1, 2}. As such, Lemma 1.6.2 shows
that the result holds for all n with 6 ≤ k ≤ 10, so in the following we deal only with k ≥ 11.

Lemma 1.6.3 shows that the result holds for all n with 11 ≤ k ≤ 16 with the additional property
that the k-cycle is not incident upon any vertex in {0, 1, 2}, and Lemma 1.6.4 shows that the
result holds for all n = k with the same property on the k-cycle. We can therefore assume that
17 ≤ k ≤ n− 1, so let n ≥ 18 and suppose by induction that the result holds for each positive
integer n′ in the range 6 ≤ n′ < n with the additional property that the k-cycle is not incident
upon any vertex in {0, 1, 2}.
The following decompositions exist by Lemma 1.6.1.

J1 → 3 J3 → 4, 5 J4 → 43 J5 → 53

Case 1 Suppose that k ≤ n−5. Then it is routine to check, using
∑
M = 3n−k ≥ 2n+5 ≥ 41,

that M = (X, Y ) where Jy → Y is one of the decompositions above and X is some nonempty
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list. We can obtain a decomposition Jn →M,k by concatenating a decomposition Jn−y → X, k
(which exists by our inductive hypothesis, since k ≤ n − 6 ≤ n − y) with a decomposition
Jy → Y . Since n ≥ 17 it is clear that any 3-, 4- or 5-cycle in this decomposition having a vertex
in {0, 1, 2} has no vertex in {n, n + 1, n + 2}, and by our inductive hypothesis the same holds
for the k-cycle.

Case 2 Suppose that n − 4 ≤ k ≤ n − 1. In a similar manner to Case 1, we can obtain the
required decomposition Jn → M,k if M = (X, 3) for some list X, if k ∈ {n − 4, n − 3} and
M = (X, 4, 5) for some list X, and if k = n − 4 and M = (X, 43) for some list X. So we may
assume that none of these hold. Additionally, we can construct the decomposition J18 → 58, 14
as the concatenation of J13 → 55, 14∗ with J5 → 53 (both given in Table A.3 in the appendix)
as it cannot be constructed by the method shown below, so in the following also note that we
do not consider this decomposition.

Given this, using
∑
M = 3n − k ≥ 2n + 1 ≥ 37, it is routine to check that the required

decomposition Jn → M,k can be obtained using one of the concatenations given in the table
below (note that, since ν3(M) = 0, in each case we can deduce the given value of ν5(M) (mod 2)
from

∑
M = 3n − k). The decompositions in the third column exist by Lemma 1.6.4 (since

k ≥ 17), and the decompositions listed in the last column are shown in Table A.3 in the
appendix.

k ν5(M) (mod 2) first decomposition second decomposition

n− 4 0 Jn−8 → (M − (54)), (n− 8)∗ J+
8 → 54, 4+

n− 3 1 Jn−6 → (M − (53)), (n− 6)∗ J+
6 → 53, 3+

n− 2 0 Jn−3 → (M − (42)), (n− 3)∗ J+
3 → 42, 1+

Jn−4 → (M − (52)), (n− 4)∗ J+
4 → 52, 2+

n− 1 1 Jn−4 → (M − (4, 5)), (n− 4)∗ J+
4 → 4, 5, 3+

Jn−7 → (M − (53)), (n− 7)∗ J+
7 → 53, 6+

Since n ≥ 18 it is clear that any 3-, 4- or 5-cycle in this decomposition having a vertex in
{0, 1, 2} has no vertex in {n, . . . , n + 2}, and by the definition of the decompositions given in
the third column the k-cycle has no vertex in {0, 1, 2}, so these decompositions do have the
required properties.

Lemma 1.6.6. If S = {1, 2, 3}, n ≥ 7, and M = (m1, . . . ,mt, k) is any list satisfying mi ∈
{3, 4, 5} for i = 1, . . . , t, 3 ≤ k ≤ n, and

∑
M = 3n, then there is an (M)-decomposition of

〈S〉n.

Proof As noted above, for n ≥ 7 we can obtain an (M)-decomposition of 〈{1, 2, 3}〉n from
an (M)-decomposition of Jn, provided that for each i ∈ {0, 1, 2}, no cycle contains both vertex
i and vertex i + n. Thus, for S = {1, 2, 3}, the required result follows by Lemma 1.6.1 for
k ∈ {3, 4, 5} and by Lemma 1.6.5 for 6 ≤ k ≤ n.

S = {1, 2, 3, 4}

In this section we show the existence of required decompositions for the case S = {1, 2, 3, 4} in
Lemma 1.3.2. We first define Jn by

E(Jn) = {{i+ 2, i+ 3}, {i+ 2, i+ 4}, {i, i+ 3}, {i, i+ 4} : i = 0, . . . , n− 1}}
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and V (Jn) = {0, . . . , n+ 3}. We note the following basic properties of Jn. For a list of integers
M , an (M)-decomposition of Jn will be denoted by Jn →M .

• For n ≥ 9, if for each i ∈ {0, 1, 2, 3} we identify vertex i of Jn with vertex i + n of Jn
then the resulting graph is 〈{1, 2, 3, 4}〉n. This means that for n ≥ 9, we can obtain an
(M)-decomposition of 〈{1, 2, 3, 4}〉n from a decomposition Jn → M , provided that for
each i ∈ {0, 1, 2, 3}, no cycle in the decomposition of Jn contains both vertex i and vertex
i+ n.

• For any integers y and n such that 1 ≤ y < n, the graph Jn is the union of Jn−y and the
graph obtained from Jy by applying the permutation x 7→ x+ (n− y). Thus, if there is a
decomposition Jn−y → M and a decomposition Jy → M ′, then there is a decomposition
Jn → M,M ′. We will call this construction, and the similar constructions that follow,
concatenations.

Lemma 1.6.7. If n is a positive integer and M = (m1, . . . ,mt) is a list such that
∑
M = 4n,

mi ∈ {3, 4, 5} for i = 1, . . . , t, then there is a decomposition Jn →M .

Proof Since J1 is a 4-cycle, the result holds trivially for n = 1, so let n ≥ 2 and suppose
by induction that the result holds for each integer n′ in the range 1 ≤ n′ < n. The following
decompositions can be seen in Table A.6 in the appendix.

J1 → 4 J2 → 3, 5 J3 → 34 J5 → 54

It is routine to check that if M satisfies the hypotheses of the lemma, then M can be written
as M = (X, Y ) where Jy → Y is one of the decompositions above and X is some (possibly
empty) list. If X is empty, then we are finished immediately. If X is nonempty then we can
obtain a decomposition Jn → M by concatenating a decomposition Jn−y → X (which exists
by our inductive hypothesis) with a decomposition Jy → Y .

Lemma 1.6.8. For 6 ≤ k ≤ 8, if n ≥ k is an integer and M = (m1, . . . ,mt) is a list such that∑
M + k = 4n and mi ∈ {3, 4, 5} for i = 1, . . . , t, then there is a decomposition Jn → M,k

such that the k-cycle is incident upon vertices {0, 1, . . . , k − 1}.

Proof First we note that Table A.4 in the appendix lists a number of decompositions con-
taining a k-cycle Ck for some 6 ≤ k ≤ 8 such that V (Ck) ⊆ {0, . . . , k − 1}.
For each k, it is easy to use the value of k (mod 4) to check that for n ≥ k and any M that
satisfies the hypotheses of the lemma we can write M as (X, Y ) where Jx → X, k is one of the
decompositions in Table A.4 and Y is some (possibly empty) list with the property

∑
Y = 4y

for some integer y. If Y is empty we are done, else Lemma 1.6.7 gives us the existence of a
decomposition Jy → Y and the required decomposition can be obtained by concatenation of
Jx → X, k with Jy → Y .

The k-cycle in the resulting decomposition will be incident on vertices {0, 1, . . . , k} as this
property held in the decomposition Jx → X, k and thus the resulting decomposition satisfies
the condition in the lemma.

Let M = (m1, . . . ,mt) be a list of integers with mi ≥ 3 for i = 1, . . . , t. A decomposition
{G1, . . . , Gt, C} of Jn such that

• Gi is an mi-cycle for i = 1, . . . , t; and
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• C is a k-cycle such that V (C) = {n− k+ 4, . . . , n+ 3} and {{n, n+ 2}, {n+ 1, n+ 3}} ⊆
E(C);

will be denoted Jn →M,k∗.

In Lemma 1.6.10 we will form new decompositions of graphs Jn by concatenating decomposi-
tions of Jn−y with decompositions of graphs J+

y which we will now define. For y ∈ {1, . . . , 7},
the graph obtained from Jy by adding the edges {0, 2} and {1, 3} will be denoted J+

y . Let
M = (m1, . . . ,mt) be a list of integers with mi ≥ 3 for i = 1, . . . , t. A decomposition
{G1, . . . , Gt, A1, A2} of J+

y such that

• Gi is an mi-cycle for i = 1, . . . , t;

• A1 and A2 are vertex-disjoint paths, one from 0 to 2 and one from 1 to 3; and

• |E(A1)|+ |E(A2)| = l + 2;

will be denoted J+
y →M, l+. Moreover, if l = y and {{n, n+ 2}, {n+ 1, n+ 3}} ⊆ E(A) , then

the decomposition will be denoted J+
y →M, y+∗.

For y ∈ {1, . . . , 7} and n > y, the graph Jn is the union of the graph obtained from Jn−y by
deleting the edges {n−y, n−y+2} and {n−y+1, n−y+3}, and the graph obtained from J+

y

applying the permutation x 7→ x+ (n− y). It follows that if there is a decomposition Jn−y →
M,k∗ and a decomposition J+

y →M ′, l+, then there is a decomposition Jn →M,M ′, k+ l. The
edges {n, n+ 2} and {n+ 1, n+ 3} of the k-cycle in the decomposition of Jn−y are replaced by
the two paths in the decomposition of J+

y to form the (k + l)-cycle in the new decomposition.
Similarly, if there is a decomposition Jn−y → M,k∗ and a decomposition J+

y → M ′, y+∗, then
there is a decomposition Jn →M,M ′, (k + y)∗.

Lemma 1.6.9. For 9 ≤ k ≤ 13, if n ≥ k is an integer and M = (m1, . . . ,mt) is a list such that∑
M + k = 4n and mi ∈ {3, 4, 5} for i = 1, . . . , t, then there is a decomposition Jn →M,k∗.

Proof First we note the existence of decompositions of the form Jx → X, k∗ listed in Table
A.5 in the appendix. For each k, it is routine to use the value of k (mod 4) to check that for
n ≥ k and any M that satisfies the hypotheses of the lemma we can write M as (X, Y ) where
Jx → X, k∗ is one of the decompositions in Table A.5, and Y is some (possibly empty) list with
the property

∑
Y = 4y for some integer y. If Y is empty we are done, else Lemma 1.6.7 gives

us the existence of a decomposition Jy → Y and the required decomposition can be obtained
by concatenation of Jy → Y with Jx → X, k∗.

Lemma 1.6.10. If n ≥ 9 is an integer and M = (m1, . . . ,mt) is a list such that
∑
M = 3n

and mi ∈ {3, 4, 5} for i = 1, . . . , t, then there is a decomposition Jn →M,n∗.

Proof Lemma 1.6.9 shows that the result holds for 9 ≤ n ≤ 13. So let n ≥ 14 and suppose
by induction that the result holds for each integer n′ in the range 9 ≤ n′ < n. The following
decompositions are given in Table A.6 in the appendix.

J+
1 → 3, 1+∗ J+

3 → 4, 5, 3+∗ J+
4 → 43, 4+∗ J+

5 → 53, 5+∗

It is routine to check, using
∑
M = 3n ≥ 42, that M can be written as M = (X, Y ) where

J+
y → Y, y+∗ is one of the decompositions above and X is some nonempty list. We can obtain a
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decomposition Jn →M,n∗ by concatenating a decomposition Jn−y → X, (n−y)∗ (which exists
by our inductive hypothesis, since n− y ≥ n− 5 ≥ 9) with a decomposition J+

y → Y, y+∗.

Lemma 1.6.11. If n and k are integers such that 6 ≤ k ≤ n and M = (m1, . . . ,mt) is a list
such that

∑
M = 4n − k and mi ∈ {3, 4, 5} for i = 1, . . . , t, then there is a decomposition

Jn → M,k. Furthermore, for n ≥ 9 all cycles in this decomposition have the property that for
i ∈ {0, 1, 2, 3} no cycle is incident upon both vertex i and vertex n+ i.

Proof We first note that if n ≥ 9 it is clear that any 3-, 4- or 5-cycle in such a decomposition
cannot be incident on two vertices i and i + n for any i ∈ {0, 1, 2, 3}. As such, Lemma 1.6.8
shows that the result holds for all n with 6 ≤ k ≤ 8, so in the following we deal only with
k ≥ 9.

Lemma 1.6.9 shows that the result holds for all n with 9 ≤ k ≤ 13 with the additional property
that the k-cycle is not incident upon any vertex in {0, 1, 2, 3}, and Lemma 1.6.10 shows that
the result holds for all n = k with the same property on the k-cycle. We can therefore assume
that 14 ≤ k ≤ n − 1, so let n ≥ 15 and suppose by induction that the result holds for each
positive integer n′ in the range 6 ≤ n′ < n with the additional property that the k-cycle is not
incident upon any vertex in {0, 1, 2, 3}.
The following decompositions exist by Lemma 1.6.7.

J1 → 4 J2 → 3, 5 J3 → 34 J5 → 54

Case 1 Suppose that k ≤ n−5. Then it is routine to check, using
∑
M = 4n−k ≥ 3n+5 ≥ 50,

that M = (X, Y ) where Jy → Y is one of the decompositions above and X is some nonempty
list. We can obtain a decomposition Jn →M,k by concatenating a decomposition Jn−y → X, k
(which exists by our inductive hypothesis, since k ≤ n − 6 ≤ n − y) with a decomposition
Jy → Y . Since n ≥ 15 it is clear that any 3-, 4- or 5-cycle in this decomposition having a vertex
in {0, 1, 2, 3} has no vertex in {n, n+ 1, n+ 2, n+ 3}, and by our inductive hypothesis the same
holds for the k-cycle.

Case 2 Suppose that n − 4 ≤ k ≤ n − 1. In a similar manner to Case 1, we can obtain the
required decomposition Jn → M,k if M = (X, 4) for some list X, if k ∈ {n − 4, n − 3, n − 2}
and M = (X, 3, 5) for some list X, and if k ∈ {n− 4, n− 3} and M = (X, 34) for some list X.
So we may assume that none of these hold.

Given this, using
∑
M = 4n − k ≥ 3n + 1 ≥ 46, it is routine to check that the required

decomposition Jn → M,k can be obtained using one of the concatenations given in the table
below (note that, since ν4(M) = 0, in each case we can deduce the given value of ν5(M) (mod 3)
from

∑
M = 3n − k). The decompositions in the third column exist by Lemma 1.6.10 (since

k ≥ 14), and the decompositions listed in the last column are shown in Table A.6 in the
appendix.

k ν5(M) (mod 3) first decomposition second decomposition

n− 4 2 Jn−7 → (M − (55)), (n− 7)∗ J+
7 → 55, 3+

n− 3 0 Jn−4 → (M − (53)), (n− 4)∗ J+
4 → 53, 1+

n− 2 1 Jn−6 → (M − (54)), (n− 6)∗ J+
6 → 54, 4+

n− 1 2 Jn−3 → (M − (52)), (n− 3)∗ J+
2 → 52, 2+

For n ≥ 9 it is clear that any 3-, 4- or 5-cycle in this decomposition having a vertex in {0, 1, 2, 3}
has no vertex in {n, . . . , n+ 3}, and by the definition of the decompositions given in the third
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column the k-cycle has no vertex in {0, 1, 2, 3}, so these decompositions do have the required
properties.

Lemma 1.6.12. If S = {1, 2, 3, 4}, n ≥ 9, and M = (m1, . . . ,mt, k) is any list satisfying
mi ∈ {3, 4, 5} for i = 1, . . . , t, 3 ≤ k ≤ n, and

∑
M = 4n, then there is an (M)-decomposition

of 〈S〉n.

Proof As noted earlier, for n ≥ 9 we can obtain an (M)-decomposition of 〈{1, 2, 3, 4}〉n from
an (M)-decomposition of Jn, provided that for each i ∈ {0, 1, 2, 3}, no cycle contains both
vertex i and vertex i+n. Thus, for S = {1, 2, 3, 4}, the required result follows by Lemma 1.6.7
for k ∈ {3, 4, 5} and by Lemma 1.6.11 for 6 ≤ k ≤ n.

S = {1, 2, 3, 4, 6}

In this section we show the existence of required decompositions for the case S = {1, 2, 3, 4, 6}
in Lemma 1.3.2. We first define Jn by

E(Jn) = {{i+ 2, i+ 3}, {i+ 2, i+ 4}, {i+ 3, i+ 6}, {i, i+ 4}, {i, i+ 6} : i = 0, . . . , n− 1}

and V (Jn) = {0, . . . , n+ 5}. We note the following basic properties of Jn.

For a list of integers M , an (M)-decomposition of Jn will be denoted by Jn →M . We note the
following basic properties of Jn.

• For n ≥ 13, if for each i ∈ {0, 1, 2, 3, 4, 5} we identify vertex i of Jn with vertex i+n of Jn
then the resulting graph is 〈{1, 2, 3, 4, 6}〉n. This means that for n ≥ 13, we can obtain
an (M)-decomposition of 〈{1, 2, 3, 4, 6}〉n from a decomposition Jn → M , provided that
for each i ∈ {0, 1, 2, 3, 4, 5}, no cycle in the decomposition of Jn contains both vertex i
and vertex i+ n.

• For any integers y and n such that 1 ≤ y < n, the graph Jn is the union of Jn−y and the
graph obtained from Jy by applying the permutation x 7→ x+ (n− y). Thus, if there is a
decomposition Jn−y → M and a decomposition Jy → M ′, then there is a decomposition
Jn → M,M ′. We will call this construction, and the similar constructions that follow,
concatenations.

Lemma 1.6.13. If n is a positive integer and M = (m1, . . . ,mt) is a list such that
∑
M = 5n,

mi ∈ {3, 4, 5} for i = 1, . . . , t, and M /∈ E where

E = {(32, 4)} ∪ {(35i) : i ≥ 1 is odd} ∪ {(35i, 5) : i ≥ 1 is odd},

then there is a decomposition Jn →M .

Proof We have verified by computer search and concatenation that the result holds for n ≤ 10.
So assume n ≥ 11 and suppose by induction that the result holds for each integer n′ in the
range 1 ≤ n′ < n. The following decompositions are given in Table A.9 in the appendix.

J1 → 5 J4 → 45 J6 → 310 J5 → 37, 4 J4 → 34, 42 J3 → 3, 43
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It is routine to check that if M satisfies the hypotheses of the lemma, then M can be written as
M = (X, Y ) where Jy → Y is one of the decompositions above and X is some (possibly empty)
list. If X is empty, then we are finished immediately. If X is nonempty and X /∈ E , then
we can obtain a decomposition Jn → M by concatenating a decomposition Jn−y → X (which
exists by our inductive hypothesis) with a decomposition Jy → Y . Thus, we can assume
X ∈ E . But since n ≥ 11 and

∑
Y ≤ 30, we have

∑
X ≥ 25 which implies X ∈ {(35i) :

i ≥ 3 is odd} ∪ {(35i, 5) : i ≥ 3 is odd}.
It follows that M = (310, X ′) for some nonempty list X ′ /∈ E (because M /∈ E) and we can
obtain a decomposition Jn → M by concatenating a decomposition Jn−6 → X ′ (which exists
by our inductive hypothesis) with a decomposition J6 → 310.

Lemma 1.6.14. For 6 ≤ k ≤ 10, if n ≥ k is an integer and M = (m1, . . . ,mt) is a list such
that

∑
M+k = 5n and mi ∈ {3, 4, 5} for i = 1, . . . , t, then there is a decomposition Jn →M,k.

Furthermore, for n ≥ 13 any cycle in this decomposition having a vertex in {0, . . . , 5} has no
vertex in {n, . . . , n+ 5}.

Proof First we note that Table A.7 in the appendix lists a number of decompositions con-
taining a k-cycle Ck for some 6 ≤ k ≤ 10 such that V (Ck) ⊆ {0, . . . , 12}. For each k, it is
routine to check that for n ≥ k and any M that satisfies the hypotheses of the lemma we can
write M as (X, Y ) where Jx → X, k is one of the decompositions in Table A.7, and Y is some
(possibly empty) list with the property

∑
Y = 5y for some integer y. If Y is empty we are

done, else Lemma 1.6.13 gives us the existence of a decomposition Jy → Y and the required de-
composition can be obtained by concatenation of Jy → Y with Jx → X, k. All decompositions
in the list have the property that the k-cycle is only incident upon some subset of the vertices
{0, . . . , 12} , and the resulting decomposition after concatenation will still have this property.
Additionally it is simple to check that every decomposition used has the property that no 3-,
4- or 5-cycle contains two vertices va and vb such that |va − vb| ≥ 8, so this gives the required
decompositions.

Let M = (m1, . . . ,mt) be a list of integers with mi ≥ 3 for i = 1, . . . , t. A decomposition
{G1, . . . , Gt, C} of Jn such that

• Gi is an mi-cycle for i = 1, . . . , t; and

• C is a k-cycle such that V (C) = {n−k+6, . . . , n+5} and {{n, n+3}, {n+1, n+4}, {n+
2, n+ 5}} ⊆ E(C);

will be denoted Jn →M,k∗.

In Lemma 1.6.16 we will form new decompositions of graphs Jn by concatenating decomposi-
tions of Jn−y with decompositions of graphs J+

y which we will now define. For y ∈ {4, . . . , 11},
the graph obtained from Jy by adding the three edges {0, 3}, {1, 4} and {2, 5} will be denoted
J+
y . Let M = (m1, . . . ,mt) be a list of integers with mi ≥ 3 for i = 1, . . . , t. A decomposition
{G1, . . . , Gt, A1, A2, A3} of J+

y such that

• Gi is an mi-cycle for i = 1, . . . , t;

• A1, A2 and A3 are vertex-disjoint paths, one from 0 to 3, one from 1 to 4, and one from
2 to 5; and
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• |E(A1)|+ |E(A2)|+ |E(A3)| = l + 3;

will be denoted J+
y →M, l+. Moreover, if l = y and {{n, n+3}, {n+1, n+4}, {n+2, n+5}} ⊆

E(A1) ∪ E(A2) ∪ E(A3), then the decomposition will be denoted J+
y →M, y+∗.

For y ∈ {4, . . . , 11} and n > y, the graph Jn is the union of the graph obtained from Jn−y by
deleting the edges in {{n− y, n− y+ 3}, {n− y+ 1, n− y+ 4}, {n− y+ 2, n− y+ 5}} and the
graph obtained from J+

y applying the permutation x 7→ x+ (n− y). It follows that if there is a
decomposition Jn−y →M,k∗ and a decomposition J+

y →M ′, l+, then there is a decomposition
Jn →M,M ′, k+ l. The three edges {n, n+3}, {n+1, n+4} and {n+2, n+5} of the k-cycle in
the decomposition of Jn−y are replaced by the three paths in the decomposition of J+

y to form
the (k+ l)-cycle in the new decomposition. Similarly, if there is a decomposition Jn−y →M,k∗

and a decomposition J+
y →M ′, y+∗, then there is a decomposition Jn →M,M ′, (k + y)∗.

Lemma 1.6.15. For 11 ≤ k ≤ 16, if n ≥ k is an integer and M = (m1, . . . ,mt) is a list
such that

∑
M + k = 3n and mi ∈ {3, 4, 5} for i = 1, . . . , t, then there is a decomposition

Jn →M,k∗.

Proof First we note the existence of the decompositions given in Table A.8 in the appendix.
For 11 ≤ k ≤ 14 it is routine to check that for n ≥ k and any M that satisfies the hypotheses of
the lemma we can write M as (X, Y ) where Jx → X, k∗ is one of the decompositions in Table
A.8, and Y is some (possibly empty) list with the properties that

∑
Y = 5y for some integer y

and Y is not one of the exceptions to Lemma 1.6.13. If Y is empty, we are done, else Lemma
1.6.13 gives us the existence of a decomposition Jy → Y and the required decomposition can
be obtained by concatenation of Jy → Y with Jx → X, k∗.

For 15 ≤ k ≤ 16 we note the existence of the following decompositions, given in Table A.9 in
the appendix.

J+
4 → 44,+4∗ J+

4 → 32, 52,+4∗ J+
4 → 3, 42, 5,+4∗ J+

4 → 34, 4,+4∗

J+
5 → 54,+5∗ J+

5 → 35,+5∗

For n ≥ k, if M can be written as (X, Y ) such that J+
y → Y,+y is a decomposition in the above

list and k − y ≥ 11, then the required decomposition can be obtained by concatenation of a
decomposition of Jx → X, (k−y)∗ (which exists by the argument above) with the decomposition
J+
y → Y,+y.

For k ≥ 15 we therefore assume that Y /∈ M for any Y ∈ {(44), (32, 52), (3, 42, 5), (34, 4)} and
for k = 16 we add the additional assumptions that 54 /∈M and 35, 5 /∈M .

Given n ≥ k and a list M that satisfies these assumptions (where applicable) and the conditions
of the lemma, it is routine to check that we can write M as (X, Y ) where Jx → X, k∗ is one
of the decompositions listed in Table A.8 in the appendix, and Y is some (possibly empty)
list with the property

∑
Y = 5y for some integer y. If Y is empty we are done, else Lemma

1.6.13 gives us the existence of a decomposition Jy → Y and the required decomposition can
be obtained by concatenation of Jy → Y with Jx → X, k∗.

Lemma 1.6.16. If n ≥ 11 is an integer and M = (m1, . . . ,mt) is a list such that
∑
M = 4n

and mi ∈ {3, 4, 5} for i = 1, . . . , t, then there is a decomposition Jn →M,n∗.

Proof Lemma 1.6.15 shows that the result holds for 11 ≤ n ≤ 16. So let n ≥ 17 and suppose
by induction that the result holds for each integer n′ in the range 11 ≤ n′ < n. The following
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decompositions are given in Table A.9 in the appendix.

J+
4 → 44, 4+∗ J+

5 → 54, 5+∗ J+
6 → 38, 6+∗

It is routine to check, using
∑
M = 4n ≥ 68, that M can be written as M = (X, Y ) where

J+
y → Y, y+∗ is one of the decompositions above and X is some nonempty list. We can obtain a

decomposition Jn →M,n∗ by concatenating a decomposition Jn−y → X, (n−y)∗ (which exists
by our inductive hypothesis, since n− y ≥ n− 6 ≥ 11) with a decomposition J+

y → Y, y+∗.

Lemma 1.6.17. If n and k are integers such that 6 ≤ k ≤ n and M = (m1, . . . ,mt) is a list
such that

∑
M = 5n − k and mi ∈ {3, 4, 5} for i = 1, . . . , t, then there is a decomposition

Jn → M,k. Furthermore, for n ≥ 13 any cycle in this decomposition having a vertex in
{0, . . . , 5} has no vertex in {n, . . . , n+ 5}.

Proof Lemmas 1.6.14 and 1.6.15 show that the result holds for 6 ≤ k ≤ 16, and Lemma 1.6.16
shows that it holds for k = n, so we can also assume that 17 ≤ k ≤ n − 1. Let n ≥ 18 and
suppose by induction that the result holds for each positive integer n′ in the range 6 ≤ n′ < n.
The following decompositions exist by Lemma 1.6.13.

J1 → 51 J3 → 3143 J4 → 45 J6 → 310

Case 1 Suppose that k ≤ n−6. Then it is routine to check, using
∑
M = 5n−k ≥ 4n+6 ≥ 78,

that M = (X, Y ) where Jy → Y is one of the decompositions above and X is some nonempty
list. We can obtain a decomposition Jn →M,k by concatenating a decomposition Jn−y → X, k
(which exists by our inductive hypothesis, since k ≤ n − 6 ≤ n − y) with a decomposition
Jy → Y . As this concatenation does not change the k-cycle, this decomposition has the desired
properties.

Case 2 Suppose that n − 5 ≤ k ≤ n − 1. In a similar manner to Case 1, we can obtain the
required decomposition Jn → M,k if M = (X, 5) for some list X, if k ∈ {n − 5, n − 4, n − 3}
and M = (X, 3, 43) for some list X, and if k ∈ {n− 5, n− 4} and M = (X, 45) for some list Y .
So we may assume that none of these hold. Additionally, the following two decompositions are
noted here.

J18 → 323, 4, 17 J21 → 328, 4, 17

The first of these decompositions is given in Table A.9 in the appendix. The decomposition
J21 → 328, 4, 17 can be obtained by concatenation of J12 → 316, 12∗ (which exists by Lemma
1.6.16) with J+

9 → 312, 4, 5+ (also given in Table A.9). As such, we do not consider these
decompositions in what follows.

Given the exceptions above, using
∑
M = 5n − k ≥ 4n + 1 ≥ 73, it is routine to check that

the required decomposition Jn → M,k can be obtained using one of the concatenations given
in the table below (note that, since ν5(M) = 0, in each case we can deduce the given value of
ν3(M) (mod 4) from

∑
M = 5n−k). The decompositions in the third column exist by Lemma

1.6.16 (since k ≥ 17), and the decompositions listed in the last column are given in Table A.9.

k ν3(M) (mod 4) first decomposition second decomposition

n− 5 3 Jn−10 → (M − (315)), (n− 10)∗ J+
10 → 315, 5+

n− 4 0 Jn−11 → (M − (316)), (n− 11)∗ J+
11 → 316, 7+

n− 3 1 Jn−9 → (M − (313)), (n− 9)∗ J+
9 → 313, 6+

n− 2 2 Jn−7 → (M − (310)), (n− 7)∗ J+
7 → 310, 5+

Jn−5 → (M − (32, 44)), (n− 5)∗ J+
5 → 32, 44, 3+

n− 1 3 Jn−8 → (M − (311)), (n− 8)∗ J+
8 → 311, 7+

Jn−4 → (M − (33, 42)), (n− 4)∗ J+
4 → 33, 42, 3+
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By the definition of the decompositions given in the third column the vertex set of the k-cycle
is some subset of {6, . . . , n+ 5}.

Lemma 1.6.18. If S = {1, 2, 3, 4, 6}, n ≥ 13, and M = (m1, . . . ,mt, k) is any list satisfying
mi ∈ {3, 4, 5} for i = 1, . . . , t, 3 ≤ k ≤ n, and

∑
M = 5n, then there is an (M)-decomposition

of 〈S〉n, except possibly when

• n ≡ 3 (mod 6) and M = (3
5n
3 ); or

• n ≡ 4 (mod 6) and M = (3
5n−5

3 , 5).

Proof As noted above, for n ≥ 13 we can obtain an (M)-decomposition of 〈{1, 2, 3, 4, 6}〉n
from an (M)-decomposition of Jn, provided that for each i ∈ {0, . . . , 5}, no cycle contains both
vertex i and vertex i + n. Thus, for S = {1, 2, 3, 4, 6}, Lemma 1.3.2 follows by Lemma 1.6.13
for k ∈ {3, 4, 5} and by Lemma 1.6.17 for 6 ≤ k ≤ n.

S = {1, 2, 3, 4, 5, 7}

In this section we show the existence of required decompositions for the case S = {1, 2, 3, 4, 5, 7}
in Lemma 1.3.2. We first define Jn by

E(Jn) = {{i+6, i+7}, {i+5, i+7}, {i+3, i+6}, {i+3, i+7}, {i, i+5}, {i, i+7} : i = 0, . . . , n−1}}

and V (Jn) = {0, . . . , n+ 6}. We note the following basic properties of Jn. For a list of integers
M , an (M)-decomposition of Jn will be denoted by Jn →M .

• For n ≥ 15, if for each i ∈ {0, 1, 2, 3, 4, 5, 6} we identify vertex i of Jn with vertex i + n
of Jn then the resulting graph is 〈{1, 2, 3, 4, 5, 7}〉n. This means that for n ≥ 15, we
can obtain an (M)-decomposition of 〈{1, 2, 3, 4, 5, 7}〉n from a decomposition Jn → M ,
provided that for each i ∈ {0, 1, . . . , 6}, no cycle in the decomposition of Jn contains both
vertex i and vertex i+ n.

• For any integers y and n such that 1 ≤ y < n, the graph Jn is the union of Jn−y and the
graph obtained from Jy by applying the permutation x 7→ x+ (n− y). Thus, if there is a
decomposition Jn−y → M and a decomposition Jy → M ′, then there is a decomposition
Jn → M,M ′. We will call this construction, and the similar constructions that follow,
concatenations.

Lemma 1.6.19. If n is a positive integer and M = (m1, . . . ,mt) is a list such that
∑
M = 6n,

mi ∈ {3, 4, 5} for i = 1, . . . , t, and M 6= (43) then there is a decomposition Jn →M .

Proof We first note the existence of the following decompositions, given in Table A.12 in the
appendix.

J1 → 32 J2 → 3, 4, 5 J3 → 42, 52 J3 → 3, 53

J3 → 32, 43 J4 → 4, 54 J4 → 46 J4 → 3, 44, 5
J5 → 56 J5 → 45, 52 J6 → 49

The only required decomposition of J1 is shown in the table above, so we may assume n ≥ 2 and
assume by induction that the result holds for any positive integer n′ in the range 1 ≤ n′ < n.
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It is routine to check that for n ≥ 2 if M satisfies the hypotheses of the lemma, then M can
be written as M = (X, Y ) for some (possibly empty) list Y 6= (43) where Jx → X is one of
the decompositions listed above. If Y is empty, we are done, else we can obtain the required
decomposition by concatenation of Jy → Y (which exists by our inductive hypothesis since
Y 6= (43)) with the decomposition Jx → X.

Lemma 1.6.20. For n ≥ 4, if M = (m1, . . . ,mt) is a list such that
∑
M + 6 = 6n and

mi ∈ {3, 4, 5} for i = 1, . . . , t, then there is a decomposition Jn →M, 6 such that the 6-cycle is
incident upon vertices {i, i+ 1, . . . , i+ 5} for some integer i.

Proof First we note that Table A.10 in the appendix lists a number of decompositions con-
taining a 6-cycle C6 such that V (C6) ⊆ {4, . . . , 9}.
It is routine to check that for n ≥ 4 and any M that satisfies the hypotheses of the lemma
we can write M as (X, Y ) where Jx → X, k is one of the decompositions in Table A.10, and
Y 6= (43) is some (possibly empty) list. If Y is empty we are done, else Lemma 1.6.19 gives us
the existence of a decomposition Jy → Y and the required decomposition can be obtained by
concatenation of Jx → X, k with Jy → Y .

Let M = (m1, . . . ,mt) be a list of integers with mi ≥ 3 for i = 1, . . . , t. A decomposition
{G1, . . . , Gt, C} of Jn such that

• Gi is an mi-cycle for i = 1, . . . , t; and

• C is a k-cycle such that V (C) = {n− k + 7, . . . , n+ 6} and {n+ 4, n+ 6} ∈ E(C);

will be denoted Jn →M,k∗.

In Lemma 1.6.22 we will form new decompositions of graphs Jn by concatenating decomposi-
tions of Jn−y with decompositions of graphs J+

y which we will now define. For y ∈ {2, . . . , 7},
the graph obtained from Jy by adding the edge {4, 6} will be denoted J+

y . Let M = (m1, . . . ,mt)
be a list of integers with mi ≥ 3 for i = 1, . . . , t. A decomposition {G1, . . . , Gt, A} of J+

y such
that

• Gi is an mi-cycle for i = 1, . . . , t;

• A is a path from 4 to 6 such that {0, 1, 2, 3, 5} ∩ V (A) = ∅; and

• |E(A)| = l + 1;

will be denoted J+
y → M, l+. Moreover, if l = y and {n + 4, n + 6} ∈ E(A), then the

decomposition will be denoted J+
y →M, y+∗.

For y ∈ {2, . . . , 7} and n > y, the graph Jn is the union of the graph obtained from Jn−y
by deleting the edge {n − y + 4, n − y + 6}, and the graph obtained from J+

y applying the
permutation x 7→ x + (n − y). It follows that if there is a decomposition Jn−y → M,k∗ and
a decomposition J+

y → M ′, l+, then there is a decomposition Jn → M,M ′, k + l. The edge
{n+ 4, n+ 6} of the k-cycle in the decomposition of Jn−y are replaced by the two paths in the
decomposition of J+

y to form the (k+ l)-cycle in the new decomposition. Similarly, if there is a
decomposition Jn−y →M,k∗ and a decomposition J+

y →M ′, y+∗, then there is a decomposition
Jn →M,M ′, (k + y)∗.
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Lemma 1.6.21. For 7 ≤ k ≤ 12, if n is an integer with n ≥ k and M = (m1, . . . ,mt) is a
list such that

∑
M + k = 6n and mi ∈ {3, 4, 5} for i = 1, . . . , t, then there is a decomposition

Jn →M,k∗.

Proof

For each k, it is routine to use the value of k (mod 6) to check that for n ≥ k and any M that
satisfies the hypotheses of the lemma we can write M as (X, Y ) where Jx → X, k∗ is one of
the decompositions in Table A.11 in the appendix, and Y 6= (43) is some (possibly empty) list.
If Y is empty, then we are done, else Lemma 1.6.19 gives us the existence of a decomposition
Jy → Y and the required decomposition can be obtained by concatenation of Jy → Y with
Jx → X, k∗.

Lemma 1.6.22. Given an integer n ≥ 7, if M = (m1, . . . ,mt) is a list such that
∑
M = 5n

and mi ∈ {3, 4, 5} for i = 1, . . . , t, then there is a decomposition Jn →M,n∗.

Proof Lemma 1.6.21 shows that the result holds for 7 ≤ n ≤ 12. So let n ≥ 13 and suppose
by induction that the result holds for each integer n′ in the range 7 ≤ n′ < n. The following
decompositions are given in Table A.12 in the appendix.

J+
4 → 54, 4∗ J+

4 → 45, 4∗ J+
6 → 310, 6∗

It is routine to check, using
∑
M = 5n ≥ 65, that M can be written as M = (X, Y ) where

J+
y → Y, y+∗ is one of the decompositions above and X is some nonempty list. We can obtain a

decomposition Jn →M,n∗ by concatenating a decomposition Jn−y → X, (n−y)∗ (which exists
by our inductive hypothesis, since n− y ≥ n− 6 ≥ 7) with a decomposition J+

y → Y, y+∗.

Lemma 1.6.23. If n and k are integers such that 6 ≤ k ≤ n and M = (m1, . . . ,mt) is a list
such that

∑
M = 6n − k and mi ∈ {3, 4, 5} for i = 1, . . . , t, then there is a decomposition

Jn →M,k. Furthermore, for n ≥ 15 all cycles in this decomposition have the property that for
i ∈ {0, 1, . . . , 6} no cycle is incident upon both vertex i and vertex n+ i.

Proof We first note that if n ≥ 15 it is clear that any 3-, 4- or 5-cycle in such a decomposition
cannot be incident on two vertices i and i+ n for any i ∈ {0, 1, . . . , 6}. As such, Lemma 1.6.20
shows that the result holds for all n with k = 6, so in the following we deal only with k ≥ 7.

Lemma 1.6.21 shows that the result holds for all n ≥ k with 7 ≤ k ≤ 12 with the property that
the k-cycle is not incident upon any vertex in {0, 1, . . . , 6}, and Lemma 1.6.22 shows that the
result holds for all n = k with the same property on the k-cycle. We can therefore assume that
13 ≤ k ≤ n− 1, so let n ≥ 14 and suppose by induction that the result holds for each positive
integer n′ in the range 6 ≤ n′ < n with the property that the k-cycle is not incident upon any
vertex in {0, 1, . . . , 6}.
The following decompositions exist by Lemma 1.6.19.

J1 → 32 J2 → 3, 4, 5 J3 → 42, 52

J4 → 46 J4 → 4, 54 J5 → 56

Case 1 Suppose that k ≤ n−5. Then it is routine to check, using
∑
M = 6n−k ≥ 5n+5 ≥ 75,

that M = (X, Y ) where Jy → Y is one of the decompositions above and X is some nonempty
list. We can obtain a decomposition Jn →M,k by concatenating a decomposition Jn−y → X, k
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(which exists by our inductive hypothesis, since k ≤ n − 5 ≤ n − y) with a decomposition
Jy → Y . For n ≥ 15 it is clear that any 3-, 4- or 5-cycle in this decomposition having a vertex
in {0, 1, . . . , 6} has no vertex in {n, n+ 1, . . . , n+ 6}, and by our inductive hypothesis the same
holds for the k-cycle.

Case 2 Suppose that n − 4 ≤ k ≤ n − 1. In a similar manner to Case 1, we can obtain the
required decomposition Jn → M,k if M = (X, 32) for some list X, if k ∈ {n− 4, n− 3, n− 2}
and M = (X, 3, 4, 5) for some list X, if k ∈ {n− 4, n− 3} and M = (X, 42, 52) for some list X,
and if k = n − 4 and M = (X, 46) or M = (X, 4, 54) for some list X. So we may assume that
none of these hold.

Given this, using
∑
M = 6n − k ≥ 5n + 1 ≥ 71, it is routine to check that the required

decomposition Jn → M,k can be obtained using one of the concatenations given in the table
below. Note that, since ν3(M) < 2, there are only two cases to take for ν3(M) and in either
case we can deduce the given value of ν4(M) (mod 5) from

∑
M = 6n− k. For k = n− 4 this

shows that ν4(M) ≥ 1 so it is routine to see that all required decompositions for k = n − 4
can be constructed in the manner described in the previous paragraph. The decompositions in
the fourth column exist by Lemma 1.6.22, and the decompositions listed in the last column are
shown in Table A.12 in the appendix.

k ν3(M) ν4(M) (mod 5) first decomposition second decomposition

n− 3 1 0 Jn−4 → (M − (3, 45)), (n− 4)∗ J+
4 → 3, 45, 1+

Jn−4 → (M − (3, 54)), (n− 4)∗ J+
4 → 3, 54, 1+

n− 3 0 2 Jn−5 → (M − (47)), (n− 5)∗ J+
5 → 47, 2+

n− 2 1 1 Jn−5 → (M − (3, 46)), (n− 5)∗ J+
5 → 3, 46, 3+

n− 2 0 3 Jn−3 → (M − (43, 5)), (n− 3)∗ J+
3 → 43, 5, 1+

Jn−6 → (M − (48)), (n− 6)∗ J+
6 → 48, 4+

n− 1 1 2 Jn−2 → (M − (3, 42)), (n− 2)∗ J+
2 → 3, 42, 1+

n− 1 0 4 Jn−3 → (M − (43, 5)), (n− 3)∗ J+
3 → 43, 5, 1+

Jn−7 → (M − (49)), (n− 7)∗ J+
7 → 49, 6+

For n ≥ 15 it is clear that any 3-, 4- or 5-cycle in this decomposition having a vertex in
{0, 1, . . . , 6} has no vertex in {n, . . . , n+ 6}, and by the definition of the decompositions given
in the fourth column the k-cycle has no vertex in {0, 1, . . . , 6}, so these decompositions do have
the required properties.

Lemma 1.6.24. If S = {1, 2, 3, 4, 5, 7}, n ≥ 15, and M = (m1, . . . ,mt, k) is any list satisfying
mi ∈ {3, 4, 5} for i = 1, . . . , t, 3 ≤ k ≤ n, and

∑
M = 6n, then there is an (M)-decomposition

of 〈S〉n.

Proof As noted earlier, for n ≥ 15 we can obtain an (M)-decomposition of 〈{1, 2, 3, 4, 5, 7}〉n
from an (M)-decomposition of Jn, provided that for each i ∈ {0, 1, . . . , 6}, no cycle contains
both vertex i and vertex i + n. Thus, for S = {1, 2, 3, 4, 5, 7}, the required result follows by
Lemma 1.6.19 for k ∈ {3, 4, 5} and by Lemma 1.6.23 for 6 ≤ k ≤ n.

S = {1, 2, 3, 4, 5, 6, 7}

In this section we show the existence of required decompositions exist for the case S =
{1, 2, 3, 4, 5, 6, 7} in Lemma 1.3.2. We first define Jn by

E(Jn) = {{i+3, i+4}, {i+5, i+7}, {i+3, i+6}, {i, i+4}, {i, i+5}, {i, i+6}, {i, i+7} : i = 0, . . . , n−1}}

40



and V (Jn) = {0, . . . , n+ 6}. We note the following basic properties of Jn. For a list of integers
M , an (M)-decomposition of Jn will be denoted by Jn →M .

• For n ≥ 15, if for each i ∈ {0, 1, 2, 3, 4, 5, 6} we identify vertex i of Jn with vertex i + n
of Jn then the resulting graph is 〈{1, 2, 3, 4, 5, 6, 7}〉n. This means that for n ≥ 15, we
can obtain an (M)-decomposition of 〈{1, 2, 3, 4, 5, 6, 7}〉n from a decomposition Jn →M ,
provided that for each i ∈ {0, 1, . . . , 6}, no cycle in the decomposition of Jn contains both
vertex i and vertex i+ n.

• For any integers y and n such that 1 ≤ y < n, the graph Jn is the union of Jn−y and the
graph obtained from Jy by applying the permutation x 7→ x+ (n− y). Thus, if there is a
decomposition Jn−y → M and a decomposition Jy → M ′, then there is a decomposition
Jn → M,M ′. We will call this construction, and the similar constructions that follow,
concatenations.

Lemma 1.6.25. If n is a positive integer and M = (m1, . . . ,mt) is a list such that
∑
M = 7n,

mi ∈ {3, 4, 5} for i = 1, . . . , t, and M 6= (37) then there is a decomposition Jn →M .

Proof The following decompositions are given in Table A.15 in the appendix.

J1 → 3, 4 J2 → 4, 52 J2 → 33, 5 J3 → 44, 5
J3 → 32, 53 J4 → 47 J4 → 3, 55 J5 → 57

J6 → 314 J9 → 321

The only required decomposition of J1 is shown in the table above, so we may assume n ≥ 2 and
assume by induction that the result holds for any positive integer n′ in the range 1 ≤ n′ < n.

It is routine to check that for n ≥ 2 if M satisfies the hypotheses of the lemma, then M can
be written as M = (X, Y ) for some (possibly empty) list Y 6= (37) where Jx → X is one of
the decompositions listed above. If Y is empty, we are done, else we can obtain the required
decomposition by concatenation of Jy → Y (which exists by our inductive hypothesis since
Y 6= (37)) with the decomposition Jx → X.

Lemma 1.6.26. For k ∈ {6, 7} and n ≥ k + 1, if M = (m1, . . . ,mt) is a list such that∑
M + k = 7n and mi ∈ {3, 4, 5} for i = 1, . . . , t, then there is a decomposition Jn → M,k

such that the k-cycle is incident upon vertices {i, i+ 1, . . . , i+ 5} for some integer i.

Proof

First we note that Table A.13 in the appendix lists a number of decompositions required for
this lemma. All of these decompositions contain a k-cycle for some k ∈ {6, 7} where the k-cycle
is incident on some subset of the vertices {4, . . . , k + 3}.
It is routine to check that for n ≥ 4 and any M that satisfies the hypotheses of the lemma
we can write M as (X, Y ) where Jx → X, k is one of the decompositions in Table A.13 in the
appendix, and Y 6= (37) is some (possibly empty) list. If Y is empty we are done, else Lemma
1.6.25 gives us the existence of a decomposition Jy → Y and the required decomposition can
be obtained by concatenation of Jx → X, k with Jy → Y .

Let M = (m1, . . . ,mt) be a list of integers with mi ≥ 3 for i = 1, . . . , t. A decomposition
{G1, . . . , Gt, C} of Jn such that

41



• Gi is an mi-cycle for i = 1, . . . , t; and

• C is a k-cycle such that V (C) = {n− k + 7, . . . , n+ 6} and {n+ 4, n+ 6} ∈ E(C);

will be denoted Jn →M,k∗.

In Lemma 1.6.28 we will form new decompositions of graphs Jn by concatenating decomposi-
tions of Jn−y with decompositions of graphs J+

y which we will now define. For y ∈ {5, . . . , 10},
the graph obtained from Jy by adding the edge {4, 6} will be denoted J+

y . Let M = (m1, . . . ,mt)
be a list of integers with mi ≥ 3 for i = 1, . . . , t. A decomposition {G1, . . . , Gt, A} of J+

y such
that

• Gi is an mi-cycle for i = 1, . . . , t;

• A is a path from 4 to 6 such that {0, 1, 2, 3, 5} ∩ V (A) = ∅; and

• |E(A)| = l + 1;

will be denoted J+
y → M, l+. Moreover, if l = y and {n + 4, n + 6} ∈ E(A), then the

decomposition will be denoted J+
y →M, y+∗.

For y ∈ {5, . . . , 10} and n > y, the graph Jn is the union of the graph obtained from Jn−y
by deleting the edge {n − y + 4, n − y + 6}, and the graph obtained from J+

y applying the
permutation x 7→ x + (n − y). It follows that if there is a decomposition Jn−y → M,k∗ and
a decomposition J+

y → M ′, l+, then there is a decomposition Jn → M,M ′, k + l. The edge
{n+ 4, n+ 6} of the k-cycle in the decomposition of Jn−y are replaced by the two paths in the
decomposition of J+

y to form the (k+ l)-cycle in the new decomposition. Similarly, if there is a
decomposition Jn−y →M,k∗ and a decomposition J+

y →M ′, y+∗, then there is a decomposition
Jn →M,M ′, (k + y)∗.

Lemma 1.6.27. For 8 ≤ k ≤ 17, if n is an integer with n ≥ k and M = (m1, . . . ,mt) is a
list such that

∑
M + k = 7n and mi ∈ {3, 4, 5} for i = 1, . . . , t, then there is a decomposition

Jn →M,k∗.

Proof

For each k, it is routine to use the value of k (mod 7) to check that for n ≥ k and any M that
satisfies the hypotheses of the lemma we can write M as (X, Y ) where Jx → X, k∗ is one of
the decompositions in Table A.14 in the appendix, and Y 6= (37) is some (possibly empty) list.
If Y is empty, then we are done, else Lemma 1.6.25 gives us the existence of a decomposition
Jy → Y and the required decomposition can be obtained by concatenation of Jy → Y with
Jx → X, k∗.

Lemma 1.6.28. Given an integer n ≥ 7, if M = (m1, . . . ,mt) is a list such that
∑
M = 6n

and mi ∈ {3, 4, 5} for i = 1, . . . , t, then there is a decomposition Jn →M,n∗.

Proof Lemma 1.6.27 shows that the result holds for 8 ≤ n ≤ 17. So let n ≥ 18 and suppose
by induction that the result holds for each integer n′ in the range 8 ≤ n′ < n. The following
decompositions are given in Table A.15 in the appendix.

J+
7 → 43, 56, 7+∗ J+

7 → 34, 56, 7+∗ J+
7 → 36, 46, 7+∗ J+

7 → 314, 7+∗

J+
8 → 412, 8+∗ J+

10 → 512, 10+∗
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It is routine to check, using
∑
M = 6n ≥ 108, that M can be written as M = (X, Y ) where

J+
y → Y, y+∗ is one of the decompositions above and X is some nonempty list. We can obtain a

decomposition Jn →M,n∗ by concatenating a decomposition Jn−y → X, (n−y)∗ (which exists
by our inductive hypothesis, since n− y ≥ n− 10 ≥ 8) with a decomposition J+

y → Y, y+∗.

Lemma 1.6.29. If n and k are integers such that 6 ≤ k ≤ n and M = (m1, . . . ,mt) is a list
such that

∑
M = 7n − k and mi ∈ {3, 4, 5} for i = 1, . . . , t, then there is a decomposition

Jn →M,k. Furthermore, for n ≥ 15 all cycles in this decomposition have the property that for
i ∈ {0, 1, . . . , 6} no cycle is incident upon both vertex i and vertex n+ i.

Proof We first note that if n ≥ 15 it is clear that any 3-, 4- or 5-cycle in such a decomposition
cannot be incident on two vertices i and i+ n for any i ∈ {0, 1, . . . , 6}. As such, Lemma 1.6.26
shows that the result holds for all n with k ∈ {6, 7}, so in the following we deal only with k ≥ 8.

Lemma 1.6.27 shows that the result holds for all n ≥ k with 8 ≤ k ≤ 17 with the property that
the k-cycle is not incident upon any vertex in {0, 1, . . . , 6}, and Lemma 1.6.28 shows that the
result holds for all n = k with the same property on the k-cycle. We can therefore assume that
18 ≤ k ≤ n− 1, so let n ≥ 19 and suppose by induction that the result holds for each positive
integer n′ in the range 6 ≤ n′ < n with the property that the k-cycle is not incident upon any
vertex in {0, 1, . . . , 6}.
The following decompositions exist by Lemma 1.6.25.

J1 → 3, 4 J2 → 4, 52 J2 → 33, 5 J3 → 44, 5
J3 → 32, 53 J4 → 47 J4 → 3, 55 J5 → 57

J6 → 314

Case 1 Suppose that k ≤ n−6. Then it is routine to check, using
∑
M = 7n−k ≥ 6n+ 6 ≥

120, that M = (X, Y ) where Jy → Y is one of the decompositions above and X is some
nonempty list. We can obtain a decomposition Jn → M,k by concatenating a decomposition
Jn−y → X, k (which exists by our inductive hypothesis, since k ≤ n − 6 ≤ n − y) with a
decomposition Jy → Y . Since n ≥ 18 it is clear that any 3-, 4- or 5-cycle in this decomposition
having a vertex in {0, 1, . . . , 6} has no vertex in {n, n + 1, . . . , n + 6}, and by our inductive
hypothesis the same holds for the k-cycle.

Case 2 Suppose that n − 5 ≤ k ≤ n − 1. In a similar manner to Case 1, we can obtain the
required decomposition Jn →M,k if M = (X, Y ) for some list X where Jx → X is one of the
decompositions shown above and k + x ≤ n. In what follows we take deal with each case of
k ∈ {n− 5, n− 4, . . . , n− 1} separately, and in each case we assume that M cannot be written
as (X, Y ) for any such X.

Given this, using
∑
M = 7n − k ≥ 6n + 1 ≥ 115, it is routine to check that the required

decomposition Jn → M,k can be obtained using one of the concatenations given in the table
below. We can use the fact that

∑
M = 7n − k to determine that ν4(M) + 2ν5(M) ≡ (n −

k) (mod 3), and this is also shown in the table (Note that by this, it is routine to see that for
k = n−5, ν4(M)+2ν5(M) ≡ 2 (mod 3) and thus all required decompositions can be constructed
in the manner described in the previous paragraph). The decompositions in the third column
exist by Lemma 1.6.28, and the decompositions listed in the last column are shown in Table
A.15 in the appendix.
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k ν4(M) + 2ν5(M) (mod 3) first decomposition second decomposition

n− 4 1 Jn−6 → (M − (58)), (n− 6)∗ J+
4 → 58, 2+

n− 3 0 Jn−5 → (M − (311)), (n− 5)∗ J+
5 → 311, 2+

Jn−7 → (M − (59)), (n− 7)∗ J+
7 → 59, 4+

n− 2 2 Jn−5 → (M − (48)), (n− 5)∗ J+
5 → 48, 3+

Jn−8 → (M − (510)), (n− 8)∗ J+
8 → 510, 6+

n− 1 1 Jn−5 → (M − (32, 55)), (n− 5)∗ J+
5 → 32, 55, 4+

Jn−5 → (M − (37, 52)), (n− 5)∗ J+
5 → 37, 52, 4+

Jn−6 → (M − (48, 5)), (n− 6)∗ J+
6 → 48, 5, 5+

Jn−8 → (M − (4, 59)), (n− 8)∗ J+
8 → 4, 59, 7+

Jn−9 → (M − (511)), (n− 9)∗ J+
9 → 511, 8+

Since n ≥ 18 it is clear that any 3-, 4- or 5-cycle in this decomposition having a vertex in
{0, 1, . . . , 6} has no vertex in {n, . . . , n+ 6}, and by the definition of the decompositions given
in the fourth column the k-cycle has no vertex in {0, 1, . . . , 6}, so these decompositions do have
the required properties.

Lemma 1.6.30. If S = {1, 2, 3}, n ≥ 15, and M = (m1, . . . ,mt, k) is any list satisfying
mi ∈ {3, 4, 5} for i = 1, . . . , t, 3 ≤ k ≤ n, and

∑
M = 7n, then there is an (M)-decomposition

of 〈S〉n.

Proof As noted earlier, for n ≥ 15 we can obtain an (M)-decomposition of 〈{1, 2, 3, 4, 5, 6, 7}〉n
from an (M)-decomposition of Jn, provided that for each i ∈ {0, 1, . . . , 6}, no cycle contains
both vertex i and vertex i + n. Thus, for S = {1, 2, 3, 4, 5, 6, 7}, the required result follows by
Lemma 1.6.25 for k ∈ {3, 4, 5} and by Lemma 1.6.29 for 6 ≤ k ≤ n.

S = {1, 2, 3, 4, 5, 6, 7, 8}

In this section we show the existence of required decompositions for the case S = {1, 2, 3, 4, 5, 6, 7, 8}
in Lemma 1.3.2. We first define Jn by

E(Jn) = {{i+ 7, i+ 8}, {i+ 5, i+ 7}, {i+ 5, i+ 8}, {i+ 5, i+ 9}, {i, i+ 5},
{i+ 1, i+ 7}, {i, i+ 7}, {i+ 1, i+ 9} : i = 0, . . . , n− 1}}

and V (Jn) = {0, . . . , n+ 8}. We note the following basic properties of Jn. For a list of integers
M , an (M)-decomposition of Jn will be denoted by Jn →M .

• For n ≥ 17, if for each i ∈ {0, 1, . . . , 8} we identify vertex i of Jn with vertex i+ n of Jn
then the resulting graph is 〈{1, 2, 3, 4, 5, 6, 7, 8}〉n. This means that for n ≥ 17, we can
obtain an (M)-decomposition of 〈{1, 2, 3, 4, 5, 6, 7, 8}〉n from a decomposition Jn → M ,
provided that for each i ∈ {0, 1, . . . , 9}, no cycle in the decomposition of Jn contains both
vertex i and vertex i+ n.

• For any integers y and n such that 1 ≤ y < n, the graph Jn is the union of Jn−y and the
graph obtained from Jy by applying the permutation x 7→ x+ (n− y). Thus, if there is a
decomposition Jn−y → M and a decomposition Jy → M ′, then there is a decomposition
Jn → M,M ′. We will call this construction, and the similar constructions that follow,
concatenations.

Lemma 1.6.31. If n is a positive integer and M = (m1, . . . ,mt) is a list such that
∑
M = 8n,

mi ∈ {3, 4, 5} for i = 1, . . . , t, and M 6= (38) then there is a decomposition Jn →M .
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Proof We first note the existence of the following decompositions, given in Table A.18 in the
appendix.

J1 → 42 J1 → 3, 5 J2 → 34, 4 J3 → 4, 54

J4 → 39, 5 J5 → 58 J5 → 312, 4 J6 → 316

J9 → 324

The only required decompositions of J1 are shown in the table above, so we may assume n ≥ 2
and assume by induction that the result holds for any positive integer n′ in the range 1 ≤ n′ < n.

It is routine to check that for n ≥ 2 if M satisfies the hypotheses of the lemma, then M can
be written as M = (X, Y ) for some (possibly empty) list Y 6= (38) where Jx → X is one of
the decompositions listed above. If Y is empty, we are done, else we can obtain the required
decomposition by concatenation of Jy → Y (which exists by our inductive hypothesis since
Y 6= (38)) with the decomposition Jx → X.

Lemma 1.6.32. For k ∈ {6, 7, 8} and n ≥ 3, if M = (m1, . . . ,mt) is a list such that
∑
M+k =

8n and mi ∈ {3, 4, 5} for i = 1, . . . , t, then there is a decomposition Jn → M,k such that
V (Ck) ⊆ {n, n+ 1, . . . , n+ 9}.

Proof First we note that Table A.16 in the appendix lists a number of decompositions required
for this lemma. All of these decompositions contain a k-cycle for some 6 ≤ k ≤ 8 where the
k-cycle is incident on some subset of the vertices {n, . . . , n+9}. some subset of the It is routine
to check that for n ≥ 3 and any M that satisfies the hypotheses of the lemma we can write M
as (X, Y ) where Jx → X, k is one of the decompositions in Table A.16, and Y 6= (38) is some
(possibly empty) list. If Y is empty we are done, else Lemma 1.6.31 gives us the existence of
a decomposition Jy → Y and the required decomposition can be obtained by concatenation of
Jy → Y with Jx → X, k. Since we concatenate with the k-cycle on the right, it is clear that
the k-cycle is still incident upon some subset of {n, n+ 1, . . . , n+ 9}.

Let M = (m1, . . . ,mt) be a list of integers with mi ≥ 3 for i = 1, . . . , t. A decomposition
{G1, . . . , Gt, C} of Jn such that

• Gi is an mi-cycle for i = 1, . . . , t; and

• C is a k-cycle such that V (C) = {n− k + 9, . . . , n + 8} and {{n + 1, n + 5}, {n + 2, n +
6}, {n+ 3, n+ 7}, {n+ 4, n+ 8}} ⊆ E(C);

will be denoted Jn →M,k∗.

In Lemma 1.6.34 we will form new decompositions of graphs Jn by concatenating decomposi-
tions of Jn−y with decompositions of graphs J+

y which we will now define. For y ∈ {2, . . . , 8},
the graph obtained from Jy by adding the edges {1, 5}, {2, 6}, {3, 7}, {4, 8} will be denoted J+

y .
Let M = (m1, . . . ,mt) be a list of integers with mi ≥ 3 for i = 1, . . . , t. A decomposition
{G1, . . . , Gt, A1, A2, A3, A4} of J+

y such that

• Gi is an mi-cycle for i = 1, . . . , t;

• Ai is a path from i to i+ 4 with 0 /∈ V (Ai) for i = 1, 2, 3, 4;

• V (Ai) ∩ V (Aj) = ∅ for i 6= j; and
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• |E(A1)|+ |E(A2)|+ |E(A3)|+ |E(A4)| = l + 4;

will be denoted J+
y →M, l+. Moreover, if l = y and {{n+ 1, n+ 5}, {n+ 2, n+ 6}, {n+ 3, n+

7}, {n+ 4, n+ 8}} ⊆ E(A1)∪E(A2)∪E(A3)∪E(A4), then the decomposition will be denoted
J+
y →M, y+∗.

For y ∈ {2, . . . , 8} and n > y, the graph Jn is the union of the graph obtained from Jn−y by
deleting the edges {n−y+1, n−y+5}, {n−y+2, n−y+6}, {n−y+3, n−y+7}, {n−y+4, n−y+8},
and the graph obtained from J+

y applying the permutation x 7→ x + (n − y). It follows that
if there is a decomposition Jn−y → M,k∗ and a decomposition J+

y → M ′, l+, then there is a
decomposition Jn → M,M ′, k + l. The removed edges of the k-cycle in the decomposition of
Jn−y are replaced by the four paths in the decomposition of J+

y to form the (k+ l)-cycle in the
new decomposition. Similarly, if there is a decomposition Jn−y → M,k∗ and a decomposition
J+
y →M ′, y+∗, then there is a decomposition Jn →M,M ′, (k + y)∗.

Lemma 1.6.33. For 9 ≤ k ≤ 14, if n is an integer with n ≥ k and M = (m1, . . . ,mt) is a
list such that

∑
M + k = 8n and mi ∈ {3, 4, 5} for i = 1, . . . , t, then there is a decomposition

Jn →M,k∗.

Proof

For each k, it is routine to use the value of k (mod 8) to check that for n ≥ k and any M
that satisfies the hypotheses of the lemma we can write M as (X, Y ) where Jx → X, k∗ is one
of the decompositions given in Table A.17 in the appendix, and Y 6= (38) is some (possibly
empty) list. If Y is empty, then we are done, else Lemma 1.6.31 gives us the existence of a
decomposition Jy → Y and the required decomposition can be obtained by concatenation of
Jy → Y with Jx → X, k∗.

Lemma 1.6.34. Given an integer n ≥ 9, if M = (m1, . . . ,mt) is a list such that
∑
M = 7n

and mi ∈ {3, 4, 5} for i = 1, . . . , t, then there is a decomposition Jn →M,n∗.

Proof Lemma 1.6.33 shows that the result holds for 9 ≤ n ≤ 14. So let n ≥ 15 and suppose
by induction that the result holds for each integer n′ in the range 9 ≤ n′ < n. The following
decompositions are given in Table A.18 in the appendix.

J+
4 → 47, 4+∗ J+

5 → 57, 5+∗ J+
6 → 314, 6+∗

It is routine to check, using
∑
M = 7n ≥ 105, that M can be written as M = (X, Y ) where

J+
y → Y, y+∗ is one of the decompositions above and X is some nonempty list. We can obtain a

decomposition Jn →M,n∗ by concatenating a decomposition Jn−y → X, (n−y)∗ (which exists
by our inductive hypothesis, since n− y ≥ n− 6 ≥ 9) with a decomposition J+

y → Y, y+∗.

Lemma 1.6.35. If n and k are integers such that 6 ≤ k ≤ n and M = (m1, . . . ,mt) is a list
such that

∑
M = 8n − k and mi ∈ {3, 4, 5} for i = 1, . . . , t, then there is a decomposition

Jn →M,k. Furthermore, for n ≥ 17 all cycles in this decomposition have the property that for
i ∈ {0, 1, . . . , 9} no cycle is incident upon both vertex i and vertex n+ i.

Proof We first note that if n ≥ 17 it is clear that any 3-, 4- or 5-cycle in such a decomposition
cannot be incident on two vertices i and i+ n for any i ∈ {0, 1, . . . , 9}. As such, Lemma 1.6.32
shows that the result holds for all n with k ∈ {6, 7, 8}, so in the following we deal only with
k ≥ 9.
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Lemma 1.6.33 shows that the result holds for all n ≥ k with 9 ≤ k ≤ 14 with the property that
the k-cycle is not incident upon any vertex in {0, 1, . . . , 9}, and Lemma 1.6.34 shows that the
result holds for all n = k with the same property on the k-cycle. We can therefore assume that
15 ≤ k ≤ n− 1, so let n ≥ 16 and suppose by induction that the result holds for each positive
integer n′ in the range 6 ≤ n′ < n with the property that the k-cycle is not incident upon any
vertex in {0, 1, . . . , 9}.
The following decompositions exist by Lemma 1.6.31.

J1 → 42 J1 → 3, 5 J2 → 34, 4 J3 → 4, 54

J4 → 39, 5 J5 → 58 J5 → 312, 4 J6 → 316

Case 1 Suppose that k ≤ n−6. Then it is routine to check, using
∑
M = 8n−k ≥ 7n+ 6 ≥

118, that M = (X, Y ) where Jy → Y is one of the decompositions above and X is some
nonempty list. We can obtain a decomposition Jn → M,k by concatenating a decomposition
Jn−y → X, k (which exists by our inductive hypothesis, since k ≤ n − 6 ≤ n − y) with a
decomposition Jy → Y . Since n ≥ 15 it is clear that any 3-, 4- or 5-cycle in this decomposition
having a vertex in {0, 1, . . . , 9} has no vertex in {n, n + 1, . . . , n + 9}, and by our inductive
hypothesis the same holds for the k-cycle.

Case 2 Suppose that n − 5 ≤ k ≤ n − 1. In a similar manner to Case 1, we can obtain
the required decomposition Jn → M,k if M = (X, Y ) for some list X where Jx → X is one
of the decompositions shown above and k + x ≤ n. We can therefore assume that M cannot
be written as (X, Y ) for any such list X. In particular, since J1 → 42 exists we can assume
ν4(M) ≤ 1, and since J1 → 3, 5 exists we can assume either ν3(M) = 0 or ν5(M) = 0. As a
result, using

∑
M = 8n− k ≥ 7n+ 1 ≥ 113 we have either ν3(M) ≥ 33 or ν5(M) ≥ 20.

Given this, it is routine to check that the required decomposition Jn → M,k can be obtained
using one of the concatenations given in the table below.

The decompositions in the second column exist by Lemma 1.6.34 (since k ≥ 15), and the
decompositions listed in the last column are shown in Table A.18 in the appendix.

k first decomposition second decomposition

n− 5 Jn−7 → (M − (318)), (n− 7)∗ J+
7 → 314, 2+

n− 4 Jn−8 → (M − (512)), (n− 8)∗ J+
8 → 512, 4+

Jn−5 → (M − (313)), (n− 5)∗ J+
5 → 313, 1+

n− 3 Jn−6 → (M − (59)), (n− 6)∗ J+
6 → 59, 3+

Jn−6 → (M − (315)), (n− 6)∗ J+
6 → 315, 3+

n− 2 Jn−4 → (M − (56)), (n− 4)∗ J+
4 → 56, 2+

Jn−4 → (M − (310)), (n− 4)∗ J+
4 → 310, 2+

n− 1 Jn−2 → (M − (53)), (n− 2)∗ J+
2 → 53, 1+

Jn−2 → (M − (35)), (n− 2)∗ J+
2 → 35, 1+

If n ≥ 17 it is clear that any 3-, 4- or 5-cycle in this decomposition having a vertex in {0, 1, . . . , 9}
has no vertex in {n, . . . , n+ 9}, and by the definition of the decompositions given in the second
column the k-cycle has no vertex in {0, 1, . . . , 9}, so these decompositions do have the required
properties.

Lemma 1.6.36. If S = {1, 2, 3, 4, 5, 6, 7, 8}, n ≥ 17, and M = (m1, . . . ,mt, k) is any list
satisfying mi ∈ {3, 4, 5} for i = 1, . . . , t, 3 ≤ k ≤ n, and

∑
M = 8n, then there is an (M)-

decomposition of 〈S〉n.
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Proof As noted earlier, for n ≥ 17 we can obtain an (M)-decomposition of 〈{1, 2, 3, 4, 5, 6, 7, 8}〉n
from an (M)-decomposition of Jn, provided that for each i ∈ {0, 1, . . . , 8}, no cycle contains
both vertex i and vertex i + n. Thus, for S = {1, 2, 3, 4, 5, 6, 7, 8}, the required result follows
by Lemma 1.6.31 for k ∈ {3, 4, 5} and by Lemma 1.6.35 for 6 ≤ k ≤ n.

We now prove Lemma 1.3.2.

Lemma 1.3.2 If

S ∈ {{1, 2, 3}, {1, 2, 3, 4}, {1, 2, 3, 4, 6}, {1, 2, 3, 4, 5, 7}, {1, 2, 3, 4, 5, 6, 7}, {1, 2, 3, 4, 5, 6, 7, 8}},

n ≥ 2 max(S) + 1, and M = (m1, . . . ,mt, k) is any list satisfying mi ∈ {3, 4, 5} for i = 1, . . . , t,
3 ≤ k ≤ n, and

∑
M = |S|n, then there is an (M)-decomposition of 〈S〉n, except possibly when

• S = {1, 2, 3, 4, 6}, n ≡ 3 (mod 6) and M = (3
5n
3 ); or

• S = {1, 2, 3, 4, 6}, n ≡ 4 (mod 6) and M = (3
5n−5

3 , 5).

Proof The required decompositions exist by Lemma 1.6.6 for S = {1, 2, 3}, by Lemma
1.6.12 for S = {1, 2, 3, 4}, by Lemma 1.6.18 for S = {1, 2, 3, 4, 6}, by Lemma 1.6.24 for
S = {1, 2, 3, 4, 5, 7}, by Lemma 1.6.30 for S = {1, 2, 3, 4, 5, 6, 7}, and by Lemma 1.6.36 for
S = {1, 2, 3, 4, 5, 6, 7, 8}.

1.6.2 Proof of Lemma 1.3.4

In this section we prove Lemma 1.3.4, which we restate here for convenience.

Lemma 1.3.4 If n ≥ 7 and M = (m1, . . . ,mt, k, n) is any list satisfying mi ∈ {3, 4, 5} for
i = 1, . . . , t, 3 ≤ k ≤ n, and

∑
M = 3n, then there is an (M)-decomposition of 〈{1, 2, 3}〉n.

The proof of Lemma 1.3.4 proceeds along similar lines to the proof of Lemma 1.3.2. We make
use of the graphs J

{1,2,3}
n defined in the proof of Lemma 1.3.2, which in this subsection we

denote by just Jn. Recall that J
{1,2,3}
n is the graph with vertex set {0, . . . , n+ 2} and edge set

{{i, i+ 1}, {i+ 1, i+ 3}, {i, i+ 3} : i = 0, . . . , n− 1}.

We first construct decompositions of graphs which are related to the graphs Jn, then concatenate
these decompositions to produce decompositions of the graphs Jn, and finally identify pairs of
vertices to produce the required decompositions of 〈{1, 2, 3}〉n.

For n ≥ 1, the graph obtained from Jn by adding the edges {n, n+ 1} and {n+ 1, n+ 2} will
be denoted Ln. Let M = (m1, . . . ,mt) be a list of integers with mi ≥ 3 for i = 1, . . . , t. A
decomposition {G1, . . . , Gt, A,B} of Ln such that

• Gi is an mi-cycle for i = 1, . . . , t;

• A is a path of length k from n to n+ 1; and

• B is a path of length n− 1 from n+ 1 to n+ 2 such that 0, 1, 2 /∈ V (B);
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will be denoted Ln →M,k+, (n− 1)H .

In Lemmas 1.6.37 and 1.6.38 we form new decompositions of graphs Ln by concatenating
decompositions of Ln−y with decompositions of graphs Py which we will now define. For y ∈
{3, 4, 5, 6}, the graph obtained from Jy by deleting the edges in {{0, 1}, {1, 2}} and adding the
edges in {{y, y + 1}, {y + 1, y + 2}} will be denoted Py. Let M = (m1, . . . ,mt) be a list of
integers with mi ≥ 3 for i = 1, . . . , t. A decomposition {G1, . . . , Gt, A1, A2, B1, B2} of Py such
that

• Gi is an mi-cycle for i = 1, 2, . . . , t;

• A1 and A2 are vertex-disjoint paths with endpoints 0, 1, y and y + 1, such that A1 has
endpoints 0 and y or 0 and y + 1;

• |E(A1)|+ |E(A2)| = k′ and 2 /∈ V (A1) ∪ V (A2);

• B1 and B2 are vertex-disjoint paths with endpoints 1, 2, y + 1 and y + 2, such that B1

has endpoints 1 and y + 1 or 1 and y + 2; and

• |E(B1)|+ |E(B2)| = y, and 0 /∈ V (B1) ∪ V (B2);

will be denoted Py →M,k′+, yH .

For y ∈ {3, 4, 5, 6} and n > y, the graph Ln is the union of the graph Ln−y and the graph
obtained from Py by applying the permutation x 7→ x + (n − y). It follows that if there is a
decomposition Ln−y →M,k+, (n− y − 1)H and a decomposition Py →M ′, k′+, yH , then there
is a decomposition Ln →M,M ′, (k + k′)+, (n− 1)H .

Lemma 1.6.37. If n ≥ 2 is an integer and M = (m1, . . . ,mt) is a list such that
∑
M = n+ 1,

M /∈ {(3i) : i is even} and mi ∈ {3, 4, 5} for i = 1, . . . , t, then there is a decomposition
Ln →M, (n+ 2)+, (n− 1)H .

Proof The following decompositions are given in full detail in Table A.19 in the appendix,
thus verifying the lemma for n ∈ {2, 3, 4}.

L2 → 3, 4+, 1H L3 → 4, 5+, 2H L4 → 5, 6+, 3H

P4 → 4, 4+, 4H P5 → 5, 5+, 5H P6 → 32, 6+, 6H

So let n ≥ 5 and assume by induction that the result holds for each integer n′ in the range
2 ≤ n′ < n. It is routine to check that for n ≥ 5, if M satisfies the hypotheses of the
lemma, then M can be written as M = (X, Y ) where n − y ≥ 2, X /∈ {(3i) : i is even}, and
Py → Y, y+, yH is one of the decompositions above. We can obtain the required decomposition
Ln →M, (n+2)+, (n−1)H by concatenating a decomposition Ln−y → X, (n−y+2)+, (n−y−1)H

(which exists by our inductive hypothesis) with a decomposition Py → Y, y+, yH .

Lemma 1.6.38. If n and k are positive integers with 4n+12
5
≤ k ≤ n+2, and M = (m1, . . . ,mt)

is a list such that
∑
M = 2n− k+ 3, M /∈ {(3i) : i is even} and mi ∈ {3, 4, 5} for i = 1, . . . , t,

then there is a decomposition Ln →M,k+, (n− 1)H .

Proof The proof will be by induction on j = n− k + 2. For a given n we need to prove the
result for each integer j in the range 0 ≤ j ≤ n−2

5
. The case j = 0 is covered in Lemma 1.6.37,
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so assume 1 ≤ j ≤ n−2
5

and that the result holds for each integer j′ in the range 0 ≤ j′ < j.
Note that, since 4n+12

5
≤ k and j ≥ 1, we have n ≥ 7. The following decompositions are given

in Table A.19 in the appendix.

P3 → 4, 2+, 3H P4 → 5, 3+, 4H P5 → 32, 4+, 5H

It is routine to check that for j ≤ n−2
5

, if M satisfies the hypotheses of the lemma, then M can
be written as M = (X, Y ) where X 6∈ {(3i) : i is even} and Py → Y, (y − 1)+, yH is one of the
decompositions listed above. A decomposition Ln−y → X, (k − y + 1)+, (n− y − 1)H will exist
by our inductive hypothesis provided that

4(n−y)+12
5

≤ k − y + 1 ≤ n− y + 2

and it is routine to check that this holds using 4n+12
5
≤ k, j ≥ 1 and y ∈ {3, 4, 5}. Thus, the re-

quired decomposition Ln →M,k+, (n−1)H can be obtained by concatenating a decomposition
Ln−y → X, (k − y + 1)+, (n− y − 1)H with a decomposition Py → Y, (y − 1)+, yH .

Let (m1, . . . ,mt) be a list of integers withmi ≥ 3 for i = 1, . . . , t. A decomposition {G1, . . . , Gt, H}
of Jn such that

• Gi is an mi-cycle for i = 1, . . . , t; and

• H is an n-cycle such that 0, 1, 2 /∈ V (H) and {n, n+ 2} ∈ E(H);

will be denoted Jn → m1, . . . ,mt, n
H .

In Lemma 1.6.40 we will form decompositions of graphs Jn by concatenating decompositions
of graphs Ln−y obtained from Lemma 1.6.38 with decompositions of graphs Qy which we will
now define. For each y ∈ {4, 5, 6}, the graph obtained from Jy by deleting the edges {0, 1}
and {1, 2} will be denoted by Qy. Let M = (m1, . . . ,mt) be a list of integers with mi ≥ 3 for
i = 1, . . . , t. A decomposition {G1, . . . , Gt, A,B} of Qy such that

• Gi is an mi-cycle for i = 1, . . . , t;

• A is a path of length k′ from 0 to 1 such that {2, y, y + 1, y + 2} /∈ V (A); and

• B is a path of length y + 1 from 1 to 2 such that 0 6∈ V (B) and {y, y + 2} ∈ E(B);

will be denoted Qy →M,k′+, (y + 1)H .

For y ∈ {4, 5, 6} and n > y, the graph Jn is the union of the graph Ln−y and the graph
obtained from Qy by applying the permutation x 7→ x + (n − y). It follows that if there is a
decomposition Ln−y →M,k+, (n− y − 1)H and a decomposition Qy →M ′, k′+, (y + 1)H , then
there is a decomposition Jn →M,M ′, k+ k′, nH . Note that, for y ∈ {4, 5, 6} and n− y ≥ 3, no
cycle of this decomposition contains both vertex i and vertex i+ n for i ∈ {0, 1, 2}.

Lemma 1.6.39. If n and k are integers with 6 ≤ n ≤ 32, k ≥ 6 and n − 5 ≤ k ≤ n and
M = (m1, . . . ,mt) is a list such that

∑
M = 2n − k, mi ∈ {3, 4, 5} for i = 1, . . . , t, then

there is a decomposition Jn →M,k, nH such that for i ∈ {0, 1, 2} no cycle of the decomposition
contains both vertex i and vertex i+ n.
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Proof First note the existence of the following decompositions, given in full detail in Table
A.19 in the appendix.

Q4 → 3, 2+, 5H Q5 → 4, 3+, 6H Q6 → 5, 4+, 7H

Let j = n − k, then by the conditions of the lemma we have 0 ≤ j ≤ 5. Note that for
any M that satisfies the conditions of the lemma, if M can be written as M = (X, y − 1)
where Ln−y → X, (k − y + 2)+, (n − y − 1)H exists and Qy → (y − 1), (y − 2)+, (y + 1)H is
one of the decompositions listed above, then we can construct the required decomposition by
concatenating Ln−y → X, (k− y+ 2)+, (n− y− 1)H with Qy → (y− 1), (y− 2)+, (y+ 1)H . We
can write Ln−y → X, (k − y + 2)+, (n− y − 1)H as Ln−y → X, (n− j − y + 2)+, (n− y − 1)H .
For j = 0, such decompositions exist by Lemma 1.6.37 and for 1 ≤ j ≤ 5 such decompositions
exist for n ≥ 12 + 5j by Lemma 1.6.38. Therefore, in the following we assume 1 ≤ j ≤ 5 and
n < 12 + 5i.

In tables A.20, A.21, A.22, A.23 and A.24, we list all required decompositions for j = 1, 2, 3, 4
and 5 respectively. That is, each table lists all required decompositions of the form Jn →M,k, n
where 6 ≤ k ≤ n < 12 + 5j for the given value of j = n− k.

Lemma 1.6.40. If n and k are integers with n ≥ 6, k ≥ 3 and n − 5 ≤ k ≤ n and M =
(m1, . . . ,mt) is a list such that

∑
M = 2n − k, mi ∈ {3, 4, 5} for i = 1, . . . , t, then there is a

decomposition Jn →M,k, nH such that for i ∈ {0, 1, 2} no cycle of the decomposition contains
both vertex i and vertex i+ n.

Proof For k ∈ {3, 4, 5} the result holds by Lemma 1.6.5 (by letting n in this theorem be k in
Lemma 1.6.4) We therefore assume 6 ≤ k ≤ n.

For 6 ≤ n ≤ 32 the required result holds by Lemma 1.6.39. Given this, we may assume n ≥ 33.
The special case where M ∈ {(3i) : i is odd} will be dealt with separately in a moment.

Case 1 Suppose that M 6∈ {(3i) : i is odd}. The following decompositions are given in full
detail in Table A.19 in the appendix.

Q4 → 3, 2+, 5H Q5 → 4, 3+, 6H Q6 → 5, 4+, 7H

It is routine to check for n ≥ 33, if M satisfies the hypotheses of the lemma (and M /∈
{(3i) : i is odd}), then M can be written as M = (X, y − 1) where X /∈ {(3i) : i is even}
and Qy → (y − 1), (y − 2)+, (y + 1)H is one of the decompositions listed in Lemma 1.6.39
above. Using n ≥ 33 and y ∈ {4, 5, 6}, it can be verified that a decomposition Ln−y →
X, (k − y + 2)+, (n − y − 1)H exists by Lemma 1.6.38. Concatenation of this decomposition
with Qy → (y − 1), (y − 2)+, (y + 1)H yields the required decomposition Jn →M,k, nH .

Case 2 Suppose that M ∈ {(3i) : i is odd}. Let p = i−3
2
− (n− k). We deal separately with

the case n = k and the case n ∈ {k + 1, k + 2, k + 3, k + 4, k + 5}.
Case 2a Suppose that n = k. Note that since n ≥ 33 and

∑
M = 3i = 2n − k, we have

p ≥ 4 when n = k. The set of 3-cycles in the decomposition is the union of the following two
sets.

{(0, 1, 3), (2, 4, 5), (n− 3, n− 2, n− 1)}
{(6j + 6, 6j + 7, 6j + 8), (6j + 9, 6j + 10, 6j + 11) : j ∈ {0, . . . , p− 1}}

The edge set of one n-cycle is E1 ∪ E2 ∪ E3 where

E1 = {{5, 3}, {3, 4}, {4, 6}},
E2 = {{n− 4, n− 2}, {n− 2, n+ 1}, {n+ 1, n− 1}, {n− 1, n+ 2}, {n+ 2, n}, {n, n− 3}},
E3 = {{6j + 6, 6j + 9}, {6j + 9, 6j + 8}, {6j + 8, 6j + 11},

{6j + 5, 6j + 7}, {6j + 7, 6j + 10}, {6j + 10, 6j + 12} : j ∈ {0, . . . , p− 1}}.
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Note that this n-cycle contains the edge {n, n+ 2} and does not contain any of the vertices in
{0, 1, 2}. The remaining edges form the edge set of the other n-cycle (here n = k).

Case 2b Suppose that n ∈ {k + 1, k + 2, k + 3, k + 4, k + 5}. Since n ≥ 33, it is routine to
verify that for any integers n and k and list M ∈ {(3i) : i is odd} which satisfy the conditions
of the lemma we have p ≥ 1, except in the case where M = (313) and n = k + 5. In this
special case we have (n, k) = (34, 29) and we have constructed the decomposition required in
this case explicitly and it is listed in Table A.24 in the appendix. Thus we can assume p ≥ 1.
Let l = 5(n − k). The set of 3-cycles in the decomposition is the union of the following three
sets.

{(0, 1, 3), (2, 4, 5), (n− 3, n− 2, n− 1)}
{(5j + 6, 5j + 7, 5j + 8), (5j + 9, 5j + 10, 5j + 11) : j ∈ {0, . . . , (n− k)− 1}}

{(6j + l + 6, 6j + l + 7, 6j + l + 8), (6j + l + 9, 6j + l + 10, 6j + l + 11) : j ∈ {0, . . . , p− 1}}

The edge set of the n-cycle is E1 ∪ E2 ∪ E3 ∪ E4 where

E1 = {{5, 3}, {3, 4}, {4, 6}},
E2 = {{n− 4, n− 2}, {n− 2, n+ 1}, {n+ 1, n− 1}, {n− 1, n+ 2}, {n+ 2, n}, {n, n− 3}},
E3 = {{5j + 6, 5j + 9}, {5j + 9, 5j + 8}, {5j + 8, 5j + 11},

{5j + 5, 5j + 7}, {5j + 7, 5j + 10} : j ∈ {0, . . . , (n− k)− 1}},
E4 = {{6j + l + 6, 6j + l + 9}, {6j + l + 9, 6j + l + 8},

{6j + l + 8, 6j + l + 11}, {6j + l + 5, 6j + l + 7},
{6j + l + 7, 6j + l + 10}, {6j + l + 10, 6j + l + 12} : j ∈ {0, . . . , p− 1}}.

Note that this n-cycle contains the edge {n, n+ 2} and does not contain any of the vertices in
{0, 1, 2}. The remaining edges form the edge set of the cycle of length k.

In Lemma 1.6.41 we will form decompositions of graphs Jn by concatenating decompositions
of Jn−y with decompositions of graphs Ry which we will now define. For y ∈ {5, 6}, the graph
obtained from Jy by adding the edge {0, 2} will be denoted by Ry. Let M = (m1, . . . ,mt) be a
list of integers with mi ≥ 3 for i = 1, . . . , t. A decomposition {G1, . . . , Gt, A} of Ry such that

• Gi is an mi-cycle for i = 1, . . . , t; and

• A is a path of length y + 1 from 0 to 2 such that 1 6∈ V (A) and {y, y + 2} ∈ E(A);

will be denoted Ry →M, yH .

For y ∈ {5, 6} and n > y, the graph Jn is the union of the graph obtained from Jn−y by removing
the edge {n − y, n − y + 2} and the graph obtained from Ry by applying the permutation
x 7→ x + (n − y). It follows that if there is a decomposition Jn−y → M,k, (n − y)H and
a decomposition Ry → M ′, yH , then there is a decomposition Jn → M,M ′, k, nH . In this
construction the edge {n − y, n − y + 2} in the (n − y)-cycle of the decomposition of Jn−y is
replaced with the path from the decomposition of Ry to form the n-cycle in the decomposition
of Jn. Note that, for y ∈ {5, 6} and n − y ≥ 3, no cycle of the decomposition contains both
vertex i and vertex i+ n for i ∈ {0, 1, 2}.

Lemma 1.6.41. Let n and k be integers with 6 ≤ k ≤ n. If M = (m1, . . . ,mt) is a list such that∑
M = 2n− k and mi ∈ {3, 4, 5} for i = 1, . . . , t, then there is a decomposition Jn →M,k, nH

such that for i ∈ {0, 1, 2} no cycle of the decomposition contains both vertex i and vertex i+ n.

52



Proof If k ≥ n − 5, then the result follows by Lemma 1.6.40, which means the result holds
for n ≤ 11. We can therefore assume that k ≤ n− 6, n ≥ 12 and, by induction, that the result
holds for each integer n′ in the range 6 ≤ n′ < n.

The following decompositions are given in full detail in Table A.19 in the appendix.

R5 → 52, 5H R6 → 3, 4, 5, 6H R6 → 43, 6H R6 → 34, 6H

It is routine to check that if M satisfies the conditions of the lemma, then M can be written as
M = (X, Y ) where Ry → Y, yH is one of the decompositions above. The required decomposition
can be obtained by concatenating a decomposition Jn−y → X, k, (n− y)H (which exists by our
inductive hypothesis since k ≤ n− 6 ≤ n− y) with a decomposition Ry → Y, yH .

Proof of Lemma 1.3.4 If k ∈ {3, 4, 5}, then the result follows by Lemma 1.3.2. So we
can assume k ≥ 6. Since n ≥ 7, we can obtain an (M)-decomposition of 〈{1, 2, 3}〉n from an
(M)-decomposition of Jn by identifying vertex i with vertex i+n for each i ∈ {0, 1, 2}, provided
that for each i ∈ {0, 1, 2}, no cycle of our decomposition contains both vertex i and vertex i+n.
Thus, Lemma 1.3.4 follows immediately from Lemma 1.6.41.

1.7 Decompositions of Kn − 〈S〉n
The purpose of this section is to prove Lemmas 1.3.6 and 1.3.7, and these proofs are given in
Subsections 1.7.2 and 1.7.3 respectively. In Subsection 1.7.1 we present results on Hamilton
decompositions of circulant graphs that we will require.

To prove Lemma 1.3.6, we require a (3tn, 4qn, nh)-decomposition of 〈S〉n, where S = {1, . . . , bn
2
c}\

S, for almost all n, t, q and h satisfying h ≥ 2, n ≥ 2 max(S) + 1 and 3t+ 4q+h = bn−1
2
c− |S|.

To construct this, S will be partitioned into three subsets S1, S2 and S3 such that there is
a (3tn)-decomposition of 〈S1〉n, a (4qn)-decomposition of 〈S2〉n, and an (nh)-decomposition of
〈S3〉n. Our (3tn)-decompositions of 〈S1〉n are constructed by partitioning S1 into modulo n
difference triples, our (4qn)-decompositions of 〈S2〉n are constructed by partitioning S2 into
modulo n difference quadruples, and our (nh)-decompositions of 〈S3〉n are constructed by par-
titioning S3 into sets of size at most 3 to yield connected circulant graphs of degree at most
6 that are known to have Hamilton decompositions. Lemma 1.3.7 is proved in an analogous
manner.

1.7.1 Decompositions of circulant graphs into Hamilton cycles

Theorems 1.7.1–1.7.3 address the open problem of whether every connected Cayley graph on a
finite abelian group has a Hamilton decomposition [4]. Note that 〈S〉n is connected if and only
if gcd(S ∪ {n}) = 1.

Theorem 1.7.1. ([18]) Every connected 4-regular Cayley graph on a finite abelian group has a
decomposition into two Hamilton cycles.

The following theorem is an easy corollary of Theorem 1.7.1.

Theorem 1.7.2. Every connected 5-regular Cayley graph on a finite abelian group has a de-
composition into two Hamilton cycles and a perfect matching.
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Proof Let the graph be X = Cay(Γ, S). Since each vertex of X has odd degree, S contains an
element s of order 2 in Γ. Let F be the perfect matching of X generated by s. If Cay(Γ, S \{s})
is connected then, as it is also 4-regular, the result follows immediately from Theorem 1.7.1.
On the other hand, if Cay(Γ, S \ {s}) is not connected, then it consists of two isomorphic
connected components, with x 7→ sx being an isomorphism. These components are 4-regular
and so by Theorem 1.7.1, each can be decomposed into two Hamilton cycles. Moreover, since
x 7→ sx is an isomorphism, there exists a Hamilton decomposition {H1, H

′
1} of the first and a

Hamilton decomposition {H2, H
′
2} of the second such that there is a pair of vertex-disjoint 4-

cycles (x1, y1, y2, x2) and (x′1, y
′
1, y
′
2, x
′
2) in X with x1y1 ∈ E(H1), x

′
1y
′
1 ∈ E(H ′1), x2y2 ∈ E(H2),

x′2y
′
2 ∈ E(H ′2), and x1x2, y1y2, x

′
1x
′
2, y
′
1y
′
2 ∈ E(F ). It follows that if we let G be the graph with

edge set
(E(H1) ∪ E(H2) ∪ {x1x2, y1y2}) \ {x1y1, x2y2}

and let G′ be the graph with edge set

(E(H ′1) ∪ E(H ′2) ∪ {x′1x′2, y′1y′2}) \ {x′1y′1, x′2y′2},

then G and G′ are edge-disjoint Hamilton cycles in X. This proves the result.

Theorem 1.7.3. ([54]) Every 6-regular Cayley graph on a group which is generated by an
element of the connection set has a decomposition into three Hamilton cycles.

This theorem implies that, for distinct a, b, c ∈ {1, . . . , bn−1
2
c}, the graph 〈{a, b, c}〉n has a

decomposition into three Hamilton cycles if gcd(x, n) = 1 for some x ∈ {a, b, c}.
In the next two lemmas we give results similar to that of Lemma 1.3.5, but for the case where
the connection set is of the form {x− 1} ∪ {x+ 1, . . . , bn

2
c} rather than {x, . . . , bn

2
c}. Lemma

1.7.4 deals with the case n is odd, and Lemma 1.7.5 deals with the case n is even.

Lemma 1.7.4. If n is odd and 1 ≤ h ≤ n−3
2

, then there is an (nh)-decomposition of 〈{n−1
2
−

h} ∪ {n−1
2
− h + 2, . . . , n−1

2
}〉n; except when h = 1 and n ≡ 3 (mod 6) in which case the graph

is not connected.

Proof If h = 1, then the graph is 〈n−3
2
〉n. If n ≡ 1, 5 (mod 6), then gcd(n−3

2
, n) = 1 and

〈n−3
2
〉n is an n-cycle. If n ≡ 3 (mod 6), then gcd(n−3

2
, n) = 3 and 〈n−3

2
〉n is not connected. Thus

the result holds for h = 1. In the remainder of the proof we assume h ≥ 2.

We first decompose 〈{n−1
2
−h}∪{n−1

2
−h+2, . . . , n−1

2
}〉n into circulant graphs by partitioning the

connection set, and then decompose the resulting circulant graphs into n-cycles using Theorems
1.7.1 and 1.7.3.

If h is even, then we partition the connection set into pairs by pairing n−1
2
− h with n−1

2
and

partitioning {n−1
2
− h + 2, . . . , n−3

2
} into consecutive pairs (if h = 2, then our partition is just

{{n−5
2
, n−1

2
}}). Each of the resulting circulant graphs is 4-regular and connected and thus can

be decomposed into two n-cycles by Theorem 1.7.1. If h is odd, then we partition the connection
set into the triple {n−1

2
−h, n−1

2
−h+ 2, n−1

2
} and consecutive pairs from {n−1

2
−h+ 3, . . . , n−3

2
}

(if h = 3, then our partition is just {{n−7
2
, n−3

2
, n−1

2
}}). Since gcd(n−1

2
, n) = 1, the graph

〈{n−1
2
− h, n−1

2
− h + 2, n−1

2
}〉n can be decomposed into three n-cycles by Theorem 1.7.3. Any

other resulting circulant graphs are 4-regular and connected and thus can each be decomposed
into two n-cycles by Theorem 1.7.1.

Lemma 1.7.5. If n is even and 1 ≤ h ≤ n−4
2

, then there is an (nh)-decomposition of 〈{n
2
−

h − 1} ∪ {n
2
− h + 1, . . . , n

2
}〉n; except when h = 1 and n ≡ 0 (mod 4) in which case the graph

is not connected.
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Proof If h = 1, then the graph is 〈{n−4
2
, n
2
}〉n. If n ≡ 2 (mod 4), then gcd(n−4

2
, n) = 1, 〈n−4

2
〉n

is an n-cycle, and 〈{n
2
}〉n is a perfect matching. If n ≡ 0 (mod 4), then gcd(n−4

2
, n
2
, n) = 2 and

〈{n−4
2
, n
2
}〉n is not connected. Thus the result holds for h = 1. In the remainder of the proof

we assume h ≥ 2.

We first decompose 〈{n
2
−h−1}∪{n

2
−h+1, . . . , n

2
}〉n into circulant graphs by partitioning the

connection set, and then decompose the resulting circulant graphs into n-cycles using Theorems
1.7.1, 1.7.2 and 1.7.3.

If n ≡ 0 (mod 4) and h is even, then we partition the connection set into pairs and the singleton
{n
2
} by pairing n

2
−h−1 with n−2

2
and partitioning {n

2
−h+1, . . . , n−4

2
} into pairs of consecutive

integers (if h = 2, then our partition is just {{n
2
}, {n−6

2
, n−2

2
}}). The graph 〈{n

2
}〉n is a perfect

matching. The other resulting circulant graphs are 4-regular and connected and thus can each
be decomposed into two n-cycles by Theorem 1.7.1 (note that gcd(n−2

2
, n) = 1).

If n ≡ 0 (mod 4) and h is odd, then we partition the connection set into pairs, the triple
{n
2
−h−1, n

2
−h+ 1, n−2

2
} and the singleton {n

2
} by partitioning {n

2
−h+ 2, . . . , n−4

2
} into pairs

of consecutive integers (if h = 3, then our partition is just {{n
2
}, {n−8

2
, n−4

2
, n−2

2
}}). The graph

〈{n
2
}〉n is a perfect matching and, since gcd(n−2

2
, n) = 1, the graph 〈{n

2
−h−1, n

2
−h+1, n−2

2
}〉n

can be decomposed into three n-cycles using Theorem 1.7.3. Any other resulting circulant
graphs are 4-regular and connected and thus can each be decomposed into two n-cycles by
Theorem 1.7.1.

If n ≡ 2 (mod 4), then we partition the connection set into pairs, the triple {n
2
− h− 1, n−2

2
, n
2
}

and, when h is odd, the singleton {n−4
2
} by partitioning {n

2
− h+ 1, . . . , n−4

2
} into pairs of con-

secutive integers (when h is even) or into pairs of consecutive integers and the singleton {n−4
2
}

(when h is odd). (Our partition is just {{n−6
2
, n−2

2
, n
2
}} if h = 2, and just {{n−8

2
, n−2

2
, n
2
}, {n−4

2
}}

if h = 3.) Since gcd(n−2
2
, n
2
) = 1, the graph 〈{n

2
− h− 1, n−2

2
, n
2
}〉n can be decomposed into two

n-cycles and a perfect matching using Theorem 1.7.2. When h is odd, 〈{n−4
2
}〉n is an n-cycle

(note that gcd(n−4
2
, n) = 1). Any other resulting circulant graphs are 4-regular and connected

and thus can each be decomposed into two n-cycles by Theorem 1.7.1.

1.7.2 Proof of Lemma 1.3.6

Before we prove Lemma 1.3.6, we require three preliminary lemmas which establish the existence
of various (4qn, nh)-decompositions of circulant graphs.

Lemma 1.7.6. If S ⊆ {1, . . . , bn−1
2
c} such that

• S = {x+ 1, . . . , x+ 4q} for some x;

• S = {x} ∪ {x+ 2, . . . , x+ 4q − 1} ∪ {x+ 4q + 1} for some x; or

• S = {n−1
2
− 4q} ∪ {n−1

2
− 4q + 2, . . . , n−1

2
} where n is odd;

then there is a (4qn)-decomposition of 〈S〉n.

Proof It is sufficient to partition S into q modulo n difference quadruples. If S = {x +
1, . . . , x+ 4q}, then we partition S into q sets of the form {y, y+ 1, y+ 2, y+ 3}, each of which
is a difference quadruple. If S = {x}∪ {x+ 2, . . . , x+ 4q− 1}∪ {x+ 4q+ 1}, then we partition
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S into q sets of the form {y, y+ 2, y+ 3, y+ 5}, each of which is a difference quadruple. If S =
{n−1

2
−4q}∪{n−1

2
−4q+2, . . . , n−1

2
} and n is odd, then we partition S into q−1 sets of the form

{y, y+ 2, y+ 3, y+ 5}, each of which is a difference quadruple, and the set {n−9
2
, n−5

2
, n−3

2
, n−1

2
},

which is a modulo n difference quadruple (note that n−5
2

+ n−3
2

+ n−1
2
− n−9

2
= n).

Lemma 1.7.7. If h, q and n are non-negative integers with 1 ≤ 4q + h ≤ bn−1
2
c, then there is

a (4qn, nh)-decomposition of 〈{bn−1
2
c − h− 4q + 1, . . . , bn

2
c}〉n.

Proof If h = 0 then the result follows immediately by Lemma 1.7.6, and if q = 0 then
the result follows immediately by Lemma 1.3.5. For q, h ≥ 1 we partition the connection
set into the set {bn−1

2
c − h − 4q + 1, . . . , bn−1

2
c − h} and the set {bn−1

2
c − h + 1, . . . , bn

2
c}.

Then 〈{bn−1
2
c − h − 4q + 1, . . . , bn−1

2
c − h}〉n has a (4qn)-decomposition by Lemma 1.7.6, and

〈{bn−1
2
c − h+ 1, . . . , bn

2
c}〉n has an (nh)-decomposition by Lemma 1.3.5.

Lemma 1.7.8. If h, q and n are non-negative integers with 1 ≤ 4q + h ≤ bn−3
2
c such that n

is odd when h = 0 and n ≡ 1, 2, 5, 6, 7, 10, 11 (mod 12) when h = 1, then there is a (4qn, nh)-
decomposition of 〈{bn−1

2
c − h− 4q} ∪ {bn−1

2
c − h− 4q + 2, . . . , bn

2
c}〉n.

Proof If h = 0, then the result follows immediately by Lemma 1.7.6. If q = 0, then the
result follows immediately by Lemma 1.7.4 (n odd) or Lemma 1.7.5 (n even). For h, q ≥ 1 we
partition the connection set into the set {bn−1

2
c − h− 4q} ∪ {bn−1

2
c − h− 4q + 2, . . . , bn−1

2
c −

h− 1} ∪ {bn−1
2
c − h+ 1} and the set {bn−1

2
c − h} ∪ {bn−1

2
c − h+ 2, . . . , bn

2
c}. Then 〈{bn−1

2
c −

h− 4q}∪{bn−1
2
c−h− 4q+ 2, . . . , bn−1

2
c−h− 1}∪{bn−1

2
c−h+ 1}〉n has a (4qn)-decomposition

by Lemma 1.7.6, and 〈{bn−1
2
c − h} ∪ {bn−1

2
c − h+ 2, . . . , bn

2
c}〉n has an (nh)-decomposition by

Lemma 1.7.4 (n odd) or Lemma 1.7.5 (n even).

We now prove Lemma 1.3.6, which we restate here for convenience.

Lemma 1.3.6 If S ∈ {{1, 2, 3, 4}, {1, 2, 3, 4, 6}, {1, 2, 3, 4, 5, 7}, {1, 2, 3, 4, 5, 6, 7}} and n ≥
2 max(S)+1, t ≥ 0, q ≥ 0 and h ≥ 2 are integers satisfying 3t+4q+h = bn−1

2
c−|S|, then there

is a (3tn, 4qn, nh)-decomposition of Kn−〈S〉n, except possibly when h = 2, S = {1, 2, 3, 4, 5, 6, 7}
and

• n ∈ {25, 26} and t = 1; or

• n = 31 and t = 2.

Proof We give the proof of Lemma 1.3.6 for each

S ∈ {{1, 2, 3, 4}, {1, 2, 3, 4, 6}, {1, 2, 3, 4, 5, 7}, {1, 2, 3, 4, 5, 6, 7}}

separately.

Case A: (S = {1, 2, 3, 4}) The conditions h ≥ 2 and 3t+4q+h = bn−1
2
c−4 imply n ≥ 6t+13.

If t = 0, then the result follows immediately by Lemma 1.7.8. We deal separately with the
three cases t ∈ {1, 2, 3, 4}, t ∈ {5, 6, 7, 8}, and t ≥ 9.

Case A1: Suppose that t ∈ {1, 2, 3, 4}. The cases 6t+ 13 ≤ n ≤ 6t+ 17 and the cases

(n, t) ∈ {(30, 2), (32, 2), (36, 3)}
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are dealt with first. Since h ≥ 2, it follows from 3t + 4q + h = bn−1
2
c − 5 that in each of these

cases we have q = 0. Thus, the value of h is uniquely determined by the values of n and t. The
required decompositions are obtained by partitioning {5, . . . , bn

2
c} into t modulo n difference

triples and a collection of connection sets for circulant graphs such that the circulant graphs
can be decomposed into Hamilton cycles (or Hamilton cycles and a perfect matching) using the
results in Section 1.7.1. Suitable partitions are given in the following tables.

t=1:

n modulo n connection sets
difference triples

19 {5, 6, 8} {7, 9}
20 {5, 6, 9} {7, 8}
21 {5, 7, 9} {6, 8}, {10}
22 {5, 7, 10} {6, 8, 11}, {9}

t=2:

n modulo n connection sets
difference triples

25 {5, 9, 11}, {7, 8, 10} {6, 12}
26 {5, 7, 12}, {6, 9, 11} {8, 10, 13}
27 {5, 6, 11}, {8, 9, 10} {7}, {12, 13}
28 {5, 8, 13}, {6, 10, 12} {7, 9}, {11}
30 {5, 7, 12}, {6, 8, 14} {9, 10}, {11, 13}
32 {5, 7, 12}, {6, 8, 14} {9, 10}, {11, 13}, {15}

t=3:

n modulo n connection sets
difference triples

31 {6, 8, 14}, {7, 11, 13}, {9, 10, 12} {5, 15}
32 {5, 7, 12}, {6, 8, 14}, {9, 10, 13} {11, 15}
33 {5, 7, 12}, {6, 8, 14}, {9, 11, 13} {10}, {15, 16}
34 {5, 7, 12}, {6, 8, 14}, {10, 11, 13} {9}, {15, 16}
36 {5, 7, 12}, {6, 8, 14}, {10, 11, 15} {9, 13}, {16, 17}

t=4:

n modulo n connection sets
difference triples

37 {5, 10, 15}, {6, 7, 13}, {8, 9, 17}, {11, 12, 14} {16, 18}
38 {5, 9, 14}, {6, 7, 13}, {8, 10, 18}, {11, 12, 15} {16, 17}
39 {5, 10, 15}, {6, 7, 13}, {8, 9, 17}, {11, 12, 16} {14}, {18, 19}
40 {5, 9, 14}, {6, 7, 13}, {8, 10, 18}, {11, 12, 17} {15, 16}, {19}

We now deal with n ≥ 6t + 18 which implies 4q + h ≥ 4. Define St by St = {5, . . . , 3t + 8}
for t ∈ {1, 4}, and St = {5, . . . , 3t + 7} ∪ {3t + 9} when t ∈ {2, 3}. The following table gives
a partition πt of St into difference triples and a difference quadruple Qt such that Qt can be
partitioned into two pairs of relatively prime integers.
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t πt

1 {{5, 6, 11}, {7, 8, 9, 10}}
2 {{5, 6, 11}, {7, 8, 15}, {9, 10, 12, 13}}
3 {{5, 6, 11}, {7, 9, 16}, {8, 10, 18}, {12, 13, 14, 15}}
4 {{5, 10, 15}, {6, 11, 17}, {7, 9, 16}, {8, 12, 20}, {13, 14, 18, 19}}

Thus, 〈Qt〉n can be decomposed into two connected 4-regular Cayley graphs, which in turn
can be decomposed into Hamilton cycles using Theorem 1.7.1. It follows that there is both
a (3tn, 4n)-decomposition and a (3tn, n4)-decomposition of 〈St〉n. If q = 0, then we use the
(3tn, n4)-decomposition of 〈St〉n and if q ≥ 1, then we use the (3tn, 4n)-decomposition of 〈St〉n.
This leaves us needing an (nh−4)-decomposition of Kn − 〈{1, 2, 3, 4} ∪ St〉n when q = 0, and a
(4(q−1)n, nh)-decomposition of Kn−〈{1, 2, 3, 4}∪St〉n when q ≥ 1. Note that Kn−〈{1, 2, 3, 4}∪
St〉n is isomorphic to

• 〈{3t+ 9, . . . , bn
2
c}〉n when t ∈ {1, 4}; and

• 〈{3t+ 8} ∪ {3t+ 10, . . . , bn
2
c}〉n when t ∈ {2, 3}.

When t ∈ {1, 4} the required decomposition exists by Lemma 1.7.7. When t ∈ {2, 3} and the
required number of Hamilton cycles (that is, h − 4 when q = 0 and h when q ≥ 1) is at least
2, the required decomposition exists by Lemma 1.7.8. So we need to consider only the cases
where q = 0, h ∈ {4, 5} and t ∈ {2, 3}.
Since 3t + 4q + h = bn−1

2
c − 4, and since we have already dealt with the cases where (n, t) ∈

{(30, 2), (32, 2), (36, 3), this leaves us with only the five cases where

(n, t, h) ∈ {(29, 2, 4), (31, 2, 5), (35, 3, 4), (37, 3, 5), (38, 3, 5)}.

In the cases (n, t, h) ∈ {(29, 2, 4), (35, 3, 4)} we have that h−4 (the required number of Hamilton
cycles) is 0 and n is odd, and in the cases (n, t, h) ∈ {(31, 2, 5), (37, 3, 5), (38, 3, 5)} we have that
h − 4 (the required number of Hamilton cycles) is 1 and n ≡ 1, 2, 7 (mod 12). So in all these
cases the required decompositions exist by Lemma 1.7.8.

Case A2: Suppose that t ∈ {5, 6, 7, 8}. Redefine St by St = {5, . . . , 3t + 6}. The following
table gives a partition of St into difference triples and a set Rt consisting of a pair of relatively
prime integers. Thus, 〈Rt〉n is a connected 4-regular Cayley graph, and so can be decomposed
into two Hamilton cycles using Theorem 1.7.1. Thus, we have a (3tn, n2)-decomposition of
〈St〉n.

t difference triples Rt

5 {5, 12, 17}, {6, 13, 19}, {7, 14, 21}, {8, 10, 18}, {9, 11, 20} {15, 16}
{12, 13, 25}

6 {5, 13, 18}, {6, 14, 20}, {7, 15, 22}, {8, 16, 24}, {9, 10, 19}, {11, 12, 23} {17, 21}
7 {5, 15, 20}, {6, 16, 22}, {7, 17, 24}, {8, 18, 26}, {9, 12, 21}, {10, 13, 23}, {19, 27}

{11, 14, 25}
8 {5, 17, 22}, {6, 18, 24}, {7, 19, 26}, {8, 13, 21}, {9, 16, 25}, {10, 20, 30}, {27, 28}

{11, 12, 23}, {14, 15, 29}
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Thus, we only require a (4qn, nh−2)-decomposition of Kn − 〈{1, 2, 3, 4} ∪ St〉n. But Kn −
〈{1, 2, 3, 4} ∪ St〉n is isomorphic to 〈{3t + 7, . . . , bn

2
c}〉n and so this decomposition exists by

Lemma 1.7.7.

Case A3: Suppose that t ≥ 9. Redefine St by St = {5, . . . , 3t+4} when t ≡ 0, 1 (mod 4), and
St = {5, . . . , 3t+ 3} ∪ {3t+ 5} when t ≡ 2, 3 (mod 4). We now obtain a (3tn)-decomposition of
〈St〉n.

For t ≡ 0, 1 (mod 4) (respectively t ≡ 2, 3 (mod 4)), we can obtain a (3tn)-decomposition of 〈St〉n
by using a Langford sequence (respectively hooked Langford sequence) of order t and defect
5, which exists since t ≥ 9, to partition St into difference triples (see [90, 91]). So we have a
(3tn)-decomposition of 〈St〉n, and require a (4qn, nh)-decomposition of Kn−〈{1, 2, 3, 4, 6}∪St〉n.
Since Kn − 〈{1, 2, 3, 4} ∪ St〉n is isomorphic to

• 〈{3t+ 5, . . . , bn
2
c}〉n when t ≡ 0, 1 (mod 4); and

• 〈{3t+ 4} ∪ {3t+ 6, . . . , bn
2
c}〉n when t ≡ 2, 3 (mod 4);

this decomposition exists by Lemma 1.7.7 or 1.7.8.

Case B: (S = {1, 2, 3, 4, 6}) The conditions h ≥ 2 and 3t + 4q + h = bn−1
2
c − 5 imply

n ≥ 6t+ 15. If t = 0, then the result follows immediately by Lemma 1.7.8. We deal separately
with the three cases t ∈ {1, 2, 3, 4, 5, 6}, t ∈ {7, 8, 9, 10}, and t ≥ 11.

Case B1: Suppose that t ∈ {1, 2, 3, 4, 5, 6}. The cases 6t+ 15 ≤ n ≤ 6t+ 18 and the cases

(n, t) ∈ {(38, 3), (39, 3), (40, 3), (44, 4), (45, 4)}

are dealt with first. Since h ≥ 2, it follows from 3t + 4q + h = bn−1
2
c − 5 that in each of these

cases we have q = 0. Thus, the value of h is uniquely determined by the values of n and t.
The required decompositions are obtained by partitioning {5} ∪ {7, . . . , bn

2
c} into t modulo n

difference triples and a collection of connection sets for circulant graphs such that the circulant
graphs can be decomposed into Hamilton cycles (or Hamilton cycles and a perfect matching)
using the results in Section 1.7.1. Suitable partitions are given in the following tables.

t=1:
n modulo n connection sets

difference triples

21 {5, 7, 9} {8, 10}
22 {5, 7, 10} {8, 9}, {11}
23 {5, 8, 10} {7, 9}, {11}
24 {5, 9, 10} {7, 8}, {11}, {12}

t=2:
n modulo n connection sets

difference triples

27 {5, 7, 12}, {8, 9, 10} {11, 13}
28 {5, 7, 12}, {8, 9, 11} {10, 13}, {14}
29 {5, 7, 12}, {8, 10, 11} {9}, {13, 14}
30 {5, 9, 14}, {8, 10, 12} {7}, {11, 13}, {15}
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t=3:

n modulo n connection sets
difference triples

33 {5, 8, 13}, {7, 9, 16}, {10, 11, 12} {14, 15}
34 {5, 10, 15}, {7, 9, 16}, {8, 12, 14} {11, 13}, {17}
35 {5, 8, 13}, {7, 9, 16}, {10, 11, 14} {12, 15}, {17}
36 {5, 8, 13}, {7, 9, 16}, {10, 12, 14} {11, 15}, {17}, {18}
38 {5, 12, 17}, {7, 9, 16}, {8, 10, 18} {11, 13}, {14, 15}, {19}
39 {5, 12, 17}, {7, 9, 16}, {8, 10, 18} {11, 13}, {14, 15}, {19}
40 {5, 12, 17}, {7, 9, 16}, {8, 10, 18} {11, 13}, {14, 15}, {19}, {20}

t=4:

n modulo n connection sets
difference triples

39 {5, 11, 16}, {7, 8, 15}, {9, 10, 19}, {12, 13, 14} {17, 18}
40 {5, 8, 13}, {7, 9, 16}, {10, 12, 18}, {11, 14, 15} {17, 19}, {20}
41 {5, 14, 19}, {7, 8, 15}, {9, 11, 20}, {12, 13, 16} {10, 17}, {18}
42 {5, 10, 15}, {7, 11, 18}, {8, 9, 17}, {12, 14, 16} {13}, {19, 20}, {21}
44 {5, 11, 16}, {7, 13, 20}, {8, 10, 18}, {9, 12, 21} {14, 15}, {17, 19}, {22}
45 {5, 11, 16}, {7, 13, 20}, {8, 10, 18}, {9, 12, 21} {14, 15}, {17, 19}, {22}

t=5:

n modulo n connection sets
difference triples

45 {5, 17, 22}, {7, 13, 20}, {8, 10, 18}, {9, 12, 21}, {14, 15, 16} {11, 19}
46 {5, 17, 22}, {7, 13, 20}, {8, 10, 18}, {9, 12, 21}, {11, 16, 19} {14, 15}, {23}
47 {5, 18, 23}, {7, 13, 20}, {8, 11, 19}, {10, 12, 22}, {14, 16, 17} {9, 15}, {21}
48 {5, 17, 22}, {7, 13, 20}, {8, 10, 18}, {9, 12, 21}, {11, 14, 23} {15, 16}, {19}, {24}

t=6:

n modulo n connection sets
difference triples

51 {5, 13, 18}, {7, 15, 22}, {8, 16, 24}, {21, 25}
{9, 10, 19}, {11, 12, 23}, {14, 17, 20}

52 {5, 13, 18}, {7, 15, 22}, {8, 16, 24}, {20, 25}, {26}
{9, 10, 19}, {11, 12, 23}, {14, 17, 21}

53 {5, 13, 18}, {7, 12, 19}, {8, 14, 22}, {23}, {25, 26}
{9, 15, 24}, {10, 11, 21}, {16, 17, 20}

54 {5, 17, 22}, {7, 8, 15}, {9, 10, 19}, {21, 23}, {25}, {27}
{11, 13, 24}, {12, 14, 26}, {16, 18, 20}

We now deal with n ≥ 6t+ 19 which implies 4q+h ≥ 4. Define St by St = {5}∪{7, . . . , 3t+ 9}
for t ∈ {1, 2, 5, 6}, and St = {5} ∪ {7, . . . , 3t + 8} ∪ {3t + 10} when t ∈ {3, 4}. The following
table gives a partition πt of St into difference triples and a difference quadruple Qt such that
Qt can be partitioned into two pairs of relatively prime integers.
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t πt

1 {{5, 7, 12}, {8, 9, 10, 11}}
2 {{5, 9, 14}, {7, 8, 15}, {10, 11, 12, 13}}
3 {{5, 9, 14}, {7, 10, 17}, {8, 11, 19}, {12, 13, 15, 16}}
4 {{5, 9, 14}, {7, 13, 20}, {8, 11, 19}, {10, 12, 22}, {15, 16, 17, 18}}
5 {{5, 14, 19}, {7, 13, 20}, {8, 10, 18}, {9, 15, 24}, {11, 12, 23}, {16, 17, 21, 22}}
6 {{5, 15, 20}, {7, 16, 23}, {8, 14, 22}, {9, 12, 21}, {10, 17, 27}, {11, 13, 24},

{18, 19, 25, 26}}

Thus, 〈Qt〉n can be decomposed into two connected 4-regular Cayley graphs, which in turn
can be decomposed into Hamilton cycles using Theorem 1.7.1. It follows that there is both
a (3tn, 4n)-decomposition and a (3tn, n4)-decomposition of 〈St〉n. If q = 0, then we use the
(3tn, n4)-decomposition of 〈St〉n and if q ≥ 1, then we use the (3tn, 4n)-decomposition of 〈St〉n.
This leaves us needing an (nh−4)-decomposition of Kn − 〈{1, 2, 3, 4, 6} ∪ St〉n when q = 0,
and a (4(q−1)n, nh)-decomposition of Kn − 〈{1, 2, 3, 4, 6} ∪ St〉n when q ≥ 1. Note that Kn −
〈{1, 2, 3, 4, 6} ∪ St〉n is isomorphic to

• 〈{3t+ 10, . . . , bn
2
c}〉n when t ∈ {1, 2, 5, 6}; and

• 〈{3t+ 9} ∪ {3t+ 11, . . . , bn
2
c}〉n when t ∈ {3, 4}.

When t ∈ {1, 2, 5, 6} the required decomposition exists by Lemma 1.7.7. When t ∈ {3, 4} and
the required number of Hamilton cycles (that is, h − 4 when q = 0 and h when q ≥ 1) is at
least 2, the required decomposition exists by Lemma 1.7.8. So we need to consider only the
cases where q = 0, h ∈ {4, 5} and t ∈ {3, 4}.
Since 3t + 4q + h = bn−1

2
c − 5, and since we have already dealt with the cases where (n, t) ∈

{(38, 3), (39, 3), (40, 3), (44, 4), (45, 4)}, this leaves us with only the three cases where (n, t, h) ∈
{(37, 3, 4), (43, 4, 4), (46, 4, 5)}. In the cases (n, t, h) ∈ {(37, 3, 4), (43, 4, 4)} we have that h − 4
(the required number of Hamilton cycles) is 0 and n is odd, and in the case (n, t, h) = (46, 4, 5)
we have that h− 4 (the required number of Hamilton cycles) is 1 and n ≡ 10 (mod 12). So in
all these cases the required decompositions exist by Lemma 1.7.8.

Case B2: Suppose that t ∈ {7, 8, 9, 10}. Redefine St by St = {5} ∪ {7, . . . , 3t + 7}. The
following table gives a partition of St into difference triples and a set Rt consisting of a pair
of relatively prime integers. Thus, 〈Rt〉n is a connected 4-regular Cayley graph, and so can
be decomposed into two Hamilton cycles using Theorem 1.7.1. Thus, we have a (3tn, n2)-
decomposition of 〈St〉n.

t difference triples Rt

7 {5, 17, 22}, {7, 16, 23}, {8, 20, 28}, {9, 18, 27}, {10, 14, 24}, {11, 15, 26}, {19, 21}
{12, 13, 25}

8 {5, 17, 22}, {7, 19, 26}, {8, 16, 24}, {9, 20, 29}, {10, 21, 31}, {11, 14, 25}, {23, 27}
{12, 18, 30}, {13, 15, 28}

9 {5, 19, 24}, {7, 20, 27}, {8, 21, 29}, {9, 22, 31}, {10, 23, 33}, {11, 15, 26}, {25, 34}
{12, 16, 28}, {13, 17, 30}, {14, 18, 32}

10 {5, 21, 26}, {7, 22, 29}, {8, 23, 31}, {9, 24, 33}, {10, 25, 35}, {11, 17, 28}, {32, 37}
{12, 18, 30}, {13, 14, 27}, {15, 19, 34}, {16, 20, 36}
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Thus, we only require a (4qn, nh−2)-decomposition of Kn − 〈{1, 2, 3, 4, 6} ∪ St〉n. But Kn −
〈{1, 2, 3, 4, 6} ∪ St〉n is isomorphic to 〈{3t + 8, . . . , bn

2
c}〉n and so this decomposition exists by

Lemma 1.7.7.

Case B3: Suppose that t ≥ 11. Redefine St by St = {5} ∪ {7, . . . , 3t + 5} when t ≡
1, 2 (mod 4), and St = {5} ∪ {7, . . . , 3t + 4} ∪ {3t + 6} when t ≡ 0, 3 (mod 4). We now
obtain a (3tn)-decomposition of 〈St〉n. For 11 ≤ t ≤ 52, we have found such a decomposi-
tion by partitioning St into difference triples with the aid of a computer. These difference
triples are shown in Table A.25 in the appendix. For t ≥ 53 and t ≡ 1, 2 (mod 4) (respectively
t ≡ 0, 3 (mod 4)) we set aside as one difference triple {5, 3t, 3t+5} (respectively {5, 3t+1, 3t+6})
and form the set S ′t = {7, . . . , 3t − 1, 3t + 1, . . . , 3t + 4} = {7, . . . , 3t + 4} \ {3t} (respectively
S ′t = {7, . . . , 3t, 3t + 2, . . . , 3t + 4} = {7, . . . , 3t + 4} \ {3t + 1}). We can obtain a (3(t−1)n)-
decomposition of 〈S ′t〉n by using an extended Langford sequence of order t− 1 and defect 7 to
partition S ′t into difference triples. Since t ≥ 53, this sequence exists by Theorem 7.1 in [72] (also
see [90, 91]). So we have a (3tn)-decomposition of 〈St〉n, and require a (4qn, nh)-decomposition
of Kn − 〈{1, 2, 3, 4, 6} ∪ St〉n. Since Kn − 〈{1, 2, 3, 4, 6} ∪ St〉n is isomorphic to

• 〈{3t+ 6, . . . , bn
2
c}〉n when t ≡ 1, 2 (mod 4); and

• 〈{3t+ 5} ∪ {3t+ 7, . . . , bn
2
c}〉n when t ≡ 0, 3 (mod 4);

this decomposition exists by Lemma 1.7.7 or 1.7.8.

Case C: (S = {1, 2, 3, 4, 5, 7}) The conditions h ≥ 2 and 3t + 4q + h = bn−1
2
c − 5 imply

n ≥ 6t+ 17. If t = 0, then the result follows immediately by Lemma 1.7.8. We deal separately
with the four cases t ∈ {1, 5, 6, 7, 8}, t ∈ {2, 3, 4}, t ∈ {9, 10, 11, 12}, and t ≥ 11.

Case C1: Suppose that t ∈ {1, 5, 6, 7, 8}. The cases 6t+ 17 ≤ n ≤ 6t+ 20 and the cases

(n, t) ∈ {(28, 1), (52, 5), (70, 8), (72, 8)}

are dealt with first. Since h ≥ 2, it follows from 3t + 4q + h = bn−1
2
c − 6 that in each of these

cases we have q = 0. Thus, the value of h is uniquely determined by the values of n and t.
The required decompositions are obtained by partitioning {6} ∪ {8, . . . , bn

2
c} into t modulo n

difference triples and a collection of connection sets for circulant graphs such that the circulant
graphs can be decomposed into Hamilton cycles (or Hamilton cycles and a perfect matching)
using the results in Section 1.7.1. Suitable partitions are given in the following tables.

t=1:

n modulo n connection sets
difference triples

23 {6, 8, 9} {10, 11}
24 {6, 8, 10} {9, 11}
25 {6, 8, 11} {9, 10}, {12}
26 {6, 8, 12} {9, 10}, {11}
27 {6, 8, 13} {9, 10}, {11, 12}
28 {6, 10, 12} {8, 9}, {11, 13}
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t=5:

n modulo n connection sets
difference triples

47 {6, 13, 19}, {8, 15, 23}, {9, 11, 20}, {10, 12, 22}, {14, 16, 17} {18, 21}
48 {6, 13, 19}, {8, 15, 23}, {9, 11, 20}, {10, 12, 22}, {14, 16, 18} {17, 21}
49 {6, 13, 19}, {8, 15, 23}, {9, 11, 20}, {10, 12, 22}, {14, 17, 18} {16, 21}, {24}
50 {6, 13, 19}, {8, 16, 24}, {9, 11, 20}, {10, 12, 22}, {15, 17, 18} {14, 21}, {23}
52 {6, 13, 19}, {8, 16, 24}, {9, 11, 20}, {10, 12, 22}, {14, 17, 21} {15, 18}, {23, 25}

t=6:
n modulo n connection sets

difference triples

53 {6, 15, 21}, {8, 17, 25}, {9, 13, 22}, {20, 26}
{10, 14, 24}, {11, 12, 23}, {16, 18, 19}

54 {6, 15, 21}, {8, 17, 25}, {9, 13, 22}, {19, 26}
{10, 14, 24}, {11, 12, 23}, {16, 18, 20}

55 {6, 15, 21}, {8, 17, 25}, {9, 13, 22}, {18, 26}, {27}
{10, 14, 24}, {11, 12, 23}, {16, 19, 20}

56 {6, 15, 21}, {8, 18, 26}, {9, 13, 22}, {16, 25}, {27}
{10, 14, 24}, {11, 12, 23}, {17, 19, 20}

t=7:
n modulo n connection sets

difference triples

59 {6, 16, 22}, {8, 15, 23}, {9, 19, 28}, {10, 17, 27}, {25, 29}
{11, 13, 24}, {12, 14, 26}, {18, 20, 21}

60 {6, 16, 22}, {8, 17, 25}, {9, 15, 24}, {10, 18, 28}, {26, 29}
{11, 12, 23}, {13, 14, 27}, {19, 20, 21}

61 {6, 15, 21}, {8, 16, 24}, {9, 17, 26}, {10, 18, 28}, {25, 29}, {30}
{11, 12, 23}, {13, 14, 27}, {19, 20, 22}

62 {6, 20, 26}, {8, 17, 25}, {9, 15, 24}, {10, 18, 28}, {16, 30, 31}, {29}
{11, 12, 23}, {13, 14, 27}, {19, 21, 22}

t=8:

n modulo n connection sets
difference triples

65 {6, 21, 27}, {8, 18, 26}, {9, 15, 24}, {10, 19, 29}, {31, 32}
{11, 17, 28}, {12, 13, 25}, {14, 16, 30}, {20, 22, 23}

66 {6, 21, 27}, {8, 18, 26}, {9, 23, 32}, {10, 19, 29}, {15, 31}
{11, 17, 28}, {12, 13, 25}, {14, 16, 30}, {20, 22, 24}

67 {6, 27, 33}, {8, 18, 26}, {9, 23, 32}, {10, 19, 29}, {15, 20}, {31}
{11, 17, 28}, {12, 13, 25}, {14, 16, 30}, {21, 22, 24}

68 {6, 18, 24}, {8, 21, 29}, {9, 23, 32}, {10, 15, 25}, {17, 31}, {33}
{11, 19, 30}, {12, 16, 28}, {13, 14, 27}, {20, 22, 26}

70 {6, 18, 24}, {9, 22, 31}, {10, 15, 25}, {11, 19, 30}, {8, 29}, {32, 34, 35}
{12, 16, 28}, {13, 14, 27}, {17, 20, 33}, {21, 23, 26}

72 {6, 16, 22}, {8, 13, 21}, {9, 17, 26}, {10, 18, 28}, {29, 33}, {31, 32}, {35}
{11, 19, 30}, {12, 15, 27}, {14, 20, 34}, {23, 24, 25}
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We now define St by St = {6} ∪ {8, . . . , 3t + 9} ∪ {3t + 11} for t ≡ 0, 1 (mod 4), and St =
{6} ∪ {8, . . . , 3t+ 9} when t ≡ 2, 3 (mod 4). The following table gives a partition πt of St into
difference triples and a difference quadruple Qt such that Qt can be partitioned into two pairs
of relatively prime integers.

t πt

1 {{6, 8, 14}, {9, 10, 11, 12}}
5 {{6, 14, 20}, {8, 15, 23}, {9, 17, 26}, {10, 12, 22}, {11, 13, 24}, {16, 18, 19, 21}}
6 {{6, 13, 19}, {8, 16, 24}, {9, 17, 26}, {10, 18, 28},

{11, 14, 25}, {12, 15, 27}, {20, 21, 22, 23}}
7 {{6, 24, 30}, {8, 23, 31}, {9, 16, 25}, {10, 17, 27},

{11, 18, 29}, {12, 14, 26}, {13, 15, 28}, {19, 20, 21, 22}}
8 {{6, 17, 23}, {8, 16, 24}, {9, 19, 28}, {10, 15, 25}, {11, 20, 31},

{12, 21, 33}, {13, 22, 35}, {14, 18, 32}, {26, 27, 29, 30}}

Thus, 〈Qt〉n can be decomposed into two connected 4-regular Cayley graphs, which in turn
can be decomposed into Hamilton cycles using Theorem 1.7.1. It follows that there is both
a (3tn, 4n)-decomposition and a (3tn, n4)-decomposition of 〈St〉n. If q = 0, then we use the
(3tn, n4)-decomposition of 〈St〉n and if q ≥ 1, then we use the (3tn, 4n)-decomposition of 〈St〉n.
This leaves us needing an (nh−4)-decomposition of Kn − 〈{1, 2, 3, 4, 5, 7} ∪ St〉n when q =
0, and a (4(q−1)n, nh)-decomposition of Kn − 〈{1, 2, 3, 4, 5, 7} ∪ St〉n when q ≥ 1. Note that
Kn − 〈{1, 2, 3, 4, 6} ∪ St〉n is isomorphic to

• 〈{3t+ 10, . . . , bn
2
c}〉n when t ∈ {1, 5, 6}; and

• 〈{3t+ 9} ∪ {3t+ 11, . . . , bn
2
c}〉n when t ∈ {7, 8}.

When t ∈ {6, 7} the required decomposition exists by Lemma 1.7.7. When t ∈ {1, 5, 8} and the
required number of Hamilton cycles (that is, h − 4 when q = 0 and h when q ≥ 1) is at least
2, the required decomposition exists by Lemma 1.7.8. So we need to consider only the cases
where q = 0, h ∈ {4, 5} and t ∈ {1, 5, 8}.
Since 3t + 4q + h = bn−1

2
c − 6, and since we have already dealt with the cases where (n, t) ∈

{(27, 1), (28, 1), (52, 5), (70, 8), (72, 8)}, this leaves us with the cases where (n, t, h) in

{(27, 1, 4), (29, 1, 5), (30, 1, 5), (51, 5, 4), (53, 5, 5), (54, 5, 5), (69, 8, 4), (71, 8, 5)}.

In the cases (n, t, h) ∈ {(27, 1, 4), (51, 5, 4), (69, 8, 4)} we have that h− 4 (the required number
of Hamilton cycles) is 0 and n is odd, and in the other cases we have that h− 4 (the required
number of Hamilton cycles) is 1 and n ≡ 5, 6, 11 (mod 12). So in all these cases the required
decompositions exist by Lemma 1.7.8.

Case C2: Suppose that t ∈ {2, 3, 4}. The cases 6t + 17 ≤ n ≤ 6t + 24 are dealt with first.
Since h ≥ 2, it follows from 3t + 4q + h = bn−1

2
c − 6 that in each of these cases we have

q = 0. Thus, the value of h is uniquely determined by the values of n and t. The required
decompositions are obtained by partitioning {6}∪{8, . . . , bn

2
c} into t modulo n difference triples

and a collection of connection sets for circulant graphs such that the circulant graphs can be
decomposed into Hamilton cycles (or Hamilton cycles and a perfect matching) using the results
in Section 1.7.1. Suitable partitions are given in the following tables.
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t=2:
n modulo n connection sets

difference triples

29 {6, 9, 14}, {8, 10, 11} {12, 13}
30 {6, 8, 14}, {9, 10, 11} {12, 13}
31 {6, 8, 14}, {9, 10, 12} {11, 13}, {15}
32 {6, 8, 14}, {9, 10, 13} {11, 12}, {15}
33 {6, 8, 14}, {10, 11, 12} {9, 16}, {13, 15}
34 {6, 8, 14}, {10, 11, 13} {9, 12}, {15, 16}
35 {6, 8, 14}, {10, 12, 13} {9, 11}, {15, 16}, {17}
36 {6, 8, 14}, {11, 12, 13} {9, 10}, {15, 16}, {17}

t=3:
n modulo n connection sets

difference triples

35 {6, 8, 14}, {9, 11, 15}, {10, 12, 13} {16, 17}
36 {6, 8, 14}, {9, 10, 17}, {11, 12, 13} {15, 16}
37 {6, 8, 14}, {9, 11, 17}, {10, 12, 15} {13, 16}, {18}
38 {6, 9, 15}, {8, 10, 18}, {11, 13, 14} {12, 16, 19}, {17}
39 {6, 9, 15}, {8, 10, 18}, {12, 13, 14} {11, 16}, {17, 19}
40 {6, 9, 15}, {8, 10, 18}, {11, 13, 16} {12, 17}, {14, 19}
41 {6, 9, 15}, {8, 10, 18}, {12, 13, 16} {11, 14}, {17, 19}, {20}
42 {6, 9, 15}, {8, 10, 18}, {12, 14, 16} {11, 13}, {17}, {19, 20}

t=4:

n modulo n connection sets
difference triples

41 {6, 8, 14}, {9, 15, 17}, {10, 11, 20}, {12, 13, 16} {18, 19}
42 {6, 8, 14}, {9, 16, 17}, {10, 12, 20}, {11, 13, 18} {15, 19}
43 {6, 11, 17}, {8, 12, 20}, {9, 10, 19}, {13, 14, 16} {15, 18}, {21}
44 {6, 10, 16}, {8, 13, 21}, {9, 11, 20}, {12, 14, 18} {15, 17}, {19}
45 {6, 11, 17}, {8, 12, 20}, {9, 10, 19}, {13, 14, 18} {15, 16}, {21, 22}
46 {6, 11, 17}, {8, 12, 20}, {9, 10, 19}, {13, 15, 18} {14, 16, 23}, {21, 22}
47 {6, 11, 17}, {8, 12, 20}, {9, 10, 19}, {13, 16, 18} {14, 15}, {21, 22}, {23}
48 {6, 11, 17}, {8, 12, 20}, {9, 10, 19}, {14, 16, 18} {13, 15}, {21, 22}, {23}

We now deal with n ≥ 6t + 25 and (n, t) not covered earlier. We define St by St = {6} ∪
{8, . . . , 3t + 12}. The following table gives a partition πt of St into difference triples, a set Rt

and a difference quadruple Qt such that Qt can be partitioned into two pairs of relatively prime
integers, and Rt is a pair of relatively prime integers.

t πt

2 {{6, 12, 18}, {8, 9, 17}, {13, 14, 15, 16}, {10, 11}}
3 {{6, 14, 20}, {8, 13, 21}, {9, 10, 19}, {15, 16, 17, 18}, {11, 12}}
4 {{6, 11, 17}, {8, 12, 20}, {9, 13, 22}, {10, 14, 24}, {15, 16, 18, 19}, {21, 23}}

Thus, 〈Qt〉n can be decomposed into two connected 4-regular Cayley graphs, which in turn
can be decomposed into Hamilton cycles using Theorem 1.7.1. It follows that there is both
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a (3tn, 4n, n2)-decomposition and a (3tn, n6)-decomposition of 〈St〉n. If q = 0, then we use
the (3tn, n6)-decomposition of 〈St〉n and if q ≥ 1, then we use the (3tn, 4n, n2)-decomposition
of 〈St〉n. This leaves us needing an (nh−6)-decomposition of Kn − 〈{1, 2, 3, 4, 5, 7} ∪ St〉n when
q = 0, and a (4(q−1)n, nh−2)-decomposition of Kn−〈{1, 2, 3, 4, 5, 7}∪St〉n when q ≥ 1. Note that
Kn− 〈{1, 2, 3, 4, 6} ∪ St〉n is isomorphic to 〈{3t+ 13, . . . , bn

2
c}〉n so the required decomposition

exists by Lemma 1.7.7.

Case C3: Suppose that t ∈ {9, 10, 11, 12}. Redefine St by St = {6} ∪ {8, . . . , 3t + 8}. The
following table gives a partition of St into difference triples and a set Rt consisting of a pair
of relatively prime integers. Thus, 〈Rt〉n is a connected 4-regular Cayley graph, and so can
be decomposed into two Hamilton cycles using Theorem 1.7.1. Thus, we have a (3tn, n2)-
decomposition of 〈St〉n.

t difference triples Rt

9 {6, 20, 26}, {8, 21, 29}, {9, 22, 31}, {10, 23, 33}, {11, 24, 35},
{12, 16, 28}, {13, 17, 30}, {14, 18, 32}, {15, 19, 34} {25, 27}

10 {6, 23, 29}, {8, 20, 28}, {9, 18, 27}, {10, 22, 32}, {11, 25, 36}, {12, 26, 38},
{13, 24, 37}, {14, 21, 35}, {15, 19, 34}, {16, 17, 33} {30, 31}

11 {6, 25, 31}, {8, 24, 32}, {9, 21, 30}, {10, 19, 29}, {11, 26, 37}, {12, 27, 39},
{13, 28, 41}, {14, 20, 34}, {15, 18, 33}, {16, 22, 38}, {17, 23, 40} {35, 36}

12 {6, 27, 33}, {8, 23, 31}, {9, 25, 34}, {10, 22, 32}, {11, 24, 35},
{12, 28, 40}, {13, 29, 42}, {14, 30, 44}, {15, 26, 41},

{16, 21, 37}, {17, 19, 36}, {18, 20, 38} {39, 43}

Thus, we only require a (4qn, nh−2)-decomposition of Kn − 〈{1, 2, 3, 4, 5, 7} ∪ St〉n. But Kn −
〈{1, 2, 3, 4, 5, 7}∪St〉n is isomorphic to 〈{3t+ 9, . . . , bn

2
c}〉n and so this decomposition exists by

Lemma 1.7.7.

Case C4: Suppose that t ≥ 13. Redefine St by St = {6} ∪ {8, . . . , 3t + 6} when t ≡
2, 3 (mod 4), and St = {6} ∪ {8, . . . , 3t + 5} ∪ {3t + 7} when t ≡ 0, 1 (mod 4). We now
obtain a (3tn)-decomposition of 〈St〉n. For 13 ≤ t ≤ 60, we have found such a decomposi-
tion by partitioning St into difference triples with the aid of a computer. These difference
triples are shown in Table A.26 in the appendix. For t ≥ 61 and t ≡ 2, 3 (mod 4) (respectively
t ≡ 0, 1 (mod 4)) we set aside as one difference triple {6, 3t, 3t+6} (respectively {6, 3t+1, 3t+7})
and form the set S ′t = {8, . . . , 3t − 1, 3t + 1, . . . , 3t + 5} = {8, . . . , 3t + 5} \ {3t} (respectively
S ′t = {8, . . . , 3t, 3t + 2, . . . , 3t + 5} = {8, . . . , 3t + 5} \ {3t + 1}). We can obtain a (3(t−1)n)-
decomposition of 〈S ′t〉n by using an extended Langford sequence of order t− 1 and defect 8 to
partition S ′t into difference triples. Since t ≥ 61, this sequence exists by Theorem 7.1 in [72] (also
see [90, 91]). So we have a (3tn)-decomposition of 〈St〉n, and require a (4qn, nh)-decomposition
of Kn − 〈{1, 2, 3, 4, 5, 7} ∪ St〉n. Since Kn − 〈{1, 2, 3, 4, 5, 7} ∪ St〉n is isomorphic to

• 〈{3t+ 7, . . . , bn
2
c}〉n when t ≡ 2, 3 (mod 4); and

• 〈{3t+ 6} ∪ {3t+ 8, . . . , bn
2
c}〉n when t ≡ 0, 1 (mod 4);

this decomposition exists by Lemma 1.7.7 or 1.7.8.

Case D: (S = {1, 2, 3, 4, 5, 6, 7}) The conditions h ≥ 2 and 3t + 4q + h = bn−1
2
c − 7 imply

n ≥ 6t+ 19. If t = 0, then the result follows immediately by Lemma 1.7.8. We deal separately
with the five cases t ∈ {1, 2}, t ∈ {3, 4, 5, 6}, t ∈ {7, 8, 9, 10}, t ∈ {11, 12, 13, 14} and t ≥ 15.
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Case D1: Suppose that t ∈ {1, 2}. The cases 6t+ 19 ≤ n ≤ 6t+ 30 and the cases

(n, t) ∈ {(38, 1), (39, 1), (40, 1), (44, 2), (45, 2)}

are dealt with first. Since h ≥ 2, it follows from 3t+4q+h = bn−1
2
c−5 that in each of these cases

we have q ∈ {0, 1}. The required decompositions are obtained by partitioning {8, . . . , bn
2
c} into

t modulo n difference triples and a collection of connection sets for circulant graphs such that
the circulant graphs can be decomposed into Hamilton cycles (or Hamilton cycles and a perfect
matching) using the results in Section 1.7.1. Whenever we need to consider q = 1, one of the
given connection sets has cardinality 4 and is a difference quadruple, which means that the
corresponding circulant graph has a (4n)-decomposition. Suitable partitions are given in the
following tables, noting that for t = 1 we have n 6∈ {25, 26} and for t = 2 we have n 6= 31..

t=1:
n modulo n connection sets

difference triples

27 {8, 9, 10} {11, 12}, {13}
28 {8, 9, 11} {10, 12, 13}
29 {8, 9, 12} {10, 11}, {13, 14}
30 {8, 9, 13} {10, 11}, {12, 14, 15}
31 {8, 9, 14} {10, 11}, {12, 13}, {15}
32 {8, 9, 15} {10, 11}, {12, 13, 14}
33 {10, 11, 12} {8, 9, 13, 14}, {15, 16}
34 {8, 10, 16} {9, 11, 13, 15}, {12, 14, 17}
35 {10, 12, 13} {8, 9, 14, 15}, {11}, {16, 17}
36 {10, 12, 14} {8, 9, 15, 16}, {11, 13}, {17}
38 {10, 12, 16} {8, 9, 14, 15}, {11, 13}, {17, 18}
39 {10, 13, 16} {8, 9, 11, 12}, {14, 15}, {17, 18}, {19}
40 {10, 14, 16} {8, 9, 11, 12}, {13, 15}, {17, 18}, {19}

t=2:
n modulo n connection sets

difference triples

32 {8, 10, 14}, {9, 11, 12} {13, 15}
33 {8, 10, 15}, {9, 11, 13} {12, 14}, {16}
34 {8, 12, 14}, {10, 11, 13} {9}, {15, 16}
35 {8, 11, 16}, {10, 12, 13} {9, 14}, {15, 17}
36 {8, 13, 15}, {10, 12, 14} {9, 11}, {16, 17}
37 {8, 10, 18}, {11, 12, 14} {9, 13}, {15, 16}, {17}
38 {8, 10, 18}, {11, 12, 15} {9}, {13, 14}, {16, 17}
39 {8, 10, 18}, {11, 12, 16} {9, 14}, {13, 15, 17, 19}
40 {8, 10, 18}, {11, 12, 17} {9, 19}, {13, 14, 15, 16}
41 {8, 10, 18}, {12, 14, 15} {9, 11}, {13, 16, 17, 20}, {19}
42 {8, 10, 18}, {12, 14, 16} {9, 11, 13, 15}, {17}, {19, 20}
44 {8, 9, 17}, {10, 14, 20} {11, 12}, {13, 15}, {16, 18, 19, 21}
45 {8, 10, 18}, {14, 15, 16} {9, 11, 17, 19}, {12, 13}, {20, 21}, {22}

We now deal with n ≥ 6t+ 30 and (n, t) not covered earlier. This implies 4q+h ≥ 8. Define St
by St = {8, . . . , 3t+14}∪{3t+16}. The following table gives a partition πt of St into difference
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triples and two difference quadruples Q′t and Q′t such that Qt and Q′t can each be partitioned
into two pairs of relatively prime integers.

t πt

1 {{8, 11, 19}, {9, 10, 12, 13}, {14, 15, 16, 17}}
2 {{8, 10, 18}, {9, 11, 20}, {12, 15, 19, 22}, {13, 14, 16, 17}}

Thus, each of 〈Qt〉n and 〈Q′t〉n can be decomposed into two connected 4-regular Cayley graphs,
which in turn can be decomposed into Hamilton cycles using Theorem 1.7.1. It follows that
there is a (3tn, 42n)-decomposition, a (3tn, 4n, n4)-decomposition and a (3tn, n8)-decomposition
of 〈St〉n. If q = 0, then we use the (3tn, n8)-decomposition of 〈St〉n, if q = 1, then we use the
(3tn, 4n, n4)-decomposition of 〈St〉n, and if q ≥ 2, then we use the (3tn, 42n)-decomposition of
〈St〉n.

This leaves us needing an (nh−8)-decomposition of Kn − 〈{1, 2, 3, 4, 5, 6, 7} ∪ St〉n when q = 0,
a (nh−4)-decomposition of Kn − 〈{1, 2, 3, 4, 5, 6, 7} ∪ St〉n when q = 1, and a (4(q−2)n, nh)-
decomposition of Kn−〈{1, 2, 3, 4, 5, 6, 7}∪St〉n when q ≥ 2. Note that Kn−〈{1, 2, 3, 4, 5, 6, 7}∪
St〉n is isomorphic to 〈{3t+ 15} ∪ {3t+ 17, . . . , bn

2
c}〉n.

When the required number of Hamilton cycles (that is, h − 8 when q = 0, h − 4 when q = 1
and h when q ≥ 2) is at least 2, the required decomposition exists by Lemma 1.7.8. So we need
to consider only the cases where

• q = 0 and h ∈ {8, 9}; and

• q = 1 and h ∈ {4, 5}.

Since 3t + 4q + h = bn−1
2
c − 7, and since we have already dealt with the cases where (n, t) ∈

{(38, 1), (39, 1), (40, 1), (44, 2), (45, 2)}, this leaves only

(n, t, h) ∈ {(37, 1, 8), (43, 2, 8), (46, 2, 9)}

when q = 0, and

(n, t, h) ∈ {(37, 1, 4), (43, 2, 4), (46, 2, 5)

when q = 1.

In both cases (q = 0 and q = 1 respectively), when the required number of Hamilton cycles
(h− 8 and h− 4 respectively) is 0 we have n odd, and when the required number of Hamilton
cycles is 1 we have n ≡ 10 (mod 12). Thus, the decomposition exists by Lemma 1.7.8.

Case D2: Suppose that t ∈ {3, 4, 5, 6}. Redefine St by St = {8, . . . , 3t+ 13}.
The case 6t + 19 ≤ n ≤ 6t + 26 is dealt with first. Since h ≥ 2, it follows from 3t + 4q + h =
bn−1

2
c− 7 that in each of these cases we have q = 0. The required decompositions are obtained

by partitioning {8, . . . , bn
2
c} into t modulo n difference triples and a collection of connection sets

for circulant graphs such that the circulant graphs can be decomposed into Hamilton cycles (or
Hamilton cycles and a perfect matching) using the results in Section 1.7.1. Suitable partitions
are given in the following tables.
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t=3:

n modulo n connection sets
difference triples

37 {8, 10, 18}, {9, 13, 15}, {11, 12, 14} {16, 17}
38 {8, 10, 18}, {9, 13, 16}, {11, 12, 15} {14, 17}
39 {8, 10, 18}, {9, 13, 17}, {11, 12, 16} {14, 15}, {19}
40 {8, 10, 18}, {9, 12, 19}, {11, 13, 16} {14, 15}, {17}
41 {8, 10, 18}, {9, 11, 20}, {12, 13, 16} {14, 15}, {17, 19}
42 {8, 10, 18}, {9, 11, 20}, {12, 13, 17} {14, 15}, {16, 19}
43 {8, 10, 18}, {9, 11, 20}, {12, 14, 17} {13, 15}, {16, 19}, {21}
44 {8, 10, 18}, {9, 11, 20}, {13, 14, 17} {12, 15}, {16, 19}, {21}

t=4:

n modulo n connection sets
difference triples

43 {8, 10, 18}, {9, 12, 21}, {11, 15, 17}, {13, 14, 16} {19, 20}
44 {8, 10, 18}, {9, 12, 21}, {11, 14, 19}, {13, 15, 16} {17, 20}
45 {8, 10, 18}, {9, 12, 21}, {11, 14, 20}, {13, 15, 17} {16, 19}, {22}
46 {8, 10, 18}, {9, 12, 21}, {11, 15, 20}, {13, 14, 19} {16, 17}, {22, 23}
47 {8, 10, 18}, {9, 12, 21}, {11, 14, 22}, {13, 15, 19} {16, 17}, {20, 23}
48 {8, 10, 18}, {9, 12, 21}, {11, 14, 23}, {13, 15, 20} {16, 17}, {19, 22}
49 {8, 10, 18}, {9, 12, 21}, {11, 15, 23}, {13, 14, 22} {16, 17}, {19, 20}, {24}
50 {8, 10, 18}, {9, 12, 21}, {11, 17, 22}, {13, 14, 23} {15, 16}, {19, 20}, {24, 25}

t=5:

n modulo n connection sets
difference triples

49 {8, 12, 20}, {9, 14, 23}, {10, 11, 21}, {22, 24}
{13, 17, 19}, {15, 16, 18}

50 {8, 16, 24}, {9, 11, 20}, {10, 12, 22}, {17, 23}
{13, 18, 19}, {14, 15, 21}

51 {8, 16, 24}, {9, 11, 20}, {10, 12, 22}, {17, 21}, {25}
{13, 15, 23}, {14, 18, 19}

52 {8, 16, 24}, {9, 11, 20}, {10, 12, 22}, {17, 21}, {23}
{13, 14, 25}, {15, 18, 19}

53 {8, 16, 24}, {9, 11, 20}, {10, 12, 22}, {17, 19}, {23, 26}
{13, 15, 25}, {14, 18, 21}

54 {8, 16, 24}, {9, 11, 20}, {10, 12, 22}, {17, 19}, {21, 26}
{13, 18, 23}, {14, 15, 25}

55 {8, 16, 24}, {9, 11, 20}, {10, 12, 22}, {15, 19}, {21, 26}, {27}
{13, 17, 25}, {14, 18, 23}

56 {8, 16, 24}, {9, 11, 20}, {10, 12, 22}, {15, 18}, {21, 25}, {27}
{13, 17, 26}, {14, 19, 23}
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t=6:
n modulo n connection sets

difference triples

55 {8, 21, 26}, {10, 20, 25}, {12, 19, 24}, {9, 11}
{13, 15, 27}, {14, 18, 23}, {16, 17, 22}

56 {8, 9, 17}, {10, 19, 27}, {11, 22, 23}, {15, 21}
{12, 20, 24}, {13, 18, 25}, {14, 16, 26}

57 {8, 15, 23}, {9, 16, 25}, {10, 17, 27}, {21, 22}, {28}
{11, 13, 24}, {12, 14, 26}, {18, 19, 20}

58 {8, 15, 23}, {9, 16, 25}, {10, 18, 28}, {20, 21}, {27}
{11, 13, 24}, {12, 14, 26}, {17, 19, 22}

59 {8, 15, 23}, {9, 16, 25}, {10, 18, 28}, {19, 21}, {27, 29}
{11, 13, 24}, {12, 14, 26}, {17, 20, 22}

60 {8, 15, 23}, {9, 16, 25}, {10, 18, 28}, {19, 20}, {27, 29}
{11, 13, 24}, {12, 14, 26}, {17, 21, 22}

61 {8, 15, 23}, {9, 16, 25}, {10, 18, 28}, {17, 21}, {27, 29}, {30}
{11, 13, 24}, {12, 14, 26}, {19, 20, 22}

62 {8, 15, 23}, {9, 16, 25}, {10, 18, 28}, {17, 20}, {27}, {29, 30}
{11, 13, 24}, {12, 14, 26}, {19, 21, 22}

We now deal with n ≥ 6t + 27. This implies 4q + h ≥ 6. Define St by St = {8, . . . , 3t + 13}.
The following table gives a partition πt of St into difference triples, a set Rt of two relatively
prime integers, and a difference quadruple Qt such that Qt can be partitioned into two pairs of
relatively prime integers.

t πt

3 {{8, 12, 20}, {9, 13, 22}, {10, 11, 21}, {14, 15, 16, 17}, {18, 19}}
4 {{8, 12, 20}, {9, 14, 23}, {10, 15, 25}, {11, 13, 24}, {16, 17, 18, 19}, {21, 22}}
5 {{8, 14, 22}, {9, 15, 24}, {10, 16, 26}, {11, 17, 28}, {12, 13, 25},

{18, 19, 20, 21}, {23, 27}}
6 {{8, 16, 24}, {9, 17, 26}, {10, 18, 28}, {11, 19, 30}, {12, 13, 25}, {14, 15, 29}

{20, 21, 22, 23}, {27, 31}}

Thus, 〈Rt〉n is a connected 4-regular Cayley graph, and so can be decomposed into 2 Hamilton
cycles using Theorem 1.7.1. Additionally 〈Qt〉n can be decomposed into two connected 4-
regular Cayley graphs, which in turn can be decomposed into Hamilton cycles using Theorem
1.7.1. It follows that there is a (3tn, 4n, n2)-decomposition, and a (3tn, n6)-decomposition of
〈St〉n. If q = 0, then we use the (3tn, n6)-decomposition of 〈St〉n, and if q ≥ 1, then we use the
(3tn, 4n, n2)-decomposition of 〈St〉n.

This leaves us needing an (nh−6)-decomposition of Kn − 〈{1, 2, 3, 4, 5, 6, 7} ∪ St〉n when q = 0,
and a (4(q−1)n, nh−2)-decomposition of Kn − 〈{1, 2, 3, 4, 5, 6, 7} ∪ St〉n when q ≥ 2. Note that
Kn−〈{1, 2, 3, 4, 5, 6, 7}∪St〉n is isomorphic to 〈{3t+14, . . . , bn

2
c}〉n, so the decomposition exists

by Lemma 1.7.7.

Case D3: Suppose that t ∈ {7, 8, 9, 10}. Redefine St by St = {8, . . . , 3t+ 11} when t ∈ {7, 8}
and St = {8, . . . , 3t+ 10} ∪ {3t+ 12} when t ∈ {9, 10}.
The case 6t+19 ≤ n ≤ 6t+22 is dealt with first, along with the cases (n, t) ∈ {(78, 9), (80, 9), (84, 10).
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Since h ≥ 2, it follows from 3t+ 4q + h = bn−1
2
c − 7 that in each of these cases we have q = 0.

The required decompositions are obtained by partitioning {8, . . . , bn
2
c} into t modulo n dif-

ference triples and a collection of connection sets for circulant graphs such that the circulant
graphs can be decomposed into Hamilton cycles (or Hamilton cycles and a perfect matching)
using the results in Section 1.7.1. Suitable partitions are given in the following tables.

t=7:

n modulo n connection sets
difference triples

61 {8, 18, 26}, {9, 19, 28}, {10, 20, 30}, {11, 16, 27}, {22, 24}
{12, 13, 25}, {14, 15, 29}, {17, 21, 23}

62 {8, 18, 26}, {9, 19, 28}, {10, 20, 30}, {11, 16, 27}, {21, 24}
{12, 13, 25}, {14, 15, 29}, {17, 22, 23}

63 {8, 18, 26}, {9, 19, 28}, {10, 20, 30}, {11, 16, 27}, {21, 23}, {31}
{12, 13, 25}, {14, 15, 29}, {17, 22, 24}

64 {8, 18, 26}, {9, 19, 28}, {10, 20, 30}, {11, 16, 27}, {21, 22}, {31}
{12, 13, 25}, {14, 15, 29}, {17, 23, 24}

t=8:

n modulo n connection sets
difference triples

67 {8, 18, 26}, {9, 20, 29}, {10, 21, 31}, {11, 22, 33}, {24, 30}
{12, 16, 28}, {13, 14, 27}, {15, 17, 32}, {19, 23, 25}

68 {8, 18, 26}, {9, 20, 29}, {10, 21, 31}, {11, 22, 33}, {23, 30}
{12, 16, 28}, {13, 14, 27}, {15, 17, 32}, {19, 24, 25}

69 {8, 18, 26}, {9, 20, 29}, {10, 21, 31}, {11, 25, 33}, {19, 30}, {34}
{12, 16, 28}, {13, 14, 27}, {15, 17, 32}, {22, 23, 24}

70 {8, 18, 26}, {9, 19, 28}, {10, 20, 30}, {11, 21, 32}, {24, 34, 35}, {33}
{12, 15, 27}, {13, 16, 29}, {14, 17, 31}, {22, 23, 25}
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t=9:

n modulo n connection sets
difference triples

73 {8, 20, 28}, {9, 21, 30}, {10, 23, 33}, {11, 24, 35}, {29, 36}
{12, 15, 27}, {13, 19, 32}, {14, 17, 31}, {16, 18, 34},

{22, 25, 26}
74 {8, 24, 32}, {9, 22, 31}, {10, 19, 29}, {11, 16, 27}, {30, 36, 37}
{12, 21, 33}, {13, 15, 28}, {14, 20, 34}, {17, 18, 35},

{23, 25, 26}
75 {8, 21, 29}, {9, 22, 31}, {10, 23, 33}, {11, 24, 35}, {26, 27}, {28}
{12, 25, 37}, {13, 17, 30}, {14, 18, 32}, {15, 19, 34},

{16, 20, 36}
76 {8, 20, 28}, {9, 21, 30}, {10, 23, 33}, {11, 24, 35}, {26, 36, 37}
{12, 15, 27}, {13, 19, 32}, {14, 17, 31}, {16, 18, 34},

{22, 25, 29}
78 {8, 21, 29}, {9, 22, 31}, {10, 23, 33}, {11, 24, 35}, {26, 27}, {28, 38, 39}
{12, 25, 37}, {13, 17, 30}, {14, 18, 32}, {15, 19, 34},

{16, 20, 36}
80 {8, 21, 29}, {9, 22, 31}, {10, 23, 33}, {11, 24, 35}, {26, 27}, {28, 38, 39}
{12, 25, 37}, {13, 17, 30}, {14, 18, 32}, {15, 19, 34},

{16, 20, 36}

t=10:

n modulo n connection sets
difference triples

79 {8, 21, 29}, {9, 22, 31}, {10, 23, 33}, {11, 26, 37}, {36, 39}
{12, 20, 32}, {13, 25, 38}, {14, 16, 30}, {15, 19, 34},

{17, 18, 35}, {24, 27, 28}
80 {8, 21, 29}, {9, 22, 31}, {10, 23, 33}, {11, 24, 35}, {37, 39}
{12, 26, 38}, {13, 17, 30}, {14, 18, 32}, {15, 19, 34},

{16, 20, 36}, {25, 27, 28}
81 {8, 20, 28}, {9, 22, 31}, {10, 23, 33}, {11, 24, 35}, {36, 39, 40}
{12, 26, 38}, {13, 17, 30}, {14, 18, 32}, {15, 19, 34},

{16, 21, 37}, {25, 27, 29}
82 {8, 22, 30}, {9, 23, 32}, {10, 24, 34}, {11, 25, 36}, {28, 29}, {35}
{12, 26, 38}, {13, 27, 40}, {14, 19, 33}, {15, 16, 31},

{17, 20, 37}, {18, 21, 39}
84 {8, 22, 30}, {9, 23, 32}, {10, 24, 34}, {11, 25, 36}, {28, 29}, {35, 41}
{12, 26, 38}, {13, 27, 40}, {14, 19, 33}, {15, 16, 31},

{17, 20, 37}, {18, 21, 39}

We now deal with n ≥ 6t+ 23 and (n, t) not covered earlier. This implies 4q+h ≥ 4. Define St
by St = {8, . . . , 3t+ 11} when t ∈ {7, 8} and St = {8, . . . , 3t+ 10}∪{3t+ 12} when t ∈ {9, 10}.
The following table gives a partition πt of St into difference triples and a difference quadruple
Qt such that Qt can be partitioned into two pairs of relatively prime integers.
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t πt

7 {{8, 18, 26}, {9, 19, 28}, {10, 20, 30}, {11, 21, 32}, {12, 15, 27}, {13, 16, 29},
{14, 17, 31}, {22, 23, 24, 25}}

8 {{8, 16, 24}, {9, 20, 29}, {10, 21, 31}, {11, 22, 33}, {12, 23, 35}, {13, 17, 30},
{14, 18, 32}, {15, 19, 34}, {25, 26, 27, 28}}

9 {{8, 20, 28}, {9, 21, 30}, {10, 25, 35}, {11, 18, 29}, {12, 19, 31}, {13, 24, 37},
{14, 22, 36}, {15, 17, 32}, {16, 23, 39}, {26, 27, 33, 34}}

10 {{8, 22, 30}, {9, 23, 32}, {10, 24, 34}, {11, 25, 36}, {12, 21, 33}, {13, 18, 31},
{14, 26, 40}, {15, 27, 42}, {16, 19, 35}, {17, 20, 37}, {28, 29, 38, 39}}

Thus, 〈Qt〉n can be decomposed into two connected 4-regular Cayley graphs, which in turn can
be decomposed into Hamilton cycles using Theorem 1.7.1. It follows that there is a (3tn, 4n)-
decomposition, and a (3tn, n4)-decomposition of 〈St〉n. If q = 0, then we use the (3tn, n4)-
decomposition of 〈St〉n, and if q ≥ 1, then we use the (3tn, 4n)-decomposition of 〈St〉n.

This leaves us needing an (nh−4)-decomposition of Kn − 〈{1, 2, 3, 4, 5, 6, 7} ∪ St〉n when q = 0,
and a (4(q−1)n, nh)-decomposition of Kn − 〈{1, 2, 3, 4, 5, 6, 7} ∪ St〉n when q ≥ 1. Note that
Kn − 〈{1, 2, 3, 4, 6, 7} ∪ St〉n is isomorphic to

• 〈{3t+ 12, . . . , bn
2
c}〉n when t ∈ {7, 8}; and

• 〈{3t+ 11} ∪ {3t+ 13, . . . , bn
2
c}〉n when t ∈ {9, 10}.

When t ∈ {7, 8} the required decomposition exists by Lemma 1.7.7. When t ∈ {9, 10} and the
required number of Hamilton cycles (that is, h − 4 when q = 0 and h when q ≥ 1) is at least
2, the required decomposition exists by Lemma 1.7.8. So we need to consider only the cases
where q = 0, h ∈ {4, 5} and t ∈ {9, 10}.
Since 3t + 4q + h = bn−1

2
c − 7, and since we have already dealt with the cases where (n, t) ∈

{(78, t), (80, 9), (84, 10)}, this leaves us with the cases where

(n, t, h) ∈ {(77, 9, 4), (79, 9, 5), (83, 10, 4), (85, 10, 5), (86, 10, 5)}.

In the cases (n, t, h) ∈ {(77, 9, 4), (83, 10, 4)} we have that h − 4 (the required number of
Hamilton cycles) is 0 and n is odd, and in the case (n, t, h) ∈ {(79, 9, 5), (85, 10, 5), (86, 10, 5)}
we have that h− 4 (the required number of Hamilton cycles) is 1 and n ≡ 1, 2, 7 (mod 12). So
in all these cases the required decompositions exist by Lemma 1.7.8.

Case D4: Suppose that t ∈ {11, 12, 13, 14}. Define St by St = {8, . . . , 3t+ 9}
The following table gives a partition πt of St into difference triples and a set Qt such that Qt

can be partitioned into two pairs of relatively prime integers.
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t πt

11 {{8, 24, 32}, {9, 25, 34}, {10, 26, 36}, {11, 27, 38}, {12, 28, 40}, {13, 29, 42},
{14, 19, 33}, {15, 20, 35}, {16, 21, 37}, {17, 22, 39}, {18, 23, 41}, {30, 31}}

12 {{8, 26, 34}, {9, 27, 36}, {10, 28, 38}, {11, 24, 35}, {12, 29, 41}, {13, 30, 43},
{14, 31, 45}, {15, 18, 33}, {16, 21, 37}, {17, 23, 40}, {19, 25, 44}, {20, 22, 42},

{32, 39}}
13 {{8, 26, 34}, {9, 27, 36}, {10, 28, 38}, {11, 29, 40}, {12, 30, 42}, {13, 31, 44},
{14, 32, 46}, {15, 33, 48}, {16, 21, 37}, {17, 22, 39}, {18, 23, 41}, {19, 24, 43},

{20, 25, 45}, {35, 47}}
14 {{8, 28, 36}, {9, 29, 38}, {10, 30, 40}, {11, 31, 42}, {12, 32, 44}, {13, 33, 46},
{14, 34, 48}, {15, 35, 50}, {16, 23, 39}, {17, 24, 41}, {18, 19, 37}, {20, 25, 40},

{21, 26, 47}, {22, 27, 49}, {43, 51}}

Thus, 〈Qt〉n is a connected 4-regular Cayley graph, which in turn can be decomposed into two
Hamilton cycles using Theorem 1.7.1. It follows that there is a (3tn, n2)-decomposition of 〈St〉n,
which leaves us needing an (nh−2)-decomposition of Kn − 〈{1, 2, 3, 4, 5, 6, 7} ∪ St〉n. Note that
Kn−〈{1, 2, 3, 4, 6, 7}∪St〉n is isomorphic to 〈{3t+10, . . . , bn

2
c}〉n so the required decomposition

exists by Lemma 1.7.7.

Case D5: Suppose that t ≥ 15. Redefine St by St = {8, . . . , 3t + 7} when t ≡ 0, 3 (mod 4),
and St = {8, . . . , 3t+6}∪{3t+8} when t ≡ 1, 2 (mod 4). We now obtain a (3tn)-decomposition
of 〈St〉n.

For t ≡ 0, 3 (mod 4) (respectively t ≡ 1, 2 (mod 4)), we can obtain a (3t)n)-decomposition
of 〈St〉n by using a Langford sequence (respectively hooked Langford sequence) of order t and
defect 8, which exists since t ≥ 15, to partition St into difference triples (see [90, 91]). So we have
a (3tn)-decomposition of 〈St〉n, and require a (4qn, nh)-decomposition of Kn−〈{1, 2, 3, 4, 5, 6, 7}∪
St〉n. Since Kn − 〈{1, 2, 3, 4, 5, 6, 7} ∪ St〉n is isomorphic to

• 〈{3t+ 8, . . . , bn
2
c}〉n when t ≡ 0, 3 (mod 4); and

• 〈{3t+ 7} ∪ {3t+ 9, . . . , bn
2
c}〉n when t ≡ 1, 2 (mod 4);

this decomposition exists by Lemma 1.7.7 or 1.7.8.

1.7.3 Proof of Lemma 1.3.7

We now prove Lemma 1.3.7, which we restate here for convenience.

Lemma 1.3.7 If S ∈ {{1, 2, 3, 4}, {1, 2, 3, 4, 6}, {1, 2, 3, 4, 5, 7}, {1, 2, 3, 4, 5, 6, 7}, {1, 2, 3, 4, 5, 6, 7, 8}}
and n ≥ 2 max(S) + 1, r ≥ 0 and h ≥ 2 are integers satisfying 5r+ h = bn−1

2
c− |S|, then there

is a (5rn, nh)-decomposition of Kn − 〈S〉n.

Proof We give the proof for each

S ∈ {{1, 2, 3, 4}, {1, 2, 3, 4, 5, 7}, {1, 2, 3, 4, 5, 6, 7}, {1, 2, 3, 4, 5, 6, 7, 8}}
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separately.

Case A: (S = {1, 2, 3, 4})
The conditions h ≥ 2 and 5r + h = bn−1

2
c − 4 imply n ≥ 10r + 13. If r = 0, then the result

follows immediately by Lemma 1.7.4 (n odd) or Lemma 1.7.5 (n even). Thus, we assume r ≥ 1.

Define Sr by Sr = {5, . . . , 5r + 4} when r ≡ 0, 3 (mod 4), and Sr = {5, . . . , 5r + 3} ∪ {5r + 5}
when r ≡ 1, 2 (mod 4). We now obtain a (5rn)-decomposition 〈Sr〉n by partitioning Sr into
difference quintuples. We have constructed such a partition πr of S for 1 ≤ r ≤ 6, shown in
Table A.27 in the appendix, and thus assume r ≥ 7.

For r ≡ 0, 3 (mod 4), we take a Langford sequence of order r and defect 4, which exists since
r ≥ 7 (see [90, 91]), and use it to partition {4, . . . , 3r + 3} into r difference triples. We then
add 1 to each element of each of these triples to obtain a partition of {5, . . . , 3r + 4} into r
triples of the form {a, b, c} where a + b = c + 1. It is easy to construct the required partition
of {5, . . . , 5r + 4} into difference quintuples from this by partitioning {3r + 5, . . . , 5r + 4} into
r pairs of consecutive integers.

For r ≡ 1, 2 (mod 4), we take a hooked Langford sequence of order r and defect 4, which
exists since r ≥ 7 (see [90, 91]), and use it to partition {4, . . . , 3r + 2} ∪ {3r + 4} into r
difference triples. We then add 1 to each element of each of these triples, except the element
3r + 4, to obtain a partition of {5, . . . , 3r + 4} into r − 1 triples of the form {a, b, c} where
a + b = c + 1, and one triple of the form {a, b, c} where a + b = c + 2. It is easy to construct
the required partition of {5, . . . , 5r + 3} ∪ {5r + 5} into difference quintuples from this by
partitioning {3r+ 5, . . . , 5r+ 3}∪{5r+ 5} into r− 1 pairs of consecutive integers, and the pair
{5r + 3, 5r + 5}. The pair {5r + 3, 5r + 5} combines with the triple of the form {a, b, c} where
a+ b = c+ 2 to form a difference quintuple.

So we have a (5rn)-decomposition of 〈Sr〉n, and require an (nh)-decomposition ofKn−〈{1, 2, 3, 4}∪
Sr〉n. Note that Kn − 〈{1, 2, 3, 4} ∪ Sr〉n is isomorphic to

• 〈{5r + 5, . . . , bn
2
c}〉n when r ≡ 0, 3 (mod 4); and

• 〈{5r + 4} ∪ {5r + 6, . . . , bn
2
c}〉n when r ≡ 1, 2 (mod 4).

If r ≡ 0, 3 (mod 4), then the decomposition exists by Lemma 1.3.5. If r ≡ 1, 2 (mod 4), then
the decomposition exists by Lemma 1.7.4 (n odd) or Lemma 1.7.5 (n even).

Case B: (S = {1, 2, 3, 4, 6})
The conditions h ≥ 2 and 5r + h = bn−1

2
c − 5 imply n ≥ 10r + 15. If r = 0, then the result

follows immediately by Lemma 1.7.4 (n odd) or Lemma 1.7.5 (n even). Thus, we assume r ≥ 1.

Define Sr by Sr = {5}∪{7, . . . , 5r+ 5} when r ≡ 2, 3 (mod 4), and Sr = {5}∪{7, . . . , 5r+ 4}∪
{5r+ 6} when r ≡ 0, 1 (mod 4). We now obtain a (5rn)-decomposition 〈Sr〉n by partitioning Sr
into difference quintuples. We have constructed such a partition of S for 1 ≤ r ≤ 30 with the
aid of a computer, shown in Table A.28 in the appendix, and thus assume r ≥ 31.

For r ≥ 31 we first partition Sr into {5} ∪ {7, . . . , 15} = S2 and Sr \ S2. We have already
noted that S2 can be partitioned into difference quintuples, so we only need to partition Sr \S2

into difference quintuples. Note that Sr \ S2 = {16, . . . , 5r + 5} when r ≡ 2, 3 (mod 4), and
Sr \ S2 = {16, . . . , 5r + 4} ∪ {5r + 6} when r ≡ 0, 1 (mod 4).

For r ≡ 2, 3 (mod 4), we take a Langford sequence of order r − 2 and defect 15, which exists
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since r ≥ 31 (see [90, 91]), and use it to partition {15, . . . , 3r+8} into r−2 difference triples. We
then add 1 to each element of each of these triples to obtain a partition of {16, . . . , 3r+ 9} into
r−2 triples of the form {a, b, c} where a+b = c+1. It is easy to construct the required partition
of {16, . . . , 5r+5} into difference quintuples from this by partitioning {3r+10, . . . , 5r+5} into
r − 2 pairs of consecutive integers.

For r ≡ 0, 1 (mod 4), we take a hooked Langford sequence of order r − 2 and defect 15, which
exists since r ≥ 31 (see [90, 91]), and use it to partition {15, . . . , 3r + 7} ∪ {3r + 9} into r − 2
difference triples. We then add 1 to each element of each of these triples, except the element
3r + 9, to obtain a partition of {16, . . . , 3r + 9} into r − 3 triples of the form {a, b, c} where
a + b = c + 1, and one triple of the form {a, b, c} where a + b = c + 2. It is easy to construct
the required partition of {16, . . . , 5r + 4} ∪ {5r + 6} into difference quintuples from this by
partitioning {3r + 10, . . . , 5r + 4} ∪ {5r + 6} into r − 3 pairs of consecutive integers, and the
pair {5r + 4, 5r + 6}. The pair {5r + 4, 5r + 6} combines with the triple of the form {a, b, c}
where a+ b = c+ 2 to form a difference quintuple.

So we have a (5rn)-decomposition of 〈Sr〉n, and require an (nh)-decomposition ofKn−〈{1, 2, 3, 4, 6}∪
Sr〉n. Note that Kn − 〈{1, 2, 3, 4, 6} ∪ Sr〉n is isomorphic to

• 〈{5r + 6, . . . , bn
2
c}〉n when r ≡ 2, 3 (mod 4); and

• 〈{5r + 5} ∪ {5r + 7, . . . , bn
2
c}〉n when r ≡ 0, 1 (mod 4).

If r ≡ 2, 3 (mod 4), then the decomposition exists by Lemma 1.3.5. If r ≡ 0, 1 (mod 4), then
the decomposition exists by Lemma 1.7.4 (n odd) or Lemma 1.7.5 (n even).

Case C: (S = {1, 2, 3, 4, 5, 7})
The conditions h ≥ 2 and 5r + h = bn−1

2
c − 6 imply n ≥ 10r + 17. If r = 0, then the result

follows immediately by Lemma 1.7.4 (n odd) or Lemma 1.7.5 (n even). Thus, we assume r ≥ 1.

If r = 1 we define S1 = {6, 8, 9, 10, 11, 12, 13}. Since {6, 8, 9, 10, 13} is a difference quintuple
and 〈{11, 12}〉n has a decomposition into Hamilton cycles (by Lemma 1.7.1), there is a (5n, n2)-
decomposition of 〈S1〉n. If h = 2, then we are finished. Otherwise, we use Lemma 1.7.1 to
obtain an (nh−2)-decomposition of 〈14, . . . , bn

2
c〉n and we are finished.

If r ≥ 2, define Sr by Sr = {6} ∪ {8, . . . , 5r + 6} when r ≡ 1, 2 (mod 4), and Sr = {6} ∪
{8, . . . , 5r + 5} ∪ {5r + 7} when r ≡ 0, 3 (mod 4). We now obtain a (5rn)-decomposition 〈Sr〉n
by partitioning Sr into difference quintuples. We have constructed such a partition of S for
1 ≤ r ≤ 32 with the aid of a computer, shown in Table A.29 in the appendix, and thus assume
r ≥ 33.

For r ≥ 33 we first partition Sr into {6} ∪ {8, . . . , 16} = S2 and Sr \ S2. We have already
noted that S2 can be partitioned into difference quintuples, so we only need to partition Sr \S2

into difference quintuples. Note that Sr \ S2 = {17, . . . , 5r + 6} when r ≡ 1, 2 (mod 4), and
Sr \ S2 = {17, . . . , 5r + 5} ∪ {5r + 7} when r ≡ 0, 3 (mod 4).

For r ≡ 1, 2 (mod 4), we take a Langford sequence of order r − 2 and defect 16, which exists
since r ≥ 33 (see [90, 91]), and use it to partition {16, . . . , 3r+9} into r−2 difference triples. We
then add 1 to each element of each of these triples to obtain a partition of {17, . . . , 3r+10} into
r−2 triples of the form {a, b, c} where a+b = c+1. It is easy to construct the required partition
of {17, . . . , 5r+6} into difference quintuples from this by partitioning {3r+11, . . . , 5r+6} into
r − 2 pairs of consecutive integers.
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For r ≡ 0, 3 (mod 4), we take a hooked Langford sequence of order r − 2 and defect 16, which
exists since r ≥ 33 (see [90, 91]), and use it to partition {16, . . . , 3r+ 8} ∪ {3r+ 10} into r− 2
difference triples. We then add 1 to each element of each of these triples, except the element
3r + 10, to obtain a partition of {17, . . . , 3r + 10} into r − 3 triples of the form {a, b, c} where
a + b = c + 1, and one triple of the form {a, b, c} where a + b = c + 2. It is easy to construct
the required partition of {17, . . . , 5r + 5} ∪ {5r + 7} into difference quintuples from this by
partitioning {3r + 11, . . . , 5r + 5} ∪ {5r + 7} into r − 3 pairs of consecutive integers, and the
pair {5r + 5, 5r + 7}. The pair {5r + 5, 5r + 7} combines with the triple of the form {a, b, c}
where a+ b = c+ 2 to form a difference quintuple.

So we have a (5rn)-decomposition of 〈Sr〉n, and require an (nh)-decomposition ofKn−〈{1, 2, 3, 4, 5, 7}∪
Sr〉n. Note that Kn − 〈{1, 2, 3, 4, 5, 7} ∪ Sr〉n is isomorphic to

• 〈{5r + 7, . . . , bn
2
c}〉n when r ≡ 1, 2 (mod 4); and

• 〈{5r + 6} ∪ {5r + 8, . . . , bn
2
c}〉n when r ≡ 0, 3 (mod 4).

If r ≡ 1, 2 (mod 4), then the decomposition exists by Lemma 1.3.5. If r ≡ 0, 3 (mod 4), then
the decomposition exists by Lemma 1.7.4 (n odd) or Lemma 1.7.5 (n even).

Case D: (S = {1, 2, 3, 4, 5, 6, 7})
The conditions h ≥ 2 and 5r + h = bn−1

2
c − 7 imply n ≥ 10r + 19. If r = 0, then the result

follows immediately by Lemma 1.7.4 (n odd) or Lemma 1.7.5 (n even). Thus, we assume r ≥ 1.

If r = 1 we define S1 = {8, 9, 10, 11, 12, 13, 14}. Since {8, 9, 10, 13, 14} is a difference quintuple
and 〈{11, 12}〉n has a decomposition into Hamilton cycles (by Lemma 1.7.1), there is a (5n, n2)-
decomposition of 〈S1〉n. If h = 2, then we are finished. Otherwise, we use Lemma 1.7.1 to
obtain an (nh−2)-decomposition of 〈14, . . . , bn

2
c〉n and we are finished.

If r ≥ 2, define Sr by Sr = {8, . . . , 5r + 7} when r ≡ 0, 1 (mod 4), and Sr = {8, . . . , 5r + 6} ∪
{5r+ 8} when r ≡ 2, 3 (mod 4). We now obtain a (5rn)-decomposition 〈Sr〉n by partitioning Sr
into difference quintuples. We have constructed such a partition of S for 2 ≤ r ≤ 12 with the
aid of a computer, shown in Table A.30 in the appendix, and thus we assume r ≥ 13.

For r ≡ 0, 1 (mod 4), we take a Langford sequence of order r and defect 7, which exists since
r ≥ 13 (see [90, 91]), and use it to partition {7, . . . , 3r + 6} into r difference triples. We then
add 1 to each element of each of these triples to obtain a partition of {8, . . . , 3r + 7} into r
triples of the form {a, b, c} where a + b = c + 1. It is easy to construct the required partition
of {8, . . . , 5r + 7} into difference quintuples from this by partitioning {3r + 8, . . . , 5r + 7} into
r pairs of consecutive integers.

For r ≡ 2, 3 (mod 4), we take a hooked Langford sequence of order r and defect 7, which
exists since r ≥ 13 (see [90, 91]), and use it to partition {7, . . . , 3r + 5} ∪ {3r + 7} into r
difference triples. We then add 1 to each element of each of these triples, except the element
3r + 7, to obtain a partition of {8, . . . , 3r + 7} into r − 1 triples of the form {a, b, c} where
a + b = c + 1, and one triple of the form {a, b, c} where a + b = c + 2. It is easy to construct
the required partition of {8, . . . , 5r + 6} ∪ {5r + 8} into difference quintuples from this by
partitioning {3r+ 8, . . . , 5r+ 6}∪{5r+ 8} into r− 1 pairs of consecutive integers, and the pair
{5r + 6, 5r + 8}. The pair {5r + 6, 5r + 8} combines with the triple of the form {a, b, c} where
a+ b = c+ 2 to form a difference quintuple.

So we have a (5rn)-decomposition of 〈Sr〉n, and require an (nh)-decomposition ofKn−〈{1, 2, 3, 4, 5, 6, 7}∪
Sr〉n. Note that Kn − 〈{1, 2, 3, 4, 5, 6, 7} ∪ Sr〉n is isomorphic to
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• 〈{5r + 8, . . . , bn
2
c}〉n when r ≡ 0, 1 (mod 4); and

• 〈{5r + 7} ∪ {5r + 9, . . . , bn
2
c}〉n when r ≡ 2, 3 (mod 4).

If r ≡ 0, 1 (mod 4), then the decomposition exists by Lemma 1.3.5. If r ≡ 2, 3 (mod 4), then
the decomposition exists by Lemma 1.7.4 (n odd) or Lemma 1.7.5 (n even).

Case E: (S = {1, 2, 3, 4, 5, 6, 7, 8})
The conditions h ≥ 2 and 5r + h = bn−1

2
c − 8 imply n ≥ 10r + 21. If r = 0, then the result

follows immediately by Lemma 1.7.4 (n odd) or Lemma 1.7.5 (n even). Thus, we assume r ≥ 1.

For r = 1 and n ∈ {31, 32, 33, 34}, we firstly have the following results. For n = 31, we can
obtain the required decomposition by noting that {9, 11, 13, 14, 15} is a modulo 31 difference
quintuple and that 〈{10, 12}〉n has a Hamilton cycle decomposition by Lemma 1.7.1.

For n = 32, we can obtain the required decomposition by noting that {10, 12, 13, 14, 15} is
a modulo 32 difference quintuple and that 〈{9, 11}〉n has a Hamilton cycle decomposition by
Lemma 1.7.1.

For n ∈ {33, 34}, we can obtain the required decomposition by noting that {9, 10, 12, 15, 16} is
a difference quintuple, that 〈{11, 14}〉n has a Hamilton cycle decomposition by Lemma 1.7.1,
and 〈{13}〉n is a Hamilton cycle.

For r = 1 and n ≥ 35, we define S1 = {9, . . . , 17}. Since {9, 10, 11, 14, 16} is a difference
quintuple and each of 〈{12, 13}〉n and 〈{15, 17}〉n has a decomposition into Hamilton cycles
(by Lemma 1.7.1), there is a (5n, n4)-decomposition of 〈S1〉n. If h = 4, then we are finished.
Otherwise, we use Lemma 1.7.1 to obtain an (nh−4)-decomposition of 〈18, . . . , bn

2
c〉n and we are

finished.

For r = 2, we define S2 = {9, . . . , 20}. Since {9, 11, 14, 16, 18} and {10, 12, 13, 15, 20} are both
difference quintuples and 〈{17, 19}〉n has a decomposition into Hamilton cycles (by Lemma
1.7.1), there is a (52n, n2)-decomposition of 〈S2〉n. If h = 2, then we are finished. Otherwise,
we use Lemma 1.7.1 to obtain an (nh−2)-decomposition of 〈18, . . . , bn

2
c〉n and we are finished.

For r ≥ 3, define Sr by Sr = {9, . . . , 5r+ 8} when r ≡ 0, 3 (mod 4), and Sr = {9, . . . , 5r+ 7} ∪
{5r+ 9} when r ≡ 1, 2 (mod 4). We now obtain a (5rn)-decomposition 〈Sr〉n by partitioning Sr
into difference quintuples. We have constructed such a partition of S for 3 ≤ r ≤ 14 with the
aid of a computer, shown in Table A.31 in the appendix, and thus assume r ≥ 15.

For r ≡ 0, 3 (mod 4), we take a Langford sequence of order r and defect 8, which exists since
r ≥ 15 (see [90, 91]), and use it to partition {8, . . . , 3r + 7} into r difference triples. We then
add 1 to each element of each of these triples to obtain a partition of {9, . . . , 3r + 8} into r
triples of the form {a, b, c} where a + b = c + 1. It is easy to construct the required partition
of {9, . . . , 5r + 8} into difference quintuples from this by partitioning {3r + 9, . . . , 5r + 8} into
r pairs of consecutive integers.

For r ≡ 1, 2 (mod 4), we take a hooked Langford sequence of order r and defect 8, which
exists since r ≥ 15 (see [90, 91]), and use it to partition {8, . . . , 3r + 6} ∪ {3r + 8} into r
difference triples. We then add 1 to each element of each of these triples, except the element
3r + 8, to obtain a partition of {9, . . . , 3r + 8} into r − 1 triples of the form {a, b, c} where
a + b = c + 1, and one triple of the form {a, b, c} where a + b = c + 2. It is easy to construct
the required partition of {9, . . . , 5r + 7} ∪ {5r + 9} into difference quintuples from this by
partitioning {3r+ 9, . . . , 5r+ 7}∪{5r+ 8} into r− 1 pairs of consecutive integers, and the pair
{5r + 7, 5r + 9}. The pair {5r + 7, 5r + 9} combines with the triple of the form {a, b, c} where
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a+ b = c+ 2 to form a difference quintuple.

So we have a (5rn)-decomposition of 〈Sr〉n, and require an (nh)-decomposition ofKn−〈{1, 2, 3, 4, 5, 6, 7, 8}∪
Sr〉n. Note that Kn − 〈{1, 2, 3, 4, 5, 6, 7, 8} ∪ Sr〉n is isomorphic to

• 〈{5r + 9, . . . , bn
2
c}〉n when r ≡ 0, 3 (mod 4); and

• 〈{5r + 8} ∪ {5r + 10, . . . , bn
2
c}〉n when r ≡ 1, 2 (mod 4).

If r ≡ 0, 3 (mod 4), then the decomposition exists by Lemma 1.3.5. If r ≡ 1, 2 (mod 4), then
the decomposition exists by Lemma 1.7.4 (n odd) or Lemma 1.7.5 (n even).
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Chapter 2

Bipartite 2-factorizations of complete
multipartite graphs

2.1 Introduction

A spanning subgraph of a graph is called a factor, a k-regular factor is called a k-factor,
and a decomposition into edge-disjoint k-factors is called a k-factorisation. This chapter is
concerned with 2-factorisations of complete multipartite graphs in which the 2-factors are all
isomorphic to a given 2-factor. We shall refer to this problem as the Oberwolfach Problem
for complete multipartite graphs, because it is a natural extension from complete graphs to
complete multipartite graphs of the well-known Oberwolfach Problem, which arose out of a
seating arrangement problem posed by Ringel at a graph theory meeting in Oberwolfach in
1967. The Oberwolfach Problem for complete multipartite graphs has been studied previously
and we shall discuss known results shortly. The purpose of this chapter is to give a complete
solution (see Theorem 2.3.5) in the case where the given 2-factor is bipartite (equivalently,
where the given 2-factor is a disjoint union of cycles of even length).

The complete multipartite graph with r parts of cardinalities s1, s2, . . . , sr is denoted byKs1,s2,...,sr ,
and the notation Ksr is used rather than Ks1,s2,...,sr when s1 = s2 = · · · = sr = s. The
2-regular graph consisting of t disjoint cycles of lengths m1,m2, . . . ,mt will be denoted by
[m1,m2, . . . ,mt], and exponents may be used to indicate multiple cycles of the same length.
For example, [4, 4, 6, 6, 6, 10] may be denoted by [42, 63, 10]. Throughout this chapter, the
meaning of any notation involving an exponent is as defined in this paragraph.

A 2-factorisation in which each 2-factor is a single cycle is a Hamilton decomposition. Auerbach
and Laskar [70] proved in 1976 that a complete multipartite graph has a Hamilton decomposi-
tion if and only if it is regular of even degree.

Theorem 2.1.1. ([70]) A complete multipartite graph has a Hamilton decomposition if and
only if it is regular of even degree.

The complete multipartite graph with n parts each consisting of a single vertex is the complete
graph on n vertices which is denoted by Kn. The problem of finding a 2-factorisation of Kn

in which the 2-factors are isomorphic to a given 2-factor F is the Oberwolfach Problem. The
Oberwolfach Problem has been completely settled for infinitely many values of n [40], when F
consists of cycles of uniform length [8], and in many other special cases. The known results on
the Oberwolfach Problem up to 2007 can be found in the survey [39], and several new results
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appearing after [39] was published are cited in the introduction of [26].

If n is even, then Kn has odd degree and no 2-factorisation exists. However, if F is any given
2-regular graph on n vertices where n is even, then one may ask instead for a factorisation of
Kn into n−2

2
copies of F and a 1-factor. The Oberwolfach Problem is now usually considered

to include this problem, and solutions are equivalent to 2-factorisations of the complete mul-
tipartite graph with n

2
parts of cardinality 2. The status of the problem is similar to that of

the Oberwolfach Problem for n odd (see the survey [39] and the references cited in [26]), with
a notable exception being that the problem has been completely settled in all cases where F is
bipartite [25, 58]. Of course, F is never bipartite when n is odd.

Theorem 2.1.2. ([25, 58]) If F is a bipartite 2-regular graph of order 2r, then the complete
multipartite graph K2r has a 2-factorisation into F .

Piotrowski [82] has completely settled the Oberwolfach Problem for complete bipartite graphs.
Obviously, the 2-factors are necessarily bipartite in this problem.

Theorem 2.1.3. ([82]) If F is a bipartite 2-regular graph of order 2n, then the complete bipartite
graph Kn,n has a 2-factorisation into F except when n = 6 and F ∼= [6, 6].

The Oberwolfach Problem for complete multipartite graphs has also been completely settled,
by Liu [73], for cases where the 2-factors consist of cycles of uniform length.

Theorem 2.1.4. ([73]) The complete multipartite graph Knr , r ≥ 2, has a 2-factorisation into
2-factors composed of k-cycles if and only if k divides rn, (r − 1)n is even, k is even when
r = 2, and (k, r, n) is none of (3, 3, 2), (3, 6, 2), (3, 3, 6), (6, 2, 6).

In Theorem 2.3.5, we generalise Theorems 2.1.2 and 2.1.3, completely settling the Oberwolfach
Problem for complete multipartite graphs in the case of bipartite 2-factors.

2.2 Notation and preliminaries

Let Γ be a finite group. A Cayley subset of Γ is a subset which does not contain the identity
and which is closed under taking of inverses. If S is a Cayley subset of Γ, then the Cayley graph
on Γ with connection set S, denoted Cay(Γ, S), has the elements of Γ as its vertices and there
is an edge between vertices g and h if and only if g = h+ s for some s ∈ S.

We need the following two results on Hamilton decompositions of Cayley graphs. The first was
proved by Bermond et al [18], and the second by Dean [53]. Both results address the open
question of whether every connected Cayley graph of even degree on a finite abelian group has
a Hamilton decomposition [4].

Theorem 2.2.1. ([18]) Every connected 4-regular Cayley graph on a finite abelian group has a
Hamilton decomposition.

Theorem 2.2.2. ([53]) Every 6-regular Cayley graph on a cyclic group which has a generator
of the group in its connection set has a Hamilton decomposition.

A Cayley graph on a cyclic group is called a circulant graph and we will be using these, and
certain subgraphs of them, frequently. Thus, we introduce the following notation. The length
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of an edge {x, y} in a graph with vertex set Zm is defined to be either x− y or y−x, whichever
is in {1, 2, . . . , bm

2
c} (calculations in Zm). When m is even and s ≤ m−2

2
, we call {{x, x + s} :

x = 0, 2, . . . ,m − 2} the even edges of length s and we call {{x, x + s} : x = 1, 3, . . . ,m − 1}
the odd edges of length s. Note that elsewhere in the literature, the term “even (odd) edges”
has sometimes been used for edges of even (odd) length.

For any m ≥ 3 and any S ⊆ {1, 2, . . . , bm
2
c}, we denote by 〈S〉m the graph with vertex set Zm

and edge set consisting of the edges of length s for each s ∈ S, that is, 〈S〉m = Cay(Zm, S∪−S).
For m even, if we wish to include in our graph only the even edges of length s then we give
s the superscript “e”. Similarly, if we wish to include only the odd edges of length s then we
give s the superscript “o”. For example, the graph 〈{1, 2o, 5e}〉12 is shown in Figure 2.1.
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Figure 2.1: The graph 〈{1, 2o, 5e}〉12

The wreath product G oH of graphs G and H is the graph with vertex set V (G) × V (H) and
edge set given by joining (g1, h1) to (g2, h2) precisely when g1 is joined to g2 in G or g1 = g2 and
h1 is joined to h2 in H. We will be dealing frequently with the wreath product of a graph K
and the empty graph with vertex set Z2, so we introduce the following special notation for this
graph. The graph K(2) is defined by V (K(2)) = V (K) × Z2 and E(K(2)) = {{(x, a), (y, b)} :
{x, y} ∈ E(K), a, b ∈ Z2}. It is easy to see that Cay(Γ, S)(2) ∼= Cay(Γ × Z2, S × Z2). If

F = {F1, F2, . . . , Ft} is a set of graphs, then we define F (2) = {F (2)
1 , F

(2)
2 , . . . , F

(2)
t }. Note that

if F is a factorisation of K, then F (2) is a factorisation of K(2).

Häggkvist [58] observed that for any bipartite 2-regular graph F on 2m vertices, there is a

2-factorisation of C
(2)
m into two copies of F . The following very useful result, on which many

of our constructions depend, is an immediate consequence of Häggkvist’s observation and the
fact that F (2) is a factorisation of K(2) when F is a factorisation of K. If F is a Hamilton
decomposition of K, then we obtain a 4-factorisation of K(2) into copies of C

(2)
m (where m is the

number of vertices in K), and we then obtain the required 2-factorisation of K(2) by factorising

each copy of C
(2)
m into two copies of the required bipartite 2-regular graph.

Lemma 2.2.3. ([58]) If there is a Hamilton decomposition of K, then for each bipartite 2-
regular graph F of order |V (K(2))|, there is a 2-factorisation of K(2) into F .

2.3 Main Result

We begin this section with two results on factorisations of Kmr in cases where Kmr has odd
degree. Note that Kmr has odd degree if and only if m is odd and r is even. In Lemma 2.3.1 the
factorisation is into Hamilton cycles and a 3-factor isomorphic to 〈{1, 3e}〉rm, and in Lemma
2.3.2 the factorisation is into Hamilton cycles and a 5-factor isomorphic to 〈{1, 2, 3e}〉rm. These
factorisations are used in the proof of Theorem 2.3.5.
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Lemma 2.3.1. For each even r ≥ 4 and each odd m ≥ 1, except (r,m) = (4, 1), there is a

factorisation of Kmr into (r−1)m−3
2

Hamilton cycles and a copy of 〈{1, 3e}〉rm.

Proof First observe that Kmr ∼= 〈{1, 2, . . . , rm2 } \ {r, 2r, . . . , m−12
r}〉rm. The cases rm ≡

0 ( mod 4) and rm ≡ 2 ( mod 4) are dealt with separately. For rm ≡ 2 ( mod 4) it is easy to
verify that the mapping ψ : Zrm 7→ Zrm given by

ψ(x) =


x
2

if x ≡ 0 ( mod 4)
rm
2

+
⌊
x
2

⌋
if x ≡ 1, 2 ( mod 4)

x−1
2

if x ≡ 3 ( mod 4)

is an isomorphism from 〈{1, 3e}〉rm to 〈{1, rm
2
}〉rm. So in the case rm ≡ 2 ( mod 4) it is sufficient

to show that 〈{2, 3, . . . , rm
2
− 1} \ {r, 2r, . . . , m−1

2
r}〉m has a Hamilton decomposition.

Consider the sequence S = s1, s2, . . . , st (where t = (rm − m − 3)/2) whose terms are the
elements of

{2, 3, . . . , rm
2
− 1} \ {r, 2r, . . . , m−1

2
r}

arranged in ascending order. Note that since r is even, consecutive terms in S are relatively
prime. Thus, if a and b are consecutive terms in S, then 〈{a, b}〉rm is connected and thus has
a Hamilton decomposition by Theorem 2.2.1. Also, since we are in the case rm ≡ 2 ( mod 4),
we have st−1 = rm

2
− 2 and gcd( rm

2
− 2, rm) = 1. Thus, 〈{st−2, st−1, st}〉rm has a Hamilton

decomposition by Theorem 2.2.2.

In view of the arguments in the preceding paragraph, we can obtain the required Hamilton
decomposition of 〈{2, 3, . . . , rm

2
− 1} \ {r, 2r, . . . , m−1

2
r}〉m by factoring it into Hamilton decom-

posable 4-regular graphs of the form 〈{a, b}〉rm where a and b are consecutive terms of S, and,
in the case where the number of terms of S is odd, the Hamilton decomposable 6-regular graph
〈{st−2, st−1, st}〉rm.

Now consider the case rm ≡ 0 ( mod 4). It is easy to see that 〈{2, 3o, rm
2
}〉rm ∼= Cay(Z rm

2
×

Z2, {(1, 0), ( rm
4
, 0), (0, 1)}), and that this graph is connected. It follows that 〈{2, 3o, rm

2
}〉rm has

a Hamilton decomposition by Theorem 2.2.1. Thus, it is sufficient to show that 〈{4, 5, . . . , rm
2
−

1} \ {r, 2r, . . . , m−1
2
r}〉m has a Hamilton decomposition. Redefine S = s1, s2, . . . , st to be the

sequence whose terms are the elements of {4, 5, . . . , rm
2
− 1} \ {r, 2r, . . . , m−1

2
r} arranged in

ascending order (so t is now (rm−m− 7)/2). As before, consecutive terms in S are relatively
prime.

Since we are in the case rm ≡ 0 ( mod 4), we have gcd( rm
2
− 1, rm) = 1, which means that

〈{st−2, st−1, st}〉rm has a Hamilton decomposition by Theorem 2.2.2. We can thus obtain the
required Hamilton decomposition of 〈{4, 5, . . . , rm

2
−1}\{r, 2r, . . . , m−1

2
r}〉m by factoring it into

Hamilton decomposable 4-regular graphs of the form 〈{a, b}〉rm where a and b are consecutive
terms of S, and, in the case where the number of terms of S is odd, the Hamilton decomposable
6-regular graph 〈{st−2, st−1, st}〉rm.

Lemma 2.3.2. For each even r ≥ 4 and each odd m ≥ 3 such that rm ≡ 8 ( mod 12), there is

a factorisation of Kmr into (r−1)m−5
2

Hamilton cycles and a copy of 〈{1, 2, 3e}〉rm.

Proof Since Kmr ∼= 〈{1, 2, . . . , rm2 } \ {r, 2r, . . . , m−12
r}〉rm, it is sufficient to show that there is

a Hamilton decomposition of 〈{3o, 4, 5, . . . , rm
2
} \ {r, 2r, . . . , m−1

2
r}〉rm. Note that neither 6 nor

rm
2

is in {r, 2r, . . . , m−1
2
r}. Now, it is easy to see that

〈{3o, 6, rm
2
}〉rm ∼= Cay(Z rm

2
× Z2, {(3, 0), ( rm

4
, 0), (0, 1)})
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and hence that 〈{3o, 6, rm
2
}〉rm is a connected 4-regular Cayley graph (connectedness follows

from gcd(3, rm
2

) = 1). Thus, 〈{3o, 6, rm
2
}〉rm has a Hamilton decomposition by Theorem 2.2.1,

and it is sufficient to show that 〈{4, 5, . . . , rm
2
− 1} \ {6, r, 2r, . . . , m−1

2
r}〉rm has a Hamilton

decomposition.

Consider the sequence S = s1, s2, . . . , st (where t = (rm − m − 9)/2) whose terms are the
elements of

{4, 5, . . . , rm
2
− 1} \ {6, r, 2r, . . . , m−1

2
r}

arranged in ascending order. Note that since r is even, consecutive terms in S are relatively
prime. Thus, if a and b are consecutive terms in S, then 〈{a, b}〉rm is connected and thus has
a Hamilton decomposition by Theorem 2.2.1. Also, gcd(st, rm) = 1 (since st = rm

2
− 1 is odd),

and so 〈{st}〉rm is an rm-cycle.

In view of the preceding paragraph, we can obtain the required Hamilton decomposition of
〈{4, 5, . . . , rm

2
−1}\{6, r, 2r, . . . , m−1

2
r}〉rm by factoring it into Hamilton decomposable 4-regular

graphs of the form 〈{a, b}〉rm where a and b are consecutive terms of S, and, in the case where
the number of terms of S is odd, the cycle 〈{st}〉rm.

We also need the following result from [26].

Lemma 2.3.3. ([26]) Let n ≡ 0 ( mod 4) with n ≥ 12. For each bipartite 2-regular graph F

of order n, there is a factorisation of 〈{1, 3e}〉(2)n/2 into three copies of F ; except possibly when

F ∈ {[6r], [4, 6r] : r ≡ 2 ( mod 4)}.

In the proof of Theorem 2.3.5, an alternate approach is required when F is one of the possible
exceptions in Lemma 2.3.3. Cases where F is of the form [6r] are covered by Theorem 2.1.4,
and the following result is used together with Lemma 2.3.2 to deal with cases where F is of the
form [4, 6r].

Lemma 2.3.4. For each k ≥ 1, there is a factorisation of 〈{1, 2, 3e}〉(2)12k+8 into five copies of
[4, 64k+2].

Proof For any subgraph F of 〈{1, 2, 3e}〉(2)12k+8 and any t ∈ {0, 2, . . . , 12k+6}, let F + t denote

the subgraph of 〈{1, 2, 3e}〉(2)12k+8 obtained by applying the permutation (x, i) 7→ (x+ t, i). That
is, V (F+t) = {(x+t, i) : (x, i) ∈ V (F )} and E(F+t) = {(x+t, i)(y+t, j) : (x, i)(y, j) ∈ E(F )}.
For each x ∈ Z12k+8 and each i ∈ Z2 denote the vertex (x, i) of 〈{1, 2, 3e}〉(2)12k+8 by xi.

The required 2-factorisation of 〈{1, 2, 3e}〉(2)12k+8 is given by the following five 2-factors.

(1) (00, 10, 01, 11) ∪ (20, 30, 21, 40, 50, 31) ∪ (41, 51, 70, 61, 71, 60) ∪ (00, 10, 01, 20, 30, 11) + t ∪
(21, 31, 41, 50, 60, 40) + t ∪ (51, 61, 71, 80, 90, 70) + t ∪ (81, 91, 110, 101, 111, 100) + t : t =
8, 20, 32, . . . , 12k − 4

(2) (00, 20, 01, 21) ∪ (11, 30, 40, 61, 51, 31) ∪ (41, 50, 60, 70, 90, 71) ∪ (00, 20, 11, 01, 30, 21) + t ∪
(31, 40, 51, 41, 71, 50) + t ∪ (60, 70, 61, 81, 101, 90) + t ∪ (80, 91, 111, 130, 100, 110) + t : t =
8, 20, 32, . . . , 12k − 4

(3) (00, 30, 10, 31) ∪ (11, 20, 41, 61, 50, 21) ∪ (40, 60, 51, 71, 81, 70) ∪ (00, 30, 10, 21, 11, 31) + t ∪
(20, 50, 70, 41, 60, 51) + t ∪ (40, 61, 80, 101, 91, 71) + t ∪ (81, 110, 90, 100, 121, 111) + t : t =
8, 20, 32, . . . , 12k − 4

85



(4) (60, 90, 61, 91) ∪ (01, 30, 51, 21, 41, 31) ∪ (20, 40, 71, 80, 70, 50) ∪ (01, 21, 50, 40, 20, 31) + t ∪
(30, 41, 61, 90, 71, 51) + t ∪ (60, 81, 70, 80, 100, 91) + t ∪ (101, 120, 111, 131, 110, 130) + t : t =
8, 20, 32, . . . , 12k − 4

(5) (60, 80, 61, 81) ∪ (10, 20, 51, 40, 31, 21) ∪ (30, 41, 70, 91, 71, 50) ∪ (10, 20, 41, 21, 51, 31) + t ∪
(30, 40, 70, 91, 61, 50) + t ∪ (60, 71, 81, 90, 111, 80) + t ∪ (100, 120, 110, 121, 101, 131) + t : t =
8, 20, 32, . . . , 12k − 4

We are now ready to prove our main result.

Theorem 2.3.5. If F is a bipartite 2-regular graph of order rn, then there exists a 2-factorisation
of Knr , r ≥ 2, into F if and only if n is even; except that there is no 2-factorisation of K6,6

into [6, 6].

Proof A bipartite 2-regular graph has even order, so rn is even. Since a graph having a
2-factorisation is regular of even degree, if the 2-factorisation exists, then (r − 1)n (the degree
of Knr) is even. This together with the fact that rn is even implies that n is even when the
2-factorisation of Knr exists, and it is known that there is no 2-factorisation of K6,6 into [6, 6],
see [73] or [82].

Now, conversely, let n be even and let m = n/2 so that Knr ∼= K
(2)
mr . If m is even or r is odd,

then Kmr has even degree, and hence has a Hamilton decomposition by Theorem 2.1.1. So the
result follows by Lemma 2.2.3 when m is even or r is odd. The result has been proved when
r = 2 (see Theorem 2.1.3) and when n = 2 (see Theorem 2.1.2). Thus, we can assume m ≥ 3
is odd and r ≥ 4 is even.

By Lemma 2.3.1, there is a factorisation of Kmr into (r−1)m−3
2

Hamilton cycles and a copy of

〈{1, 3e}〉rm, and hence a factorisation of Knr ∼= K
(2)
mr into (r−1)m−3

2
copies of C

(2)
rm and a copy

of 〈{1, 3e}〉(2)rm. Each copy of C
(2)
rm can be factored into two copies of F by Lemma 2.2.3, and

the copy of 〈{1, 3e}〉(2)rm can be factored into three copies of F by Lemma 2.3.3; except when
F ∈ {[6r], [4, 6r] : r ≡ 2 ( mod 4)}. The case F = [6r] with r ≡ 2 ( mod 4) is covered by
Theorem 2.1.4. Thus, the proof is complete except when r ≥ 4 is even, m = n

2
≥ 3 is odd, and

F = [4, 64k+2] for some k ≥ 1 (where rm = 12k + 8). We now deal with this special case.

By Lemma 2.3.2, there is a factorisation of Kmr into (r−1)m−5
2

Hamilton cycles and a copy of

〈{1, 2, 3e}〉rm, and hence a factorisation of Knr ∼= K
(2)
mr into (r−1)m−5

2
copies of C

(2)
rm and a copy

of 〈{1, 2, 3e}〉(2)rm. Each copy of C
(2)
rm can be factored into two copies of F by Lemma 2.2.3, and

the copy of 〈{1, 2, 3e}〉(2)rm can be factored into five copies of F by Lemma 2.3.4. This completes
the proof.

We remark that the method used in the proof of Theorem 2.3.5 can also be used to obtain 2-
factorisations in which the 2-factors are not all isomorphic. In the proof, distinct copies of C

(2)
rm,

and the copy of 〈{1, 3e}〉(2)rm or 〈{1, 2, 3e}〉(2)rm, can each be factored independently into specified
2-factors as described in Lemma 2.2.3, Lemma 2.3.3, and Lemma 2.3.4.
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Chapter 3

Combinatorial topology

3.1 Introduction

Combinatorial topology is the study of discrete, combinatorial representations of topological
spaces. In the rest of this thesis, we look at combinatorial 3-manifold topology. Chapters 4
and 5 take two different approaches to the problem of census enumeration. Many definitions
are shared between the two approaches, and we introduce these here.

We cover the basic definitions of 3-manifold triangulations, as well as their related graph struc-
tures (like dual 1-skeletons). We also discuss some properties of 3-manifolds, and detail the
existing state-of-the-art algorithm for enumerating a census of 3-manifolds. For a more in-depth
introduction to topology see [59].

3.2 Definitions and notation

In both combinatorial topology, and graph theory, the terms edge and vertex have distinct
meanings. Therefore for the rest of this thesis, the terms edge and vertex will be used to mean
an edge or vertex in a triangulation or manifold and the terms arc and node will be used to
mean an edge or vertex in a graph respectively.

A 3-manifold is a topological Hausdorff space that locally looks like either 3-dimensional Eu-
clidean space (i.e., R3) or closed 3-dimensional Euclidean half-space (i.e., R3

z≥0). For the pur-
poses of this thesis, all 3-manifolds will be connected and compact. When we refer to faces,
we are explicitly talking about 2-faces (i.e., facets of a 3-manifold or 3-simplex depending on
context). We represent 3-manifolds combinatorially as triangulations [80]: a collection of tetra-
hedra (3-simplices) with some 2-faces pairwise identified. We can also represent 3-manifolds
combinatorially as spines. We briefly touch on this idea in Chapter 5; for more detail see [77].
We begin by defining a general triangulation (which may or may not represent a 3-manifold),
which we later restrict to a 3-manifold triangulation.

Definition 3.2.1. A general triangulation is a collection ∆1,∆2, . . . ,∆n of n abstract tetra-
hedra, along with some affine bijections π1, π2, . . . , πm where each bijection πi is an affine map
between two distinct triangular faces of tetrahedra, and each face of each tetrahedron is in at
most one such bijection.

We call these affine bijections face identifications or simply identifications. Note that there are
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t0 :1

t0 :0

t0 :3t0 :2

t1 :2

t1 :0

t1 :3

t1 :1

(a)

{t0 :1, t1 :2}

{t0 :0, t1 :0}

{t0 :3, t1 :3}

{t0 :2}

{t1 :1}

(b)

Figure 3.1: (a) A general triangulation with one face identification, shown as two distinct
tetrahedra with an arrow indicating the two faces which are identified; and (b) the com-
bined triangulation. The grey rectangle in (b) indicates the link of the vertex {t0 :1, t1 :2}.

six ways to identify two faces, given by the six symmetries of a regular triangle. Also note that
this is more general than a simplicial complex (e.g., we allow an identification between two
distinct faces of the same tetrahedron).

Only if the quotient space of such a triangulation is a 3-manifold will we say that the triangu-
lation represents a 3-manifold. Later we show that we do not have to explicitly construct the
quotient space to determine whether a triangulation represents a 3-manifold.

Notation 3.2.2. We use the notation ti : a to denote vertex a of tetrahedron ti, and ti : abc
to denote unique face containing the vertices a, b and c of tetrahedron ti. Given tetrahedron
vertices a and b, we will write a ↔ b to denote that vertex a is identified with vertex b. Face
identifications are denoted as ti : abc ↔ tj : def , which means that face abc of ti is mapped to
face def of tj such that a↔ d, b↔ e and c↔ f .

Example 3.2.3. Take two tetrahedra and apply the face identification t1 : 031↔ t1 : 032. The
resulting triangulation is topologically equivalent to a 3-ball. Figure 3.1(a) shows this triangu-
lation, with the arrow indicating two faces being identified. The precise identification involved
is not displayed in the diagram, however. Figure 3.1(b) shows the resulting triangulation.

As a result of the identification of various faces, some edges or vertices of various tetrahedra are
identified together. These identifications may be the direct result of a single face identification,
or may be the result of multiple face identifications.

We assign an arbitrary orientation to each edge of each tetrahedron. Given two tetrahedron
edges e and e′ that are identified together via the face identifications, we write e ' e′ if the
orientations agree, and e ' e′ if the orientations are reversed. In settings where we are not
interested in orientation, we write e ∼ e′ if the two edges are identified (i.e., one of e ' e′ or
e ' e′ holds).

This leads to the natural notation [e] = {e′ : e ∼ e′} as an equivalence class of identified edges
(ignoring orientation). We refer to [e] as an edge of the triangulation. Likewise, we use the
notation v ∼ v′ for vertices of tetrahedra that are identified together via the face identifications,
and we call an equivalence class [v] of identified vertices a vertex of the triangulation.

We then define the degree of an edge of the triangulation, denoted deg(e), to be the number of
edges of tetrahedra in the equivalence class [e].

Any face of a triangulation which is not identified with any another face is called a boundary
face of the triangulation. We then define the boundary of a triangulation T , denoted ∂T ,
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as the union of all boundary faces of T . A boundary edge (respectively boundary vertex) of
a triangulation is an edge (respectively vertex) of the triangulation whose equivalence class
contains some edge (respectively vertex) which itself is contained within a boundary face. That
is, the entire edge (respectively vertex) is contained within ∂T .

We can partially represent a triangulation by its face pairing graph (also known as its dual 1-
skeleton), which describes which faces are identified together, but not how they are identified.
In Chapter 5 we will show how to extend this definition to completely represent a triangulation.

Definition 3.2.4. The face pairing graph of a triangulation T is the multigraph Γ(T ) con-
structed as follows. Start with an empty graph G, and insert one node for every tetrahedron in
T . For every identification πi between a face of tetrahedron Ti and a face of tetrahedron Tj,
insert one arc between the nodes corresponding to Ti and Tj into the graph G.

Remark 3.2.5. A triangulation T is connected in the topological sense if and only if Γ(T ) is
connected in the graph theoretic sense. This is not true in more general settings (i.e., simplicial
complexes).

Note that a face pairing graph will have parallel arcs if there are two or more distinct face
identifications between Ti and Tj, and loops if two faces of the same tetrahedron are identified
together. An example of a face pairing graph is given in Figure 3.3.

We also need to define the link of a vertex before we can discuss 3-manifold triangulations.

Definition 3.2.6. Given a vertex v in some triangulation, the link of v, denoted Link(v), is
the (2-dimensional) frontier of a small regular neighbourhood of v.

Figure 3.1(b) shows the link of a vertex in grey. In this case, the link is homeomorphic to a disc.
We now give detail the properties a general triangulation must have to represent a 3-manifold.

Lemma 3.2.7. A general triangulation is a 3-manifold triangulation if the following additional
conditions hold:

• the triangulation is connected;

• the link of any vertex in the triangulation is homeomorphic to either a 2-sphere or a disc;
and

• no edge in the triangulation is identified with itself in reverse.

It is both well known and routine to check that these conditions are both necessary and sufficient
for the underlying topological space to be a 3-manifold.

Example 3.2.8. Figure 3.2 shows how two tetrahedra may have faces identified together to
form a triangulation of a 3-sphere. Each tetrahedron has two of its own faces identified to-
gether, and the other two faces identified with two faces from the other tetrahedron. The exact
identifications are as follows.

t0 :103↔ t1 :102 t0 :102↔ t1 :302
t0 :132↔ t0 :032 t1 :231↔ t1 :031

The associated face pairing graph is shown in Figure 3.3.
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t0 :1

t0 :0

t0 :3
t0 :2

t1 :2

t1 :0

t1 :3 t1 :1

Figure 3.2: A visual representation of the 3-sphere triangulation described in Example
3.2.8. The arrows indicate which faces are identified together with dashed arrows referring
to the “back” faces. Note that some of the identifications involve rotations or flips which
are not shown in the figure.

Figure 3.3: The face pairing graph of the 3-sphere triangulation from Example 3.2.8.

Note that in a 3-manifold triangulation, if a vertex has a link homeomorphic to a 2-sphere then
that vertex cannot lie on the boundary of the triangulation. Similarly, if a vertex has a link
homeomorphic to a disc then that vertex must lie on the boundary of a triangulation.

We will later deal with 3-manifolds with various properties which we define here. Most of these
properties are properties of 3-manifolds and so we will also say that a triangulation has a given
property if and only if its associated 3-manifold has said property.

Definition 3.2.9. A 3-manifold triangulation is closed if it has no boundary faces.

Definition 3.2.10. A 3-manifold triangulation is orientable if every tetrahedron can be as-
signed an orientation (i.e., ±1) such that if two tetrahedra of consistent orientation have faces
identified then the identification is orientation preserving.

Often one prefers to work with the “most simple” object exhibiting some particular behaviour.
Since we are dealing with triangulations of 3-manifolds, we can define this simplicity both in
terms of the triangulation and the manifold. Firstly, we define a notion of minimality of the
triangulation.

Definition 3.2.11. A 3-manifold triangulation of a manifold M is minimal if M cannot be
triangulated with fewer tetrahedra.

Minimal triangulations are well studied, both for their relevance to computation and for their
applications in zero-efficient triangulations [65]. It is also known that the minimal number of
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tetrahedra required to triangulate a manifold is equal to the “Matveev complexity” [77] of said
manifold (with exceptions for the 3-manifolds S3, RP 3 and L3,1).

Next we give three properties of 3-manifolds which all convey some notion of simplicity of the
manifold (as opposed to the triangulation).

Definition 3.2.12. A 3-manifold M is irreducible if every embedded 2-sphere in M bounds a
3-ball in M.

Definition 3.2.13. A 3-manifold M is prime if it cannot be written as a connected sum of
two manifolds where neither is a 3-sphere.

Definition 3.2.14. A 3-manifold is P2-irreducible if it is irreducible and also contains no
embedded two-sided projective plane.

Prime manifolds are the obvious manifold to work with. We note that prime 3-manifolds are ei-
ther irreducible, or are one of the orientable direct product S2×S1 or the non-orientable twisted
product S2 ∼× S1. As these are both well known and have triangulations on two tetrahedra, for
any census of minimal triangulations on three or more tetrahedra we can look for irreducible
3-manifolds when we want prime manifolds. Any non-prime manifold can be constructed from
a connected sum of prime manifolds, so enumerating prime manifolds is sufficient for most
purposes. A similar (but more complicated) notion holds for P2-irreducible manifolds. As such,
minimal prime P2-irreducible triangulations form the basic building blocks in combinatorial
topology.

We now given some results on the links of vertices in various triangulations and manifolds.
These results are well known, and are given for completeness. First, however, we need the
following definition.

Definition 3.2.15. The Euler characteristic of a triangulation is topological invariant, denoted
as χ. For triangulations it can be calculated as χ = V − E + F − T where V , E, F and T
are the number of vertices, edges, faces and tetrahedra in the triangulation respectively. For
2-dimensional triangulations, χ = V − E + F .

For the following proofs, we also briefly need the Euler characteristic of a cell decomposition1.
We omit the technical details, but χ can be calculated as

∑
i(−1)iki where ki is the number of

i-cells in the decomposition.

It is well known by the classification of 2-manifolds ([57]) that χ ≤ 2 for any surface and that
χ = 2 if and only if the the surface is a 2-sphere. Additionally, a closed 3-manifold (that is, a
compact 3-manifold with no boundary) has an Euler characteristic of zero (by Poincaré duality,
see [59]).

The following lemmas will help determine the form of links in various triangulations.

Lemma 3.2.16. Take two triangulations L and K with combinatorially equivalent boundaries,
and create a new triangulation M by identifying L and K along their boundaries. Then χ(M) =
χ(L) + χ(K)− χ(∂L).

The above follows from a simple counting argument along the shared boundary.

1A triangulation is a cell decomposition satisfying some extra properties.
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Lemma 3.2.17. Given any connected closed triangulation T on n tetrahedra with k vertices
where no edge is identified with itself in reverse, the triangulation has n + k edges if and only
if the link of each vertex in T is homeomorphic to a 2-sphere.

Proof Let the triangulation have e edges. As each face of T is identified with exactly one
other face, and a tetrahedron has 4 faces, we know that T must have 2n faces. Then χ(T ) =
k − e + 2n− n = n + k − e which immediately gives one direction of the proof. We must still
show that if e = n+ k then the link of each vertex of T is homeomorphic to a 2-sphere.

Label each vertex in T by {v1, . . . , vk}. Now consider the cell decomposition T ′ created from
T by truncating T along the link of every vertex vi. The boundary of T ′ is therefore the union
of the links of the vertices of T . When forming T ′ from T , for each vertex vi we removed one
0-cell, and then added a cell for every vertex, face and edge of Link(vi). As a result, we get
that

χ(T ′) = χ(T ) +
k∑
i=1

(χ(Link(vi))− 1) .

Furthermore, since χ(T ) = n+ k − e we get

χ(T ′) = n− e+
k∑
i=1

χ(Link(vi)). (?)

Note that T ′ represents a compact 3-manifold with boundary as it contains no edge identified
with itself in reverse and every vertex on ∂T ′ has a link homeomorphic to a disc.

Now take a copy of T ′, call the copy T ′′, and identify the boundary of T ′ with the boundary
of T ′′ to form the triangulation T †. Since T ′ is a compact 3-manifold with boundary, T † is a
closed 3-manifold, giving χ(T †) = 0 (even if the vertex links of T are not spheres).

If we set L = T ′, K = T ′′ and M = T † in Lemma 3.2.16, then we get the following result.

0 = χ(T ′) + χ(T ′)−
k∑
i=1

χ(Link(vi))

We then substitute in from (?) and rearrange to get

k∑
i=1

χ(Link(vi)) = 2(e− n).

Since χ(Link(vi)) = 2 if and only if the link of each vertex is homeomorphic to a 2-sphere, and
is less than 2 otherwise, we get that 2k = 2(e− n) if and only if the link of each vertex of T is
homeomorphic to a 3-sphere.

3.3 Census enumeration

A 3-manifold census is an exhaustive list of all 3-manifold triangulations on up to a certain
number of tetrahedra. Such a broad census is super-exponential in size, so we instead often add
limits to such a census. For example, a census of closed 3-manifolds on up to 5 tetrahedra would
be a complete list of every triangulation which represents a closed 3-manifold and contains at
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most 5 tetrahedra. These censuses are a useful tool for making or breaking conjectures, or
finding pathologically bad cases for various algorithms. However generating such a census is
often time consuming.

The first such census was of cusped hyperbolic 3-manifolds on at most 5 tetrahedra by Hilde-
brand and Weeks [61] which was later extended to 3-manifolds on at most 9 tetrahedra [44,
49, 92]. Significant work has also been done on the census of closed orientable prime minimal
triangulations, first by Matveev [76] on triangulations on at most 6 tetrahedra, which has been
extended to 11 tetrahedra [41, 42, 75, 77].

One of the state of the art enumeration algorithms in use was developed for Regina [45], a
high performance topological software suite. We give a brief explanation of this pre-existing
algorithm here, and in later chapters we compare and contrast the algorithm from Regina with
new algorithms developed in this thesis. Regina was chosen as it is freely available in both
binary and source form, allowing for thorough comparisons. The algorithm discussed in this
thesis searches for closed prime minimal triangulations of 3-manifolds. Note that Regina itself
is very flexible and can search for other families of triangulations as well.

The algorithm in Regina is given, as input, a number n denoting how many tetrahedra each
triangulation should contain. A list of all 4-regular multigraphs on n nodes is then generated.
This is a simple and fast process, and is the first stage of many algorithms in the literature. At
this point, certain graphs are discarded as they will not lead to any 3-manifold triangulations
which are of interest to the census [41, 43]. Each remaining graph G is used, one at a time, as a
frame to build up a triangulation, with the aim that any triangulation found will have G as its
face pairing graph (or dual 1-skeleton). This second stage is by far the most time consuming.

To build a triangulation from a graph G, the algorithm starts with n tetrahedra with no faces
identified and recursively attempts to identify faces. Recall that there are six symmetries of a
regular triangle, and therefore six ways in which two faces may be identified. The algorithm
picks an arc in the graph G denoting a pair of faces to be identified. The algorithm identifies
the two faces using one of the six symmetries. Identifying two faces may result in a triangu-
lation which can never be completed into a desired 3-manifold triangulation. In this case, the
algorithm tries a different symmetry in the face identification. If all symmetries have failed,
the algorithm backtracks and undoes an earlier face identification. If at some point there are
no face identifications left to complete, the resulting triangulation is added to the census and
the algorithm continues recursively.

Note that the selection of an arc from G is not detailed. In fact, Regina currently selects the
arc based on the underlying data structure, which in turn is based on a lexicographical ordering
of a particular representation of G. Looking at this particular problem led to new graphical
representations of triangulations, which in turn formed the basis of Chapter 5.

Additionally, each census is completed without relying on any results from smaller censuses. It
is well known that not all manifold triangulations on n tetrahedra can be built from smaller
manifold triangulations, so the algorithm must exhaustively check the search space for trian-
gulations regardless. This problem is also briefly discussed at the end of Chapter 4.
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Chapter 4

Fixed parameter tractable algorithms
in combinatorial topology

4.1 Introduction

In this chapter we will look closely at one particular problem in census enumeration algorithms.
As mentioned earlier, such algorithms will first generate a list of 4-regular multigraphs and then
for each such graph G the algorithm will attempt to build triangulations with G as its face
pairing graph. We say a graph G is admissible if we find any such triangulation, and non-
admissible if no such triangulation is found. In fact, it is often the case that a large proportion
of the running time of an algorithm is spent on non-admissible graphs.

Using state-of-the-art public software [45], generating such a census on 12 tetrahedra takes 1967
CPU-days, of which over 1588 CPU-days is spent analysing non-admissible graphs. Indeed, for
a typical census on ≤ 10 tetrahedra, less than 1% of 4-regular graphs are admissible [42].
Moreover, Dunfield and Thurston [56] show that the probability of a random 4-regular graph
being admissible tends toward zero as the size of the graph increases. Clearly an efficient
method of determining whether a given graph is admissible could have significant effect on the
(often enormous) running time required to generating such a census.

We use parameterized complexity [55] to address this issue. A problem is fixed parameter
tractable if, when some parameter of the input is fixed, the problem can be solved in polynomial
time in the input size. In Corollary 4.4.5 we show that to test whether a graph G is admissible
is fixed parameter tractable, where the parameter is the treewidth of G. Specifically, if the
treewidth is fixed at ≤ k and G has size n, we can determine whether G is admissible in
O(n · f(k)) time.

Courcelle showed [51, 52] that for graphs of bounded treewidth, an entire class of problems
have fixed parameter tractable algorithms. However, employing this result for our problem
of testing admissibility looks to be highly non-trivial. In particular, it is not clear how the
topological constraints of our problem can be expressed in monadic second-order logic, as
Courcelle’s theorem requires. Even if Courcelle’s theorem could be used, our results here
provide significantly better constants than a direct application of Courcelle’s theorem would.

Following the example of Courcelle’s theorem, however, we generalise our result to a larger
class of problems (Theorem 4.4.4). Specifically, we introduce the concept of a simple property,
and give a fixed parameter tractable algorithm which, for any simple property p, determines
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whether a graph admits a triangulated 3-manifold with property p (again the parameter is
treewidth).

We show that these results are practical through an explicit implementation, and identify some
simple heuristics which improve the running time and memory requirements. Lastly, we identify
a clear potential for how these ideas can be extended to the more difficult enumeration problem,
in those cases where a graph is admissible and a complete list of triangulations is required.

Parameterised complexity is very new to the field of 3-manifold topology [46, 48], and this
chapter marks the first exploration of parameterised complexity in 3-manifold enumeration
problems. Given that 3-manifold enumeration algorithms are often extremely slow on small
graphs (and so we expect many graphs to have low treewidth), our work here highlights a
growing potential for parameterised complexity to offer practical alternative algorithms in this
field.

4.2 Background

Many NP-hard problems on graphs are fixed parameter tractable in the treewidth of the graph
(e.g., [10, 12, 20, 21, 51]). Introduced by Robertson and Seymour [83], the treewidth measures
precisely how “tree-like” a graph is:

Definition 4.2.1 (Tree decomposition and treewidth). Given a graph G, a tree decomposition
of G is a tree H with the following additional properties:

• Each node of H, also called a bag, is associated with a set of nodes of G;

• For every arc a of G, some bag of H contains both endpoints of a;

• For any node v of G, the subforest in H of bags containing v is connected.

If the largest bag of H contains k nodes of G, we say that the tree decomposition has width
k+ 1. The treewidth of G, denoted tw(G), is the minimum width of any tree decomposition of
G.

While finding the tree width of a given graph is NP-complete in general [11], Bodlaender [20]
gave a linear time algorithm for determining if a graph has treewidth ≤ k for fixed k, and for
finding such a tree decomposition, and Kloks [68] demonstrated algorithms for finding “nice”
tree decompositions.

These properties are necessary and sufficient for the underlying topological space to be a 3-
manifold. We say that a graph G is admissible if it is the face pairing graph for any closed
3-manifold triangulation T .

Definition 4.2.2 (Partial-3-manifold triangulation). A partial-3-manifold triangulation T is
a general triangulation for which (i) for any vertex v in T , the link of v is homeomorphic to a
2-sphere with zero or more punctures; and (ii) no edge e in T is identified with itself in reverse
(i.e., e 6' e).

These are in essence “partially constructed” 3-manifold triangulations; the algorithms of Section
4.4 build these up into full 3-manifold triangulations. Note that the underlying space of T might
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not even be a 3-manifold with boundary: there may be “pinched vertices” whose links have
many punctures.

We can make some simple observations: (i) the boundary vertices of a partial 3-manifold
triangulation are precisely those whose links have at least one puncture; (ii) a connected partial-
3-manifold triangulation with no boundary faces is a closed 3-manifold triangulation, and vice-
versa; (iii) a partial-3-manifold triangulation with a face identification removed, or an entire
tetrahedron removed, is still a partial-3-manifold triangulation.

4.3 Configurations

The algorithms in Section 4.4 build up 3-manifold triangulations one tetrahedron at a time.
As we add tetrahedra, we must track what happens on the boundary of the triangulation,
but we can forget about the parts of the triangulation not on the boundary—this is key to
showing fixed parameter tractability. In this section we define and analyse edge and vertex
configurations of general triangulations, which encode exactly those details on the boundary
that we must retain.

Definition 4.3.1 (Edge configuration). The edge configuration of a triangulation T is a set Ce
of triples detailing how the edges of the boundary faces are identified together. Each triple is of
the form ((f, e), (f ′, e′), o), where: f and f ′ are boundary faces; e and e′ are tetrahedron edges
that lie in f and f ′ respectively; e and e′ are identified in T ; and o is a boolean “orientation
indicator” that is true if e ' e′ and false if e ' e′.

This mostly encodes the 2-dimensional triangulation of the boundary, though additional infor-
mation describing “pinched vertices” is still required.

Example 4.3.2 (2-tetrahedra pinched pyramid). Take two tetrahedra t0 and t1, each with
vertices labelled 0, 1, 2, 3, and apply the face identifications t0 : 012↔ t1 : 012 and t1 : 023↔ t1 :
321.

The resulting triangulation is a square based pyramid with one pair of opposing faces identified
(see Figure 4.1(a)). The final space resembles a hockey puck with a pinch in the centre, as seen
in Figure 4.1(b). Note that the vertex at top of the pyramid, which becomes the pinched centre
of the puck, has a link homeomorphic to a 2-sphere with two punctures. Therefore, although
this is a partial 3-manifold triangulation, the underlying space is not a 3-manifold.

The edge configuration of this triangulation is:

{((t0 :013, 03), (t1 :013, 13), f), ((t0 :013, 01), (t1 :013, 01), t),

((t0 :013, 13), (t0 :123, 13), t), ((t0 :123, 12), (t0 :123, 23), f),

((t1 :013, 03), (t1 :023, 03), t), ((t1 :023, 02), (t1 :023, 23), f)};

here t and f represent true and false respectively.

Definition 4.3.3 (Vertex configuration). The vertex configuration Cv of a triangulation T is
a partitioning of those tetrahedron vertices that belong to boundary faces, where vertices v and
v′ are in the same partition if and only if v ∼ v′.

In partial-3-manifold triangulations, vertex links may have multiple punctures; the vertex con-
figuration then allows us to deduce which punctures belong to the same link. In essence, the
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{t0 : 1, t1 : 1}{t0 : 3}

{t0 : 0, t1 : 0} {t1 : 3}

{t0 : 2, t1 : 2}

t1
t0

(a) (b)

Figure 4.1: The triangulation from Example 4.3.2. The grey shaded tetrahedron is
t0. Edges are marked with their orientations, and the double-ended arrow indicates the
identification of two opposing faces of the pyramid. The resulting space resembles a hockey
puck with the centre pinched into a point. This pinch is the vertex {t0 :2, t1 :2}.

vertex configuration describes how the triangulation is “pinched” inside the manifold at vertices
whose links have too many punctures.

For instance, the vertex configuration of Example 4.3.2 is given by

{{t0 :0, t1 :0, t1 :3}, {t0 :1, t0 :3, t1 :1}, {t0 :2, t1 :2}}.
The partition {t0 :2, t1 :2} represents the pinch at the center of the “hockey puck”. We now give
the boundary configuration of a triangulated cube on 5 tetrahedra as an additional example.

Example 4.3.4 (5-tetrahedra cube). Take 5 tetrahedra labelled t0, t1, . . . , t4, each with vertices
labelled 0, 1, 2, 3 and identify the following faces:

t0 :012↔ t4 :012

t1 :013↔ t4 :013

t2 :123↔ t4 :123

t3 :023↔ t4 :023

The resulting triangulation is a cube, with t4 having zero boundary faces and each other tetra-
hedra having three boundary faces. The edge configuration of this triangulation is:

{((t0 :013, 01), (t1 :012, 01), t), ((t0 :123, 12), (t2 :012, 12), t),

((t0 :023, 02), (t3 :012, 02), t), ((t1 :123, 13), (t2 :013, 13), t),

((t1 :023, 03), (t3 :013, 03), t), ((t2 :023, 23), (t3 :123, 23), t),

((t0 :013, 03), (t0 :023, 03), t), ((t0 :013, 13), (t0 :123, 13), t),

((t0 :023, 23), (t0 :123, 23), t), ((t1 :023, 02), (t1 :012, 02), t),

((t1 :023, 23), (t1 :123, 23), t), ((t1 :012, 12), (t1 :123, 12), t),

((t2 :023, 02), (t2 :012, 02), t), ((t2 :023, 03), (t2 :013, 03), t),

((t2 :012, 01), (t2 :013, 01), t), ((t3 :012, 01), (t3 :013, 01), t),

((t3 :012, 12), (t3 :123, 12), t), ((t3 :013, 13), (t3 :123, 13), t)}.

If we examine the first triple in this configuration, it indicates that edge 01 on face 013 of t0
and edge 01 on face 012 of t1 are part of the same edge of the triangulation1, even though no
face of t0 is identified to a face of t1.

1Remember that each edge of the triangulation is an equivalence class of edges of tetrahedra.
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This triangulation has no pinched vertices, but some vertices of tetrahedra are identified to-
gether, and so the vertex configuration is:

{{t0 :0, t1 :0, t3 :0}, {t0 :1, t1 :1, t2 :1}, {t0 :2, t2 :2, t3 :2},
{t0 :3, }, {t1 :3, t2 :3, t3 :3}, {t1 :2}, {t2 :0}, {t3 :1}}.

Definition 4.3.5 (Boundary configuration). The boundary configuration C of a triangulation
T is the pair (Ce, Cv) where Ce is the edge configuration and Cv is the vertex configuration.

Lemma 4.3.6. For b boundary faces, there are (3b)!
(3b/2)!

possible edge configurations.

Proof Note that b must be even; let b = 2m. Each boundary face has three edges, so there
are 6m possible pairs (f, e) where e is an edge on a boundary face f . Each such pair must
be identified with exactly one other pair, with either e ' e′ or e ' e′, and so the number of
possible edge configurations is

2 · (6m− 1) · 2 · (6m− 3) · . . . · 2 · 3 · 2 · 1 =
(6m)!

(3m)!
=

(3b)!

(3b/2)!
.

Lemma 4.3.7. For b boundary faces, the number of possible boundary configurations is bounded
from above by

(3b)!

(3b/2)!
·
(

2.376b

ln(3b+ 1)

)3b

.

Proof There are 3b tetrahedron vertices on boundary faces, and so the number of possible
vertex configurations is the Bell number B3b. The result now follows from Lemma 4.3.6 and
the following inequality of Berend [17]:

B3b =
1

e

∞∑
i=0

i3b

i!
<

(
2.376b

ln(3b+ 1)

)3b

.

Corollary 4.3.8. The number of possible boundary configurations for a triangulation on n
tetrahedra with b boundary faces depends on b, but not on n.

The boundary configuration can be used to partially reconstruct the links of vertices on the
boundary of the triangulation. In particular:

• The edge configuration allows us to follow the arcs around each puncture of a vertex link—
in Figure 4.2 for instance, we can follow the sequence of arcs a1, a2, . . . that surround the
puncture in the link of the top vertex.

• The vertex configuration tells us whether two sequences of arcs describe punctures in the
same vertex link, versus different vertex links.

In this way, we can reconstruct all information about punctures in the vertex links, even though
we cannot access the full (2-dimensional) triangulations of the links themselves. As the next
result shows, this means that the boundary configuration retains all data required to build up a
partial-3-manifold triangulation, without knowledge of the full triangulation of the underlying
space.
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Figure 4.2: Part of the boundary of a triangulation. The link of the top vertex is shaded
grey; this link does not contain the vertex, but instead cradles the vertex from below.

Figure 4.3: One face identification will result in three pairs of arcs on vertex links being
identified, as shown by the arrows.

Lemma 4.3.9. Let T be a partial 3-manifold triangulation with b boundary faces, and let T ′
be formed by introducing a new identification between two boundary faces of T . Given the
boundary configuration of T and the new face identification, we can test whether T ′ is also a
partial-3-manifold triangulation in O(b) time.

Proof We are given the boundary configuration for T . We need to check that the new face
identification does not result in any edges being identified in reverse, and that the links of all
vertices are still spheres with zero or more punctures.

It is easy to see that the face identification will identify at most three pairs of boundary edges
together, and it is routine to check (using the edge configuration) whether these identifications
will result in any edge identified with itself in reverse in O(b) time. The rest of this proof
therefore only deals with the vertex links.

To determine whether T ′ is also a partial-3-manifold triangulation we only need to determine
how these new edge identifications affect the link of each vertex. Clearly any vertices that are
internal to T must already have links homeomorphic to a 2-sphere, and cannot be changed.
We noted in Section 4.3 that the cycles of arcs surrounding the punctures on the links of
each boundary vertex can be determined from the edge configuration—we do not explicitly
reconstruct these cycles here, but we do note that this information is accessible from the edge
configuration. We note also that each link of a boundary vertex in T must be homeomorphic
to a sphere with one or more punctures (equivalently, a disc with zero or more punctures).

The new face identification will identify three pairs of arcs on the vertex links, as shown in
Figure 4.3. Each of these three arc identifications will take one of three forms (see Figure 4.4):

Type I: The two arcs being identified both bound the same puncture in the same vertex
link.
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(a) (b) (c)

Figure 4.4: (a) Type I arc identification; (b) Type II arc identification; and (c) Type III
arc identification. Light grey indicates the existing link with the white space indicating
the punctures, and the dark grey indicates the new identification in the link.

Type II: The two arcs are part of the same vertex link but bound distinct punctures.

Type III: The two arcs are part of distinct vertex links.

For a type I identification, if the identification preserves the orientability of the vertex link
then the new vertex link will be homeomorphic to a 2-sphere with zero or more punctures. In
particular, if the puncture only contained two arcs and these are now both identified (in an
orientable manner) then the puncture will be closed off (i.e., the vertex link will be a 2-sphere
with one less puncture than before). If this vertex of the triangulation only had one puncture,
then the vertex link will become homeomorphic to a 2-sphere and the new vertex will be an
internal vertex of T ′.
If orientability is not preserved in a type I identification then we will embed a Möbius band
in the vertex link, which is never allowed. Identifications of type II increase the genus of the
vertex link, which is likewise not allowed (see Figure 4.4(b)), and identifications of type III
simply connect two discs with zero or more punctures.

In summary: orientable identifications of type I and all identifications of type III are allowed,
whereas non-orientable identifications of type I and all identifications of type II are not allowed.

Since the triangulations of all vertex links contain 3b boundary arcs in total, we can identify
both the type and orientation of each identification in O(b) time. Specifically, we use the edge
configuration to determine if the identification is of type I (as well as the orientation of the
identification), and we use the vertex configuration to distinguish between identifications of
type II and type III. If any non-orientable type I identifications or any type II identifications
are found, T ′ is not a partial-3-manifold triangulation.

Since we have only three such identifications of pairs of arcs, we can check all three in O(b)
time as well. Combining this with the O(b) check described earlier for bad edges, we obtain
the required result.

4.4 A fixed parameter tractable admissibility algorithm

Recall that the motivating problem for our work was to quickly detect whether a given graph
admits a closed 3-manifold triangulation. The algorithm we develop generalises to many other
settings. For this we define a simple property of a partial 3-manifold triangulation (see below).

We extend boundary configurations to include an extra piece of data φ based on the par-
tial triangulation that helps test our property. For instance, if p is the simple property that
the triangulation contains ≤ 3 internal vertices, then φ might encode the number of inter-
nal vertices thus far in the partial 3-manifold triangulation (here φ takes one of the values
0, 1, 2, 3, too many).
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We say that a boundary configuration C is viable for a graph G if there exists some partial-3-
manifold triangulation T with C as its boundary configuration and Γ(T ) = G. Additionally, if
T satisfies a simple property p we say that C is p-viable.

Definition 4.4.1 (Simple property). A boolean property p of a partial-3-manifold triangulation
is called simple if all of the following hold. Here all configurations have ≤ b boundary faces,
and f, g, h are some computable functions.

1. The extra data φ in the boundary configuration satisfies φ ∈ P for some universal set P
with |P | ≤ f(b).

2. We can determine whether a triangulation satisfies p based only on its boundary configu-
ration (including the extra data φ).

3. Given any viable configuration and a new face identification π between two of its boundary
faces, we can in O(g(b)) time test whether introducing this identification yields another
viable configuration and, if so, calculate the corresponding value of φ.

4. Given viable configurations for two disjoint triangulations, we can in O(h(b)) time test
whether the configuration for their union is also viable and, if so, calculate the corre-
sponding value of φ.

The four conditions above can be respectively interpreted as meaning:

1. the upper bound on the number of viable configurations (including the data φ) still
depends on b but not the number of tetrahedra;

2. we can still test property p without examining the full triangulation;

3. new face identifications can still be checked for p-viability in O(g(b)) time;

4. configurations for disjoint triangulations can be combined in O(h(b)) time.

Example 4.4.2. Let p be the property that a triangulation contains at most x internal vertices
(i.e., vertices with links homeomorphic to a 2-sphere), for some fixed integer x. Then p is simple.

Here we define φ ∈ P = {0, 1, . . . , x, too many} to be the number of vertices in our partial
3-manifold triangulation with 2-sphere links. This clearly satisfies conditions 1 and 2. For
condition 3: when identifying two faces together, a new vertex acquires a 2-sphere link if and
only if the identification closes off all punctures in the link (which we can test from the edge
and vertex configurations). Condition 4 is easily satisfied by summing φ over the disjoint
configurations.

The case when x = 1 is highly relevant: much theoretical and computational work has gone into
1-vertex triangulations of 3-manifolds [64, 77], and these are of particular use when searching
for 0-efficient triangulations [65].

We can now state the main result of this chapter:

Problem 4.4.3. p-admissibility(G) Let p be a simple property. Given a connected 4-regular
multigraph G, determine whether there exists a closed 3-manifold triangulation T with property
p such that Γ(T ) = G.
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The basic idea for our algorithm is as follows. Start with an empty triangulation, and then
introduce tetrahedra and face identifications in a way that essentially works from the leaves
up to the root of the tree decomposition of G. For each subtree in the tree decomposition
we compute which configurations are viable for the corresponding subgraph of G, and then
propagate these configurations further up the tree. The running time at each node depends
only on the number of boundary faces, which is bounded in terms of the bag size and thereby
tw(G). Note that the properties of a tree decomposition will be used to ensure that two child
bags of a common parent will represent disjoint triangulations.

Theorem 4.4.4. Let p be a simple property. Given a connected 4-regular multigraph G on n
nodes with treewidth ≤ k, and a corresponding tree decomposition with O(n) nodes where each
bag has at most two children, we can solve p-admissibility(G) in O(n · f(k)) time for some
computable function f .

Our requirement for such a tree decomposition is not restrictive: Bodlaender [20] gives a fixed
parameter tractable algorithm to find a tree decomposition of width ≤ k for fixed k, and Kloks
[68] gives an O(n) time algorithm to transform this into a tree decomposition where each bag
has at most two children. The proof itself holds as long as the number of children at each bag
is independent of n, which can be shown by following the ideas used in [68]. We use the “two
children” constraint to keep the proof simple, however, as it does not affect the result.

Proof We will give this proof in three sections. First, we describe the algorithm in detail.
Then we show that the algorithm is correct. Lastly we demonstrate the running time of the
algorithm.

We begin, however, with some preliminaries. Let the tree decomposition be H. Recall that in
a tree decomposition, each node of H represents a collection of nodes of G. We will use the
term bag to refer to a node of H, and node to refer to a node of G. Each node w in G will
represent a corresponding tetrahedron ∆w.

Arbitrarily choosing one bag of H and make it the root bag, so that the tree becomes a hierarchy
of subtrees. For each bag ν in H, the subtree Hν is defined as the subtree obtained by taking
only the bag ν and any bag which appears below ν in H.

We now define the subgraph Gν of G, which contains precisely those nodes of G that appear
only in Hν . In other words, node w is in Gν if and only if w does not appear in any bag in
H \ Hν . The subgraph Gν contains all corresponding arcs of G, i.e., all arcs of G that link
nodes of Gν .

We first make the following observation. If two children νi, νj of some bag ν were to contain a
common node w, then since H is a tree decomposition any such w must also appear in the bag
ν. Therefore no two subgraphs Gνi , Gνj may contain a common node representing a common
tetrahedron.

As a result, we can combine the boundary configurations of children of ν by simply taking the
union of the configurations, as they correspond to disjoint triangulations. The same process
can be used to extend some boundary configuration with the boundary configuration of a new
standalone tetrahedron.

The algorithm: For each bag ν, we will construct all boundary configurations for Gν . To
achieve this, we take the following steps:
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1. Take every possible combination of configurations from the children of ν, where each com-
bination contains exactly one configuration from each child. We showed earlier that these
must represent disjoint triangulations, and that for each combination we can construct
the configuration of their union.

2. For each such combined configuration C:

(a) For each element w inside the bag ν, if w does not appear anywhere in a higher
bag in H, then add the boundary configuration of a single standalone tetrahedron
(corresponding to tetrahedron ∆w) to C. Again, the earlier observation shows that
this is possible. Then:

i. For each arc e in G incident to the node w, if the other endpoint w′ of the arc e is
also in Gν , use Lemma 4.3.9 to try to add each of the six possible corresponding
face identifications to C in turn (recall that these come from the six symmetries
of a regular triangle). For each viable (but not necessarily p-viable) configuration
thus created, continue by recursing to Step 2a and taking the next element w.

(b) If all elements of ν have been successfully processed in Step 2a then a viable config-
uration has been found. Store this as a viable boundary configuration for Gν .

If any bag contains no viable configurations, we immediately know that there are no closed
3-manifold triangulations T satisfying p-admissibility(G).

Once all configurations have been constructed, if the root bag contains any p-viable boundary
configurations (by construction all boundary configurations at the root node have empty edge
and vertex configurations), then there does exist some closed 3-manifold triangulation T with
property p such that Γ(T ) = G. If, however, the root bag contains no p-viable configuration
then such a triangulation does not exist.

Correctness: For each bag ν, we have a corresponding graph Gν . If a closed 3-manifold
triangulation T with property p and Γ(T ) = G exists, then define Tν to be the partial-3-
manifold triangulation constructed by removing from T the tetrahedra and face identifications
which respectively represent nodes and arcs not present in Gν . Each such Tν must be a partial-
3-manifold triangulation, and so each bag ν must have at least one viable configuration.

If the root bag does contain some p-viable boundary configuration, then each arc in G has
been through Step 2(a)i in the algorithm and by Lemma 4.3.9 we know that each such con-
figuration must represent a partial 3-manifold triangulation with property p (or possibly many
such triangulations). Since G is 4-regular, we also know that these triangulations can have no
boundary faces, and so these partial 3-manifold triangulations must in fact be closed 3-manifold
triangulations with property p.

Running time: We begin by showing that the number of configurations at each bag ν is
bounded by a function of k, but is independent of n.

Consider a boundary face f of tetrahedron ∆ in some triangulation Tν represented by some
configuration C in ν. In the graph G, there must exist some arc a which represents the
identification of f with some other face f ′ of some tetrahedron ∆′. However, since f is a
boundary face of Tν , this must mean that the node representing ∆′ must occur in some bag
“higher up” in the tree decomposition; that is, the node representing ∆′ must occur in some
bag in H \Hν . However, the nodes representing ∆ and ∆′ must occur together in some bag (as
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they are the endpoints of arc a), so by Definition 4.2.1 the node representing ∆ must occur in
the bag ν itself. From this, it is easy to see that as ν has at most k+ 1 elements, configurations
at ν must represent triangulations with at most 4(k+1) boundary faces. Therefore the number
of configurations is O(c(k) · f(k)), where c(k) is the bound given in Lemma 4.3.7 and f(k) is
the function given in Definition 4.4.1.

We now calculate the running time of each step in the algorithm. The tree decomposition has
O(n) nodes, and at each node we go through all three steps. We again will use the functions
g(b) and h(b) as given in Definition 4.4.1, and note that O(k) = O(b).

Take any bag, along with its two children. Each of the three contains at most O(k) elements.
From the above argument, each child stores at most O(c(k) · f(k)) viable configurations. At
Step 1, we are combining configurations. As each bag has two children, Step 1 takes O((c(k) ·
f(k))2 · h(k)) time per bag.

Step 2 takes each such configuration, and at Step 2a extends the configuration. Therefore Step
2a runs at most O((c(k)·f(k))2) times per bag. We know that G is 4-regular, so by Lemma 4.3.9
and Definition 4.4.1 there are at most four distinct pairs of faces to identify per each introduced
tetrahedron, and thus Step 2(a)i runs in O(g(k)) time and therefore Step 2a likewise runs in
O(k · g(k)) time. Step 2b is simply storing configurations. Step 2 can therefore be completed
for each viable configuration in O(k · g(k)) time.

Since each viable configuration is built from one of the O((c(k) ·f(k))2) configurations obtained
in Step 1, each bag can be processed in O((c(k) · f(k))2 · (h(k) + k · g(k))). Combining the
above counts for each of the O(n) bags in the tree decomposition gives a running time of
O(n · ((c(k) · f(k))2 · (h(k) + k · g(k)))) and the required result.

By taking a trival property p which is always true, we obtain the original desired result. Note
that for the this case, the functions f and h are trivial and therefore constant. By Lemma
4.3.9, g is O(k) and so the running time in this case simply becomes O(n · k2 · c(k)2).

Corollary 4.4.5. Given a connected 4-regular multigraph G, the problem of determining whether
there exists a closed 3-manifold triangulation T such that Γ(T ) = G is fixed parameter tractable
in the treewidth of G.

4.5 Implementation and experimentation

The algorithm was implemented in Java, using the treewidth library from [93]. Although our
theoretical bound on the number of configurations is extremely large (Lemma 4.3.7), we store
all configurations using hash maps to exploit situations where in practice the number of viable
configurations is much smaller. As seen below, we find that such a discrepancy does indeed
arise (and significantly so).

We also introduce another modification that yields significant speed improvements in practice.
The algorithm builds up a complete list of all viable configurations at each bag ν of the tree
decomposition. However, for an affirmative answer to the problem, only a small subset of these
may be required. We take advantage of this as follows.

For any bag ν with no children, configurations are computed as normal. Once a viable config-
uration is found, it is immediately propagated up the tree in a depth-first manner. This means
that, rather than calculating every possible viable configuration for every subgraph Gν , the
improved algorithm can identify a full triangulation with property p quickly and allow early
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termination.

We implemented the program with p defined to be one-vertex and possibly minimal, using
criteria on the degrees of edges from [41]. This allowed us to compare both correctness and
timing with the existing software Regina [45]. We ran our algorithm on all 4-regular graphs on 4,
5 or 6 nodes (see Table 4.1)to verify correctness. We see that the average time to process a graph
increases with treewidth, as expected. We also see that the number of viable configurations is
indeed significantly lower than the upper bound of Lemma 4.3.7, as we had hoped.

Table 4.1: Results from the algorithm. From left to right, the columns denote the number
of nodes in the graph, the treewidth of the graph, the number of distinct graphs with these
parameters, the average running time of the algorithm on these graphs, and the largest
number of configurations found at any bag, for any graph.

|(V (G))| tw(G) # of graphs Avg. run time (ms) max(|configurations|)
4 1 1 680 2
4 2 8 4036 7
4 3 1 13280 17
5 1 1 780 17
5 2 22 13446 156
5 3 4 29505 307
5 4 1 94060 39
6 1 1 890 17
6 2 68 64650 1583
6 3 25 346028 5471
6 4 3 297183 1266

Regina significantly outperforms our algorithm on all of these graphs, though these are small
problems for which asymptotic behaviour plays a less important role. What matters more is
performance on larger graphs, where existing software begins to break down.

We therefore ran a sample of 12-node graphs through our algorithm, selected randomly from
graphs which cause significant slowdown in existing software. This “biased” sampling was
deliberate—our aim is not for our algorithm to always outperform existing software, but instead
to seek new ways of solving those difficult cases that existing software cannot handle. Here we
do find success: our algorithm was at times 600% faster at identifying non-admissible graphs
than Regina, though this improvement was not consistent across all trials.

In summary: for larger problems, our proof-of-concept code already exhibits far superior per-
formance for some cases that Regina struggles with. With more careful optimisation (e.g., for
dealing with combinatorial isomorphism), we believe that this algorithm would be an important
tool that complements existing software for topological enumeration.

The full source code for the implementation of this algorithm is available at http://www.

github.com/WPettersson/AdmissibleFPG.

4.6 Applications and extensions

We first note that our meta-theorem is useful: here we list several simple properties p that are
important in practice, with a brief motivation for each.
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1. One-vertex triangulations are crucial for computation: they typically use very few tetrahe-
dra, and have desirable combinatorial properties. This is especially evident with 0-efficient
triangulations [65].

2. Likewise, minimal triangulations (which use the fewest possible tetrahedra) are important
for both combinatorics and computation [41, 42]. Although minimality is not a simple
property, it has many simple necessary conditions, which are used in practical enumeration
software [42, 77].

3. Ideal triangulation of hyperbolic manifolds play a key role in 3-manifold topology. An
extension of Theorem 4.4.4 allows us to support several necessary conditions for hyper-
bolicity, which again are used in real software [49, 61].

Finally: a major limitation of all existing 3-manifold enumeration algorithms is that they
cannot “piggyback” on prior results for fewer tetrahedra, a technique that has been remarkably
successful in other areas such as graph enumeration [79]. This is not a simple oversight: it is
well known that we cannot build all “larger” 3-manifold triangulations from smaller 3-manifold
triangulations. The techniques presented here, however, may allow us to overcome this issue—
we can modify the algorithm of Theorem 4.4.4 to store entire families of triangulations at each
bag of the tree decomposition. We would lose fixed parameter tractability, but for the first time
we would be able to cache and reuse partial results across different graphs and even different
numbers of tetrahedra, offering a real potential to extend census data well beyond its current
limitations.
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Chapter 5

A new algorithm for census
enumeration

5.1 Introduction

Most (if not all) census algorithms in the literature enumerate 3-manifolds on n tetrahedra
in two main stages. The first of these is generating a list of all 4-regular multigraphs on n
nodes. The second stage takes each such graph G, and sequentially identifies faces of tetrahedra
together to form a triangulation with G as its dual 1-skeleton (see Section 3.3 for more details).
In this chapter we describe a different approach to generating a census of 3-manifolds. The
first stage remains the same, but in the second stage we build up the link of each edge in the
triangulation sequentially. Since many algorithms identify faces of tetrahedra together (or take
combinatorially equivalent steps), this is a paradigm shift in census enumeration. We achieve
this result by extending each possible dual 1-skeleton graph to a “fattened face pairing graph”
and then finding particular decompositions of these new graphs. We also show how various
improvements to typical census algorithms (such as those in [41]) can be translated into this
new setting.

We implement the new algorithm and compare its running time to that of existing algorithms.
Results show that our new algorithm complements existing algorithms very well, and we predict
that a heuristic combination of existing algorithms and this new algorithm can significantly
speed up census enumeration.

5.2 Manifold decompositions

In this section we define a fattened face pairing graph, and then describe how a specific de-
composition of such a graph is exactly equivalent to a general triangulation. We also show how
the conditions for being a 3-manifold triangulation can translate into this context. Lastly we
comment on how these decompositions relate to spine representations of 3-manifolds.

A fattened face pairing graph is an extension of a face pairing graph F = (V,E) which we
use in a dual representation of the corresponding triangulation. Instead of one node for each
tetrahedron, a fattened face pairing graph contains one node for each face of each tetrahedron.
Additionally, a face identification in the triangulation is represented by three arcs in the fattened
face pairing graph; these three arcs loosely correspond to three pairs of edges which are identified
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(a) (b)

Figure 5.1: The face pairing graph (a) and fattened face pairing graph (b) of a 3-sphere
triangulation. Note that the grey arcs are internal arcs, while the black arcs are external
arcs.

when two faces of tetrahedra are identified.

Definition 5.2.1. Given a face pairing graph F , a fattened face pairing graph is constructed
by first tripling each arc (i.e., for each arc e in F , add two more arcs parallel to e), and then
replacing each node ν of F with a copy of K4 such that each node of the K4 is incident with
exactly one set of triple arcs that met ν.

Example 5.2.2. Figure 5.1 shows a face pairing graph and the resulting fattened face pairing
graph. The arcs shown in grey are what we call internal arcs. Each original node has been
replaced with a copy of K4 and in place of each original arc a set of three parallel arcs have
been added.

We will refer to the arcs of each K4 as internal arcs, and the arcs between distinct copies of K4

as external arcs. Each such K4 represents a tetrahedron in the associated face pairing graph,
and as such we will say that a fattened face pairing graph has n tetrahedra if it contains 4n
nodes.

Triangulations are often labelled or indexed in some manner, and changing the labels does not
change the triangulation. Given any labelling of a triangulation, we label the corresponding
fattened face pairing graph as follows. For each tetrahedron i with faces a, b, c and d, we label
the nodes of the corresponding K4 in the fattened face pairing graph vi,a, vi,b, vi,c and vi,d such
that if face a of tetrahedron i is identified with face b of tetrahedron j then there are three
parallel external arcs between vi,a and vj,b.

In such a labelling, the node vi,a represents face a of tetrahedron i. Each internal arc {vi,a, vi,b}
represents the unique edge common to faces a and b of tetrahedron i. Each external arc
{vi,a, vj,b} represents one of the three pairs of edges of tetrahedra which become identified as a
result of identifying face a of tetrahedron i with face b of tetrahedron j. Note that the arc only
represents the pair of edges being identified; not the orientation of said identification.

We now define ordered decompositions of fattened face pairing graphs. Later we show that there
is a one-to-one correspondence between such a decomposition and a general triangulation. Note
that our definitions for general triangulations (respectively fattened face pairing graphs) do not
involve labels on the vertices (respectively nodes). As such we can ignore any isomorphisms
due to labellings when discussing such a bijection. Later we show exactly how the 3-manifold
constraints on general triangulations (see Lemma 3.2.7) can be translated to constraints on
these decompositions.

Definition 5.2.3. An ordered decomposition of a fattened face pairing graph F = (E, V ) is a
set of closed walks {P1, P2, . . . , Pn} such that:

• {P1, P2, . . . , Pn} partition the arc set E;
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(a) (b)

Figure 5.2: Two close up views of a node of a fattened face pairing graph with the same
pairing of arcs. The node itself is represented by the grey ellipse, and all 6 arcs are incident
upon this node. Note how both figures show the same pairing of edges, the only difference
is where the “twist” occurs.

v1,c

v1,b

v1,a

v1,d v2,h

v2,e

v2,g

v2,f

Figure 5.3: A partial drawing of a fattened face pairing graph.

• Pi is a closed walk of even length for each i; and

• if arc ej+1 immediately follows arc ej in one of the walks then exactly one of ej or ej+1 is
an internal arc.

An ordered decomposition of a fattened face pairing graph exactly describes a general triangu-
lation. We will outline this idea first by showing how three parallel external arcs can represent
an identification of faces, and give the full proof in Theorem 5.2.4.

Since the ordered decomposition consists of closed walks of alternating internal and external
arcs, the decomposition pairs up arcs at such nodes so that at each node of degree 6, one
external arc is paired with exactly one internal arc. To help visualise this, we can draw such
nodes as larger ellipses, with 3 external arcs and 3 internal arcs entering the ellipse, as in Figure
5.2. Each external arc meets exactly one internal arc inside this ellipse. This only represents
how such arcs are pairing up in a given decomposition, the node is still incident with all 6 arcs.
We also see in Figure 5.2 that the fattened face pairing graph can always be drawn such that
any “crossings” of arcs only occur between external arcs. Such crossings are simply artefacts
of how the fattened face pairing graph is drawn in the plane, and in no way represent any sort
of underlying topological twist.

Figure 5.3 shows a partial drawing of an ordered decomposition of a fattened face pairing
graph. In this, we see a set of three parallel external arcs between nodes v1,d and v2,h. This
tells us that face d of tetrahedron 1 is identified with face h of tetrahedron 2. Additionally,
we see that one of the external arcs joins arc {v1,c, v1,d} to arc {v2,g, v2,h}. This tells us that
edge ab of tetrahedron 1 (represented by {v1,c, v1,d}) is identified with edge ef of tetrahedron 2
(represented by {v2,g, v2,h}). Since we know that face abc is somehow identified with face efg ,
this tells us that vertex c is identified with vertex g in this face identification. We can repeat
this process for the other paired arcs to see that vertex a is identified with vertex e and vertex
b is identified with vertex f . The resulting identification is therefore abc ↔ efg .

We now extend these ideas, detailing exactly how to construct the general triangulation from
an ordered decomposition and vice-versa.
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Construction 5.2.4. Constructing a general triangulation from an ordered decomposition of
a fattened face pairing graph.
It is straight forward to see that we can simplify a ordered decomposition of a fattened face
pairing graph into a regular face pairing graph, and this gives a collection of tetrahedra and
shows which faces are identified. What remains is to determine the exact identification between
each pair of faces.

First we label the nodes of the fattened face pairing graph such that each K4 in the fattened
face pairing graph has nodes labelled vi,a, vi,b, vi,c, vi,d. The choice of i here assigns the label i to
the corresponding tetrahedron in the triangulation. Similarly, the assignment of vi,a to a node
labels a face of the corresponding tetrahedron. Different labellings of nodes will therefore result
in a triangulation with different labels on tetrahedra and vertices. However, up to isomorphism
the actual triangulation is not changed.

For each identification of two tetrahedron faces, we have three corresponding external arcs in
the fattened face pairing graph. Each arc e out of these three belongs to one walk in the ordered
decomposition, and in said walk e has exactly one arc e1 preceding it and one arc e2 succeeding
it such that the sequence of arcs (e1, e, e2) occurs the walk.

Since e is an external arc, e1 and e2 must be internal arcs and therefore of the form {vi,a, vi,b}
where a 6= b. Let e = {vi,b, vj,c}, e1 = {vi,a, vi,b} and e2 = {vj,c, vj,d}. This tells us that
this identification is between face a of tetrahedron i and face d of tetrahedron j, and in this
identification the edge common to faces a and b on tetrahedra ti is identified with the edge
common to faces c and d on tetrahedra tj. The orientation of this edge identification is not
given, however it is not needed.. Each of faces a and d have three vertices, and this identification
of edges also identifies two vertices from face a with two vertices from face d. This leaves one
vertex from each face, which must be identified together. By repeating this process for the two
external arcs parallel to e we can therefore determine the actual face identification between face
a and face d.

Recall that deg(e) is the number of edges of tetrahedra identified together to form edge e in
the triangulation. It is clear that in the above construction all internal arcs that belong to
one walk in the ordered decomposition represent edges of tetrahedra which are all identified
together, leading to the following corollary.

Corollary 5.2.5. Given an ordered decomposition {P1, . . . , Pt}, each walk Pi corresponds to
exactly one edge e in the corresponding general triangulation. Additionally we get 2 · deg (e) =
|Pi|.

We have shown that we can construct a triangulation from an ordered decomposition. We now
give a reverse construction of an ordered decomposition from a triangulation. Together these
show the 1-to-1 correspondence between the two.

Example 5.2.6. First we give an example of how to partially build an ordered decomposition.
For this example we have a triangulation edge of degree ≥ 3, depicted in Figure 5.4 as the
thicker central edge. Recall that face x of a tetrahedron is the face opposite vertex x. We see
that in the leftmost tetrahedron, the thickened edge is opposite vertices 1 and 2, and that face
1 is identified with face 4. We therefore have the sequence ({v1,1, v1,2}, {v1,1, v2,4}, . . .) occurring
in one of the walks of the ordered decomposition.

Continuing this process shows that the sequence

({v1,1, v1,2}, {v1,1, v2,4}, {v2,4, v2,3}, {v2,3, v3,6}, {v3,6, v3,5}, . . .)
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Figure 5.4: Three tetrahedra about a central edge. Note that only vertices of tetrahedra
are labelled in this diagram (i.e., vertices 2 and 3 are both of tetrahedra, but in the
triangulation they are identified together), and recall that vertex 1 is opposite face 1.

a f

eb

c

d h

g

Figure 5.5: Face c of tetrahedron i is identified with face g of tetrahedron j.
As a result, one of the walks of the ordered decomposition contains the three arcs
{{vi,d, vi,c}, {vi,c, vj,g}, {vj,g, vj,h} in order.

occurs in one of the walks of the ordered decomposition.

Construction 5.2.7. Constructing an ordered decomposition from a general triangulation.
First construct the fattened face pairing graph from the face pairing graph of the triangulation.
We now label the fattened face pairing graph. Begin by labelling the tetrahedra in the trian-
gulation, and their vertices. Label the individual nodes of the fattened face pairing graph such
that if face a of tetrahedron i is identified with face b of tetrahedron j then the corresponding
three parallel arcs are between node vi,a and node vj,b in the fattened face pairing graph.

Recall that an edge ab is the edge between vertices a and b. Given a tetrahedron with vertices
labelled a, b, c and d, the edge ab has as endpoints the two vertices a and b and thus is the
intersection of face c and face d, so the edge ab in the triangulation is represented by the arc
{vi,c, vi,d} in the fattened face pairing graph.

Start with an edge ab on tetrahedron i in the triangulation, and add {vi,c, vi,d} to the start of
what will become a walk in the ordered decomposition.

Face c on this tetrahedron must be identified with some face g on tetrahedron j. For a diagram,
see Figure 5.5. Through this identification, the edge ab must be identified with some edge on
face g. Call this edge ef . Add one of the three arcs {vi,c, vj,g} to the current walk. Since a
face contains three edges, by construction we can always find such an arc which is not already
in one of the walks of the ordered decomposition. If {vj,g, vj,h} is already in this walk then we
are finished with the walk. Otherwise, add the arc {vj,g, vj,h} into the walk. The process then
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(a) Marking process
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(b) A “good” marking

b

a

c
d

(c) A “bad” marking

Figure 5.6: In these figures, the thicker edges are marked. In (a), edge bc was arbitrarily
marked as being above edge ab. Edge bd is marked because bc and bd share a common
face which does not contain ab. If the marking in (b) is reached, then the edge ab is not
identified with itself in reverse. If, however, (c) is reached, then ab is identified with itself
in reverse.

continues with the edge ef . Since each tetrahedron edge is the intersection of two faces of a
tetrahedron, it is clear that this process will continue until the initial edge ab is reached and
the current walk is complete.

The above procedure is then repeated until all arcs have been added to a walk. By construction,
we have created an ordered decomposition with the required properties.

We now give a decomposition representation of the property that a 3-manifold triangulation
has no edge that is identified with itself in reverse. In the triangulation one may consider the
ring of tetrahedra ∆1, . . . ,∆k (which need not be distinct) around an edge e = ab, as in Figure
5.6. Start on ∆1, and mark one edge incident to e (say bc) as being “above” e. Since bc is
“above” e, the face bcd must be the “top” face of ∆1, and thus the edge bd must also be “above”
e and is marked. We can then track the edge bd through a face identification, and across the
top of the next tetrahedron. At some point, we must reach ∆1 again. If ∆1 is reached via one
of the edges ac or ad, then e is identified with itself in reverse. However, if ∆1 is reached via
the edge bc again, then we know that the edge ab is not been identified with itself in reverse.

Loosely speaking, in the decomposition setting, we look at one walk Px of our ordered de-
composition and mark arcs in the decomposition as being “above” arcs in the walk Px. If
we again consider the edge bc as “above” ab, we mark the arc1 {vi,a, vi,d}. Since the ordered
decomposition corresponds to exactly one triangulation, we can use the ordered decomposition
to determine which edge is identified with {vi,a, vi,d}. We then mark the next edge, and proceed
as in the previous paragraph.

Definition 5.2.8. Given an ordered decomposition P = {P1, P2, . . . , Pt}, we can mark a walk
Px as follows. For a diagram of the ordered decomposition, see Figure 5.7.

Pick an external arc es from Px. Arbitrarily pick an external arc eS parallel to es, and mark eS
as being above es. Then let ea = es and eA = eS and continue as follows:

• Let eb be the next external arc in Px after ea.

1Recall that the arc {vi,a, vi,d} denotes the edge common to face a and face d. Since face a contains vertices
b,c and d and face d contains vertices a, b and c this edge must be bc.
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Figure 5.7: The process used to mark edges as per Definition 5.2.8. The dot-dashed arcs
are the ones marked as “above”. Recall that the ellipses are whole nodes, the insides of
which denote how internal and external arcs are paired up in the decomposition.

• The internal arc preceding eb joins two nodes. Call these nodes i and j, such that eb is
incident on j.

• Some external arc eA incident on i must be marked. Find the closed walk which eA belongs
to. In this closed walk there must exist some internal arc which either immediately precedes
or follows eA through node i. Call this internal arc eB. Note that the walk containing
these two arcs need not be, and often is not, Px. Arc eB must be incident to i, and some
other node which we shall call k.

• Find the internal arc eC between nodes k and j, and find the walk Py it belongs to. In
this walk, one of the arcs parallel to eb must either immediately precede or follow eC and
be incident upon node j. Call this arc eD.

• If eb = es, and eD is already marked as being above eb, we are finished with this walk.

• Else, mark the arc eD as being above eb and repeat the above steps, using eb in place of
ea, and using eD in place of eA.

Note that this processing of marking specifically marks one arc as being “above” another. It
does not mark arcs as being “above” in general.

To visualise this definition in terms of the decomposition, see Figure 5.7. The arcs ea and eb are
part of a closed walk, and we are marking the edges “above” this walk. Arc eA was arbitrarily
chosen. Arc eB follows eC , and then we find eC as the arc sharing one node with eB and one
with eb. From eC we can find and mark eD.

In terms of triangulations, each of eA and eD represent edges of tetrahedra in the triangulation
which are “above” the edge represented by Px. Each arc actually represents one of the three edge
identifications in a face identification, since they are external arcs. The process of translating
eA to eB (and eC to eD) is following this edge of the face identification onto an edge of the
tetrahedron (or in the case of eC to eD, the reverse). Both eB and eC are internal arcs of
the same tetrahedron and share a common node k so we know that both these internal arcs
represent edges of the tetrahedron which share a common face. This face is what we called the
“top” face in the triangulated manifold.

Lemma 5.2.9. Take an ordered decomposition containing a walk Px with arcs marked according
to Definition 5.2.8 and the corresponding triangulation. If there exists some external arc e in
Px that has two distinct external arcs marked as “above” e, then the edge of the triangulation
represented by Px is identified to itself in reverse.
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Figure 5.8: Part of an ordered decomposition, and associated tetrahedra. Identifications
of edges are shown with dashed arrows.

Proof Part of an ordered decomposition is shown in Figure 5.8, and we use the notation as
shown there. The part shown represents a single face identification between two (not necessarily
distinct) tetrahedra. The markings on the tetrahedra denote exactly what each labelled arc in
the fattened face pairing graph represents. As such, we say that an internal arc of the ordered
decomposition “is” also an edge of a tetrahedron. For example, eC is an internal arc, so it
represents the edge of the tetrahedron yet we say that eC is the edge on the tetrahedron. The
external arcs all represent edges in face identifications, and are drawn with dashed lines.

We prove the result by applying an orientation onto each of the edges of tetrahedra contained
in the edge of the triangulation represented by Px. Consider first the arc ea, which represents
one edge identification in some face identification. The arc eA (one of the two arcs parallel to
ea) is marked as being “above” ea. This is equivalent to assigning an orientation onto each of
the pair of edges represented by ea. Since eb is one of these, we now have an orientation on the
edge eb. We want to fix an orientation onto the edge ef such that the orientations of eb and ef
agree after the identification of faces. Since eB immediately follows eA (or vice-versa) and eC
immediately follows eD (or vice-versa, again) in the ordered decomposition, edges eB and eC
meet in a common tetrahedron vertex, call this vertex v. We also see that the edge eb meets v.
Since the edge eb is identified with the edge ef (via the edge identification represented by ed),
and the edge eC is identified with the edge eE (via the edge identification represented by eD),
v must be identified to the vertex common to edges ef and eE.

The orientation of the edge represented by eb has been used to orient the edge represented by
ef such that the two orientations agree after the face identification. Repeating this process for
all arcs in Px in turn orients all the edges of tetrahedra that are contained in the edge of the
triangulation.

If every external arc e in Px has exactly one external arc marked as “above” e, then we have
exactly one orientation for each edge of a tetrahedron. That is, the edge of the triangulation
corresponding to Px cannot be identified with itself in reverse.
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If some external arc e in Px has two distinct external arcs marked as “above” e, then every
external arc must have two such other arcs marked (as the marking process can only terminate
when it reaches es in Definition 5.2.8). This must mean that we have assigned two distinct ori-
entations to each tetrahedron edge in the triangulation edge corresponding to Px and therefore
this triangulation edge is identified with itself in reverse.

If a walk Px in an ordered decomposition satisfies Lemma 5.2.9, we say that this walk is non-
reversing.

Definition 5.2.10. A manifold decomposition is an ordered decomposition of a fattened face
pairing graph satisfying all of the following conditions.

• The ordered decomposition contains n+ 1 closed walks.

• The fattened face pairing graph contains 4n nodes.

• Each walk is non-reversing.

• The associated manifold triangulation contains exactly 1 vertex.

Theorem 5.2.11. There is a one-to-one correspondence between manifold decompositions of a
connected fattened face pairing graph and 1-vertex 3-manifold triangulations.

Proof Constructions 5.2.4 and 5.2.7 give the correspondence between general triangulations
and ordered decompositions. All that remains is to show that the extra properties of a manifold
decomposition force the corresponding triangulation to be a 3-manifold triangulation. Since
the decomposition contains n + 1 walks, Corollary 5.2.5 tells us the triangulation has n + 1
edges. Additionally, each tetrahedron corresponds to four nodes in the fattened face pairing
graph, so the triangulation has n tetrahedra and thus by Lemma 3.2.17 we see that the link of
each vertex is homeomorphic to a 2-sphere. Each walk is non-reversing so Lemma 5.2.9 says
that no edge in the corresponding triangulation is identified with itself in reverse, and we have
the required result.

We now define the notation used to refer to specific ordered decompositions. This notation
is used in Algorithm 1, in particular for some performance improvements. The notation is
unintentionally defined such that it can also be interpreted as a spine code (as used by Matveev’s
Manifold Recognizer [78]), and that the spine generated from such a spine code is a dual
representation of the same combinatorial object as the manifold decomposition. For more
detail on spine codes, see Section 5.2.1.

Notation 5.2.12. Take an ordered decomposition of a fattened face pairing graph with 4n
nodes, and label each set of three parallel external arcs with a distinct value taken from the set
{1, . . . , 2n}. Assign an arbitrary orientation onto each set of three parallel external arcs. For
each walk in the ordered decomposition:

1. Create a corresponding empty ordered list.

2. Follow the external arcs in the walk.

(a) For each external arc labelled i met in the walk, if the arc in the walk is traversed in a
manner consistent with the applied orientation add i to the end of the corresponding
ordered list.
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Figure 5.9: A manifold decomposition of a fattened face pairing graph that represents
a 3-sphere. Recall that each grey ellipse is actually a node in the fattened face pairing
graph.

(b) If instead the arc in the walk is traversed in the reverse direction, add −i to the end
of the list.

(c) Continue until the first external arc in the walk is reached.

See Example 5.2.13 for an example of the use of this notation. Note that this notation only
records the external arcs, and does not note any internal arcs in walks.

We can also reconstruct the face pairing graph (and therefore the fattened face pairing graph)
from this notation (i.e., without the internal arcs). Since each external arc represents some
identification of two faces (and three parallel external arcs will represent the same identifi-
cation), we can use the orientation of each arc to distinguish between the two faces in each
identification and build up the face pairing graph.

It is routine to check that if one is given a fattened face pairing graph and a partial ordered
decomposition in which all the internal arcs are missing from each walk, it is still possible
(and indeed trivial) to reconstruct the complete ordered decomposition. For the theoretical
discussions in this section we have retained complete information regarding the ordered de-
compositions, but in the implementation we only store the sequential list of external arcs as in
Notation 5.2.12.

Example 5.2.13. The following set of walks (remember, we omit internal arcs and instead
prescribe orientations on external arcs) describes a manifold decomposition of a 3-sphere.

T = {(1), (1, 2, 4,−2, 3,−4,−3,−1, 3,−2), (4)}

Figure 5.9 shows this manifold decomposition of a 3-sphere. Given the appropriate vertex
labellings, this represents the same triangulation as that given in Example 3.2.8.

Each integer in T represents an identification of faces, and we can also track each face in an
identification individually using the sign of said integer. For example, −3 is before −1 in the
second walk, so we can say that the “second” face in identification 1 belongs to the same
tetrahedron as the “first” face in identification 3. Each integer (or its negative) appears exactly
three times in an ordered decomposition, so we can determine exactly which faces belong to
the same tetrahedron. For example, both faces involved in identification 1 belong to the same
tetrahedron as the “first” face in identification 2 and the “first” face in identification 3.
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(a) (b)

Figure 5.10: (a) A butterfly inside a tetrahedron; and (b) the identification of two faces
will identify quadrilaterals together. In this case, the two grey quadrilaterals will have
their edges identified.

5.2.1 Special spines of triangulations

We now briefly discuss a dual representation of 3-manifold triangulations, the spine representa-
tion. Since spines and manifold decompositions represent equivalent objects, we expect there to
be an equivalence between them. However, despite the different construction methods involved,
the representation of a manifold decomposition as defined in Notation 5.2.12 can directly be
interpreted as a spine which represents the same manifold (and vice-versa). We only give a
brief introduction to special spines (which we shall just call spines) to highlight the differences
between spines and manifold decompositions, for full details on spines, see [77].

Figure 5.10(a) shows what is called a butterfly inside a tetrahedron. This butterfly is essentially
the spine of the tetrahedron, and consists of six intersecting quadrilaterals. A manifold can be
collapsed to a spine (for details, see [77]), leading to the relationship between the two. Each face
of the tetrahedron is incident with three of these six quadrilaterals, and it is easy to see that one
can translate a face identification between two faces into an identification of these quadrilaterals
(see Figure 5.10(b)). Also it is important to note that there is exactly one quadrilateral that is
incident with any two faces of the tetrahedron.

To work with spines combinatorially, we need some combinatorial representation. Each set
of quadrilaterals forms a disc about an edge of the triangulation, so we can arbitrarily orient
the disc and then follow a path that traces a circle around the edge. This path crosses over
various quadrilaterals by transitioning between faces of tetrahedra. Since we are dealing with
3-manifold triangulations, each face is involved in exactly one face identification, so we note
down which face identification is involved. Note that since the disc and circle are oriented, we
also need to track whether we use each face identification in a positive or negative manner.

This notation is used by Matveev’s Manifold Recognizer [78], As mentioned earlier, if a spine
code and a representation of a manifold decomposition as defined in Notation 5.2.12 are equiv-
alent (up to isomorphisms due to relabelling), then the corresponding spine and manifold
decompositions are dual to each other.

5.3 Algorithm and improvements

In this section we first give a basic outline of the new algorithm to enumerate manifold decompo-
sitions (3-manifold triangulations). We then give various improvements to this algorithm based
on known theoretical results in 3-manifold topology combined with suitable data structures.

Many existing algorithms in the literature [45, 77] build triangulations by identifying faces
pairwise (or taking combinatorially equivalent steps). The algorithm we give here essentially
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identifies edges of faces together. Therefore the search tree traversed by our new algorithm is
significantly different than that traversed by other algorithms. This is highlighted in the results
given in Section 5.4.

5.3.1 Algorithm

The basic algorithm, detailed below, begins by labelling with an index each set of three parallel
external arcs arbitrarily. It then simply tries to create suitable walks beginning with the lowest
index arc. Recursion is used to ensure that every possible walk is tried, and once every external
arc is in a walk we have an ordered decomposition.

Algorithm 1 Find an ordered decomposition (G)

Require: G is a fattened face pairing graph on n nodes
1: Index and assign orientation to each set of three parallel arcs
2: e := external arc with lowest index not yet in any walk
3: Finish walk(G,(e),{})

Algorithm 2 Finish walk (G,P ,D)

Require: G is a fattened face pairing graph
Require: P is a partial walk in an ordered decomposition
Require: D is a partial ordered decomposition
Notation: P1 � P2 is the walk generated by appending the walk P2 to the walk P1

1: e := last external arc in P , with orientation
2: n1 := last node e visits
3: for each internal arc i incident on n1 do
4: if i has not yet been placed into any walk in D then
5: n2 := node incident to i and distinct to n1

6: if n2 is first node of first arc in P then
7: P ′ := P � (i)
8: if all external arcs of G are in some walk then
9: Store D ∪ P ′ as ordered decomposition

10: else
11: e := external arc with lowest index not yet in any walk
12: Finish walk (G,(e),D ∪ P ′)
13: end if
14: else
15: e2 := external arc incident to n2, not yet in any walk
16: if e2 will be traversed in forward direction then
17: Finish walk (G,P � (i, e2),D)
18: else
19: Finish walk (G,P � (i,−e2),D)
20: end if
21: end if
22: end if
23: end for

Algorithm 1 can be considered an initialisation algorithm and is relatively easy to understand,
while Algorithm 2 is the recursive function which does the actual searching and is more complex.
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n1 n2

Figure 5.11: Partial walk being built as in Algorithm 2. In this diagram, e was the
starting arc. The choice of i is shown. Note that all three possible choices for e2 are
equivalent. Also since the orientation on e2 is “backwards”, the new partial walk would
be P � (i,−e2).

A diagram helping explain Algorithm 2 is given in Figure 5.11. This second algorithm starts
with a partial walk (initially a single external edge), and attempts to complete said walk. The
partial walk always ends with an external arc, so there are three choices for the next internal
arc (Line 3). The first check is to ensure that the next internal arc i only occurs in one walk
in the current ordered decomposition. Then if using i completes the current walk (Line 6),
the algorithm either finishes the ordered decomposition (Line 9) or tries to find the next walk
(Line 11). If using i does not complete the current walk, the algorithm continues with the
current walk. Note that the algorithm needs to track whether the next external arc e2 is used
in the forward (Line 17) or reverse (Line 19) direction. However, since each of the three parallel
choices for e2 are equivalent, there is no need to distinguish between these.

5.3.2 Limiting the size of walks

Enumeration algorithms [41, 42, 45, 75, 76, 77] in 3-manifold topology often focus on closed,
minimal, irreducible and P2-irreducible 3-manifold triangulations. We do the same here, see
Chapter 3 for details on these properties.

The following results are taken from [41], but similar lemmas for orientable cases were used by
the enumeration algorithms in [75, 77].

Lemma 5.3.1. (2.1 in [41]) No closed minimal triangulation has an edge of degree three that
belongs to three distinct tetrahedra.

Lemma 5.3.2. (2.3 in [41]) No closed minimal P2-irreducible triangulation with ≥ 3 tetrahedra
contains an edge of degree two.

Lemma 5.3.3. (2.4 in [41]) No closed minimal P2-irreducible triangulation with ≥ 3 tetrahedra
contains an edge of degree one.

Remembering that the degree of an edge of a triangulation is the number of edges of tetrahedra
which are identified together to form said edge, we can see that these lead to the following.

Corollary 5.3.4. No closed minimal P2-irreducible manifold decomposition with ≥ 3 tetrahedra
contains a walk which itself contains less than three external arcs.

Corollary 5.3.5. No closed minimal manifold decomposition contains a walk which itself con-
tains exactly three internal arcs representing edges on distinct tetrahedra (i.e., belonging to three
distinct K4 subgraphs).
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The above results are direct corollaries, as it is simple to translate the terms involved and the
results are simple enough to implement in an algorithm. In the algorithm, we can add a check
on the number of arcs in P ′ after Line 7. This is implementable as a constant time check if the
length of the current partial walk is stored.

Additionally, we use these results a second time. For a census on n tetrahedra, the ordered
decomposition needs to contain n + 1 walks to be a manifold decomposition. If the algorithm
has completed k walks, then there are n + 1− k walks left to complete. Each such walk must
contain at least three external arcs, so if there are less than 3(n+ 1− k) unused external arcs,
the current subtree of the search space can be pruned.

Improvement 5.3.6. At Line 1 of Algorithm 2, if the number of unused external arcs is less
than 3(n+ 1− |D|), end the current iteration of the algorithm.

This result is extended one step further. There is only one closed walk in a fattened face
pairing graph on more than one tetrahedron which contains three internal arcs that are not all
from distinct tetrahedra, shown in Figure 5.12. We modify Algorithm 1 to enumerate all such
closed walks first. Each such walk is either present or absent in any manifold decomposition.
For each possible combination of such walks, we fix said walks and then run Algorithm 2 on
the remaining arcs. All other walks must now contain at least four external arcs, so during
the census on n tetrahedra if the algorithm has completed k walks and there are less than
4(n+1−k) unused external arcs we know that the partial decomposition can not be completed
to a manifold decomposition.

Improvement 5.3.7. Use Algorithm 3 instead of Algorithm 1. At Line 1 of Algorithm 2, if
the number of unused external arcs is less than 4(n+ 1− |D|), end the current iteration of the
algorithm.

Algorithm 3 Find an ordered decomposition (G)

Require: G is a fattened face pairing graph on n nodes
1: Index and assign orientation to each set of three parallel arcs
2: S := {}
3: for each K4 in G do
4: if two internal arcs of the K4 can be used together in a walk containing three internal

arcs then
5: Add the walk to S
6: end if
7: end for
8: for each subset s of S do
9: e := external arc with lowest index not yet in any walk

10: Complete walk(G,(e),s)
11: end for

5.3.3 Avoiding cone faces

For the next results, it is not clear that computationally cheap implementations are possible.
Instead we look more closely at the results for triangulations to find partial results that are fast
when implemented. The following was shown in [41].
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Figure 5.12: The only possible walk containing 3 internal arcs not all from distinct
tetrahedra in a fattened face pairing graph on more than 1 tetrahedron. Only the external
arcs used in the walk are shown, other external arcs are not shown.

Figure 5.13: A one-face cone formed by identifying the two marked edges.

Lemma 5.3.8. (2.8 in [41]) Let T be a closed minimal P2-irreducible triangulation containing
≥ 3 tetrahedra. Then no single face of T has two of its edges identified to form a cone as
illustrated in Figure 5.13.

For manifold decompositions, our translation of this result also requires the orientability of the
underlying manifold. It should be noted that this is not due to some inherent flaw in manifold
decompositions. This simply ensures that implementing the resulting check is viable.

Lemma 5.3.9. Let D be a closed minimal P2-irreducible manifold decomposition of an ori-
entable manifold containing ≥ 3 tetrahedra. Then no walk of D can use two parallel external
arcs in opposite directions (as seen in Figure 5.14).

Proof Recall that by our definition, if some walk Px of a manifold decomposition contains
the sequence of arcs ({vi,a, vi,b}, {vi,a, vj,c}) then face a of tetrahedron i is identified with
face c of tetrahedron j. Assume towards a contradiction that we also have the sequence of
arcs ({vi,a, vj,c}, {vi,a, vi,d}) in the walk Px somewhere, such that the parallel arcs of the form
{vi,a, vj,c} are used in the walk in both directions.

Affix some orientation onto the edge of the manifold represented by Px, and consider the ring
of tetrahedra surrounding this edge. Since we have an orientable manifold, we can make use of
a “right-hand” rule. See Figure 5.15 for a visual aid. Imagine a right hand inside tetrahedron
i, gripping edge cd (represented by {vi,a, vi,b}) such that the thumb points towards the positive
end of the edge and the fingers curl around the edge so that they leave the tetrahedron through

e1

e2

Figure 5.14: The depicted walk cannot occur in a closed minimal P2-irreducible ori-
entable manifold decomposition as external arcs e1 and e2 are used in opposite directions.
The dotted lines indicates the walk continues through parts of the fattened face pairing
graph not depicted.
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Figure 5.15: A tetrahedron in an oriented triangulation. The circular line with the arrow
head indicates a “right hand” gripping the edge. In (a) the edge cd is given an orientation.
If two parallel external arcs are used in opposite directions (as seen in Figure 5.14) then
(b) must occur. Note that since the triangulation is oriented, the labelling of (b) is forced,
given the labelling of (a).

face a (see Figure 5.15(a)). Since the manifold is orientable, any time this hand is back inside
tetrahedron i it must have this same orientation. Now since {vi,a, vi,b} preceded {vi,a, vj,c} in
the walk and the fingers curl “out” through face a of tetrahedron i, if some other arc {vi,a, vi,d}
succeeds arc {vi,a, vj,c} then the fingers must curl “in” through face a of tetrahedron i as the
hand grips edge cd. As yet, this is no contradiction, as the hand is gripping the one edge of
the triangulation, but is therefore gripping many edges of tetrahedra. However, this necessarily
leads to these two edges of tetrahedra having the same common vertex as their “positive” end
(see Figure 5.15(b)). Then face a has two edges identified as in 5.13, contradicting Lemma
5.2.9.

Improvement 5.3.10. After Line 15 of Algorithm 2, if e2 is parallel to another external arc
e3 such that e3 is already used in the reverse direction, do not use e2 in this walk.

Note that this improvement only applies if the algorithm is searching for orientable manifold
decompositions.

5.3.4 One vertex tests

Definition 5.2.10 requires that the associated manifold only have one vertex. We now show how
the algorithm can determine this. More accurately, we show how the algorithm detects when
a partially constructed manifold must have more than one vertex, which is used to prune the
search tree. We do this by tracking how the link of each vertex may be triangulated2. For this,
we will use the term frontier edge to refer to an edge on the frontier of the triangulation of a
link (see Figure 5.16).

Initially, the link of each vertex may be triangulated as a single triangular face, and therefore
has 3 frontier edges. Each time an external arc is used in a walk, two edges in the triangulation
are identified together, and as a result two frontier edges are identified together (see Figure
5.17).

The orientation of this identification is not known, but is also not required. We only require
that the triangulation only have one vertex and we do this by tracking how many frontier edges

2Since we are triangulating the link of a vertex, this triangulation is two-dimensional.
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Figure 5.16: A tetrahedron, with the link of the top vertex drawn in heavier lines. This
link, when triangulated, is homeomorphic to a disc. Each of the three heavier lines is a
frontier edge.

Figure 5.17: When the two edges of the two tetrahedra (long thick lines) are identified,
we also know that the two frontier edges (short thick lines) will be identified.

are in each link. When frontier edges are identified together, the two edges either belong to
the same link, or to two distinct links. If the two frontier edges belong to the same link (see
Figure 5.18(a)), the number of frontier edges in the link is reduced by two. However if the
frontier edges belong to two distinct links (see Figure 5.18(b)), with la and lb frontier edges
respectively, the resulting link has la + lb − 2 frontier edges. Note that after this identification,
two links have been joined together so we must not just track the number of frontier edges, but
also which links have been identified.

Once a vertex link has no frontier edges, we consider it “closed off” as no other vertex links
can be connected to it. If any other distinct vertex links exist, we know that the triangulation
must have more than one vertex and we can prune the search tree.

Improvement 5.3.11. When initialising the algorithm, give each vertex a “frontier edges”
variable initialised to three.

When an external arc is used in a walk, find the two faces f1 and f2 involved, as well as the pair
of edges e1 and e2 being identified. Let v1 (respectively v2) be the vertex opposite edge e1 on
face f1 (respectively e2 on face f2). If v1 and v2 are part of the same vertex of the triangulation,
subtract two from the number of frontier edges of this vertex link. Otherwise, identify v1 and
v2 as being part of the same vertex link, and set the number of frontier edges of this vertex link
as the sum of the frontier edges of v1 and v2 minus two. If the resulting vertex link (from either
case) has zero frontier edges remaining and there are unused external arcs, prune the current
branch of the search tree.

The number of frontier edges of each vertex link, as well as which vertex links are identified
together, are tracked via a union-find data structure. The data structure is slightly tweaked
to allow back tracking (see [42] for details), storing the number of frontier edges at each node.
For more details on the union-find algorithm in general, see [89].
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(a)

v1 v2

(b)

Figure 5.18: Two possibilities when identifying frontier edges of link vertices. The dark
grey and the arrow indicate the two edges identified. In (a) the two frontier edges belong
to the same vertex link, whereas in (b) the two edges belong to two different vertex links.
Note that we are only interested in the number of frontier edges in the link, not its shape
or the orientation of any identification.

5.3.5 Canonicity and Automorphisms

When running Algorithm 2, many equivalent manifold decompositions will be found. These
decompositions may differ in the order of the walks found. Alternately, two walks may have
different starting arcs or directions. For example, the two walks (a, b, c) and (−b,−a,−c) are
equivalent. The second starts on a different arc, and traverses the walk backwards, but neither of
these change the manifold decomposition. Additionally, the underlying face pairing graph often
has non-trivial automorphism group. Finding multiple equivalent manifold decompositions is
unnecessary, so we instead only find canonical manifold decompositions. This requires the
following definitions for comparing walks in an ordered decomposition. Recall that we store
walks as a list of numbers (each referring to an external arc) along with the orientation of said
arc in the walk.

Definition 5.3.12. A walk P = (x1, x2, . . . , xm) in an ordered decomposition is semi-canonical
if

• x1 > 0 ; and

• |x1| ≤ |xi| for i = 2, . . . ,m.

Definition 5.3.13. A walk P = (x1, x2, . . . , xm) in an ordered decomposition is canonical if

• P is semi-canonical; and

• for any semi-canonical P ′ = (x′1, x
′
2, . . . , x

′
m) isomorphic (under cyclic permutation of the

edges in the path or reversal of orientation) to P , either |x2| < |x′2| or |x2| = |x′2| and
x2 > 0.

This definition of canonical simply says that we always start on the arc with lowest index, and
take the arc in a forwards direction. If there are two or three such choices, we take the arc
which results in the second arc in the walk having lowest index. If this still leaves us with two
choices, we take the walk where we use said second arc in the “forwards” direction. Since there
is exactly one internal arc between any two external arcs, we are guaranteed a unique choice
at this stage.

Definition 5.3.14. Given two walks Px = (x1, . . . , xk) and Py = (y1, . . . , ym) in canonical
form, we say that Px < Py if and only if
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• xi = yi for i = 1, . . . , n− 1 and xn < yn; or

• xi = yi for i = 1, . . . , k and k < m.

In plainer terms, pairs of arcs from each walk are compared in turn until one arc index is
smaller in absolute value than the other, or until the end of one walk is reached in which case
the shorter walk is considered “smaller”.

Definition 5.3.15. A manifold decomposition consisting of walks P1, P2, . . . , Pm is considered
canonical if:

• Pi is canonical for i = 1, . . . ,m; and

• Pi < Pi+1 for i = 1, . . . ,m− 1.

Recall that we may have automorphisms of the underlying face pairing graph to consider. Each
automorphism will relabel the arcs of the labelled fattened face pairing graph. Each relabelling
changes any manifold decomposition by renumbering the arcs in the walks. We apply each
automorphism to a manifold decomposition D to obtain a new decomposition D′. Then D′ is
made canonical itself (by setting the first external arc in each walk and reordering the walks),
and we compare D and D′. If D′ < D then we can discard D and prune the search tree.

Algorithm 4 Is most canonical(D)

Require: D is a partial ordered decomposition
1: if D is not in canonical form then
2: return False
3: end if
4: for each g in automorphism group of face pairing graph do
5: Apply g to D to obtain D′
6: if D′ < D then
7: return False
8: end if
9: end for

10: return True

There are two times in the algorithm we can test for canonical decompositions.

Improvement 5.3.16. Every time an external arc is added to a walk, run Algorithm 4. If the
result is false, disregard this choice of arc and prune the search tree here.

Improvement 5.3.17. Every time a walk is completed, run Algorithm 4. If the result is false,
disregard this choice of arc and prune the search tree here.

However, Algorithm 4 is not computationally cheap. Experimentation showed that using Im-
provement 5.3.17 was significantly faster than using Improvement 5.3.16 as Algorithm 4 was
not run as often.

5.4 Results and Timing

In this section we detail the results from testing the algorithm. We test the manifold decomposi-
tion algorithm from Section 5.3, with various improvements from that section, against Regina.
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Regina is a suite of topological software and includes state of the art algorithms for census
enumerations in various settings (including hyperbolic and normal surface settings). Regina
is freely available, including source, allowing us to implement our algorithm without building
any of the supporting framework. Regina also filters out invalid triangulations as a final stage,
which allows us to test the efficiency of our improvements by disabling some of them. However
like many algorithms in literature Regina builds triangulations by identifying faces two at a
time. We find that while Regina outperforms MD overall, there are a non-trivial number of
subcases for which MD is orders of magnitude faster. These are subcases which Regina finds
extremely difficult, showing that MD is complements Regina very well and has great potential
in census enumeration algorithms. However this comparison relies on running both algorithms
and comparing the resulting running times. Despite looking at many graph parameters (in-
cluding tree width), we have been unable to determine the heuristics necessary to decide on
the best algorithm.

A full census enumeration involves generating all 4-regular multigraphs, and then for each such
graph G, determining whether there exists some manifold M with G as its face pairing graph. In
earlier sections, we only dealt with individual graphs but for the testing we ran each algorithm
on all 4-regular multigraphs of a given order3.

We are looking for triangulations of closed, minimal, irreducible and P2-irreducible 3-manifolds.
We begin by pointing out that the results confirm the correctness of the MD algorithm. Both
MD and Regina find a strict superset of the required triangulations, as perfect minimality tests
can be computationally expensive. However, via a separate process we verified that any extra
triangulations were not minimal.

One algorithmic improvement from Section 5.3 needs the resulting triangulation to be ori-
entable. This gives us two settings to visit already, hence Algorithms MD and MD-o (where
MD-o only finds orientable decompositions). Experimental testing with the various improve-
ments from Section 5.3 also pointed towards Improvement 5.3.11 being computationally expen-
sive, leading to Algorithms MD* and MD*-o. Note that these last two algorithms will now find
ordered decompositions which are not necessarily manifold decompositions. These are instead
filtered out as a final step of the enumeration process.

Algorithm 5 MD

Use Algorithms 1 and 2 with the following improvements:

• Ensure enough external arcs are unused to still finish each walk (5.3.7)

• Ensure the resulting triangulation has only one vertex (5.3.11)

• Ensure the partial decomposition is canonical after completing each walk (5.3.17)

The algorithms were tested on a cluster of Intel Xeon L5520s running at 2.27GHz. Times given
are total CPU time; that is, a measure of how long the test would take if run as one single
thread on one single core. The algorithms themselves, when run on all 4-regular multigraphs
on n nodes, are trivially parallelisable which allows each census to complete much faster by
taking advantage of available hardware.

3Recall that a triangulation on n tetrahedra has a face pairing graph on n nodes.
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Algorithm 6 MD-o

Use Algorithms 1 and 2 with the following improvements:

• Ensure enough external arcs are unused to still finish each walk (5.3.7)

• Ensure the decomposition does not use two parallel external arcs in opposite directions
(5.3.10).

• Ensure the resulting triangulation has only one vertex (5.3.11)

• Ensure the partial decomposition is canonical after completing each walk (5.3.17)

Algorithm 7 MD*

Use Algorithms 1 and 2 with the following improvements:

• Ensure enough external arcs are unused to still finish each walk (5.3.7)

• Ensure the partial decomposition is canonical after completing each walk (5.3.17)

Algorithm 8 MD*-o

Use Algorithms 1 and 2 with the following improvements:

• Ensure enough external arcs are unused to still finish each walk (5.3.7)

• Ensure the decomposition does not use two parallel external arcs in opposite directions
(5.3.10).

• Ensure the partial decomposition is canonical after completing each walk (5.3.17)
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5.4.1 Aggregate tests

In the general setting (where we allow orientable and non-orientable triangulations alike) Table
5.1 highlights that Regina outperforms MD. The difference seems to grow slightly as n increases,
pointing to the possibility that more optimisations in this setting are possible. We suspect that
tracking the orientability of vertex links is giving Regina an advantage here (see [42], Section
5). Tracking orientability at all is much harder with ordered decompositions, as the walks are
built up one at a time. Each external arc represents an identification of edges, but does not
specify the orientation of this identification. Thus no orientability information is given until at
least two of any three parallel external arcs are used in walks.

Table 5.1: Running time in seconds of Regina and the manifold decomposition (MD)
algorithms when searching for all manifold triangulations on on n tetrahedra.

n Regina MD

7 29 80
8 491 2453
9 11288 79685
10 323530 3406211

We also compare MD-o to Regina, where we ask both algorithms to only search for orientable tri-
angulations. Both algorithms run significantly faster (demonstrating that Improvement 5.3.10
is a significant improvement). Table 5.2 shows that Regina outperforms MD-o roughly by a
factor of four. This appears to be constant and we expect MD to be comparable to Regina
after micro-optimisations (such as those Regina has received, see [41, 42]).

Table 5.2: Running time in seconds of Regina and the manifold decomposition (MD-o)
algorithm when searching for all orientable manifold triangulations on n tetrahedra.

n Regina MD-o

7 < 1 25
8 147 535
9 3499 13161
10 90969 430162

To test Improvement 5.3.11, we compare MD* and MD*-o to MD and MD-o respectively. The
timing data in Tables 5.3 and 5.4 shows that MD* and MD*-o out-performed MD and MD-o,
demonstrating that Improvement 5.3.11 actually slows down the algorithm. We verified that
Improvement 5.3.11 is indeed discarding unwanted triangulations; however, tracking the vertex
links must be too computationally expensive. We instead use Regina’s framework to verify
that each triangulation found is a 3-manifold triangulation with 1 vertex. The time for this is
included in the timing results, which confirms that such a verification process is faster than the
losses incurred by Improvement 5.3.11.

5.4.2 Graph by graph tests

The census enumeration problem requires running the appropriate algorithm (such as Algorithm
7) on all connected 4-regular multigraphs of a given order. Table 5.5 shows the running time of
both Regina and MD* on a cherry-picked sample of such graphs on 10 tetrahedra. From these
we can see that on some particular graphs, MD* outperforms Regina by an order of magnitude.
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Table 5.3: Running time in seconds of MD-o and MD*-o when searching for orientable
manifold triangulations on n tetrahedra.

n MD-o MD*-o

7 25 16
8 535 446
9 13161 10753
10 430162 291544

Table 5.4: Running time in seconds of MD and MD* when searching for all manifold
triangulations on n tetrahedra.

n MD MD*

7 80 71
8 2453 1875
9 79685 58743
10 3406211 1624025

While these graphs were cherry-picked, they do display the shortfalls of Regina. There are
48432 4-regular multigraphs on 10 nodes, and it takes Regina 89.9 CPU-hours to complete this
census.

Of the 48432 graphs, just 190 take over 300 seconds each for Regina to process. In total, it takes
Regina 43.6 CPU-hours to process these 190 graphs. This accounts for 48.5% of the running
time of Regina’s census on 10 tetrahedra triangulations. Running these graphs through MD
takes 12.1 CPU-hours, for a saving of 31.5 CPU-hours. This would reduce the running time of
the complete census from 89 hours to 58 hours, a 35% improvement.

Note that this improvement applies if we only consider this specific set of 190 graphs. MD* is
slower in general, so for most graphs Regina is faster.

If we find the ideal heuristic which tells us exactly which of Regina or MD* will be faster on
a given graph, we could always use the algorithm which is faster. This would save 40 hours
of computing time for the 10 tetrahedra census, which would turn the running time from 90
CPU-hours down to 50 CPU-hours, a 44% improvement. Further work in this area involves
identifying exactly which heuristics can be used to determine whether Regina or MD will analyse
a given graph faster.

Table 5.5: Running time in seconds of MD∗ and Regina on particular graphs on 10 nodes.
Here “Task” identifies the specific graph as being the i-th graph produced by Regina.

Task Regina MD∗

48308 2476 142
48083 2487 192
48288 2164 118
47332 2141 229
47333 2003 134
47520 2083 221
46914 2108 302
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Chapter 6

Conclusion

In Chapter 1 we completely solve a long standing and well-known problem on cycle decom-
positions of complete graphs; Alspach’s conjecture. The obvious major remaining problem
concerning cycle decompositions of complete graphs is the Oberwolfach Problem, which con-
cerns decompositions into unions of disjoint cycles (or 2-factors). In Chapter 2 we obtain results
on a variant of the problem; namely where we consider 2-factorisations of complete multipartite
graphs. The Oberwolfach Problem itself remains open, although there has been considerable
progress in recent times.

In Chapter 4 we present a metatheorem showing the existence of fixed parameter tractable
algorithms for determining the p-admissibility of 4-regular multigraphs for a broad range of
properties p. We also implement the generic version of this algorithm and show that the theo-
retical algorithm provides significant real-world improvements in running times. The framework
for this result opens up the possibility of generating a 3-manifold census on n tetrahedra by
building on a census of partial 3-manifold triangulations on n− 1 tetrahedra. This has the po-
tential to push beyond current limitations of census enumeration algorithms as this has never
been achieved before. In Chapter 5 we look at alternate ways of enumerating 3-manifold tri-
angulations. We give an algorithm which topologically identifies edges pairwise rather than
faces; a paradigm shift from algorithms in literature. This algorithm is implemented, and re-
sults show that this new algorithm performs an order of magnitude faster precisely on subcases
where existing state-of-the-art algorithms struggle. This demonstrates how the new algorithm
complements existing state of the art algorithms, leading the way for further breakthroughs.
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Appendix A

Tables of Decompositions

A.1 Data for Section 1.6.1

J3 → 3, 6 J5 → 4, 5, 6 J6 → 43, 6 J7 → 53, 6
J5 → 42, 7 J5 → 3, 5, 7 J7 → 4, 52, 7 J9 → 54, 7
J7 → 42, 5, 8 J7 → 3, 52, 8 J7 → 33, 4, 8 J8 → 44, 8
J9 → 4, 53, 8 J11 → 55, 8
J8 → 53, 9 J8 → 3, 43, 9 J8 → 32, 4, 5, 9 J8 → 35, 9
J9 → 42, 52, 9 J10 → 44, 5, 9 J11 → 46, 9
J9 → 43, 5, 10 J9 → 3, 4, 52, 10 J9 → 33, 42, 10 J9 → 34, 5, 10
J10 → 54, 10 J10 → 45, 10 J11 → 42, 53, 10

Table A.1: These decompositions are required for Lemma 1.6.2. The decompositions themselves are
given in Table A.3.

J8 → 42, 5, 11∗ J8 → 3, 52, 11∗ J8 → 33, 4, 11∗ J9 → 44, 11∗

J10 → 4, 53, 11∗ J12 → 55, 11∗

J9 → 53, 12∗ J9 → 3, 43, 12∗ J9 → 32, 4, 5, 12∗ J9 → 35, 12∗

J10 → 42, 52, 12∗ J11 → 44, 5, 12∗ J12 → 46, 12∗

J10 → 43, 5, 13∗ J10 → 3, 4, 52, 13∗ J10 → 33, 42, 13∗ J10 → 34, 5, 13∗

J11 → 54, 13∗ J11 → 45, 13∗ J12 → 42, 53, 13∗

J12 → 43, 52, 14∗ J12 → 3, 4, 53, 14∗ J12 → 32, 44, 14∗ J12 → 33, 42, 5, 14∗

J12 → 34, 52, 14∗ J12 → 36, 4, 14∗ J13 → 55, 14∗ J13 → 45, 5, 14∗

J14 → 42, 54, 14∗ J14 → 47, 14∗

J12 → 44, 5, 15∗ J12 → 3, 42, 52, 15∗ J12 → 32, 53, 15∗ J12 → 33, 43, 15∗

J12 → 34, 4, 5, 15∗ J12 → 37, 15∗ J13 → 4, 54, 15∗ J13 → 46, 15∗

J14 → 43, 53, 15∗ J15 → 56, 15∗

J13 → 42, 53, 16∗ J13 → 3, 54, 16∗ J13 → 3, 45, 16∗ J13 → 32, 43, 5, 16∗

J13 → 33, 4, 52, 16∗ J13 → 35, 42, 16∗ J13 → 36, 5, 16∗ J14 → 44, 52, 16∗

J15 → 4, 55, 16∗ J15 → 46, 5, 16∗ J16 → 48, 16∗ J17 → 57, 16∗

Table A.2: Decompositions required for Lemma 1.6.3. The decompositions themselves are given in
full in Table A.3.

J1 → 3 (0, 1, 3)

Table A.3: Table of decompositions of J
{1,2,3}
n
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J3 → 4, 5 (0, 1, 4, 2, 3), (1, 2, 5, 3)
J4 → 43 (0, 1, 2, 3), (1, 3, 6, 4), (2, 4, 3, 5)
J5 → 53 (0, 1, 4, 2, 3), (1, 2, 5, 4, 3), (3, 6, 4, 7, 5)
J3 → 3, 6 (0, 1, 4, 2, 5, 3), (1, 2, 3)
J5 → 4, 5, 6 (0, 1, 4, 5, 2, 3), (1, 2, 4, 3), (3, 6, 4, 7, 5)
J6 → 43, 6 (0, 1, 4, 5, 2, 3), (1, 2, 4, 3), (3, 6, 8, 5), (4, 7, 5, 6)
J7 → 53, 6 (0, 1, 4, 5, 2, 3), (1, 2, 4, 6, 3), (3, 4, 7, 6, 5), (5, 8, 6, 9, 7)
J5 → 42, 7 (0, 1, 2, 5, 4, 6, 3), (1, 4, 2, 3), (3, 4, 7, 5)
J5 → 3, 5, 7 (0, 1, 2, 5, 4, 6, 3), (1, 4, 3), (2, 3, 5, 7, 4)
J7 → 4, 52, 7 (0, 1, 4, 6, 5, 2, 3), (1, 2, 4, 3), (4, 5, 8, 6, 7), (3, 6, 9, 7, 5)
J9 → 54, 7 (0, 1, 4, 6, 5, 2, 3), (1, 2, 4, 5, 3), (3, 4, 7, 8, 6), (5, 8, 9, 6, 7), (7, 10, 8, 11, 9)
J7 → 42, 5, 8 (0, 1, 4, 7, 6, 5, 2, 3), (1, 2, 4, 3), (5, 8, 6, 9, 7), (3, 6, 4, 5)
J7 → 3, 52, 8 (0, 1, 4, 7, 6, 5, 2, 3), (1, 2, 4, 6, 3), (3, 4, 5), (5, 8, 6, 9, 7)
J7 → 33, 4, 8 (0, 1, 4, 2, 5, 7, 6, 3), (1, 2, 3), (3, 4, 5), (4, 7, 9, 6), (5, 6, 8)
J8 → 44, 8 (0, 1, 4, 7, 6, 5, 2, 3), (1, 2, 4, 3), (3, 6, 4, 5), (6, 9, 7, 8), (5, 8, 10, 7)
J9 → 4, 53, 8 (0, 1, 4, 6, 7, 5, 2, 3), (1, 2, 4, 3), (4, 5, 6, 8, 7), (3, 6, 9, 8, 5), (7, 10, 8, 11, 9)
J11 → 55, 8 (0, 1, 4, 6, 7, 5, 2, 3), (1, 2, 4, 5, 3), (3, 4, 7, 8, 6), (5, 6, 9, 10, 8),

(7, 10, 11, 8, 9), (9, 12, 10, 13, 11)
J8 → 53, 9 (0, 1, 4, 6, 7, 8, 5, 2, 3), (1, 2, 4, 5, 3), (3, 4, 7, 5, 6), (6, 9, 7, 10, 8)
J8 → 3, 43, 9 (0, 1, 4, 7, 8, 6, 5, 2, 3), (1, 2, 4, 3), (3, 6, 4, 5), (6, 7, 9), (5, 8, 10, 7)
J8 → 32, 4, 5, 9 (0, 1, 4, 2, 5, 8, 7, 6, 3), (1, 2, 3), (3, 4, 5), (4, 7, 5, 6), (6, 9, 7, 10, 8)
J8 → 35, 9 (0, 1, 2, 4, 7, 5, 8, 6, 3), (2, 3, 5), (1, 4, 3), (4, 5, 6), (6, 7, 9), (7, 8, 10)

J9 → 42, 52, 9 (0, 1, 4, 6, 8, 7, 5, 2, 3), (1, 2, 4, 3), (4, 5, 6, 7), (3, 6, 9, 8, 5), (7, 10, 8, 11, 9)
J10 → 44, 5, 9 (0, 1, 4, 6, 8, 7, 5, 2, 3), (1, 2, 4, 5, 3), (3, 4, 7, 6), (5, 6, 9, 8), (7, 10, 12, 9),

(8, 11, 9, 10)
J11 → 46, 9 (0, 1, 4, 7, 6, 8, 5, 2, 3), (1, 2, 4, 3), (3, 6, 4, 5), (5, 6, 9, 7), (7, 8, 9, 10),

(8, 11, 13, 10), (9, 12, 10, 11)
J9 → 43, 5, 10 (0, 1, 4, 6, 9, 8, 7, 5, 2, 3), (1, 2, 4, 3), (4, 5, 6, 7), (3, 6, 8, 5), (7, 10, 8, 11, 9)
J9 → 3, 4, 52, 10 (0, 1, 4, 2, 5, 7, 8, 9, 6, 3), (1, 2, 3), (3, 4, 7, 6, 5), (4, 5, 8, 6), (7, 10, 8, 11, 9)
J9 → 33, 42, 10 (0, 1, 4, 2, 5, 8, 9, 7, 6, 3), (1, 2, 3), (3, 4, 7, 5), (4, 5, 6), (7, 8, 10),

(6, 9, 11, 8)
J9 → 34, 5, 10 (0, 1, 4, 2, 5, 7, 8, 9, 6, 3), (1, 2, 3), (3, 4, 5), (4, 7, 6), (5, 6, 8),

(7, 10, 8, 11, 9)
J10 → 54, 10 (0, 1, 4, 6, 9, 7, 8, 5, 2, 3), (1, 2, 4, 5, 3), (3, 4, 7, 5, 6), (6, 7, 10, 9, 8),

(8, 11, 9, 12, 10)
J10 → 45, 10 (0, 1, 4, 6, 9, 8, 7, 5, 2, 3), (1, 2, 4, 3), (3, 6, 8, 5), (4, 5, 6, 7), (7, 10, 12, 9),

(8, 11, 9, 10)
J11 → 42, 53, 10 (0, 1, 4, 6, 9, 7, 8, 5, 2, 3), (1, 2, 4, 5, 3), (3, 4, 7, 5, 6), (6, 7, 10, 9, 8),

(8, 11, 13, 10), (9, 12, 10, 11)
J8 → 42, 5, 11∗ (0, 1, 2, 5, 8, 10, 7, 9, 6, 4, 3), (1, 4, 7, 6, 3), (2, 3, 5, 4), (5, 6, 8, 7)
J8 → 3, 52, 11∗ (0, 1, 4, 2, 5, 8, 10, 7, 9, 6, 3), (1, 2, 3), (3, 4, 6, 7, 5), (4, 5, 6, 8, 7)
J8 → 33, 4, 11∗ (0, 1, 4, 2, 5, 8, 10, 7, 9, 6, 3), (1, 2, 3), (3, 4, 5), (4, 7, 5, 6), (6, 7, 8)
J9 → 44, 11∗ (1, 2, 4, 6, 9, 11, 8, 10, 7, 5, 3), (0, 1, 4, 3), (2, 3, 6, 5), (4, 5, 8, 7), (6, 7, 9, 8)

J10 → 4, 53, 11∗ (2, 3, 6, 4, 7, 10, 12, 9, 11, 8, 5), (0, 1, 2, 4, 3), (1, 4, 5, 3), (5, 6, 9, 8, 7),
(6, 7, 9, 10, 8)

J12 → 55, 11∗ (4, 5, 8, 6, 9, 12, 14, 11, 13, 10, 7), (0, 1, 2, 4, 3), (1, 4, 6, 5, 3), (2, 3, 6, 7, 5),
(7, 8, 10, 11, 9), (8, 9, 10, 12, 11)

Table A.3: Table of decompositions of J
{1,2,3}
n
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J9 → 53, 12∗ (0, 1, 2, 4, 6, 9, 11, 8, 10, 7, 5, 3), (1, 4, 5, 2, 3), (3, 4, 7, 8, 6), (5, 6, 7, 9, 8)
J9 → 3, 43, 12∗ (0, 1, 4, 7, 10, 8, 11, 9, 6, 5, 2, 3), (1, 2, 4, 3), (3, 6, 4, 5), (5, 8, 6, 7), (7, 8, 9)
J9 → 32, 4, 5, 12∗ (0, 1, 4, 7, 10, 8, 11, 9, 6, 5, 2, 3), (1, 2, 4, 5, 3), (3, 4, 6), (5, 8, 6, 7), (7, 8, 9)
J9 → 35, 12∗ (0, 1, 2, 4, 5, 7, 10, 8, 11, 9, 6, 3), (2, 3, 5), (1, 4, 3), (5, 6, 8), (4, 7, 6),

(7, 8, 9)
J10 → 42, 52, 12∗ (1, 2, 5, 8, 11, 9, 12, 10, 7, 4, 6, 3), (0, 1, 4, 3), (2, 3, 5, 4), (5, 6, 8, 9, 7),

(6, 7, 8, 10, 9)
J11 → 44, 5, 12∗ (2, 3, 6, 8, 11, 13, 10, 12, 9, 7, 5, 4), (0, 1, 4, 3), (1, 2, 5, 3), (4, 7, 8, 5, 6),

(6, 7, 10, 9), (8, 9, 11, 10)
J12 → 46, 12∗ (3, 4, 7, 5, 8, 10, 13, 11, 14, 12, 9, 6), (0, 1, 2, 3), (1, 4, 5, 3), (2, 5, 6, 4),

(6, 7, 9, 8), (7, 8, 11, 10), (9, 10, 12, 11)
J10 → 43, 5, 13∗ (0, 1, 4, 6, 8, 11, 9, 12, 10, 7, 5, 2, 3), (1, 2, 4, 5, 3), (3, 4, 7, 6), (5, 6, 9, 8),

(7, 8, 10, 9)
J10 → 3, 4, 52, 13∗ (0, 1, 2, 5, 8, 11, 9, 12, 10, 7, 4, 6, 3), (1, 4, 2, 3), (3, 4, 5), (5, 6, 8, 9, 7),

(6, 7, 8, 10, 9)
J10 → 33, 42, 13∗ (0, 1, 2, 5, 8, 11, 9, 12, 10, 7, 4, 6, 3), (1, 4, 2, 3), (3, 4, 5), (5, 6, 7),

(6, 9, 7, 8), (8, 9, 10)
J10 → 34, 5, 13∗ (0, 1, 2, 4, 7, 10, 12, 9, 11, 8, 5, 6, 3), (1, 4, 3), (2, 3, 5), (4, 5, 7, 9, 6),

(6, 7, 8), (8, 9, 10)
J11 → 54, 13∗ (1, 2, 4, 7, 5, 8, 11, 13, 10, 12, 9, 6, 3), (0, 1, 4, 5, 3), (2, 3, 4, 6, 5),

(6, 7, 9, 10, 8), (7, 8, 9, 11, 10)
J11 → 45, 13∗ (1, 4, 2, 5, 7, 9, 12, 10, 13, 11, 8, 6, 3), (0, 1, 2, 3), (3, 4, 6, 5), (4, 5, 8, 7),

(6, 7, 10, 9), (8, 9, 11, 10)
J12 → 42, 53, 13∗ (2, 3, 5, 8, 6, 9, 12, 14, 11, 13, 10, 7, 4), (1, 2, 5, 6, 3), (0, 1, 4, 3), (4, 5, 7, 6),

(7, 8, 10, 11, 9), (8, 9, 10, 12, 11)
J12 → 43, 52, 14∗ (1, 2, 4, 7, 10, 13, 11, 14, 12, 9, 6, 8, 5, 3), (0, 1, 4, 3), (2, 3, 6, 5), (4, 5, 7, 6),

(7, 8, 10, 11, 9), (8, 9, 10, 12, 11)
J12 → 3, 4, 53, 14∗ (1, 4, 7, 10, 13, 11, 14, 12, 9, 6, 8, 5, 2, 3), (0, 1, 2, 4, 3), (3, 6, 4, 5), (5, 6, 7),

(7, 8, 10, 11, 9), (8, 9, 10, 12, 11)
J12 → 32, 44, 14∗ (1, 2, 3, 6, 5, 8, 9, 12, 14, 11, 13, 10, 7, 4), (0, 1, 3), (2, 5, 3, 4), (4, 5, 7, 6),

(7, 8, 10, 9), (6, 9, 11, 8), (10, 11, 12)
J12 → 33, 42, 5, 14∗ (1, 4, 7, 10, 13, 11, 14, 12, 9, 6, 8, 5, 2, 3), (0, 1, 2, 4, 3), (3, 6, 4, 5), (5, 6, 7),

(7, 8, 9), (8, 11, 9, 10), (10, 11, 12)
J12 → 34, 52, 14∗ (1, 2, 3, 5, 8, 6, 9, 12, 14, 11, 13, 10, 7, 4), (0, 1, 3), (3, 4, 6), (2, 5, 4),

(5, 6, 7), (7, 8, 11, 10, 9), (8, 9, 11, 12, 10)
J12 → 36, 4, 14∗ (1, 2, 3, 5, 8, 6, 9, 12, 14, 11, 13, 10, 7, 4), (0, 1, 3), (2, 5, 4), (3, 4, 6),

(5, 6, 7), (7, 8, 10, 9), (8, 9, 11), (10, 11, 12)
J13 → 55, 14∗ (2, 3, 6, 8, 10, 13, 15, 12, 14, 11, 9, 7, 4, 5), (0, 1, 2, 4, 3), (1, 4, 6, 5, 3),

(5, 8, 9, 6, 7), (7, 8, 11, 12, 10), (9, 10, 11, 13, 12)
J13 → 45, 5, 14∗ (2, 5, 8, 10, 13, 15, 12, 14, 11, 9, 7, 6, 3, 4), (1, 4, 5, 3), (0, 1, 2, 3),

(6, 9, 10, 7, 8), (4, 7, 5, 6), (8, 9, 12, 11), (10, 11, 13, 12)
J14 → 42, 54, 14∗ (3, 4, 5, 7, 10, 8, 11, 14, 16, 13, 15, 12, 9, 6), (0, 1, 4, 2, 3), (1, 2, 5, 3),

(4, 7, 8, 5, 6), (6, 7, 9, 8), (9, 10, 12, 13, 11), (10, 11, 12, 14, 13)
J14 → 47, 14∗ (3, 4, 7, 5, 8, 10, 12, 15, 13, 16, 14, 11, 9, 6), (0, 1, 2, 3), (1, 4, 5, 3),

(2, 5, 6, 4), (6, 7, 9, 8), (7, 8, 11, 10), (9, 10, 13, 12), (11, 12, 14, 13)
J12 → 44, 5, 15∗ (0, 1, 4, 7, 9, 12, 14, 11, 13, 10, 8, 6, 5, 2, 3), (1, 2, 4, 3), (5, 8, 9, 6, 7),

(3, 6, 4, 5), (7, 8, 11, 10), (9, 10, 12, 11)

Table A.3: Table of decompositions of J
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J12 → 3, 42, 52, 15∗ (0, 1, 4, 7, 10, 13, 11, 14, 12, 9, 6, 8, 5, 2, 3), (1, 2, 4, 3), (3, 6, 7, 5), (4, 5, 6),
(7, 8, 10, 11, 9), (8, 9, 10, 12, 11)

J12 → 32, 53, 15∗ (0, 1, 4, 7, 10, 13, 11, 14, 12, 9, 6, 8, 5, 2, 3), (1, 2, 4, 5, 3), (3, 4, 6), (5, 6, 7),
(7, 8, 10, 11, 9), (8, 9, 10, 12, 11)

J12 → 33, 43, 15∗ (0, 1, 4, 7, 10, 13, 11, 14, 12, 9, 6, 8, 5, 2, 3), (1, 2, 4, 3), (3, 6, 4, 5), (5, 6, 7),
(7, 8, 9), (8, 11, 9, 10), (10, 11, 12)

J12 → 34, 4, 5, 15∗ (0, 1, 4, 7, 10, 13, 11, 14, 12, 9, 6, 8, 5, 2, 3), (1, 2, 4, 5, 3), (3, 4, 6), (5, 6, 7),
(7, 8, 9), (8, 11, 9, 10), (10, 11, 12)

J12 → 37, 15∗ (0, 1, 2, 4, 5, 7, 8, 10, 13, 11, 14, 12, 9, 6, 3), (1, 4, 3), (2, 3, 5), (4, 7, 6),
(5, 6, 8), (8, 9, 11), (7, 10, 9), (10, 11, 12)

J13 → 4, 54, 15∗ (1, 2, 5, 8, 11, 14, 12, 15, 13, 10, 7, 9, 6, 4, 3), (0, 1, 4, 2, 3), (3, 6, 8, 7, 5),
(4, 5, 6, 7), (8, 9, 11, 12, 10), (9, 10, 11, 13, 12)

J13 → 46, 15∗ (1, 2, 5, 8, 10, 13, 15, 12, 14, 11, 9, 7, 4, 6, 3), (0, 1, 4, 3), (2, 3, 5, 4),
(5, 6, 8, 7), (6, 7, 10, 9), (8, 9, 12, 11), (10, 11, 13, 12)

J14 → 43, 53, 15∗ (2, 3, 6, 9, 12, 15, 13, 16, 14, 11, 8, 10, 7, 5, 4), (0, 1, 4, 3), (1, 2, 5, 3),
(4, 7, 8, 5, 6), (6, 7, 9, 8), (9, 10, 12, 13, 11), (10, 11, 12, 14, 13)

J15 → 56, 15∗ (3, 6, 4, 7, 10, 13, 16, 14, 17, 15, 12, 9, 11, 8, 5), (1, 4, 5, 2, 3), (0, 1, 2, 4, 3),
(5, 6, 8, 9, 7), (6, 7, 8, 10, 9), (10, 11, 13, 14, 12), (11, 12, 13, 15, 14)

J13 → 42, 53, 16∗ (0, 1, 2, 5, 8, 11, 14, 12, 15, 13, 10, 7, 9, 6, 4, 3), (1, 4, 2, 3), (3, 6, 8, 7, 5),
(4, 5, 6, 7), (8, 9, 11, 12, 10), (9, 10, 11, 13, 12)

J13 → 3, 54, 16∗ (0, 1, 2, 5, 8, 11, 14, 12, 15, 13, 10, 7, 9, 6, 4, 3), (2, 3, 5, 7, 4), (1, 4, 5, 6, 3),
(6, 7, 8), (8, 9, 11, 12, 10), (9, 10, 11, 13, 12)

J13 → 3, 45, 16∗ (0, 1, 2, 5, 8, 11, 14, 12, 15, 13, 10, 9, 6, 7, 4, 3), (2, 3, 5, 4), (1, 4, 6, 3),
(5, 6, 8, 7), (8, 9, 11, 10), (7, 10, 12, 9), (11, 12, 13)

J13 → 32, 43, 5, 16∗ (0, 1, 2, 5, 8, 11, 14, 12, 15, 13, 10, 9, 7, 4, 6, 3), (1, 4, 2, 3), (3, 4, 5),
(5, 6, 8, 10, 7), (6, 7, 8, 9), (9, 12, 13, 11), (10, 11, 12)

J13 → 33, 4, 52, 16∗ (0, 1, 2, 5, 8, 11, 14, 12, 15, 13, 10, 9, 7, 4, 6, 3), (1, 4, 2, 3), (3, 4, 5),
(5, 6, 7), (6, 9, 11, 10, 8), (7, 8, 9, 12, 10), (11, 12, 13)

J13 → 35, 42, 16∗ (0, 1, 2, 5, 8, 11, 14, 12, 15, 13, 10, 9, 7, 4, 6, 3), (1, 4, 2, 3), (3, 4, 5),
(5, 6, 7), (6, 9, 8), (7, 8, 10), (9, 12, 10, 11), (11, 12, 13)

J13 → 36, 5, 16∗ (0, 1, 4, 2, 5, 7, 10, 13, 15, 12, 14, 11, 8, 9, 6, 3), (1, 2, 3), (3, 4, 5), (5, 6, 8),
(4, 7, 6), (7, 8, 10, 12, 9), (9, 10, 11), (11, 12, 13)

J14 → 44, 52, 16∗ (1, 4, 2, 5, 7, 10, 8, 11, 14, 16, 13, 15, 12, 9, 6, 3), (0, 1, 2, 3), (3, 4, 6, 5),
(4, 5, 8, 7), (6, 7, 9, 8), (9, 10, 12, 13, 11), (10, 11, 12, 14, 13)

J15 → 4, 55, 16∗ (2, 3, 5, 6, 8, 11, 9, 12, 15, 17, 14, 16, 13, 10, 7, 4), (1, 2, 5, 4, 3),
(0, 1, 4, 6, 3), (6, 7, 8, 10, 9), (5, 8, 9, 7), (10, 11, 13, 14, 12),
(11, 12, 13, 15, 14)

J15 → 46, 5, 16∗ (2, 5, 8, 10, 12, 15, 17, 14, 16, 13, 11, 9, 7, 6, 3, 4), (1, 4, 5, 3), (0, 1, 2, 3),
(6, 9, 12, 11, 8), (4, 7, 5, 6), (7, 8, 9, 10), (10, 11, 14, 13), (12, 13, 15, 14)

J16 → 48, 16∗ (3, 4, 7, 5, 8, 10, 12, 14, 17, 15, 18, 16, 13, 11, 9, 6), (0, 1, 2, 3), (1, 4, 5, 3),
(2, 5, 6, 4), (6, 7, 9, 8), (7, 8, 11, 10), (9, 10, 13, 12), (11, 12, 15, 14),
(13, 14, 16, 15)

J17 → 57, 16∗ (4, 5, 8, 6, 9, 12, 15, 18, 16, 19, 17, 14, 11, 13, 10, 7), (0, 1, 2, 4, 3),
(1, 4, 6, 5, 3), (2, 3, 6, 7, 5), (7, 8, 10, 11, 9), (8, 9, 10, 12, 11),
(12, 13, 15, 16, 14), (13, 14, 15, 17, 16)

J+
3 → 42, 1+ [0, 3, 2], (0, 1, 4, 2), (1, 2, 5, 3)

J+
4 → 4, 5, 3+ [0, 3, 6, 4, 2], (0, 1, 3, 5, 2), (1, 2, 3, 4)
J+
4 → 52, 2+ [0, 3, 4, 2], (0, 1, 3, 5, 2), (1, 2, 3, 6, 4)

Table A.3: Table of decompositions of J
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J+
5 → 52, 5+∗ [0, 3, 6, 4, 7, 5, 2], (0, 1, 4, 3, 2), (1, 2, 4, 5, 3)
J+
6 → 34, 6+∗ [0, 3, 6, 8, 5, 7, 4, 2], (0, 2, 3), (1, 3, 4), (2, 3, 5), (5, 6, 7)
J+
6 → 43, 6+∗ [0, 3, 6, 8, 5, 7, 4, 2], (0, 1, 3, 2), (1, 2, 5, 4), (3, 4, 6, 5)
J+
6 → 53, 3+ [0, 3, 6, 5, 2], (0, 1, 4, 3, 2), (1, 2, 4, 5, 3), (4, 6, 8, 5, 7)
J+
7 → 53, 6+ [0, 3, 5, 7, 9, 6, 4, 2], (0, 1, 4, 3, 2), (1, 2, 4, 5, 3), (4, 5, 8, 6, 7)
J+
8 → 54, 4+ [0, 3, 6, 7, 5, 2], (0, 1, 3, 4, 2), (1, 2, 3, 5, 4), (4, 6, 5, 8, 7), (6, 8, 10, 7, 9)

Table A.3: Table of decompositions of J
{1,2,3}
n

J3 → 32, 6 J4 → 52, 6 J4 → 4, 5, 7 J4 → 33, 7
J5 → 43, 8 J5 → 3, 4, 5, 8 J5 → 34, 8 J6 → 32, 52, 8
J7 → 54, 8

Table A.4: These decompositions are required for Lemma 1.6.8. The decompositions themselves are
given in Table A.6.

J6 → 53, 9∗ J6 → 3, 43, 9∗ J6 → 32, 4, 5, 9∗ J6 → 35, 9∗

J7 → 33, 52, 9∗

J7 → 42, 52, 10∗ J7 → 3, 53, 10∗ J7 → 32, 43, 10∗ J7 → 33, 4, 5, 10∗

J7 → 36, 10∗ J8 → 34, 52, 10∗ J10 → 56, 10∗

J8 → 44, 5, 11∗ J8 → 3, 42, 52, 11∗ J8 → 32, 53, 11∗ J8 → 33, 43, 11∗

J8 → 34, 4, 5, 11∗ J8 → 37, 11∗ J9 → 55, 11∗ J9 → 35, 52, 11∗

J9 → 4, 54, 12∗ J9 → 46, 12∗ J9 → 3, 44, 5, 12∗ J9 → 32, 42, 52, 12∗

J9 → 33, 53, 12∗ J9 → 34, 43, 12∗ J9 → 35, 4, 5, 12∗ J9 → 38, 12∗

J10 → 3, 55, 12∗ J10 → 36, 52, 12∗ J13 → 58, 12∗

J10 → 43, 53, 13∗ J10 → 3, 4, 54, 13∗ J10 → 3, 46, 13∗ J10 → 32, 44, 5, 13∗

J10 → 33, 42, 52, 13∗ J10 → 34, 53, 13∗ J10 → 35, 43, 13∗ J10 → 36, 4, 5, 13∗

J10 → 39, 13∗ J11 → 32, 55, 13∗ J11 → 37, 52, 13∗ J12 → 57, 13∗

Table A.5: These decompositions are required for Lemma 1.6.9. The decompositions themselves are
given in Table A.6.

J1 → 4 (0, 4, 2, 3)
J2 → 3, 5 (0, 4, 1, 5, 3), (2, 3, 4)
J3 → 34 (0, 4, 3), (1, 5, 4), (2, 6, 4), (2, 5, 3)

J4 → 32, 52 (0, 4, 2, 5, 3), (1, 5, 7, 3, 4), (2, 6, 3), (4, 5, 6)
J5 → 54 (0, 4, 2, 5, 3), (1, 5, 6, 3, 4), (2, 6, 4, 7, 3), (4, 8, 6, 7, 5)
J3 → 32, 6 (0, 4, 1, 5, 2, 3), (2, 6, 4), (3, 4, 5)
J4 → 52, 6 (0, 4, 1, 5, 2, 3), (2, 6, 5, 3, 4), (4, 5, 7, 3, 6)
J4 → 4, 5, 7 (0, 4, 1, 5, 2, 6, 3), (2, 3, 5, 6, 4), (3, 7, 5, 4)
J4 → 33, 7 (0, 4, 1, 5, 2, 6, 3), (2, 3, 4), (3, 7, 5), (4, 5, 6)
J5 → 43, 8 (0, 4, 1, 5, 2, 6, 7, 3), (2, 3, 6, 4), (3, 4, 7, 5), (4, 8, 6, 5)

J5 → 3, 4, 5, 8 (0, 4, 1, 5, 2, 6, 7, 3), (2, 3, 4), (3, 6, 8, 4, 5), (4, 7, 5, 6)
J5 → 34, 8 (0, 4, 1, 5, 2, 6, 7, 3), (2, 3, 4), (3, 6, 5), (4, 8, 6), (4, 7, 5)

J6 → 32, 52, 8 (0, 4, 1, 5, 2, 6, 7, 3), (2, 3, 4), (3, 6, 8, 4, 5), (4, 7, 9, 5, 6), (5, 8, 7)
J7 → 54, 8 (0, 4, 1, 5, 2, 6, 7, 3), (2, 3, 5, 6, 4), (3, 6, 8, 5, 4), (5, 9, 8, 4, 7),

(7, 8, 10, 6, 9)

Table A.6: Table of decompositions of J
{1,2,3,4}
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J6 → 53, 9∗ (2, 6, 8, 4, 1, 5, 9, 7, 3), (0, 4, 2, 5, 3), (3, 6, 7, 5, 4), (4, 7, 8, 5, 6)
J6 → 3, 43, 9∗ (2, 6, 8, 4, 1, 5, 9, 7, 3), (0, 4, 3), (2, 5, 6, 4), (3, 6, 7, 5), (4, 7, 8, 5)
J6 → 32, 4, 5, 9∗ (2, 6, 8, 4, 1, 5, 9, 7, 3), (0, 4, 2, 5, 3), (3, 6, 4), (4, 7, 5), (5, 8, 7, 6)
J6 → 35, 9∗ (2, 6, 8, 4, 1, 5, 9, 7, 3), (0, 4, 3), (2, 5, 4), (3, 6, 5), (4, 7, 6), (5, 8, 7)

J7 → 33, 52, 9∗ (2, 3, 7, 9, 6, 10, 8, 5, 4), (0, 4, 1, 5, 3), (2, 6, 5), (3, 6, 4), (5, 9, 8, 4, 7),
(6, 7, 8)

J7 → 42, 52, 10∗ (2, 3, 7, 9, 6, 10, 8, 5, 1, 4), (0, 4, 6, 5, 3), (3, 6, 2, 5, 4), (4, 8, 6, 7),
(5, 9, 8, 7)

J7 → 3, 53, 10∗ (2, 3, 7, 9, 6, 10, 8, 5, 1, 4), (0, 4, 3), (2, 6, 4, 7, 5), (3, 6, 8, 4, 5),
(5, 9, 8, 7, 6)

J7 → 32, 43, 10∗ (2, 3, 7, 9, 6, 10, 8, 5, 1, 4), (0, 4, 3), (2, 6, 4, 5), (3, 6, 5), (4, 8, 6, 7),
(5, 9, 8, 7)

J7 → 33, 4, 5, 10∗ (2, 3, 7, 9, 6, 10, 8, 5, 1, 4), (0, 4, 3), (2, 6, 4, 7, 5), (3, 6, 5), (4, 8, 9, 5),
(6, 7, 8)

J7 → 36, 10∗ (2, 5, 1, 4, 8, 10, 6, 9, 7, 3), (0, 4, 3), (3, 6, 5), (4, 7, 5), (2, 6, 4), (5, 9, 8),
(6, 7, 8)

J8 → 34, 52, 10∗ (2, 3, 5, 6, 9, 11, 7, 10, 8, 4), (0, 4, 3), (1, 5, 2, 6, 4), (3, 7, 6), (4, 7, 5),
(6, 10, 9, 5, 8), (7, 8, 9)

J10 → 56, 10∗ (4, 5, 7, 8, 11, 13, 9, 12, 10, 6), (0, 4, 2, 5, 3), (1, 5, 6, 3, 4), (2, 6, 9, 7, 3),
(4, 8, 10, 11, 7), (5, 9, 11, 12, 8), (6, 7, 10, 9, 8)

J8 → 44, 5, 11∗ (2, 6, 9, 11, 7, 10, 8, 4, 1, 5, 3), (0, 4, 6, 7, 3), (2, 5, 7, 4), (3, 6, 5, 4),
(5, 9, 7, 8), (6, 10, 9, 8)

J8 → 3, 42, 52, 11∗ (2, 6, 9, 11, 7, 10, 8, 4, 1, 5, 3), (0, 4, 3), (2, 5, 7, 6, 4), (4, 7, 3, 6, 5),
(5, 9, 7, 8), (6, 10, 9, 8)

J8 → 32, 53, 11∗ (2, 6, 9, 11, 7, 10, 8, 4, 1, 5, 3), (0, 4, 3), (2, 5, 4), (3, 7, 5, 8, 6),
(4, 7, 9, 5, 6), (6, 10, 9, 8, 7)

J8 → 33, 43, 11∗ (2, 6, 9, 11, 7, 10, 8, 4, 1, 5, 3), (0, 4, 3), (2, 5, 4), (3, 7, 5, 6), (4, 7, 6),
(5, 9, 7, 8), (6, 10, 9, 8)

J8 → 34, 4, 5, 11∗ (2, 6, 9, 11, 7, 10, 8, 4, 1, 5, 3), (0, 4, 3), (2, 5, 4), (3, 7, 5, 8, 6), (4, 7, 6),
(5, 9, 10, 6), (7, 8, 9)

J8 → 37, 11∗ (2, 6, 10, 8, 4, 1, 5, 9, 11, 7, 3), (0, 4, 3), (3, 6, 5), (2, 5, 4), (6, 9, 8),
(4, 7, 6), (5, 8, 7), (7, 10, 9)

J9 → 55, 11∗ (2, 3, 5, 9, 11, 8, 12, 10, 7, 6, 4), (0, 4, 5, 6, 3), (1, 5, 7, 3, 4), (2, 6, 9, 8, 5),
(4, 8, 10, 9, 7), (6, 10, 11, 7, 8)

J9 → 35, 52, 11∗ (2, 3, 5, 9, 11, 8, 12, 10, 7, 6, 4), (0, 4, 3), (1, 5, 4), (2, 6, 3, 7, 5), (4, 8, 7),
(5, 8, 6), (7, 11, 10, 6, 9), (8, 9, 10)

J9 → 4, 54, 12∗ (2, 3, 6, 7, 10, 12, 8, 11, 9, 5, 1, 4), (0, 4, 6, 5, 3), (2, 6, 9, 7, 5), (3, 7, 8, 5, 4),
(4, 8, 10, 11, 7), (6, 10, 9, 8)

J9 → 46, 12∗ (2, 3, 6, 7, 10, 12, 8, 11, 9, 5, 1, 4), (0, 4, 5, 3), (2, 6, 8, 5), (3, 7, 8, 4),
(4, 7, 5, 6), (6, 10, 8, 9), (7, 11, 10, 9)

J9 → 3, 44, 5, 12∗ (2, 3, 6, 7, 10, 12, 8, 11, 9, 5, 1, 4), (0, 4, 3), (2, 6, 4, 7, 5), (3, 7, 8, 5),
(4, 8, 6, 5), (6, 10, 8, 9), (7, 11, 10, 9)

J9 → 32, 42, 52, 12∗ (2, 3, 6, 7, 10, 12, 8, 11, 9, 5, 1, 4), (0, 4, 3), (2, 6, 4, 7, 5), (3, 7, 8, 4, 5),
(5, 8, 6), (6, 10, 8, 9), (7, 11, 10, 9)

J9 → 33, 53, 12∗ (2, 3, 6, 7, 10, 12, 8, 11, 9, 5, 1, 4), (0, 4, 3), (2, 6, 4, 7, 5), (3, 7, 8, 4, 5),
(5, 8, 6), (6, 10, 9), (7, 11, 10, 8, 9)

J9 → 34, 43, 12∗ (2, 3, 6, 7, 10, 12, 8, 11, 9, 5, 1, 4), (0, 4, 3), (2, 6, 4, 5), (3, 7, 5), (4, 8, 7),
(5, 8, 6), (6, 10, 8, 9), (7, 11, 10, 9)

Table A.6: Table of decompositions of J
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J9 → 35, 4, 5, 12∗ (2, 3, 6, 7, 10, 12, 8, 11, 9, 5, 1, 4), (0, 4, 3), (2, 6, 4, 5), (5, 8, 6), (3, 7, 5),
(6, 10, 9), (4, 8, 10, 11, 7), (7, 8, 9)

J9 → 38, 12∗ (2, 3, 6, 10, 12, 8, 7, 11, 9, 5, 1, 4), (0, 4, 3), (4, 8, 5), (3, 7, 5), (2, 6, 5),
(4, 7, 6), (7, 10, 9), (6, 9, 8), (8, 11, 10)

J10 → 3, 55, 12∗ (2, 6, 10, 12, 9, 13, 11, 8, 7, 5, 3, 4), (0, 4, 6, 7, 3), (1, 5, 6, 8, 4),
(2, 5, 9, 6, 3), (4, 7, 9, 8, 5), (8, 12, 11, 9, 10), (7, 11, 10)

J10 → 36, 52, 12∗ (2, 6, 10, 12, 8, 9, 13, 11, 7, 5, 3, 4), (0, 4, 6, 7, 3), (1, 5, 4), (2, 5, 8, 6, 3),
(5, 9, 6), (4, 8, 7), (8, 11, 10), (7, 10, 9), (9, 12, 11)

J13 → 58, 12∗ (5, 9, 13, 15, 12, 16, 14, 11, 10, 8, 6, 7), (0, 4, 2, 5, 3), (1, 5, 6, 3, 4),
(2, 6, 9, 7, 3), (4, 8, 7, 10, 6), (4, 7, 11, 8, 5), (8, 12, 14, 10, 9),
(9, 12, 10, 13, 11), (11, 15, 14, 13, 12)

J10 → 43, 53, 13∗ (2, 6, 10, 12, 9, 13, 11, 8, 7, 3, 5, 1, 4), (0, 4, 5, 2, 3), (3, 6, 5, 7, 4),
(4, 8, 5, 9, 6), (6, 7, 9, 8), (7, 11, 9, 10), (8, 12, 11, 10)

J10 → 3, 4, 54, 13∗ (2, 6, 10, 12, 9, 13, 11, 8, 7, 3, 5, 1, 4), (0, 4, 5, 2, 3), (3, 6, 4), (5, 6, 8, 4, 7),
(5, 9, 7, 10, 8), (6, 9, 11, 7), (8, 12, 11, 10, 9)

J10 → 3, 46, 13∗ (2, 6, 10, 12, 9, 13, 11, 8, 7, 3, 5, 1, 4), (0, 4, 3), (2, 5, 6, 3), (4, 8, 6, 7),
(4, 5, 9, 6), (5, 8, 9, 7), (7, 11, 9, 10), (8, 12, 11, 10)

J10 → 32, 44, 5, 13∗ (2, 6, 10, 12, 9, 13, 11, 8, 7, 3, 5, 1, 4), (0, 4, 5, 2, 3), (3, 6, 4), (4, 8, 6, 7),
(5, 9, 7), (5, 8, 9, 6), (7, 11, 9, 10), (8, 12, 11, 10)

J10 → 33, 42, 52, 13∗ (2, 6, 10, 12, 9, 13, 11, 8, 7, 3, 5, 1, 4), (0, 4, 5, 2, 3), (3, 6, 4), (5, 6, 8, 4, 7),
(5, 9, 8), (6, 9, 7), (7, 11, 9, 10), (8, 12, 11, 10)

J10 → 34, 53, 13∗ (2, 6, 10, 12, 9, 13, 11, 8, 7, 3, 5, 1, 4), (0, 4, 5, 2, 3), (3, 6, 4), (5, 6, 8, 4, 7),
(5, 9, 8), (6, 9, 7), (8, 12, 11, 7, 10), (9, 10, 11)

J10 → 35, 43, 13∗ (2, 6, 10, 12, 9, 13, 11, 8, 7, 3, 5, 1, 4), (0, 4, 3), (2, 5, 6, 3), (4, 8, 6),
(4, 7, 5), (6, 9, 11, 7), (5, 9, 8), (7, 10, 9), (8, 12, 11, 10)

J10 → 36, 4, 5, 13∗ (2, 6, 10, 12, 9, 13, 11, 8, 7, 3, 5, 1, 4), (0, 4, 3), (2, 5, 6, 3), (5, 9, 7),
(4, 8, 5), (4, 7, 6), (8, 12, 11, 7, 10), (6, 9, 8), (9, 10, 11)

J10 → 39, 13∗ (2, 6, 10, 12, 8, 9, 13, 11, 7, 4, 1, 5, 3), (2, 5, 4), (0, 4, 3), (5, 9, 6), (3, 7, 6),
(4, 8, 6), (5, 8, 7), (8, 11, 10), (7, 10, 9), (9, 12, 11)

J11 → 32, 55, 13∗ (2, 3, 7, 11, 13, 10, 14, 12, 9, 8, 5, 6, 4), (0, 4, 1, 5, 3), (3, 6, 2, 5, 4),
(4, 8, 6, 9, 7), (5, 9, 10, 6, 7), (7, 10, 8), (8, 12, 11), (9, 13, 12, 10, 11)

J11 → 37, 52, 13∗ (2, 3, 7, 11, 13, 9, 10, 14, 12, 8, 5, 6, 4), (1, 5, 4), (2, 6, 9, 7, 5), (0, 4, 3),
(3, 6, 8, 9, 5), (4, 8, 7), (9, 12, 11), (6, 10, 7), (8, 11, 10), (10, 13, 12)

J12 → 57, 13∗ (3, 4, 8, 12, 14, 11, 15, 13, 10, 9, 6, 7, 5), (0, 4, 2, 6, 3), (1, 5, 8, 6, 4),
(2, 5, 4, 7, 3), (5, 9, 7, 10, 6), (7, 11, 13, 9, 8), (8, 11, 9, 12, 10),
(10, 14, 13, 12, 11)

J+
1 → 3, 1+∗ [1, 3], [0, 4, 2], (0, 2, 3)

J+
3 → 4, 5, 3+∗ [1, 5, 3], [0, 4, 6, 2], (0, 2, 4, 1, 3), (2, 5, 4, 3)
J+
4 → 43, 4+∗ [1, 5, 7, 3], [0, 4, 6, 2], (1, 3, 5, 4), (2, 5, 6, 3), (0, 2, 4, 3)
J+
5 → 53, 5+∗ [1, 4, 8, 6, 5, 7, 3], [0, 2], (1, 3, 6, 4, 5), (2, 6, 7, 4, 3), (0, 4, 2, 5, 3)
J+
3 → 52, 2+ [1, 3], [0, 4, 6, 2], (0, 2, 4, 5, 3), (2, 5, 1, 4, 3)
J+
6 → 54, 4+ [1, 3], [0, 4, 7, 9, 5, 2], (0, 2, 4, 5, 3), (1, 5, 6, 3, 4), (2, 6, 8, 7, 3),

(4, 8, 5, 7, 6)
J+
4 → 53, 1+ [1, 3], [0, 4, 2], (0, 2, 6, 5, 3), (2, 5, 1, 4, 3), (4, 5, 7, 3, 6)
J+
7 → 55, 3+ [1, 3], [0, 4, 7, 5, 2], (0, 2, 4, 5, 3), (1, 5, 6, 3, 4), (2, 6, 8, 7, 3), (4, 8, 5, 9, 6),

(6, 10, 8, 9, 7)

Table A.6: Table of decompositions of J
{1,2,3,4}
n
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J2 → 4, 6 J3 → 33, 6 J4 → 32, 42, 6 J5 → 35, 4, 6
J6 → 38, 6
J2 → 3, 7 J3 → 42, 7 J4 → 33, 4, 7 J5 → 36, 7
J7 → 38, 4, 7
J3 → 3, 4, 8 J4 → 43, 8 J4 → 34, 8 J5 → 33, 42, 8
J6 → 36, 4, 8 J7 → 39, 8
J3 → 32, 9 J4 → 3, 42, 9 J5 → 44, 9 J5 → 34, 4, 9
J6 → 37, 9 J8 → 39, 4, 9
J4 → 52, 10 J4 → 32, 4, 10 J5 → 3, 43, 10 J5 → 35, 10
J6 → 45, 10 J6 → 34, 42, 10 J7 → 37, 4, 10 J8 → 310, 10

Table A.7: These decompositions are required for Lemma 1.6.14. The decompositions themselves
are given in Table A.9.

J6 → 4, 53, 11∗ J6 → 3, 44, 11∗ J6 → 32, 42, 5, 11∗ J6 → 33, 52, 11∗

J6 → 35, 4, 11∗ J7 → 46, 11∗ J7 → 34, 43, 11∗ J7 → 38, 11∗

J8 → 33, 45, 11∗ J8 → 37, 42, 11∗ J9 → 310, 4, 11∗ J10 → 313, 11∗

J6 → 42, 52, 12∗ J6 → 3, 53, 12∗ J6 → 32, 43, 12∗ J6 → 33, 4, 5, 12∗

J6 → 36, 12∗ J7 → 3, 45, 12∗ J7 → 35, 42, 12∗ J8 → 47, 12∗

J8 → 34, 44, 12∗ J8 → 38, 4, 12∗ J9 → 311, 12∗ J11 → 313, 4, 12∗

J8 → 43, 53, 13∗ J8 → 3, 4, 54, 13∗ J8 → 3, 46, 13∗ J8 → 32, 44, 5, 13∗

J8 → 33, 42, 52, 13∗ J8 → 34, 53, 13∗ J8 → 35, 43, 13∗ J8 → 36, 4, 5, 13∗

J8 → 39, 13∗ J9 → 48, 13∗ J9 → 34, 45, 13∗ J9 → 38, 42, 13∗

J10 → 33, 47, 13∗ J10 → 37, 44, 13∗ J10 → 311, 4, 13∗ J11 → 314, 13∗

J13 → 316, 4, 13∗

J8 → 44, 52, 14∗ J8 → 3, 42, 53, 14∗ J8 → 32, 54, 14∗ J8 → 32, 45, 14∗

J8 → 33, 43, 5, 14∗ J8 → 34, 4, 52, 14∗ J8 → 36, 42, 14∗ J8 → 37, 5, 14∗

J9 → 3, 47, 14∗ J9 → 35, 44, 14∗ J9 → 39, 4, 14∗ J10 → 49, 14∗

J10 → 34, 46, 14∗ J10 → 38, 43, 14∗ J10 → 312, 14∗ J11 → 311, 42, 14∗

J12 → 314, 4, 14∗ J13 → 317, 14∗

J10 → 57, 15∗ J10 → 310, 5, 15∗ J12 → 315, 15∗ J15 → 320, 15∗

J11 → 313, 16∗ J14 → 318, 16∗

Table A.8: These decompositions are required for Lemma 1.6.15. The decompositions themselves
are given in Table A.9.

J1 → 5 (0, 6, 3, 2, 4)
J3 → 3, 43 (0, 6, 2, 4), (1, 7, 4, 5), (2, 8, 5, 3), (3, 4, 6)
J3 → 32, 4, 5 (0, 6, 4), (1, 7, 4, 3, 5), (3, 2, 6), (2, 8, 5, 4)
J4 → 45 (0, 6, 2, 4), (1, 7, 4, 5), (2, 8, 5, 3), (3, 7, 5, 6), (3, 9, 6, 4)

J4 → 34, 42 (0, 6, 2, 4), (1, 7, 5), (2, 8, 5, 3), (4, 3, 7), (3, 9, 6), (4, 6, 5)
J5 → 33, 44 (0, 6, 2, 4), (1, 7, 3, 5), (2, 8, 4, 3), (3, 9, 6), (4, 6, 5), (4, 10, 7), (5, 7, 6, 8)
J5 → 35, 52 (0, 6, 7, 3, 4), (2, 8, 6, 9, 3), (2, 6, 4), (5, 4, 8), (1, 7, 5), (3, 5, 6), (4, 10, 7)
J5 → 37, 4 (0, 6, 4), (3, 9, 6, 5), (4, 10, 7), (1, 7, 5), (3, 7, 6), (2, 4, 3), (5, 4, 8),

(2, 8, 6)
J6 → 32, 46 (0, 6, 2, 4), (1, 7, 3, 5), (2, 8, 4, 3), (3, 9, 6), (4, 10, 7, 6), (5, 6, 8),

(4, 5, 9, 7), (5, 11, 8, 7)

Table A.9: Table of decompositions of J
{1,2,3,4,6}
n

148



J6 → 36, 43 (0, 6, 2, 4), (1, 7, 3, 5), (2, 8, 4, 3), (3, 9, 6), (4, 6, 5), (4, 10, 7), (5, 9, 7),
(5, 11, 8), (6, 8, 7)

J6 → 310 (0, 6, 4), (1, 7, 5), (2, 8, 4), (3, 2, 6), (3, 9, 7), (3, 5, 4), (4, 10, 7), (5, 11, 8),
(6, 5, 9), (6, 8, 7)

J7 → 35, 45 (0, 6, 2, 4), (1, 7, 3, 5), (2, 8, 4, 3), (3, 9, 6), (4, 6, 5), (5, 9, 7), (5, 11, 8),
(6, 12, 9, 8), (7, 6, 10), (4, 10, 8, 7)

J7 → 39, 42 (0, 6, 2, 4), (1, 7, 5), (2, 8, 4, 3), (3, 7, 6), (4, 6, 5), (5, 11, 8), (3, 9, 5),
(6, 12, 9), (6, 10, 8), (4, 10, 7), (7, 9, 8)

J8 → 312, 4 (0, 6, 7, 4), (2, 8, 4), (3, 2, 6), (3, 9, 7), (3, 5, 4), (4, 10, 6), (5, 6, 8),
(5, 11, 9), (1, 7, 5), (6, 12, 9), (7, 13, 10), (8, 7, 11), (8, 10, 9)

J2 → 4, 6 (0, 6, 3, 4), (2, 4, 7, 1, 5, 3)
J3 → 33, 6 (0, 6, 4), (2, 8, 5, 1, 7, 4), (3, 2, 6), (3, 5, 4)

J4 → 32, 42, 6 (0, 6, 9, 3, 2, 4), (1, 7, 3, 5), (2, 8, 5, 6), (3, 4, 6), (4, 5, 7)
J5 → 35, 4, 6 (0, 6, 9, 3, 2, 4), (1, 7, 3, 5), (2, 8, 6), (3, 4, 6), (4, 10, 7), (5, 4, 8), (5, 7, 6)
J6 → 38, 6 (0, 6, 7, 8, 2, 4), (3, 9, 7), (1, 7, 5), (3, 5, 4), (3, 2, 6), (4, 10, 7), (5, 11, 8),

(4, 8, 6), (6, 5, 9)
J2 → 3, 7 (0, 6, 3, 5, 1, 7, 4), (2, 4, 3)
J3 → 42, 7 (0, 6, 3, 5, 8, 2, 4), (1, 7, 4, 5), (2, 6, 4, 3)
J4 → 33, 4, 7 (0, 6, 3, 5, 8, 2, 4), (1, 7, 5), (2, 6, 9, 3), (4, 3, 7), (4, 6, 5)
J5 → 36, 7 (0, 6, 4), (2, 8, 4), (2, 6, 7, 1, 5, 4, 3), (3, 9, 6), (3, 7, 5), (4, 10, 7), (5, 6, 8)
J7 → 38, 4, 7 (0, 6, 9, 5, 3, 2, 4), (4, 6, 5), (1, 7, 5), (2, 8, 6), (3, 9, 12, 6), (4, 3, 7),

(7, 6, 10), (4, 10, 8), (7, 9, 8), (5, 11, 8)
J3 → 3, 4, 8 (0, 6, 2, 4), (3, 2, 8, 5, 1, 7, 4, 6), (3, 5, 4)
J4 → 43, 8 (0, 6, 3, 7, 5, 8, 2, 4), (1, 7, 4, 5), (2, 6, 4, 3), (3, 9, 6, 5)
J4 → 34, 8 (0, 6, 9, 3, 5, 8, 2, 4), (1, 7, 5), (3, 2, 6), (4, 3, 7), (4, 6, 5)

J5 → 33, 42, 8 (0, 6, 3, 7, 5, 8, 2, 4), (1, 7, 6, 5), (3, 5, 4), (2, 6, 9, 3), (4, 8, 6), (4, 10, 7)
J6 → 36, 4, 8 (0, 6, 3, 5, 11, 8, 2, 4), (2, 6, 4, 3), (3, 9, 7), (4, 10, 7), (5, 4, 8), (1, 7, 5),

(6, 5, 9), (6, 8, 7)
J7 → 39, 8 (0, 6, 5, 1, 7, 3, 2, 4), (3, 9, 5), (5, 11, 8), (3, 4, 6), (2, 8, 6), (6, 12, 9),

(4, 5, 7), (4, 10, 8), (7, 6, 10), (7, 9, 8)
J3 → 32, 9 (0, 6, 3, 2, 8, 5, 1, 7, 4), (2, 6, 4), (3, 5, 4)
J4 → 3, 42, 9 (0, 6, 3, 7, 1, 5, 8, 2, 4), (2, 6, 4, 3), (3, 9, 6, 5), (4, 5, 7)
J5 → 44, 9 (0, 6, 3, 7, 1, 5, 8, 2, 4), (2, 6, 4, 3), (3, 9, 6, 5), (4, 8, 6, 7), (4, 10, 7, 5)
J5 → 34, 4, 9 (0, 6, 3, 7, 1, 5, 8, 2, 4), (2, 6, 9, 3), (3, 5, 4), (4, 10, 7), (4, 8, 6), (5, 7, 6)
J6 → 37, 9 (0, 6, 9, 5, 1, 7, 8, 2, 4), (4, 10, 7), (5, 7, 6), (3, 2, 6), (3, 5, 4), (4, 8, 6),

(5, 11, 8), (3, 9, 7)
J8 → 39, 4, 9 (0, 6, 5, 3, 7, 11, 8, 2, 4), (4, 3, 9, 7), (5, 4, 8), (3, 2, 6), (6, 12, 9), (1, 7, 5),

(6, 8, 7), (4, 10, 6), (7, 13, 10), (5, 11, 9), (8, 10, 9)
J4 → 52, 10 (0, 6, 9, 3, 7, 1, 5, 8, 2, 4), (3, 5, 7, 4, 6), (2, 6, 5, 4, 3)
J4 → 32, 4, 10 (0, 6, 9, 3, 7, 1, 5, 8, 2, 4), (3, 2, 6), (3, 5, 4), (4, 6, 5, 7)
J5 → 3, 43, 10 (0, 6, 9, 3, 7, 1, 5, 8, 2, 4), (3, 2, 6), (3, 5, 6, 4), (4, 8, 6, 7), (4, 10, 7, 5)
J5 → 35, 10 (0, 6, 9, 3, 7, 1, 5, 8, 2, 4), (3, 2, 6), (3, 5, 4), (4, 8, 6), (4, 10, 7), (5, 7, 6)
J6 → 45, 10 (0, 6, 3, 7, 1, 5, 11, 8, 2, 4), (2, 6, 4, 3), (3, 9, 6, 5), (4, 8, 6, 7), (4, 10, 7, 5),

(5, 9, 7, 8)
J6 → 34, 42, 10 (0, 6, 3, 7, 1, 5, 11, 8, 2, 4), (2, 6, 4, 3), (3, 9, 6, 5), (4, 10, 7), (5, 4, 8),

(5, 9, 7), (6, 8, 7)

Table A.9: Table of decompositions of J
{1,2,3,4,6}
n
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J7 → 37, 4, 10 (0, 6, 3, 7, 1, 5, 11, 8, 2, 4), (2, 6, 4, 3), (3, 9, 5), (6, 12, 9), (5, 7, 6),
(4, 10, 7), (6, 10, 8), (5, 4, 8), (7, 9, 8)

J8 → 310, 10 (2, 4, 7, 8, 11, 5, 6, 10, 9, 3), (3, 5, 4), (0, 6, 4), (2, 8, 6), (6, 12, 9), (3, 7, 6),
(1, 7, 5), (7, 11, 9), (7, 13, 10), (4, 10, 8), (5, 9, 8)

J6 → 4, 53, 11∗ (2, 8, 11, 5, 1, 7, 10, 4, 6, 9, 3), (0, 6, 2, 4), (3, 4, 7, 5, 6), (3, 7, 6, 8, 5),
(4, 8, 7, 9, 5)

J6 → 3, 44, 11∗ (2, 8, 11, 5, 1, 7, 10, 4, 6, 9, 3), (0, 6, 2, 4), (3, 4, 5, 6), (3, 7, 8, 5),
(4, 8, 6, 7), (5, 9, 7)

J6 → 32, 42, 5, 11∗ (2, 8, 11, 5, 1, 7, 10, 4, 6, 9, 3), (0, 6, 2, 4), (3, 4, 7, 5, 6), (3, 7, 9, 5),
(5, 4, 8), (6, 8, 7)

J6 → 33, 52, 11∗ (2, 8, 11, 5, 1, 7, 10, 4, 6, 9, 3), (0, 6, 3, 7, 4), (2, 6, 5, 3, 4), (5, 4, 8),
(5, 9, 7), (6, 8, 7)

J6 → 35, 4, 11∗ (2, 8, 11, 5, 1, 7, 10, 4, 6, 9, 3), (0, 6, 2, 4), (3, 5, 6), (4, 3, 7), (5, 4, 8),
(5, 9, 7), (6, 8, 7)

J7 → 46, 11∗ (3, 2, 4, 7, 10, 8, 11, 5, 9, 12, 6), (0, 6, 5, 4), (1, 7, 3, 5), (2, 8, 7, 6),
(3, 9, 6, 4), (4, 10, 6, 8), (5, 7, 9, 8)

J7 → 34, 43, 11∗ (3, 2, 4, 7, 10, 8, 11, 5, 9, 12, 6), (0, 6, 4), (1, 7, 3, 5), (2, 8, 6), (4, 10, 6, 5),
(3, 9, 8, 4), (5, 7, 8), (6, 7, 9)

J7 → 38, 11∗ (2, 8, 11, 5, 3, 9, 12, 6, 7, 10, 4), (3, 2, 6), (0, 6, 4), (6, 10, 8), (6, 5, 9),
(4, 3, 7), (1, 7, 5), (5, 4, 8), (7, 9, 8)

J8 → 33, 45, 11∗ (4, 3, 5, 8, 11, 9, 12, 6, 10, 13, 7), (0, 6, 2, 4), (1, 7, 5), (3, 2, 8, 6),
(3, 9, 6, 7), (4, 6, 5), (4, 10, 7, 8), (5, 11, 7, 9), (8, 10, 9)

J8 → 37, 42, 11∗ (4, 3, 5, 8, 11, 9, 12, 6, 10, 13, 7), (0, 6, 4), (1, 7, 11, 5), (4, 10, 7, 5),
(2, 8, 4), (3, 2, 6), (6, 8, 7), (3, 9, 7), (6, 5, 9), (8, 10, 9)

J9 → 310, 4, 11∗ (4, 8, 14, 11, 7, 13, 10, 12, 9, 6, 5), (2, 4, 3), (0, 6, 4), (3, 7, 6), (3, 9, 5),
(1, 7, 5), (4, 10, 7), (2, 8, 6), (6, 12, 8, 10), (7, 9, 8), (9, 11, 10), (5, 11, 8)

J10 → 313, 11∗ (5, 9, 15, 12, 8, 14, 11, 7, 13, 10, 6), (3, 2, 6), (3, 5, 4), (1, 7, 5), (0, 6, 4),
(6, 12, 9), (2, 8, 4), (6, 8, 7), (3, 9, 7), (4, 10, 7), (9, 13, 11), (8, 10, 9),
(10, 12, 11), (5, 11, 8)

J6 → 42, 52, 12∗ (0, 6, 9, 3, 2, 8, 11, 5, 1, 7, 10, 4), (3, 7, 4, 2, 6), (3, 5, 8, 6, 4), (4, 8, 7, 5),
(5, 9, 7, 6)

J6 → 3, 53, 12∗ (0, 6, 9, 3, 2, 8, 11, 5, 1, 7, 10, 4), (3, 7, 4, 2, 6), (3, 5, 4), (4, 8, 7, 5, 6),
(5, 9, 7, 6, 8)

J6 → 32, 43, 12∗ (0, 6, 9, 3, 2, 8, 11, 5, 1, 7, 10, 4), (2, 6, 7, 4), (3, 5, 4, 6), (3, 7, 8, 4),
(5, 6, 8), (5, 9, 7)

J6 → 33, 4, 5, 12∗ (0, 6, 9, 3, 2, 8, 11, 5, 1, 7, 10, 4), (3, 7, 4, 2, 6), (3, 5, 4), (5, 6, 4, 8),
(5, 9, 7), (6, 8, 7)

J6 → 36, 12∗ (0, 6, 9, 3, 2, 8, 11, 5, 1, 7, 10, 4), (2, 6, 4), (3, 5, 6), (4, 3, 7), (5, 4, 8),
(5, 9, 7), (6, 8, 7)

J7 → 3, 45, 12∗ (1, 7, 10, 4, 3, 9, 12, 6, 2, 8, 11, 5), (0, 6, 7, 4), (2, 4, 5, 3), (3, 7, 9, 6),
(5, 6, 4, 8), (5, 9, 8, 7), (6, 10, 8)

J7 → 35, 42, 12∗ (1, 7, 10, 4, 3, 9, 12, 6, 2, 8, 11, 5), (0, 6, 7, 4), (3, 2, 4, 6), (3, 7, 5), (5, 4, 8),
(6, 5, 9), (6, 10, 8), (7, 9, 8)

J8 → 47, 12∗ (2, 4, 7, 13, 10, 6, 12, 9, 11, 8, 5, 3), (0, 6, 3, 4), (1, 7, 6, 5), (2, 8, 4, 6),
(3, 9, 8, 7), (4, 10, 7, 5), (5, 11, 7, 9), (6, 8, 10, 9)

J8 → 34, 44, 12∗ (2, 4, 7, 13, 10, 6, 12, 9, 11, 8, 5, 3), (0, 6, 3, 4), (1, 7, 5), (2, 8, 4, 6),
(3, 9, 7), (5, 11, 7, 6), (4, 10, 9, 5), (6, 8, 9), (7, 8, 10)

Table A.9: Table of decompositions of J
{1,2,3,4,6}
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J8 → 38, 4, 12∗ (2, 8, 11, 5, 3, 9, 12, 6, 10, 13, 7, 4), (0, 6, 4), (1, 7, 5), (5, 4, 8), (3, 7, 10, 4),
(3, 2, 6), (6, 8, 7), (6, 5, 9), (7, 11, 9), (8, 10, 9)

J9 → 311, 12∗ (3, 9, 12, 6, 10, 13, 7, 11, 14, 8, 4, 5), (1, 7, 5), (5, 11, 8), (0, 6, 4), (2, 8, 6),
(2, 4, 3), (6, 5, 9), (3, 7, 6), (7, 9, 8), (4, 10, 7), (8, 12, 10), (9, 11, 10)

J11 → 313, 4, 12∗ (5, 6, 7, 10, 16, 13, 9, 15, 12, 14, 11, 8), (3, 9, 5), (4, 10, 11, 5), (0, 6, 4),
(1, 7, 5), (4, 3, 7), (3, 2, 6), (2, 8, 4), (8, 14, 10), (10, 12, 13), (7, 13, 11),
(7, 9, 8), (6, 10, 9), (9, 11, 12), (6, 12, 8)

J8 → 43, 53, 13∗ (2, 4, 8, 11, 9, 12, 6, 10, 13, 7, 1, 5, 3), (0, 6, 3, 7, 4), (2, 8, 5, 4, 6),
(3, 9, 7, 10, 4), (5, 9, 8, 7), (5, 11, 7, 6), (6, 8, 10, 9)

J8 → 3, 4, 54, 13∗ (2, 4, 8, 11, 9, 12, 6, 10, 13, 7, 1, 5, 3), (0, 6, 3, 7, 4), (2, 8, 5, 4, 6),
(3, 9, 7, 10, 4), (6, 7, 5, 9), (5, 11, 7, 8, 6), (8, 10, 9)

J8 → 3, 46, 13∗ (2, 4, 8, 11, 9, 12, 6, 10, 13, 7, 1, 5, 3), (0, 6, 3, 4), (2, 8, 9, 6), (3, 9, 5, 7),
(4, 6, 5), (4, 10, 9, 7), (5, 11, 7, 8), (7, 6, 8, 10)

J8 → 32, 44, 5, 13∗ (2, 4, 8, 11, 9, 12, 6, 10, 13, 7, 1, 5, 3), (0, 6, 3, 7, 4), (2, 8, 9, 6), (3, 9, 5, 4),
(4, 10, 7, 6), (5, 6, 8), (5, 11, 7), (7, 9, 10, 8)

J8 → 33, 42, 52, 13∗ (2, 4, 8, 11, 9, 12, 6, 10, 13, 7, 1, 5, 3), (0, 6, 3, 7, 4), (2, 8, 5, 4, 6),
(3, 9, 10, 4), (5, 11, 7, 6), (5, 9, 7), (6, 8, 9), (7, 8, 10)

J8 → 34, 53, 13∗ (2, 4, 8, 11, 9, 12, 6, 10, 13, 7, 1, 5, 3), (0, 6, 3, 7, 4), (2, 8, 5, 4, 6),
(3, 9, 7, 10, 4), (5, 11, 7), (6, 5, 9), (6, 8, 7), (8, 10, 9)

J8 → 35, 43, 13∗ (2, 4, 8, 11, 9, 12, 6, 10, 13, 7, 1, 5, 3), (0, 6, 3, 4), (2, 8, 9, 6), (3, 9, 7),
(5, 11, 7), (5, 6, 8), (4, 6, 7), (4, 10, 9, 5), (7, 8, 10)

J8 → 36, 4, 5, 13∗ (2, 4, 8, 11, 9, 12, 6, 10, 13, 7, 1, 5, 3), (0, 6, 3, 7, 4), (2, 8, 6), (3, 9, 10, 4),
(4, 6, 5), (5, 11, 7), (7, 8, 10), (6, 7, 9), (5, 9, 8)

J8 → 39, 13∗ (2, 8, 11, 9, 12, 6, 10, 13, 7, 1, 5, 3, 4), (0, 6, 4), (5, 11, 7), (6, 5, 9), (5, 4, 8),
(3, 2, 6), (6, 8, 7), (4, 10, 7), (8, 10, 9), (3, 9, 7)

J9 → 48, 13∗ (3, 2, 8, 14, 11, 7, 13, 10, 12, 9, 5, 4, 6), (0, 6, 2, 4), (1, 7, 3, 5), (4, 3, 9, 7),
(4, 10, 7, 8), (5, 7, 6, 8), (6, 5, 11, 9), (6, 12, 8, 10), (8, 9, 10, 11)

J9 → 34, 45, 13∗ (3, 2, 8, 14, 11, 7, 13, 10, 12, 9, 5, 4, 6), (0, 6, 2, 4), (1, 7, 3, 5), (4, 3, 9, 7),
(4, 10, 7, 8), (5, 7, 6), (5, 11, 8), (6, 12, 8, 9), (6, 10, 8), (9, 11, 10)

J9 → 38, 42, 13∗ (3, 2, 8, 14, 11, 7, 13, 10, 12, 9, 5, 4, 6), (0, 6, 2, 4), (1, 7, 5), (3, 9, 6, 5),
(4, 3, 7), (6, 12, 8), (7, 6, 10), (5, 11, 8), (7, 9, 8), (4, 10, 8), (9, 11, 10)

J10 → 33, 47, 13∗ (3, 9, 15, 12, 8, 14, 11, 13, 10, 7, 5, 4, 6), (0, 6, 2, 4), (1, 7, 3, 5), (2, 8, 4, 3),
(4, 10, 6, 7), (5, 9, 6, 8), (5, 11, 12, 6), (7, 13, 9, 8), (7, 11, 9), (8, 10, 11),
(9, 10, 12)

J10 → 37, 44, 13∗ (3, 9, 15, 12, 8, 14, 11, 13, 10, 7, 5, 4, 6), (0, 6, 2, 4), (1, 7, 3, 5), (2, 8, 4, 3),
(4, 10, 6, 7), (5, 6, 8), (5, 11, 9), (6, 12, 9), (7, 13, 9), (8, 7, 11), (8, 10, 9),
(10, 12, 11)

J10 → 311, 4, 13∗ (3, 9, 15, 12, 8, 14, 11, 7, 13, 10, 4, 5, 6), (3, 7, 9, 5), (2, 4, 3), (1, 7, 5),
(0, 6, 4), (2, 8, 6), (4, 8, 7), (7, 6, 10), (9, 13, 11), (6, 12, 9), (5, 11, 8),
(8, 10, 9), (10, 12, 11)

J11 → 314, 13∗ (4, 10, 16, 13, 9, 15, 12, 8, 14, 11, 5, 6, 7), (0, 6, 4), (3, 5, 4), (3, 2, 6),
(1, 7, 5), (8, 7, 11), (5, 9, 8), (2, 8, 4), (6, 10, 8), (3, 9, 7), (10, 14, 12),
(6, 12, 9), (9, 11, 10), (11, 13, 12), (7, 13, 10)

J13 → 316, 4, 13∗ (6, 12, 18, 15, 11, 17, 14, 10, 16, 13, 7, 8, 9), (3, 2, 6), (0, 6, 10, 4), (3, 5, 4),
(5, 6, 8), (4, 6, 7), (2, 8, 4), (1, 7, 5), (3, 9, 7), (5, 11, 9), (7, 11, 10),
(8, 12, 10), (10, 9, 13), (12, 16, 14), (8, 14, 11), (11, 13, 12), (13, 15, 14),
(9, 15, 12)

Table A.9: Table of decompositions of J
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J8 → 44, 52, 14∗ (0, 6, 12, 9, 11, 8, 2, 3, 5, 1, 7, 13, 10, 4), (3, 7, 4, 2, 6), (3, 9, 6, 5, 4),
(4, 8, 7, 6), (5, 7, 10, 8), (5, 11, 7, 9), (6, 10, 9, 8)

J8 → 3, 42, 53, 14∗ (0, 6, 12, 9, 11, 8, 2, 3, 5, 1, 7, 13, 10, 4), (3, 7, 4, 2, 6), (3, 9, 6, 5, 4),
(5, 7, 6, 4, 8), (5, 11, 7, 9), (7, 8, 6, 10), (8, 10, 9)

J8 → 32, 54, 14∗ (0, 6, 12, 9, 11, 8, 2, 3, 5, 1, 7, 13, 10, 4), (3, 7, 4, 2, 6), (3, 9, 6, 5, 4),
(5, 7, 6, 4, 8), (5, 11, 7, 8, 9), (6, 10, 8), (7, 9, 10)

J8 → 32, 45, 14∗ (0, 6, 12, 9, 11, 8, 2, 3, 5, 1, 7, 13, 10, 4), (2, 6, 7, 4), (3, 4, 6), (3, 9, 5, 7),
(5, 11, 7, 8), (4, 8, 6, 5), (6, 10, 7, 9), (8, 10, 9)

J8 → 33, 43, 5, 14∗ (0, 6, 12, 9, 11, 8, 2, 3, 5, 1, 7, 13, 10, 4), (3, 7, 4, 2, 6), (3, 9, 5, 4),
(4, 8, 9, 6), (5, 6, 8), (5, 11, 7), (7, 6, 10), (7, 9, 10, 8)

J8 → 34, 4, 52, 14∗ (0, 6, 12, 9, 11, 8, 2, 3, 5, 1, 7, 13, 10, 4), (3, 7, 4, 2, 6), (3, 9, 6, 5, 4),
(4, 8, 7, 6), (5, 9, 8), (5, 11, 7), (6, 10, 8), (7, 9, 10)

J8 → 36, 42, 14∗ (0, 6, 12, 9, 11, 8, 2, 3, 5, 1, 7, 13, 10, 4), (2, 6, 7, 4), (3, 4, 6), (3, 9, 10, 7),
(5, 11, 7), (5, 4, 8), (6, 5, 9), (6, 10, 8), (7, 9, 8)

J8 → 37, 5, 14∗ (0, 6, 12, 9, 11, 8, 2, 3, 5, 1, 7, 13, 10, 4), (2, 6, 8, 7, 4), (5, 11, 7), (5, 4, 8),
(3, 4, 6), (7, 6, 10), (3, 9, 7), (8, 10, 9), (6, 5, 9)

J9 → 3, 47, 14∗ (2, 8, 14, 11, 5, 1, 7, 13, 10, 12, 9, 6, 4, 3), (0, 6, 2, 4), (3, 9, 5, 6), (3, 7, 8, 5),
(4, 5, 7), (4, 10, 11, 8), (6, 12, 8, 10), (6, 8, 9, 7), (7, 11, 9, 10)

J9 → 35, 44, 14∗ (2, 8, 14, 11, 5, 1, 7, 13, 10, 12, 9, 6, 4, 3), (0, 6, 2, 4), (3, 9, 5, 6), (3, 7, 8, 5),
(4, 5, 7), (4, 10, 11, 8), (6, 12, 8), (7, 6, 10), (7, 11, 9), (8, 10, 9)

J9 → 39, 4, 14∗ (2, 8, 14, 11, 5, 1, 7, 13, 10, 12, 9, 6, 4, 3), (0, 6, 2, 4), (3, 9, 7), (4, 5, 7),
(3, 5, 6), (6, 12, 8), (7, 6, 10), (8, 7, 11), (5, 9, 8), (4, 10, 8), (9, 11, 10)

J10 → 49, 14∗ (3, 9, 15, 12, 8, 14, 11, 13, 10, 7, 5, 4, 2, 6), (0, 6, 7, 4), (1, 7, 3, 5),
(2, 8, 4, 3), (4, 10, 8, 6), (5, 11, 10, 6), (6, 12, 10, 9), (7, 13, 9, 11),
(5, 9, 7, 8), (8, 9, 12, 11)

J10 → 34, 46, 14∗ (3, 9, 15, 12, 8, 14, 11, 13, 10, 7, 5, 4, 2, 6), (0, 6, 4), (1, 7, 3, 5), (2, 8, 4, 3),
(4, 10, 6, 7), (5, 9, 6, 8), (5, 11, 12, 6), (7, 13, 9, 8), (7, 11, 9), (8, 10, 11),
(9, 10, 12)

J10 → 38, 43, 14∗ (3, 9, 15, 12, 8, 14, 11, 13, 10, 7, 5, 4, 2, 6), (0, 6, 4), (1, 7, 3, 5), (2, 8, 4, 3),
(4, 10, 6, 7), (5, 6, 8), (5, 11, 9), (6, 12, 9), (7, 13, 9), (8, 7, 11), (8, 10, 9),
(10, 12, 11)

J10 → 312, 14∗ (2, 4, 7, 10, 13, 11, 14, 8, 5, 6, 12, 15, 9, 3), (3, 7, 6), (3, 5, 4), (0, 6, 4),
(2, 8, 6), (1, 7, 5), (7, 13, 9), (5, 11, 9), (8, 7, 11), (4, 10, 8), (6, 10, 9),
(9, 8, 12), (10, 12, 11)

J11 → 311, 42, 14∗ (3, 7, 4, 10, 16, 13, 9, 15, 12, 14, 11, 8, 5, 6), (0, 6, 4), (2, 6, 9, 3), (2, 8, 4),
(3, 5, 4), (1, 7, 11, 5), (8, 14, 10), (9, 8, 12), (6, 8, 7), (5, 9, 7), (9, 11, 10),
(6, 12, 10), (11, 13, 12), (7, 13, 10)

J12 → 314, 4, 14∗ (4, 8, 5, 11, 17, 14, 10, 16, 13, 15, 12, 6, 9, 7), (2, 8, 6), (3, 9, 5), (2, 4, 3),
(0, 6, 5, 4), (1, 7, 5), (3, 7, 6), (4, 10, 6), (9, 15, 11), (9, 8, 12), (12, 14, 13),
(8, 14, 11), (7, 8, 10), (10, 9, 13), (7, 13, 11), (10, 12, 11)

J13 → 317, 14∗ (6, 12, 18, 15, 9, 5, 11, 17, 14, 16, 13, 10, 8, 7), (3, 5, 4), (0, 6, 4), (1, 7, 5),
(5, 6, 8), (2, 8, 4), (3, 2, 6), (3, 9, 7), (4, 10, 7), (6, 10, 9), (7, 13, 11),
(10, 16, 12), (11, 10, 14), (12, 11, 15), (8, 9, 11), (9, 13, 12), (13, 15, 14),
(8, 14, 12)

J10 → 57, 15∗ (3, 9, 15, 12, 8, 14, 11, 13, 10, 7, 1, 5, 4, 2, 6), (0, 6, 5, 7, 4), (2, 8, 6, 4, 3),
(3, 7, 6, 9, 5), (4, 10, 9, 7, 8), (6, 12, 9, 11, 10), (8, 9, 13, 7, 11),
(5, 11, 12, 10, 8)

Table A.9: Table of decompositions of J
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J10 → 310, 5, 15∗ (3, 9, 15, 12, 8, 14, 11, 5, 1, 7, 13, 10, 4, 2, 6), (2, 8, 9, 5, 3), (0, 6, 4),
(4, 3, 7), (5, 4, 8), (5, 7, 6), (6, 12, 9), (6, 10, 8), (9, 13, 11), (7, 9, 10),
(8, 7, 11), (10, 12, 11)

J12 → 315, 15∗ (3, 7, 13, 16, 10, 6, 12, 15, 9, 8, 14, 17, 11, 5, 4), (3, 2, 6), (0, 6, 4), (3, 9, 5),
(1, 7, 5), (6, 7, 9), (5, 6, 8), (2, 8, 4), (4, 10, 7), (8, 7, 11), (11, 15, 13),
(9, 11, 10), (8, 12, 10), (9, 13, 12), (10, 14, 13), (11, 12, 14)

J15 → 320, 15∗ (6, 12, 10, 11, 9, 15, 18, 16, 19, 13, 17, 20, 14, 8, 7), (3, 2, 6), (0, 6, 4),
(1, 7, 5), (3, 9, 7), (3, 5, 4), (4, 10, 7), (2, 8, 4), (6, 5, 9), (6, 10, 8),
(5, 11, 8), (9, 8, 12), (10, 9, 13), (7, 13, 11), (12, 18, 14), (13, 12, 16),
(11, 17, 14), (12, 11, 15), (13, 15, 14), (15, 17, 16), (10, 16, 14)

J11 → 313, 16∗ (3, 2, 4, 10, 16, 13, 9, 15, 12, 14, 11, 8, 7, 1, 5, 6), (0, 6, 4), (2, 8, 6), (3, 9, 5),
(4, 3, 7), (5, 4, 8), (5, 11, 7), (6, 7, 9), (6, 12, 10), (7, 13, 10), (8, 14, 10),
(9, 8, 12), (9, 11, 10), (11, 13, 12)

J14 → 318, 16∗ (4, 10, 8, 14, 17, 11, 5, 6, 9, 15, 18, 12, 16, 19, 13, 7), (0, 6, 4), (3, 2, 6),
(1, 7, 5), (2, 8, 4), (3, 5, 4), (3, 9, 7), (5, 9, 8), (7, 6, 10), (8, 7, 11),
(9, 11, 10), (6, 12, 8), (9, 13, 12), (13, 17, 15), (14, 16, 15), (12, 11, 15),
(10, 16, 13), (11, 13, 14), (10, 14, 12)

J18 → 323, 4, 17 (0, 6, 3, 5, 1, 7, 10, 13, 16, 22, 19, 21, 17, 14, 8, 2, 4), (2, 6, 9, 3), (4, 3, 7),
(4, 10, 8), (4, 6, 5), (5, 11, 7), (5, 9, 8), (7, 13, 9), (6, 8, 7), (6, 12, 10),
(9, 11, 10), (8, 12, 11), (9, 15, 12), (11, 15, 14), (12, 14, 13), (10, 16, 14),
(11, 17, 13), (17, 23, 20), (15, 17, 16), (13, 19, 15), (15, 21, 18),
(12, 18, 16), (14, 20, 18), (16, 20, 19), (17, 19, 18)

J+
4 → 44, 4+∗ [2, 8, 5], [1, 7, 4], [0, 6, 9, 3], (2, 5, 1, 4), (2, 6, 5, 3), (0, 3, 6, 4), (3, 7, 5, 4)

J+
4 → 32, 52, 4+∗ [2, 8, 5], [1, 7, 4], [0, 6, 9, 3], (1, 4, 3, 7, 5), (0, 3, 5, 2, 4), (3, 2, 6), (4, 6, 5)

J+
4 → 3, 42, 5, 4+∗ [2, 8, 5], [1, 7, 4], [0, 6, 9, 3], (1, 4, 3, 7, 5), (3, 5, 2, 6), (0, 3, 2, 4), (4, 6, 5)
J+
4 → 34, 4, 4+∗ [2, 8, 5], [1, 7, 4], [0, 6, 9, 3], (2, 5, 1, 4), (3, 2, 6), (0, 3, 4), (4, 6, 5), (3, 7, 5)
J+
5 → 54, 5+∗ [2, 8, 5], [1, 7, 10, 4], [0, 6, 9, 3], (1, 4, 3, 7, 5), (2, 5, 4, 8, 6), (0, 3, 5, 6, 4),

(3, 2, 4, 7, 6)
J+
5 → 35, 5, 5+∗ [2, 8, 5], [1, 7, 10, 4], [0, 6, 9, 3], (1, 4, 7, 3, 5), (0, 3, 4), (2, 5, 4), (3, 2, 6),

(4, 8, 6), (5, 7, 6)
J+
6 → 38, 6+∗ [2, 8, 11, 5], [1, 7, 10, 4], [0, 6, 9, 3], (1, 4, 5), (2, 5, 3), (2, 6, 4), (0, 3, 4),

(5, 9, 7), (5, 6, 8), (3, 7, 6), (4, 8, 7)
J+
4 → 33, 42, 3+ [2, 8, 5], [1, 7, 4], [0, 6, 3], (0, 3, 2, 4), (1, 4, 5), (3, 9, 6, 4), (2, 5, 6), (3, 7, 5)
J+
5 → 32, 44, 3+ [2, 8, 5], [1, 7, 4], [0, 6, 3], (0, 3, 2, 4), (1, 4, 3, 5), (3, 9, 6, 7), (4, 8, 6),

(2, 5, 6), (4, 10, 7, 5)
J+
7 → 310, 5+ [2, 8, 11, 5], [1, 7, 10, 4], [0, 6, 3], (2, 5, 3), (0, 3, 4), (4, 8, 7), (1, 4, 5),

(2, 6, 4), (6, 10, 8), (5, 7, 6), (3, 9, 7), (5, 9, 8), (6, 12, 9)
J+
8 → 311, 7+ [2, 8, 5], [1, 7, 13, 10, 4], [0, 6, 12, 9, 3], (1, 4, 5), (2, 5, 3), (0, 3, 4), (2, 6, 4),

(5, 11, 7), (6, 5, 9), (6, 10, 8), (4, 8, 7), (3, 7, 6), (7, 9, 10), (8, 9, 11)
J+
9 → 313, 6+ [2, 8, 5], [1, 7, 4], [0, 6, 10, 11, 9, 3], (0, 3, 4), (4, 10, 8), (1, 4, 5), (2, 5, 3),

(2, 6, 4), (3, 7, 6), (7, 13, 10), (7, 9, 8), (5, 11, 7), (6, 12, 8), (8, 14, 11),
(6, 5, 9), (9, 10, 12)

J+
9 → 312, 4, 5+ [2, 8, 5], [1, 7, 4], [0, 6, 12, 9, 3], (1, 4, 5), (2, 5, 3), (0, 3, 4), (2, 6, 8, 4),

(3, 7, 6), (7, 13, 10), (8, 12, 10), (4, 10, 6), (6, 5, 9), (5, 11, 7), (7, 9, 8),
(8, 14, 11), (9, 11, 10)

J+
10 → 315, 5+ [2, 8, 5], [1, 7, 4], [0, 6, 10, 9, 3], (0, 3, 4), (1, 4, 5), (2, 5, 3), (2, 6, 4),

(3, 7, 6), (7, 9, 8), (6, 12, 8), (4, 10, 8), (6, 5, 9), (9, 15, 12), (7, 13, 10),
(5, 11, 7), (8, 14, 11), (9, 13, 11), (10, 12, 11)

Table A.9: Table of decompositions of J
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J+
11 → 316, 7+ [2, 8, 5], [1, 7, 4], [0, 6, 10, 16, 13, 9, 3], (0, 3, 4), (2, 6, 4), (2, 5, 3), (1, 4, 5),

(3, 7, 6), (7, 13, 10), (6, 5, 9), (7, 9, 8), (5, 11, 7), (6, 12, 8), (4, 10, 8),
(10, 14, 12), (8, 14, 11), (9, 11, 10), (9, 15, 12), (11, 13, 12)

Table A.9: Table of decompositions of J
{1,2,3,4,6}
n

J4 → 36, 6 J4 → 3, 53, 6 J4 → 33, 4, 5, 6 J4 → 42, 52, 6
J4 → 32, 43, 6 J5 → 4, 54, 6 J5 → 32, 42, 52, 6 J5 → 3, 44, 5, 6
J5 → 46, 6 J6 → 56, 6 J6 → 45, 52, 6 J6 → 32, 46, 6
J7 → 49, 6 J9 → 412, 6

Table A.10: These decompositions are required for Lemma 1.6.20. The decompositions themselves
are given in Table A.12.

J5 → 36, 5, 7∗ J5 → 3, 54, 7∗ J5 → 33, 4, 52, 7∗ J5 → 35, 42, 7∗

J5 → 42, 53, 7∗ J5 → 32, 43, 5, 7∗ J5 → 3, 45, 7∗ J6 → 4, 55, 7∗

J6 → 32, 42, 53, 7∗ J6 → 3, 44, 52, 7∗ J6 → 46, 5, 7∗ J7 → 57, 7∗

J7 → 45, 53, 7∗ J7 → 3, 48, 7∗ J8 → 49, 5, 7∗ J9 → 3, 411, 7∗

J10 → 412, 5, 7∗

J5 → 34, 52, 8∗ J5 → 36, 4, 8∗ J5 → 3, 4, 53, 8∗ J5 → 33, 42, 5, 8∗

J5 → 43, 52, 8∗ J5 → 32, 44, 8∗ J6 → 3, 55, 8∗ J6 → 42, 54, 8∗

J6 → 32, 43, 52, 8∗ J6 → 3, 45, 5, 8∗ J6 → 47, 8∗ J7 → 4, 56, 8∗

J7 → 46, 52, 8∗ J7 → 32, 47, 8∗ J8 → 58, 8∗ J8 → 410, 8∗

J5 → 37, 9∗ J5 → 32, 53, 9∗ J5 → 34, 4, 5, 9∗ J5 → 3, 42, 52, 9∗

J5 → 33, 43, 9∗ J5 → 44, 5, 9∗ J6 → 3, 4, 54, 9∗ J6 → 43, 53, 9∗

J6 → 32, 44, 5, 9∗ J6 → 3, 46, 9∗ J7 → 3, 56, 9∗ J7 → 42, 55, 9∗

J7 → 47, 5, 9∗ J8 → 4, 57, 9∗ J8 → 3, 49, 9∗ J9 → 59, 9∗

J6 → 37, 5, 10∗ J6 → 32, 54, 10∗ J6 → 34, 4, 52, 10∗ J6 → 36, 42, 10∗

J6 → 3, 42, 53, 10∗ J6 → 33, 43, 5, 10∗ J6 → 44, 52, 10∗ J6 → 32, 45, 10∗

J7 → 3, 4, 55, 10∗ J7 → 43, 54, 10∗ J7 → 32, 44, 52, 10∗ J7 → 3, 46, 5, 10∗

J7 → 48, 10∗ J8 → 3, 57, 10∗ J8 → 42, 56, 10∗ J8 → 47, 52, 10∗

J8 → 32, 48, 10∗ J9 → 4, 58, 10∗ J9 → 411, 10∗ J10 → 510, 10∗

J6 → 35, 52, 11∗ J6 → 55, 11∗ J6 → 37, 4, 11∗ J6 → 32, 4, 53, 11∗

J6 → 34, 42, 5, 11∗ J6 → 3, 43, 52, 11∗ J6 → 33, 44, 11∗ J6 → 45, 5, 11∗

J7 → 32, 55, 11∗ J7 → 3, 42, 54, 11∗ J7 → 44, 53, 11∗ J7 → 32, 45, 5, 11∗

J7 → 3, 47, 11∗ J8 → 43, 55, 11∗ J8 → 48, 5, 11∗ J9 → 3, 410, 11∗

J10 → 4, 59, 11∗

J7 → 310, 12∗ J7 → 35, 53, 12∗ J7 → 56, 12∗ J7 → 37, 4, 5, 12∗

J7 → 32, 4, 54, 12∗ J7 → 34, 42, 52, 12∗ J7 → 36, 43, 12∗ J7 → 3, 43, 53, 12∗

J7 → 33, 44, 5, 12∗ J7 → 45, 52, 12∗ J7 → 32, 46, 12∗ J8 → 32, 56, 12∗

J8 → 3, 42, 55, 12∗ J8 → 44, 54, 12∗ J8 → 32, 45, 52, 12∗ J8 → 3, 47, 5, 12∗

J8 → 49, 12∗ J9 → 43, 56, 12∗ J9 → 48, 52, 12∗ J9 → 32, 49, 12∗

J10 → 412, 12∗ J11 → 4, 510, 12∗

Table A.11: These decompositions are required for Lemma 1.6.21. The decompositions themselves
are given in Table A.12.

J1 → 32 (0, 7, 5), (6, 3, 7)

Table A.12: Table of decompositions of J
{1,2,3,4,5,7}
n
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J2 → 3, 4, 5 (0, 7, 5), (3, 7, 8, 1, 6), (6, 8, 4, 7)
J3 → 42, 52 (0, 7, 6, 8, 5), (3, 7, 8, 1, 6), (5, 9, 2, 7), (4, 8, 9, 7)
J3 → 3, 53 (0, 7, 6, 8, 5), (3, 7, 8, 1, 6), (4, 8, 9, 2, 7), (5, 9, 7)
J3 → 32, 43 (0, 7, 8, 5), (6, 3, 7), (1, 8, 6), (4, 8, 9, 7), (5, 9, 2, 7)
J4 → 4, 54 (0, 7, 6, 8, 5), (3, 7, 8, 1, 6), (5, 9, 2, 7), (8, 3, 10, 6, 9), (4, 8, 10, 9, 7)
J4 → 46 (0, 7, 8, 5), (1, 8, 9, 6), (5, 9, 2, 7), (3, 10, 9, 7), (6, 8, 4, 7), (3, 8, 10, 6)

J4 → 3, 44, 5 (0, 7, 6, 8, 5), (1, 8, 9, 6), (5, 9, 2, 7), (3, 8, 4, 7), (3, 10, 6), (7, 9, 10, 8)
J5 → 56 (0, 7, 6, 8, 5), (3, 7, 8, 1, 6), (2, 9, 8, 10, 7), (4, 9, 10, 3, 8), (5, 9, 11, 4, 7),

(7, 11, 10, 6, 9)
J5 → 45, 52 (0, 7, 6, 8, 5), (3, 7, 8, 1, 6), (5, 9, 2, 7), (8, 3, 10, 9), (4, 8, 10, 7),

(6, 10, 11, 9), (7, 11, 4, 9)
J6 → 49 (0, 7, 8, 5), (1, 8, 9, 6), (5, 9, 2, 7), (3, 10, 11, 8), (3, 7, 10, 6), (6, 8, 4, 7),

(7, 11, 4, 9), (9, 11, 12, 10), (8, 12, 5, 10)
J4 → 36, 6 (6, 9, 5, 8, 4, 7), (0, 7, 5), (1, 8, 6), (2, 9, 7), (3, 8, 7), (3, 10, 6), (8, 10, 9)
J4 → 3, 53, 6 (5, 9, 6, 8, 4, 7), (0, 7, 3, 8, 5), (6, 1, 8, 9, 7), (7, 2, 9, 10, 8), (3, 10, 6)
J4 → 33, 4, 5, 6 (5, 9, 6, 8, 4, 7), (0, 7, 3, 8, 5), (6, 1, 8, 7), (2, 9, 7), (3, 10, 6), (8, 10, 9)
J4 → 42, 52, 6 (5, 9, 6, 8, 4, 7), (0, 7, 3, 8, 5), (3, 10, 8, 1, 6), (7, 2, 9, 8), (6, 10, 9, 7)
J4 → 32, 43, 6 (5, 9, 6, 8, 4, 7), (0, 7, 8, 5), (3, 8, 1, 6), (2, 9, 7), (6, 10, 3, 7), (8, 10, 9)
J5 → 4, 54, 6 (5, 9, 6, 8, 4, 7), (0, 7, 3, 8, 5), (1, 8, 7, 10, 6), (2, 9, 4, 11, 7), (6, 3, 10, 9, 7),

(8, 10, 11, 9)
J5 → 32, 42, 52, 6 (5, 9, 6, 8, 4, 7), (0, 7, 3, 8, 5), (6, 1, 8, 7), (3, 10, 6), (8, 10, 11, 4, 9),

(2, 9, 11, 7), (7, 10, 9)
J5 → 3, 44, 5, 6 (5, 9, 6, 8, 4, 7), (0, 7, 3, 8, 5), (6, 1, 8, 7), (2, 9, 10, 7), (3, 10, 6),

(7, 11, 4, 9), (8, 10, 11, 9)
J5 → 46, 6 (5, 9, 6, 8, 4, 7), (0, 7, 8, 5), (3, 8, 1, 6), (2, 9, 10, 7), (6, 10, 3, 7),

(7, 11, 4, 9), (8, 10, 11, 9)
J6 → 56, 6 (5, 9, 6, 8, 4, 7), (0, 7, 6, 10, 5), (3, 7, 8, 1, 6), (2, 9, 8, 11, 7),

(7, 10, 11, 4, 9), (9, 11, 12, 8, 10), (5, 12, 10, 3, 8)
J6 → 45, 52, 6 (5, 9, 6, 8, 4, 7), (0, 7, 6, 10, 5), (3, 7, 8, 1, 6), (2, 9, 10, 7), (3, 10, 11, 8),

(7, 11, 4, 9), (5, 12, 10, 8), (8, 12, 11, 9)
J6 → 32, 46, 6 (5, 9, 6, 8, 4, 7), (0, 7, 8, 5), (3, 8, 1, 6), (2, 9, 7), (6, 10, 3, 7), (9, 4, 11, 10),

(8, 12, 5, 10), (7, 11, 12, 10), (8, 11, 9)
J7 → 49, 6 (5, 9, 6, 8, 4, 7), (0, 7, 8, 5), (3, 8, 1, 6), (2, 9, 10, 7), (6, 10, 3, 7),

(7, 11, 4, 9), (10, 5, 12, 11), (9, 13, 6, 11), (8, 12, 13, 11), (8, 10, 12, 9)
J9 → 412, 6 (5, 9, 6, 8, 4, 7), (0, 7, 8, 5), (3, 8, 1, 6), (2, 9, 10, 7), (6, 10, 3, 7),

(7, 11, 4, 9), (10, 5, 12, 11), (9, 13, 6, 11), (12, 7, 14, 13), (8, 12, 14, 11),
(8, 10, 12, 9), (11, 15, 8, 13), (10, 14, 15, 13)

J5 → 36, 5, 7∗ (6, 10, 11, 9, 5, 8, 7), (0, 7, 5), (3, 7, 2, 9, 6), (1, 8, 6), (4, 11, 7), (7, 10, 9),
(4, 9, 8), (3, 10, 8)

J5 → 3, 54, 7∗ (6, 10, 11, 9, 8, 5, 7), (0, 7, 4, 9, 5), (3, 7, 8, 1, 6), (2, 9, 7), (6, 9, 10, 3, 8),
(4, 11, 7, 10, 8)

J5 → 33, 4, 52, 7∗ (6, 10, 11, 9, 8, 5, 7), (0, 7, 4, 9, 5), (1, 8, 6), (3, 7, 2, 9, 6), (3, 10, 8),
(7, 11, 4, 8), (7, 10, 9)

J5 → 35, 42, 7∗ (6, 10, 11, 9, 5, 8, 7), (0, 7, 5), (3, 8, 10, 7), (2, 9, 7), (4, 9, 8), (1, 8, 6),
(3, 10, 9, 6), (4, 11, 7)

J5 → 42, 53, 7∗ (6, 10, 11, 9, 8, 5, 7), (0, 7, 4, 9, 5), (1, 8, 7, 9, 6), (2, 9, 10, 7),
(3, 8, 4, 11, 7), (3, 10, 8, 6)
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J5 → 32, 43, 5, 7∗ (6, 10, 11, 9, 8, 5, 7), (0, 7, 4, 9, 5), (1, 8, 6), (2, 9, 7), (3, 8, 10, 7),
(3, 10, 9, 6), (7, 11, 4, 8)

J5 → 3, 45, 7∗ (6, 10, 11, 9, 8, 5, 7), (0, 7, 9, 5), (1, 8, 6), (4, 9, 2, 7), (3, 10, 9, 6),
(7, 11, 4, 8), (3, 8, 10, 7)

J6 → 4, 55, 7∗ (6, 8, 9, 10, 12, 11, 7), (0, 7, 3, 8, 5), (3, 10, 8, 1, 6), (7, 9, 4, 11, 8),
(2, 9, 5, 10, 7), (5, 12, 8, 4, 7), (6, 10, 11, 9)

J6 → 32, 42, 53, 7∗ (6, 8, 9, 10, 12, 11, 7), (0, 7, 3, 8, 5), (1, 8, 7, 9, 6), (5, 9, 2, 7), (3, 10, 6),
(4, 9, 11, 10, 7), (4, 11, 8), (8, 12, 5, 10)

J6 → 3, 44, 52, 7∗ (6, 8, 9, 10, 12, 11, 7), (0, 7, 3, 8, 5), (1, 8, 7, 9, 6), (5, 9, 2, 7), (3, 10, 6),
(4, 11, 10, 7), (4, 9, 11, 8), (8, 12, 5, 10)

J6 → 46, 5, 7∗ (6, 8, 9, 10, 12, 11, 7), (0, 7, 3, 10, 5), (3, 8, 1, 6), (4, 11, 10, 8), (5, 12, 8, 7),
(7, 10, 6, 9), (4, 9, 2, 7), (5, 9, 11, 8)

J7 → 57, 7∗ (7, 9, 10, 11, 13, 12, 8), (0, 7, 6, 8, 5), (1, 8, 4, 9, 6), (3, 8, 9, 2, 7),
(3, 10, 8, 11, 6), (5, 9, 11, 4, 7), (7, 11, 12, 5, 10), (6, 13, 9, 12, 10)

J7 → 45, 53, 7∗ (7, 9, 10, 11, 13, 12, 8), (0, 7, 6, 8, 5), (1, 8, 4, 11, 6), (4, 9, 2, 7),
(3, 10, 5, 7), (3, 8, 9, 13, 6), (8, 11, 7, 10), (6, 10, 12, 9), (5, 12, 11, 9)

J7 → 3, 48, 7∗ (7, 9, 10, 11, 13, 12, 8), (0, 7, 5), (3, 8, 1, 6), (6, 10, 3, 7), (5, 10, 12, 9),
(6, 11, 4, 9), (6, 13, 9, 8), (2, 9, 11, 7), (4, 8, 10, 7), (5, 12, 11, 8)

J8 → 49, 5, 7∗ (8, 10, 11, 12, 14, 13, 9), (0, 7, 6, 8, 5), (3, 8, 1, 6), (5, 9, 2, 7), (3, 10, 9, 7),
(7, 4, 11, 8), (6, 11, 7, 10), (6, 13, 11, 9), (4, 9, 12, 8), (10, 14, 7, 12),
(5, 12, 13, 10)

J9 → 3, 411, 7∗ (9, 11, 12, 13, 15, 14, 10), (0, 7, 5), (6, 1, 8, 7), (4, 9, 2, 7), (6, 10, 3, 8),
(3, 7, 9, 6), (4, 11, 10, 8), (8, 5, 12, 9), (7, 12, 8, 11), (7, 14, 12, 10),
(5, 10, 13, 9), (11, 15, 8, 13), (6, 13, 14, 11)

J10 → 412, 5, 7∗ (10, 12, 13, 14, 16, 15, 11), (0, 7, 6, 8, 5), (1, 8, 9, 6), (5, 9, 2, 7),
(3, 10, 8, 7), (3, 8, 13, 6), (4, 8, 12, 7), (7, 11, 4, 9), (9, 16, 12, 11),
(6, 11, 13, 10), (9, 13, 15, 12), (9, 14, 7, 10), (8, 15, 14, 11), (5, 12, 14, 10)

J5 → 34, 52, 8∗ (6, 10, 8, 5, 9, 11, 4, 7), (0, 7, 5), (3, 7, 8, 1, 6), (2, 9, 7), (4, 9, 10, 3, 8),
(6, 9, 8), (10, 7, 11)

J5 → 36, 4, 8∗ (6, 10, 8, 5, 9, 11, 4, 7), (0, 7, 5), (1, 8, 6), (2, 9, 7), (3, 10, 9, 6), (4, 9, 8),
(3, 8, 7), (10, 7, 11)

J5 → 3, 4, 53, 8∗ (6, 10, 8, 5, 9, 11, 4, 7), (0, 7, 5), (3, 7, 8, 1, 6), (2, 9, 10, 11, 7),
(8, 3, 10, 7, 9), (4, 9, 6, 8)

J5 → 33, 42, 5, 8∗ (6, 10, 8, 5, 9, 11, 4, 7), (0, 7, 5), (3, 7, 8, 1, 6), (2, 9, 7), (8, 3, 10, 9),
(4, 9, 6, 8), (10, 7, 11)

J5 → 43, 52, 8∗ (5, 8, 6, 10, 9, 11, 4, 7), (0, 7, 8, 9, 5), (3, 8, 1, 6), (6, 9, 2, 7), (3, 10, 11, 7),
(4, 9, 7, 10, 8)

J5 → 32, 44, 8∗ (6, 10, 8, 5, 9, 11, 4, 7), (0, 7, 5), (1, 8, 6), (2, 9, 10, 7), (3, 8, 9, 6),
(7, 9, 4, 8), (3, 10, 11, 7)

J6 → 3, 55, 8∗ (6, 8, 9, 11, 10, 12, 5, 7), (0, 7, 3, 8, 5), (1, 8, 7, 9, 6), (2, 9, 5, 10, 7),
(3, 10, 6), (9, 4, 11, 8, 10), (4, 8, 12, 11, 7)

J6 → 42, 54, 8∗ (6, 8, 9, 11, 10, 12, 5, 7), (0, 7, 3, 8, 5), (1, 8, 7, 10, 6), (3, 10, 5, 9, 6),
(4, 11, 12, 8), (4, 9, 2, 7), (7, 11, 8, 10, 9)

J6 → 32, 43, 52, 8∗ (6, 8, 9, 11, 10, 12, 5, 7), (0, 7, 3, 8, 5), (1, 8, 7, 9, 6), (4, 9, 2, 7), (3, 10, 6),
(5, 10, 9), (8, 11, 7, 10), (4, 11, 12, 8)

J6 → 3, 45, 5, 8∗ (6, 8, 9, 11, 10, 12, 5, 7), (0, 7, 3, 8, 5), (1, 8, 10, 6), (4, 9, 2, 7), (3, 10, 9, 6),
(4, 11, 12, 8), (5, 10, 7, 9), (7, 11, 8)

Table A.12: Table of decompositions of J
{1,2,3,4,5,7}
n

156



J6 → 47, 8∗ (6, 8, 9, 11, 10, 12, 5, 7), (0, 7, 8, 5), (3, 8, 1, 6), (4, 9, 2, 7), (3, 10, 9, 7),
(4, 11, 12, 8), (5, 10, 6, 9), (8, 11, 7, 10)

J7 → 4, 56, 8∗ (6, 13, 11, 12, 10, 9, 8, 7), (0, 7, 3, 8, 5), (1, 8, 4, 9, 6), (4, 11, 9, 2, 7),
(3, 10, 11, 8, 6), (5, 10, 8, 12, 9), (6, 11, 7, 10), (5, 12, 13, 9, 7)

J7 → 46, 52, 8∗ (6, 13, 11, 12, 10, 9, 8, 7), (0, 7, 3, 8, 5), (1, 8, 4, 11, 6), (3, 10, 8, 6),
(5, 10, 11, 7), (7, 10, 6, 9), (4, 9, 2, 7), (9, 12, 8, 11), (5, 12, 13, 9)

J7 → 32, 47, 8∗ (6, 13, 11, 12, 10, 9, 8, 7), (0, 7, 5), (1, 8, 6), (4, 9, 2, 7), (5, 10, 3, 8),
(4, 11, 10, 8), (5, 12, 13, 9), (3, 7, 9, 6), (6, 11, 7, 10), (9, 12, 8, 11)

J8 → 58, 8∗ (7, 14, 12, 13, 11, 10, 9, 8), (0, 7, 6, 8, 5), (1, 8, 4, 9, 6), (2, 9, 5, 10, 7),
(3, 8, 12, 5, 7), (3, 10, 14, 13, 6), (6, 11, 9, 13, 10), (8, 11, 7, 12, 10),
(4, 11, 12, 9, 7)

J8 → 410, 8∗ (7, 14, 12, 13, 11, 10, 9, 8), (0, 7, 9, 5), (3, 8, 1, 6), (6, 9, 2, 7), (3, 10, 5, 7),
(4, 11, 6, 8), (4, 9, 11, 7), (5, 12, 11, 8), (8, 12, 7, 10), (10, 13, 9, 12),
(6, 13, 14, 10)

J5 → 37, 9∗ (6, 3, 10, 8, 5, 9, 11, 4, 7), (0, 7, 5), (1, 8, 6), (2, 9, 7), (3, 8, 7), (4, 9, 8),
(9, 6, 10), (10, 7, 11)

J5 → 32, 53, 9∗ (6, 3, 10, 8, 5, 9, 11, 4, 7), (0, 7, 5), (1, 8, 7, 9, 6), (3, 8, 9, 2, 7),
(4, 9, 10, 6, 8), (10, 7, 11)

J5 → 34, 4, 5, 9∗ (6, 3, 10, 8, 5, 9, 11, 4, 7), (0, 7, 5), (1, 8, 4, 9, 6), (2, 9, 7), (6, 10, 9, 8),
(3, 8, 7), (10, 7, 11)

J5 → 3, 42, 52, 9∗ (6, 3, 10, 8, 5, 9, 11, 4, 7), (0, 7, 5), (1, 8, 7, 10, 6), (3, 8, 9, 2, 7), (4, 9, 6, 8),
(7, 11, 10, 9)

J5 → 33, 43, 9∗ (6, 10, 3, 8, 5, 9, 11, 4, 7), (0, 7, 5), (2, 9, 10, 7), (4, 9, 8), (3, 7, 9, 6),
(1, 8, 6), (7, 11, 10, 8)

J5 → 44, 5, 9∗ (3, 8, 5, 7, 4, 11, 9, 10, 6), (0, 7, 2, 9, 5), (1, 8, 9, 6), (7, 9, 4, 8), (6, 8, 10, 7),
(3, 10, 11, 7)

J6 → 3, 4, 54, 9∗ (6, 8, 4, 9, 11, 10, 12, 5, 7), (0, 7, 3, 8, 5), (1, 8, 9, 10, 6), (2, 9, 7),
(3, 10, 5, 9, 6), (7, 4, 11, 12, 8), (8, 11, 7, 10)

J6 → 43, 53, 9∗ (6, 8, 4, 9, 11, 10, 12, 5, 7), (0, 7, 3, 8, 5), (3, 10, 8, 1, 6), (5, 10, 6, 9),
(8, 12, 11, 7, 9), (2, 9, 10, 7), (7, 4, 11, 8)

J6 → 32, 44, 5, 9∗ (6, 8, 4, 9, 11, 10, 12, 5, 7), (0, 7, 3, 8, 5), (1, 8, 10, 6), (3, 10, 9, 6),
(5, 10, 7, 9), (7, 2, 9, 8), (4, 11, 7), (11, 8, 12)

J6 → 3, 46, 9∗ (6, 8, 4, 11, 9, 10, 12, 5, 7), (4, 9, 2, 7), (1, 8, 10, 6), (3, 8, 9, 6), (7, 9, 5, 8),
(0, 7, 10, 5), (3, 10, 11, 7), (11, 8, 12)

J7 → 3, 56, 9∗ (6, 13, 11, 12, 10, 9, 8, 5, 7), (0, 7, 3, 10, 5), (1, 8, 7, 9, 6), (2, 9, 4, 11, 7),
(3, 8, 10, 11, 6), (4, 8, 6, 10, 7), (5, 12, 8, 11, 9), (12, 9, 13)

J7 → 42, 55, 9∗ (6, 13, 11, 12, 10, 9, 8, 5, 7), (0, 7, 3, 10, 5), (1, 8, 7, 9, 6), (2, 9, 4, 11, 7),
(3, 8, 11, 10, 6), (4, 8, 10, 7), (5, 12, 13, 9), (6, 11, 9, 12, 8)

J7 → 47, 5, 9∗ (6, 13, 11, 12, 10, 9, 8, 5, 7), (0, 7, 3, 10, 5), (3, 8, 1, 6), (4, 9, 2, 7),
(4, 11, 10, 8), (5, 12, 13, 9), (7, 10, 6, 8), (7, 11, 6, 9), (9, 12, 8, 11)

J8 → 4, 57, 9∗ (6, 8, 9, 10, 11, 13, 12, 14, 7), (0, 7, 3, 8, 5), (1, 8, 7, 9, 6), (2, 9, 5, 10, 7),
(3, 10, 8, 11, 6), (4, 11, 7, 12, 8), (5, 12, 9, 4, 7), (6, 13, 14, 10),
(9, 13, 10, 12, 11)

J8 → 3, 49, 9∗ (6, 8, 9, 10, 11, 13, 12, 14, 7), (0, 7, 5), (3, 8, 1, 6), (4, 9, 2, 7), (3, 10, 8, 7),
(4, 11, 12, 8), (5, 9, 11, 8), (6, 13, 14, 10), (7, 11, 6, 9), (10, 13, 9, 12),
(7, 12, 5, 10)
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J9 → 59, 9∗ (7, 9, 10, 11, 12, 14, 13, 15, 8), (0, 7, 6, 8, 5), (1, 8, 4, 9, 6), (3, 8, 9, 2, 7),
(3, 10, 8, 11, 6), (5, 9, 11, 4, 7), (5, 12, 8, 13, 10), (6, 13, 9, 12, 10),
(12, 7, 14, 11, 13), (7, 11, 15, 14, 10)

J6 → 37, 5, 10∗ (6, 3, 8, 4, 9, 11, 10, 12, 5, 7), (0, 7, 3, 10, 5), (1, 8, 6), (2, 9, 7), (4, 11, 7),
(7, 10, 8), (8, 5, 9), (9, 6, 10), (11, 8, 12)

J6 → 32, 54, 10∗ (6, 3, 8, 4, 9, 11, 10, 12, 5, 7), (0, 7, 3, 10, 5), (1, 8, 7, 9, 6), (2, 9, 8, 10, 7),
(4, 11, 7), (6, 10, 9, 5, 8), (11, 8, 12)

J6 → 34, 4, 52, 10∗ (6, 3, 8, 4, 9, 11, 10, 12, 5, 7), (0, 7, 3, 10, 5), (1, 8, 7, 9, 6), (2, 9, 10, 7),
(4, 11, 7), (6, 10, 8), (8, 5, 9), (11, 8, 12)

J6 → 36, 42, 10∗ (6, 3, 8, 4, 9, 11, 10, 12, 5, 7), (0, 7, 8, 5), (1, 8, 6), (2, 9, 7), (3, 10, 7),
(4, 11, 7), (8, 10, 5, 9), (9, 6, 10), (11, 8, 12)

J6 → 3, 42, 53, 10∗ (6, 3, 8, 4, 9, 11, 10, 12, 5, 7), (0, 7, 3, 10, 5), (1, 8, 6), (2, 9, 8, 11, 7),
(7, 4, 11, 12, 8), (5, 9, 10, 8), (7, 10, 6, 9)

J6 → 33, 43, 5, 10∗ (6, 3, 8, 4, 9, 11, 10, 12, 5, 7), (0, 7, 3, 10, 5), (1, 8, 6), (7, 2, 9, 8), (4, 11, 7),
(5, 9, 10, 8), (7, 10, 6, 9), (11, 8, 12)

J6 → 44, 52, 10∗ (6, 3, 8, 4, 9, 11, 10, 12, 5, 7), (0, 7, 3, 10, 5), (1, 8, 10, 6), (4, 11, 8, 9, 7),
(6, 9, 5, 8), (2, 9, 10, 7), (7, 11, 12, 8)

J6 → 32, 45, 10∗ (6, 3, 8, 4, 9, 11, 10, 12, 5, 7), (0, 7, 9, 5), (3, 10, 8, 7), (4, 11, 7),
(2, 9, 10, 7), (6, 10, 5, 8), (1, 8, 9, 6), (11, 8, 12)

J7 → 3, 4, 55, 10∗ (6, 13, 11, 12, 10, 9, 4, 8, 5, 7), (0, 7, 3, 10, 5), (1, 8, 7, 9, 6), (2, 9, 8, 10, 7),
(3, 8, 11, 10, 6), (4, 11, 7), (5, 12, 13, 9), (6, 11, 9, 12, 8)

J7 → 43, 54, 10∗ (6, 13, 11, 12, 10, 9, 4, 8, 5, 7), (0, 7, 3, 10, 5), (1, 8, 7, 9, 6), (2, 9, 8, 11, 7),
(4, 11, 10, 7), (5, 12, 13, 9), (3, 8, 10, 6), (6, 11, 9, 12, 8)

J7 → 32, 44, 52, 10∗ (6, 13, 11, 12, 10, 9, 4, 8, 5, 7), (0, 7, 3, 10, 5), (1, 8, 7, 9, 6), (2, 9, 11, 7),
(3, 8, 6), (4, 11, 10, 7), (8, 12, 5, 9), (6, 11, 8, 10), (12, 9, 13)

J7 → 3, 46, 5, 10∗ (6, 13, 11, 12, 10, 9, 4, 8, 5, 7), (0, 7, 3, 10, 5), (1, 8, 6), (7, 2, 9, 8),
(3, 8, 10, 6), (4, 11, 10, 7), (7, 11, 6, 9), (9, 12, 8, 11), (5, 12, 13, 9)

J7 → 48, 10∗ (6, 13, 11, 12, 10, 9, 4, 8, 5, 7), (0, 7, 10, 5), (7, 4, 11, 8), (3, 8, 9, 7),
(2, 9, 11, 7), (1, 8, 10, 6), (3, 10, 11, 6), (6, 9, 12, 8), (5, 12, 13, 9)

J8 → 3, 57, 10∗ (6, 8, 9, 5, 10, 11, 13, 12, 14, 7), (0, 7, 3, 8, 5), (1, 8, 7, 9, 6), (2, 9, 10, 12, 7),
(3, 10, 14, 13, 6), (5, 12, 9, 4, 7), (4, 11, 8), (8, 12, 11, 7, 10),
(6, 11, 9, 13, 10)

J8 → 42, 56, 10∗ (6, 8, 9, 5, 10, 11, 13, 12, 14, 7), (0, 7, 3, 8, 5), (1, 8, 7, 9, 6), (2, 9, 10, 12, 7),
(3, 10, 8, 11, 6), (4, 11, 9, 12, 8), (4, 9, 13, 10, 7), (5, 12, 11, 7),
(6, 13, 14, 10)

J8 → 47, 52, 10∗ (6, 8, 9, 5, 10, 11, 13, 12, 14, 7), (0, 7, 3, 8, 5), (1, 8, 7, 9, 6), (4, 9, 2, 7),
(5, 12, 10, 7), (6, 11, 8, 10), (3, 10, 13, 6), (4, 11, 12, 8), (7, 12, 9, 11),
(9, 13, 14, 10)

J8 → 32, 48, 10∗ (6, 8, 9, 5, 10, 11, 13, 12, 14, 7), (0, 7, 5), (3, 8, 1, 6), (2, 9, 7), (3, 10, 8, 7),
(4, 8, 12, 7), (5, 12, 11, 8), (6, 11, 4, 9), (9, 11, 7, 10), (10, 13, 9, 12),
(6, 13, 14, 10)

J9 → 4, 58, 10∗ (6, 9, 10, 11, 12, 14, 13, 15, 8, 7), (0, 7, 3, 8, 5), (1, 8, 4, 11, 6),
(2, 9, 8, 10, 7), (3, 10, 12, 8, 6), (5, 12, 9, 4, 7), (5, 10, 6, 13, 9),
(7, 12, 13, 8, 11), (7, 14, 15, 11, 9), (11, 14, 10, 13)

J9 → 411, 10∗ (6, 9, 10, 11, 12, 14, 13, 15, 8, 7), (0, 7, 9, 5), (3, 8, 1, 6), (4, 9, 2, 7),
(3, 10, 5, 7), (4, 11, 6, 8), (8, 5, 12, 9), (6, 13, 12, 10), (8, 12, 7, 10),
(9, 13, 8, 11), (11, 14, 10, 13), (7, 14, 15, 11)
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J10 → 510, 10∗ (7, 10, 11, 12, 13, 15, 14, 16, 9, 8), (0, 7, 6, 8, 5), (1, 8, 4, 9, 6),
(2, 9, 5, 12, 7), (3, 7, 5, 10, 6), (3, 10, 9, 11, 8), (4, 11, 13, 9, 7),
(7, 14, 13, 6, 11), (8, 12, 9, 14, 10), (10, 13, 8, 15, 12), (12, 16, 15, 11, 14)

J6 → 35, 52, 11∗ (3, 8, 4, 11, 10, 12, 5, 7, 2, 9, 6), (0, 7, 6, 10, 5), (1, 8, 6), (5, 9, 11, 12, 8),
(4, 9, 7), (7, 11, 8), (3, 10, 7), (8, 10, 9)

J6 → 55, 11∗ (3, 8, 4, 11, 10, 12, 5, 7, 2, 9, 6), (0, 7, 6, 8, 5), (1, 8, 7, 10, 6), (3, 10, 9, 4, 7),
(8, 12, 11, 7, 9), (5, 10, 8, 11, 9)

J6 → 37, 4, 11∗ (3, 10, 12, 5, 8, 11, 4, 7, 2, 9, 6), (0, 7, 5), (6, 10, 7), (1, 8, 6), (3, 8, 7),
(4, 9, 8), (5, 10, 9), (7, 11, 9), (8, 12, 11, 10)

J6 → 32, 4, 53, 11∗ (3, 8, 4, 11, 10, 12, 5, 7, 2, 9, 6), (0, 7, 6, 8, 5), (1, 8, 7, 10, 6), (3, 10, 9, 4, 7),
(7, 11, 9), (8, 10, 5, 9), (11, 8, 12)

J6 → 34, 42, 5, 11∗ (3, 8, 4, 11, 10, 12, 5, 7, 2, 9, 6), (0, 7, 6, 8, 5), (1, 8, 10, 6), (3, 10, 7),
(5, 10, 9), (7, 4, 9, 8), (7, 11, 9), (11, 8, 12)

J6 → 3, 43, 52, 11∗ (3, 8, 4, 11, 10, 12, 5, 7, 2, 9, 6), (0, 7, 6, 8, 5), (1, 8, 7, 10, 6), (3, 10, 9, 7),
(4, 9, 11, 7), (8, 10, 5, 9), (11, 8, 12)

J6 → 33, 44, 11∗ (3, 8, 4, 11, 10, 12, 5, 7, 2, 9, 6), (0, 7, 8, 5), (1, 8, 6), (3, 10, 9, 7), (6, 10, 7),
(4, 9, 11, 7), (8, 10, 5, 9), (11, 8, 12)

J6 → 45, 5, 11∗ (3, 8, 4, 11, 10, 12, 5, 7, 2, 9, 6), (0, 7, 3, 10, 5), (1, 8, 10, 6), (4, 9, 10, 7),
(7, 9, 5, 8), (6, 8, 11, 7), (8, 12, 11, 9)

J7 → 32, 55, 11∗ (6, 13, 11, 12, 10, 5, 9, 4, 8, 3, 7), (0, 7, 5), (1, 8, 7, 9, 6), (2, 9, 10, 11, 7),
(3, 10, 6), (4, 11, 8, 10, 7), (6, 11, 9, 12, 8), (8, 5, 12, 13, 9)

J7 → 3, 42, 54, 11∗ (6, 13, 11, 12, 10, 5, 9, 4, 8, 3, 7), (0, 7, 5), (1, 8, 7, 9, 6), (2, 9, 10, 11, 7),
(3, 10, 8, 6), (4, 11, 6, 10, 7), (8, 5, 12, 13, 9), (9, 12, 8, 11)

J7 → 44, 53, 11∗ (6, 13, 11, 12, 10, 5, 9, 4, 8, 3, 7), (0, 7, 8, 5), (1, 8, 9, 10, 6), (3, 10, 8, 11, 6),
(5, 12, 13, 9, 7), (6, 9, 12, 8), (2, 9, 11, 7), (4, 11, 10, 7)

J7 → 32, 45, 5, 11∗ (6, 13, 11, 12, 10, 5, 9, 4, 8, 3, 7), (0, 7, 5), (1, 8, 6), (4, 11, 10, 7),
(3, 10, 9, 6), (6, 11, 8, 10), (7, 9, 12, 5, 8), (2, 9, 11, 7), (8, 12, 13, 9)

J7 → 3, 47, 11∗ (6, 13, 11, 12, 10, 5, 9, 4, 8, 3, 7), (0, 7, 8, 5), (3, 10, 8, 6), (1, 8, 11, 6),
(4, 11, 7), (2, 9, 10, 7), (5, 12, 9, 7), (6, 10, 11, 9), (8, 12, 13, 9)

J8 → 43, 55, 11∗ (6, 8, 4, 9, 5, 10, 11, 13, 12, 14, 7), (0, 7, 3, 8, 5), (1, 8, 7, 9, 6),
(2, 9, 8, 10, 7), (3, 10, 9, 11, 6), (5, 12, 11, 4, 7), (6, 13, 14, 10),
(7, 12, 8, 11), (10, 13, 9, 12)

J8 → 48, 5, 11∗ (6, 8, 4, 9, 5, 10, 11, 13, 12, 14, 7), (0, 7, 3, 8, 5), (1, 8, 9, 6), (2, 9, 11, 7),
(3, 10, 13, 6), (6, 11, 12, 10), (7, 4, 11, 8), (5, 12, 9, 7), (8, 12, 7, 10),
(9, 13, 14, 10)

J9 → 3, 410, 11∗ (6, 9, 5, 10, 11, 12, 14, 13, 15, 8, 7), (0, 7, 5), (3, 8, 1, 6), (2, 9, 10, 7),
(3, 10, 12, 7), (4, 8, 9, 7), (7, 14, 15, 11), (5, 12, 13, 8), (9, 12, 8, 11),
(4, 11, 13, 9), (6, 13, 10, 8), (6, 11, 14, 10)

J10 → 4, 59, 11∗ (6, 10, 11, 12, 13, 15, 14, 16, 9, 8, 7), (0, 7, 3, 8, 5), (1, 8, 4, 9, 6),
(2, 9, 5, 10, 7), (3, 10, 12, 8, 6), (4, 11, 9, 14, 7), (5, 12, 9, 7),
(8, 11, 6, 13, 10), (13, 8, 15, 12, 14), (9, 13, 11, 14, 10), (7, 12, 16, 15, 11)

J7 → 310, 12∗ (3, 7, 2, 9, 10, 5, 12, 8, 4, 11, 13, 6), (3, 10, 8), (1, 8, 6), (0, 7, 5), (4, 9, 7),
(7, 11, 8), (6, 10, 7), (8, 5, 9), (6, 11, 9), (10, 12, 11), (12, 9, 13)

J7 → 35, 53, 12∗ (6, 13, 11, 4, 8, 3, 10, 12, 5, 9, 2, 7), (0, 7, 5), (3, 7, 8, 1, 6), (4, 9, 7),
(6, 10, 11, 9, 8), (5, 10, 8), (9, 6, 11, 7, 10), (11, 8, 12), (12, 9, 13)

J7 → 56, 12∗ (6, 13, 11, 4, 8, 3, 10, 12, 5, 9, 2, 7), (0, 7, 8, 10, 5), (1, 8, 9, 10, 6),
(3, 7, 5, 8, 6), (4, 9, 11, 10, 7), (7, 11, 8, 12, 9), (6, 11, 12, 13, 9)

Table A.12: Table of decompositions of J
{1,2,3,4,5,7}
n
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J7 → 37, 4, 5, 12∗ (6, 13, 11, 4, 8, 3, 10, 12, 5, 9, 2, 7), (0, 7, 5), (3, 7, 8, 1, 6), (4, 9, 7),
(6, 10, 9, 8), (5, 10, 8), (6, 11, 9), (10, 7, 11), (11, 8, 12), (12, 9, 13)

J7 → 32, 4, 54, 12∗ (6, 13, 11, 4, 8, 3, 10, 12, 5, 9, 2, 7), (0, 7, 5), (3, 7, 8, 1, 6), (4, 9, 7),
(6, 10, 11, 9, 8), (5, 10, 7, 11, 8), (9, 13, 12, 8, 10), (6, 11, 12, 9)

J7 → 34, 42, 52, 12∗ (6, 13, 11, 4, 8, 3, 10, 12, 5, 9, 2, 7), (0, 7, 5), (3, 7, 8, 1, 6), (4, 9, 7),
(6, 10, 9, 8), (6, 11, 12, 13, 9), (5, 10, 8), (10, 7, 11), (9, 12, 8, 11)

J7 → 36, 43, 12∗ (6, 13, 11, 4, 8, 3, 10, 12, 5, 9, 2, 7), (0, 7, 5), (1, 8, 6), (3, 7, 9, 6),
(7, 4, 9, 8), (5, 10, 8), (9, 11, 6, 10), (10, 7, 11), (11, 8, 12), (12, 9, 13)

J7 → 3, 43, 53, 12∗ (6, 13, 11, 4, 8, 3, 10, 12, 5, 9, 2, 7), (0, 7, 5), (3, 7, 8, 1, 6), (4, 9, 8, 10, 7),
(6, 10, 5, 8), (7, 11, 12, 13, 9), (9, 12, 8, 11), (9, 6, 11, 10)

J7 → 33, 44, 5, 12∗ (6, 13, 11, 4, 8, 3, 10, 12, 5, 9, 2, 7), (0, 7, 5), (3, 7, 8, 1, 6), (4, 9, 7),
(6, 9, 8), (5, 10, 11, 8), (6, 11, 7, 10), (9, 12, 8, 10), (9, 13, 12, 11)

J7 → 45, 52, 12∗ (6, 13, 11, 4, 8, 3, 10, 12, 5, 9, 2, 7), (0, 7, 8, 10, 5), (1, 8, 9, 6), (4, 9, 10, 7),
(3, 7, 11, 6), (5, 8, 12, 9, 7), (6, 10, 11, 8), (9, 13, 12, 11)

J7 → 32, 46, 12∗ (6, 13, 11, 4, 8, 3, 10, 12, 5, 9, 2, 7), (0, 7, 5), (1, 8, 6), (3, 7, 9, 6),
(7, 4, 9, 8), (5, 10, 11, 8), (6, 11, 7, 10), (9, 12, 8, 10), (9, 13, 12, 11)

J8 → 32, 56, 12∗ (6, 3, 8, 4, 9, 5, 10, 11, 13, 12, 14, 7), (0, 7, 5), (1, 8, 7, 9, 6), (2, 9, 8, 10, 7),
(3, 10, 9, 11, 7), (4, 11, 8, 12, 7), (6, 11, 12, 5, 8), (6, 13, 9, 12, 10),
(13, 10, 14)

J8 → 3, 42, 55, 12∗ (6, 3, 8, 4, 9, 5, 10, 11, 13, 12, 14, 7), (0, 7, 5), (1, 8, 7, 9, 6), (2, 9, 8, 10, 7),
(3, 10, 9, 11, 7), (4, 11, 8, 12, 7), (6, 11, 12, 5, 8), (6, 13, 14, 10),
(10, 13, 9, 12)

J8 → 44, 54, 12∗ (6, 3, 8, 4, 9, 5, 10, 11, 13, 12, 14, 7), (0, 7, 8, 12, 5), (1, 8, 9, 10, 6),
(4, 11, 9, 2, 7), (5, 8, 11, 7), (6, 11, 12, 9), (6, 13, 14, 10, 8), (3, 10, 12, 7),
(7, 10, 13, 9)

J8 → 32, 45, 52, 12∗ (6, 3, 8, 4, 9, 5, 10, 11, 13, 12, 14, 7), (0, 7, 5), (1, 8, 7, 9, 6), (3, 10, 9, 2, 7),
(4, 11, 7), (5, 12, 11, 8), (6, 11, 9, 8), (10, 13, 9, 12), (8, 12, 7, 10),
(6, 13, 14, 10)

J8 → 3, 47, 5, 12∗ (6, 3, 8, 4, 9, 5, 10, 11, 13, 12, 14, 7), (0, 7, 5), (1, 8, 7, 11, 6), (4, 11, 9, 7),
(3, 10, 12, 7), (2, 9, 10, 7), (6, 9, 12, 8), (5, 12, 11, 8), (8, 10, 13, 9),
(6, 13, 14, 10)

J8 → 49, 12∗ (6, 3, 8, 4, 9, 5, 10, 11, 13, 12, 14, 7), (0, 7, 8, 5), (1, 8, 11, 6), (5, 12, 11, 7),
(2, 9, 10, 7), (4, 11, 9, 7), (3, 10, 12, 7), (6, 9, 12, 8), (8, 10, 13, 9),
(6, 13, 14, 10)

J9 → 43, 56, 12∗ (6, 9, 4, 11, 10, 5, 12, 14, 13, 15, 8, 7), (0, 7, 3, 8, 5), (1, 8, 9, 10, 6),
(5, 9, 2, 7), (3, 10, 8, 11, 6), (4, 8, 13, 9, 7), (6, 13, 11, 12, 8), (7, 14, 15, 11),
(7, 12, 13, 10), (9, 12, 10, 14, 11)

J9 → 48, 52, 12∗ (6, 9, 4, 11, 10, 5, 12, 14, 13, 15, 8, 7), (0, 7, 3, 8, 5), (1, 8, 9, 10, 6),
(5, 9, 2, 7), (3, 10, 8, 6), (4, 8, 12, 7), (7, 10, 12, 9), (11, 6, 13, 12),
(11, 14, 10, 13), (9, 13, 8, 11), (7, 14, 15, 11)

J9 → 32, 49, 12∗ (6, 9, 4, 11, 10, 5, 12, 14, 13, 15, 8, 7), (0, 7, 5), (1, 8, 6), (2, 9, 10, 7),
(3, 8, 4, 7), (3, 10, 13, 6), (6, 11, 8, 10), (7, 14, 15, 11), (5, 9, 13, 8),
(8, 12, 7, 9), (11, 14, 10, 12), (9, 12, 13, 11)

J10 → 412, 12∗ (6, 10, 5, 12, 11, 13, 15, 14, 16, 9, 8, 7), (0, 7, 9, 5), (3, 8, 1, 6), (2, 9, 10, 7),
(3, 10, 11, 7), (5, 8, 4, 7), (6, 13, 10, 8), (6, 11, 4, 9), (8, 13, 14, 11),
(12, 14, 9, 13), (10, 14, 7, 12), (9, 12, 15, 11), (8, 15, 16, 12)

Table A.12: Table of decompositions of J
{1,2,3,4,5,7}
n
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J11 → 4, 510, 12∗ (6, 11, 12, 13, 14, 16, 15, 17, 10, 9, 8, 7), (0, 7, 3, 8, 5), (1, 8, 4, 9, 6),
(2, 9, 5, 10, 7), (3, 10, 8, 13, 6), (4, 11, 10, 12, 7), (5, 12, 8, 11, 7),
(6, 10, 13, 15, 8), (7, 14, 15, 11, 9), (9, 14, 10, 15, 12), (11, 14, 12, 16, 13),
(9, 16, 17, 13)

J+
4 → 54, 4+∗ [4, 7, 8, 10, 9, 6], (0, 7, 2, 9, 5), (3, 7, 5, 8, 6), (4, 6, 10, 3, 8), (6, 1, 8, 9, 7)
J+
4 → 45, 4+∗ [4, 7, 8, 9, 10, 6], (6, 9, 2, 7), (0, 7, 9, 5), (1, 8, 4, 6), (3, 8, 5, 7), (3, 10, 8, 6)

J+
6 → 310, 6+∗ [4, 7, 8, 9, 11, 12, 10, 6], (3, 10, 8), (1, 8, 6), (0, 7, 5), (5, 12, 8), (4, 11, 8),

(2, 9, 7), (6, 4, 9), (6, 3, 7), (10, 7, 11), (5, 10, 9)
J+
2 → 3, 42, 1+ [6, 7, 4], (0, 7, 5), (1, 8, 4, 6), (3, 7, 8, 6)

J+
3 → 3, 42, 5, 2+ [4, 7, 8, 6], (0, 7, 2, 9, 5), (6, 3, 7), (1, 8, 4, 6), (5, 8, 9, 7)
J+
3 → 43, 5, 1+ [6, 7, 4], (0, 7, 8, 5), (5, 9, 2, 7), (3, 7, 9, 8, 6), (1, 8, 4, 6)
J+
4 → 3, 45, 1+ [6, 7, 4], (0, 7, 5), (1, 8, 4, 6), (7, 2, 9, 8), (3, 7, 9, 6), (5, 9, 10, 8),

(6, 10, 3, 8)
J+
4 → 3, 54, 1+ [6, 7, 4], (0, 7, 3, 8, 5), (1, 8, 9, 10, 6), (3, 10, 8, 4, 6), (5, 9, 6, 8, 7), (2, 9, 7)
J+
5 → 47, 2+ [4, 7, 8, 6], (0, 7, 9, 5), (1, 8, 9, 6), (2, 9, 11, 7), (3, 8, 4, 6), (9, 4, 11, 10),

(5, 8, 10, 7), (6, 10, 3, 7)
J+
5 → 3, 46, 3+ [4, 7, 8, 9, 6], (0, 7, 5), (3, 8, 1, 6), (2, 9, 11, 7), (6, 4, 11, 10), (6, 8, 10, 7),

(3, 10, 9, 7), (4, 9, 5, 8)
J+
6 → 48, 4+ [4, 7, 8, 9, 10, 6], (0, 7, 10, 5), (3, 8, 5, 7), (7, 11, 4, 9), (1, 8, 4, 6),

(6, 9, 2, 7), (3, 10, 8, 6), (5, 12, 11, 9), (10, 12, 8, 11)
J+
7 → 49, 6+ [4, 7, 8, 9, 10, 11, 13, 6], (0, 7, 9, 5), (3, 8, 1, 6), (6, 9, 2, 7), (3, 10, 5, 7),

(6, 11, 7, 10), (6, 4, 11, 8), (4, 9, 12, 8), (5, 12, 10, 8), (9, 13, 12, 11)

Table A.12: Table of decompositions of J
{1,2,3,4,5,7}
n

J7 → 311, 52, 6 J7 → 36, 55, 6 J7 → 3, 58, 6 J7 → 313, 4, 6
J7 → 38, 4, 53, 6 J7 → 33, 4, 56, 6 J7 → 310, 42, 5, 6 J7 → 35, 42, 54, 6
J7 → 42, 57, 6 J7 → 37, 43, 52, 6 J7 → 32, 43, 55, 6 J7 → 39, 44, 6
J7 → 34, 44, 53, 6 J7 → 36, 45, 5, 6 J7 → 3, 45, 54, 6 J7 → 33, 46, 52, 6
J7 → 35, 47, 6 J7 → 47, 53, 6 J7 → 32, 48, 5, 6 J7 → 3, 410, 6
J8 → 315, 5, 6 J8 → 310, 54, 6 J8 → 35, 57, 6 J8 → 510, 6
J8 → 45, 56, 6 J8 → 410, 52, 6 J9 → 319, 6 J9 → 413, 5, 6
J10 → 416, 6 J12 → 326, 6
J8 → 313, 52, 7 J8 → 38, 55, 7 J8 → 33, 58, 7 J8 → 315, 4, 7
J8 → 310, 4, 53, 7 J8 → 35, 4, 56, 7 J8 → 4, 59, 7 J8 → 312, 42, 5, 7
J8 → 37, 42, 54, 7 J8 → 32, 42, 57, 7 J8 → 39, 43, 52, 7 J8 → 34, 43, 55, 7
J8 → 311, 44, 7 J8 → 36, 44, 53, 7 J8 → 3, 44, 56, 7 J8 → 38, 45, 5, 7
J8 → 33, 45, 54, 7 J8 → 35, 46, 52, 7 J8 → 46, 55, 7 J8 → 37, 47, 7
J8 → 32, 47, 53, 7 J8 → 34, 48, 5, 7 J8 → 3, 49, 52, 7 J8 → 33, 410, 7
J8 → 411, 5, 7 J9 → 317, 5, 7 J9 → 312, 54, 7 J9 → 37, 57, 7
J9 → 32, 510, 7 J9 → 44, 58, 7 J9 → 49, 54, 7 J9 → 414, 7
J10 → 321, 7 J10 → 3, 512, 7 J11 → 514, 7 J13 → 328, 7

Table A.13: These decompositions required for Lemma 1.6.26. For all these decompositions the
k-cycle is incident upon vertices {4, 5, . . . , k + 3}. The decompositions themselves are given in full in
table A.15.

J6 → 38, 52, 8∗ J6 → 33, 55, 8∗ J6 → 310, 4, 8∗ J6 → 35, 4, 53, 8∗

Table A.14: These decompositions are required for Lemma 1.6.27. These are sorted by the value of
k in the decomposition, and are given in table A.15.
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J6 → 4, 56, 8∗ J6 → 37, 42, 5, 8∗ J6 → 32, 42, 54, 8∗ J6 → 34, 43, 52, 8∗

J6 → 36, 44, 8∗ J6 → 3, 44, 53, 8∗ J6 → 33, 45, 5, 8∗ J6 → 46, 52, 8∗

J6 → 32, 47, 8∗ J7 → 312, 5, 8∗ J7 → 37, 54, 8∗ J7 → 32, 57, 8∗

J7 → 44, 55, 8∗ J7 → 49, 5, 8∗ J8 → 316, 8∗ J8 → 3, 59, 8∗

J8 → 412, 8∗ J9 → 511, 8∗ J11 → 323, 8∗

J7 → 310, 52, 9∗ J7 → 35, 55, 9∗ J7 → 58, 9∗ J7 → 312, 4, 9∗

J7 → 37, 4, 53, 9∗ J7 → 32, 4, 56, 9∗ J7 → 39, 42, 5, 9∗ J7 → 34, 42, 54, 9∗

J7 → 36, 43, 52, 9∗ J7 → 3, 43, 55, 9∗ J7 → 38, 44, 9∗ J7 → 33, 44, 53, 9∗

J7 → 35, 45, 5, 9∗ J7 → 45, 54, 9∗ J7 → 32, 46, 52, 9∗ J7 → 34, 47, 9∗

J7 → 3, 48, 5, 9∗ J7 → 410, 9∗ J8 → 314, 5, 9∗ J8 → 39, 54, 9∗

J8 → 34, 57, 9∗ J8 → 43, 57, 9∗ J8 → 48, 53, 9∗ J9 → 318, 9∗

J11 → 3, 513, 9∗ J12 → 325, 9∗

J3 → 32, 5, 10∗ J3 → 3, 42, 10∗ J4 → 36, 10∗ J4 → 3, 53, 10∗

J4 → 42, 52, 10∗ J5 → 55, 10∗ J5 → 45, 5, 10∗ J6 → 48, 10∗

J7 → 313, 10∗

J4 → 34, 5, 11∗ J4 → 3, 4, 52, 11∗ J4 → 33, 42, 11∗ J4 → 43, 5, 11∗

J5 → 38, 11∗ J5 → 33, 53, 11∗ J5 → 4, 54, 11∗ J5 → 46, 11∗

J6 → 32, 55, 11∗ J7 → 3, 57, 11∗ J8 → 315, 11∗ J8 → 59, 11∗

J5 → 36, 5, 12∗ J5 → 3, 54, 12∗ J5 → 33, 4, 52, 12∗ J5 → 35, 42, 12∗

J5 → 42, 53, 12∗ J5 → 32, 43, 5, 12∗ J5 → 3, 45, 12∗ J6 → 310, 12∗

J6 → 35, 53, 12∗ J6 → 56, 12∗ J6 → 45, 52, 12∗ J7 → 48, 5, 12∗

J8 → 411, 12∗ J9 → 317, 12∗

J6 → 38, 5, 13∗ J6 → 33, 54, 13∗ J6 → 35, 4, 52, 13∗ J6 → 4, 55, 13∗

J6 → 37, 42, 13∗ J6 → 32, 42, 53, 13∗ J6 → 34, 43, 5, 13∗ J6 → 3, 44, 52, 13∗

J6 → 33, 45, 13∗ J6 → 46, 5, 13∗ J7 → 312, 13∗ J7 → 37, 53, 13∗

J7 → 32, 56, 13∗ J7 → 44, 54, 13∗ J7 → 49, 13∗ J8 → 3, 58, 13∗

J9 → 510, 13∗ J10 → 319, 13∗

J7 → 310, 5, 14∗ J7 → 35, 54, 14∗ J7 → 57, 14∗ J7 → 37, 4, 52, 14∗

J7 → 32, 4, 55, 14∗ J7 → 39, 42, 14∗ J7 → 34, 42, 53, 14∗ J7 → 36, 43, 5, 14∗

J7 → 3, 43, 54, 14∗ J7 → 33, 44, 52, 14∗ J7 → 35, 45, 14∗ J7 → 45, 53, 14∗

J7 → 32, 46, 5, 14∗ J7 → 3, 48, 14∗ J8 → 314, 14∗ J8 → 39, 53, 14∗

J8 → 34, 56, 14∗ J8 → 43, 56, 14∗ J8 → 48, 52, 14∗ J9 → 411, 5, 14∗

J10 → 414, 14∗ J11 → 321, 14∗ J11 → 3, 512, 14∗

J8 → 312, 5, 15∗ J8 → 37, 54, 15∗ J8 → 32, 57, 15∗ J8 → 39, 4, 52, 15∗

J8 → 34, 4, 55, 15∗ J8 → 311, 42, 15∗ J8 → 36, 42, 53, 15∗ J8 → 3, 42, 56, 15∗

J8 → 38, 43, 5, 15∗ J8 → 33, 43, 54, 15∗ J8 → 35, 44, 52, 15∗ J8 → 44, 55, 15∗

J8 → 37, 45, 15∗ J8 → 32, 45, 53, 15∗ J8 → 34, 46, 5, 15∗ J8 → 3, 47, 52, 15∗

J8 → 33, 48, 15∗ J8 → 49, 5, 15∗ J9 → 316, 15∗ J9 → 311, 53, 15∗

J9 → 36, 56, 15∗ J9 → 3, 59, 15∗ J9 → 42, 58, 15∗ J9 → 47, 54, 15∗

J9 → 412, 15∗ J10 → 511, 15∗ J12 → 323, 15∗

J9 → 314, 5, 16∗ J9 → 39, 54, 16∗ J9 → 34, 57, 16∗ J9 → 311, 4, 52, 16∗

J9 → 36, 4, 55, 16∗ J9 → 3, 4, 58, 16∗ J9 → 313, 42, 16∗ J9 → 38, 42, 53, 16∗

J9 → 33, 42, 56, 16∗ J9 → 310, 43, 5, 16∗ J9 → 35, 43, 54, 16∗ J9 → 43, 57, 16∗

J9 → 37, 44, 52, 16∗ J9 → 32, 44, 55, 16∗ J9 → 39, 45, 16∗ J9 → 34, 45, 53, 16∗

J9 → 36, 46, 5, 16∗ J9 → 3, 46, 54, 16∗ J9 → 33, 47, 52, 16∗ J9 → 35, 48, 16∗

J9 → 48, 53, 16∗ J9 → 32, 49, 5, 16∗ J9 → 3, 411, 16∗ J10 → 318, 16∗

J10 → 313, 53, 16∗ J10 → 38, 56, 16∗ J10 → 33, 59, 16∗ J10 → 4, 510, 16∗

J10 → 46, 56, 16∗ J10 → 411, 52, 16∗ J11 → 32, 511, 16∗ J11 → 414, 5, 16∗

J12 → 3, 513, 16∗ J12 → 417, 16∗ J13 → 325, 16∗ J13 → 515, 16∗

Table A.14: These decompositions are required for Lemma 1.6.27. These are sorted by the value of
k in the decomposition, and are given in table A.15.
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J10 → 316, 5, 17∗ J10 → 311, 54, 17∗ J10 → 36, 57, 17∗ J10 → 3, 510, 17∗

J10 → 313, 4, 52, 17∗ J10 → 38, 4, 55, 17∗ J10 → 33, 4, 58, 17∗ J10 → 315, 42, 17∗

J10 → 310, 42, 53, 17∗ J10 → 35, 42, 56, 17∗ J10 → 42, 59, 17∗ J10 → 312, 43, 5, 17∗

J10 → 37, 43, 54, 17∗ J10 → 32, 43, 57, 17∗ J10 → 39, 44, 52, 17∗ J10 → 34, 44, 55, 17∗

J10 → 311, 45, 17∗ J10 → 36, 45, 53, 17∗ J10 → 3, 45, 56, 17∗ J10 → 38, 46, 5, 17∗

J10 → 33, 46, 54, 17∗ J10 → 35, 47, 52, 17∗ J10 → 47, 55, 17∗ J10 → 37, 48, 17∗

J10 → 32, 48, 53, 17∗ J10 → 34, 49, 5, 17∗ J10 → 3, 410, 52, 17∗ J10 → 33, 411, 17∗

J10 → 412, 5, 17∗ J11 → 320, 17∗ J11 → 315, 53, 17∗ J11 → 310, 56, 17∗

J11 → 35, 59, 17∗ J11 → 512, 17∗ J11 → 45, 58, 17∗ J11 → 410, 54, 17∗

J11 → 415, 17∗ J14 → 327, 17∗

Table A.14: These decompositions are required for Lemma 1.6.27. These are sorted by the value of
k in the decomposition, and are given in table A.15.

J1 → 3, 4 (0, 6, 3, 4), (0, 5, 7)
J2 → 4, 52 (0, 5, 7, 4), (0, 6, 8, 1, 7), (3, 4, 5, 1, 6)
J2 → 33, 5 (0, 7, 4), (1, 6, 8), (0, 6, 3, 4, 5), (5, 1, 7)
J3 → 44, 5 (0, 6, 3, 4), (1, 6, 8, 5), (1, 7, 9, 2, 8), (0, 5, 4, 7), (5, 6, 2, 7)
J3 → 32, 53 (0, 5, 6, 3, 4), (0, 6, 1, 5, 7), (1, 7, 4, 5, 8), (6, 2, 8), (2, 7, 9)
J4 → 47 (0, 7, 3, 4), (0, 6, 1, 5), (3, 10, 8, 6), (2, 8, 3, 9), (5, 8, 1, 7), (4, 5, 6, 7),

(2, 7, 9, 6)
J4 → 3, 55 (0, 7, 9, 3, 4), (5, 0, 6, 3, 7), (1, 7, 2, 6, 8), (1, 6, 7, 4, 5), (2, 8, 5, 6, 9),

(3, 8, 10)
J5 → 57 (0, 7, 9, 3, 4), (5, 0, 6, 3, 7), (1, 7, 4, 8, 5), (1, 6, 2, 7, 8), (6, 7, 10, 3, 8),

(2, 8, 10, 4, 9), (4, 11, 9, 6, 5)
J6 → 314 (0, 7, 4), (0, 6, 5), (1, 8, 5), (2, 9, 6), (1, 7, 6), (3, 8, 6), (3, 9, 4), (5, 9, 7),

(2, 8, 7), (3, 10, 7), (5, 10, 12), (8, 4, 10), (9, 8, 11), (4, 11, 5)
J9 → 321 (0, 7, 4), (0, 6, 5), (1, 6, 8), (2, 8, 7), (2, 9, 6), (3, 8, 4), (3, 7, 6), (3, 9, 10),

(4, 9, 11), (5, 1, 7), (4, 10, 5), (5, 11, 12), (7, 12, 9), (7, 14, 11),
(6, 11, 13), (7, 13, 10), (5, 9, 8), (8, 11, 10), (8, 13, 15), (10, 6, 12),
(12, 8, 14)

J7 → 311, 52, 6 (5, 8, 6, 3, 4, 7), (0, 6, 1, 5, 4), (0, 5, 6, 2, 7), (7, 3, 9), (1, 7, 8), (9, 5, 11),
(4, 11, 8), (6, 10, 7), (6, 11, 13), (2, 8, 9), (3, 8, 10), (5, 10, 12), (4, 10, 9),
(6, 12, 9)

J7 → 36, 55, 6 (5, 8, 6, 3, 4, 7), (0, 6, 1, 5, 4), (0, 5, 6, 9, 7), (1, 7, 2, 9, 8), (2, 8, 10, 7, 6),
(3, 8, 7), (4, 10, 5, 11, 8), (10, 6, 12), (3, 9, 10), (6, 11, 13), (4, 9, 11),
(5, 12, 9)

J7 → 3, 58, 6 (5, 8, 6, 3, 4, 7), (0, 6, 1, 5, 4), (0, 5, 6, 9, 7), (1, 7, 2, 9, 8), (2, 8, 10, 7, 6),
(3, 8, 4, 9, 10), (3, 9, 11, 8, 7), (4, 10, 12, 5, 11), (5, 10, 6, 12, 9), (6, 11, 13)

J7 → 313, 4, 6 (5, 8, 6, 3, 4, 7), (0, 6, 2, 7), (0, 5, 4), (4, 11, 8), (1, 6, 5), (3, 8, 10),
(1, 7, 8), (2, 8, 9), (6, 12, 9), (9, 5, 11), (5, 10, 12), (6, 11, 13), (6, 10, 7),
(7, 3, 9), (4, 10, 9)

J7 → 38, 4, 53, 6 (5, 8, 6, 3, 4, 7), (0, 6, 1, 5, 4), (0, 5, 6, 9, 7), (1, 7, 3, 10, 8), (5, 10, 12),
(2, 9, 12, 6), (6, 11, 13), (2, 8, 7), (4, 11, 8), (3, 9, 8), (6, 10, 7), (4, 10, 9),
(9, 5, 11)

J7 → 33, 4, 56, 6 (5, 8, 6, 3, 4, 7), (0, 6, 1, 5, 4), (0, 5, 6, 9, 7), (1, 7, 2, 9, 8), (2, 8, 10, 7, 6),
(3, 8, 4, 9, 10), (3, 9, 11, 8, 7), (4, 10, 5, 11), (5, 12, 9), (6, 11, 13),
(10, 6, 12)

Table A.15: Table of decompositions of J
{1,2,3,4,5,6,7}
n

163



J7 → 310, 42, 5, 6 (5, 8, 6, 3, 4, 7), (0, 6, 1, 5, 4), (0, 5, 6, 7), (2, 7, 10, 6), (4, 10, 9), (1, 7, 8),
(2, 8, 9), (7, 3, 9), (9, 5, 11), (5, 10, 12), (3, 8, 10), (6, 12, 9), (6, 11, 13),
(4, 11, 8)

J7 → 35, 42, 54, 6 (5, 8, 6, 3, 4, 7), (0, 6, 1, 5, 4), (0, 5, 6, 9, 7), (1, 7, 2, 9, 8), (2, 8, 10, 7, 6),
(3, 8, 7), (4, 10, 5, 11), (5, 12, 9), (3, 9, 10), (4, 9, 11, 8), (10, 6, 12),
(6, 11, 13)

J7 → 42, 57, 6 (5, 8, 6, 3, 4, 7), (0, 6, 1, 5, 4), (0, 5, 6, 9, 7), (1, 7, 2, 9, 8), (2, 8, 10, 7, 6),
(3, 8, 4, 9, 10), (3, 9, 11, 8, 7), (4, 10, 6, 13, 11), (5, 10, 12, 9), (5, 11, 6, 12)

J7 → 37, 43, 52, 6 (5, 8, 6, 3, 4, 7), (0, 6, 1, 5, 4), (0, 5, 6, 9, 7), (1, 7, 2, 8), (2, 9, 12, 6),
(3, 8, 7), (3, 9, 8, 10), (5, 10, 12), (6, 10, 7), (4, 10, 9), (6, 11, 13),
(4, 11, 8), (9, 5, 11)

J7 → 32, 43, 55, 6 (5, 8, 6, 3, 4, 7), (0, 6, 1, 5, 4), (0, 5, 6, 9, 7), (1, 7, 2, 9, 8), (2, 8, 10, 7, 6),
(3, 8, 4, 10), (3, 9, 11, 8, 7), (5, 10, 12), (6, 12, 9, 10), (4, 9, 5, 11),
(6, 11, 13)

J7 → 39, 44, 6 (5, 8, 6, 3, 4, 7), (0, 6, 1, 7), (0, 5, 4), (1, 8, 10, 5), (2, 8, 3, 9), (2, 7, 6),
(5, 11, 13, 6), (3, 10, 7), (7, 8, 9), (6, 11, 9), (4, 11, 8), (5, 12, 9),
(4, 10, 9), (10, 6, 12)

J7 → 34, 44, 53, 6 (5, 8, 6, 3, 4, 7), (0, 6, 1, 5, 4), (0, 5, 6, 9, 7), (1, 7, 2, 9, 8), (2, 8, 7, 6),
(3, 8, 10), (3, 9, 10, 7), (4, 10, 5, 11), (4, 9, 11, 8), (5, 12, 9), (6, 11, 13),
(10, 6, 12)

J7 → 36, 45, 5, 6 (5, 8, 6, 3, 4, 7), (0, 6, 1, 5, 4), (0, 5, 9, 7), (1, 7, 2, 8), (2, 9, 6), (3, 10, 6, 7),
(3, 9, 11, 8), (4, 10, 5, 11), (4, 9, 8), (5, 12, 6), (6, 11, 13), (8, 7, 10),
(10, 9, 12)

J7 → 3, 45, 54, 6 (5, 8, 6, 3, 4, 7), (0, 6, 1, 5, 4), (0, 5, 6, 9, 7), (1, 7, 2, 9, 8), (2, 8, 3, 7, 6),
(4, 10, 7, 8), (6, 11, 13), (4, 9, 5, 11), (8, 11, 9, 10), (3, 9, 12, 10),
(5, 10, 6, 12)

J7 → 33, 46, 52, 6 (5, 8, 6, 3, 4, 7), (0, 6, 1, 5, 4), (0, 5, 6, 9, 7), (1, 7, 2, 8), (2, 9, 12, 6),
(4, 9, 5, 11), (5, 10, 12), (6, 11, 13), (7, 8, 9, 10), (3, 9, 11, 8), (8, 4, 10),
(3, 10, 6, 7)

J7 → 35, 47, 6 (5, 8, 6, 3, 4, 7), (0, 6, 1, 7), (0, 5, 4), (1, 8, 10, 5), (2, 8, 3, 9), (2, 7, 9, 6),
(3, 10, 7), (4, 10, 9, 8), (4, 9, 11), (6, 11, 8, 7), (5, 11, 13, 6), (10, 6, 12),
(5, 12, 9)

J7 → 47, 53, 6 (5, 8, 6, 3, 4, 7), (0, 6, 1, 5, 4), (0, 5, 6, 9, 7), (1, 7, 2, 8), (2, 9, 11, 13, 6),
(4, 9, 5, 11), (3, 8, 4, 10), (6, 11, 8, 7), (3, 9, 10, 7), (8, 9, 12, 10),
(5, 10, 6, 12)

J7 → 32, 48, 5, 6 (5, 8, 6, 3, 4, 7), (0, 6, 1, 5, 4), (0, 5, 9, 7), (1, 7, 2, 8), (2, 9, 6), (3, 10, 6, 7),
(3, 9, 4, 8), (5, 11, 13, 6), (9, 12, 6, 11), (8, 11, 4, 10), (7, 8, 9, 10),
(5, 10, 12)

J7 → 3, 410, 6 (5, 8, 6, 3, 4, 7), (0, 6, 1, 7), (0, 5, 4), (1, 8, 10, 5), (2, 8, 3, 9), (2, 7, 9, 6),
(3, 10, 6, 7), (4, 10, 7, 8), (4, 9, 8, 11), (5, 12, 10, 9), (5, 11, 13, 6),
(9, 12, 6, 11)

J8 → 315, 5, 6 (5, 8, 6, 3, 4, 7), (0, 6, 9, 11, 7), (0, 5, 4), (7, 12, 14), (4, 11, 8), (2, 8, 9),
(1, 7, 8), (3, 8, 10), (1, 6, 5), (5, 11, 10), (2, 7, 6), (10, 6, 12), (6, 11, 13),
(7, 3, 9), (5, 12, 9), (4, 10, 9), (7, 13, 10)

J8 → 310, 54, 6 (5, 8, 6, 3, 4, 7), (0, 6, 1, 5, 4), (0, 5, 6, 9, 7), (1, 7, 2, 9, 8), (2, 8, 3, 7, 6),
(8, 4, 10), (3, 9, 10), (6, 11, 13), (10, 6, 12), (7, 13, 10), (7, 11, 8),
(7, 12, 14), (5, 12, 9), (4, 9, 11), (5, 11, 10)

Table A.15: Table of decompositions of J
{1,2,3,4,5,6,7}
n

164



J8 → 35, 57, 6 (5, 8, 6, 3, 4, 7), (0, 6, 1, 5, 4), (0, 5, 6, 9, 7), (1, 7, 2, 9, 8), (2, 8, 10, 7, 6),
(3, 8, 4, 11, 7), (3, 9, 12, 5, 10), (7, 13, 6, 11, 8), (9, 5, 11), (4, 10, 9),
(10, 6, 12), (7, 12, 14), (11, 10, 13)

J8 → 510, 6 (5, 8, 6, 3, 4, 7), (0, 6, 1, 5, 4), (0, 5, 6, 9, 7), (1, 7, 2, 9, 8), (2, 8, 10, 7, 6),
(3, 8, 4, 11, 7), (3, 9, 12, 5, 10), (6, 12, 14, 7, 13), (7, 12, 10, 11, 8),
(5, 11, 13, 10, 9), (9, 4, 10, 6, 11)

J8 → 45, 56, 6 (5, 8, 6, 3, 4, 7), (0, 6, 1, 5, 4), (0, 5, 6, 9, 7), (1, 7, 2, 9, 8), (2, 8, 10, 7, 6),
(3, 8, 4, 9, 10), (5, 11, 7, 14, 12), (3, 9, 12, 7), (4, 10, 6, 11), (10, 13, 6, 12),
(7, 13, 11, 8), (9, 5, 10, 11)

J8 → 410, 52, 6 (5, 8, 6, 3, 4, 7), (0, 6, 1, 5, 4), (0, 5, 6, 9, 7), (1, 7, 2, 8), (2, 9, 11, 6),
(3, 9, 4, 10), (3, 8, 10, 7), (4, 11, 7, 8), (5, 11, 8, 9), (5, 10, 9, 12),
(6, 13, 11, 10), (6, 12, 14, 7), (10, 13, 7, 12)

J9 → 319, 6 (3, 7, 4, 8, 5, 6), (0, 5, 4), (0, 6, 7), (1, 6, 8), (5, 1, 7), (2, 8, 7), (2, 9, 6),
(7, 12, 9), (5, 11, 12), (10, 6, 12), (8, 13, 15), (3, 8, 10), (12, 8, 14),
(3, 9, 4), (9, 8, 11), (4, 10, 11), (5, 10, 9), (7, 13, 10), (6, 11, 13),
(7, 14, 11)

J9 → 413, 5, 6 (5, 8, 6, 3, 4, 7), (0, 6, 1, 5, 4), (0, 5, 9, 7), (1, 7, 2, 8), (2, 9, 11, 6),
(3, 9, 6, 7), (3, 8, 4, 10), (4, 9, 8, 11), (5, 12, 10, 6), (5, 11, 13, 10),
(6, 12, 8, 13), (7, 13, 15, 8), (7, 12, 9, 10), (8, 14, 11, 10), (7, 14, 12, 11)

J10 → 416, 6 (5, 8, 6, 3, 4, 7), (0, 6, 1, 7), (0, 5, 9, 4), (1, 8, 10, 5), (2, 8, 3, 9), (2, 7, 9, 6),
(3, 10, 12, 7), (4, 11, 6, 5), (4, 10, 7, 8), (9, 12, 5, 11), (6, 13, 9, 10),
(6, 12, 11, 7), (11, 14, 7, 13), (12, 15, 9, 14), (8, 15, 13, 12), (8, 14, 16, 9),
(8, 13, 10, 11)

J12 → 326, 6 (3, 7, 4, 8, 5, 6), (0, 5, 4), (5, 1, 7), (1, 6, 8), (0, 6, 7), (2, 8, 7), (2, 9, 6),
(3, 9, 8), (4, 9, 11), (5, 10, 9), (9, 14, 16), (13, 9, 15), (3, 10, 4),
(10, 16, 13), (10, 15, 17), (5, 11, 12), (8, 15, 11), (11, 17, 14), (8, 14, 10),
(7, 11, 10), (11, 16, 18), (10, 6, 12), (7, 12, 9), (12, 15, 14), (8, 13, 12),
(6, 11, 13), (7, 13, 14)

J8 → 313, 52, 7 (5, 8, 9, 6, 3, 4, 7), (0, 5, 1, 8, 4), (0, 6, 7), (1, 7, 10, 13, 6), (6, 2, 8),
(7, 12, 14), (2, 7, 9), (4, 9, 11), (3, 8, 7), (5, 12, 9), (3, 9, 10), (4, 10, 5),
(5, 11, 6), (10, 6, 12), (8, 11, 10), (11, 7, 13)

J8 → 38, 55, 7 (5, 8, 9, 6, 3, 4, 7), (0, 5, 1, 8, 4), (0, 6, 2, 9, 7), (6, 1, 7, 2, 8),
(3, 10, 12, 6, 7), (8, 3, 9, 11, 10), (4, 11, 5), (4, 10, 9), (5, 12, 9), (5, 10, 6),
(6, 11, 13), (7, 13, 10), (7, 11, 8), (7, 12, 14)

J8 → 33, 58, 7 (5, 8, 9, 6, 3, 4, 7), (0, 5, 1, 8, 4), (0, 6, 2, 9, 7), (6, 1, 7, 2, 8),
(3, 10, 12, 6, 7), (8, 3, 9, 11, 10), (4, 9, 12, 5, 11), (4, 10, 13, 6, 5),
(5, 10, 9), (7, 8, 11, 6, 10), (7, 12, 14), (11, 7, 13)

J8 → 315, 4, 7 (5, 8, 9, 6, 3, 4, 7), (0, 5, 4), (1, 7, 3, 8), (1, 6, 5), (6, 2, 8), (0, 6, 7),
(7, 11, 8), (8, 4, 10), (6, 11, 13), (7, 13, 10), (7, 12, 14), (2, 7, 9),
(4, 9, 11), (5, 11, 10), (3, 9, 10), (10, 6, 12), (5, 12, 9)

J8 → 310, 4, 53, 7 (5, 8, 9, 6, 3, 4, 7), (0, 5, 1, 8, 4), (0, 6, 1, 7), (2, 9, 7, 10, 6), (3, 8, 10),
(4, 10, 5), (3, 9, 5, 11, 7), (6, 13, 7), (5, 12, 6), (2, 8, 7), (7, 12, 14),
(6, 11, 8), (10, 9, 12), (4, 9, 11), (11, 10, 13)

J8 → 35, 4, 56, 7 (5, 8, 9, 6, 3, 4, 7), (0, 5, 1, 8, 4), (0, 6, 1, 7), (6, 2, 9, 7, 8), (2, 8, 10, 3, 7),
(3, 9, 4, 11, 8), (4, 10, 7, 6, 5), (5, 10, 12), (6, 12, 9, 10, 11), (9, 5, 11),
(6, 13, 10), (11, 7, 13), (7, 12, 14)

Table A.15: Table of decompositions of J
{1,2,3,4,5,6,7}
n

165



J8 → 4, 59, 7 (5, 8, 9, 6, 3, 4, 7), (0, 5, 1, 8, 4), (0, 6, 1, 7), (6, 2, 9, 7, 8), (2, 8, 10, 3, 7),
(3, 9, 4, 11, 8), (4, 10, 7, 6, 5), (9, 5, 12, 10, 11), (5, 11, 13, 6, 10),
(6, 12, 14, 7, 11), (9, 10, 13, 7, 12)

J8 → 312, 42, 5, 7 (5, 8, 9, 6, 3, 4, 7), (0, 5, 1, 8, 4), (0, 6, 1, 7), (2, 7, 9), (6, 2, 8), (3, 8, 11, 7),
(3, 9, 10), (5, 11, 6), (4, 10, 5), (8, 7, 10), (7, 12, 14), (5, 12, 9),
(10, 6, 12), (4, 9, 11), (11, 10, 13), (6, 13, 7)

J8 → 37, 42, 54, 7 (5, 8, 9, 6, 3, 4, 7), (0, 5, 1, 8, 4), (0, 6, 1, 7), (6, 2, 9, 7, 8), (2, 8, 10, 3, 7),
(3, 9, 4, 11, 8), (4, 10, 5), (7, 14, 12, 10), (5, 12, 9), (6, 12, 7), (9, 10, 11),
(11, 7, 13), (5, 11, 6), (6, 13, 10)

J8 → 32, 42, 57, 7 (5, 8, 9, 6, 3, 4, 7), (0, 5, 1, 8, 4), (0, 6, 1, 7), (6, 2, 9, 7, 8), (2, 8, 10, 3, 7),
(3, 9, 4, 11, 8), (4, 10, 7, 6, 5), (9, 5, 12, 10, 11), (5, 11, 6, 10), (11, 7, 13),
(6, 12, 9, 10, 13), (7, 12, 14)

J8 → 39, 43, 52, 7 (5, 8, 9, 6, 3, 4, 7), (0, 5, 1, 8, 4), (0, 6, 1, 7), (6, 2, 9, 7, 8), (2, 8, 3, 7),
(3, 9, 10), (4, 10, 5), (6, 12, 14, 7), (4, 9, 11), (5, 12, 9), (7, 12, 10),
(5, 11, 6), (11, 7, 13), (6, 13, 10), (8, 11, 10)

J8 → 34, 43, 55, 7 (5, 8, 9, 6, 3, 4, 7), (0, 5, 1, 8, 4), (0, 6, 1, 7), (6, 2, 9, 7, 8), (2, 8, 10, 3, 7),
(3, 9, 4, 11, 8), (4, 10, 7, 6, 5), (5, 12, 10, 9), (5, 11, 10), (6, 13, 10),
(11, 7, 13), (7, 12, 14), (9, 12, 6, 11)

J8 → 311, 44, 7 (5, 8, 9, 6, 3, 4, 7), (0, 5, 1, 7), (0, 6, 5, 4), (1, 6, 8), (2, 9, 7, 6), (2, 8, 3, 7),
(3, 9, 10), (4, 9, 11), (5, 11, 10), (5, 12, 9), (6, 11, 13), (7, 13, 10),
(7, 12, 14), (8, 4, 10), (7, 11, 8), (10, 6, 12)

J8 → 36, 44, 53, 7 (5, 8, 9, 6, 3, 4, 7), (0, 5, 1, 8, 4), (0, 6, 1, 7), (6, 2, 9, 7, 8), (2, 8, 10, 3, 7),
(3, 9, 11, 8), (4, 9, 5, 11), (4, 10, 5), (6, 11, 10, 7), (5, 12, 6), (7, 12, 14),
(11, 7, 13), (10, 9, 12), (6, 13, 10)

J8 → 3, 44, 56, 7 (5, 8, 9, 6, 3, 4, 7), (0, 5, 1, 8, 4), (0, 6, 1, 7), (6, 2, 9, 7, 8), (2, 8, 10, 3, 7),
(3, 9, 4, 11, 8), (4, 10, 7, 6, 5), (9, 5, 12, 10, 11), (5, 11, 13, 10),
(6, 11, 7, 13), (7, 12, 14), (6, 12, 9, 10)

J8 → 38, 45, 5, 7 (5, 8, 9, 6, 3, 4, 7), (0, 5, 1, 8, 4), (0, 6, 1, 7), (2, 9, 7, 6), (2, 8, 3, 7),
(3, 9, 4, 10), (4, 11, 9, 5), (5, 11, 10), (6, 11, 13), (5, 12, 6), (6, 10, 8),
(7, 11, 8), (7, 13, 10), (7, 12, 14), (10, 9, 12)

J8 → 33, 45, 54, 7 (5, 8, 9, 6, 3, 4, 7), (0, 5, 1, 8, 4), (0, 6, 1, 7), (6, 2, 9, 7, 8), (2, 8, 10, 3, 7),
(3, 9, 4, 11, 8), (4, 10, 6, 5), (5, 12, 10, 9), (9, 12, 6, 11), (5, 11, 13, 10),
(6, 13, 7), (7, 11, 10), (7, 12, 14)

J8 → 35, 46, 52, 7 (5, 8, 9, 6, 3, 4, 7), (0, 5, 1, 8, 4), (0, 6, 1, 7), (6, 2, 9, 7, 8), (2, 8, 3, 7),
(3, 9, 4, 10), (4, 11, 6, 5), (5, 10, 12), (6, 13, 10), (6, 12, 14, 7),
(7, 12, 9, 10), (9, 5, 11), (8, 11, 10), (11, 7, 13)

J8 → 46, 55, 7 (5, 8, 9, 6, 3, 4, 7), (0, 5, 1, 8, 4), (0, 6, 1, 7), (6, 2, 9, 7, 8), (2, 8, 10, 3, 7),
(3, 9, 4, 11, 8), (4, 10, 13, 6, 5), (9, 10, 6, 11), (5, 10, 12, 9), (6, 12, 14, 7),
(5, 11, 7, 12), (7, 13, 11, 10)

J8 → 37, 47, 7 (5, 8, 9, 6, 3, 4, 7), (0, 5, 1, 7), (0, 6, 5, 4), (1, 6, 8), (2, 9, 7, 6), (2, 8, 3, 7),
(3, 9, 4, 10), (4, 11, 8), (5, 12, 10, 9), (9, 12, 6, 11), (5, 11, 10), (6, 13, 10),
(7, 12, 14), (8, 7, 10), (11, 7, 13)

J8 → 32, 47, 53, 7 (5, 8, 9, 6, 3, 4, 7), (0, 5, 1, 8, 4), (0, 6, 1, 7), (6, 2, 9, 7, 8), (2, 8, 10, 3, 7),
(3, 9, 11, 8), (4, 9, 5, 11), (4, 10, 6, 5), (5, 10, 12), (6, 12, 14, 7),
(6, 11, 13), (7, 12, 9, 10), (7, 13, 10, 11)

J8 → 34, 48, 5, 7 (5, 8, 9, 6, 3, 4, 7), (0, 5, 1, 8, 4), (0, 6, 1, 7), (2, 9, 7, 6), (2, 8, 3, 7),
(3, 9, 4, 10), (4, 11, 6, 5), (5, 10, 12), (9, 5, 11), (6, 13, 7, 8), (6, 12, 9, 10),
(7, 12, 14), (7, 11, 13, 10), (8, 11, 10)

Table A.15: Table of decompositions of J
{1,2,3,4,5,6,7}
n

166



J8 → 3, 49, 52, 7 (5, 8, 9, 6, 3, 4, 7), (0, 5, 1, 8, 4), (0, 6, 1, 7), (6, 2, 9, 7, 8), (2, 8, 3, 7),
(3, 9, 4, 10), (4, 11, 6, 5), (5, 12, 10, 9), (6, 12, 14, 7), (6, 13, 11, 10),
(7, 13, 10), (8, 11, 5, 10), (9, 12, 7, 11)

J8 → 33, 410, 7 (5, 8, 9, 6, 3, 4, 7), (0, 5, 1, 7), (0, 6, 5, 4), (1, 6, 8), (2, 9, 7, 6), (2, 8, 3, 7),
(3, 9, 4, 10), (4, 11, 8), (5, 12, 10, 9), (9, 12, 6, 11), (5, 11, 13, 10),
(7, 13, 6, 10), (8, 7, 11, 10), (7, 12, 14)

J8 → 411, 5, 7 (5, 8, 9, 6, 3, 4, 7), (0, 5, 1, 8, 4), (0, 6, 1, 7), (2, 9, 7, 6), (2, 8, 3, 7),
(3, 9, 4, 10), (4, 11, 6, 5), (5, 10, 6, 12), (7, 14, 12, 10), (6, 13, 10, 8),
(9, 12, 7, 11), (5, 11, 10, 9), (7, 13, 11, 8)

J9 → 317, 5, 7 (5, 8, 9, 6, 3, 4, 7), (0, 5, 4), (6, 2, 8), (0, 6, 7), (2, 7, 13, 11, 9), (6, 13, 10),
(1, 7, 8), (1, 6, 5), (8, 13, 15), (4, 10, 9), (5, 12, 9), (5, 11, 10), (6, 12, 11),
(7, 3, 9), (3, 8, 10), (4, 11, 8), (12, 8, 14), (7, 12, 10), (7, 14, 11)

J9 → 312, 54, 7 (5, 8, 9, 6, 3, 4, 7), (0, 5, 1, 8, 4), (0, 6, 2, 9, 7), (6, 1, 7, 2, 8), (3, 8, 12, 6, 7),
(8, 13, 15), (3, 9, 10), (4, 9, 11), (4, 10, 5), (5, 12, 9), (5, 11, 6),
(11, 7, 13), (6, 13, 10), (8, 14, 11), (8, 7, 10), (7, 12, 14), (10, 11, 12)

J9 → 37, 57, 7 (5, 8, 9, 6, 3, 4, 7), (0, 5, 1, 8, 4), (0, 6, 2, 9, 7), (6, 1, 7, 2, 8),
(3, 10, 12, 6, 7), (8, 3, 9, 11, 10), (4, 11, 5), (7, 14, 11, 13, 10), (5, 10, 6),
(4, 10, 9), (7, 11, 8), (6, 11, 12, 7, 13), (12, 8, 14), (8, 13, 15), (5, 12, 9)

J9 → 32, 510, 7 (5, 8, 9, 6, 3, 4, 7), (0, 5, 1, 8, 4), (0, 6, 2, 9, 7), (6, 1, 7, 2, 8),
(3, 10, 12, 6, 7), (8, 3, 9, 11, 10), (4, 9, 12, 5, 11), (4, 10, 13, 6, 5),
(5, 10, 9), (7, 8, 11, 6, 10), (11, 12, 14, 7, 13), (7, 12, 8, 14, 11), (8, 13, 15)

J9 → 44, 58, 7 (5, 8, 9, 6, 3, 4, 7), (0, 5, 1, 8, 4), (0, 6, 1, 7), (6, 2, 9, 7, 8), (2, 8, 10, 3, 7),
(3, 9, 11, 12, 8), (4, 9, 12, 5, 11), (4, 10, 9, 5), (5, 10, 7, 12, 6),
(10, 11, 7, 14, 12), (6, 10, 13, 7), (11, 14, 8, 15, 13), (8, 13, 6, 11)

J9 → 49, 54, 7 (5, 8, 9, 6, 3, 4, 7), (0, 5, 1, 8, 4), (0, 6, 1, 7), (6, 2, 9, 7, 8), (2, 8, 10, 3, 7),
(3, 9, 11, 12, 8), (4, 9, 5, 11), (4, 10, 6, 5), (5, 10, 9, 12), (6, 13, 10, 7),
(7, 13, 8, 14), (8, 15, 13, 11), (10, 11, 6, 12), (7, 12, 14, 11)

J9 → 414, 7 (5, 8, 9, 6, 3, 4, 7), (0, 5, 1, 7), (0, 6, 5, 4), (1, 6, 2, 8), (2, 7, 3, 9),
(3, 8, 4, 10), (4, 9, 5, 11), (5, 10, 6, 12), (6, 7, 10, 8), (6, 11, 7, 13),
(7, 14, 11, 9), (8, 15, 13, 11), (10, 13, 8, 12), (9, 10, 11, 12), (7, 12, 14, 8)

J10 → 321, 7 (3, 4, 8, 5, 9, 7, 6), (0, 7, 4), (0, 6, 5), (2, 9, 6), (2, 8, 7), (5, 1, 7), (1, 6, 8),
(3, 9, 8), (3, 10, 7), (9, 14, 16), (12, 8, 14), (7, 14, 11), (4, 9, 11),
(5, 11, 12), (6, 11, 13), (7, 13, 12), (10, 6, 12), (8, 13, 15), (8, 11, 10),
(9, 13, 10), (4, 10, 5), (9, 15, 12)

J10 → 3, 512, 7 (5, 8, 9, 6, 3, 4, 7), (0, 5, 1, 8, 4), (0, 6, 2, 9, 7), (6, 1, 7, 2, 8),
(3, 10, 12, 6, 7), (8, 3, 9, 11, 10), (4, 9, 12, 5, 11), (4, 10, 13, 6, 5),
(5, 10, 9), (7, 8, 11, 6, 10), (11, 7, 14, 12, 13), (7, 13, 15, 8, 12),
(8, 14, 16, 9, 13), (11, 12, 15, 9, 14)

J11 → 514, 7 (5, 8, 9, 6, 3, 4, 7), (0, 5, 1, 8, 4), (0, 6, 2, 9, 7), (6, 1, 7, 2, 8),
(3, 10, 12, 6, 7), (8, 3, 9, 11, 10), (4, 9, 12, 5, 11), (4, 10, 13, 6, 5),
(7, 13, 9, 5, 10), (6, 11, 14, 9, 10), (7, 14, 12, 11, 8), (11, 7, 12, 8, 13),
(8, 14, 16, 13, 15), (9, 15, 17, 10, 16), (12, 13, 14, 10, 15)

J13 → 328, 7 (3, 4, 8, 5, 9, 7, 6), (0, 6, 5), (0, 7, 4), (5, 1, 7), (1, 6, 8), (2, 8, 7), (2, 9, 6),
(3, 9, 8), (3, 10, 7), (4, 10, 9), (9, 14, 13), (4, 11, 5), (5, 10, 12),
(6, 12, 11), (6, 13, 10), (7, 13, 12), (12, 8, 14), (8, 13, 11), (8, 15, 10),
(12, 17, 19), (10, 17, 11), (16, 12, 18), (9, 16, 11), (13, 16, 15),
(14, 10, 16), (7, 14, 11), (9, 15, 12), (11, 18, 15), (15, 14, 17)

Table A.15: Table of decompositions of J
{1,2,3,4,5,6,7}
n

167



J6 → 38, 52, 8∗ (5, 12, 10, 8, 11, 9, 6, 7), (0, 6, 2, 8, 5), (1, 7, 8), (1, 6, 5), (2, 7, 9), (0, 7, 4),
(3, 10, 4), (3, 8, 6), (4, 11, 5), (4, 9, 8), (3, 9, 5, 10, 7)

J6 → 33, 55, 8∗ (5, 12, 10, 8, 11, 9, 6, 7), (0, 5, 1, 7, 4), (0, 6, 3, 9, 7), (1, 6, 8),
(2, 7, 10, 5, 9), (4, 8, 2, 6, 5), (3, 10, 4), (5, 11, 4, 9, 8), (3, 8, 7)

J6 → 310, 4, 8∗ (6, 7, 10, 12, 5, 9, 11, 8), (0, 6, 5), (3, 8, 1, 6), (2, 9, 6), (3, 10, 4),
(4, 11, 5), (0, 7, 4), (5, 1, 7), (5, 10, 8), (2, 8, 7), (4, 9, 8), (7, 3, 9)

J6 → 35, 4, 53, 8∗ (5, 12, 10, 8, 11, 9, 6, 7), (0, 5, 1, 7, 4), (0, 6, 3, 9, 7), (1, 6, 8),
(2, 7, 10, 5, 9), (2, 8, 5, 6), (3, 10, 4), (4, 11, 5), (4, 9, 8), (3, 8, 7)

J6 → 4, 56, 8∗ (5, 12, 10, 8, 11, 9, 6, 7), (0, 5, 1, 7, 4), (0, 6, 3, 9, 7), (1, 6, 2, 8),
(3, 7, 2, 9, 4), (4, 10, 3, 8, 5), (6, 5, 11, 4, 8), (7, 8, 9, 5, 10)

J6 → 37, 42, 5, 8∗ (5, 12, 10, 8, 11, 9, 6, 7), (0, 5, 1, 8, 4), (4, 11, 5), (0, 6, 1, 7), (3, 10, 5, 6),
(4, 10, 7), (3, 8, 7), (2, 7, 9), (5, 9, 8), (3, 9, 4), (6, 2, 8)

J6 → 32, 42, 54, 8∗ (5, 12, 10, 8, 11, 9, 6, 7), (0, 5, 1, 7, 4), (0, 6, 3, 9, 7), (1, 6, 8), (3, 7, 2, 9, 4),
(4, 8, 2, 6, 5), (3, 8, 7, 10), (4, 10, 5, 11), (5, 9, 8)

J6 → 34, 43, 52, 8∗ (5, 12, 10, 8, 11, 9, 6, 7), (0, 5, 1, 7, 4), (0, 6, 3, 9, 7), (1, 6, 8), (2, 8, 3, 7),
(2, 9, 5, 6), (3, 10, 4), (4, 11, 5), (4, 9, 8), (5, 10, 7, 8)

J6 → 36, 44, 8∗ (5, 12, 10, 8, 11, 9, 6, 7), (0, 5, 1, 7), (0, 6, 3, 4), (1, 6, 8), (2, 9, 5, 6),
(2, 8, 7), (4, 10, 5, 11), (3, 10, 7), (4, 8, 5), (4, 9, 7), (3, 9, 8)

J6 → 3, 44, 53, 8∗ (5, 12, 10, 8, 11, 9, 6, 7), (0, 5, 1, 7, 4), (0, 6, 3, 9, 7), (1, 6, 8), (3, 7, 2, 9, 4),
(2, 8, 5, 6), (3, 8, 7, 10), (4, 10, 5, 11), (4, 8, 9, 5)

J6 → 33, 45, 5, 8∗ (5, 12, 10, 8, 11, 9, 6, 7), (0, 5, 1, 7, 4), (0, 6, 3, 7), (1, 6, 8), (2, 9, 5, 6),
(2, 8, 7), (7, 10, 3, 9), (5, 11, 4, 8), (4, 10, 5), (3, 8, 9, 4)

J6 → 46, 52, 8∗ (5, 12, 10, 8, 11, 9, 6, 7), (0, 5, 1, 7, 4), (0, 6, 3, 9, 7), (1, 6, 2, 8), (2, 7, 8, 9),
(5, 10, 3, 8), (3, 7, 10, 4), (4, 9, 5, 11), (6, 5, 4, 8)

J6 → 32, 47, 8∗ (5, 12, 10, 8, 11, 9, 6, 7), (0, 5, 1, 7), (0, 6, 3, 4), (1, 6, 8), (2, 9, 5, 6),
(2, 8, 3, 7), (3, 9, 4, 10), (5, 11, 4, 8), (4, 5, 10, 7), (7, 8, 9)

J7 → 312, 5, 8∗ (6, 13, 11, 8, 7, 10, 12, 9), (2, 8, 9), (4, 11, 6, 2, 7), (7, 3, 9), (5, 1, 7),
(0, 6, 7), (0, 5, 4), (5, 12, 6), (9, 5, 11), (1, 6, 8), (3, 8, 4), (5, 10, 8),
(3, 10, 6), (4, 10, 9)

J7 → 37, 54, 8∗ (6, 13, 11, 9, 12, 10, 7, 8), (0, 6, 3, 7, 4), (0, 5, 7), (1, 6, 2, 8, 5),
(1, 7, 2, 9, 8), (5, 12, 6, 10, 9), (7, 6, 9), (3, 9, 4), (5, 11, 6), (4, 11, 8),
(4, 10, 5), (3, 8, 10)

J7 → 32, 57, 8∗ (6, 13, 11, 9, 12, 10, 7, 8), (0, 6, 3, 7, 4), (0, 5, 7), (1, 6, 2, 8, 5),
(1, 7, 9, 10, 8), (2, 7, 6, 5, 9), (3, 8, 11, 5, 10), (3, 9, 4), (6, 11, 4, 8, 9),
(4, 10, 6, 12, 5)

J7 → 44, 55, 8∗ (6, 13, 11, 9, 12, 10, 7, 8), (0, 6, 3, 7, 4), (0, 5, 8, 1, 7), (5, 1, 6, 2, 7),
(2, 8, 10, 3, 9), (3, 8, 11, 5, 4), (4, 10, 9, 8), (6, 11, 4, 9), (5, 10, 6, 12),
(7, 6, 5, 9)

J7 → 49, 5, 8∗ (6, 13, 11, 9, 12, 10, 7, 8), (0, 6, 3, 7, 4), (0, 5, 1, 7), (1, 6, 2, 8), (2, 7, 6, 9),
(3, 10, 5, 4), (8, 11, 4, 10), (3, 9, 4, 8), (5, 11, 6, 12), (5, 8, 9, 7),
(5, 9, 10, 6)

J8 → 316, 8∗ (8, 9, 12, 14, 7, 13, 10, 11), (3, 8, 6), (2, 8, 7), (3, 9, 4), (0, 6, 5), (0, 7, 4),
(4, 11, 5), (1, 7, 6), (6, 11, 13), (7, 11, 9), (1, 8, 5), (2, 9, 6), (8, 4, 10),
(5, 10, 9), (10, 6, 12), (5, 12, 7), (3, 10, 7)

J8 → 3, 59, 8∗ (7, 14, 12, 10, 13, 11, 8, 9), (0, 7, 6, 3, 4), (5, 0, 6, 8, 7), (1, 6, 2, 8, 5),
(1, 7, 4, 10, 8), (2, 7, 10, 3, 9), (3, 8, 4, 11, 7), (4, 9, 11, 6, 5),
(5, 12, 6, 10, 9), (5, 11, 10), (6, 13, 7, 12, 9)

Table A.15: Table of decompositions of J
{1,2,3,4,5,6,7}
n

168



J8 → 412, 8∗ (7, 14, 12, 10, 13, 11, 8, 9), (0, 7, 3, 4), (0, 6, 8, 5), (1, 6, 2, 8), (2, 7, 6, 9),
(3, 10, 5, 6), (3, 9, 4, 8), (4, 11, 9, 5), (5, 11, 10, 7), (1, 7, 12, 5),
(4, 10, 8, 7), (6, 11, 7, 13), (6, 12, 9, 10)

J9 → 511, 8∗ (8, 15, 13, 11, 14, 12, 9, 10), (0, 7, 9, 3, 4), (5, 0, 6, 3, 7), (1, 7, 4, 8, 5),
(1, 6, 9, 2, 8), (2, 7, 10, 5, 6), (3, 8, 11, 4, 10), (4, 9, 11, 12, 5),
(6, 11, 5, 9, 8), (10, 6, 13, 7, 12), (6, 12, 8, 14, 7), (7, 11, 10, 13, 8)

J11 → 323, 8∗ (10, 17, 15, 13, 16, 14, 11, 12), (0, 7, 4), (0, 6, 5), (1, 8, 5), (3, 9, 4),
(4, 10, 5), (5, 12, 7), (1, 7, 6), (2, 8, 7), (3, 8, 6), (6, 11, 10), (2, 9, 6),
(11, 7, 13), (9, 5, 11), (3, 10, 7), (4, 11, 8), (9, 16, 10), (10, 14, 13),
(7, 14, 9), (12, 8, 14), (6, 12, 13), (8, 13, 9), (9, 15, 12), (8, 15, 10)

J7 → 310, 52, 9∗ (6, 13, 11, 9, 7, 10, 12, 5, 8), (1, 6, 10, 4, 5), (0, 6, 2, 7, 4), (1, 7, 8),
(0, 5, 7), (3, 7, 6), (5, 10, 9), (6, 12, 9), (5, 11, 6), (2, 8, 9), (3, 9, 4),
(3, 8, 10), (4, 11, 8)

J7 → 35, 55, 9∗ (5, 8, 6, 13, 11, 9, 12, 10, 7), (0, 5, 1, 7, 4), (0, 6, 3, 9, 7), (1, 6, 2, 7, 8),
(2, 8, 10, 6, 9), (3, 10, 4), (3, 8, 11, 6, 7), (4, 11, 5), (4, 9, 8), (5, 12, 6),
(5, 10, 9)

J7 → 58, 9∗ (5, 8, 6, 13, 11, 9, 12, 10, 7), (0, 5, 1, 7, 4), (0, 6, 3, 9, 7), (1, 6, 2, 7, 8),
(2, 8, 10, 6, 9), (5, 10, 3, 7, 6), (4, 11, 6, 12, 5), (3, 8, 9, 10, 4),
(4, 9, 5, 11, 8)

J7 → 312, 4, 9∗ (6, 13, 11, 9, 7, 10, 12, 5, 8), (5, 1, 7), (2, 7, 6), (3, 8, 7), (0, 7, 4), (0, 6, 5),
(1, 6, 11, 8), (2, 8, 9), (3, 10, 6), (4, 11, 5), (8, 4, 10), (3, 9, 4), (6, 12, 9),
(5, 10, 9)

J7 → 37, 4, 53, 9∗ (5, 8, 6, 13, 11, 9, 12, 10, 7), (0, 5, 1, 7, 4), (0, 6, 3, 9, 7), (1, 6, 5, 10, 8),
(5, 11, 6, 12), (4, 9, 5), (6, 10, 9), (2, 8, 9), (3, 10, 4), (2, 7, 6), (3, 8, 7),
(4, 11, 8)

J7 → 32, 4, 56, 9∗ (5, 8, 6, 13, 11, 9, 12, 10, 7), (0, 5, 1, 7, 4), (0, 6, 3, 9, 7), (1, 6, 2, 7, 8),
(2, 8, 10, 6, 9), (3, 8, 11, 4, 10), (3, 7, 6, 5, 4), (4, 9, 8), (5, 11, 6, 12),
(5, 10, 9)

J7 → 39, 42, 5, 9∗ (5, 8, 6, 13, 11, 9, 12, 10, 7), (0, 5, 1, 7, 4), (0, 6, 2, 7), (4, 11, 5),
(1, 6, 11, 8), (2, 8, 9), (5, 12, 6), (3, 8, 7), (8, 4, 10), (3, 9, 4), (7, 6, 9),
(5, 10, 9), (3, 10, 6)

J7 → 34, 42, 54, 9∗ (5, 8, 6, 13, 11, 9, 12, 10, 7), (0, 5, 1, 7, 4), (0, 6, 3, 9, 7), (1, 6, 2, 7, 8),
(2, 8, 11, 6, 9), (3, 10, 6, 7), (3, 8, 4), (4, 10, 5, 11), (5, 12, 6), (4, 9, 5),
(8, 9, 10)

J7 → 36, 43, 52, 9∗ (5, 8, 6, 13, 11, 9, 12, 10, 7), (0, 5, 1, 7, 4), (0, 6, 3, 9, 7), (1, 6, 2, 8),
(2, 7, 6, 9), (3, 10, 4), (3, 8, 7), (4, 11, 8), (5, 10, 6, 12), (5, 11, 6),
(8, 9, 10), (4, 9, 5)

J7 → 3, 43, 55, 9∗ (5, 8, 6, 13, 11, 9, 12, 10, 7), (0, 5, 1, 7, 4), (0, 6, 3, 9, 7), (1, 6, 2, 7, 8),
(2, 8, 10, 6, 9), (3, 8, 4, 10), (3, 7, 6, 5, 4), (5, 11, 6, 12), (5, 10, 9),
(4, 9, 8, 11)

J7 → 38, 44, 9∗ (5, 8, 6, 13, 11, 9, 12, 10, 7), (0, 5, 1, 7), (0, 6, 3, 4), (1, 6, 10, 8), (2, 7, 6),
(4, 10, 5), (3, 9, 10), (4, 9, 7), (5, 11, 6, 12), (4, 11, 8), (5, 9, 6), (2, 8, 9),
(3, 8, 7)

J7 → 33, 44, 53, 9∗ (5, 8, 6, 13, 11, 9, 12, 10, 7), (0, 5, 1, 7, 4), (0, 6, 3, 9, 7), (1, 6, 2, 7, 8),
(2, 8, 4, 9), (3, 8, 11, 4), (3, 10, 6, 7), (6, 11, 5, 9), (5, 12, 6), (8, 9, 10),
(4, 10, 5)

Table A.15: Table of decompositions of J
{1,2,3,4,5,6,7}
n
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J7 → 35, 45, 5, 9∗ (5, 8, 6, 13, 11, 9, 12, 10, 7), (0, 5, 1, 7, 4), (0, 6, 3, 7), (1, 6, 2, 8), (2, 7, 9),
(3, 10, 5, 4), (3, 9, 8), (6, 12, 5, 9), (5, 11, 6), (8, 7, 6, 10), (4, 11, 8),
(4, 10, 9)

J7 → 45, 54, 9∗ (5, 8, 6, 13, 11, 9, 12, 10, 7), (0, 5, 1, 7, 4), (0, 6, 3, 9, 7), (1, 6, 2, 7, 8),
(3, 8, 2, 9, 4), (3, 10, 6, 7), (8, 11, 4, 10), (5, 11, 6, 12), (4, 8, 9, 5),
(5, 10, 9, 6)

J7 → 32, 46, 52, 9∗ (5, 8, 6, 13, 11, 9, 12, 10, 7), (0, 5, 1, 7, 4), (0, 6, 3, 9, 7), (1, 6, 2, 8),
(2, 7, 6, 9), (3, 10, 5, 4), (3, 8, 7), (4, 9, 5, 11), (5, 12, 6), (8, 11, 6, 10),
(4, 10, 9, 8)

J7 → 34, 47, 9∗ (5, 8, 6, 13, 11, 9, 12, 10, 7), (0, 5, 1, 7), (0, 6, 3, 4), (1, 6, 2, 8), (2, 7, 9),
(3, 9, 6, 7), (3, 8, 10), (4, 10, 5), (4, 11, 8, 7), (5, 11, 6, 12), (5, 9, 10, 6),
(4, 9, 8)

J7 → 3, 48, 5, 9∗ (5, 8, 6, 13, 11, 9, 12, 10, 7), (0, 5, 1, 7, 4), (0, 6, 3, 7), (1, 6, 2, 8), (2, 7, 9),
(3, 10, 5, 4), (3, 9, 4, 8), (8, 11, 4, 10), (5, 11, 6, 12), (5, 9, 10, 6),
(6, 7, 8, 9)

J7 → 410, 9∗ (5, 8, 6, 13, 11, 9, 12, 10, 7), (0, 5, 1, 7), (0, 6, 3, 4), (1, 6, 2, 8), (2, 7, 3, 9),
(3, 8, 4, 10), (4, 9, 5, 11), (4, 5, 6, 7), (5, 10, 6, 12), (7, 8, 10, 9),
(6, 11, 8, 9)

J8 → 314, 5, 9∗ (6, 13, 10, 12, 14, 7, 9, 11, 8), (0, 7, 4), (3, 9, 6), (3, 8, 4), (5, 0, 6, 12, 7),
(3, 10, 7), (1, 7, 8), (1, 6, 5), (2, 8, 9), (2, 7, 6), (5, 12, 9), (4, 10, 9),
(5, 10, 8), (4, 11, 5), (6, 11, 10), (11, 7, 13)

J8 → 39, 54, 9∗ (6, 9, 7, 14, 12, 10, 13, 11, 8), (0, 6, 3, 7, 4), (0, 5, 7), (1, 6, 2, 8, 5),
(1, 7, 2, 9, 8), (3, 8, 4), (4, 9, 11), (5, 11, 7, 12, 9), (3, 9, 10), (5, 12, 6),
(4, 10, 5), (6, 13, 7), (6, 11, 10), (8, 7, 10)

J8 → 34, 57, 9∗ (6, 9, 7, 14, 12, 10, 13, 11, 8), (0, 6, 3, 7, 4), (0, 5, 7), (1, 6, 2, 8, 5),
(1, 7, 2, 9, 8), (3, 10, 6, 5, 4), (3, 9, 11, 4, 8), (8, 7, 11, 5, 10), (4, 10, 9),
(5, 12, 9), (7, 12, 6, 11, 10), (6, 13, 7)

J8 → 43, 57, 9∗ (6, 9, 7, 14, 12, 10, 13, 11, 8), (0, 6, 3, 7, 4), (0, 5, 8, 1, 7), (5, 1, 6, 2, 7),
(2, 8, 10, 3, 9), (3, 8, 7, 11, 4), (4, 9, 12, 6, 5), (4, 10, 9, 8), (6, 11, 5, 12, 7),
(7, 13, 6, 10), (9, 5, 10, 11)

J8 → 48, 53, 9∗ (6, 9, 7, 14, 12, 10, 13, 11, 8), (0, 6, 3, 7, 4), (0, 5, 8, 1, 7), (5, 1, 6, 2, 7),
(2, 8, 3, 9), (3, 10, 5, 4), (4, 9, 5, 11), (5, 12, 7, 6), (7, 13, 6, 10),
(9, 12, 6, 11), (8, 7, 11, 10), (4, 10, 9, 8)

J9 → 318, 9∗ (8, 15, 13, 7, 14, 11, 9, 12, 10), (3, 9, 6), (4, 9, 8), (3, 8, 7), (0, 7, 4),
(0, 6, 5), (6, 2, 8), (1, 8, 5), (1, 7, 6), (12, 8, 14), (2, 7, 9), (3, 10, 4),
(5, 10, 9), (6, 13, 10), (8, 13, 11), (4, 11, 5), (6, 12, 11), (5, 12, 7),
(7, 11, 10)

J11 → 3, 513, 9∗ (9, 12, 10, 17, 15, 13, 16, 14, 11), (0, 7, 9, 3, 4), (5, 0, 6, 3, 7), (1, 7, 4, 8, 5),
(1, 6, 8), (4, 9, 2, 6, 5), (2, 8, 10, 6, 7), (3, 8, 11, 4, 10), (5, 12, 6, 13, 9),
(7, 13, 11, 5, 10), (6, 11, 7, 8, 9), (7, 12, 13, 8, 14), (10, 16, 9, 14, 13),
(9, 15, 12, 11, 10), (12, 8, 15, 10, 14)

J12 → 325, 9∗ (11, 18, 16, 14, 12, 15, 17, 10, 13), (5, 1, 7), (0, 6, 7), (0, 5, 4), (1, 6, 8),
(2, 9, 6), (7, 3, 9), (3, 10, 6), (3, 8, 4), (2, 8, 7), (4, 10, 9), (4, 11, 7),
(5, 10, 8), (5, 11, 6), (5, 12, 9), (11, 17, 14), (9, 16, 13), (10, 16, 11),
(6, 12, 13), (7, 12, 10), (8, 12, 11), (8, 13, 15), (7, 13, 14), (10, 15, 14),
(8, 14, 9), (9, 15, 11)

J3 → 32, 5, 10∗ (0, 5, 8, 1, 7, 9, 2, 6, 3, 4), (0, 6, 8, 2, 7), (1, 6, 5), (5, 4, 7)
J3 → 3, 42, 10∗ (0, 5, 1, 7, 9, 2, 8, 6, 3, 4), (1, 6, 5, 8), (0, 6, 2, 7), (5, 4, 7)
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J4 → 36, 10∗ (5, 4, 3, 10, 8, 2, 9, 6, 1, 7), (0, 7, 4), (2, 7, 6), (7, 3, 9), (0, 6, 5), (1, 8, 5),
(3, 8, 6)

J4 → 3, 53, 10∗ (3, 10, 8, 2, 9, 7, 4, 5, 1, 6), (0, 5, 7, 3, 4), (0, 6, 8, 1, 7), (2, 7, 6),
(5, 6, 9, 3, 8)

J4 → 42, 52, 10∗ (3, 10, 8, 2, 9, 7, 4, 5, 1, 6), (0, 5, 7, 3, 4), (0, 6, 2, 7), (5, 6, 9, 3, 8),
(1, 7, 6, 8)

J5 → 55, 10∗ (5, 6, 3, 4, 11, 9, 2, 8, 10, 7), (0, 5, 1, 7, 4), (0, 6, 1, 8, 7), (4, 10, 3, 8, 5),
(2, 7, 3, 9, 6), (6, 7, 9, 4, 8)

J5 → 45, 5, 10∗ (5, 6, 3, 4, 11, 9, 2, 8, 10, 7), (0, 5, 1, 8, 4), (1, 7, 2, 6), (3, 9, 4, 10),
(4, 5, 8, 7), (6, 7, 3, 8), (0, 6, 9, 7)

J6 → 48, 10∗ (5, 12, 10, 8, 11, 9, 6, 3, 4, 7), (0, 5, 1, 7), (0, 6, 5, 4), (1, 6, 2, 8), (2, 7, 3, 9),
(3, 8, 4, 10), (4, 9, 5, 11), (6, 7, 9, 8), (5, 10, 7, 8)

J7 → 313, 10∗ (4, 10, 7, 8, 11, 13, 6, 12, 5, 9), (2, 7, 6), (5, 1, 7), (0, 7, 4), (7, 3, 9),
(0, 6, 5), (1, 6, 8), (2, 8, 9), (3, 8, 4), (4, 11, 5), (6, 11, 9), (10, 9, 12),
(5, 10, 8), (3, 10, 6)

J4 → 34, 5, 11∗ (0, 6, 3, 10, 8, 2, 9, 7, 1, 5, 4), (0, 5, 7), (1, 6, 8), (2, 7, 6), (5, 6, 9, 3, 8),
(3, 7, 4)

J4 → 3, 4, 52, 11∗ (0, 6, 3, 10, 8, 2, 9, 7, 1, 5, 4), (0, 5, 7), (1, 6, 5, 8), (3, 9, 6, 7, 4),
(6, 2, 7, 3, 8)

J4 → 33, 42, 11∗ (0, 6, 3, 10, 8, 2, 9, 7, 1, 5, 4), (0, 5, 7), (1, 6, 5, 8), (6, 9, 3, 8), (2, 7, 6),
(3, 7, 4)

J4 → 43, 5, 11∗ (0, 5, 1, 6, 3, 10, 8, 2, 9, 7, 4), (1, 7, 2, 6, 8), (3, 8, 5, 4), (3, 9, 6, 7),
(0, 6, 5, 7)

J5 → 38, 11∗ (3, 10, 7, 2, 9, 11, 4, 5, 8, 1, 6), (5, 1, 7), (0, 6, 5), (0, 7, 4), (3, 9, 4),
(8, 4, 10), (7, 6, 9), (6, 2, 8), (3, 8, 7)

J5 → 33, 53, 11∗ (5, 1, 6, 3, 4, 11, 9, 2, 8, 10, 7), (0, 7, 1, 8, 4), (0, 6, 9, 4, 5), (4, 10, 3, 8, 7),
(6, 5, 8), (2, 7, 6), (7, 3, 9)

J5 → 4, 54, 11∗ (5, 1, 6, 3, 4, 11, 9, 2, 8, 10, 7), (0, 7, 1, 8, 4), (0, 6, 9, 4, 5), (4, 10, 3, 9, 7),
(6, 2, 7, 3, 8), (5, 6, 7, 8)

J5 → 46, 11∗ (5, 1, 6, 3, 4, 11, 9, 2, 8, 10, 7), (0, 5, 4, 7), (0, 6, 8, 4), (1, 7, 3, 8),
(2, 7, 9, 6), (3, 9, 4, 10), (5, 6, 7, 8)

J6 → 32, 55, 11∗ (5, 12, 10, 8, 11, 9, 2, 6, 3, 4, 7), (0, 5, 1, 8, 4), (0, 6, 8, 9, 7), (1, 7, 6),
(5, 11, 4, 9, 6), (4, 10, 5), (5, 9, 3, 7, 8), (2, 8, 3, 10, 7)

J7 → 3, 57, 11∗ (5, 8, 10, 12, 9, 11, 13, 6, 3, 4, 7), (0, 5, 1, 8, 4), (0, 6, 8, 9, 7), (1, 7, 2, 9, 6),
(2, 8, 3, 7, 6), (4, 9, 3, 10, 5), (4, 10, 9, 5, 11), (5, 12, 6), (7, 8, 11, 6, 10)

J8 → 315, 11∗ (5, 4, 11, 8, 9, 10, 13, 6, 12, 14, 7), (1, 8, 5), (9, 5, 11), (3, 9, 4), (2, 9, 6),
(2, 8, 7), (8, 4, 10), (0, 7, 4), (3, 8, 6), (0, 6, 5), (7, 12, 9), (5, 10, 12),
(1, 7, 6), (11, 7, 13), (3, 10, 7), (6, 11, 10)

J8 → 59, 11∗ (5, 4, 8, 6, 9, 11, 13, 10, 12, 14, 7), (0, 5, 8, 1, 7), (0, 6, 3, 7, 4),
(1, 6, 2, 9, 5), (7, 2, 8, 10, 9), (3, 9, 8, 7, 10), (3, 8, 11, 10, 4),
(4, 9, 12, 6, 11), (5, 11, 7, 13, 6), (6, 10, 5, 12, 7)

J5 → 36, 5, 12∗ (0, 7, 5, 1, 8, 10, 3, 6, 2, 9, 11, 4), (0, 6, 9, 4, 5), (4, 10, 7), (3, 8, 4), (6, 5, 8),
(1, 7, 6), (2, 8, 7), (7, 3, 9)

J5 → 3, 54, 12∗ (0, 7, 5, 1, 8, 10, 3, 6, 2, 9, 11, 4), (0, 6, 8, 4, 5), (1, 7, 4, 9, 6), (2, 8, 5, 6, 7),
(3, 8, 7, 10, 4), (7, 3, 9)

J5 → 33, 4, 52, 12∗ (0, 7, 5, 1, 8, 10, 3, 6, 2, 9, 11, 4), (0, 6, 8, 4, 5), (1, 7, 9, 6), (3, 9, 4),
(2, 8, 5, 6, 7), (3, 8, 7), (4, 10, 7)
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J5 → 35, 42, 12∗ (0, 7, 5, 1, 8, 10, 3, 6, 2, 9, 11, 4), (0, 6, 8, 5), (1, 7, 6), (3, 8, 4), (2, 8, 7),
(4, 9, 6, 5), (4, 10, 7), (7, 3, 9)

J5 → 42, 53, 12∗ (0, 7, 5, 1, 8, 10, 3, 6, 2, 9, 11, 4), (0, 6, 8, 4, 5), (1, 7, 4, 9, 6), (2, 8, 5, 6, 7),
(7, 8, 3, 9), (3, 7, 10, 4)

J5 → 32, 43, 5, 12∗ (0, 7, 5, 1, 8, 10, 3, 6, 2, 9, 11, 4), (0, 6, 8, 4, 5), (1, 7, 9, 6), (2, 8, 3, 7),
(3, 9, 4), (4, 10, 7), (5, 6, 7, 8)

J5 → 3, 45, 12∗ (0, 7, 5, 1, 8, 10, 3, 6, 2, 9, 11, 4), (0, 6, 8, 5), (1, 7, 9, 6), (2, 8, 3, 7),
(3, 9, 4), (4, 5, 6, 7), (4, 10, 7, 8)

J6 → 310, 12∗ (5, 12, 10, 3, 6, 2, 9, 4, 11, 8, 1, 7), (0, 5, 4), (1, 6, 5), (9, 5, 11), (0, 6, 7),
(2, 8, 7), (5, 10, 8), (4, 10, 7), (3, 8, 4), (6, 9, 8), (7, 3, 9)

J6 → 35, 53, 12∗ (5, 12, 10, 3, 4, 11, 9, 2, 6, 8, 1, 7), (0, 5, 1, 6, 7), (0, 6, 3, 7, 4),
(7, 2, 8, 3, 9), (5, 11, 8), (5, 9, 6), (4, 9, 8), (4, 10, 5), (8, 7, 10)

J6 → 56, 12∗ (5, 12, 10, 3, 4, 11, 9, 2, 6, 8, 1, 7), (0, 5, 1, 6, 7), (0, 6, 3, 7, 4),
(7, 2, 8, 5, 9), (8, 3, 9, 4, 10), (4, 8, 9, 6, 5), (7, 8, 11, 5, 10)

J6 → 45, 52, 12∗ (5, 12, 10, 3, 4, 11, 9, 2, 6, 8, 1, 7), (0, 5, 1, 6, 7), (0, 6, 3, 7, 4), (2, 8, 10, 7),
(5, 10, 4, 8), (7, 8, 3, 9), (4, 9, 6, 5), (5, 11, 8, 9)

J7 → 48, 5, 12∗ (5, 12, 10, 8, 2, 9, 11, 13, 6, 3, 4, 7), (0, 5, 1, 8, 4), (0, 6, 1, 7), (3, 9, 4, 10),
(4, 11, 8, 5), (6, 11, 5, 9), (6, 2, 7, 8), (5, 10, 7, 6), (6, 12, 9, 10), (7, 3, 8, 9)

J8 → 411, 12∗ (5, 4, 3, 6, 8, 10, 13, 11, 9, 12, 14, 7), (0, 6, 1, 7), (0, 5, 8, 4), (1, 8, 11, 5),
(2, 8, 3, 9), (2, 7, 9, 6), (3, 10, 6, 7), (5, 12, 10, 9), (6, 12, 7, 13),
(5, 10, 11, 6), (4, 10, 7, 11), (4, 9, 8, 7)

J9 → 317, 12∗ (6, 12, 10, 9, 4, 5, 11, 14, 7, 13, 15, 8), (0, 7, 4), (0, 6, 5), (8, 13, 10),
(6, 11, 13), (3, 10, 6), (1, 7, 6), (2, 9, 6), (7, 3, 9), (3, 8, 4), (1, 8, 5),
(2, 8, 7), (12, 8, 14), (5, 12, 9), (7, 12, 11), (9, 8, 11), (4, 10, 11), (5, 10, 7)

J6 → 38, 5, 13∗ (0, 7, 5, 12, 10, 3, 6, 1, 8, 2, 9, 11, 4), (1, 7, 4, 9, 5), (0, 6, 5), (6, 9, 8),
(2, 7, 6), (7, 3, 9), (3, 8, 4), (4, 10, 5), (5, 11, 8), (8, 7, 10)

J6 → 33, 54, 13∗ (0, 7, 5, 12, 10, 3, 8, 1, 6, 2, 9, 11, 4), (0, 6, 7, 1, 5), (3, 4, 7, 8, 6),
(2, 8, 5, 10, 7), (7, 3, 9), (4, 10, 8, 11, 5), (4, 9, 8), (5, 9, 6)

J6 → 35, 4, 52, 13∗ (0, 7, 5, 12, 10, 3, 8, 1, 6, 2, 9, 11, 4), (0, 6, 7, 1, 5), (3, 4, 7, 8, 6),
(2, 8, 10, 7), (4, 10, 5), (5, 11, 8), (4, 9, 8), (5, 9, 6), (7, 3, 9)

J6 → 4, 55, 13∗ (0, 7, 5, 12, 10, 3, 8, 1, 6, 2, 9, 11, 4), (0, 6, 7, 1, 5), (3, 4, 7, 8, 6),
(7, 2, 8, 5, 9), (3, 9, 4, 10, 7), (4, 8, 9, 6, 5), (8, 11, 5, 10)

J6 → 37, 42, 13∗ (0, 7, 5, 12, 10, 3, 8, 1, 6, 2, 9, 11, 4), (0, 6, 5), (3, 4, 7, 6), (2, 8, 7), (7, 3, 9),
(1, 7, 10, 5), (8, 4, 10), (5, 11, 8), (4, 9, 5), (6, 9, 8)

J6 → 32, 42, 53, 13∗ (0, 7, 5, 12, 10, 3, 8, 1, 6, 2, 9, 11, 4), (0, 6, 7, 1, 5), (3, 4, 7, 8, 6),
(2, 8, 5, 10, 7), (7, 3, 9), (4, 9, 6, 5), (5, 11, 8, 9), (8, 4, 10)

J6 → 34, 43, 5, 13∗ (0, 7, 5, 12, 10, 3, 8, 1, 6, 2, 9, 11, 4), (0, 6, 7, 1, 5), (3, 9, 7, 4), (2, 8, 10, 7),
(3, 7, 8, 6), (4, 10, 5), (5, 11, 8), (4, 9, 8), (5, 9, 6)

J6 → 3, 44, 52, 13∗ (0, 7, 5, 12, 10, 3, 8, 1, 6, 2, 9, 11, 4), (0, 6, 7, 1, 5), (3, 4, 7, 8, 6),
(2, 8, 10, 7), (5, 10, 4, 8), (4, 9, 6, 5), (5, 11, 8, 9), (7, 3, 9)

J6 → 33, 45, 13∗ (0, 7, 5, 12, 10, 3, 8, 1, 6, 2, 9, 11, 4), (0, 6, 8, 5), (1, 7, 4, 5), (2, 8, 7),
(3, 7, 10, 4), (8, 11, 5, 10), (4, 9, 8), (5, 9, 6), (3, 9, 7, 6)

J6 → 46, 5, 13∗ (0, 7, 5, 12, 10, 3, 8, 1, 6, 2, 9, 11, 4), (0, 6, 7, 1, 5), (3, 9, 7, 4), (2, 8, 10, 7),
(3, 7, 8, 6), (5, 10, 4, 8), (4, 9, 6, 5), (5, 11, 8, 9)

J7 → 312, 13∗ (3, 4, 10, 9, 12, 5, 1, 7, 2, 8, 11, 13, 6), (0, 5, 4), (10, 6, 12), (3, 10, 7),
(5, 10, 8), (0, 6, 7), (1, 6, 8), (2, 9, 6), (4, 9, 11), (5, 11, 6), (5, 9, 7),
(3, 9, 8), (4, 8, 7)
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J7 → 37, 53, 13∗ (3, 4, 7, 1, 5, 12, 10, 8, 2, 9, 11, 13, 6), (0, 7, 9, 5, 4), (5, 0, 6, 8, 7),
(1, 6, 10, 5, 8), (3, 10, 7), (2, 7, 6), (4, 10, 9), (5, 11, 6), (4, 11, 8),
(6, 12, 9), (3, 9, 8)

J7 → 32, 56, 13∗ (3, 4, 7, 1, 5, 12, 10, 8, 2, 9, 11, 13, 6), (0, 7, 9, 5, 4), (5, 0, 6, 8, 7),
(1, 6, 5, 11, 8), (2, 7, 3, 10, 6), (6, 11, 4, 10, 7), (5, 10, 9, 3, 8), (6, 12, 9),
(4, 9, 8)

J7 → 44, 54, 13∗ (3, 4, 7, 1, 5, 12, 10, 8, 2, 9, 11, 13, 6), (0, 7, 9, 5, 4), (5, 0, 6, 8, 7),
(1, 6, 5, 11, 8), (2, 7, 10, 6), (4, 9, 12, 6, 11), (3, 9, 6, 7), (4, 10, 9, 8),
(5, 10, 3, 8)

J7 → 49, 13∗ (3, 4, 7, 1, 5, 12, 10, 8, 2, 9, 11, 13, 6), (0, 7, 5, 4), (0, 6, 8, 5), (1, 6, 9, 8),
(2, 7, 10, 6), (7, 3, 10, 9), (4, 10, 5, 11), (5, 9, 12, 6), (3, 9, 4, 8),
(6, 11, 8, 7)

J8 → 3, 58, 13∗ (5, 4, 3, 6, 8, 2, 9, 11, 13, 10, 12, 14, 7), (0, 6, 1, 7, 4), (0, 5, 1, 8, 7),
(2, 7, 9, 5, 6), (3, 9, 6, 10, 7), (3, 8, 9, 4, 10), (6, 13, 7), (5, 12, 6, 11, 8),
(9, 10, 11, 7, 12), (8, 4, 11, 5, 10)

J9 → 510, 13∗ (5, 9, 11, 14, 12, 10, 13, 15, 8, 6, 3, 4, 7), (0, 6, 1, 5, 4), (0, 5, 8, 1, 7),
(2, 9, 12, 5, 6), (7, 2, 8, 10, 9), (3, 10, 4, 8, 7), (3, 9, 6, 11, 8),
(4, 9, 8, 13, 11), (7, 12, 11, 5, 10), (6, 13, 7, 11, 10), (6, 12, 8, 14, 7)

J10 → 319, 13∗ (5, 4, 11, 6, 10, 12, 15, 13, 8, 14, 16, 9, 7), (0, 7, 4), (0, 6, 5), (1, 8, 5),
(3, 8, 6), (3, 10, 7), (3, 9, 4), (1, 7, 6), (8, 15, 9), (8, 4, 10), (2, 9, 6),
(2, 8, 7), (9, 13, 10), (5, 11, 10), (6, 12, 13), (5, 12, 9), (11, 7, 13),
(9, 14, 11), (7, 12, 14), (8, 12, 11)

J7 → 310, 5, 14∗ (0, 6, 13, 11, 9, 2, 8, 10, 12, 5, 1, 7, 3, 4), (0, 5, 7), (1, 6, 8), (3, 8, 7, 2, 6),
(4, 9, 7), (5, 11, 6), (4, 11, 8), (4, 10, 5), (6, 12, 9), (3, 9, 10), (5, 9, 8),
(6, 10, 7)

J7 → 35, 54, 14∗ (0, 6, 13, 11, 9, 2, 8, 10, 12, 5, 1, 7, 3, 4), (0, 5, 7), (1, 6, 8), (3, 10, 7, 2, 6),
(4, 10, 5, 9, 7), (4, 9, 3, 8, 5), (4, 11, 8), (5, 11, 6), (6, 12, 9, 8, 7), (6, 10, 9)

J7 → 57, 14∗ (0, 6, 13, 11, 9, 2, 8, 10, 12, 5, 1, 7, 3, 4), (0, 5, 8, 4, 7), (1, 6, 9, 3, 8),
(3, 10, 4, 5, 6), (5, 11, 4, 9, 7), (2, 7, 8, 11, 6), (6, 10, 5, 9, 8),
(6, 12, 9, 10, 7)

J7 → 37, 4, 52, 14∗ (0, 6, 13, 11, 9, 2, 8, 10, 12, 5, 1, 7, 3, 4), (0, 5, 7), (1, 6, 8), (3, 10, 7, 2, 6),
(4, 10, 5, 8, 7), (3, 9, 8), (4, 9, 5), (7, 6, 12, 9), (6, 10, 9), (4, 11, 8),
(5, 11, 6)

J7 → 32, 4, 55, 14∗ (0, 6, 13, 11, 9, 2, 8, 10, 12, 5, 1, 7, 3, 4), (0, 5, 7), (1, 6, 8), (3, 10, 7, 2, 6),
(4, 10, 5, 9, 7), (5, 6, 9, 3, 8), (6, 11, 4, 8, 7), (4, 9, 8, 11, 5), (6, 12, 9, 10)

J7 → 39, 42, 14∗ (0, 6, 13, 11, 9, 2, 8, 10, 12, 5, 1, 7, 3, 4), (0, 5, 7), (1, 6, 8), (3, 10, 5, 6),
(2, 7, 6), (5, 11, 8), (4, 10, 6, 11), (6, 12, 9), (4, 8, 7), (3, 9, 8), (7, 10, 9),
(4, 9, 5)

J7 → 34, 42, 53, 14∗ (0, 6, 13, 11, 9, 2, 8, 10, 12, 5, 1, 7, 3, 4), (0, 5, 7), (1, 6, 8), (3, 10, 7, 2, 6),
(4, 10, 5, 9, 7), (5, 6, 9, 3, 8), (4, 11, 5), (4, 9, 8), (6, 11, 8, 7), (6, 12, 9, 10)

J7 → 36, 43, 5, 14∗ (0, 6, 13, 11, 9, 2, 8, 10, 12, 5, 1, 7, 3, 4), (0, 5, 7), (1, 6, 8), (3, 10, 7, 2, 6),
(5, 10, 4, 8), (3, 9, 8), (4, 9, 7), (6, 12, 9, 10), (5, 9, 6), (4, 11, 5),
(6, 11, 8, 7)

J7 → 3, 43, 54, 14∗ (0, 6, 13, 11, 9, 2, 8, 10, 12, 5, 1, 7, 3, 4), (0, 5, 7), (1, 6, 9, 5, 8),
(3, 10, 4, 8, 6), (4, 5, 6, 2, 7), (3, 9, 10, 7, 8), (4, 9, 8, 11), (5, 11, 6, 10),
(7, 6, 12, 9)

J7 → 33, 44, 52, 14∗ (0, 6, 13, 11, 9, 2, 8, 10, 12, 5, 1, 7, 3, 4), (0, 5, 7), (1, 6, 8), (3, 10, 7, 2, 6),
(4, 10, 5, 9, 7), (3, 9, 4, 8), (4, 11, 5), (5, 6, 7, 8), (6, 11, 8, 9), (6, 12, 9, 10)
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J7 → 35, 45, 14∗ (0, 6, 13, 11, 9, 2, 8, 10, 12, 5, 1, 7, 3, 4), (0, 5, 7), (1, 6, 8), (3, 10, 5, 6),
(2, 7, 9, 6), (3, 9, 4, 8), (4, 11, 5), (4, 10, 7), (6, 12, 9, 10), (5, 9, 8),
(6, 11, 8, 7)

J7 → 45, 53, 14∗ (0, 6, 13, 11, 9, 2, 8, 10, 12, 5, 1, 7, 3, 4), (0, 5, 8, 4, 7), (1, 6, 9, 3, 8),
(3, 10, 4, 5, 6), (4, 9, 5, 11), (5, 10, 9, 7), (2, 7, 10, 6), (6, 12, 9, 8),
(6, 11, 8, 7)

J7 → 32, 46, 5, 14∗ (0, 6, 13, 11, 9, 2, 8, 10, 12, 5, 1, 7, 3, 4), (0, 5, 7), (1, 6, 8), (3, 10, 7, 2, 6),
(5, 10, 4, 8), (7, 8, 3, 9), (4, 9, 5, 11), (4, 5, 6, 7), (6, 11, 8, 9), (6, 12, 9, 10)

J7 → 3, 48, 14∗ (0, 6, 13, 11, 9, 2, 8, 10, 12, 5, 1, 7, 3, 4), (0, 5, 7), (1, 6, 5, 8), (3, 8, 4, 10),
(3, 9, 8, 6), (2, 7, 9, 6), (4, 9, 5, 11), (4, 5, 10, 7), (6, 11, 8, 7), (6, 12, 9, 10)

J8 → 314, 14∗ (1, 7, 14, 12, 10, 13, 6, 2, 8, 3, 9, 11, 4, 5), (0, 7, 4), (0, 6, 5), (3, 7, 6),
(3, 10, 4), (6, 12, 9), (1, 6, 8), (5, 12, 7), (2, 7, 9), (11, 7, 13), (5, 11, 8),
(4, 9, 8), (8, 7, 10), (5, 10, 9), (6, 11, 10)

J8 → 39, 53, 14∗ (5, 1, 8, 6, 2, 9, 3, 4, 11, 13, 10, 12, 14, 7), (0, 5, 6, 1, 7), (0, 6, 3, 7, 4),
(2, 8, 5, 12, 7), (6, 13, 7), (6, 12, 9), (7, 11, 8), (4, 9, 8), (3, 8, 10),
(9, 5, 11), (4, 10, 5), (6, 11, 10), (7, 10, 9)

J8 → 34, 56, 14∗ (5, 1, 8, 6, 2, 9, 3, 4, 11, 13, 10, 12, 14, 7), (0, 5, 6, 1, 7), (0, 6, 3, 7, 4),
(7, 2, 8, 5, 9), (3, 8, 10), (4, 10, 7, 12, 5), (4, 9, 11, 7, 8), (6, 13, 7),
(8, 9, 10, 6, 11), (5, 11, 10), (6, 12, 9)

J8 → 43, 56, 14∗ (5, 1, 8, 6, 2, 9, 3, 4, 11, 13, 10, 12, 14, 7), (0, 5, 6, 1, 7), (0, 6, 3, 7, 4),
(7, 2, 8, 5, 9), (3, 8, 9, 4, 10), (4, 8, 7, 12, 5), (6, 13, 7, 11, 9), (8, 11, 5, 10),
(6, 12, 9, 10), (6, 11, 10, 7)

J8 → 48, 52, 14∗ (5, 1, 8, 6, 2, 9, 3, 4, 11, 13, 10, 12, 14, 7), (0, 5, 6, 1, 7), (0, 6, 3, 7, 4),
(2, 8, 10, 7), (3, 8, 4, 10), (4, 9, 8, 5), (5, 10, 6, 12), (6, 11, 7, 13),
(6, 7, 12, 9), (7, 8, 11, 9), (5, 11, 10, 9)

J9 → 411, 5, 14∗ (3, 4, 7, 2, 9, 11, 14, 12, 5, 10, 13, 15, 8, 6), (0, 6, 1, 5, 4), (0, 5, 9, 7),
(5, 8, 1, 7), (2, 8, 9, 6), (3, 9, 4, 10), (3, 8, 10, 7), (4, 11, 7, 8),
(5, 11, 13, 6), (7, 13, 8, 14), (6, 11, 12, 7), (10, 11, 8, 12), (6, 12, 9, 10)

J10 → 414, 14∗ (5, 4, 3, 6, 8, 10, 12, 15, 13, 11, 14, 16, 9, 7), (0, 6, 1, 7), (0, 5, 8, 4),
(1, 8, 11, 5), (2, 7, 3, 9), (2, 8, 7, 6), (3, 8, 9, 10), (4, 10, 7, 11),
(4, 9, 14, 7), (9, 5, 12, 11), (5, 10, 11, 6), (6, 10, 13, 9), (6, 12, 7, 13),
(9, 15, 8, 12), (12, 13, 8, 14)

J11 → 321, 14∗ (5, 4, 11, 14, 16, 9, 15, 17, 10, 8, 6, 13, 12, 7), (0, 7, 4), (0, 6, 5), (2, 9, 6),
(1, 7, 6), (1, 8, 5), (3, 10, 6), (3, 8, 4), (7, 3, 9), (2, 8, 7), (4, 10, 9),
(5, 11, 10), (5, 12, 9), (7, 14, 10), (6, 12, 11), (11, 7, 13), (12, 8, 14),
(9, 8, 11), (9, 14, 13), (10, 16, 13), (10, 15, 12), (8, 13, 15)

J11 → 3, 512, 14∗ (5, 6, 8, 10, 17, 15, 13, 16, 14, 12, 9, 11, 4, 7), (0, 5, 1, 8, 4), (0, 6, 3, 9, 7),
(1, 7, 2, 9, 6), (2, 8, 5, 10, 6), (3, 8, 9, 4, 10), (3, 7, 11, 5, 4),
(5, 12, 10, 13, 9), (7, 12, 6, 13, 8), (6, 11, 14, 10, 7), (8, 14, 7, 13, 11),
(10, 15, 8, 12, 11), (9, 16, 10), (9, 15, 12, 13, 14)

J8 → 312, 5, 15∗ (0, 7, 14, 12, 10, 13, 11, 9, 2, 8, 5, 1, 6, 3, 4), (5, 0, 6, 2, 7), (8, 4, 10),
(6, 13, 7), (4, 11, 7), (4, 9, 5), (1, 7, 8), (3, 10, 7), (6, 10, 9), (3, 9, 8),
(5, 11, 10), (5, 12, 6), (7, 12, 9), (6, 11, 8)

J8 → 37, 54, 15∗ (0, 7, 14, 12, 10, 13, 11, 9, 2, 8, 5, 1, 6, 3, 4), (5, 0, 6, 8, 7), (1, 7, 4, 10, 8),
(2, 7, 11, 5, 6), (3, 9, 8), (4, 9, 7, 12, 5), (6, 13, 7), (3, 10, 7), (4, 11, 8),
(6, 12, 9), (5, 10, 9), (6, 11, 10)

Table A.15: Table of decompositions of J
{1,2,3,4,5,6,7}
n
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J8 → 32, 57, 15∗ (0, 7, 14, 12, 10, 13, 11, 9, 2, 8, 5, 1, 6, 3, 4), (5, 0, 6, 8, 7), (1, 7, 4, 10, 8),
(2, 7, 9, 5, 6), (3, 8, 4, 11, 7), (4, 9, 3, 10, 5), (5, 11, 8, 9, 12),
(7, 12, 6, 11, 10), (6, 13, 7), (6, 10, 9)

J8 → 39, 4, 52, 15∗ (0, 7, 14, 12, 10, 13, 11, 9, 2, 8, 5, 1, 6, 3, 4), (5, 0, 6, 8, 7), (1, 7, 4, 10, 8),
(2, 7, 6), (3, 9, 8), (6, 11, 7, 13), (4, 11, 8), (4, 9, 5), (5, 11, 10), (3, 10, 7),
(7, 12, 9), (5, 12, 6), (6, 10, 9)

J8 → 34, 4, 55, 15∗ (0, 7, 14, 12, 10, 13, 11, 9, 2, 8, 5, 1, 6, 3, 4), (5, 0, 6, 8, 7), (1, 7, 4, 10, 8),
(2, 7, 9, 5, 6), (3, 8, 4, 11, 7), (3, 9, 10), (4, 9, 8, 11, 5), (6, 13, 7),
(7, 12, 5, 10), (6, 11, 10), (6, 12, 9)

J8 → 311, 42, 15∗ (0, 7, 14, 12, 10, 13, 11, 9, 2, 8, 5, 1, 6, 3, 4), (0, 6, 5), (1, 7, 6, 8),
(2, 7, 13, 6), (6, 12, 9), (5, 10, 9), (3, 8, 10), (4, 11, 5), (6, 11, 10),
(4, 10, 7), (5, 12, 7), (7, 3, 9), (4, 9, 8), (7, 11, 8)

J8 → 36, 42, 53, 15∗ (0, 7, 14, 12, 10, 13, 11, 9, 2, 8, 5, 1, 6, 3, 4), (5, 0, 6, 8, 7), (1, 7, 4, 10, 8),
(2, 7, 9, 5, 6), (3, 8, 11, 7), (4, 11, 5), (6, 13, 7), (6, 11, 10), (7, 12, 5, 10),
(3, 9, 10), (4, 9, 8), (6, 12, 9)

J8 → 3, 42, 56, 15∗ (0, 7, 14, 12, 10, 13, 11, 9, 2, 8, 5, 1, 6, 3, 4), (5, 0, 6, 8, 7), (1, 7, 4, 10, 8),
(2, 7, 9, 5, 6), (3, 8, 4, 11, 7), (3, 9, 6, 7, 10), (4, 9, 8, 11, 5), (5, 10, 9, 12),
(6, 12, 7, 13), (6, 11, 10)

J8 → 38, 43, 5, 15∗ (0, 7, 14, 12, 10, 13, 11, 9, 2, 8, 5, 1, 6, 3, 4), (5, 0, 6, 8, 7), (1, 7, 4, 8),
(2, 7, 9, 6), (3, 9, 8), (3, 10, 7), (6, 11, 7, 13), (5, 10, 6), (6, 12, 7),
(8, 11, 10), (4, 11, 5), (4, 10, 9), (5, 12, 9)

J8 → 33, 43, 54, 15∗ (0, 7, 14, 12, 10, 13, 11, 9, 2, 8, 5, 1, 6, 3, 4), (5, 0, 6, 8, 7), (1, 7, 4, 10, 8),
(2, 7, 9, 5, 6), (3, 8, 4, 11, 7), (3, 9, 10), (4, 9, 12, 5), (6, 12, 7, 13),
(6, 10, 7), (5, 11, 10), (6, 11, 8, 9)

J8 → 35, 44, 52, 15∗ (0, 7, 14, 12, 10, 13, 11, 9, 2, 8, 5, 1, 6, 3, 4), (5, 0, 6, 8, 7), (1, 7, 4, 10, 8),
(2, 7, 9, 6), (3, 9, 4, 8), (3, 10, 7), (4, 11, 5), (5, 12, 9), (6, 11, 7, 13),
(5, 10, 6), (6, 12, 7), (8, 9, 10, 11)

J8 → 44, 55, 15∗ (0, 7, 14, 12, 10, 13, 11, 9, 2, 8, 5, 1, 6, 3, 4), (5, 0, 6, 8, 7), (1, 7, 4, 10, 8),
(2, 7, 9, 5, 6), (3, 8, 4, 11, 7), (3, 9, 6, 7, 10), (4, 9, 12, 5), (5, 11, 6, 10),
(6, 12, 7, 13), (8, 9, 10, 11)

J8 → 37, 45, 15∗ (0, 7, 14, 12, 10, 13, 11, 9, 2, 8, 5, 1, 6, 3, 4), (0, 6, 5), (1, 7, 6, 8),
(2, 7, 9, 6), (4, 9, 3, 7), (3, 8, 10), (4, 11, 5), (6, 12, 7, 13), (5, 12, 9),
(5, 10, 7), (4, 10, 9, 8), (6, 11, 10), (7, 11, 8)

J8 → 32, 45, 53, 15∗ (0, 7, 14, 12, 10, 13, 11, 9, 2, 8, 5, 1, 6, 3, 4), (5, 0, 6, 8, 7), (1, 7, 4, 10, 8),
(2, 7, 9, 5, 6), (3, 9, 4, 8), (3, 10, 6, 7), (4, 11, 5), (5, 10, 9, 12),
(6, 12, 7, 13), (6, 11, 8, 9), (7, 11, 10)

J8 → 34, 46, 5, 15∗ (0, 7, 14, 12, 10, 13, 11, 9, 2, 8, 5, 1, 6, 3, 4), (5, 0, 6, 8, 7), (1, 7, 4, 8),
(2, 7, 9, 6), (3, 9, 4, 10), (3, 8, 10, 7), (4, 11, 5), (5, 12, 9), (6, 12, 7, 11),
(6, 13, 7), (5, 10, 6), (8, 9, 10, 11)

J8 → 3, 47, 52, 15∗ (0, 7, 14, 12, 10, 13, 11, 9, 2, 8, 5, 1, 6, 3, 4), (5, 0, 6, 8, 7), (1, 7, 4, 10, 8),
(2, 7, 9, 6), (3, 9, 4, 8), (3, 10, 6, 7), (4, 11, 5), (7, 12, 5, 10), (5, 9, 12, 6),
(6, 11, 7, 13), (8, 9, 10, 11)

J8 → 33, 48, 15∗ (0, 7, 14, 12, 10, 13, 11, 9, 2, 8, 5, 1, 6, 3, 4), (0, 6, 5), (1, 7, 6, 8),
(2, 7, 9, 6), (4, 9, 3, 7), (3, 8, 10), (4, 10, 5, 11), (5, 4, 8, 7), (5, 12, 9),
(7, 12, 6, 10), (6, 11, 7, 13), (8, 9, 10, 11)

J8 → 49, 5, 15∗ (0, 7, 14, 12, 10, 13, 11, 9, 2, 8, 5, 1, 6, 3, 4), (5, 0, 6, 8, 7), (1, 7, 4, 8),
(2, 7, 9, 6), (3, 9, 4, 10), (3, 8, 10, 7), (4, 11, 6, 5), (5, 10, 9, 12),
(6, 12, 7, 13), (6, 10, 11, 7), (5, 11, 8, 9)

Table A.15: Table of decompositions of J
{1,2,3,4,5,6,7}
n
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J9 → 316, 15∗ (5, 1, 8, 15, 13, 6, 3, 4, 10, 12, 14, 11, 9, 2, 7), (0, 7, 4), (0, 6, 5), (1, 7, 6),
(7, 14, 8), (11, 7, 13), (6, 2, 8), (3, 9, 8), (3, 10, 7), (8, 13, 10), (5, 12, 8),
(4, 11, 8), (5, 11, 10), (6, 12, 11), (4, 9, 5), (6, 10, 9), (7, 12, 9)

J9 → 311, 53, 15∗ (5, 1, 8, 15, 13, 10, 12, 14, 11, 9, 2, 6, 3, 4, 7), (0, 5, 6, 1, 7), (0, 6, 9, 5, 4),
(7, 14, 8, 3, 9), (5, 10, 8), (3, 10, 7), (6, 11, 10), (4, 10, 9), (6, 12, 7),
(2, 8, 7), (11, 7, 13), (4, 11, 8), (5, 11, 12), (6, 13, 8), (8, 12, 9)

J9 → 36, 56, 15∗ (5, 1, 8, 15, 13, 10, 12, 14, 11, 9, 2, 6, 3, 4, 7), (0, 5, 6, 1, 7), (0, 6, 8, 5, 4),
(7, 2, 8, 10, 9), (3, 10, 4, 11, 7), (4, 9, 5, 12, 8), (3, 9, 8), (7, 12, 11, 5, 10),
(6, 12, 9), (6, 13, 7), (7, 14, 8), (8, 13, 11), (6, 11, 10)

J9 → 3, 59, 15∗ (5, 1, 8, 15, 13, 10, 12, 14, 11, 9, 2, 6, 3, 4, 7), (0, 5, 6, 1, 7), (0, 6, 8, 5, 4),
(7, 2, 8, 10, 9), (3, 10, 4, 8, 7), (3, 9, 6, 11, 8), (4, 9, 5, 10, 11),
(5, 11, 13, 6, 12), (6, 10, 7), (7, 13, 8, 12, 11), (8, 14, 7, 12, 9)

J9 → 42, 58, 15∗ (5, 1, 8, 15, 13, 10, 12, 14, 11, 9, 2, 6, 3, 4, 7), (0, 5, 6, 1, 7), (0, 6, 8, 5, 4),
(7, 2, 8, 10, 9), (3, 10, 4, 8, 7), (3, 9, 6, 11, 8), (4, 9, 5, 10, 11),
(6, 12, 5, 11, 7), (7, 13, 6, 10), (8, 14, 7, 12, 9), (11, 12, 8, 13)

J9 → 47, 54, 15∗ (5, 1, 8, 15, 13, 10, 12, 14, 11, 9, 2, 6, 3, 4, 7), (0, 5, 6, 1, 7), (0, 6, 8, 5, 4),
(7, 2, 8, 10, 9), (3, 10, 4, 8, 7), (3, 9, 12, 8), (4, 9, 5, 11), (5, 10, 6, 12),
(6, 13, 8, 9), (6, 11, 10, 7), (8, 14, 7, 11), (11, 12, 7, 13)

J9 → 412, 15∗ (5, 1, 8, 15, 13, 10, 12, 14, 11, 9, 2, 6, 3, 4, 7), (0, 6, 1, 7), (0, 5, 8, 4),
(3, 10, 8, 7), (4, 9, 5, 11), (4, 10, 6, 5), (5, 10, 9, 12), (6, 9, 3, 8),
(6, 12, 7, 13), (7, 2, 8, 9), (8, 14, 7, 11), (6, 11, 10, 7), (11, 12, 8, 13)

J10 → 511, 15∗ (5, 8, 10, 12, 15, 13, 11, 14, 16, 9, 2, 6, 3, 4, 7), (0, 5, 1, 8, 4), (0, 6, 8, 9, 7),
(1, 7, 3, 9, 6), (2, 8, 3, 10, 7), (4, 10, 5, 9, 11), (4, 9, 12, 6, 5),
(5, 11, 8, 14, 12), (6, 13, 7, 11, 10), (6, 11, 12, 8, 7), (7, 12, 13, 9, 14),
(9, 15, 8, 13, 10)

J12 → 323, 15∗ (5, 8, 10, 6, 13, 12, 15, 17, 14, 9, 16, 18, 11, 4, 7), (0, 5, 4), (6, 2, 8),
(0, 6, 7), (2, 7, 9), (1, 7, 8), (1, 6, 5), (3, 8, 4), (3, 9, 6), (3, 10, 7),
(8, 14, 13), (4, 10, 9), (9, 5, 11), (5, 10, 12), (10, 16, 13), (11, 7, 13),
(13, 9, 15), (8, 12, 9), (10, 15, 14), (8, 15, 11), (10, 17, 11), (6, 12, 11),
(11, 16, 14), (7, 12, 14)

J9 → 314, 5, 16∗ (0, 7, 5, 1, 8, 15, 13, 10, 12, 14, 11, 9, 2, 6, 3, 4), (0, 6, 5), (6, 1, 7, 14, 8),
(3, 9, 8), (8, 4, 10), (2, 8, 7), (3, 10, 7), (6, 13, 7), (4, 11, 7), (8, 13, 11),
(4, 9, 5), (7, 12, 9), (5, 12, 8), (6, 12, 11), (6, 10, 9), (5, 11, 10)

J9 → 39, 54, 16∗ (0, 7, 5, 1, 8, 15, 13, 10, 12, 14, 11, 9, 2, 6, 3, 4), (0, 6, 8, 4, 5), (1, 7, 4, 9, 6),
(2, 8, 5, 10, 7), (7, 14, 8), (3, 8, 13, 6, 10), (5, 11, 6), (6, 12, 7), (7, 3, 9),
(11, 7, 13), (4, 10, 11), (8, 9, 10), (5, 12, 9), (8, 12, 11)

J9 → 34, 57, 16∗ (0, 7, 5, 1, 8, 15, 13, 10, 12, 14, 11, 9, 2, 6, 3, 4), (0, 6, 8, 4, 5), (1, 7, 4, 9, 6),
(7, 2, 8, 5, 9), (3, 8, 10, 6, 7), (5, 11, 7, 12, 6), (4, 10, 5, 12, 11),
(7, 14, 8, 11, 10), (3, 9, 10), (7, 13, 8), (8, 12, 9), (6, 11, 13)

J9 → 311, 4, 52, 16∗ (0, 7, 5, 1, 8, 15, 13, 10, 12, 14, 11, 9, 2, 6, 3, 4), (0, 6, 8, 4, 5), (1, 7, 4, 9, 6),
(2, 8, 7), (6, 11, 13), (7, 13, 8, 14), (7, 3, 9), (5, 12, 6), (4, 10, 11),
(6, 10, 7), (5, 11, 8), (3, 8, 10), (5, 10, 9), (8, 12, 9), (7, 12, 11)

J9 → 36, 4, 55, 16∗ (0, 7, 5, 1, 8, 15, 13, 10, 12, 14, 11, 9, 2, 6, 3, 4), (0, 6, 8, 4, 5), (1, 7, 4, 9, 6),
(7, 2, 8, 5, 9), (3, 8, 12, 6, 7), (5, 11, 6), (4, 10, 11), (3, 9, 12, 5, 10),
(7, 14, 8), (7, 12, 11), (7, 13, 6, 10), (8, 9, 10), (8, 13, 11)

J9 → 3, 4, 58, 16∗ (0, 7, 5, 1, 8, 15, 13, 10, 12, 14, 11, 9, 2, 6, 3, 4), (0, 6, 8, 4, 5), (1, 7, 4, 9, 6),
(7, 2, 8, 5, 9), (5, 10, 3, 7, 6), (3, 9, 8), (4, 10, 7, 8, 11), (5, 11, 13, 6, 12),
(8, 12, 11, 6, 10), (7, 13, 8, 14), (9, 10, 11, 7, 12)

Table A.15: Table of decompositions of J
{1,2,3,4,5,6,7}
n
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J9 → 313, 42, 16∗ (0, 7, 5, 1, 8, 15, 13, 10, 12, 14, 11, 9, 2, 6, 3, 4), (0, 6, 8, 5), (1, 7, 6),
(2, 8, 14, 7), (7, 12, 9), (5, 12, 6), (6, 11, 13), (6, 10, 9), (4, 9, 5), (3, 9, 8),
(3, 10, 7), (4, 11, 7), (7, 13, 8), (8, 4, 10), (5, 11, 10), (8, 12, 11)

J9 → 38, 42, 53, 16∗ (0, 7, 5, 1, 8, 15, 13, 10, 12, 14, 11, 9, 2, 6, 3, 4), (0, 6, 8, 4, 5), (1, 7, 4, 9, 6),
(7, 2, 8, 5, 9), (3, 8, 10, 7), (4, 10, 5, 11), (5, 12, 6), (7, 14, 8), (7, 12, 11),
(8, 13, 11), (6, 13, 7), (6, 11, 10), (8, 12, 9), (3, 9, 10)

J9 → 33, 42, 56, 16∗ (0, 7, 5, 1, 8, 15, 13, 10, 12, 14, 11, 9, 2, 6, 3, 4), (0, 6, 8, 4, 5), (1, 7, 4, 9, 6),
(7, 2, 8, 5, 9), (5, 10, 3, 7, 6), (3, 9, 8), (4, 10, 7, 8, 11), (5, 11, 13, 6, 12),
(6, 11, 10), (7, 13, 8, 14), (7, 12, 11), (8, 12, 9, 10)

J9 → 310, 43, 5, 16∗ (0, 7, 5, 1, 8, 15, 13, 10, 12, 14, 11, 9, 2, 6, 3, 4), (0, 6, 8, 4, 5), (1, 7, 9, 6),
(2, 8, 3, 7), (3, 9, 10), (7, 14, 8), (4, 9, 5, 11), (4, 10, 7), (5, 10, 8),
(5, 12, 6), (6, 13, 7), (8, 12, 9), (6, 11, 10), (7, 12, 11), (8, 13, 11)

J9 → 35, 43, 54, 16∗ (0, 7, 5, 1, 8, 15, 13, 10, 12, 14, 11, 9, 2, 6, 3, 4), (0, 6, 8, 4, 5), (1, 7, 4, 9, 6),
(7, 2, 8, 5, 9), (5, 10, 3, 7, 6), (3, 9, 8), (8, 11, 4, 10), (5, 11, 12),
(7, 13, 8, 14), (7, 11, 10), (7, 12, 8), (6, 12, 9, 10), (6, 11, 13)

J9 → 43, 57, 16∗ (0, 7, 5, 1, 8, 15, 13, 10, 12, 14, 11, 9, 2, 6, 3, 4), (0, 6, 8, 4, 5), (1, 7, 4, 9, 6),
(7, 2, 8, 5, 9), (5, 10, 3, 7, 6), (3, 9, 12, 7, 8), (4, 10, 9, 8, 11),
(5, 11, 13, 6, 12), (7, 11, 6, 10), (7, 13, 8, 14), (8, 12, 11, 10)

J9 → 37, 44, 52, 16∗ (0, 7, 5, 1, 8, 15, 13, 10, 12, 14, 11, 9, 2, 6, 3, 4), (0, 6, 8, 4, 5), (1, 7, 4, 9, 6),
(2, 8, 10, 7), (5, 10, 3, 8), (4, 10, 6, 11), (5, 12, 6), (5, 11, 10, 9), (7, 3, 9),
(7, 14, 8), (6, 13, 7), (8, 12, 9), (7, 12, 11), (8, 13, 11)

J9 → 32, 44, 55, 16∗ (0, 7, 5, 1, 8, 15, 13, 10, 12, 14, 11, 9, 2, 6, 3, 4), (0, 6, 8, 4, 5), (1, 7, 4, 9, 6),
(7, 2, 8, 5, 9), (5, 10, 3, 7, 6), (3, 9, 8), (4, 10, 7, 8, 11), (5, 11, 6, 12),
(6, 13, 11, 10), (7, 13, 8, 14), (7, 12, 11), (8, 12, 9, 10)

J9 → 39, 45, 16∗ (0, 7, 5, 1, 8, 15, 13, 10, 12, 14, 11, 9, 2, 6, 3, 4), (0, 6, 8, 5), (1, 7, 9, 6),
(2, 8, 10, 7), (4, 10, 3, 7), (3, 9, 4, 8), (4, 11, 5), (5, 12, 6), (5, 10, 9),
(6, 13, 7), (6, 11, 10), (7, 14, 8), (8, 12, 9), (7, 12, 11), (8, 13, 11)

J9 → 34, 45, 53, 16∗ (0, 7, 5, 1, 8, 15, 13, 10, 12, 14, 11, 9, 2, 6, 3, 4), (0, 6, 8, 4, 5), (1, 7, 4, 9, 6),
(7, 2, 8, 5, 9), (3, 10, 6, 7), (3, 9, 8), (4, 10, 5, 11), (5, 12, 6), (6, 11, 13),
(8, 13, 7, 10), (8, 14, 7, 11), (7, 12, 8), (9, 10, 11, 12)

J9 → 36, 46, 5, 16∗ (0, 7, 5, 1, 8, 15, 13, 10, 12, 14, 11, 9, 2, 6, 3, 4), (0, 6, 8, 4, 5), (1, 7, 9, 6),
(2, 8, 10, 7), (4, 10, 3, 7), (5, 9, 3, 8), (4, 9, 10, 11), (5, 11, 6, 10),
(5, 12, 6), (7, 14, 8), (6, 13, 7), (8, 12, 9), (7, 12, 11), (8, 13, 11)

J9 → 3, 46, 54, 16∗ (0, 7, 5, 1, 8, 15, 13, 10, 12, 14, 11, 9, 2, 6, 3, 4), (0, 6, 8, 4, 5), (1, 7, 4, 9, 6),
(7, 2, 8, 5, 9), (5, 10, 3, 7, 6), (3, 9, 8), (8, 11, 4, 10), (5, 11, 6, 12),
(6, 13, 11, 10), (7, 13, 8, 14), (7, 12, 9, 10), (7, 11, 12, 8)

J9 → 33, 47, 52, 16∗ (0, 7, 5, 1, 8, 15, 13, 10, 12, 14, 11, 9, 2, 6, 3, 4), (0, 6, 8, 4, 5), (1, 7, 4, 9, 6),
(2, 8, 10, 7), (5, 10, 3, 8), (4, 10, 6, 11), (5, 12, 6), (5, 11, 8, 9),
(6, 13, 11, 7), (7, 3, 9), (7, 13, 8, 14), (7, 12, 8), (9, 10, 11, 12)

J9 → 35, 48, 16∗ (0, 7, 5, 1, 8, 15, 13, 10, 12, 14, 11, 9, 2, 6, 3, 4), (0, 6, 8, 5), (1, 7, 9, 6),
(2, 8, 10, 7), (4, 10, 3, 7), (3, 9, 4, 8), (4, 11, 5), (5, 12, 6), (5, 10, 9),
(6, 13, 8, 7), (8, 14, 7, 11), (8, 12, 9), (11, 12, 7, 13), (6, 11, 10)

J9 → 48, 53, 16∗ (0, 7, 5, 1, 8, 15, 13, 10, 12, 14, 11, 9, 2, 6, 3, 4), (0, 6, 8, 4, 5), (1, 7, 4, 9, 6),
(7, 2, 8, 5, 9), (3, 10, 6, 7), (3, 9, 12, 8), (4, 10, 5, 11), (5, 12, 11, 6),
(6, 12, 7, 13), (8, 14, 7, 10), (7, 11, 13, 8), (8, 9, 10, 11)

J9 → 32, 49, 5, 16∗ (0, 7, 5, 1, 8, 15, 13, 10, 12, 14, 11, 9, 2, 6, 3, 4), (0, 6, 8, 4, 5), (1, 7, 9, 6),
(2, 8, 10, 7), (4, 10, 3, 7), (5, 9, 3, 8), (4, 9, 8, 11), (5, 10, 6, 12),
(5, 11, 7, 6), (6, 11, 13), (7, 13, 8, 14), (7, 12, 8), (9, 10, 11, 12)

Table A.15: Table of decompositions of J
{1,2,3,4,5,6,7}
n

177



J9 → 3, 411, 16∗ (0, 7, 5, 1, 8, 15, 13, 10, 12, 14, 11, 9, 2, 6, 3, 4), (0, 6, 8, 5), (1, 7, 9, 6),
(2, 8, 10, 7), (4, 10, 3, 7), (3, 9, 4, 8), (4, 11, 5), (5, 12, 8, 9), (6, 13, 11, 7),
(5, 10, 11, 6), (7, 13, 8, 14), (7, 12, 11, 8), (6, 12, 9, 10)

J10 → 318, 16∗ (3, 4, 7, 1, 5, 8, 15, 13, 11, 10, 12, 14, 16, 9, 2, 6), (5, 10, 6), (0, 5, 4),
(1, 6, 8), (0, 6, 7), (2, 8, 7), (7, 13, 10), (7, 3, 9), (6, 13, 9), (8, 14, 9),
(7, 14, 11), (5, 12, 7), (3, 8, 10), (8, 13, 12), (4, 10, 9), (9, 5, 11),
(9, 15, 12), (4, 11, 8), (6, 12, 11)

J10 → 313, 53, 16∗ (5, 1, 8, 10, 12, 15, 13, 11, 14, 16, 9, 2, 6, 3, 4, 7), (0, 7, 2, 8, 4),
(4, 10, 5, 12, 11), (0, 6, 5), (4, 9, 13, 8, 5), (3, 8, 7), (1, 7, 6), (8, 15, 9),
(7, 14, 9), (3, 9, 10), (12, 8, 14), (6, 11, 8), (6, 12, 9), (7, 13, 12),
(9, 5, 11), (6, 13, 10), (7, 11, 10)

J10 → 38, 56, 16∗ (5, 1, 8, 10, 12, 15, 13, 11, 14, 16, 9, 2, 6, 3, 4, 7), (0, 5, 6, 1, 7),
(0, 6, 8, 5, 4), (7, 2, 8, 3, 9), (3, 10, 4, 8, 7), (4, 9, 11), (5, 12, 6, 10, 9),
(5, 11, 10), (6, 13, 9), (6, 11, 8, 14, 7), (7, 13, 10), (8, 15, 9), (9, 14, 12),
(8, 13, 12), (7, 12, 11)

J10 → 33, 59, 16∗ (5, 1, 8, 10, 12, 15, 13, 11, 14, 16, 9, 2, 6, 3, 4, 7), (0, 5, 6, 1, 7),
(0, 6, 8, 5, 4), (7, 2, 8, 3, 9), (3, 10, 4, 8, 7), (4, 9, 11), (5, 12, 6, 10, 9),
(5, 11, 8, 13, 10), (6, 13, 7, 12, 9), (6, 11, 7), (7, 14, 12, 11, 10),
(8, 14, 9, 13, 12), (8, 15, 9)

J10 → 4, 510, 16∗ (5, 1, 8, 10, 12, 15, 13, 11, 14, 16, 9, 2, 6, 3, 4, 7), (0, 5, 6, 1, 7),
(0, 6, 8, 5, 4), (7, 2, 8, 3, 9), (3, 10, 4, 8, 7), (4, 9, 12, 5, 11),
(6, 13, 7, 11, 9), (5, 10, 13, 8, 9), (6, 11, 10, 7), (6, 12, 14, 9, 10),
(8, 14, 7, 12, 11), (8, 15, 9, 13, 12)

J10 → 46, 56, 16∗ (5, 1, 8, 10, 12, 15, 13, 11, 14, 16, 9, 2, 6, 3, 4, 7), (0, 5, 6, 1, 7),
(0, 6, 8, 5, 4), (7, 2, 8, 3, 9), (3, 10, 4, 8, 7), (4, 9, 12, 5, 11),
(6, 13, 7, 10, 9), (6, 12, 13, 10), (9, 5, 10, 11), (8, 13, 9, 15), (8, 12, 14, 9),
(8, 14, 7, 11), (6, 11, 12, 7)

J10 → 411, 52, 16∗ (5, 1, 8, 10, 12, 15, 13, 11, 14, 16, 9, 2, 6, 3, 4, 7), (0, 5, 6, 1, 7),
(0, 6, 8, 5, 4), (2, 8, 3, 7), (3, 9, 4, 10), (4, 11, 7, 8), (6, 12, 5, 9),
(7, 13, 6, 10), (9, 10, 5, 11), (7, 14, 8, 9), (6, 11, 12, 7), (9, 15, 8, 12),
(8, 13, 10, 11), (12, 13, 9, 14)

J11 → 32, 511, 16∗ (5, 4, 11, 13, 16, 14, 12, 15, 17, 10, 3, 6, 8, 2, 9, 7), (0, 6, 1, 7, 4),
(0, 5, 1, 8, 7), (2, 7, 3, 9, 6), (3, 8, 4), (5, 6, 7, 10, 8), (9, 4, 10, 12, 11),
(5, 12, 6, 10, 9), (5, 11, 8, 13, 10), (6, 11, 7, 12, 13), (7, 13, 15, 8, 14),
(8, 12, 9), (9, 15, 10, 14, 13), (10, 16, 9, 14, 11)

J11 → 414, 5, 16∗ (5, 4, 11, 13, 16, 14, 12, 15, 17, 10, 3, 6, 8, 2, 9, 7), (0, 6, 1, 7, 4), (0, 5, 8, 7),
(1, 8, 9, 5), (2, 7, 10, 6), (3, 9, 6, 7), (3, 8, 10, 4), (4, 9, 11, 8),
(5, 11, 6, 12), (5, 10, 13, 6), (7, 12, 8, 14), (7, 13, 14, 11), (8, 13, 9, 15),
(9, 14, 10, 16), (9, 10, 11, 12), (10, 15, 13, 12)

J12 → 3, 513, 16∗ (5, 8, 6, 3, 4, 11, 18, 16, 14, 17, 15, 13, 10, 12, 9, 7), (0, 6, 1, 7, 4),
(0, 5, 1, 8, 7), (2, 7, 3, 9, 6), (2, 8, 10, 11, 9), (3, 8, 9, 4, 10), (4, 8, 11, 6, 5),
(5, 12, 6, 10, 9), (7, 13, 11, 5, 10), (6, 13, 8, 14, 7), (7, 12, 13, 14, 11),
(12, 11, 16, 9, 14), (8, 15, 12), (10, 17, 11, 15, 14), (9, 15, 10, 16, 13)

J12 → 417, 16∗ (5, 8, 6, 3, 4, 11, 18, 16, 14, 17, 15, 13, 10, 12, 9, 7), (0, 6, 1, 7), (0, 5, 9, 4),
(1, 8, 10, 5), (2, 8, 3, 9), (2, 7, 10, 6), (4, 10, 3, 7), (4, 8, 12, 5), (5, 11, 9, 6),
(6, 13, 8, 7), (6, 12, 14, 11), (8, 14, 7, 11), (11, 12, 7, 13), (8, 15, 10, 9),
(9, 14, 13, 16), (10, 16, 11, 17), (10, 14, 15, 11), (9, 15, 12, 13)

Table A.15: Table of decompositions of J
{1,2,3,4,5,6,7}
n

178



J13 → 325, 16∗ (5, 12, 19, 17, 14, 8, 13, 9, 16, 18, 15, 10, 6, 11, 4, 7), (0, 5, 4), (1, 6, 5),
(0, 6, 7), (3, 10, 7), (3, 9, 6), (3, 8, 4), (6, 2, 8), (2, 7, 9), (1, 7, 8),
(9, 5, 11), (5, 10, 8), (4, 10, 9), (11, 18, 12), (6, 12, 13), (7, 12, 14),
(12, 17, 15), (10, 17, 11), (11, 7, 13), (10, 14, 13), (8, 15, 11), (8, 12, 9),
(9, 15, 14), (13, 16, 15), (11, 16, 14), (10, 16, 12)

J13 → 515, 16∗ (5, 12, 19, 17, 15, 18, 16, 14, 10, 13, 11, 9, 6, 8, 4, 7), (0, 5, 1, 6, 7),
(0, 6, 3, 9, 4), (1, 7, 9, 2, 8), (2, 7, 3, 10, 6), (3, 8, 10, 5, 4), (4, 10, 9, 5, 11),
(5, 6, 13, 7, 8), (7, 14, 12, 11, 10), (8, 9, 12, 6, 11), (7, 12, 8, 14, 11),
(8, 13, 16, 9, 15), (9, 14, 15, 12, 13), (10, 15, 16, 12, 17),
(10, 16, 11, 18, 12), (13, 14, 17, 11, 15)

J10 → 316, 5, 17∗ (0, 6, 2, 9, 16, 14, 11, 13, 15, 12, 10, 8, 1, 5, 7, 3, 4), (0, 5, 8, 2, 7), (1, 7, 6),
(7, 14, 9), (8, 15, 9), (12, 8, 14), (3, 9, 10), (3, 8, 6), (4, 9, 5), (9, 13, 12),
(6, 11, 9), (6, 13, 10), (5, 11, 10), (4, 10, 7), (7, 13, 8), (4, 11, 8),
(7, 12, 11), (5, 12, 6)

J10 → 311, 54, 17∗ (0, 6, 2, 9, 16, 14, 11, 13, 15, 12, 10, 8, 1, 5, 7, 3, 4), (0, 5, 6, 1, 7),
(3, 10, 4, 8, 6), (4, 5, 8, 2, 7), (3, 9, 4, 11, 8), (5, 12, 9), (6, 11, 9),
(8, 15, 9), (9, 13, 10), (6, 10, 7), (7, 13, 8), (12, 8, 14), (7, 14, 9),
(5, 11, 10), (6, 12, 13), (7, 12, 11)

J10 → 36, 57, 17∗ (0, 6, 2, 9, 16, 14, 11, 13, 15, 12, 10, 8, 1, 5, 7, 3, 4), (0, 5, 6, 1, 7),
(3, 10, 4, 8, 6), (4, 5, 8, 2, 7), (3, 9, 6, 7, 8), (4, 9, 11), (5, 12, 6, 10, 9),
(5, 11, 8, 13, 10), (7, 13, 6, 11, 10), (7, 14, 9), (7, 12, 11), (8, 15, 9),
(9, 13, 12), (12, 8, 14)

J10 → 3, 510, 17∗ (0, 6, 2, 9, 16, 14, 11, 13, 15, 12, 10, 8, 1, 5, 7, 3, 4), (0, 5, 6, 1, 7),
(3, 10, 4, 8, 6), (4, 5, 8, 2, 7), (3, 9, 6, 7, 8), (4, 9, 11), (5, 12, 6, 10, 9),
(5, 11, 8, 13, 10), (7, 13, 6, 11, 10), (7, 11, 12, 8, 9), (7, 12, 13, 9, 14),
(9, 15, 8, 14, 12)

J10 → 313, 4, 52, 17∗ (0, 6, 2, 9, 16, 14, 11, 13, 15, 12, 10, 8, 1, 5, 7, 3, 4), (0, 5, 6, 1, 7),
(3, 10, 4, 9, 6), (2, 8, 7), (3, 9, 15, 8), (4, 8, 5), (6, 13, 8), (6, 10, 7),
(4, 11, 7), (9, 13, 10), (5, 11, 10), (7, 13, 12), (6, 12, 11), (9, 8, 11),
(12, 8, 14), (5, 12, 9), (7, 14, 9)

J10 → 38, 4, 55, 17∗ (0, 6, 2, 9, 16, 14, 11, 13, 15, 12, 10, 8, 1, 5, 7, 3, 4), (0, 5, 6, 1, 7),
(3, 10, 4, 8, 6), (4, 5, 8, 2, 7), (3, 9, 6, 7, 8), (4, 9, 11), (5, 12, 6, 10, 9),
(5, 11, 10), (8, 13, 6, 11), (8, 15, 9), (7, 13, 10), (9, 13, 12), (7, 14, 9),
(7, 12, 11), (12, 8, 14)

J10 → 33, 4, 58, 17∗ (0, 6, 2, 9, 16, 14, 11, 13, 15, 12, 10, 8, 1, 5, 7, 3, 4), (0, 5, 6, 1, 7),
(3, 10, 4, 8, 6), (4, 5, 8, 2, 7), (3, 9, 6, 7, 8), (4, 9, 11), (5, 12, 6, 10, 9),
(5, 11, 8, 13, 10), (7, 13, 6, 11, 10), (7, 11, 12, 8, 9), (7, 12, 14),
(8, 14, 9, 15), (9, 13, 12)

J10 → 315, 42, 17∗ (0, 6, 2, 9, 16, 14, 11, 13, 15, 12, 10, 8, 1, 5, 7, 3, 4), (0, 5, 4, 7), (1, 7, 6),
(5, 11, 10), (2, 8, 7), (5, 9, 15, 8), (3, 9, 8), (3, 10, 6), (4, 10, 9),
(7, 13, 10), (4, 11, 8), (5, 12, 6), (7, 12, 11), (6, 11, 9), (9, 13, 12),
(6, 13, 8), (12, 8, 14), (7, 14, 9)

J10 → 310, 42, 53, 17∗ (0, 6, 2, 9, 16, 14, 11, 13, 15, 12, 10, 8, 1, 5, 7, 3, 4), (0, 5, 6, 1, 7),
(3, 10, 4, 8, 6), (4, 5, 8, 2, 7), (7, 8, 3, 9), (4, 9, 11), (5, 12, 9), (5, 11, 10),
(6, 11, 7), (8, 14, 9, 15), (7, 12, 14), (8, 12, 11), (8, 13, 9), (6, 10, 9),
(7, 13, 10), (6, 12, 13)

Table A.15: Table of decompositions of J
{1,2,3,4,5,6,7}
n

179



J10 → 35, 42, 56, 17∗ (0, 6, 2, 9, 16, 14, 11, 13, 15, 12, 10, 8, 1, 5, 7, 3, 4), (0, 5, 6, 1, 7),
(3, 10, 4, 8, 6), (4, 5, 8, 2, 7), (3, 9, 6, 7, 8), (4, 9, 11), (5, 12, 6, 10, 9),
(5, 11, 8, 13, 10), (6, 11, 7, 13), (7, 14, 9), (7, 12, 11, 10), (8, 15, 9),
(12, 8, 14), (9, 13, 12)

J10 → 42, 59, 17∗ (0, 6, 2, 9, 16, 14, 11, 13, 15, 12, 10, 8, 1, 5, 7, 3, 4), (0, 5, 6, 1, 7),
(3, 10, 4, 8, 6), (4, 5, 8, 2, 7), (3, 9, 6, 7, 8), (4, 9, 12, 5, 11),
(7, 13, 6, 10, 9), (9, 14, 12, 6, 11), (5, 10, 13, 8, 9), (8, 14, 7, 11),
(7, 12, 11, 10), (8, 15, 9, 13, 12)

J10 → 312, 43, 5, 17∗ (0, 6, 2, 9, 16, 14, 11, 13, 15, 12, 10, 8, 1, 5, 7, 3, 4), (0, 5, 6, 1, 7),
(3, 8, 4, 10), (3, 9, 6), (7, 2, 8, 9), (9, 15, 8, 11), (4, 11, 7), (6, 10, 7),
(4, 9, 5), (9, 13, 10), (5, 11, 10), (6, 12, 11), (7, 13, 12), (6, 13, 8),
(5, 12, 8), (9, 14, 12), (7, 14, 8)

J10 → 37, 43, 54, 17∗ (0, 6, 2, 9, 16, 14, 11, 13, 15, 12, 10, 8, 1, 5, 7, 3, 4), (0, 5, 6, 1, 7),
(3, 10, 4, 8, 6), (4, 5, 8, 2, 7), (3, 9, 6, 7, 8), (4, 9, 11), (5, 10, 6, 12),
(5, 11, 10, 9), (7, 13, 10), (8, 13, 6, 11), (8, 15, 9), (7, 14, 9), (12, 8, 14),
(9, 13, 12), (7, 12, 11)

J10 → 32, 43, 57, 17∗ (0, 6, 2, 9, 16, 14, 11, 13, 15, 12, 10, 8, 1, 5, 7, 3, 4), (0, 5, 6, 1, 7),
(3, 10, 4, 8, 6), (4, 5, 8, 2, 7), (3, 9, 6, 7, 8), (4, 9, 11), (5, 12, 6, 10, 9),
(5, 11, 8, 13, 10), (7, 13, 6, 11, 10), (7, 14, 8, 9), (7, 12, 11), (9, 15, 8, 12),
(12, 13, 9, 14)

J10 → 39, 44, 52, 17∗ (0, 6, 2, 9, 16, 14, 11, 13, 15, 12, 10, 8, 1, 5, 7, 3, 4), (0, 5, 6, 1, 7),
(3, 10, 4, 8, 6), (2, 8, 7), (4, 11, 8, 5), (3, 9, 8), (4, 9, 7), (6, 12, 5, 9),
(7, 13, 6, 10), (5, 11, 10), (6, 11, 7), (8, 14, 9, 15), (7, 12, 14), (9, 12, 11),
(9, 13, 10), (8, 13, 12)

J10 → 34, 44, 55, 17∗ (0, 6, 2, 9, 16, 14, 11, 13, 15, 12, 10, 8, 1, 5, 7, 3, 4), (0, 5, 6, 1, 7),
(3, 10, 4, 8, 6), (4, 5, 8, 2, 7), (3, 9, 6, 7, 8), (4, 9, 11), (5, 12, 6, 10, 9),
(7, 11, 5, 10), (6, 11, 10, 13), (7, 13, 8, 9), (7, 12, 14), (8, 14, 9, 15),
(8, 12, 11), (9, 13, 12)

J10 → 311, 45, 17∗ (0, 6, 2, 9, 16, 14, 11, 13, 15, 12, 10, 8, 1, 5, 7, 3, 4), (0, 5, 4, 7), (1, 7, 9, 6),
(6, 7, 2, 8), (3, 8, 4, 10), (3, 9, 13, 6), (5, 10, 9), (5, 12, 6), (5, 11, 8),
(6, 11, 10), (4, 9, 11), (7, 12, 11), (8, 15, 9), (9, 14, 12), (7, 14, 8),
(8, 13, 12), (7, 13, 10)

J10 → 36, 45, 53, 17∗ (0, 6, 2, 9, 16, 14, 11, 13, 15, 12, 10, 8, 1, 5, 7, 3, 4), (0, 5, 6, 1, 7),
(3, 10, 4, 8, 6), (4, 5, 8, 2, 7), (7, 8, 3, 9), (4, 9, 11), (6, 12, 5, 9),
(5, 11, 6, 10), (6, 13, 7), (7, 14, 9, 10), (8, 13, 10, 11), (8, 15, 9),
(9, 13, 12), (7, 12, 11), (12, 8, 14)

J10 → 3, 45, 56, 17∗ (0, 6, 2, 9, 16, 14, 11, 13, 15, 12, 10, 8, 1, 5, 7, 3, 4), (0, 5, 6, 1, 7),
(3, 10, 4, 8, 6), (4, 5, 8, 2, 7), (3, 9, 6, 7, 8), (4, 9, 11), (5, 12, 6, 10, 9),
(5, 11, 8, 13, 10), (6, 11, 7, 13), (7, 14, 8, 9), (7, 12, 11, 10), (9, 15, 8, 12),
(12, 13, 9, 14)

J10 → 38, 46, 5, 17∗ (0, 6, 2, 9, 16, 14, 11, 13, 15, 12, 10, 8, 1, 5, 7, 3, 4), (0, 5, 6, 1, 7),
(3, 8, 4, 10), (3, 9, 8, 6), (2, 8, 7), (4, 11, 8, 5), (4, 9, 7), (6, 12, 5, 9),
(7, 13, 6, 10), (5, 11, 10), (6, 11, 7), (8, 14, 9, 15), (7, 12, 14), (9, 12, 11),
(9, 13, 10), (8, 13, 12)

J10 → 33, 46, 54, 17∗ (0, 6, 2, 9, 16, 14, 11, 13, 15, 12, 10, 8, 1, 5, 7, 3, 4), (0, 5, 6, 1, 7),
(3, 10, 4, 8, 6), (4, 5, 8, 2, 7), (3, 9, 6, 7, 8), (4, 9, 11), (5, 10, 6, 12),
(5, 11, 8, 9), (6, 11, 7, 13), (7, 14, 9, 10), (7, 12, 9), (8, 13, 9, 15),
(10, 11, 12, 13), (12, 8, 14)

Table A.15: Table of decompositions of J
{1,2,3,4,5,6,7}
n

180



J10 → 35, 47, 52, 17∗ (0, 6, 2, 9, 16, 14, 11, 13, 15, 12, 10, 8, 1, 5, 7, 3, 4), (0, 5, 6, 1, 7),
(3, 10, 4, 8, 6), (2, 8, 7), (4, 11, 8, 5), (3, 9, 8), (4, 9, 7), (6, 12, 5, 9),
(7, 13, 6, 10), (9, 10, 5, 11), (6, 11, 7), (7, 12, 14), (9, 14, 8, 12),
(8, 13, 9, 15), (10, 11, 12, 13)

J10 → 47, 55, 17∗ (0, 6, 2, 9, 16, 14, 11, 13, 15, 12, 10, 8, 1, 5, 7, 3, 4), (0, 5, 6, 1, 7),
(3, 10, 4, 8, 6), (4, 5, 8, 2, 7), (3, 9, 6, 7, 8), (4, 9, 12, 5, 11), (7, 13, 6, 10),
(9, 5, 10, 11), (8, 14, 9, 15), (8, 13, 10, 9), (7, 12, 13, 9), (8, 12, 6, 11),
(7, 14, 12, 11)

J10 → 37, 48, 17∗ (0, 6, 2, 9, 16, 14, 11, 13, 15, 12, 10, 8, 1, 5, 7, 3, 4), (0, 5, 4, 7), (1, 7, 9, 6),
(6, 7, 2, 8), (3, 8, 4, 10), (3, 9, 5, 6), (4, 9, 11), (5, 10, 6, 12), (5, 11, 8),
(9, 15, 8, 12), (6, 11, 12, 13), (7, 11, 10), (9, 13, 10), (7, 13, 8), (8, 14, 9),
(7, 12, 14)

J10 → 32, 48, 53, 17∗ (0, 6, 2, 9, 16, 14, 11, 13, 15, 12, 10, 8, 1, 5, 7, 3, 4), (0, 5, 6, 1, 7),
(3, 10, 4, 8, 6), (4, 5, 8, 2, 7), (7, 8, 3, 9), (4, 9, 11), (6, 12, 5, 9),
(5, 11, 6, 10), (6, 13, 7), (7, 14, 9, 10), (8, 12, 7, 11), (8, 13, 9, 15),
(8, 14, 12, 9), (10, 11, 12, 13)

J10 → 34, 49, 5, 17∗ (0, 6, 2, 9, 16, 14, 11, 13, 15, 12, 10, 8, 1, 5, 7, 3, 4), (0, 5, 6, 1, 7),
(3, 8, 4, 10), (3, 9, 8, 6), (2, 8, 7), (4, 11, 8, 5), (4, 9, 7), (6, 12, 5, 9),
(7, 13, 6, 10), (9, 10, 5, 11), (6, 11, 7), (7, 12, 14), (9, 14, 8, 12),
(8, 13, 9, 15), (10, 11, 12, 13)

J10 → 3, 410, 52, 17∗ (0, 6, 2, 9, 16, 14, 11, 13, 15, 12, 10, 8, 1, 5, 7, 3, 4), (0, 5, 6, 1, 7),
(3, 10, 4, 8, 6), (2, 8, 7), (4, 11, 8, 5), (3, 9, 12, 8), (4, 9, 6, 7),
(5, 10, 6, 12), (6, 11, 7, 13), (7, 12, 13, 10), (5, 11, 10, 9), (8, 13, 9, 15),
(7, 14, 8, 9), (9, 14, 12, 11)

J10 → 33, 411, 17∗ (0, 6, 2, 9, 16, 14, 11, 13, 15, 12, 10, 8, 1, 5, 7, 3, 4), (0, 5, 4, 7), (1, 7, 9, 6),
(6, 7, 2, 8), (3, 8, 4, 10), (3, 9, 5, 6), (4, 9, 11), (5, 10, 6, 12), (5, 11, 7, 8),
(6, 11, 10, 13), (7, 13, 8, 14), (7, 12, 9, 10), (8, 15, 9), (8, 12, 11),
(12, 13, 9, 14)

J10 → 412, 5, 17∗ (0, 6, 2, 9, 16, 14, 11, 13, 15, 12, 10, 8, 1, 5, 7, 3, 4), (0, 5, 6, 1, 7),
(3, 8, 4, 10), (3, 9, 8, 6), (2, 8, 11, 7), (4, 5, 8, 7), (4, 9, 5, 11),
(5, 10, 6, 12), (7, 13, 6, 9), (6, 11, 10, 7), (7, 12, 8, 14), (8, 13, 9, 15),
(9, 14, 12, 11), (9, 10, 13, 12)

J11 → 320, 17∗ (3, 10, 17, 15, 13, 16, 14, 12, 5, 11, 4, 9, 2, 7, 8, 1, 6), (0, 7, 4), (5, 1, 7),
(0, 6, 5), (6, 2, 8), (7, 3, 9), (7, 12, 11), (3, 8, 4), (10, 6, 12), (7, 14, 10),
(8, 15, 10), (5, 9, 8), (4, 10, 5), (9, 14, 13), (8, 14, 11), (9, 15, 12),
(9, 16, 10), (6, 11, 9), (6, 13, 7), (8, 13, 12), (11, 10, 13)

J11 → 315, 53, 17∗ (5, 1, 8, 6, 3, 10, 17, 15, 12, 14, 16, 13, 11, 4, 9, 2, 7), (0, 6, 1, 7, 4),
(0, 5, 4, 3, 7), (2, 8, 15, 9, 6), (3, 9, 8), (9, 16, 10), (5, 12, 9), (8, 4, 10),
(5, 10, 6), (5, 11, 8), (10, 11, 12), (10, 15, 13), (9, 14, 11), (6, 11, 7),
(7, 13, 9), (7, 14, 10), (7, 12, 8), (6, 12, 13), (8, 14, 13)

J11 → 310, 56, 17∗ (5, 1, 8, 6, 3, 10, 17, 15, 12, 14, 16, 13, 11, 4, 9, 2, 7), (0, 6, 1, 7, 4),
(0, 5, 4, 3, 7), (2, 8, 10, 5, 6), (4, 10, 7, 11, 8), (5, 12, 9, 3, 8),
(10, 6, 13, 7, 12), (8, 13, 12), (7, 6, 9), (9, 16, 10), (9, 5, 11), (10, 15, 13),
(8, 15, 9), (9, 14, 13), (6, 12, 11), (10, 14, 11), (7, 14, 8)

J11 → 35, 59, 17∗ (5, 1, 8, 6, 3, 10, 17, 15, 12, 14, 16, 13, 11, 4, 9, 2, 7), (0, 6, 1, 7, 4),
(0, 5, 4, 3, 7), (2, 8, 10, 5, 6), (4, 10, 7, 11, 8), (5, 12, 9, 3, 8),
(6, 13, 7, 8, 9), (7, 14, 8, 15, 9), (6, 11, 10, 12, 7), (8, 13, 12), (9, 16, 10),
(6, 12, 11, 14, 10), (9, 5, 11), (9, 14, 13), (10, 15, 13)

Table A.15: Table of decompositions of J
{1,2,3,4,5,6,7}
n
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J11 → 512, 17∗ (5, 1, 8, 6, 3, 10, 17, 15, 12, 14, 16, 13, 11, 4, 9, 2, 7), (0, 6, 1, 7, 4),
(0, 5, 4, 3, 7), (2, 8, 10, 5, 6), (4, 10, 7, 11, 8), (5, 12, 9, 3, 8),
(6, 13, 7, 8, 9), (7, 14, 8, 13, 9), (6, 10, 13, 12, 7), (9, 15, 8, 12, 11),
(5, 11, 10, 16, 9), (10, 14, 11, 6, 12), (9, 14, 13, 15, 10)

J11 → 45, 58, 17∗ (5, 1, 8, 6, 3, 10, 17, 15, 12, 14, 16, 13, 11, 4, 9, 2, 7), (0, 6, 1, 7, 4),
(0, 5, 4, 3, 7), (2, 8, 10, 5, 6), (4, 10, 7, 11, 8), (5, 12, 9, 3, 8),
(6, 13, 7, 8, 9), (7, 14, 8, 13, 9), (6, 11, 12, 7), (5, 11, 14, 10, 9),
(6, 12, 13, 10), (10, 15, 8, 12), (9, 16, 10, 11), (13, 14, 9, 15)

J11 → 410, 54, 17∗ (5, 1, 8, 6, 3, 10, 17, 15, 12, 14, 16, 13, 11, 4, 9, 2, 7), (0, 6, 1, 7, 4),
(0, 5, 4, 3, 7), (2, 8, 10, 5, 6), (4, 10, 7, 11, 8), (5, 9, 3, 8), (5, 11, 10, 12),
(7, 13, 6, 9), (6, 12, 8, 7), (9, 10, 6, 11), (7, 12, 11, 14), (8, 14, 9, 15),
(8, 13, 12, 9), (10, 16, 9, 13), (13, 14, 10, 15)

J11 → 415, 17∗ (5, 1, 8, 6, 3, 10, 17, 15, 12, 14, 16, 13, 11, 4, 9, 2, 7), (0, 6, 1, 7), (0, 5, 8, 4),
(2, 8, 9, 6), (3, 8, 7, 4), (4, 10, 6, 5), (5, 12, 10, 9), (6, 11, 7, 13),
(7, 6, 12, 9), (3, 9, 14, 7), (8, 12, 7, 10), (5, 11, 14, 10), (8, 14, 13, 15),
(9, 13, 8, 11), (9, 15, 10, 16), (10, 11, 12, 13)

J14 → 327, 17∗ (6, 13, 20, 18, 16, 19, 17, 12, 9, 15, 14, 7, 11, 4, 5, 10, 8), (0, 7, 4), (3, 8, 4),
(0, 6, 5), (2, 9, 6), (1, 7, 6), (1, 8, 5), (7, 3, 9), (3, 10, 6), (2, 8, 7),
(4, 10, 9), (9, 5, 11), (5, 12, 7), (11, 18, 13), (6, 12, 11), (12, 18, 15),
(13, 16, 15), (9, 14, 16), (10, 15, 17), (8, 15, 11), (8, 13, 9), (10, 16, 12),
(12, 8, 14), (7, 13, 10), (12, 19, 13), (10, 14, 11), (13, 17, 14), (11, 17, 16)

J+
7 → 43, 56, 7+∗ [4, 7, 10, 12, 9, 8, 11, 13, 6], (0, 6, 3, 8, 4), (0, 5, 8, 1, 7), (5, 1, 6, 2, 7),

(2, 8, 10, 3, 9), (3, 7, 6, 5, 4), (4, 6, 10, 9, 11), (4, 10, 5, 9), (5, 11, 6, 12),
(6, 9, 7, 8)

J+
7 → 34, 56, 7+∗ [4, 7, 10, 12, 9, 8, 11, 13, 6], (0, 6, 3, 8, 4), (0, 5, 7), (1, 7, 2, 8, 5),

(1, 6, 5, 10, 8), (3, 9, 2, 6, 4), (6, 10, 3, 7, 8), (4, 10, 9), (4, 11, 6, 12, 5),
(9, 5, 11), (7, 6, 9)

J+
7 → 36, 46, 7+∗ [4, 7, 10, 12, 9, 8, 11, 13, 6], (0, 6, 3, 4), (0, 5, 7), (1, 7, 2, 8), (1, 6, 5),

(2, 9, 6), (3, 9, 5, 10), (6, 7, 3, 8), (4, 8, 5), (5, 11, 6, 12), (4, 6, 10),
(7, 8, 10, 9), (4, 9, 11)

J+
7 → 314, 7+∗ [4, 7, 10, 12, 9, 8, 11, 13, 6], (0, 6, 4), (0, 5, 7), (1, 7, 6), (1, 8, 5), (6, 2, 8),

(2, 7, 9), (3, 8, 7), (4, 11, 5), (3, 9, 4), (8, 4, 10), (5, 12, 6), (6, 11, 9),
(3, 10, 6), (5, 10, 9)

J+
8 → 412, 8+∗ [6, 8, 11, 13, 10, 9, 12, 14, 7, 4], (0, 6, 3, 4), (0, 5, 1, 7), (1, 6, 2, 8),

(2, 7, 3, 9), (5, 10, 3, 8), (8, 4, 6, 10), (4, 9, 5, 11), (5, 12, 7, 6),
(5, 4, 10, 7), (7, 13, 6, 9), (9, 8, 7, 11), (10, 11, 6, 12)

J+
10 → 512, 10+∗ [4, 7, 10, 9, 16, 14, 12, 11, 8, 15, 13, 6], (0, 6, 3, 8, 4), (0, 5, 8, 1, 7),

(5, 1, 6, 2, 7), (2, 8, 10, 3, 9), (3, 7, 6, 5, 4), (4, 6, 10, 5, 11),
(4, 10, 12, 5, 9), (6, 12, 9, 7, 8), (6, 11, 7, 14, 9), (10, 11, 14, 8, 13),
(9, 8, 12, 13, 11), (7, 13, 9, 15, 12)

J+
5 → 32, 55, 4+ [6, 8, 7, 9, 11, 4], (0, 6, 3, 10, 4), (0, 5, 7), (1, 7, 2, 8, 5), (1, 6, 5, 4, 8),

(2, 9, 3, 7, 6), (3, 8, 10, 7, 4), (6, 4, 9)
J+
5 → 37, 52, 4+ [6, 8, 7, 9, 11, 4], (0, 6, 3, 7, 4), (2, 8, 3, 10, 7), (1, 7, 6), (0, 5, 7), (1, 8, 5),

(8, 4, 10), (2, 9, 6), (3, 9, 4), (4, 6, 5)
J+
6 → 48, 5, 5+ [6, 7, 10, 8, 9, 11, 4], (0, 6, 3, 7, 4), (5, 6, 1, 7), (6, 2, 7, 8), (0, 5, 9, 7),

(3, 9, 6, 4), (2, 8, 4, 9), (1, 8, 11, 5), (5, 10, 3, 8), (4, 10, 12, 5)

Table A.15: Table of decompositions of J
{1,2,3,4,5,6,7}
n
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J+
8 → 4, 59, 7+ [4, 7, 10, 12, 9, 8, 11, 13, 6], (0, 6, 3, 8, 4), (0, 5, 8, 1, 7), (5, 1, 6, 2, 7),

(2, 8, 10, 3, 9), (3, 7, 6, 5, 4), (4, 6, 10, 5, 11), (7, 14, 12, 5, 9),
(6, 11, 10, 4, 9), (6, 12, 7, 8), (9, 10, 13, 7, 11)

J+
9 → 511, 8+ [4, 7, 10, 9, 12, 14, 8, 15, 13, 6], (0, 6, 3, 8, 4), (0, 5, 8, 1, 7), (5, 1, 6, 2, 7),

(2, 8, 10, 3, 9), (3, 7, 6, 5, 4), (4, 6, 10, 5, 11), (4, 10, 12, 5, 9),
(6, 12, 11, 13, 8), (7, 12, 8, 11, 9), (6, 11, 7, 8, 9), (7, 13, 10, 11, 14)

J+
5 → 48, 3+ [6, 7, 9, 11, 4], (0, 6, 3, 4), (0, 5, 1, 7), (1, 6, 2, 8), (2, 7, 3, 9), (3, 8, 4, 10),

(4, 9, 6, 5), (5, 8, 10, 7), (6, 4, 7, 8)
J+
8 → 510, 6+ [4, 7, 14, 12, 10, 11, 13, 6], (0, 6, 3, 8, 4), (0, 5, 8, 1, 7), (5, 1, 6, 2, 7),

(2, 8, 10, 3, 9), (3, 7, 6, 5, 4), (4, 6, 10, 5, 11), (7, 12, 5, 9, 10),
(7, 13, 10, 4, 9), (6, 9, 11, 7, 8), (8, 9, 12, 6, 11)

J+
5 → 311, 2+ [6, 9, 11, 4], (0, 6, 4), (2, 7, 9), (6, 2, 8), (3, 7, 6), (1, 6, 5), (3, 9, 4),

(4, 10, 7), (3, 8, 10), (0, 5, 7), (1, 7, 8), (4, 8, 5)
J+
7 → 59, 4+ [4, 7, 10, 12, 9, 6], (0, 6, 3, 8, 4), (0, 5, 8, 1, 7), (5, 1, 6, 2, 7), (2, 8, 10, 3, 9),

(3, 7, 9, 5, 4), (9, 4, 6, 13, 11), (6, 12, 5, 11, 8), (5, 10, 4, 11, 6),
(6, 10, 9, 8, 7)

J+
6 → 58, 2+ [6, 9, 11, 4], (0, 6, 3, 10, 4), (0, 5, 8, 1, 7), (5, 1, 6, 2, 7), (2, 8, 3, 7, 9),

(4, 9, 5, 6, 7), (3, 9, 8, 6, 4), (4, 8, 10, 12, 5), (7, 8, 11, 5, 10)

Table A.15: Table of decompositions of J
{1,2,3,4,5,6,7}
n

J3 → 36, 6 J3 → 3, 53, 6 J3 → 33, 4, 5, 6 J3 → 42, 52, 6
J3 → 32, 43, 6 J5 → 4, 56, 6 J6 → 314, 6
J3 → 34, 5, 7 J3 → 3, 4, 52, 7 J3 → 33, 42, 7 J3 → 43, 5, 7
J4 → 55, 7 J4 → 37, 4, 7 J5 → 311, 7 J3 → 36, 6
J3 → 3, 53, 6 J3 → 33, 4, 5, 6 J3 → 42, 52, 6 J3 → 32, 43, 6
J5 → 4, 56, 6 J6 → 314, 6 J3 → 34, 5, 7 J3 → 3, 4, 52, 7
J3 → 33, 42, 7 J3 → 43, 5, 7 J4 → 55, 7 J4 → 37, 4, 7
J5 → 311, 7
J3 → 32, 52, 8 J3 → 34, 4, 8 J3 → 3, 42, 5, 8 J3 → 44, 8
J4 → 38, 8 J4 → 4, 54, 8 J6 → 58, 8 J7 → 316, 8

Table A.16: These decompositions are required for Lemma 1.6.32. These have been generated such
that the k-cycle is incident on some subset of the vertices {n, n+ 1, . . . , n+ 9}, and are given in table
A.18.

J4 → 42, 53, 9∗ J4 → 3, 54, 9∗ J4 → 3, 45, 9∗ J4 → 32, 43, 5, 9∗

J4 → 33, 4, 52, 9∗ J4 → 35, 42, 9∗ J4 → 36, 5, 9∗ J5 → 39, 4, 9∗

J6 → 4, 57, 9∗ J6 → 313, 9∗ J8 → 511, 9∗ J9 → 321, 9∗

J4 → 43, 52, 10∗ J4 → 3, 4, 53, 10∗ J4 → 32, 44, 10∗ J4 → 33, 42, 5, 10∗

J4 → 34, 52, 10∗ J4 → 36, 4, 10∗ J5 → 56, 10∗ J5 → 310, 10∗

J8 → 4, 510, 10∗ J8 → 318, 10∗

J5 → 4, 55, 11∗ J5 → 46, 5, 11∗ J5 → 3, 44, 52, 11∗ J5 → 32, 42, 53, 11∗

J5 → 33, 54, 11∗ J5 → 33, 45, 11∗ J5 → 34, 43, 5, 11∗ J5 → 35, 4, 52, 11∗

J5 → 37, 42, 11∗ J5 → 38, 5, 11∗ J6 → 311, 4, 11∗ J7 → 59, 11∗

J7 → 315, 11∗ J10 → 323, 11∗

J7 → 4, 58, 12∗ J7 → 46, 54, 12∗ J7 → 411, 12∗ J7 → 3, 44, 55, 12∗

J7 → 3, 49, 5, 12∗ J7 → 32, 42, 56, 12∗ J7 → 32, 47, 52, 12∗ J7 → 33, 57, 12∗

Table A.17: These decompositions are required for Lemma 1.6.33. These are sorted by the value of
k in the decomposition, and are given in table A.18.
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J7 → 33, 45, 53, 12∗ J7 → 34, 43, 54, 12∗ J7 → 34, 48, 12∗ J7 → 35, 4, 55, 12∗

J7 → 35, 46, 5, 12∗ J7 → 36, 44, 52, 12∗ J7 → 37, 42, 53, 12∗ J7 → 38, 54, 12∗

J7 → 38, 45, 12∗ J7 → 39, 43, 5, 12∗ J7 → 310, 4, 52, 12∗ J7 → 312, 42, 12∗

J7 → 313, 5, 12∗ J8 → 316, 4, 12∗ J9 → 512, 12∗ J9 → 320, 12∗

J12 → 328, 12∗

J7 → 42, 57, 13∗ J7 → 47, 53, 13∗ J7 → 3, 58, 13∗ J7 → 3, 45, 54, 13∗

J7 → 3, 410, 13∗ J7 → 32, 43, 55, 13∗ J7 → 32, 48, 5, 13∗ J7 → 33, 4, 56, 13∗

J7 → 33, 46, 52, 13∗ J7 → 34, 44, 53, 13∗ J7 → 35, 42, 54, 13∗ J7 → 35, 47, 13∗

J7 → 36, 55, 13∗ J7 → 36, 45, 5, 13∗ J7 → 37, 43, 52, 13∗ J7 → 38, 4, 53, 13∗

J7 → 39, 44, 13∗ J7 → 310, 42, 5, 13∗ J7 → 311, 52, 13∗ J7 → 313, 4, 13∗

J8 → 317, 13∗ J9 → 4, 511, 13∗ J11 → 515, 13∗ J11 → 325, 13∗

J8 → 510, 14∗ J8 → 45, 56, 14∗ J8 → 410, 52, 14∗ J8 → 3, 43, 57, 14∗

J8 → 3, 48, 53, 14∗ J8 → 32, 4, 58, 14∗ J8 → 32, 46, 54, 14∗ J8 → 32, 411, 14∗

J8 → 33, 44, 55, 14∗ J8 → 33, 49, 5, 14∗ J8 → 34, 42, 56, 14∗ J8 → 34, 47, 52, 14∗

J8 → 35, 57, 14∗ J8 → 35, 45, 53, 14∗ J8 → 36, 43, 54, 14∗ J8 → 36, 48, 14∗

J8 → 37, 4, 55, 14∗ J8 → 37, 46, 5, 14∗ J8 → 38, 44, 52, 14∗ J8 → 39, 42, 53, 14∗

J8 → 310, 54, 14∗ J8 → 310, 45, 14∗ J8 → 311, 43, 5, 14∗ J8 → 312, 4, 52, 14∗

J8 → 314, 42, 14∗ J8 → 315, 5, 14∗ J9 → 318, 4, 14∗ J10 → 322, 14∗

J11 → 4, 514, 14∗ J13 → 330, 14∗

Table A.17: These decompositions are required for Lemma 1.6.33. These are sorted by the value of
k in the decomposition, and are given in table A.18.

J1 → 42 (0, 5, 8, 7), (5, 9, 1, 7)
J1 → 3, 5 (0, 5, 7), (7, 1, 9, 5, 8)
J2 → 34, 4 (0, 5, 7), (1, 6, 9), (7, 1, 8), (6, 10, 2, 8), (5, 9, 8)
J3 → 4, 54 (0, 5, 9, 8, 7), (1, 8, 6, 9), (1, 6, 10, 2, 7), (5, 8, 2, 9, 7), (9, 3, 11, 7, 10)
J4 → 39, 5 (0, 5, 7), (1, 6, 9), (6, 10, 4, 12, 8), (7, 11, 10), (7, 1, 8), (2, 8, 10), (2, 7, 9),

(3, 8, 11), (9, 3, 10), (5, 9, 8)
J5 → 58 (0, 5, 9, 8, 7), (1, 8, 10, 6, 9), (5, 8, 6, 1, 7), (2, 8, 3, 9, 10), (2, 7, 11, 4, 9),

(7, 10, 3, 11, 9), (10, 4, 12, 8, 11), (11, 5, 13, 9, 12)
J5 → 312, 4 (0, 5, 7), (1, 6, 8), (5, 13, 9), (6, 10, 4, 9), (7, 11, 10), (7, 2, 8), (1, 7, 9),

(8, 12, 9), (4, 11, 12), (5, 11, 8), (3, 9, 11), (3, 8, 10), (2, 9, 10)
J6 → 316 (0, 5, 7), (1, 6, 8), (5, 13, 9), (6, 12, 9), (3, 9, 11), (8, 2, 9), (1, 7, 9),

(9, 4, 10), (6, 14, 10), (5, 12, 8), (7, 11, 8), (2, 7, 10), (3, 8, 10), (10, 5, 11),
(4, 11, 12), (10, 13, 12)

J9 → 324 (0, 5, 7), (1, 6, 9), (7, 1, 8), (8, 2, 9), (2, 7, 10), (9, 17, 13), (4, 10, 12),
(4, 9, 11), (3, 8, 11), (9, 3, 10), (10, 5, 11), (5, 13, 8), (5, 12, 9),
(12, 16, 13), (8, 15, 16), (13, 15, 14), (7, 13, 11), (6, 13, 10), (7, 15, 9),
(7, 12, 14), (6, 12, 8), (8, 14, 10), (6, 11, 14), (11, 15, 12)

J3 → 36, 6 (7, 11, 3, 9, 5, 8), (0, 5, 7), (1, 7, 9), (1, 6, 8), (2, 7, 10), (6, 10, 9), (8, 2, 9)
J3 → 3, 53, 6 (7, 11, 3, 9, 5, 8), (0, 5, 7), (1, 7, 2, 10, 9), (1, 6, 9, 2, 8), (6, 10, 7, 9, 8)
J3 → 33, 4, 5, 6 (7, 11, 3, 9, 5, 8), (0, 5, 7), (1, 7, 2, 8, 9), (1, 6, 8), (6, 10, 2, 9), (7, 10, 9)
J3 → 42, 52, 6 (5, 8, 9, 3, 11, 7), (0, 5, 9, 1, 7), (1, 6, 9, 2, 8), (2, 7, 9, 10), (7, 10, 6, 8)
J3 → 32, 43, 6 (7, 11, 3, 9, 5, 8), (0, 5, 7), (1, 7, 2, 9), (1, 6, 8), (6, 10, 7, 9), (8, 2, 10, 9)
J5 → 4, 56, 6 (7, 10, 6, 9, 5, 8), (1, 8, 9, 11, 7), (1, 6, 8, 10, 9), (2, 9, 3, 10), (0, 5, 13, 9, 7),

(3, 8, 12, 4, 11), (5, 11, 8, 2, 7), (10, 4, 9, 12, 11)

Table A.18: Table of decompositions of J
{1,2,3,4,5,6,7,8}
n
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J6 → 314, 6 (7, 11, 12, 13, 10, 8), (1, 7, 9), (2, 7, 10), (0, 5, 7), (3, 8, 11), (10, 5, 11),
(4, 9, 11), (5, 13, 9), (6, 12, 9), (1, 6, 8), (9, 3, 10), (8, 2, 9), (6, 14, 10),
(5, 12, 8), (4, 10, 12)

J3 → 34, 5, 7 (6, 10, 7, 11, 3, 9, 8), (0, 5, 7), (5, 9, 6, 1, 8), (1, 7, 9), (7, 2, 8), (2, 9, 10)
J3 → 3, 4, 52, 7 (6, 10, 7, 11, 3, 9, 8), (0, 5, 7), (1, 6, 9, 2, 7), (7, 9, 10, 2, 8), (5, 9, 1, 8)
J3 → 33, 42, 7 (6, 10, 7, 11, 3, 9, 8), (0, 5, 7), (1, 6, 9, 7), (2, 9, 10), (5, 9, 1, 8), (7, 2, 8)
J3 → 43, 5, 7 (6, 10, 7, 11, 3, 9, 8), (0, 5, 8, 7), (1, 8, 2, 10, 9), (1, 6, 9, 7), (5, 9, 2, 7)
J4 → 55, 7 (7, 9, 6, 10, 4, 12, 8), (0, 5, 8, 1, 7), (1, 6, 8, 2, 9), (5, 9, 10, 2, 7),

(7, 11, 8, 3, 10), (8, 10, 11, 3, 9)
J4 → 37, 4, 7 (5, 9, 6, 10, 4, 12, 8), (0, 5, 7), (1, 6, 8, 9), (2, 7, 9), (2, 8, 10), (7, 1, 8),

(3, 8, 11), (7, 11, 10), (9, 3, 10)
J5 → 311, 7 (7, 11, 10, 6, 9, 12, 8), (1, 6, 8), (2, 7, 10), (1, 7, 9), (0, 5, 7), (3, 8, 10),

(9, 4, 10), (4, 11, 12), (8, 2, 9), (5, 11, 8), (3, 9, 11), (5, 13, 9)
J3 → 36, 6 (7, 11, 3, 9, 5, 8), (0, 5, 7), (1, 7, 9), (1, 6, 8), (2, 7, 10), (6, 10, 9), (8, 2, 9)
J3 → 3, 53, 6 (7, 11, 3, 9, 5, 8), (0, 5, 7), (1, 7, 2, 10, 9), (1, 6, 9, 2, 8), (6, 10, 7, 9, 8)
J3 → 33, 4, 5, 6 (7, 11, 3, 9, 5, 8), (0, 5, 7), (1, 7, 2, 8, 9), (1, 6, 8), (6, 10, 2, 9), (7, 10, 9)
J3 → 42, 52, 6 (5, 8, 9, 3, 11, 7), (0, 5, 9, 1, 7), (1, 6, 9, 2, 8), (2, 7, 9, 10), (7, 10, 6, 8)
J3 → 32, 43, 6 (7, 11, 3, 9, 5, 8), (0, 5, 7), (1, 7, 2, 9), (1, 6, 8), (6, 10, 7, 9), (8, 2, 10, 9)
J5 → 4, 56, 6 (7, 10, 6, 9, 5, 8), (1, 8, 9, 11, 7), (1, 6, 8, 10, 9), (2, 9, 3, 10), (0, 5, 13, 9, 7),

(3, 8, 12, 4, 11), (5, 11, 8, 2, 7), (10, 4, 9, 12, 11)
J6 → 314, 6 (7, 11, 12, 13, 10, 8), (1, 7, 9), (2, 7, 10), (0, 5, 7), (3, 8, 11), (10, 5, 11),

(4, 9, 11), (5, 13, 9), (6, 12, 9), (1, 6, 8), (9, 3, 10), (8, 2, 9), (6, 14, 10),
(5, 12, 8), (4, 10, 12)

J3 → 34, 5, 7 (6, 10, 7, 11, 3, 9, 8), (0, 5, 7), (5, 9, 6, 1, 8), (1, 7, 9), (7, 2, 8), (2, 9, 10)
J3 → 3, 4, 52, 7 (6, 10, 7, 11, 3, 9, 8), (0, 5, 7), (1, 6, 9, 2, 7), (7, 9, 10, 2, 8), (5, 9, 1, 8)
J3 → 33, 42, 7 (6, 10, 7, 11, 3, 9, 8), (0, 5, 7), (1, 6, 9, 7), (2, 9, 10), (5, 9, 1, 8), (7, 2, 8)
J3 → 43, 5, 7 (6, 10, 7, 11, 3, 9, 8), (0, 5, 8, 7), (1, 8, 2, 10, 9), (1, 6, 9, 7), (5, 9, 2, 7)
J4 → 55, 7 (7, 9, 6, 10, 4, 12, 8), (0, 5, 8, 1, 7), (1, 6, 8, 2, 9), (5, 9, 10, 2, 7),

(7, 11, 8, 3, 10), (8, 10, 11, 3, 9)
J4 → 37, 4, 7 (5, 9, 6, 10, 4, 12, 8), (0, 5, 7), (1, 6, 8, 9), (2, 7, 9), (2, 8, 10), (7, 1, 8),

(3, 8, 11), (7, 11, 10), (9, 3, 10)
J5 → 311, 7 (7, 11, 10, 6, 9, 12, 8), (1, 6, 8), (2, 7, 10), (1, 7, 9), (0, 5, 7), (3, 8, 10),

(9, 4, 10), (4, 11, 12), (8, 2, 9), (5, 11, 8), (3, 9, 11), (5, 13, 9)
J3 → 32, 52, 8 (5, 9, 3, 11, 7, 10, 6, 8), (0, 5, 7), (1, 7, 2, 8, 9), (7, 9, 6, 1, 8), (2, 9, 10)
J3 → 34, 4, 8 (5, 9, 3, 11, 7, 10, 6, 8), (0, 5, 7), (1, 8, 9), (1, 6, 9, 7), (7, 2, 8), (2, 9, 10)
J3 → 3, 42, 5, 8 (5, 9, 3, 11, 7, 10, 6, 8), (0, 5, 7), (7, 1, 9, 8), (1, 6, 9, 2, 8), (2, 7, 9, 10)
J3 → 44, 8 (5, 8, 6, 10, 9, 3, 11, 7), (0, 5, 9, 7), (1, 7, 2, 9), (1, 6, 9, 8), (7, 10, 2, 8)
J4 → 38, 8 (5, 9, 7, 11, 10, 4, 12, 8), (0, 5, 7), (1, 6, 9), (2, 7, 10), (7, 1, 8), (8, 2, 9),

(3, 8, 11), (9, 3, 10), (6, 10, 8)
J4 → 4, 54, 8 (5, 9, 6, 10, 4, 12, 8, 7), (0, 5, 8, 1, 7), (1, 6, 8, 2, 9), (2, 7, 9, 10),

(7, 11, 8, 3, 10), (8, 10, 11, 3, 9)
J6 → 58, 8 (7, 11, 12, 13, 10, 9, 6, 8), (0, 5, 8, 1, 7), (5, 10, 11, 3, 9), (1, 6, 10, 2, 9),

(4, 9, 13, 5, 12), (5, 11, 8, 9, 7), (2, 7, 10, 3, 8), (4, 11, 9, 12, 10),
(8, 12, 6, 14, 10)

J7 → 316, 8 (7, 15, 11, 12, 13, 14, 10, 8), (0, 5, 7), (6, 13, 9), (8, 2, 9), (9, 3, 10),
(4, 9, 12), (1, 7, 9), (5, 11, 9), (1, 6, 8), (6, 11, 14), (2, 7, 10), (3, 8, 11),
(6, 12, 10), (5, 12, 8), (5, 10, 13), (10, 4, 11), (7, 13, 11)

Table A.18: Table of decompositions of J
{1,2,3,4,5,6,7,8}
n

185



J4 → 42, 53, 9∗ (5, 9, 6, 10, 4, 12, 8, 11, 7), (0, 5, 8, 1, 7), (1, 6, 8, 2, 9), (7, 2, 10, 9, 8),
(3, 8, 10, 11), (7, 10, 3, 9)

J4 → 3, 54, 9∗ (5, 9, 6, 10, 4, 12, 8, 11, 7), (0, 5, 8, 1, 7), (1, 6, 8, 2, 9), (7, 2, 10, 9, 8),
(7, 10, 8, 3, 9), (3, 10, 11)

J4 → 3, 45, 9∗ (5, 9, 6, 10, 4, 12, 8, 11, 7), (0, 5, 8, 7), (1, 7, 2, 9), (1, 6, 8), (8, 2, 10, 9),
(3, 8, 10, 11), (7, 10, 3, 9)

J4 → 32, 43, 5, 9∗ (5, 9, 6, 10, 4, 12, 8, 11, 7), (0, 5, 8, 1, 7), (1, 6, 8, 9), (2, 9, 7, 10),
(9, 3, 11, 10), (3, 8, 10), (7, 2, 8)

J4 → 33, 4, 52, 9∗ (5, 9, 6, 10, 4, 12, 8, 11, 7), (0, 5, 8, 1, 7), (1, 6, 8, 2, 9), (2, 7, 9, 10),
(3, 10, 11), (7, 10, 8), (8, 3, 9)

J4 → 35, 42, 9∗ (5, 9, 6, 10, 4, 12, 8, 11, 7), (0, 5, 8, 7), (1, 7, 2, 9), (1, 6, 8), (2, 8, 10),
(3, 10, 11), (8, 3, 9), (7, 10, 9)

J4 → 36, 5, 9∗ (5, 9, 6, 10, 4, 12, 8, 11, 7), (0, 5, 8, 2, 7), (1, 6, 8), (1, 7, 9), (2, 9, 10),
(3, 10, 11), (7, 10, 8), (8, 3, 9)

J5 → 39, 4, 9∗ (5, 13, 9, 6, 10, 7, 11, 12, 8), (0, 5, 7), (1, 6, 8, 9), (2, 8, 10), (10, 4, 11),
(9, 3, 10), (4, 9, 12), (5, 11, 9), (7, 1, 8), (2, 7, 9), (3, 8, 11)

J6 → 4, 57, 9∗ (6, 14, 10, 7, 11, 8, 12, 13, 9), (0, 5, 9, 8, 7), (1, 8, 10, 2, 9), (5, 8, 6, 1, 7),
(2, 7, 9, 3, 8), (9, 4, 11, 3, 10), (4, 10, 5, 11, 12), (6, 12, 5, 13, 10),
(10, 12, 9, 11)

J6 → 313, 9∗ (6, 14, 10, 7, 11, 8, 12, 13, 9), (0, 5, 7), (1, 6, 8), (3, 9, 11), (11, 5, 12),
(10, 4, 11), (5, 10, 13), (7, 2, 8), (1, 7, 9), (3, 8, 10), (5, 9, 8), (6, 12, 10),
(2, 9, 10), (4, 9, 12)

J8 → 511, 9∗ (8, 16, 12, 11, 15, 14, 10, 13, 9), (0, 5, 11, 8, 7), (5, 9, 1, 6, 8), (1, 8, 2, 9, 7),
(7, 11, 3, 8, 10), (5, 12, 10, 2, 7), (9, 12, 13, 5, 10), (3, 10, 11, 4, 9),
(6, 14, 12, 4, 10), (6, 13, 14, 11, 9), (8, 14, 7, 15, 12), (6, 11, 13, 7, 12)

J9 → 321, 9∗ (9, 17, 13, 12, 16, 15, 11, 14, 10), (0, 5, 7), (1, 6, 9), (7, 1, 8), (8, 13, 16),
(7, 15, 9), (8, 2, 9), (3, 8, 10), (5, 13, 9), (4, 9, 12), (3, 9, 11), (2, 7, 10),
(6, 13, 10), (10, 4, 11), (5, 10, 12), (5, 11, 8), (13, 15, 14), (8, 15, 12),
(6, 14, 8), (7, 13, 11), (11, 6, 12), (7, 12, 14)

J4 → 43, 52, 10∗ (5, 9, 6, 10, 4, 12, 8, 3, 11, 7), (0, 5, 8, 1, 7), (1, 6, 8, 2, 9), (2, 7, 9, 10),
(7, 10, 11, 8), (8, 10, 3, 9)

J4 → 3, 4, 53, 10∗ (5, 9, 6, 10, 4, 12, 8, 3, 11, 7), (0, 5, 8, 1, 7), (1, 6, 8, 2, 9), (7, 2, 10, 9, 8),
(7, 10, 3, 9), (8, 11, 10)

J4 → 32, 44, 10∗ (5, 9, 6, 10, 4, 12, 8, 3, 11, 7), (0, 5, 8, 7), (1, 7, 2, 9), (1, 6, 8), (8, 2, 10, 9),
(7, 10, 3, 9), (8, 11, 10)

J4 → 33, 42, 5, 10∗ (5, 9, 6, 10, 4, 12, 8, 3, 11, 7), (0, 5, 8, 1, 7), (1, 6, 8, 9), (2, 9, 7, 10),
(7, 2, 8), (9, 3, 10), (8, 11, 10)

J4 → 34, 52, 10∗ (5, 9, 6, 10, 4, 12, 8, 3, 11, 7), (0, 5, 8, 1, 7), (1, 6, 8, 2, 9), (2, 7, 10),
(7, 9, 8), (9, 3, 10), (8, 11, 10)

J4 → 36, 4, 10∗ (5, 9, 6, 10, 4, 12, 8, 3, 11, 7), (0, 5, 8, 7), (1, 7, 9), (1, 6, 8), (2, 7, 10),
(9, 3, 10), (8, 2, 9), (8, 11, 10)

J5 → 56, 10∗ (5, 13, 9, 6, 10, 7, 11, 4, 12, 8), (0, 5, 9, 8, 7), (1, 8, 10, 2, 9), (1, 6, 8, 2, 7),
(3, 9, 4, 10, 11), (9, 11, 8, 3, 10), (5, 11, 12, 9, 7)

J5 → 310, 10∗ (6, 10, 7, 11, 5, 13, 9, 4, 12, 8), (0, 5, 7), (1, 6, 9), (7, 1, 8), (5, 9, 8),
(2, 8, 10), (10, 4, 11), (2, 7, 9), (9, 3, 10), (9, 12, 11), (3, 8, 11)

Table A.18: Table of decompositions of J
{1,2,3,4,5,6,7,8}
n

186



J8 → 4, 510, 10∗ (7, 15, 11, 12, 16, 8, 14, 10, 13, 9), (0, 5, 9, 8, 7), (1, 7, 10, 6, 9),
(1, 6, 14, 11, 8), (2, 8, 3, 9, 10), (2, 7, 11, 4, 9), (5, 11, 3, 10, 8),
(5, 13, 12, 14, 7), (9, 12, 6, 13, 11), (6, 11, 10, 12, 8), (4, 10, 5, 12),
(13, 7, 12, 15, 14)

J8 → 318, 10∗ (7, 15, 11, 12, 16, 8, 14, 10, 13, 9), (0, 5, 7), (1, 6, 9), (8, 2, 9), (9, 3, 10),
(4, 9, 11), (5, 12, 9), (5, 11, 13), (6, 11, 10), (3, 8, 11), (5, 10, 8), (7, 1, 8),
(4, 10, 12), (2, 7, 10), (7, 14, 11), (6, 12, 8), (12, 7, 13), (6, 13, 14),
(12, 15, 14)

J5 → 4, 55, 11∗ (5, 13, 9, 6, 10, 3, 8, 12, 4, 11, 7), (0, 5, 9, 8, 7), (1, 6, 8, 2, 9),
(5, 11, 9, 10, 8), (2, 7, 9, 4, 10), (3, 9, 12, 11), (1, 8, 11, 10, 7)

J5 → 46, 5, 11∗ (5, 13, 9, 6, 10, 3, 8, 12, 4, 11, 7), (0, 5, 11, 8, 7), (1, 6, 8, 9), (2, 9, 11, 10),
(3, 9, 12, 11), (7, 10, 4, 9), (1, 8, 2, 7), (5, 9, 10, 8)

J5 → 3, 44, 52, 11∗ (5, 13, 9, 6, 10, 3, 8, 12, 4, 11, 7), (0, 5, 9, 8, 7), (1, 6, 8, 2, 9), (2, 7, 9, 10),
(1, 8, 10, 7), (3, 9, 12, 11), (10, 4, 9, 11), (5, 11, 8)

J5 → 32, 42, 53, 11∗ (5, 13, 9, 6, 10, 3, 8, 12, 4, 11, 7), (0, 5, 9, 8, 7), (1, 7, 10, 2, 9), (1, 6, 8),
(2, 7, 9, 10, 8), (3, 9, 12, 11), (10, 4, 9, 11), (5, 11, 8)

J5 → 33, 54, 11∗ (5, 13, 9, 6, 10, 3, 8, 12, 4, 11, 7), (0, 5, 9, 8, 7), (1, 7, 10, 2, 9), (1, 6, 8),
(2, 7, 9, 10, 8), (3, 9, 4, 10, 11), (5, 11, 8), (9, 12, 11)

J5 → 33, 45, 11∗ (5, 13, 9, 6, 10, 3, 8, 12, 4, 11, 7), (0, 5, 8, 7), (1, 7, 2, 9), (1, 6, 8),
(8, 2, 10, 9), (3, 9, 11), (5, 11, 12, 9), (7, 10, 4, 9), (8, 11, 10)

J5 → 34, 43, 5, 11∗ (5, 13, 9, 6, 10, 3, 8, 12, 4, 11, 7), (0, 5, 9, 8, 7), (1, 7, 2, 9), (1, 6, 8),
(2, 8, 10), (9, 3, 11, 10), (5, 11, 8), (7, 10, 4, 9), (9, 12, 11)

J5 → 35, 4, 52, 11∗ (5, 13, 9, 6, 10, 3, 8, 12, 4, 11, 7), (0, 5, 9, 8, 7), (1, 7, 2, 9), (1, 6, 8),
(3, 9, 4, 10, 11), (5, 11, 8), (2, 8, 10), (7, 10, 9), (9, 12, 11)

J5 → 37, 42, 11∗ (5, 13, 9, 6, 10, 3, 8, 12, 4, 11, 7), (0, 5, 8, 7), (1, 7, 9), (1, 6, 8),
(5, 11, 12, 9), (9, 4, 10), (3, 9, 11), (8, 2, 9), (2, 7, 10), (8, 11, 10)

J5 → 38, 5, 11∗ (5, 13, 9, 3, 10, 6, 8, 12, 4, 11, 7), (7, 1, 8), (1, 6, 9), (0, 5, 11, 10, 7),
(9, 4, 10), (2, 8, 10), (5, 9, 8), (3, 8, 11), (2, 7, 9), (9, 12, 11)

J6 → 311, 4, 11∗ (6, 14, 10, 7, 11, 5, 13, 9, 4, 12, 8), (7, 1, 8), (0, 5, 7), (2, 7, 9), (5, 9, 8),
(2, 8, 10), (1, 6, 9), (9, 3, 10), (3, 8, 11), (10, 4, 11), (9, 12, 11),
(5, 10, 13, 12), (6, 12, 10)

J7 → 59, 11∗ (5, 13, 9, 12, 8, 6, 14, 10, 11, 15, 7), (0, 5, 9, 8, 7), (1, 7, 2, 10, 9),
(1, 6, 9, 2, 8), (6, 11, 12, 4, 10), (5, 11, 7, 10, 8), (3, 8, 11, 4, 9),
(5, 10, 13, 6, 12), (7, 13, 14, 11, 9), (3, 10, 12, 13, 11)

J7 → 315, 11∗ (5, 11, 15, 7, 13, 9, 6, 14, 10, 12, 8), (5, 10, 9), (0, 5, 7), (3, 9, 11),
(11, 6, 12), (5, 12, 13), (4, 9, 12), (1, 7, 9), (8, 2, 9), (1, 6, 8), (3, 8, 10),
(2, 7, 10), (10, 4, 11), (6, 13, 10), (7, 11, 8), (11, 14, 13)

J10 → 323, 11∗ (8, 12, 16, 9, 17, 13, 15, 11, 14, 18, 10), (0, 5, 7), (1, 7, 9), (1, 6, 8),
(11, 6, 12), (4, 9, 11), (10, 5, 11), (7, 13, 11), (3, 8, 11), (2, 7, 10), (8, 2, 9),
(9, 3, 10), (6, 13, 9), (5, 13, 8), (14, 9, 15), (4, 10, 12), (6, 14, 10),
(5, 12, 9), (7, 12, 15), (8, 15, 16), (10, 16, 13), (12, 14, 13), (7, 14, 8),
(14, 17, 16)

J7 → 4, 58, 12∗ (5, 13, 9, 4, 12, 8, 6, 14, 10, 11, 15, 7), (0, 5, 9, 8, 7), (1, 7, 2, 10, 9),
(1, 6, 9, 2, 8), (5, 11, 9, 3, 8), (6, 12, 9, 7, 10), (8, 11, 12, 5, 10),
(4, 11, 6, 13, 10), (7, 13, 14, 11), (3, 10, 12, 13, 11)

J7 → 46, 54, 12∗ (5, 13, 9, 4, 12, 8, 6, 14, 10, 11, 15, 7), (0, 5, 9, 8, 7), (1, 7, 2, 10, 9),
(1, 6, 9, 2, 8), (5, 11, 9, 3, 8), (6, 11, 3, 10), (7, 10, 12, 9), (8, 11, 4, 10),
(5, 10, 13, 12), (11, 13, 6, 12), (7, 13, 14, 11)

Table A.18: Table of decompositions of J
{1,2,3,4,5,6,7,8}
n

187



J7 → 411, 12∗ (5, 13, 9, 4, 12, 8, 6, 14, 10, 11, 15, 7), (0, 5, 8, 7), (1, 7, 2, 9), (1, 6, 9, 8),
(2, 8, 3, 10), (5, 11, 7, 9), (3, 9, 12, 11), (6, 12, 5, 10), (7, 13, 12, 10),
(9, 11, 8, 10), (4, 11, 13, 10), (6, 11, 14, 13)

J7 → 3, 44, 55, 12∗ (5, 13, 9, 4, 12, 8, 6, 14, 10, 11, 15, 7), (0, 5, 9, 8, 7), (1, 7, 2, 10, 9),
(1, 6, 9, 2, 8), (5, 11, 9, 3, 8), (6, 12, 11, 7, 10), (3, 10, 8, 11), (4, 11, 13, 10),
(5, 10, 12), (6, 11, 14, 13), (7, 13, 12, 9)

J7 → 3, 49, 5, 12∗ (5, 13, 9, 4, 12, 8, 6, 14, 10, 11, 15, 7), (0, 5, 9, 8, 7), (1, 7, 2, 9), (1, 6, 10, 8),
(2, 8, 3, 10), (5, 12, 11, 8), (6, 13, 10, 9), (4, 11, 5, 10), (9, 12, 6, 11),
(7, 11, 3, 9), (7, 13, 12, 10), (11, 14, 13)

J7 → 32, 42, 56, 12∗ (5, 13, 9, 4, 12, 8, 6, 14, 10, 11, 15, 7), (0, 5, 9, 8, 7), (1, 7, 2, 10, 9),
(1, 6, 9, 2, 8), (5, 11, 9, 3, 8), (6, 12, 11, 7, 10), (3, 10, 8, 11),
(4, 11, 6, 13, 10), (5, 10, 12), (7, 13, 12, 9), (11, 14, 13)

J7 → 32, 47, 52, 12∗ (5, 13, 9, 4, 12, 8, 6, 14, 10, 11, 15, 7), (0, 5, 9, 8, 7), (1, 7, 2, 10, 9),
(1, 6, 10, 8), (5, 11, 3, 8), (2, 9, 11, 8), (6, 13, 7, 9), (3, 10, 12, 9),
(7, 11, 4, 10), (5, 10, 13, 12), (11, 6, 12), (11, 14, 13)

J7 → 33, 57, 12∗ (5, 13, 9, 4, 12, 8, 6, 14, 10, 11, 15, 7), (0, 5, 9, 8, 7), (1, 7, 2, 10, 9),
(1, 6, 9, 2, 8), (5, 11, 3, 10, 8), (5, 10, 12), (6, 11, 9, 7, 10), (3, 8, 11, 12, 9),
(7, 13, 10, 4, 11), (12, 6, 13), (11, 14, 13)

J7 → 33, 45, 53, 12∗ (5, 13, 9, 4, 12, 8, 6, 14, 10, 11, 15, 7), (0, 5, 9, 8, 7), (1, 7, 2, 10, 9),
(1, 6, 9, 2, 8), (5, 11, 3, 8), (6, 13, 7, 10), (3, 10, 12, 9), (7, 11, 9),
(8, 11, 4, 10), (5, 10, 13, 12), (11, 6, 12), (11, 14, 13)

J7 → 34, 43, 54, 12∗ (5, 13, 9, 4, 12, 8, 6, 14, 10, 11, 15, 7), (0, 5, 9, 8, 7), (1, 7, 2, 10, 9),
(1, 6, 9, 2, 8), (5, 11, 9, 3, 8), (6, 11, 3, 10), (7, 11, 12, 9), (12, 6, 13),
(5, 10, 12), (8, 11, 4, 10), (7, 13, 10), (11, 14, 13)

J7 → 34, 48, 12∗ (5, 13, 9, 4, 12, 8, 6, 14, 10, 11, 15, 7), (0, 5, 8, 7), (1, 7, 2, 9), (1, 6, 9, 8),
(2, 8, 3, 10), (5, 11, 7, 9), (3, 9, 11), (6, 12, 9, 10), (7, 13, 10), (5, 10, 12),
(8, 11, 4, 10), (6, 11, 14, 13), (11, 13, 12)

J7 → 35, 4, 55, 12∗ (5, 13, 9, 4, 12, 8, 6, 14, 10, 11, 15, 7), (0, 5, 9, 8, 7), (1, 7, 2, 10, 9),
(1, 6, 9, 2, 8), (5, 11, 6, 10, 8), (3, 8, 11, 4, 10), (5, 10, 12), (3, 9, 12, 11),
(12, 6, 13), (7, 11, 9), (7, 13, 10), (11, 14, 13)

J7 → 35, 46, 5, 12∗ (5, 13, 9, 4, 12, 8, 6, 14, 10, 11, 15, 7), (0, 5, 9, 8, 7), (1, 7, 2, 9), (1, 6, 10, 8),
(2, 8, 3, 10), (5, 12, 11, 8), (6, 11, 7, 9), (9, 12, 10), (3, 9, 11), (4, 11, 5, 10),
(7, 13, 10), (12, 6, 13), (11, 14, 13)

J7 → 36, 44, 52, 12∗ (5, 13, 9, 4, 12, 8, 6, 14, 10, 11, 15, 7), (0, 5, 9, 8, 7), (1, 7, 2, 10, 9),
(1, 6, 10, 8), (5, 11, 8), (2, 9, 3, 8), (6, 11, 12, 9), (7, 11, 9), (12, 6, 13),
(7, 13, 10), (3, 10, 4, 11), (5, 10, 12), (11, 14, 13)

J7 → 37, 42, 53, 12∗ (5, 13, 9, 4, 12, 8, 6, 14, 10, 11, 15, 7), (0, 5, 9, 8, 7), (1, 7, 2, 10, 9),
(1, 6, 9, 2, 8), (5, 10, 8), (6, 11, 4, 10), (12, 6, 13), (3, 8, 11), (3, 10, 12, 9),
(7, 11, 9), (11, 5, 12), (7, 13, 10), (11, 14, 13)

J7 → 38, 54, 12∗ (5, 13, 9, 4, 12, 8, 6, 14, 10, 11, 15, 7), (0, 5, 9, 8, 7), (1, 8, 2, 9, 7),
(3, 8, 11, 4, 10), (5, 10, 8), (1, 6, 9), (6, 11, 7, 2, 10), (3, 9, 11), (7, 13, 10),
(11, 5, 12), (11, 14, 13), (12, 6, 13), (9, 12, 10)

J7 → 38, 45, 12∗ (5, 13, 9, 4, 12, 8, 6, 14, 10, 11, 15, 7), (0, 5, 8, 7), (1, 7, 2, 9), (1, 6, 9, 8),
(2, 8, 10), (6, 11, 4, 10), (7, 11, 9), (3, 8, 11), (3, 10, 12, 9), (5, 10, 9),
(7, 13, 10), (11, 5, 12), (12, 6, 13), (11, 14, 13)

J7 → 39, 43, 5, 12∗ (5, 13, 9, 4, 12, 8, 6, 14, 10, 11, 15, 7), (0, 5, 9, 8, 7), (1, 8, 2, 7),
(7, 11, 4, 10), (2, 9, 10), (5, 11, 8), (1, 6, 9), (7, 13, 12, 9), (3, 9, 11),
(3, 8, 10), (5, 10, 12), (6, 13, 10), (11, 6, 12), (11, 14, 13)

Table A.18: Table of decompositions of J
{1,2,3,4,5,6,7,8}
n

188



J7 → 310, 4, 52, 12∗ (5, 13, 9, 4, 12, 8, 6, 14, 10, 11, 15, 7), (0, 5, 9, 8, 7), (5, 11, 7, 1, 8),
(3, 8, 11), (2, 8, 10), (6, 11, 4, 10), (1, 6, 9), (5, 10, 12), (9, 3, 10), (2, 7, 9),
(7, 13, 10), (11, 14, 13), (9, 12, 11), (12, 6, 13)

J7 → 312, 42, 12∗ (5, 13, 9, 4, 12, 8, 6, 14, 10, 11, 15, 7), (0, 5, 11, 7), (7, 1, 8), (6, 11, 4, 10),
(9, 3, 10), (1, 6, 9), (2, 8, 10), (2, 7, 9), (3, 8, 11), (5, 9, 8), (5, 10, 12),
(9, 12, 11), (12, 6, 13), (7, 13, 10), (11, 14, 13)

J7 → 313, 5, 12∗ (5, 8, 12, 6, 9, 13, 14, 10, 4, 11, 15, 7), (0, 5, 12, 13, 7), (6, 13, 10),
(5, 11, 13), (1, 7, 9), (1, 6, 8), (5, 10, 9), (8, 2, 9), (2, 7, 10), (6, 11, 14),
(7, 11, 8), (3, 8, 10), (3, 9, 11), (10, 12, 11), (4, 9, 12)

J8 → 316, 4, 12∗ (5, 9, 13, 6, 10, 14, 8, 16, 12, 11, 15, 7), (5, 10, 8), (0, 5, 12, 7), (3, 8, 11),
(7, 1, 8), (1, 6, 9), (8, 2, 9), (4, 9, 12), (2, 7, 10), (9, 3, 10), (10, 4, 11),
(7, 11, 9), (5, 11, 13), (6, 12, 8), (10, 13, 12), (13, 7, 14), (6, 11, 14),
(12, 15, 14)

J9 → 512, 12∗ (7, 10, 14, 6, 11, 15, 9, 17, 13, 12, 16, 8), (0, 5, 8, 1, 7), (1, 6, 8, 2, 9),
(5, 9, 10, 2, 7), (8, 3, 10, 6, 9), (7, 13, 11, 3, 9), (8, 12, 4, 9, 11),
(7, 15, 12, 10, 11), (4, 11, 12, 5, 10), (5, 11, 14, 8, 13), (8, 15, 16, 13, 10),
(9, 13, 14, 7, 12), (6, 13, 15, 14, 12)

J9 → 320, 12∗ (7, 15, 11, 14, 10, 6, 9, 17, 13, 12, 16, 8), (9, 3, 10), (0, 5, 7), (6, 11, 13),
(1, 6, 8), (7, 12, 11), (4, 9, 11), (3, 8, 11), (10, 5, 11), (1, 7, 9), (8, 2, 9),
(2, 7, 10), (5, 12, 8), (4, 10, 12), (8, 13, 10), (5, 13, 9), (6, 12, 14),
(13, 7, 14), (14, 8, 15), (9, 15, 12), (13, 16, 15)

J12 → 328, 12∗ (10, 12, 20, 16, 13, 17, 9, 14, 18, 19, 15, 11), (0, 5, 7), (1, 6, 9), (7, 1, 8),
(2, 7, 10), (8, 2, 9), (3, 8, 10), (3, 9, 11), (9, 4, 10), (4, 11, 12), (6, 11, 13),
(5, 12, 9), (5, 11, 8), (5, 10, 13), (6, 12, 8), (6, 14, 10), (12, 18, 16),
(7, 14, 11), (7, 13, 9), (8, 13, 15), (7, 12, 15), (12, 14, 13), (10, 15, 18),
(17, 11, 18), (14, 17, 15), (16, 10, 17), (8, 14, 16), (15, 9, 16), (11, 16, 19)

J7 → 42, 57, 13∗ (5, 8, 12, 4, 10, 14, 6, 13, 9, 3, 11, 15, 7), (0, 5, 9, 8, 7), (1, 7, 2, 10, 9),
(1, 6, 9, 2, 8), (10, 12, 13, 5, 11), (6, 10, 3, 8), (7, 13, 11, 4, 9),
(7, 11, 12, 5, 10), (9, 12, 6, 11), (8, 11, 14, 13, 10)

J7 → 47, 53, 13∗ (5, 8, 12, 4, 10, 14, 6, 13, 9, 3, 11, 15, 7), (0, 5, 9, 8, 7), (1, 7, 2, 10, 9),
(1, 6, 9, 2, 8), (5, 10, 12, 13), (6, 10, 3, 8), (4, 9, 12, 11), (5, 12, 6, 11),
(7, 13, 11, 9), (7, 11, 8, 10), (10, 13, 14, 11)

J7 → 3, 58, 13∗ (5, 8, 12, 4, 10, 14, 6, 13, 9, 3, 11, 15, 7), (0, 5, 9, 8, 7), (1, 7, 2, 10, 9),
(1, 6, 8), (6, 10, 8, 2, 9), (7, 11, 8, 3, 10), (10, 12, 13, 5, 11), (4, 9, 12, 6, 11),
(11, 13, 10, 5, 12), (7, 13, 14, 11, 9)

J7 → 3, 45, 54, 13∗ (5, 8, 12, 4, 10, 14, 6, 13, 9, 3, 11, 15, 7), (0, 5, 9, 8, 7), (1, 7, 2, 10, 9),
(1, 6, 8), (6, 10, 8, 2, 9), (7, 11, 8, 3, 10), (5, 10, 12, 13), (4, 9, 12, 11),
(5, 12, 6, 11), (7, 13, 11, 9), (10, 13, 14, 11)

J7 → 3, 410, 13∗ (5, 8, 12, 4, 10, 14, 6, 13, 9, 3, 11, 15, 7), (0, 5, 9, 7), (7, 1, 9, 8), (1, 6, 8),
(2, 8, 3, 10), (2, 7, 10, 9), (11, 5, 13, 12), (6, 11, 4, 9), (6, 12, 5, 10),
(7, 13, 14, 11), (8, 11, 13, 10), (10, 12, 9, 11)

J7 → 32, 43, 55, 13∗ (5, 8, 12, 4, 10, 14, 6, 13, 9, 3, 11, 15, 7), (0, 5, 9, 8, 7), (1, 7, 2, 10, 9),
(1, 6, 8), (6, 10, 8, 2, 9), (7, 11, 8, 3, 10), (5, 11, 6, 12, 13), (7, 13, 11, 9),
(4, 9, 12, 11), (5, 10, 12), (10, 13, 14, 11)

J7 → 32, 48, 5, 13∗ (5, 8, 12, 4, 10, 14, 6, 13, 9, 3, 11, 15, 7), (0, 5, 9, 8, 7), (1, 7, 2, 9), (1, 6, 8),
(2, 8, 3, 10), (11, 5, 13, 12), (6, 10, 7, 9), (7, 13, 14, 11), (5, 10, 12),
(9, 12, 6, 11), (9, 4, 11, 10), (8, 11, 13, 10)

Table A.18: Table of decompositions of J
{1,2,3,4,5,6,7,8}
n

189



J7 → 33, 4, 56, 13∗ (5, 8, 12, 4, 10, 14, 6, 13, 9, 3, 11, 15, 7), (0, 5, 9, 8, 7), (1, 7, 2, 10, 9),
(1, 6, 8), (6, 10, 8, 2, 9), (7, 11, 8, 3, 10), (9, 12, 13, 5, 11), (7, 13, 11, 4, 9),
(5, 10, 12), (11, 6, 12), (10, 13, 14, 11)

J7 → 33, 46, 52, 13∗ (5, 8, 12, 4, 10, 14, 6, 13, 9, 3, 11, 15, 7), (0, 5, 9, 8, 7), (1, 7, 2, 10, 9),
(1, 6, 8), (2, 9, 11, 8), (3, 8, 10), (11, 5, 13, 12), (6, 11, 4, 9), (7, 10, 12, 9),
(6, 12, 5, 10), (10, 13, 11), (7, 13, 14, 11)

J7 → 34, 44, 53, 13∗ (5, 8, 12, 4, 10, 14, 6, 13, 9, 3, 11, 15, 7), (0, 5, 9, 8, 7), (1, 7, 2, 10, 9),
(1, 6, 8), (6, 10, 8, 2, 9), (3, 8, 11, 10), (11, 5, 13, 12), (7, 11, 4, 9),
(7, 13, 10), (5, 10, 12), (9, 12, 6, 11), (11, 14, 13)

J7 → 35, 42, 54, 13∗ (5, 8, 12, 4, 10, 14, 6, 13, 9, 3, 11, 15, 7), (0, 5, 9, 8, 7), (1, 7, 2, 10, 9),
(1, 6, 8), (6, 10, 8, 2, 9), (7, 11, 8, 3, 10), (10, 13, 5, 11), (4, 9, 11),
(5, 10, 12), (11, 6, 12), (7, 13, 12, 9), (11, 14, 13)

J7 → 35, 47, 13∗ (5, 8, 12, 4, 10, 14, 6, 13, 9, 3, 11, 15, 7), (0, 5, 9, 7), (7, 1, 9, 8), (1, 6, 8),
(2, 8, 3, 10), (2, 7, 10, 9), (11, 5, 13, 12), (6, 12, 9), (4, 9, 11), (5, 10, 12),
(10, 13, 14, 11), (7, 13, 11), (6, 11, 8, 10)

J7 → 36, 55, 13∗ (5, 8, 12, 4, 10, 14, 6, 13, 9, 3, 11, 15, 7), (0, 5, 9, 8, 7), (1, 7, 2, 10, 9),
(1, 6, 8), (6, 10, 8, 2, 9), (7, 11, 8, 3, 10), (5, 12, 13), (7, 13, 10, 12, 9),
(4, 9, 11), (10, 5, 11), (11, 6, 12), (11, 14, 13)

J7 → 36, 45, 5, 13∗ (5, 8, 12, 4, 10, 14, 6, 13, 9, 3, 11, 15, 7), (0, 5, 9, 8, 7), (1, 7, 2, 9), (1, 6, 8),
(2, 8, 3, 10), (11, 5, 13, 12), (6, 11, 7, 9), (4, 9, 11), (6, 12, 10),
(9, 12, 5, 10), (8, 11, 10), (7, 13, 10), (11, 14, 13)

J7 → 37, 43, 52, 13∗ (5, 8, 12, 4, 10, 14, 6, 13, 9, 3, 11, 15, 7), (0, 5, 9, 8, 7), (1, 7, 2, 10, 9),
(1, 6, 8), (2, 9, 11, 8), (3, 8, 10), (11, 5, 13, 12), (6, 12, 9), (5, 10, 12),
(7, 11, 4, 9), (7, 13, 10), (6, 11, 10), (11, 14, 13)

J7 → 38, 4, 53, 13∗ (5, 8, 12, 4, 10, 14, 6, 13, 9, 3, 11, 15, 7), (0, 5, 9, 8, 7), (1, 7, 2, 10, 9),
(1, 6, 8), (2, 9, 4, 11, 8), (3, 8, 10), (11, 6, 12), (6, 10, 12, 9), (7, 11, 9),
(5, 12, 13), (10, 5, 11), (7, 13, 10), (11, 14, 13)

J7 → 39, 44, 13∗ (5, 8, 12, 4, 10, 14, 6, 13, 9, 3, 11, 15, 7), (0, 5, 9, 7), (7, 1, 9, 8), (1, 6, 8),
(2, 7, 11, 8), (3, 8, 10), (6, 11, 12, 9), (4, 9, 11), (2, 9, 10), (6, 12, 10),
(5, 12, 13), (10, 5, 11), (7, 13, 10), (11, 14, 13)

J7 → 310, 42, 5, 13∗ (5, 8, 12, 4, 10, 14, 6, 13, 9, 3, 11, 15, 7), (0, 5, 9, 8, 7), (1, 8, 2, 7),
(7, 11, 4, 9), (3, 8, 10), (1, 6, 9), (6, 11, 8), (2, 9, 10), (6, 12, 10),
(9, 12, 11), (5, 12, 13), (10, 5, 11), (7, 13, 10), (11, 14, 13)

J7 → 311, 52, 13∗ (5, 8, 12, 4, 10, 14, 6, 13, 9, 3, 11, 15, 7), (0, 5, 11, 8, 7), (8, 2, 9), (1, 6, 8),
(1, 7, 9), (2, 7, 11, 12, 10), (3, 8, 10), (5, 10, 9), (4, 9, 11), (6, 12, 9),
(6, 11, 10), (5, 12, 13), (7, 13, 10), (11, 14, 13)

J7 → 313, 4, 13∗ (5, 8, 12, 4, 10, 14, 6, 13, 9, 3, 11, 15, 7), (0, 5, 13, 7), (1, 6, 8), (1, 7, 9),
(2, 7, 10), (7, 11, 8), (8, 2, 9), (3, 8, 10), (4, 9, 11), (6, 12, 9), (5, 10, 9),
(6, 11, 10), (11, 5, 12), (10, 13, 12), (11, 14, 13)

J8 → 317, 13∗ (5, 11, 15, 7, 13, 9, 6, 14, 10, 4, 12, 16, 8), (0, 5, 7), (5, 12, 9), (1, 7, 9),
(8, 2, 9), (4, 9, 11), (9, 3, 10), (1, 6, 8), (2, 7, 10), (5, 10, 13), (6, 11, 10),
(8, 12, 10), (3, 8, 11), (12, 6, 13), (11, 14, 13), (7, 12, 11), (7, 14, 8),
(12, 15, 14)

J9 → 4, 511, 13∗ (5, 13, 17, 9, 12, 16, 15, 11, 14, 10, 6, 8, 7), (0, 5, 8, 1, 7), (1, 6, 14, 8, 9),
(2, 8, 3, 9, 10), (5, 10, 7, 2, 9), (3, 10, 8, 12, 11), (10, 4, 12, 5, 11),
(6, 12, 13, 7, 9), (8, 13, 9, 4, 11), (7, 12, 10, 13, 11), (13, 16, 8, 15, 14),
(9, 15, 13, 6, 11), (7, 14, 12, 15)

Table A.18: Table of decompositions of J
{1,2,3,4,5,6,7,8}
n

190



J11 → 515, 13∗ (7, 15, 19, 11, 14, 18, 17, 13, 16, 12, 10, 9, 8), (0, 5, 8, 1, 7), (1, 6, 8, 2, 9),
(7, 11, 3, 8, 10), (5, 13, 10, 2, 7), (5, 11, 10, 6, 9), (3, 10, 4, 11, 9),
(8, 14, 10, 5, 12), (4, 9, 13, 11, 12), (6, 12, 7, 13, 14), (7, 14, 12, 15, 9),
(8, 15, 13, 6, 11), (9, 16, 8, 13, 12), (14, 9, 17, 16, 15), (11, 17, 10, 18, 15),
(14, 17, 15, 10, 16)

J11 → 325, 13∗ (7, 15, 19, 11, 8, 12, 16, 10, 13, 17, 18, 14, 9), (0, 5, 7), (7, 1, 8), (2, 7, 10),
(8, 2, 9), (1, 6, 9), (9, 4, 10), (3, 9, 11), (3, 8, 10), (11, 17, 15), (7, 14, 11),
(4, 11, 12), (6, 11, 13), (10, 5, 11), (5, 13, 8), (5, 12, 9), (6, 12, 10),
(6, 14, 8), (12, 7, 13), (8, 15, 16), (13, 16, 14), (9, 16, 17), (10, 17, 14),
(9, 15, 13), (10, 15, 18), (12, 15, 14)

J8 → 510, 14∗ (5, 13, 9, 6, 14, 10, 4, 12, 16, 8, 3, 11, 15, 7), (0, 5, 9, 8, 7), (1, 7, 10, 2, 9),
(5, 10, 6, 1, 8), (2, 7, 9, 10, 8), (3, 10, 11, 4, 9), (6, 12, 9, 11, 8),
(7, 14, 8, 12, 11), (13, 7, 12, 15, 14), (5, 12, 10, 13, 11), (12, 14, 11, 6, 13)

J8 → 45, 56, 14∗ (5, 13, 9, 6, 14, 10, 4, 12, 16, 8, 3, 11, 15, 7), (0, 5, 9, 8, 7), (1, 7, 10, 2, 9),
(5, 10, 6, 1, 8), (2, 7, 9, 10, 8), (3, 10, 11, 4, 9), (6, 12, 9, 11, 8),
(7, 14, 12, 11), (6, 11, 14, 13), (8, 14, 15, 12), (10, 13, 7, 12), (5, 12, 13, 11)

J8 → 410, 52, 14∗ (5, 13, 9, 6, 14, 10, 4, 12, 16, 8, 3, 11, 15, 7), (0, 5, 9, 8, 7), (1, 7, 10, 2, 9),
(1, 6, 10, 8), (2, 7, 11, 8), (5, 11, 6, 8), (7, 12, 10, 9), (4, 9, 12, 11),
(5, 10, 13, 12), (6, 13, 14, 12), (8, 14, 15, 12), (3, 10, 11, 9), (11, 14, 7, 13)

J8 → 3, 43, 57, 14∗ (5, 13, 9, 6, 14, 10, 4, 12, 16, 8, 3, 11, 15, 7), (0, 5, 9, 8, 7), (1, 7, 10, 2, 9),
(1, 6, 8), (2, 7, 9, 10, 8), (3, 10, 11, 4, 9), (5, 12, 9, 11, 8), (6, 12, 11, 5, 10),
(7, 14, 13, 6, 11), (8, 14, 15, 12), (10, 13, 7, 12), (12, 14, 11, 13)

J8 → 3, 48, 53, 14∗ (5, 13, 9, 6, 14, 10, 4, 12, 16, 8, 3, 11, 15, 7), (0, 5, 9, 8, 7), (1, 7, 10, 2, 9),
(1, 6, 8), (2, 7, 9, 10, 8), (3, 10, 11, 9), (4, 9, 12, 11), (5, 10, 12, 8),
(5, 12, 14, 11), (6, 11, 13, 10), (6, 13, 7, 12), (7, 14, 8, 11), (12, 15, 14, 13)

J8 → 32, 4, 58, 14∗ (5, 13, 9, 6, 14, 10, 4, 12, 16, 8, 3, 11, 15, 7), (0, 5, 9, 8, 7), (1, 7, 10, 2, 9),
(1, 6, 8), (2, 7, 9, 10, 8), (3, 10, 11, 4, 9), (5, 12, 9, 11, 8), (6, 12, 11, 5, 10),
(7, 14, 13, 6, 11), (8, 14, 11, 13, 12), (10, 13, 7, 12), (12, 15, 14)

J8 → 32, 46, 54, 14∗ (5, 13, 9, 6, 14, 10, 4, 12, 16, 8, 3, 11, 15, 7), (0, 5, 9, 8, 7), (1, 7, 10, 2, 9),
(1, 6, 8), (2, 7, 9, 10, 8), (3, 10, 11, 4, 9), (5, 12, 11, 8), (6, 11, 5, 10),
(7, 12, 9, 11), (8, 14, 13, 12), (10, 13, 6, 12), (11, 14, 7, 13), (12, 15, 14)

J8 → 32, 411, 14∗ (5, 13, 9, 6, 14, 10, 4, 12, 16, 8, 3, 11, 15, 7), (0, 5, 8, 7), (1, 7, 2, 9), (1, 6, 8),
(5, 11, 8, 9), (2, 8, 10), (6, 12, 9, 10), (7, 11, 4, 9), (8, 14, 15, 12),
(3, 10, 11, 9), (11, 14, 7, 13), (11, 6, 13, 12), (7, 12, 5, 10), (10, 13, 14, 12)

J8 → 33, 44, 55, 14∗ (5, 13, 9, 6, 14, 10, 4, 12, 16, 8, 3, 11, 15, 7), (0, 5, 9, 8, 7), (1, 7, 10, 2, 9),
(1, 6, 8), (2, 7, 9, 10, 8), (3, 10, 11, 4, 9), (5, 12, 9, 11, 8), (6, 11, 5, 10),
(7, 13, 12, 11), (8, 14, 7, 12), (10, 13, 6, 12), (11, 14, 13), (12, 15, 14)

J8 → 33, 49, 5, 14∗ (5, 13, 9, 6, 14, 10, 4, 12, 16, 8, 3, 11, 15, 7), (0, 5, 9, 8, 7), (1, 7, 2, 9),
(1, 6, 8), (5, 10, 2, 8), (6, 12, 9, 10), (7, 10, 3, 9), (4, 9, 11), (7, 13, 10, 11),
(8, 12, 11), (6, 11, 14, 13), (5, 12, 13, 11), (7, 12, 15, 14), (8, 14, 12, 10)

J8 → 34, 42, 56, 14∗ (5, 13, 9, 6, 14, 10, 4, 12, 16, 8, 3, 11, 15, 7), (0, 5, 9, 8, 7), (1, 7, 10, 2, 9),
(1, 6, 8), (2, 7, 9, 10, 8), (3, 10, 11, 4, 9), (5, 12, 9, 11, 8), (6, 12, 11, 5, 10),
(7, 13, 6, 11), (8, 14, 7, 12), (10, 13, 12), (11, 14, 13), (12, 15, 14)

J8 → 34, 47, 52, 14∗ (5, 13, 9, 6, 14, 10, 4, 12, 16, 8, 3, 11, 15, 7), (0, 5, 9, 8, 7), (1, 7, 10, 2, 9),
(1, 6, 8), (2, 7, 11, 8), (5, 11, 10, 8), (4, 9, 11), (6, 12, 5, 10), (3, 10, 12, 9),
(7, 13, 10, 9), (8, 14, 11, 12), (6, 11, 13), (12, 7, 14, 13), (12, 15, 14)

Table A.18: Table of decompositions of J
{1,2,3,4,5,6,7,8}
n

191



J8 → 35, 57, 14∗ (5, 13, 9, 6, 14, 10, 4, 12, 16, 8, 3, 11, 15, 7), (0, 5, 9, 8, 7), (1, 7, 10, 2, 9),
(1, 6, 8), (2, 7, 9, 10, 8), (3, 10, 11, 4, 9), (5, 12, 9, 11, 8), (6, 12, 11, 5, 10),
(7, 12, 15, 14, 11), (6, 11, 13), (8, 14, 12), (13, 7, 14), (10, 13, 12)

J8 → 35, 45, 53, 14∗ (5, 13, 9, 6, 14, 10, 4, 12, 16, 8, 3, 11, 15, 7), (0, 5, 9, 8, 7), (1, 7, 10, 2, 9),
(1, 6, 8), (2, 7, 9, 10, 8), (3, 10, 11, 9), (4, 9, 12, 11), (5, 11, 8),
(6, 12, 5, 10), (7, 13, 6, 11), (8, 14, 7, 12), (10, 13, 12), (11, 14, 13),
(12, 15, 14)

J8 → 36, 43, 54, 14∗ (5, 13, 9, 6, 14, 10, 4, 12, 16, 8, 3, 11, 15, 7), (0, 5, 9, 8, 7), (1, 7, 10, 2, 9),
(1, 6, 8), (2, 7, 9, 10, 8), (3, 10, 11, 4, 9), (5, 11, 8), (5, 10, 12),
(6, 11, 13, 10), (7, 12, 9, 11), (12, 6, 13), (13, 7, 14), (8, 14, 15, 12),
(11, 14, 12)

J8 → 36, 48, 14∗ (5, 13, 9, 6, 14, 10, 4, 12, 16, 8, 3, 11, 15, 7), (0, 5, 8, 7), (1, 7, 2, 9), (1, 6, 8),
(5, 11, 8, 9), (2, 8, 10), (6, 12, 9, 10), (7, 10, 3, 9), (4, 9, 11), (7, 13, 10, 11),
(5, 10, 12), (8, 14, 11, 12), (6, 11, 13), (12, 7, 14, 13), (12, 15, 14)

J8 → 37, 4, 55, 14∗ (5, 13, 9, 6, 14, 10, 4, 12, 16, 8, 3, 11, 15, 7), (0, 5, 9, 8, 7), (1, 7, 10, 2, 9),
(1, 6, 8), (2, 7, 9, 10, 8), (3, 10, 11, 4, 9), (5, 11, 8), (6, 12, 7, 13, 10),
(5, 10, 12), (9, 12, 11), (6, 11, 13), (7, 14, 11), (12, 15, 14, 13), (8, 14, 12)

J8 → 37, 46, 5, 14∗ (5, 13, 9, 6, 14, 10, 4, 12, 16, 8, 3, 11, 15, 7), (0, 5, 9, 8, 7), (1, 7, 2, 9),
(1, 6, 8), (5, 10, 2, 8), (6, 12, 9, 10), (7, 10, 3, 9), (4, 9, 11), (7, 13, 10, 11),
(8, 12, 10), (7, 12, 15, 14), (11, 5, 12), (12, 14, 13), (6, 11, 13), (8, 14, 11)

J8 → 38, 44, 52, 14∗ (5, 13, 9, 6, 14, 10, 4, 12, 16, 8, 3, 11, 15, 7), (0, 5, 9, 8, 7), (1, 7, 10, 2, 9),
(1, 6, 8), (2, 7, 11, 8), (5, 11, 10, 8), (4, 9, 11), (6, 12, 5, 10), (9, 3, 10),
(7, 12, 9), (6, 11, 13), (13, 7, 14), (10, 13, 12), (11, 14, 15, 12), (8, 14, 12)

J8 → 39, 42, 53, 14∗ (5, 13, 9, 6, 14, 10, 4, 12, 16, 8, 3, 11, 15, 7), (0, 5, 9, 8, 7), (1, 7, 10, 2, 9),
(1, 6, 8), (2, 7, 9, 10, 8), (3, 10, 12, 9), (4, 9, 11), (6, 11, 5, 10), (5, 12, 8),
(12, 6, 13), (7, 12, 11), (13, 7, 14), (8, 14, 11), (10, 13, 11), (12, 15, 14)

J8 → 310, 54, 14∗ (5, 13, 9, 6, 14, 10, 4, 12, 16, 8, 3, 11, 15, 7), (0, 5, 9, 8, 7), (1, 7, 10, 2, 9),
(1, 6, 8), (2, 7, 9, 10, 8), (6, 12, 9, 3, 10), (4, 9, 11), (5, 12, 8), (10, 5, 11),
(6, 11, 13), (10, 13, 12), (13, 7, 14), (7, 12, 11), (8, 14, 11), (12, 15, 14)

J8 → 310, 45, 14∗ (5, 13, 9, 6, 14, 10, 4, 12, 16, 8, 3, 11, 15, 7), (0, 5, 8, 7), (1, 7, 2, 9), (1, 6, 8),
(5, 11, 8, 9), (2, 8, 10), (6, 13, 7, 10), (4, 9, 11), (7, 12, 9), (9, 3, 10),
(5, 10, 12), (11, 6, 12), (10, 13, 11), (7, 14, 11), (12, 15, 14, 13), (8, 14, 12)

J8 → 311, 43, 5, 14∗ (5, 13, 9, 6, 14, 10, 4, 12, 16, 8, 3, 11, 15, 7), (0, 5, 9, 8, 7), (1, 7, 2, 9),
(1, 6, 8), (5, 10, 2, 8), (6, 11, 7, 10), (9, 3, 10), (4, 9, 11), (8, 14, 11),
(10, 13, 11), (13, 7, 14), (11, 5, 12), (12, 6, 13), (7, 12, 9), (8, 12, 10),
(12, 15, 14)

J8 → 312, 4, 52, 14∗ (5, 13, 9, 6, 14, 10, 4, 12, 16, 8, 3, 11, 15, 7), (0, 5, 9, 8, 7), (1, 6, 10, 2, 9),
(1, 8, 2, 7), (5, 10, 8), (9, 3, 10), (4, 9, 11), (6, 11, 13), (6, 12, 8), (7, 12, 9),
(11, 5, 12), (10, 13, 12), (7, 11, 10), (13, 7, 14), (8, 14, 11), (12, 15, 14)

J8 → 314, 42, 14∗ (5, 13, 9, 6, 14, 10, 4, 12, 16, 8, 3, 11, 15, 7), (0, 5, 8, 7), (1, 7, 9), (8, 2, 9),
(1, 6, 12, 8), (2, 7, 10), (6, 10, 8), (9, 3, 10), (4, 9, 11), (10, 5, 11),
(5, 12, 9), (10, 13, 12), (7, 12, 11), (6, 11, 13), (8, 14, 11), (13, 7, 14),
(12, 15, 14)

J8 → 315, 5, 14∗ (5, 13, 9, 6, 14, 10, 4, 12, 16, 8, 3, 11, 15, 7), (0, 5, 9, 1, 7), (9, 3, 10),
(1, 6, 8), (2, 7, 9), (4, 9, 11), (2, 8, 10), (6, 13, 10), (11, 6, 12), (8, 12, 9),
(5, 10, 12), (5, 11, 8), (7, 11, 10), (11, 14, 13), (12, 7, 13), (7, 14, 8),
(12, 15, 14)

Table A.18: Table of decompositions of J
{1,2,3,4,5,6,7,8}
n
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J9 → 318, 4, 14∗ (5, 13, 17, 9, 4, 10, 14, 6, 12, 16, 15, 11, 8, 7), (0, 5, 11, 7), (1, 7, 9), (1, 6, 8),
(5, 12, 8), (8, 13, 16), (3, 9, 11), (2, 7, 10), (8, 2, 9), (3, 8, 10), (5, 10, 9),
(6, 11, 10), (6, 13, 9), (4, 11, 12), (10, 13, 12), (9, 15, 12), (11, 14, 13),
(7, 13, 15), (7, 12, 14), (14, 8, 15)

J10 → 322, 14∗ (5, 12, 16, 17, 13, 9, 15, 11, 7, 10, 18, 14, 6, 8), (0, 5, 7), (7, 1, 8), (1, 6, 9),
(2, 7, 9), (2, 8, 10), (10, 16, 14), (5, 10, 13), (6, 12, 10), (10, 4, 11),
(9, 3, 10), (3, 8, 11), (5, 11, 9), (4, 9, 12), (6, 11, 13), (8, 13, 12),
(9, 14, 17), (8, 16, 9), (11, 14, 12), (13, 7, 14), (7, 12, 15), (14, 8, 15),
(13, 16, 15)

J11 → 4, 514, 14∗ (7, 15, 19, 11, 14, 18, 17, 13, 16, 12, 10, 9, 6, 8), (0, 5, 8, 1, 7), (5, 10, 6, 1, 9),
(8, 2, 10, 7, 9), (2, 7, 11, 3, 9), (3, 8, 12, 11, 10), (4, 10, 13, 9, 12),
(4, 9, 17, 15, 11), (5, 13, 12, 14, 7), (5, 12, 6, 13, 11), (13, 7, 12, 15, 14),
(8, 11, 9, 14, 10), (6, 11, 17, 16, 14), (8, 15, 10, 17, 14), (8, 13, 15, 9, 16),
(15, 18, 10, 16)

J13 → 330, 14∗ (8, 12, 16, 20, 19, 15, 10, 18, 14, 11, 13, 21, 17, 9), (0, 5, 7), (7, 1, 8),
(1, 6, 9), (2, 8, 10), (3, 8, 11), (2, 7, 9), (9, 3, 10), (10, 4, 11), (4, 9, 12),
(5, 11, 9), (5, 10, 12), (5, 13, 8), (6, 13, 10), (6, 14, 8), (11, 6, 12),
(7, 15, 11), (12, 7, 13), (7, 14, 10), (8, 15, 16), (9, 14, 16), (9, 15, 13),
(12, 17, 20), (13, 17, 14), (12, 15, 14), (11, 17, 19), (16, 10, 17),
(18, 12, 19), (13, 19, 16), (15, 18, 17), (11, 16, 18)

J+
4 → 47, 4+∗ [8, 12, 4], [7, 11, 3], [6, 10, 2], [5, 9, 1], (0, 5, 1, 7), (5, 8, 9, 7), (2, 7, 3, 9),

(1, 6, 2, 8), (6, 9, 10, 8), (10, 4, 8, 11), (7, 10, 3, 8)
J+
5 → 57, 5+∗ [8, 12, 4], [7, 11, 3], [6, 10, 2], [1, 9, 13, 5], (0, 5, 8, 10, 7), (3, 10, 4, 11, 9),

(5, 1, 8, 2, 9), (1, 6, 8, 3, 7), (7, 2, 6, 9, 8), (5, 11, 12, 9, 7), (9, 4, 8, 11, 10)
J+
6 → 314, 6+∗ [8, 12, 4], [7, 11, 3], [2, 9, 13, 10, 14, 6], [1, 5], (1, 7, 9), (7, 2, 8), (0, 5, 7),

(7, 3, 10), (6, 2, 10), (1, 6, 8), (8, 3, 9), (5, 11, 8), (8, 4, 10), (4, 9, 11),
(5, 12, 13), (6, 12, 9), (5, 10, 9), (10, 12, 11)

J+
2 → 35, 1+ [4, 8], [3, 7], [6, 10, 2], [1, 5], (0, 5, 7), (7, 1, 8), (5, 9, 8), (6, 2, 8), (1, 6, 9)
J+
2 → 53, 1+ [4, 8], [3, 7], [2, 6], [5, 9, 1], (0, 5, 1, 8, 7), (5, 8, 6, 1, 7), (8, 2, 10, 6, 9)

J+
4 → 310, 2+ [8, 12, 4], [3, 7], [6, 9, 2], [1, 5], (0, 5, 7), (6, 2, 10), (1, 6, 8), (1, 7, 9),

(7, 11, 10), (7, 2, 8), (9, 3, 10), (8, 4, 10), (3, 8, 11), (5, 9, 8)
J+
4 → 56, 2+ [4, 8], [3, 7], [6, 10, 2], [5, 9, 1], (0, 5, 1, 8, 7), (5, 8, 6, 1, 7), (8, 10, 7, 2, 9),

(7, 11, 3, 10, 9), (6, 2, 8, 3, 9), (10, 4, 12, 8, 11)
J+
6 → 315, 3+ [4, 8], [3, 7], [2, 9, 13, 12, 6], [1, 5], (0, 5, 7), (11, 5, 12), (5, 10, 13),

(9, 3, 10), (6, 2, 8), (7, 11, 9), (7, 1, 8), (3, 8, 11), (10, 4, 11), (2, 7, 10),
(8, 12, 10), (4, 9, 12), (5, 9, 8), (1, 6, 9), (6, 14, 10)

J+
6 → 59, 3+ [4, 8], [3, 7], [2, 6], [1, 9, 10, 11, 5], (0, 5, 1, 8, 7), (5, 8, 6, 1, 7),

(6, 10, 2, 7, 9), (7, 11, 3, 8, 10), (3, 10, 4, 11, 9), (8, 11, 12, 4, 9),
(5, 12, 8, 2, 9), (12, 6, 14, 10, 13), (9, 13, 5, 10, 12)

J+
5 → 313, 1+ [4, 8], [3, 7], [6, 9, 2], [1, 5], (1, 7, 9), (0, 5, 7), (1, 6, 8), (7, 11, 10),

(7, 2, 8), (6, 2, 10), (9, 4, 10), (3, 8, 10), (8, 12, 9), (4, 11, 12), (5, 11, 8),
(3, 9, 11), (5, 13, 9)

J+
8 → 512, 4+ [4, 8], [3, 7], [2, 6], [1, 9, 10, 14, 13, 5], (0, 5, 1, 8, 7), (5, 8, 6, 1, 7),

(6, 10, 2, 7, 9), (7, 13, 6, 14, 11), (2, 9, 3, 11, 8), (4, 11, 6, 12, 10),
(7, 12, 8, 3, 10), (8, 16, 12, 13, 10), (5, 10, 11, 13, 9), (4, 9, 11, 5, 12),
(11, 15, 7, 14, 12), (8, 14, 15, 12, 9)

Table A.18: Table of decompositions of J
{1,2,3,4,5,6,7,8}
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J+
7 → 318, 2+ [4, 8], [3, 7], [2, 10, 14, 6], [1, 5], (0, 5, 7), (7, 1, 8), (1, 6, 9), (2, 7, 9),

(7, 15, 11), (8, 12, 9), (4, 10, 12), (6, 11, 10), (6, 2, 8), (7, 13, 10),
(5, 10, 8), (9, 3, 10), (3, 8, 11), (4, 9, 11), (12, 6, 13), (11, 5, 12), (5, 13, 9),
(11, 14, 13)

Table A.18: Table of decompositions of J
{1,2,3,4,5,6,7,8}
n
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A.2 Data for Section 1.6.2

L2 → 3, 4+, 1H [2, 4, 1, 0, 3], [3, 4], (1, 2, 3)
L2 → 4, 3+, 1H [2, 4, 1, 3], [3, 4], (0, 1, 2, 3)
L2 → 5, 2+, 1H [2, 1, 3], [3, 4], (0, 1, 5, 2, 3)
L2 → 32, 1+, 1H [2, 3], [3, 4], (0, 1, 3), (1, 2, 5)
L3 → 4, 5+, 2H [3, 0, 1, 2, 5, 4], [5, 3, 4], (1, 3, 2, 4)
L3 → 32, 3+, 2H [3, 2, 5, 4], [5, 3, 4], (0, 1, 3), (1, 2, 4)
L3 → 3, 4, 2+, 2H [3, 2, 4], [5, 3, 4], (0, 1, 3), (1, 2, 5, 4)
L4 → 5, 6+, 3H [4, 2, 1, 0, 3, 6, 5], [6, 4, 3, 5], (1, 3, 2, 5, 4)
L4 → 4, 5, 2+, 3H [4, 2, 5], [6, 4, 3, 5], (0, 1, 2, 3), (1, 3, 6, 5, 4)
L4 → 33, 2+, 3H [4, 6, 5], [6, 3, 4, 5], (0, 1, 3), (1, 2, 4), (2, 3, 5)
L5 → 32, 4, 3+, 4H [5, 2, 3, 6], [7, 5, 3, 4, 6], (0, 1, 3), (1, 2, 4), (4, 5, 6, 7)
P3 → 4, 2+, 3H [0, 3], [1, 4], [1, 3, 5], [2, 4], (2, 3, 4, 5)
P4 → 4, 4+, 4H [0, 3, 6, 5], [1, 4], [1, 3, 5], [2, 4, 6], (2, 3, 4, 5)
P4 → 5, 3+, 4H [0, 3, 5], [1, 4], [1, 3, 4, 6], [2, 5], (2, 3, 6, 5, 4)
P5 → 5, 5+, 5H [0, 3, 5], [1, 4, 7, 6], [1, 3, 4, 6], [2, 5, 7], (2, 3, 6, 5, 4)
P5 → 32, 4+, 5H [0, 3, 5], [1, 4, 6], [1, 3, 6], [2, 5, 4, 7], (2, 3, 4), (5, 6, 7)
P6 → 32, 6+, 6H [0, 3, 5, 8, 7], [1, 4, 6], [1, 3, 6, 8], [2, 5, 4, 7], (2, 3, 4), (5, 6, 7)
Q4 → 3, 2+, 5H [0, 3, 1], [1, 4, 6, 3, 5, 2], (2, 3, 4)
Q5 → 4, 3+, 6H [0, 3, 4, 1], [1, 3, 6, 4, 7, 5, 2], (2, 3, 5, 4)
Q6 → 5, 4+, 7H [0, 3, 5, 4, 1], [1, 3, 6, 8, 5, 7, 4, 2], (2, 3, 4, 6, 5)
R5 → 52, 5H [0, 3, 6, 4, 7, 5, 2], (0, 1, 4, 3, 2), (1, 2, 4, 5, 3)

R6 → 3, 4, 5, 6H [0, 3, 6, 8, 5, 7, 4, 2], (0, 1, 3, 2), (1, 2, 5, 3, 4), (4, 5, 6)
R6 → 43, 6H [0, 3, 6, 8, 5, 7, 4, 2], (0, 1, 3, 2), (1, 2, 5, 4), (3, 4, 6, 5)
R6 → 34, 6H [0, 3, 6, 8, 5, 7, 4, 2], (0, 1, 2), (1, 3, 4), (2, 3, 5), (4, 5, 6)

Table A.19: Decompositions of graphs for section 1.6.2

The next five tables contain all decompositions required for Lemma 1.6.39. We make extensive
use of concatenation to obtain the results presented in these tables. We therefore use the
notation (G → M) ⊕ (H → M ′) for the concatenation of the decomposition G → M with
the decomposition H → M ′. Various different forms of concatenation are defined and used
in Section 1.6.2. In the table, the particular form of concatenation being used is well-defined
by the decompositions it involves. We also define the notation a · (G → M) to mean (G →
M)⊕(G→M)⊕· · ·⊕(G→M), where a is the number of copies of the decomposition G→M
involved.

J7 → 42, 6, 7 (L2 → 4, 3+, 1H)⊕ (Q5 → 4, 3+, 6H)
J7 → 3, 5, 6, 7 (L3 → 5, 4+, 2H)⊕ (Q4 → 3, 2+, 5H)
J8 → 4, 5, 7, 8 (L3 → 5, 4+, 2H)⊕ (Q5 → 4, 3+, 6H)
J8 → 33, 7, 8 (5, 2, 0, 3, 1, 4, 6, 7), (5, 3, 6), (2, 3, 4), (9, 6, 8, 5, 4, 7, 10), (7, 8, 9)
J9 → 52, 8, 9 (L3 → 5, 4+, 2H)⊕ (Q6 → 5, 4+, 7H)
J9 → 32, 4, 8, 9 (L2 → 3, 4+, 1H)⊕ (P3 → 4, 2+, 3H)⊕ (Q4 → 3, 2+, 5H)
J10 → 3, 42, 9, 10 (L2 → 4, 3+, 1H)⊕ (P4 → 4, 4+, 4H)⊕ (Q4 → 3, 2+, 5H)
J10 → 32, 5, 9, 10 (L2 → 3, 4+, 1H)⊕ (P4 → 5, 3+, 4H)⊕ (Q4 → 3, 2+, 5H)
J11 → 43, 10, 11 (L2 → 4, 3+, 1H)⊕ (P4 → 4, 4+, 4H)⊕ (Q5 → 4, 3+, 6H)

J11 → 3, 4, 5, 10, 11 (L3 → 5, 4+, 2H)⊕ (P4 → 4, 4+, 4H)⊕ (Q4 → 3, 2+, 5H)
Table A.20: Table of decompositions for Lemma 1.6.39 with j = 1
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J11 → 34, 10, 11 (L2 → 3, 4+, 1H)⊕ (P5 → 32, 4+, 5H)⊕ (Q4 → 3, 2+, 5H)
J12 → 42, 5, 11, 12 (L3 → 5, 4+, 2H)⊕ (P4 → 4, 4+, 4H)⊕ (Q5 → 4, 3+, 6H)
J12 → 3, 52, 11, 12 (L3 → 5, 4+, 2H)⊕ (P5 → 5, 5+, 5H)⊕ (Q4 → 3, 2+, 5H)
J12 → 33, 4, 11, 12 (L2 → 4, 3+, 1H)⊕ (P6 → 32, 6+, 6H)⊕ (Q4 → 3, 2+, 5H)
J13 → 4, 52, 12, 13 (L3 → 5, 4+, 2H)⊕ (P5 → 5, 5+, 5H)⊕ (Q5 → 4, 3+, 6H)
J13 → 32, 42, 12, 13 (L2 → 4, 3+, 1H)⊕ (P6 → 32, 6+, 6H)⊕ (Q5 → 4, 3+, 6H)
J13 → 33, 5, 12, 13 (L3 → 5, 4+, 2H)⊕ (P6 → 32, 6+, 6H)⊕ (Q4 → 3, 2+, 5H)
J14 → 53, 13, 14 (L3 → 5, 4+, 2H)⊕ (P5 → 5, 5+, 5H)⊕ (Q6 → 5, 4+, 7H)
J14 → 3, 43, 13, 14 (L2 → 4, 3+, 1H)⊕ 2 · (P4 → 4, 4+, 4H)⊕ (Q4 → 3, 2+, 5H)
J14 → 32, 4, 5, 13, 14 (L3 → 5, 4+, 2H)⊕ (P6 → 32, 6+, 6H)⊕ (Q5 → 4, 3+, 6H)
J14 → 35, 13, 14 (11, 8, 6, 4, 1, 3, 0, 2, 5, 7, 10, 9, 12, 13), (2, 3, 4), (5, 3, 6),

(15, 12, 14, 11, 9, 6, 7, 4, 5, 8, 10, 13, 16), (7, 8, 9), (10, 11, 12), (13, 14, 15)
J15 → 44, 14, 15 (L2 → 4, 3+, 1H)⊕ 2 · (P4 → 4, 4+, 4H)⊕ (Q5 → 4, 3+, 6H)

J15 → 3, 42, 5, 14, 15 (L3 → 5, 4+, 2H)⊕ 2 · (P4 → 4, 4+, 4H)⊕ (Q4 → 3, 2+, 5H)
J15 → 32, 52, 14, 15 (L3 → 5, 4+, 2H)⊕ (P6 → 32, 6+, 6H)⊕ (Q6 → 5, 4+, 7H)
J15 → 34, 4, 14, 15 (L2 → 3, 4+, 1H) ⊕ (P3 → 4, 2+, 3H) ⊕ (P6 → 32, 6+, 6H) ⊕ (Q4 →

3, 2+, 5H)
J16 → 43, 5, 15, 16 (L3 → 5, 4+, 2H)⊕ 2 · (P4 → 4, 4+, 4H)⊕ (Q5 → 4, 3+, 6H)
J16 → 3, 4, 52, 15, 16 (L3 → 5, 4+, 2H) ⊕ (P4 → 4, 4+, 4H) ⊕ (P5 → 5, 5+, 5H) ⊕ (Q4 →

3, 2+, 5H)
J16 → 33, 42, 15, 16 (L2 → 4, 3+, 1H) ⊕ (P4 → 4, 4+, 4H) ⊕ (P6 → 32, 6+, 6H) ⊕ (Q4 →

3, 2+, 5H)
J16 → 34, 5, 15, 16 (L2 → 3, 4+, 1H) ⊕ (P4 → 5, 3+, 4H) ⊕ (P6 → 32, 6+, 6H) ⊕ (Q4 →

3, 2+, 5H)
Table A.20: Table of decompositions for Lemma 1.6.39 with j = 1

J8 → 52, 6, 8 (L2 → 5, 2+, 1H)⊕ (Q6 → 5, 4+, 7H)
J8 → 32, 4, 6, 8 (L3 → 32, 3+, 2H)⊕ (Q5 → 4, 3+, 6H)
J9 → 3, 42, 7, 9 (L2 → 4, 3+, 1H)⊕ (P3 → 4, 2+, 3H)⊕ (Q4 → 3, 2+, 5H)
J9 → 32, 5, 7, 9 (L3 → 32, 3+, 2H)⊕ (Q6 → 5, 4+, 7H)
J10 → 43, 8, 10 (L2 → 4, 3+, 1H)⊕ (P3 → 4, 2+, 3H)⊕ (Q5 → 4, 3+, 6H)

J10 → 3, 4, 5, 8, 10 (L2 → 5, 2+, 1H)⊕ (P4 → 4, 4+, 4H)⊕ (Q4 → 3, 2+, 5H)
J10 → 34, 8, 10 (8, 5, 2, 0, 3, 1, 4, 7, 6, 9), (2, 3, 4), (5, 3, 6), (10, 9, 7, 5, 4, 6, 8, 11),

(8, 7, 10), (11, 9, 12)
J11 → 42, 5, 9, 11 (L2 → 5, 2+, 1H)⊕ (P4 → 4, 4+, 4H)⊕ (Q5 → 4, 3+, 6H)
J11 → 3, 52, 9, 11 (L2 → 5, 2+, 1H)⊕ (P5 → 5, 5+, 5H)⊕ (Q4 → 3, 2+, 5H)
J11 → 33, 4, 9, 11 (L3 → 32, 3+, 2H)⊕ (P4 → 4, 4+, 4H)⊕ (Q4 → 3, 2+, 5H)
J12 → 4, 52, 10, 12 (L2 → 5, 2+, 1H)⊕ (P5 → 5, 5+, 5H)⊕ (Q5 → 4, 3+, 6H)
J12 → 32, 42, 10, 12 (L3 → 32, 3+, 2H)⊕ (P4 → 4, 4+, 4H)⊕ (Q5 → 4, 3+, 6H)
J12 → 33, 5, 10, 12 (L3 → 32, 3+, 2H)⊕ (P5 → 5, 5+, 5H)⊕ (Q4 → 3, 2+, 5H)
J13 → 53, 11, 13 (L2 → 5, 2+, 1H)⊕ (P5 → 5, 5+, 5H)⊕ (Q6 → 5, 4+, 7H)
J13 → 3, 43, 11, 13 (L2 → 4, 3+, 1H) ⊕ (P3 → 4, 2+, 3H) ⊕ (P4 → 4, 4+, 4H) ⊕ (Q4 →

3, 2+, 5H)
J13 → 32, 4, 5, 11, 13 (L3 → 32, 3+, 2H)⊕ (P5 → 5, 5+, 5H)⊕ (Q5 → 4, 3+, 6H)
J13 → 35, 11, 13 (L3 → 32, 3+, 2H)⊕ (P6 → 32, 6+, 6H)⊕ (Q4 → 3, 2+, 5H)
J14 → 44, 12, 14 (L2 → 4, 3+, 1H) ⊕ (P3 → 4, 2+, 3H) ⊕ (P4 → 4, 4+, 4H) ⊕ (Q5 →

4, 3+, 6H)
Table A.21: Table of decompositions for Lemma 1.6.39 with j = 2
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J14 → 3, 42, 5, 12, 14 (L2 → 5, 2+, 1H)⊕ 2 · (P4 → 4, 4+, 4H)⊕ (Q4 → 3, 2+, 5H)
J14 → 32, 52, 12, 14 (L3 → 32, 3+, 2H)⊕ (P5 → 5, 5+, 5H)⊕ (Q6 → 5, 4+, 7H)
J14 → 34, 4, 12, 14 (L3 → 32, 3+, 2H)⊕ (P6 → 32, 6+, 6H)⊕ (Q5 → 4, 3+, 6H)
J15 → 43, 5, 13, 15 (L2 → 5, 2+, 1H)⊕ 2 · (P4 → 4, 4+, 4H)⊕ (Q5 → 4, 3+, 6H)
J15 → 3, 4, 52, 13, 15 (L2 → 5, 2+, 1H) ⊕ (P4 → 4, 4+, 4H) ⊕ (P5 → 5, 5+, 5H) ⊕ (Q4 →

3, 2+, 5H)
J15 → 33, 42, 13, 15 (L3 → 32, 3+, 2H)⊕ 2 · (P4 → 4, 4+, 4H)⊕ (Q4 → 3, 2+, 5H)
J15 → 34, 5, 13, 15 (L3 → 32, 3+, 2H)⊕ (P6 → 32, 6+, 6H)⊕ (Q6 → 5, 4+, 7H)
J16 → 42, 52, 14, 16 (L2 → 5, 2+, 1H) ⊕ (P4 → 4, 4+, 4H) ⊕ (P5 → 5, 5+, 5H) ⊕ (Q5 →

4, 3+, 6H)
J16 → 3, 53, 14, 16 (L2 → 5, 2+, 1H)⊕ 2 · (P5 → 5, 5+, 5H)⊕ (Q4 → 3, 2+, 5H)
J16 → 32, 43, 14, 16 (L3 → 32, 3+, 2H)⊕ 2 · (P4 → 4, 4+, 4H)⊕ (Q5 → 4, 3+, 6H)
J16 → 33, 4, 5, 14, 16 (L3 → 32, 3+, 2H) ⊕ (P4 → 4, 4+, 4H) ⊕ (P5 → 5, 5+, 5H) ⊕ (Q4 →

3, 2+, 5H)
J16 → 36, 14, 16 (L2 → 3, 4+, 1H)⊕ 2 · (P5 → 32, 4+, 5H)⊕ (Q4 → 3, 2+, 5H)
J17 → 4, 53, 15, 17 (L2 → 5, 2+, 1H)⊕ 2 · (P5 → 5, 5+, 5H)⊕ (Q5 → 4, 3+, 6H)
J17 → 3, 44, 15, 17 (L2 → 4, 3+, 1H) ⊕ (P3 → 4, 2+, 3H) ⊕ 2 · (P4 → 4, 4+, 4H) ⊕ (Q4 →

3, 2+, 5H)
J17 → 32, 42, 5, 15, 17 (L3 → 32, 3+, 2H) ⊕ (P4 → 4, 4+, 4H) ⊕ (P5 → 5, 5+, 5H) ⊕ (Q5 →

4, 3+, 6H)
J17 → 33, 52, 15, 17 (L3 → 32, 3+, 2H)⊕ 2 · (P5 → 5, 5+, 5H)⊕ (Q4 → 3, 2+, 5H)
J17 → 35, 4, 15, 17 (L3 → 32, 3+, 2H) ⊕ (P4 → 4, 4+, 4H) ⊕ (P6 → 32, 6+, 6H) ⊕ (Q4 →

3, 2+, 5H)
J18 → 54, 16, 18 (L2 → 5, 2+, 1H)⊕ 2 · (P5 → 5, 5+, 5H)⊕ (Q6 → 5, 4+, 7H)
J18 → 45, 16, 18 (L2 → 4, 3+, 1H) ⊕ (P3 → 4, 2+, 3H) ⊕ 2 · (P4 → 4, 4+, 4H) ⊕ (Q5 →

4, 3+, 6H)
J18 → 3, 43, 5, 16, 18 (L2 → 5, 2+, 1H)⊕ 3 · (P4 → 4, 4+, 4H)⊕ (Q4 → 3, 2+, 5H)
J18 → 32, 4, 52, 16, 18 (L3 → 32, 3+, 2H)⊕ 2 · (P5 → 5, 5+, 5H)⊕ (Q5 → 4, 3+, 6H)
J18 → 34, 42, 16, 18 (L3 → 32, 3+, 2H) ⊕ (P4 → 4, 4+, 4H) ⊕ (P6 → 32, 6+, 6H) ⊕ (Q5 →

4, 3+, 6H)
J18 → 35, 5, 16, 18 (L3 → 32, 3+, 2H) ⊕ (P5 → 5, 5+, 5H) ⊕ (P6 → 32, 6+, 6H) ⊕ (Q4 →

3, 2+, 5H)
J19 → 44, 5, 17, 19 (L2 → 5, 2+, 1H)⊕ 3 · (P4 → 4, 4+, 4H)⊕ (Q5 → 4, 3+, 6H)

J19 → 3, 42, 52, 17, 19 (L2 → 5, 2+, 1H) ⊕ 2 · (P4 → 4, 4+, 4H) ⊕ (P5 → 5, 5+, 5H) ⊕ (Q4 →
3, 2+, 5H)

J19 → 32, 53, 17, 19 (L3 → 32, 3+, 2H)⊕ 2 · (P5 → 5, 5+, 5H)⊕ (Q6 → 5, 4+, 7H)
J19 → 33, 43, 17, 19 (L3 → 32, 3+, 2H)⊕ 3 · (P4 → 4, 4+, 4H)⊕ (Q4 → 3, 2+, 5H)
J19 → 34, 4, 5, 17, 19 (L3 → 32, 3+, 2H) ⊕ (P5 → 5, 5+, 5H) ⊕ (P6 → 32, 6+, 6H) ⊕ (Q5 →

4, 3+, 6H)
J19 → 37, 17, 19 (L3 → 32, 3+, 2H)⊕ 2 · (P6 → 32, 6+, 6H)⊕ (Q4 → 3, 2+, 5H)

J20 → 43, 52, 18, 20 (L2 → 5, 2+, 1H) ⊕ 2 · (P4 → 4, 4+, 4H) ⊕ (P5 → 5, 5+, 5H) ⊕ (Q5 →
4, 3+, 6H)

J20 → 3, 4, 53, 18, 20 (L2 → 5, 2+, 1H) ⊕ (P4 → 4, 4+, 4H) ⊕ 2 · (P5 → 5, 5+, 5H) ⊕ (Q4 →
3, 2+, 5H)

J20 → 32, 44, 18, 20 (L3 → 32, 3+, 2H)⊕ 3 · (P4 → 4, 4+, 4H)⊕ (Q5 → 4, 3+, 6H)
J20 → 33, 42, 5, 18, 20 (L3 → 32, 3+, 2H) ⊕ 2 · (P4 → 4, 4+, 4H) ⊕ (P5 → 5, 5+, 5H) ⊕ (Q4 →

3, 2+, 5H)
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J20 → 34, 52, 18, 20 (L3 → 32, 3+, 2H) ⊕ (P5 → 5, 5+, 5H) ⊕ (P6 → 32, 6+, 6H) ⊕ (Q6 →
5, 4+, 7H)

J20 → 36, 4, 18, 20 (L3 → 32, 3+, 2H)⊕ 2 · (P6 → 32, 6+, 6H)⊕ (Q5 → 4, 3+, 6H)
J21 → 42, 53, 19, 21 (L2 → 5, 2+, 1H) ⊕ (P4 → 4, 4+, 4H) ⊕ 2 · (P5 → 5, 5+, 5H) ⊕ (Q5 →

4, 3+, 6H)
J21 → 3, 54, 19, 21 (L2 → 5, 2+, 1H)⊕ 3 · (P5 → 5, 5+, 5H)⊕ (Q4 → 3, 2+, 5H)
J21 → 3, 45, 19, 21 (L2 → 4, 3+, 1H) ⊕ (P3 → 4, 2+, 3H) ⊕ 3 · (P4 → 4, 4+, 4H) ⊕ (Q4 →

3, 2+, 5H)
J21 → 32, 43, 5, 19, 21 (L3 → 32, 3+, 2H) ⊕ 2 · (P4 → 4, 4+, 4H) ⊕ (P5 → 5, 5+, 5H) ⊕ (Q5 →

4, 3+, 6H)
J21 → 33, 4, 52, 19, 21 (L3 → 32, 3+, 2H) ⊕ (P4 → 4, 4+, 4H) ⊕ 2 · (P5 → 5, 5+, 5H) ⊕ (Q4 →

3, 2+, 5H)
J21 → 35, 42, 19, 21 (L3 → 32, 3+, 2H)⊕ 2 · (P4 → 4, 4+, 4H)⊕ (P6 → 32, 6+, 6H)⊕ (Q4 →

3, 2+, 5H)
J21 → 36, 5, 19, 21 (L3 → 32, 3+, 2H)⊕ 2 · (P6 → 32, 6+, 6H)⊕ (Q6 → 5, 4+, 7H)

Table A.21: Table of decompositions for Lemma 1.6.39 with j = 2

J9 → 43, 6, 9 (7, 6, 4, 1, 3, 0, 2, 5, 8), (3, 2, 4, 5), (8, 6, 3, 4, 7, 10), (7, 5, 6, 9),
(10, 9, 8, 11)

J9 → 3, 4, 5, 6, 9 (L3 → 3, 4, 2+, 2H)⊕ (Q5 → 4, 3+, 6H)
J9 → 34, 6, 9 (6, 7, 4, 1, 3, 0, 2, 5, 8), (2, 3, 4), (5, 3, 6), (8, 7, 5, 4, 6, 9), (9, 7, 10),

(10, 8, 11)
J10 → 42, 5, 7, 10 (L2 → 5, 2+, 1H)⊕ (P3 → 4, 2+, 3H)⊕ (Q5 → 4, 3+, 6H)
J10 → 3, 52, 7, 10 (L2 → 5, 2+, 1H)⊕ (P4 → 5, 3+, 4H)⊕ (Q4 → 3, 2+, 5H)
J10 → 33, 4, 7, 10 (L2 → 32, 1+, 1H)⊕ (P4 → 4, 4+, 4H)⊕ (Q4 → 3, 2+, 5H)
J11 → 4, 52, 8, 11 (L2 → 5, 2+, 1H)⊕ (P4 → 5, 3+, 4H)⊕ (Q5 → 4, 3+, 6H)
J11 → 32, 42, 8, 11 (L3 → 3, 4, 2+, 2H)⊕ (P4 → 4, 4+, 4H)⊕ (Q4 → 3, 2+, 5H)
J11 → 33, 5, 8, 11 (L2 → 32, 1+, 1H)⊕ (P5 → 5, 5+, 5H)⊕ (Q4 → 3, 2+, 5H)
J12 → 53, 9, 12 (L2 → 5, 2+, 1H)⊕ (P4 → 5, 3+, 4H)⊕ (Q6 → 5, 4+, 7H)
J12 → 3, 43, 9, 12 (L3 → 3, 4, 2+, 2H)⊕ (P4 → 4, 4+, 4H)⊕ (Q5 → 4, 3+, 6H)
J12 → 32, 4, 5, 9, 12 (L3 → 3, 4, 2+, 2H)⊕ (P5 → 5, 5+, 5H)⊕ (Q4 → 3, 2+, 5H)
J12 → 35, 9, 12 (L2 → 32, 1+, 1H)⊕ (P6 → 32, 6+, 6H)⊕ (Q4 → 3, 2+, 5H)
J13 → 44, 10, 13 (L2 → 4, 3+, 1H)⊕ 2 · (P3 → 4, 2+, 3H)⊕ (Q5 → 4, 3+, 6H)

J13 → 3, 42, 5, 10, 13 (L3 → 3, 4, 2+, 2H)⊕ (P5 → 5, 5+, 5H)⊕ (Q5 → 4, 3+, 6H)
J13 → 32, 52, 10, 13 (L2 → 32, 1+, 1H)⊕ (P5 → 5, 5+, 5H)⊕ (Q6 → 5, 4+, 7H)
J13 → 34, 4, 10, 13 (L3 → 3, 4, 2+, 2H)⊕ (P6 → 32, 6+, 6H)⊕ (Q4 → 3, 2+, 5H)
J14 → 43, 5, 11, 14 (L2 → 5, 2+, 1H) ⊕ (P3 → 4, 2+, 3H) ⊕ (P4 → 4, 4+, 4H) ⊕ (Q5 →

4, 3+, 6H)
J14 → 3, 4, 52, 11, 14 (L3 → 3, 4, 2+, 2H)⊕ (P5 → 5, 5+, 5H)⊕ (Q5 → 4, 3+, 6H)
J14 → 33, 42, 11, 14 (L3 → 3, 4, 2+, 2H)⊕ (P6 → 32, 6+, 6H)⊕ (Q5 → 4, 3+, 6H)
J14 → 34, 5, 11, 14 (L2 → 32, 1+, 1H)⊕ (P6 → 32, 6+, 6H)⊕ (Q6 → 5, 4+, 7H)
J15 → 42, 52, 12, 15 (L2 → 5, 2+, 1H) ⊕ (P3 → 4, 2+, 3H) ⊕ (P5 → 5, 5+, 5H) ⊕ (Q5 →

4, 3+, 6H)
J15 → 3, 53, 12, 15 (L2 → 5, 2+, 1H) ⊕ (P4 → 5, 3+, 4H) ⊕ (P5 → 5, 5+, 5H) ⊕ (Q4 →

3, 2+, 5H)
J15 → 32, 43, 12, 15 (L3 → 3, 4, 2+, 2H)⊕ 2 · (P4 → 4, 4+, 4H)⊕ (Q4 → 3, 2+, 5H)
J15 → 33, 4, 5, 12, 15 (L3 → 3, 4, 2+, 2H)⊕ (P6 → 32, 6+, 6H)⊕ (Q5 → 4, 3+, 6H)
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J15 → 36, 12, 15 (13, 10, 8, 5, 2, 0, 3, 1, 4, 7, 6, 9, 12, 11, 14), (2, 3, 4), (5, 3, 6),
(16, 13, 11, 8, 6, 4, 5, 7, 10, 12, 14, 17), (7, 8, 9), (9, 10, 11), (13, 12, 15),
(14, 15, 16)

J16 → 4, 53, 13, 16 (L2 → 5, 2+, 1H) ⊕ (P4 → 5, 3+, 4H) ⊕ (P5 → 5, 5+, 5H) ⊕ (Q5 →
4, 3+, 6H)

J16 → 3, 44, 13, 16 (L3 → 3, 4, 2+, 2H)⊕ 2 · (P4 → 4, 4+, 4H)⊕ (Q5 → 4, 3+, 6H)
J16 → 32, 42, 5, 13, 16 (L3 → 3, 4, 2+, 2H) ⊕ (P4 → 4, 4+, 4H) ⊕ (P5 → 5, 5+, 5H) ⊕ (Q4 →

3, 2+, 5H)
J16 → 33, 52, 13, 16 (L2 → 32, 1+, 1H)⊕ 2 · (P5 → 5, 5+, 5H)⊕ (Q4 → 3, 2+, 5H)
J16 → 35, 4, 13, 16 (L2 → 32, 1+, 1H) ⊕ (P4 → 4, 4+, 4H) ⊕ (P6 → 32, 6+, 6H) ⊕ (Q4 →

3, 2+, 5H)
J17 → 54, 14, 17 (L2 → 5, 2+, 1H) ⊕ (P4 → 5, 3+, 4H) ⊕ (P5 → 5, 5+, 5H) ⊕ (Q6 →

5, 4+, 7H)
J17 → 45, 14, 17 (L2 → 4, 3+, 1H) ⊕ 2 · (P3 → 4, 2+, 3H) ⊕ (P4 → 4, 4+, 4H) ⊕ (Q5 →

4, 3+, 6H)
J17 → 3, 43, 5, 14, 17 (L3 → 3, 4, 2+, 2H) ⊕ (P4 → 4, 4+, 4H) ⊕ (P5 → 5, 5+, 5H) ⊕ (Q5 →

4, 3+, 6H)
J17 → 32, 4, 52, 14, 17 (L3 → 3, 4, 2+, 2H)⊕ 2 · (P5 → 5, 5+, 5H)⊕ (Q4 → 3, 2+, 5H)
J17 → 34, 42, 14, 17 (L3 → 3, 4, 2+, 2H) ⊕ (P4 → 4, 4+, 4H) ⊕ (P6 → 32, 6+, 6H) ⊕ (Q4 →

3, 2+, 5H)
J17 → 35, 5, 14, 17 (L2 → 32, 1+, 1H) ⊕ (P5 → 5, 5+, 5H) ⊕ (P6 → 32, 6+, 6H) ⊕ (Q4 →

3, 2+, 5H)
J18 → 44, 5, 15, 18 (L2 → 5, 2+, 1H) ⊕ (P3 → 4, 2+, 3H) ⊕ 2 · (P4 → 4, 4+, 4H) ⊕ (Q5 →

4, 3+, 6H)
J18 → 3, 42, 52, 15, 18 (L3 → 3, 4, 2+, 2H)⊕ 2 · (P5 → 5, 5+, 5H)⊕ (Q5 → 4, 3+, 6H)
J18 → 32, 53, 15, 18 (L2 → 32, 1+, 1H)⊕ 2 · (P5 → 5, 5+, 5H)⊕ (Q6 → 5, 4+, 7H)
J18 → 33, 43, 15, 18 (L3 → 3, 4, 2+, 2H) ⊕ (P4 → 4, 4+, 4H) ⊕ (P6 → 32, 6+, 6H) ⊕ (Q5 →

4, 3+, 6H)
J18 → 34, 4, 5, 15, 18 (L3 → 3, 4, 2+, 2H) ⊕ (P5 → 5, 5+, 5H) ⊕ (P6 → 32, 6+, 6H) ⊕ (Q4 →

3, 2+, 5H)
J18 → 37, 15, 18 (L2 → 32, 1+, 1H)⊕ 2 · (P6 → 32, 6+, 6H)⊕ (Q4 → 3, 2+, 5H)

J19 → 43, 52, 16, 19 (L2 → 5, 2+, 1H) ⊕ (P3 → 4, 2+, 3H) ⊕ (P4 → 4, 4+, 4H) ⊕ (P5 →
5, 5+, 5H)⊕ (Q5 → 4, 3+, 6H)

J19 → 3, 4, 53, 16, 19 (L3 → 3, 4, 2+, 2H)⊕ 2 · (P5 → 5, 5+, 5H)⊕ (Q5 → 4, 3+, 6H)
J19 → 32, 44, 16, 19 (L3 → 3, 4, 2+, 2H)⊕ 3 · (P4 → 4, 4+, 4H)⊕ (Q4 → 3, 2+, 5H)
J19 → 33, 42, 5, 16, 19 (L3 → 3, 4, 2+, 2H) ⊕ (P5 → 5, 5+, 5H) ⊕ (P6 → 32, 6+, 6H) ⊕ (Q5 →

4, 3+, 6H)
J19 → 34, 52, 16, 19 (L2 → 32, 1+, 1H) ⊕ (P5 → 5, 5+, 5H) ⊕ (P6 → 32, 6+, 6H) ⊕ (Q6 →

5, 4+, 7H)
J19 → 36, 4, 16, 19 (L3 → 3, 4, 2+, 2H)⊕ 2 · (P6 → 32, 6+, 6H)⊕ (Q4 → 3, 2+, 5H)
J20 → 42, 53, 17, 20 (L2 → 5, 2+, 1H) ⊕ (P3 → 4, 2+, 3H) ⊕ 2 · (P5 → 5, 5+, 5H) ⊕ (Q5 →

4, 3+, 6H)
J20 → 3, 54, 17, 20 (L2 → 5, 2+, 1H) ⊕ (P4 → 5, 3+, 4H) ⊕ 2 · (P5 → 5, 5+, 5H) ⊕ (Q4 →

3, 2+, 5H)
J20 → 3, 45, 17, 20 (L3 → 3, 4, 2+, 2H)⊕ 3 · (P4 → 4, 4+, 4H)⊕ (Q5 → 4, 3+, 6H)

J20 → 32, 43, 5, 17, 20 (L3 → 3, 4, 2+, 2H)⊕ 2 · (P4 → 4, 4+, 4H)⊕ (P5 → 5, 5+, 5H)⊕ (Q4 →
3, 2+, 5H)
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J20 → 33, 4, 52, 17, 20 (L3 → 3, 4, 2+, 2H) ⊕ (P5 → 5, 5+, 5H) ⊕ (P6 → 32, 6+, 6H) ⊕ (Q5 →
4, 3+, 6H)

J20 → 35, 42, 17, 20 (L3 → 3, 4, 2+, 2H)⊕ 2 · (P6 → 32, 6+, 6H)⊕ (Q5 → 4, 3+, 6H)
J20 → 36, 5, 17, 20 (L2 → 32, 1+, 1H)⊕ 2 · (P6 → 32, 6+, 6H)⊕ (Q6 → 5, 4+, 7H)
J21 → 4, 54, 18, 21 (L2 → 5, 2+, 1H) ⊕ (P4 → 5, 3+, 4H) ⊕ 2 · (P5 → 5, 5+, 5H) ⊕ (Q5 →

4, 3+, 6H)
J21 → 46, 18, 21 (L2 → 4, 3+, 1H)⊕2 · (P3 → 4, 2+, 3H)⊕2 · (P4 → 4, 4+, 4H)⊕ (Q5 →

4, 3+, 6H)
J21 → 3, 44, 5, 18, 21 (L3 → 3, 4, 2+, 2H)⊕ 2 · (P4 → 4, 4+, 4H)⊕ (P5 → 5, 5+, 5H)⊕ (Q5 →

4, 3+, 6H)
J21 → 32, 42, 52, 18, 21 (L3 → 3, 4, 2+, 2H)⊕ (P4 → 4, 4+, 4H)⊕ 2 · (P5 → 5, 5+, 5H)⊕ (Q4 →

3, 2+, 5H)
J21 → 33, 53, 18, 21 (L2 → 32, 1+, 1H)⊕ 3 · (P5 → 5, 5+, 5H)⊕ (Q4 → 3, 2+, 5H)
J21 → 34, 43, 18, 21 (L3 → 3, 4, 2+, 2H)⊕2 ·(P4 → 4, 4+, 4H)⊕(P6 → 32, 6+, 6H)⊕(Q4 →

3, 2+, 5H)
J21 → 35, 4, 5, 18, 21 (L3 → 3, 4, 2+, 2H)⊕ 2 · (P6 → 32, 6+, 6H)⊕ (Q5 → 4, 3+, 6H)
J21 → 38, 18, 21 (L2 → 3, 4+, 1H)⊕ 3 · (P5 → 32, 4+, 5H)⊕ (Q4 → 3, 2+, 5H)
J22 → 55, 19, 22 (L2 → 5, 2+, 1H) ⊕ (P4 → 5, 3+, 4H) ⊕ 2 · (P5 → 5, 5+, 5H) ⊕ (Q6 →

5, 4+, 7H)
J22 → 45, 5, 19, 22 (L2 → 5, 2+, 1H) ⊕ (P3 → 4, 2+, 3H) ⊕ 3 · (P4 → 4, 4+, 4H) ⊕ (Q5 →

4, 3+, 6H)
J22 → 3, 43, 52, 19, 22 (L3 → 3, 4, 2+, 2H)⊕ (P4 → 4, 4+, 4H)⊕ 2 · (P5 → 5, 5+, 5H)⊕ (Q5 →

4, 3+, 6H)
J22 → 32, 4, 53, 19, 22 (L3 → 3, 4, 2+, 2H)⊕ 3 · (P5 → 5, 5+, 5H)⊕ (Q4 → 3, 2+, 5H)
J22 → 33, 44, 19, 22 (L3 → 3, 4, 2+, 2H)⊕2 ·(P4 → 4, 4+, 4H)⊕(P6 → 32, 6+, 6H)⊕(Q5 →

4, 3+, 6H)
J22 → 34, 42, 5, 19, 22 (L3 → 3, 4, 2+, 2H) ⊕ (P4 → 4, 4+, 4H) ⊕ (P5 → 5, 5+, 5H) ⊕ (P6 →

32, 6+, 6H)⊕ (Q4 → 3, 2+, 5H)
J22 → 35, 52, 19, 22 (L2 → 32, 1+, 1H)⊕ 2 · (P5 → 5, 5+, 5H)⊕ (P6 → 32, 6+, 6H)⊕ (Q4 →

3, 2+, 5H)
J22 → 37, 4, 19, 22 (L2 → 32, 1+, 1H)⊕ (P4 → 4, 4+, 4H)⊕ 2 · (P6 → 32, 6+, 6H)⊕ (Q4 →

3, 2+, 5H)
J23 → 44, 52, 20, 23 (L2 → 5, 2+, 1H) ⊕ (P3 → 4, 2+, 3H) ⊕ 2 · (P4 → 4, 4+, 4H) ⊕ (P5 →

5, 5+, 5H)⊕ (Q5 → 4, 3+, 6H)
J23 → 3, 42, 53, 20, 23 (L3 → 3, 4, 2+, 2H)⊕ 3 · (P5 → 5, 5+, 5H)⊕ (Q5 → 4, 3+, 6H)
J23 → 32, 54, 20, 23 (L2 → 32, 1+, 1H)⊕ 3 · (P5 → 5, 5+, 5H)⊕ (Q6 → 5, 4+, 7H)
J23 → 32, 45, 20, 23 (L3 → 3, 4, 2+, 2H)⊕ 4 · (P4 → 4, 4+, 4H)⊕ (Q4 → 3, 2+, 5H)
J23 → 33, 43, 5, 20, 23 (L3 → 3, 4, 2+, 2H) ⊕ (P4 → 4, 4+, 4H) ⊕ (P5 → 5, 5+, 5H) ⊕ (P6 →

32, 6+, 6H)⊕ (Q5 → 4, 3+, 6H)
J23 → 34, 4, 52, 20, 23 (L3 → 3, 4, 2+, 2H)⊕2 ·(P5 → 5, 5+, 5H)⊕(P6 → 32, 6+, 6H)⊕(Q4 →

3, 2+, 5H)
J23 → 36, 42, 20, 23 (L3 → 3, 4, 2+, 2H)⊕(P4 → 4, 4+, 4H)⊕2 ·(P6 → 32, 6+, 6H)⊕(Q4 →

3, 2+, 5H)
J23 → 37, 5, 20, 23 (L2 → 32, 1+, 1H)⊕ (P5 → 5, 5+, 5H)⊕ 2 · (P6 → 32, 6+, 6H)⊕ (Q4 →

3, 2+, 5H)
J24 → 43, 53, 21, 24 (L2 → 5, 2+, 1H) ⊕ (P3 → 4, 2+, 3H) ⊕ (P4 → 4, 4+, 4H) ⊕ 2 · (P5 →

5, 5+, 5H)⊕ (Q5 → 4, 3+, 6H)
J24 → 3, 4, 54, 21, 24 (L3 → 3, 4, 2+, 2H)⊕ 3 · (P5 → 5, 5+, 5H)⊕ (Q5 → 4, 3+, 6H)
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J24 → 3, 46, 21, 24 (L3 → 3, 4, 2+, 2H)⊕ 4 · (P4 → 4, 4+, 4H)⊕ (Q5 → 4, 3+, 6H)
J24 → 32, 44, 5, 21, 24 (L3 → 3, 4, 2+, 2H)⊕ 3 · (P4 → 4, 4+, 4H)⊕ (P5 → 5, 5+, 5H)⊕ (Q4 →

3, 2+, 5H)
J24 → 33, 42, 52, 21, 24 (L3 → 3, 4, 2+, 2H)⊕2 ·(P5 → 5, 5+, 5H)⊕(P6 → 32, 6+, 6H)⊕(Q5 →

4, 3+, 6H)
J24 → 34, 53, 21, 24 (L2 → 32, 1+, 1H)⊕ 2 · (P5 → 5, 5+, 5H)⊕ (P6 → 32, 6+, 6H)⊕ (Q6 →

5, 4+, 7H)
J24 → 35, 43, 21, 24 (L3 → 3, 4, 2+, 2H)⊕(P4 → 4, 4+, 4H)⊕2 ·(P6 → 32, 6+, 6H)⊕(Q5 →

4, 3+, 6H)
J24 → 36, 4, 5, 21, 24 (L3 → 3, 4, 2+, 2H)⊕(P5 → 5, 5+, 5H)⊕2 ·(P6 → 32, 6+, 6H)⊕(Q4 →

3, 2+, 5H)
J24 → 39, 21, 24 (L2 → 32, 1+, 1H)⊕ 3 · (P6 → 32, 6+, 6H)⊕ (Q4 → 3, 2+, 5H)

J25 → 42, 54, 22, 25 (L2 → 5, 2+, 1H) ⊕ (P3 → 4, 2+, 3H) ⊕ 3 · (P5 → 5, 5+, 5H) ⊕ (Q5 →
4, 3+, 6H)

J25 → 47, 22, 25 (L2 → 4, 3+, 1H)⊕2 · (P3 → 4, 2+, 3H)⊕3 · (P4 → 4, 4+, 4H)⊕ (Q5 →
4, 3+, 6H)

J25 → 3, 55, 22, 25 (L2 → 5, 2+, 1H) ⊕ (P4 → 5, 3+, 4H) ⊕ 3 · (P5 → 5, 5+, 5H) ⊕ (Q4 →
3, 2+, 5H)

J25 → 3, 45, 5, 22, 25 (L3 → 3, 4, 2+, 2H)⊕ 3 · (P4 → 4, 4+, 4H)⊕ (P5 → 5, 5+, 5H)⊕ (Q5 →
4, 3+, 6H)

J25 → 32, 43, 52, 22, 25 (L3 → 3, 4, 2+, 2H)⊕2·(P4 → 4, 4+, 4H)⊕2·(P5 → 5, 5+, 5H)⊕(Q4 →
3, 2+, 5H)

J25 → 33, 4, 53, 22, 25 (L3 → 3, 4, 2+, 2H)⊕2 ·(P5 → 5, 5+, 5H)⊕(P6 → 32, 6+, 6H)⊕(Q5 →
4, 3+, 6H)

J25 → 34, 44, 22, 25 (L3 → 3, 4, 2+, 2H)⊕3 ·(P4 → 4, 4+, 4H)⊕(P6 → 32, 6+, 6H)⊕(Q4 →
3, 2+, 5H)

J25 → 35, 42, 5, 22, 25 (L3 → 3, 4, 2+, 2H)⊕(P5 → 5, 5+, 5H)⊕2 ·(P6 → 32, 6+, 6H)⊕(Q5 →
4, 3+, 6H)

J25 → 36, 52, 22, 25 (L2 → 32, 1+, 1H)⊕ (P5 → 5, 5+, 5H)⊕ 2 · (P6 → 32, 6+, 6H)⊕ (Q6 →
5, 4+, 7H)

J25 → 38, 4, 22, 25 (L3 → 3, 4, 2+, 2H)⊕ 3 · (P6 → 32, 6+, 6H)⊕ (Q4 → 3, 2+, 5H)
J26 → 4, 55, 23, 26 (L2 → 5, 2+, 1H) ⊕ (P4 → 5, 3+, 4H) ⊕ 3 · (P5 → 5, 5+, 5H) ⊕ (Q5 →

4, 3+, 6H)
J26 → 46, 5, 23, 26 (L2 → 5, 2+, 1H) ⊕ (P3 → 4, 2+, 3H) ⊕ 4 · (P4 → 4, 4+, 4H) ⊕ (Q5 →

4, 3+, 6H)
J26 → 3, 44, 52, 23, 26 (L3 → 3, 4, 2+, 2H)⊕2·(P4 → 4, 4+, 4H)⊕2·(P5 → 5, 5+, 5H)⊕(Q5 →

4, 3+, 6H)
J26 → 32, 42, 53, 23, 26 (L3 → 3, 4, 2+, 2H)⊕ (P4 → 4, 4+, 4H)⊕ 3 · (P5 → 5, 5+, 5H)⊕ (Q4 →

3, 2+, 5H)
J26 → 33, 54, 23, 26 (L2 → 32, 1+, 1H)⊕ 4 · (P5 → 5, 5+, 5H)⊕ (Q4 → 3, 2+, 5H)
J26 → 33, 45, 23, 26 (L3 → 3, 4, 2+, 2H)⊕3 ·(P4 → 4, 4+, 4H)⊕(P6 → 32, 6+, 6H)⊕(Q5 →

4, 3+, 6H)
J26 → 34, 43, 5, 23, 26 (L3 → 3, 4, 2+, 2H)⊕ 2 · (P4 → 4, 4+, 4H)⊕ (P5 → 5, 5+, 5H)⊕ (P6 →

32, 6+, 6H)⊕ (Q4 → 3, 2+, 5H)
J26 → 35, 4, 52, 23, 26 (L3 → 3, 4, 2+, 2H)⊕(P5 → 5, 5+, 5H)⊕2 ·(P6 → 32, 6+, 6H)⊕(Q5 →

4, 3+, 6H)
J26 → 37, 42, 23, 26 (L3 → 3, 4, 2+, 2H)⊕ 3 · (P6 → 32, 6+, 6H)⊕ (Q5 → 4, 3+, 6H)
J26 → 38, 5, 23, 26 (L2 → 32, 1+, 1H)⊕ 3 · (P6 → 32, 6+, 6H)⊕ (Q6 → 5, 4+, 7H)
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J10 → 4, 52, 6, 10 (L4 → 4, 5, 2+, 3H)⊕ (Q6 → 5, 4+, 7H)
J10 → 32, 42, 6, 10 (L5 → 32, 4, 3+, 4H)⊕ (Q5 → 4, 3+, 6H)
J10 → 33, 5, 6, 10 (L4 → 33, 2+, 3H)⊕ (Q6 → 5, 4+, 7H)
J11 → 53, 7, 11 (8, 5, 2, 0, 3, 1, 4, 7, 6, 9, 10), (5, 4, 2, 3, 6), (7, 5, 3, 4, 6, 8, 9),

(10, 7, 8, 11, 12), (12, 9, 11, 10, 13)
J11 → 3, 43, 7, 11 (L3 → 3, 4, 2+, 2H)⊕ (P3 → 4, 2+, 3H)⊕ (Q5 → 4, 3+, 6H)
J11 → 32, 4, 5, 7, 11 (L5 → 32, 4, 3+, 4H)⊕ (Q5 → 4, 3+, 6H)
J11 → 35, 7, 11 (L2 → 32, 1+, 1H)⊕ (P5 → 32, 4+, 5H)⊕ (Q4 → 3, 2+, 5H)
J12 → 44, 8, 12 (10, 9, 7, 6, 4, 1, 3, 0, 2, 5, 8, 11), (3, 2, 4, 5), (11, 9, 6, 3, 4, 7, 10, 13),

(6, 5, 7, 8), (10, 8, 9, 12), (13, 12, 11, 14)
J12 → 3, 42, 5, 8, 12 (L4 → 4, 5, 2+, 3H)⊕ (P4 → 4, 4+, 4H)⊕ (Q4 → 3, 2+, 5H)
J12 → 32, 52, 8, 12 (L2 → 32, 1+, 1H)⊕ (P4 → 5, 3+, 4H)⊕ (Q6 → 5, 4+, 7H)
J12 → 34, 4, 8, 12 (L4 → 33, 2+, 3H)⊕ (P4 → 4, 4+, 4H)⊕ (Q4 → 3, 2+, 5H)
J13 → 43, 5, 9, 13 (L4 → 4, 5, 2+, 3H)⊕ (Q5 → 4, 3+, 6H)
J13 → 3, 4, 52, 9, 13 (L4 → 4, 5, 2+, 3H)⊕ (P5 → 5, 5+, 5H)⊕ (Q4 → 3, 2+, 5H)
J13 → 33, 42, 9, 13 (L5 → 4, 32, 3+, 4H)⊕ (P4 → 4, 4+, 4H)⊕ (Q4 → 3, 2+, 5H)
J13 → 34, 5, 9, 13 (L4 → 33, 2+, 3H)⊕ (P5 → 5, 5+, 5H)⊕ (Q4 → 3, 2+, 5H)
J14 → 42, 52, 10, 14 (L4 → 4, 5, 2+, 3H)⊕ (P5 → 5, 5+, 5H)⊕ (Q5 → 4, 3+, 6H)
J14 → 3, 53, 10, 14 (L2 → 5, 2+, 1H)⊕ 2 · (P4 → 5, 3+, 4H)⊕ (Q4 → 3, 2+, 5H)
J14 → 32, 43, 10, 14 (L5 → 32, 4, 3+, 4H)⊕ (P4 → 4, 4+, 4H)⊕ (Q5 → 4, 3+, 6H)
J14 → 33, 4, 5, 10, 14 (L4 → 4, 5, 2+, 3H)⊕ (P6 → 32, 6+, 6H)⊕ (Q4 → 3, 2+, 5H)
J14 → 36, 10, 14 (L4 → 33, 2+, 3H)⊕ (P6 → 32, 6+, 6H)⊕ (Q4 → 3, 2+, 5H)
J15 → 4, 53, 11, 15 (L4 → 4, 5, 2+, 3H)⊕ (P5 → 5, 5+, 5H)⊕ (Q6 → 5, 4+, 7H)
J15 → 3, 44, 11, 15 (L3 → 3, 4, 2+, 2H) ⊕ (P3 → 4, 2+, 3H) ⊕ (P4 → 4, 4+, 4H) ⊕ (Q5 →

4, 3+, 6H)
J15 → 32, 42, 5, 11, 15 (L4 → 4, 5, 2+, 3H)⊕ (P6 → 32, 6+, 6H)⊕ (Q5 → 4, 3+, 6H)
J15 → 33, 52, 11, 15 (L4 → 33, 2+, 3H)⊕ (P5 → 5, 5+, 5H)⊕ (Q6 → 5, 4+, 7H)
J15 → 35, 4, 11, 15 (L5 → 4, 32, 3+, 4H)⊕ (P6 → 32, 6+, 6H)⊕ (Q4 → 3, 2+, 5H)
J16 → 54, 12, 16 (L2 → 5, 2+, 1H)⊕ 2 · (P4 → 5, 3+, 4H)⊕ (Q6 → 5, 4+, 7H)
J16 → 45, 12, 16 (L2 → 4, 3+, 1H)⊕ 3 · (P3 → 4, 2+, 3H)⊕ (Q5 → 4, 3+, 6H)

J16 → 3, 43, 5, 12, 16 (L4 → 4, 5, 2+, 3H)⊕ 2 · (P4 → 4, 4+, 4H)⊕ (Q4 → 3, 2+, 5H)
J16 → 32, 4, 52, 12, 16 (L4 → 4, 5, 2+, 3H)⊕ (P6 → 32, 6+, 6H)⊕ (Q6 → 5, 4+, 7H)
J16 → 34, 42, 12, 16 (L4 → 33, 2+, 3H)⊕ 2 · (P4 → 4, 4+, 4H)⊕ (Q4 → 3, 2+, 5H)
J16 → 35, 5, 12, 16 (L4 → 33, 2+, 3H)⊕ (P6 → 32, 6+, 6H)⊕ (Q6 → 5, 4+, 7H)
J17 → 44, 5, 13, 17 (L4 → 4, 5, 2+, 3H)⊕ (P4 → 4, 4+, 4H)⊕ (Q5 → 4, 3+, 6H)

J17 → 3, 42, 52, 13, 17 (L4 → 4, 5, 2+, 3H) ⊕ (P4 → 4, 4+, 4H) ⊕ (P5 → 5, 5+, 5H) ⊕ (Q4 →
3, 2+, 5H)

J17 → 32, 53, 13, 17 (L2 → 32, 1+, 1H) ⊕ (P4 → 5, 3+, 4H) ⊕ (P5 → 5, 5+, 5H) ⊕ (Q6 →
5, 4+, 7H)

J17 → 33, 43, 13, 17 (L5 → 4, 32, 3+, 4H)⊕ 2 · (P4 → 4, 4+, 4H)⊕ (Q4 → 3, 2+, 5H)
J17 → 34, 4, 5, 13, 17 (L4 → 33, 2+, 3H) ⊕ (P4 → 4, 4+, 4H) ⊕ (P5 → 5, 5+, 5H) ⊕ (Q4 →

3, 2+, 5H)
J17 → 37, 13, 17 (L2 → 32, 1+, 1H) ⊕ (P5 → 32, 4+, 5H) ⊕ (P6 → 32, 6+, 6H) ⊕ (Q4 →

3, 2+, 5H)
J18 → 43, 52, 14, 18 (L4 → 4, 5, 2+, 3H)⊕ (P5 → 5, 5+, 5H)⊕ (Q5 → 4, 3+, 6H)
J18 → 3, 4, 53, 14, 18 (L4 → 4, 5, 2+, 3H)⊕ 2 · (P5 → 5, 5+, 5H)⊕ (Q4 → 3, 2+, 5H)
J18 → 32, 44, 14, 18 (L5 → 32, 4, 3+, 4H)⊕ 2 · (P4 → 4, 4+, 4H)⊕ (Q5 → 4, 3+, 6H)
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J18 → 33, 42, 5, 14, 18 (L4 → 4, 5, 2+, 3H) ⊕ (P4 → 4, 4+, 4H) ⊕ (P6 → 32, 6+, 6H) ⊕ (Q4 →
3, 2+, 5H)

J18 → 34, 52, 14, 18 (L4 → 33, 2+, 3H)⊕ 2 · (P5 → 5, 5+, 5H)⊕ (Q4 → 3, 2+, 5H)
J18 → 36, 4, 14, 18 (L4 → 33, 2+, 3H) ⊕ (P4 → 4, 4+, 4H) ⊕ (P6 → 32, 6+, 6H) ⊕ (Q4 →

3, 2+, 5H)
J19 → 42, 53, 15, 19 (L4 → 4, 5, 2+, 3H)⊕ 2 · (P5 → 5, 5+, 5H)⊕ (Q5 → 4, 3+, 6H)
J19 → 3, 54, 15, 19 (L2 → 5, 2+, 1H) ⊕ 2 · (P4 → 5, 3+, 4H) ⊕ (P5 → 5, 5+, 5H) ⊕ (Q4 →

3, 2+, 5H)
J19 → 3, 45, 15, 19 (L3 → 3, 4, 2+, 2H)⊕ (P3 → 4, 2+, 3H)⊕ 2 · (P4 → 4, 4+, 4H)⊕ (Q5 →

4, 3+, 6H)
J19 → 32, 43, 5, 15, 19 (L4 → 4, 5, 2+, 3H)⊕ (P6 → 32, 6+, 6H)⊕ (Q5 → 4, 3+, 6H)
J19 → 33, 4, 52, 15, 19 (L4 → 4, 5, 2+, 3H) ⊕ (P5 → 5, 5+, 5H) ⊕ (P6 → 32, 6+, 6H) ⊕ (Q4 →

3, 2+, 5H)
J19 → 35, 42, 15, 19 (L5 → 4, 32, 3+, 4H)⊕ (P4 → 4, 4+, 4H)⊕ (P6 → 32, 6+, 6H)⊕ (Q4 →

3, 2+, 5H)
J19 → 36, 5, 15, 19 (L4 → 33, 2+, 3H) ⊕ (P5 → 5, 5+, 5H) ⊕ (P6 → 32, 6+, 6H) ⊕ (Q4 →

3, 2+, 5H)
J20 → 4, 54, 16, 20 (L4 → 4, 5, 2+, 3H)⊕ 2 · (P5 → 5, 5+, 5H)⊕ (Q6 → 5, 4+, 7H)
J20 → 46, 16, 20 (L2 → 4, 3+, 1H) ⊕ 3 · (P3 → 4, 2+, 3H) ⊕ (P4 → 4, 4+, 4H) ⊕ (Q5 →

4, 3+, 6H)
J20 → 3, 44, 5, 16, 20 (L4 → 4, 5, 2+, 3H)⊕ 3 · (P4 → 4, 4+, 4H)⊕ (Q4 → 3, 2+, 5H)
J20 → 32, 42, 52, 16, 20 (L4 → 4, 5, 2+, 3H) ⊕ (P5 → 5, 5+, 5H) ⊕ (P6 → 32, 6+, 6H) ⊕ (Q5 →

4, 3+, 6H)
J20 → 33, 53, 16, 20 (L4 → 33, 2+, 3H)⊕ 2 · (P5 → 5, 5+, 5H)⊕ (Q6 → 5, 4+, 7H)
J20 → 34, 43, 16, 20 (L4 → 33, 2+, 3H)⊕ 3 · (P4 → 4, 4+, 4H)⊕ (Q4 → 3, 2+, 5H)
J20 → 35, 4, 5, 16, 20 (L4 → 4, 5, 2+, 3H)⊕ 2 · (P6 → 32, 6+, 6H)⊕ (Q4 → 3, 2+, 5H)
J20 → 38, 16, 20 (L4 → 33, 2+, 3H)⊕ 2 · (P6 → 32, 6+, 6H)⊕ (Q4 → 3, 2+, 5H)
J21 → 55, 17, 21 (L2 → 5, 2+, 1H) ⊕ 2 · (P4 → 5, 3+, 4H) ⊕ (P5 → 5, 5+, 5H) ⊕ (Q6 →

5, 4+, 7H)
J21 → 45, 5, 17, 21 (L4 → 4, 5, 2+, 3H)⊕ 2 · (P4 → 4, 4+, 4H)⊕ (Q5 → 4, 3+, 6H)

J21 → 3, 43, 52, 17, 21 (L4 → 4, 5, 2+, 3H)⊕ 2 · (P4 → 4, 4+, 4H)⊕ (P5 → 5, 5+, 5H)⊕ (Q4 →
3, 2+, 5H)

J21 → 32, 4, 53, 17, 21 (L4 → 4, 5, 2+, 3H) ⊕ (P5 → 5, 5+, 5H) ⊕ (P6 → 32, 6+, 6H) ⊕ (Q6 →
5, 4+, 7H)

J21 → 33, 44, 17, 21 (L5 → 4, 32, 3+, 4H)⊕ 3 · (P4 → 4, 4+, 4H)⊕ (Q4 → 3, 2+, 5H)
J21 → 34, 42, 5, 17, 21 (L4 → 4, 5, 2+, 3H)⊕ 2 · (P6 → 32, 6+, 6H)⊕ (Q5 → 4, 3+, 6H)
J21 → 35, 52, 17, 21 (L4 → 33, 2+, 3H) ⊕ (P5 → 5, 5+, 5H) ⊕ (P6 → 32, 6+, 6H) ⊕ (Q6 →

5, 4+, 7H)
J21 → 37, 4, 17, 21 (L5 → 4, 32, 3+, 4H)⊕ 2 · (P6 → 32, 6+, 6H)⊕ (Q4 → 3, 2+, 5H)
J22 → 44, 52, 18, 22 (L4 → 4, 5, 2+, 3H) ⊕ (P4 → 4, 4+, 4H) ⊕ (P5 → 5, 5+, 5H) ⊕ (Q5 →

4, 3+, 6H)
J22 → 3, 42, 53, 18, 22 (L4 → 4, 5, 2+, 3H)⊕ (P4 → 4, 4+, 4H)⊕ 2 · (P5 → 5, 5+, 5H)⊕ (Q4 →

3, 2+, 5H)
J22 → 32, 54, 18, 22 (L2 → 32, 1+, 1H)⊕ (P4 → 5, 3+, 4H)⊕ 2 · (P5 → 5, 5+, 5H)⊕ (Q6 →

5, 4+, 7H)
J22 → 32, 45, 18, 22 (L5 → 32, 4, 3+, 4H)⊕ 3 · (P4 → 4, 4+, 4H)⊕ (Q5 → 4, 3+, 6H)
J22 → 33, 43, 5, 18, 22 (L4 → 4, 5, 2+, 3H)⊕2 ·(P4 → 4, 4+, 4H)⊕(P6 → 32, 6+, 6H)⊕(Q4 →

3, 2+, 5H)
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J22 → 34, 4, 52, 18, 22 (L4 → 4, 5, 2+, 3H)⊕ 2 · (P6 → 32, 6+, 6H)⊕ (Q6 → 5, 4+, 7H)
J22 → 36, 42, 18, 22 (L4 → 33, 2+, 3H)⊕ 2 · (P4 → 4, 4+, 4H)⊕ (P6 → 32, 6+, 6H)⊕ (Q4 →

3, 2+, 5H)
J22 → 37, 5, 18, 22 (L4 → 33, 2+, 3H)⊕ 2 · (P6 → 32, 6+, 6H)⊕ (Q6 → 5, 4+, 7H)
J23 → 43, 53, 19, 23 (L4 → 4, 5, 2+, 3H)⊕ 2 · (P5 → 5, 5+, 5H)⊕ (Q5 → 4, 3+, 6H)
J23 → 3, 4, 54, 19, 23 (L4 → 4, 5, 2+, 3H)⊕ 3 · (P5 → 5, 5+, 5H)⊕ (Q4 → 3, 2+, 5H)
J23 → 3, 46, 19, 23 (L3 → 3, 4, 2+, 2H)⊕ (P3 → 4, 2+, 3H)⊕ 3 · (P4 → 4, 4+, 4H)⊕ (Q5 →

4, 3+, 6H)
J23 → 32, 44, 5, 19, 23 (L4 → 4, 5, 2+, 3H) ⊕ (P4 → 4, 4+, 4H) ⊕ (P6 → 32, 6+, 6H) ⊕ (Q5 →

4, 3+, 6H)
J23 → 33, 42, 52, 19, 23 (L4 → 4, 5, 2+, 3H) ⊕ (P4 → 4, 4+, 4H) ⊕ (P5 → 5, 5+, 5H) ⊕ (P6 →

32, 6+, 6H)⊕ (Q4 → 3, 2+, 5H)
J23 → 34, 53, 19, 23 (L4 → 33, 2+, 3H)⊕ 3 · (P5 → 5, 5+, 5H)⊕ (Q4 → 3, 2+, 5H)
J23 → 35, 43, 19, 23 (L5 → 4, 32, 3+, 4H)⊕2·(P4 → 4, 4+, 4H)⊕(P6 → 32, 6+, 6H)⊕(Q4 →

3, 2+, 5H)
J23 → 36, 4, 5, 19, 23 (L4 → 33, 2+, 3H) ⊕ (P4 → 4, 4+, 4H) ⊕ (P5 → 5, 5+, 5H) ⊕ (P6 →

32, 6+, 6H)⊕ (Q4 → 3, 2+, 5H)
J23 → 39, 19, 23 (L2 → 32, 1+, 1H)⊕ (P5 → 32, 4+, 5H)⊕2 · (P6 → 32, 6+, 6H)⊕ (Q4 →

3, 2+, 5H)
J24 → 42, 54, 20, 24 (L4 → 4, 5, 2+, 3H)⊕ 3 · (P5 → 5, 5+, 5H)⊕ (Q5 → 4, 3+, 6H)
J24 → 47, 20, 24 (L2 → 4, 3+, 1H)⊕3 · (P3 → 4, 2+, 3H)⊕2 · (P4 → 4, 4+, 4H)⊕ (Q5 →

4, 3+, 6H)
J24 → 3, 55, 20, 24 (L2 → 5, 2+, 1H)⊕2 · (P4 → 5, 3+, 4H)⊕2 · (P5 → 5, 5+, 5H)⊕ (Q4 →

3, 2+, 5H)
J24 → 3, 45, 5, 20, 24 (L4 → 4, 5, 2+, 3H)⊕ 4 · (P4 → 4, 4+, 4H)⊕ (Q4 → 3, 2+, 5H)
J24 → 32, 43, 52, 20, 24 (L4 → 4, 5, 2+, 3H) ⊕ (P5 → 5, 5+, 5H) ⊕ (P6 → 32, 6+, 6H) ⊕ (Q5 →

4, 3+, 6H)
J24 → 33, 4, 53, 20, 24 (L4 → 4, 5, 2+, 3H)⊕2 ·(P5 → 5, 5+, 5H)⊕(P6 → 32, 6+, 6H)⊕(Q4 →

3, 2+, 5H)
J24 → 34, 44, 20, 24 (L4 → 33, 2+, 3H)⊕ 4 · (P4 → 4, 4+, 4H)⊕ (Q4 → 3, 2+, 5H)
J24 → 35, 42, 5, 20, 24 (L4 → 4, 5, 2+, 3H)⊕(P4 → 4, 4+, 4H)⊕2 ·(P6 → 32, 6+, 6H)⊕(Q4 →

3, 2+, 5H)
J24 → 36, 52, 20, 24 (L4 → 33, 2+, 3H)⊕ 2 · (P5 → 5, 5+, 5H)⊕ (P6 → 32, 6+, 6H)⊕ (Q4 →

3, 2+, 5H)
J24 → 38, 4, 20, 24 (L4 → 33, 2+, 3H)⊕ (P4 → 4, 4+, 4H)⊕ 2 · (P6 → 32, 6+, 6H)⊕ (Q4 →

3, 2+, 5H)
J25 → 4, 55, 21, 25 (L4 → 4, 5, 2+, 3H)⊕ 3 · (P5 → 5, 5+, 5H)⊕ (Q6 → 5, 4+, 7H)
J25 → 46, 5, 21, 25 (L4 → 4, 5, 2+, 3H)⊕ 3 · (P4 → 4, 4+, 4H)⊕ (Q5 → 4, 3+, 6H)

J25 → 3, 44, 52, 21, 25 (L4 → 4, 5, 2+, 3H)⊕ 3 · (P4 → 4, 4+, 4H)⊕ (P5 → 5, 5+, 5H)⊕ (Q4 →
3, 2+, 5H)

J25 → 32, 42, 53, 21, 25 (L4 → 4, 5, 2+, 3H)⊕2 ·(P5 → 5, 5+, 5H)⊕(P6 → 32, 6+, 6H)⊕(Q5 →
4, 3+, 6H)

J25 → 33, 54, 21, 25 (L4 → 33, 2+, 3H)⊕ 3 · (P5 → 5, 5+, 5H)⊕ (Q6 → 5, 4+, 7H)
J25 → 33, 45, 21, 25 (L5 → 4, 32, 3+, 4H)⊕ 4 · (P4 → 4, 4+, 4H)⊕ (Q4 → 3, 2+, 5H)
J25 → 34, 43, 5, 21, 25 (L4 → 4, 5, 2+, 3H)⊕ 2 · (P6 → 32, 6+, 6H)⊕ (Q5 → 4, 3+, 6H)
J25 → 35, 4, 52, 21, 25 (L4 → 4, 5, 2+, 3H)⊕(P5 → 5, 5+, 5H)⊕2 ·(P6 → 32, 6+, 6H)⊕(Q4 →

3, 2+, 5H)
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J25 → 37, 42, 21, 25 (L5 → 4, 32, 3+, 4H)⊕(P4 → 4, 4+, 4H)⊕2·(P6 → 32, 6+, 6H)⊕(Q4 →
3, 2+, 5H)

J25 → 38, 5, 21, 25 (L4 → 33, 2+, 3H)⊕ (P5 → 5, 5+, 5H)⊕ 2 · (P6 → 32, 6+, 6H)⊕ (Q4 →
3, 2+, 5H)

J26 → 56, 22, 26 (L2 → 5, 2+, 1H)⊕2 · (P4 → 5, 3+, 4H)⊕2 · (P5 → 5, 5+, 5H)⊕ (Q6 →
5, 4+, 7H)

J26 → 45, 52, 22, 26 (L4 → 4, 5, 2+, 3H)⊕ 2 · (P4 → 4, 4+, 4H)⊕ (P5 → 5, 5+, 5H)⊕ (Q5 →
4, 3+, 6H)

J26 → 3, 43, 53, 22, 26 (L4 → 4, 5, 2+, 3H)⊕2·(P4 → 4, 4+, 4H)⊕2·(P5 → 5, 5+, 5H)⊕(Q4 →
3, 2+, 5H)

J26 → 32, 4, 54, 22, 26 (L4 → 4, 5, 2+, 3H)⊕2 ·(P5 → 5, 5+, 5H)⊕(P6 → 32, 6+, 6H)⊕(Q6 →
5, 4+, 7H)

J26 → 32, 46, 22, 26 (L5 → 32, 4, 3+, 4H)⊕ 4 · (P4 → 4, 4+, 4H)⊕ (Q5 → 4, 3+, 6H)
J26 → 33, 44, 5, 22, 26 (L4 → 4, 5, 2+, 3H)⊕3 ·(P4 → 4, 4+, 4H)⊕(P6 → 32, 6+, 6H)⊕(Q4 →

3, 2+, 5H)
J26 → 34, 42, 52, 22, 26 (L4 → 4, 5, 2+, 3H)⊕(P5 → 5, 5+, 5H)⊕2 ·(P6 → 32, 6+, 6H)⊕(Q5 →

4, 3+, 6H)
J26 → 35, 53, 22, 26 (L4 → 33, 2+, 3H)⊕ 2 · (P5 → 5, 5+, 5H)⊕ (P6 → 32, 6+, 6H)⊕ (Q6 →

5, 4+, 7H)
J26 → 36, 43, 22, 26 (L4 → 33, 2+, 3H)⊕ 3 · (P4 → 4, 4+, 4H)⊕ (P6 → 32, 6+, 6H)⊕ (Q4 →

3, 2+, 5H)
J26 → 37, 4, 5, 22, 26 (L4 → 4, 5, 2+, 3H)⊕ 3 · (P6 → 32, 6+, 6H)⊕ (Q4 → 3, 2+, 5H)
J26 → 310, 22, 26 (L4 → 33, 2+, 3H)⊕ 3 · (P6 → 32, 6+, 6H)⊕ (Q4 → 3, 2+, 5H)
J27 → 44, 53, 23, 27 (L4 → 4, 5, 2+, 3H)⊕ (P4 → 4, 4+, 4H)⊕ 2 · (P5 → 5, 5+, 5H)⊕ (Q5 →

4, 3+, 6H)
J27 → 3, 42, 54, 23, 27 (L4 → 4, 5, 2+, 3H)⊕ (P4 → 4, 4+, 4H)⊕ 3 · (P5 → 5, 5+, 5H)⊕ (Q4 →

3, 2+, 5H)
J27 → 3, 47, 23, 27 (L3 → 3, 4, 2+, 2H)⊕ (P3 → 4, 2+, 3H)⊕ 4 · (P4 → 4, 4+, 4H)⊕ (Q5 →

4, 3+, 6H)
J27 → 32, 55, 23, 27 (L2 → 32, 1+, 1H)⊕ (P4 → 5, 3+, 4H)⊕ 3 · (P5 → 5, 5+, 5H)⊕ (Q6 →

5, 4+, 7H)
J27 → 32, 45, 5, 23, 27 (L4 → 4, 5, 2+, 3H)⊕2 ·(P4 → 4, 4+, 4H)⊕(P6 → 32, 6+, 6H)⊕(Q5 →

4, 3+, 6H)
J27 → 33, 43, 52, 23, 27 (L4 → 4, 5, 2+, 3H)⊕ 2 · (P4 → 4, 4+, 4H)⊕ (P5 → 5, 5+, 5H)⊕ (P6 →

32, 6+, 6H)⊕ (Q4 → 3, 2+, 5H)
J27 → 34, 4, 53, 23, 27 (L4 → 4, 5, 2+, 3H)⊕(P5 → 5, 5+, 5H)⊕2 ·(P6 → 32, 6+, 6H)⊕(Q6 →

5, 4+, 7H)
J27 → 35, 44, 23, 27 (L5 → 4, 32, 3+, 4H)⊕3·(P4 → 4, 4+, 4H)⊕(P6 → 32, 6+, 6H)⊕(Q4 →

3, 2+, 5H)
J27 → 36, 42, 5, 23, 27 (L4 → 4, 5, 2+, 3H)⊕ 3 · (P6 → 32, 6+, 6H)⊕ (Q5 → 4, 3+, 6H)
J27 → 37, 52, 23, 27 (L4 → 33, 2+, 3H)⊕ (P5 → 5, 5+, 5H)⊕ 2 · (P6 → 32, 6+, 6H)⊕ (Q6 →

5, 4+, 7H)
J27 → 39, 4, 23, 27 (L5 → 4, 32, 3+, 4H)⊕ 3 · (P6 → 32, 6+, 6H)⊕ (Q4 → 3, 2+, 5H)
J28 → 43, 54, 24, 28 (L4 → 4, 5, 2+, 3H)⊕ 3 · (P5 → 5, 5+, 5H)⊕ (Q5 → 4, 3+, 6H)
J28 → 48, 24, 28 (L2 → 4, 3+, 1H)⊕3 · (P3 → 4, 2+, 3H)⊕3 · (P4 → 4, 4+, 4H)⊕ (Q5 →

4, 3+, 6H)
J28 → 3, 4, 55, 24, 28 (L4 → 4, 5, 2+, 3H)⊕ 4 · (P5 → 5, 5+, 5H)⊕ (Q4 → 3, 2+, 5H)
J28 → 3, 46, 5, 24, 28 (L4 → 4, 5, 2+, 3H)⊕ 5 · (P4 → 4, 4+, 4H)⊕ (Q4 → 3, 2+, 5H)
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J28 → 32, 44, 52, 24, 28 (L4 → 4, 5, 2+, 3H) ⊕ (P4 → 4, 4+, 4H) ⊕ (P5 → 5, 5+, 5H) ⊕ (P6 →
32, 6+, 6H)⊕ (Q5 → 4, 3+, 6H)

J28 → 33, 42, 53, 24, 28 (L4 → 4, 5, 2+, 3H)⊕ (P4 → 4, 4+, 4H)⊕ 2 · (P5 → 5, 5+, 5H)⊕ (P6 →
32, 6+, 6H)⊕ (Q4 → 3, 2+, 5H)

J28 → 34, 54, 24, 28 (L4 → 33, 2+, 3H)⊕ 4 · (P5 → 5, 5+, 5H)⊕ (Q4 → 3, 2+, 5H)
J28 → 34, 45, 24, 28 (L4 → 33, 2+, 3H)⊕ 5 · (P4 → 4, 4+, 4H)⊕ (Q4 → 3, 2+, 5H)
J28 → 35, 43, 5, 24, 28 (L4 → 4, 5, 2+, 3H)⊕2·(P4 → 4, 4+, 4H)⊕2·(P6 → 32, 6+, 6H)⊕(Q4 →

3, 2+, 5H)
J28 → 36, 4, 52, 24, 28 (L4 → 4, 5, 2+, 3H)⊕ 3 · (P6 → 32, 6+, 6H)⊕ (Q6 → 5, 4+, 7H)
J28 → 38, 42, 24, 28 (L4 → 33, 2+, 3H)⊕2·(P4 → 4, 4+, 4H)⊕2·(P6 → 32, 6+, 6H)⊕(Q4 →

3, 2+, 5H)
J28 → 39, 5, 24, 28 (L4 → 33, 2+, 3H)⊕ 3 · (P6 → 32, 6+, 6H)⊕ (Q6 → 5, 4+, 7H)
J29 → 42, 55, 25, 29 (L4 → 4, 5, 2+, 3H)⊕ 4 · (P5 → 5, 5+, 5H)⊕ (Q5 → 4, 3+, 6H)
J29 → 47, 5, 25, 29 (L4 → 4, 5, 2+, 3H)⊕ 4 · (P4 → 4, 4+, 4H)⊕ (Q5 → 4, 3+, 6H)
J29 → 3, 56, 25, 29 (L2 → 5, 2+, 1H)⊕2 · (P4 → 5, 3+, 4H)⊕3 · (P5 → 5, 5+, 5H)⊕ (Q4 →

3, 2+, 5H)
J29 → 3, 45, 52, 25, 29 (L4 → 4, 5, 2+, 3H)⊕ 4 · (P4 → 4, 4+, 4H)⊕ (P5 → 5, 5+, 5H)⊕ (Q4 →

3, 2+, 5H)
J29 → 32, 43, 53, 25, 29 (L4 → 4, 5, 2+, 3H)⊕2 ·(P5 → 5, 5+, 5H)⊕(P6 → 32, 6+, 6H)⊕(Q5 →

4, 3+, 6H)
J29 → 33, 4, 54, 25, 29 (L4 → 4, 5, 2+, 3H)⊕3 ·(P5 → 5, 5+, 5H)⊕(P6 → 32, 6+, 6H)⊕(Q4 →

3, 2+, 5H)
J29 → 33, 46, 25, 29 (L5 → 4, 32, 3+, 4H)⊕ 5 · (P4 → 4, 4+, 4H)⊕ (Q4 → 3, 2+, 5H)
J29 → 34, 44, 5, 25, 29 (L4 → 4, 5, 2+, 3H)⊕(P4 → 4, 4+, 4H)⊕2 ·(P6 → 32, 6+, 6H)⊕(Q5 →

4, 3+, 6H)
J29 → 35, 42, 52, 25, 29 (L4 → 4, 5, 2+, 3H)⊕ (P4 → 4, 4+, 4H)⊕ (P5 → 5, 5+, 5H)⊕ 2 · (P6 →

32, 6+, 6H)⊕ (Q4 → 3, 2+, 5H)
J29 → 36, 53, 25, 29 (L4 → 33, 2+, 3H)⊕ 3 · (P5 → 5, 5+, 5H)⊕ (P6 → 32, 6+, 6H)⊕ (Q4 →

3, 2+, 5H)
J29 → 37, 43, 25, 29 (L5 → 4, 32, 3+, 4H) ⊕ 2 · (P4 → 4, 4+, 4H) ⊕ 2 · (P6 → 32, 6+, 6H) ⊕

(Q4 → 3, 2+, 5H)
J29 → 38, 4, 5, 25, 29 (L4 → 33, 2+, 3H)⊕ (P4 → 4, 4+, 4H)⊕ (P5 → 5, 5+, 5H)⊕ 2 · (P6 →

32, 6+, 6H)⊕ (Q4 → 3, 2+, 5H)
J29 → 311, 25, 29 (L2 → 32, 1+, 1H)⊕ (P5 → 32, 4+, 5H)⊕3 · (P6 → 32, 6+, 6H)⊕ (Q4 →

3, 2+, 5H)
J30 → 4, 56, 26, 30 (L4 → 4, 5, 2+, 3H)⊕ 4 · (P5 → 5, 5+, 5H)⊕ (Q6 → 5, 4+, 7H)
J30 → 46, 52, 26, 30 (L4 → 4, 5, 2+, 3H)⊕ 3 · (P4 → 4, 4+, 4H)⊕ (P5 → 5, 5+, 5H)⊕ (Q5 →

4, 3+, 6H)
J30 → 3, 44, 53, 26, 30 (L4 → 4, 5, 2+, 3H)⊕3·(P4 → 4, 4+, 4H)⊕2·(P5 → 5, 5+, 5H)⊕(Q4 →

3, 2+, 5H)
J30 → 32, 42, 54, 26, 30 (L4 → 4, 5, 2+, 3H)⊕3 ·(P5 → 5, 5+, 5H)⊕(P6 → 32, 6+, 6H)⊕(Q5 →

4, 3+, 6H)
J30 → 32, 47, 26, 30 (L5 → 32, 4, 3+, 4H)⊕ 5 · (P4 → 4, 4+, 4H)⊕ (Q5 → 4, 3+, 6H)
J30 → 33, 55, 26, 30 (L4 → 33, 2+, 3H)⊕ 4 · (P5 → 5, 5+, 5H)⊕ (Q6 → 5, 4+, 7H)
J30 → 33, 45, 5, 26, 30 (L4 → 4, 5, 2+, 3H)⊕4 ·(P4 → 4, 4+, 4H)⊕(P6 → 32, 6+, 6H)⊕(Q4 →

3, 2+, 5H)
J30 → 34, 43, 52, 26, 30 (L4 → 4, 5, 2+, 3H)⊕(P5 → 5, 5+, 5H)⊕2 ·(P6 → 32, 6+, 6H)⊕(Q5 →

4, 3+, 6H)
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J30 → 35, 4, 53, 26, 30 (L4 → 4, 5, 2+, 3H)⊕2·(P5 → 5, 5+, 5H)⊕2·(P6 → 32, 6+, 6H)⊕(Q4 →
3, 2+, 5H)

J30 → 36, 44, 26, 30 (L4 → 33, 2+, 3H)⊕ 4 · (P4 → 4, 4+, 4H)⊕ (P6 → 32, 6+, 6H)⊕ (Q4 →
3, 2+, 5H)

J30 → 37, 42, 5, 26, 30 (L4 → 4, 5, 2+, 3H)⊕(P4 → 4, 4+, 4H)⊕3 ·(P6 → 32, 6+, 6H)⊕(Q4 →
3, 2+, 5H)

J30 → 38, 52, 26, 30 (L4 → 33, 2+, 3H)⊕2·(P5 → 5, 5+, 5H)⊕2·(P6 → 32, 6+, 6H)⊕(Q4 →
3, 2+, 5H)

J30 → 310, 4, 26, 30 (L4 → 33, 2+, 3H)⊕ (P4 → 4, 4+, 4H)⊕ 3 · (P6 → 32, 6+, 6H)⊕ (Q4 →
3, 2+, 5H)

J31 → 57, 27, 31 (L2 → 5, 2+, 1H)⊕2 · (P4 → 5, 3+, 4H)⊕3 · (P5 → 5, 5+, 5H)⊕ (Q6 →
5, 4+, 7H)

J31 → 45, 53, 27, 31 (L4 → 4, 5, 2+, 3H)⊕2·(P4 → 4, 4+, 4H)⊕2·(P5 → 5, 5+, 5H)⊕(Q5 →
4, 3+, 6H)

J31 → 3, 43, 54, 27, 31 (L4 → 4, 5, 2+, 3H)⊕2·(P4 → 4, 4+, 4H)⊕3·(P5 → 5, 5+, 5H)⊕(Q4 →
3, 2+, 5H)

J31 → 3, 48, 27, 31 (L3 → 3, 4, 2+, 2H)⊕ (P3 → 4, 2+, 3H)⊕ 5 · (P4 → 4, 4+, 4H)⊕ (Q5 →
4, 3+, 6H)

J31 → 32, 4, 55, 27, 31 (L4 → 4, 5, 2+, 3H)⊕3 ·(P5 → 5, 5+, 5H)⊕(P6 → 32, 6+, 6H)⊕(Q6 →
5, 4+, 7H)

J31 → 32, 46, 5, 27, 31 (L4 → 4, 5, 2+, 3H)⊕3 ·(P4 → 4, 4+, 4H)⊕(P6 → 32, 6+, 6H)⊕(Q5 →
4, 3+, 6H)

J31 → 33, 44, 52, 27, 31 (L4 → 4, 5, 2+, 3H)⊕ 3 · (P4 → 4, 4+, 4H)⊕ (P5 → 5, 5+, 5H)⊕ (P6 →
32, 6+, 6H)⊕ (Q4 → 3, 2+, 5H)

J31 → 34, 42, 53, 27, 31 (L4 → 4, 5, 2+, 3H)⊕2·(P5 → 5, 5+, 5H)⊕2·(P6 → 32, 6+, 6H)⊕(Q5 →
4, 3+, 6H)

J31 → 35, 54, 27, 31 (L4 → 33, 2+, 3H)⊕ 3 · (P5 → 5, 5+, 5H)⊕ (P6 → 32, 6+, 6H)⊕ (Q6 →
5, 4+, 7H)

J31 → 35, 45, 27, 31 (L5 → 4, 32, 3+, 4H)⊕4·(P4 → 4, 4+, 4H)⊕(P6 → 32, 6+, 6H)⊕(Q4 →
3, 2+, 5H)

J31 → 36, 43, 5, 27, 31 (L4 → 4, 5, 2+, 3H)⊕ 3 · (P6 → 32, 6+, 6H)⊕ (Q5 → 4, 3+, 6H)
J31 → 37, 4, 52, 27, 31 (L4 → 4, 5, 2+, 3H)⊕(P5 → 5, 5+, 5H)⊕3 ·(P6 → 32, 6+, 6H)⊕(Q4 →

3, 2+, 5H)
J31 → 39, 42, 27, 31 (L5 → 4, 32, 3+, 4H)⊕(P4 → 4, 4+, 4H)⊕3·(P6 → 32, 6+, 6H)⊕(Q4 →

3, 2+, 5H)
J31 → 310, 5, 27, 31 (L4 → 33, 2+, 3H)⊕ (P5 → 5, 5+, 5H)⊕ 3 · (P6 → 32, 6+, 6H)⊕ (Q4 →

3, 2+, 5H)
Table A.23: Table of decompositions for Lemma 1.6.39 with j = 4

J11 → 44, 6, 11 (9, 8, 6, 4, 1, 3, 0, 2, 5, 7, 10), (3, 2, 4, 5), (6, 3, 4, 7), (9, 7, 8, 11),
(10, 8, 5, 6, 9, 12), (12, 11, 10, 13)

J11 → 3, 42, 5, 6, 11 (L4 → 4, 5, 2+, 3H)⊕ (P3 → 4, 2+, 3H)⊕ (Q4 → 3, 2+, 5H)
J11 → 32, 52, 6, 11 (8, 5, 2, 0, 3, 1, 4, 7, 6, 9, 10), (2, 3, 4), (5, 3, 6), (6, 4, 5, 7, 8),

(12, 11, 9, 7, 10, 13), (10, 11, 8, 9, 12)
J11 → 34, 4, 6, 11 (L4 → 33, 2+, 3H)⊕ (P3 → 4, 2+, 3H)⊕ (Q4 → 3, 2+, 5H)
J12 → 43, 5, 7, 12 (10, 9, 6, 7, 4, 1, 3, 0, 2, 5, 8, 11), (6, 3, 2, 4, 5, 7, 8), (4, 3, 5, 6),

(10, 7, 9, 12), (11, 9, 8, 10, 13), (13, 12, 11, 14)
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J12 → 3, 4, 52, 7, 12 (L4 → 4, 5, 2+, 3H)⊕ (P4 → 5, 3+, 4H)⊕ (Q4 → 3, 2+, 5H)
J12 → 33, 42, 7, 12 (L5 → 4, 32, 3+, 4H)⊕ (P3 → 4, 2+, 3H)⊕ (Q4 → 3, 2+, 5H)
J12 → 34, 5, 7, 12 (L4 → 33, 2+, 3H)⊕ (P4 → 5, 3+, 4H)⊕ (Q4 → 3, 2+, 5H)
J13 → 42, 52, 8, 13 (11, 10, 7, 4, 1, 3, 0, 2, 5, 6, 8, 9, 12), (8, 5, 3, 2, 4, 6, 9, 10), (5, 4, 3, 6, 7),

(9, 7, 8, 11), (12, 10, 13, 11, 14), (14, 13, 12, 15)
J13 → 3, 53, 8, 13 (11, 10, 7, 4, 1, 3, 0, 2, 5, 6, 8, 9, 12), (7, 8, 5, 3, 2, 4, 6, 9), (5, 4, 3, 6, 7),

(13, 10, 8, 11, 14), (11, 9, 10, 12, 13), (14, 12, 15)
J13 → 32, 43, 8, 13 (L5 → 32, 4, 3+, 4H)⊕ (P3 → 4, 2+, 3H)⊕ (Q5 → 4, 3+, 6H)
J13 → 33, 4, 5, 8, 13 (L4 → 4, 5, 2+, 3H)⊕ (P5 → 32, 4+, 5H)⊕ (Q4 → 3, 2+, 5H)
J13 → 36, 8, 13 (L4 → 33, 2+, 3H)⊕ (P5 → 32, 4+, 5H)⊕ (Q4 → 3, 2+, 5H)
J14 → 4, 53, 9, 14 (12, 11, 8, 5, 2, 0, 3, 1, 4, 7, 6, 9, 10, 13), (5, 4, 2, 3, 6),

(9, 8, 6, 4, 3, 5, 7, 10, 11), (10, 8, 7, 9, 12), (13, 11, 14, 12, 15),
(15, 14, 13, 16)

J14 → 3, 44, 9, 14 (L3 → 3, 4, 2+, 2H)⊕ 2 · (P3 → 4, 2+, 3H)⊕ (Q5 → 4, 3+, 6H)
J14 → 32, 42, 5, 9, 14 (L5 → 32, 4, 3+, 4H)⊕ (P4 → 5, 3+, 4H)⊕ (Q5 → 4, 3+, 6H)
J14 → 33, 52, 9, 14 (L4 → 33, 2+, 3H)⊕ (P4 → 5, 3+, 4H)⊕ (Q6 → 5, 4+, 7H)
J14 → 35, 4, 9, 14 (L5 → 4, 32, 3+, 4H)⊕ (P5 → 32, 4+, 5H)⊕ (Q4 → 3, 2+, 5H)
J15 → 54, 10, 15 (12, 10, 9, 6, 7, 4, 1, 3, 0, 2, 5, 8, 11, 13, 14), (4, 2, 3, 5, 6),

(12, 9, 7, 5, 4, 3, 6, 8, 10, 13), (9, 8, 7, 10, 11), (14, 11, 12, 15, 16),
(16, 13, 15, 14, 17)

J15 → 45, 10, 15 (13, 10, 12, 9, 6, 7, 4, 1, 3, 0, 2, 5, 8, 11, 14), (9, 8, 6, 3, 2, 4, 5, 7, 10, 11),
(4, 3, 5, 6), (8, 7, 9, 10), (13, 11, 12, 15), (14, 12, 13, 16), (16, 15, 14, 17)

J15 → 3, 43, 5, 10, 15 (L4 → 4, 5, 2+, 3H) ⊕ (P3 → 4, 2+, 3H) ⊕ (P4 → 4, 4+, 4H) ⊕ (Q4 →
3, 2+, 5H)

J15 → 32, 4, 52, 10, 15 (L5 → 32, 4, 3+, 4H)⊕ (P4 → 5, 3+, 4H)⊕ (Q5 → 4, 3+, 6H)
J15 → 34, 42, 10, 15 (L4 → 33, 2+, 3H) ⊕ (P3 → 4, 2+, 3H) ⊕ (P4 → 4, 4+, 4H) ⊕ (Q4 →

3, 2+, 5H)
J15 → 35, 5, 10, 15 (L4 → 33, 2+, 3H)⊕ (P5 → 32, 4+, 5H)⊕ (Q6 → 5, 4+, 7H)
J16 → 44, 5, 11, 16 (L4 → 4, 5, 2+, 3H)⊕ (P3 → 4, 2+, 3H)⊕ (Q5 → 4, 3+, 6H)

J16 → 3, 42, 52, 11, 16 (L4 → 4, 5, 2+, 3H) ⊕ (P3 → 4, 2+, 3H) ⊕ (P5 → 5, 5+, 5H) ⊕ (Q4 →
3, 2+, 5H)

J16 → 32, 53, 11, 16 (L2 → 32, 1+, 1H)⊕ 2 · (P4 → 5, 3+, 4H)⊕ (Q6 → 5, 4+, 7H)
J16 → 33, 43, 11, 16 (L5 → 4, 32, 3+, 4H) ⊕ (P3 → 4, 2+, 3H) ⊕ (P4 → 4, 4+, 4H) ⊕ (Q4 →

3, 2+, 5H)
J16 → 34, 4, 5, 11, 16 (L4 → 33, 2+, 3H) ⊕ (P3 → 4, 2+, 3H) ⊕ (P5 → 5, 5+, 5H) ⊕ (Q4 →

3, 2+, 5H)
J16 → 37, 11, 16 (L2 → 32, 1+, 1H)⊕ 2 · (P5 → 32, 4+, 5H)⊕ (Q4 → 3, 2+, 5H)

J17 → 43, 52, 12, 17 (L4 → 4, 5, 2+, 3H)⊕ (P4 → 5, 3+, 4H)⊕ (Q5 → 4, 3+, 6H)
J17 → 3, 4, 53, 12, 17 (L4 → 4, 5, 2+, 3H) ⊕ (P4 → 5, 3+, 4H) ⊕ (P5 → 5, 5+, 5H) ⊕ (Q4 →

3, 2+, 5H)
J17 → 32, 44, 12, 17 (L5 → 32, 4, 3+, 4H) ⊕ (P3 → 4, 2+, 3H) ⊕ (P4 → 4, 4+, 4H) ⊕ (Q5 →

4, 3+, 6H)
J17 → 33, 42, 5, 12, 17 (L4 → 4, 5, 2+, 3H) ⊕ (P3 → 4, 2+, 3H) ⊕ (P6 → 32, 6+, 6H) ⊕ (Q4 →

3, 2+, 5H)
J17 → 34, 52, 12, 17 (L4 → 33, 2+, 3H) ⊕ (P4 → 5, 3+, 4H) ⊕ (P5 → 5, 5+, 5H) ⊕ (Q4 →

3, 2+, 5H)
J17 → 36, 4, 12, 17 (L4 → 33, 2+, 3H) ⊕ (P3 → 4, 2+, 3H) ⊕ (P6 → 32, 6+, 6H) ⊕ (Q4 →

3, 2+, 5H)
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J18 → 42, 53, 13, 18 (L4 → 4, 5, 2+, 3H)⊕ 2 · (P4 → 5, 3+, 4H)⊕ (Q5 → 4, 3+, 6H)
J18 → 3, 54, 13, 18 (L2 → 5, 2+, 1H)⊕ 3 · (P4 → 5, 3+, 4H)⊕ (Q4 → 3, 2+, 5H)
J18 → 3, 45, 13, 18 (L3 → 3, 4, 2+, 2H)⊕ 2 · (P3 → 4, 2+, 3H)⊕ (P4 → 4, 4+, 4H)⊕ (Q5 →

4, 3+, 6H)
J18 → 32, 43, 5, 13, 18 (L4 → 4, 5, 2+, 3H)⊕ (P5 → 32, 4+, 5H)⊕ (Q5 → 4, 3+, 6H)
J18 → 33, 4, 52, 13, 18 (L4 → 4, 5, 2+, 3H) ⊕ (P4 → 5, 3+, 4H) ⊕ (P6 → 32, 6+, 6H) ⊕ (Q4 →

3, 2+, 5H)
J18 → 35, 42, 13, 18 (L5 → 4, 32, 3+, 4H)⊕ (P3 → 4, 2+, 3H)⊕ (P6 → 32, 6+, 6H)⊕ (Q4 →

3, 2+, 5H)
J18 → 36, 5, 13, 18 (L4 → 33, 2+, 3H) ⊕ (P4 → 5, 3+, 4H) ⊕ (P6 → 32, 6+, 6H) ⊕ (Q4 →

3, 2+, 5H)
J19 → 4, 54, 14, 19 (L4 → 4, 5, 2+, 3H) ⊕ (P4 → 5, 3+, 4H) ⊕ (P5 → 5, 5+, 5H) ⊕ (Q6 →

5, 4+, 7H)
J19 → 46, 14, 19 (L2 → 4, 3+, 1H)⊕ 4 · (P3 → 4, 2+, 3H)⊕ (Q5 → 4, 3+, 6H)

J19 → 3, 44, 5, 14, 19 (L4 → 4, 5, 2+, 3H)⊕ (P3 → 4, 2+, 3H)⊕ 2 · (P4 → 4, 4+, 4H)⊕ (Q4 →
3, 2+, 5H)

J19 → 32, 42, 52, 14, 19 (L4 → 4, 5, 2+, 3H)⊕(P4 → 5, 3+, 4H)⊕2 ·(P5 → 32, 4+, 5H)⊕(Q5 →
4, 3+, 6H)

J19 → 33, 53, 14, 19 (L4 → 33, 2+, 3H) ⊕ (P4 → 5, 3+, 4H) ⊕ (P5 → 5, 5+, 5H) ⊕ (Q6 →
5, 4+, 7H)

J19 → 34, 43, 14, 19 (L4 → 33, 2+, 3H)⊕ (P3 → 4, 2+, 3H)⊕ 2 · (P4 → 4, 4+, 4H)⊕ (Q4 →
3, 2+, 5H)

J19 → 35, 4, 5, 14, 19 (L4 → 4, 5, 2+, 3H)⊕ (P5 → 32, 4+, 5H)⊕ (P6 → 32, 6+, 6H)⊕ (Q4 →
3, 2+, 5H)

J19 → 38, 14, 19 (L4 → 33, 2+, 3H) ⊕ (P5 → 32, 4+, 5H) ⊕ (P6 → 32, 6+, 6H) ⊕ (Q4 →
3, 2+, 5H)

J20 → 55, 15, 20 (L2 → 5, 2+, 1H)⊕ 3 · (P4 → 5, 3+, 4H)⊕ (Q6 → 5, 4+, 7H)
J20 → 45, 5, 15, 20 (L4 → 4, 5, 2+, 3H) ⊕ (P3 → 4, 2+, 3H) ⊕ (P4 → 4, 4+, 4H) ⊕ (Q5 →

4, 3+, 6H)
J20 → 3, 43, 52, 15, 20 (L4 → 4, 5, 2+, 3H) ⊕ (P3 → 4, 2+, 3H) ⊕ (P4 → 4, 4+, 4H) ⊕ (P5 →

5, 5+, 5H)⊕ (Q4 → 3, 2+, 5H)
J20 → 32, 4, 53, 15, 20 (L4 → 4, 5, 2+, 3H) ⊕ (P4 → 5, 3+, 4H) ⊕ (P6 → 32, 6+, 6H) ⊕ (Q6 →

5, 4+, 7H)
J20 → 33, 44, 15, 20 (L5 → 4, 32, 3+, 4H)⊕(P3 → 4, 2+, 3H)⊕2 ·(P4 → 4, 4+, 4H)⊕(Q4 →

3, 2+, 5H)
J20 → 34, 42, 5, 15, 20 (L4 → 4, 5, 2+, 3H)⊕ 2 · (P5 → 32, 4+, 5H)⊕ (Q5 → 4, 3+, 6H)
J20 → 35, 52, 15, 20 (L4 → 33, 2+, 3H) ⊕ (P4 → 5, 3+, 4H) ⊕ (P6 → 32, 6+, 6H) ⊕ (Q6 →

5, 4+, 7H)
J20 → 37, 4, 15, 20 (L5 → 4, 32, 3+, 4H)⊕ (P5 → 32, 4+, 5H)⊕ (P6 → 32, 6+, 6H)⊕ (Q4 →

3, 2+, 5H)
J21 → 44, 52, 16, 21 (L4 → 4, 5, 2+, 3H) ⊕ (P3 → 4, 2+, 3H) ⊕ (P5 → 5, 5+, 5H) ⊕ (Q5 →

4, 3+, 6H)
J21 → 3, 42, 53, 16, 21 (L4 → 4, 5, 2+, 3H)⊕ (P3 → 4, 2+, 3H)⊕ 2 · (P5 → 5, 5+, 5H)⊕ (Q4 →

3, 2+, 5H)
J21 → 32, 54, 16, 21 (L2 → 32, 1+, 1H)⊕ 2 · (P4 → 5, 3+, 4H)⊕ (P5 → 5, 5+, 5H)⊕ (Q6 →

5, 4+, 7H)
J21 → 32, 45, 16, 21 (L5 → 32, 4, 3+, 4H)⊕(P3 → 4, 2+, 3H)⊕2 ·(P4 → 4, 4+, 4H)⊕(Q5 →

4, 3+, 6H)
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J21 → 33, 43, 5, 16, 21 (L4 → 4, 5, 2+, 3H) ⊕ (P3 → 4, 2+, 3H) ⊕ (P4 → 4, 4+, 4H) ⊕ (P6 →
32, 6+, 6H)⊕ (Q4 → 3, 2+, 5H)

J21 → 34, 4, 52, 16, 21 (L4 → 4, 5, 2+, 3H)⊕ (P5 → 32, 4+, 5H)⊕ (P6 → 32, 6+, 6H)⊕ (Q6 →
5, 4+, 7H)

J21 → 36, 42, 16, 21 (L4 → 33, 2+, 3H) ⊕ (P3 → 4, 2+, 3H) ⊕ (P4 → 4, 4+, 4H) ⊕ (P6 →
32, 6+, 6H)⊕ (Q4 → 3, 2+, 5H)

J21 → 37, 5, 16, 21 (L4 → 33, 2+, 3H) ⊕ (P5 → 32, 4+, 5H) ⊕ (P6 → 32, 6+, 6H) ⊕ (Q6 →
5, 4+, 7H)

J22 → 43, 53, 17, 22 (L4 → 4, 5, 2+, 3H) ⊕ (P4 → 5, 3+, 4H) ⊕ (P5 → 5, 5+, 5H) ⊕ (Q5 →
4, 3+, 6H)

J22 → 3, 4, 54, 17, 22 (L4 → 4, 5, 2+, 3H)⊕ (P4 → 5, 3+, 4H)⊕ 2 · (P5 → 5, 5+, 5H)⊕ (Q4 →
3, 2+, 5H)

J22 → 3, 46, 17, 22 (L3 → 3, 4, 2+, 2H)⊕2·(P3 → 4, 2+, 3H)⊕2·(P4 → 4, 4+, 4H)⊕(Q5 →
4, 3+, 6H)

J22 → 32, 44, 5, 17, 22 (L4 → 4, 5, 2+, 3H) ⊕ (P3 → 4, 2+, 3H) ⊕ (P6 → 32, 6+, 6H) ⊕ (Q5 →
4, 3+, 6H)

J22 → 33, 42, 52, 17, 22 (L4 → 4, 5, 2+, 3H) ⊕ (P3 → 4, 2+, 3H) ⊕ (P5 → 5, 5+, 5H) ⊕ (P6 →
32, 6+, 6H)⊕ (Q4 → 3, 2+, 5H)

J22 → 34, 53, 17, 22 (L4 → 33, 2+, 3H)⊕ (P4 → 5, 3+, 4H)⊕ 2 · (P5 → 5, 5+, 5H)⊕ (Q4 →
3, 2+, 5H)

J22 → 35, 43, 17, 22 (L5 → 4, 32, 3+, 4H) ⊕ (P3 → 4, 2+, 3H) ⊕ (P4 → 4, 4+, 4H) ⊕ (P6 →
32, 6+, 6H)⊕ (Q4 → 3, 2+, 5H)

J22 → 36, 4, 5, 17, 22 (L4 → 33, 2+, 3H) ⊕ (P3 → 4, 2+, 3H) ⊕ (P5 → 5, 5+, 5H) ⊕ (P6 →
32, 6+, 6H)⊕ (Q4 → 3, 2+, 5H)

J22 → 39, 17, 22 (L2 → 32, 1+, 1H)⊕2 · (P5 → 32, 4+, 5H)⊕ (P6 → 32, 6+, 6H)⊕ (Q4 →
3, 2+, 5H)

J23 → 42, 54, 18, 23 (L4 → 4, 5, 2+, 3H)⊕ 2 · (P4 → 5, 3+, 4H)⊕ (P5 → 5, 5+, 5H)⊕ (Q5 →
4, 3+, 6H)

J23 → 47, 18, 23 (L2 → 4, 3+, 1H) ⊕ 4 · (P3 → 4, 2+, 3H) ⊕ (P4 → 4, 4+, 4H) ⊕ (Q5 →
4, 3+, 6H)

J23 → 3, 55, 18, 23 (L2 → 5, 2+, 1H) ⊕ 3 · (P4 → 5, 3+, 4H) ⊕ (P5 → 5, 5+, 5H) ⊕ (Q4 →
3, 2+, 5H)

J23 → 3, 45, 5, 18, 23 (L4 → 4, 5, 2+, 3H)⊕ (P3 → 4, 2+, 3H)⊕ 3 · (P4 → 4, 4+, 4H)⊕ (Q4 →
3, 2+, 5H)

J23 → 32, 43, 52, 18, 23 (L4 → 4, 5, 2+, 3H) ⊕ (P4 → 5, 3+, 4H) ⊕ (P6 → 32, 6+, 6H) ⊕ (Q5 →
4, 3+, 6H)

J23 → 33, 4, 53, 18, 23 (L4 → 4, 5, 2+, 3H) ⊕ (P4 → 5, 3+, 4H) ⊕ (P5 → 5, 5+, 5H) ⊕ (P6 →
32, 6+, 6H)⊕ (Q4 → 3, 2+, 5H)

J23 → 34, 44, 18, 23 (L4 → 33, 2+, 3H)⊕ (P3 → 4, 2+, 3H)⊕ 3 · (P4 → 4, 4+, 4H)⊕ (Q4 →
3, 2+, 5H)

J23 → 35, 42, 5, 18, 23 (L4 → 4, 5, 2+, 3H)⊕(P3 → 4, 2+, 3H)⊕2 ·(P6 → 32, 6+, 6H)⊕(Q4 →
3, 2+, 5H)

J23 → 36, 52, 18, 23 (L4 → 33, 2+, 3H) ⊕ (P4 → 5, 3+, 4H) ⊕ (P5 → 5, 5+, 5H) ⊕ (P6 →
32, 6+, 6H)⊕ (Q4 → 3, 2+, 5H)

J23 → 38, 4, 18, 23 (L4 → 33, 2+, 3H)⊕ (P3 → 4, 2+, 3H)⊕ 2 · (P6 → 32, 6+, 6H)⊕ (Q4 →
3, 2+, 5H)

J24 → 4, 55, 19, 24 (L4 → 4, 5, 2+, 3H)⊕ (P4 → 5, 3+, 4H)⊕ 2 · (P5 → 5, 5+, 5H)⊕ (Q6 →
5, 4+, 7H)
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J24 → 46, 5, 19, 24 (L4 → 4, 5, 2+, 3H)⊕ (P3 → 4, 2+, 3H)⊕ 2 · (P4 → 4, 4+, 4H)⊕ (Q5 →
4, 3+, 6H)

J24 → 3, 44, 52, 19, 24 (L4 → 4, 5, 2+, 3H)⊕ (P3 → 4, 2+, 3H)⊕ 2 · (P4 → 4, 4+, 4H)⊕ (P5 →
5, 5+, 5H)⊕ (Q4 → 3, 2+, 5H)

J24 → 32, 42, 53, 19, 24 (L4 → 4, 5, 2+, 3H)⊕2 ·(P4 → 5, 3+, 4H)⊕(P6 → 32, 6+, 6H)⊕(Q5 →
4, 3+, 6H)

J24 → 33, 54, 19, 24 (L4 → 33, 2+, 3H)⊕ (P4 → 5, 3+, 4H)⊕ 2 · (P5 → 5, 5+, 5H)⊕ (Q6 →
5, 4+, 7H)

J24 → 33, 45, 19, 24 (L5 → 4, 32, 3+, 4H)⊕(P3 → 4, 2+, 3H)⊕3 ·(P4 → 4, 4+, 4H)⊕(Q4 →
3, 2+, 5H)

J24 → 34, 43, 5, 19, 24 (L4 → 4, 5, 2+, 3H)⊕ (P5 → 32, 4+, 5H)⊕ (P6 → 32, 6+, 6H)⊕ (Q5 →
4, 3+, 6H)

J24 → 35, 4, 52, 19, 24 (L4 → 4, 5, 2+, 3H)⊕(P4 → 5, 3+, 4H)⊕2 ·(P6 → 32, 6+, 6H)⊕(Q4 →
3, 2+, 5H)

J24 → 37, 42, 19, 24 (L5 → 4, 32, 3+, 4H)⊕(P3 → 4, 2+, 3H)⊕2·(P6 → 32, 6+, 6H)⊕(Q4 →
3, 2+, 5H)

J24 → 38, 5, 19, 24 (L4 → 33, 2+, 3H)⊕ (P4 → 5, 3+, 4H)⊕ 2 · (P6 → 32, 6+, 6H)⊕ (Q4 →
3, 2+, 5H)

J25 → 56, 20, 25 (L2 → 5, 2+, 1H) ⊕ 3 · (P4 → 5, 3+, 4H) ⊕ (P5 → 5, 5+, 5H) ⊕ (Q6 →
5, 4+, 7H)

J25 → 45, 52, 20, 25 (L4 → 4, 5, 2+, 3H) ⊕ (P3 → 4, 2+, 3H) ⊕ (P4 → 4, 4+, 4H) ⊕ (P5 →
5, 5+, 5H)⊕ (Q5 → 4, 3+, 6H)

J25 → 3, 43, 53, 20, 25 (L4 → 4, 5, 2+, 3H)⊕ (P3 → 4, 2+, 3H)⊕ (P4 → 4, 4+, 4H)⊕ 2 · (P5 →
5, 5+, 5H)⊕ (Q4 → 3, 2+, 5H)

J25 → 32, 4, 54, 20, 25 (L4 → 4, 5, 2+, 3H) ⊕ (P4 → 5, 3+, 4H) ⊕ (P5 → 5, 5+, 5H) ⊕ (P6 →
32, 6+, 6H)⊕ (Q6 → 5, 4+, 7H)

J25 → 32, 46, 20, 25 (L5 → 32, 4, 3+, 4H)⊕(P3 → 4, 2+, 3H)⊕3 ·(P4 → 4, 4+, 4H)⊕(Q5 →
4, 3+, 6H)

J25 → 33, 44, 5, 20, 25 (L4 → 4, 5, 2+, 3H)⊕ (P3 → 4, 2+, 3H)⊕ 2 · (P4 → 4, 4+, 4H)⊕ (P6 →
32, 6+, 6H)⊕ (Q4 → 3, 2+, 5H)

J25 → 34, 42, 52, 20, 25 (L4 → 4, 5, 2+, 3H)⊕(P4 → 5, 3+, 4H)⊕2 ·(P5 → 32, 4+, 5H)⊕(Q5 →
4, 3+, 6H)

J25 → 35, 53, 20, 25 (L4 → 33, 2+, 3H) ⊕ (P4 → 5, 3+, 4H) ⊕ (P5 → 5, 5+, 5H) ⊕ (P6 →
32, 6+, 6H)⊕ (Q6 → 5, 4+, 7H)

J25 → 36, 43, 20, 25 (L4 → 33, 2+, 3H)⊕ (P3 → 4, 2+, 3H)⊕ 2 · (P4 → 4, 4+, 4H)⊕ (P6 →
32, 6+, 6H)⊕ (Q4 → 3, 2+, 5H)

J25 → 37, 4, 5, 20, 25 (L4 → 4, 5, 2+, 3H)⊕(P5 → 32, 4+, 5H)⊕2·(P6 → 32, 6+, 6H)⊕(Q4 →
3, 2+, 5H)

J25 → 310, 20, 25 (L4 → 33, 2+, 3H)⊕ (P5 → 32, 4+, 5H)⊕2 · (P6 → 32, 6+, 6H)⊕ (Q4 →
3, 2+, 5H)

J26 → 44, 53, 21, 26 (L4 → 4, 5, 2+, 3H)⊕ (P3 → 4, 2+, 3H)⊕ 2 · (P5 → 5, 5+, 5H)⊕ (Q5 →
4, 3+, 6H)

J26 → 3, 42, 54, 21, 26 (L4 → 4, 5, 2+, 3H)⊕ (P3 → 4, 2+, 3H)⊕ 3 · (P5 → 5, 5+, 5H)⊕ (Q4 →
3, 2+, 5H)

J26 → 3, 47, 21, 26 (L3 → 3, 4, 2+, 2H)⊕2·(P3 → 4, 2+, 3H)⊕3·(P4 → 4, 4+, 4H)⊕(Q5 →
4, 3+, 6H)

J26 → 32, 55, 21, 26 (L2 → 32, 1+, 1H)⊕2 ·(P4 → 5, 3+, 4H)⊕2 ·(P5 → 5, 5+, 5H)⊕(Q6 →
5, 4+, 7H)
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J26 → 32, 45, 5, 21, 26 (L4 → 4, 5, 2+, 3H) ⊕ (P3 → 4, 2+, 3H) ⊕ (P4 → 4, 4+, 4H) ⊕ (P6 →
32, 6+, 6H)⊕ (Q5 → 4, 3+, 6H)

J26 → 33, 43, 52, 21, 26 (L4 → 4, 5, 2+, 3H) ⊕ (P3 → 4, 2+, 3H) ⊕ (P4 → 4, 4+, 4H) ⊕ (P5 →
5, 5+, 5H)⊕ (P6 → 32, 6+, 6H)⊕ (Q4 → 3, 2+, 5H)

J26 → 34, 4, 53, 21, 26 (L4 → 4, 5, 2+, 3H)⊕(P4 → 5, 3+, 4H)⊕2 ·(P6 → 32, 6+, 6H)⊕(Q6 →
5, 4+, 7H)

J26 → 35, 44, 21, 26 (L5 → 4, 32, 3+, 4H)⊕ (P3 → 4, 2+, 3H)⊕2 · (P4 → 4, 4+, 4H)⊕ (P6 →
32, 6+, 6H)⊕ (Q4 → 3, 2+, 5H)

J26 → 36, 42, 5, 21, 26 (L4 → 4, 5, 2+, 3H)⊕2·(P5 → 32, 4+, 5H)⊕(P6 → 32, 6+, 6H)⊕(Q5 →
4, 3+, 6H)

J26 → 37, 52, 21, 26 (L4 → 33, 2+, 3H)⊕ (P4 → 5, 3+, 4H)⊕ 2 · (P6 → 32, 6+, 6H)⊕ (Q6 →
5, 4+, 7H)

J26 → 39, 4, 21, 26 (L5 → 4, 32, 3+, 4H)⊕(P5 → 32, 4+, 5H)⊕2·(P6 → 32, 6+, 6H)⊕(Q4 →
3, 2+, 5H)

J27 → 43, 54, 22, 27 (L4 → 4, 5, 2+, 3H)⊕ (P4 → 5, 3+, 4H)⊕ 2 · (P5 → 5, 5+, 5H)⊕ (Q5 →
4, 3+, 6H)

J27 → 48, 22, 27 (L2 → 4, 3+, 1H)⊕4 · (P3 → 4, 2+, 3H)⊕2 · (P4 → 4, 4+, 4H)⊕ (Q5 →
4, 3+, 6H)

J27 → 3, 4, 55, 22, 27 (L4 → 4, 5, 2+, 3H)⊕ (P4 → 5, 3+, 4H)⊕ 3 · (P5 → 5, 5+, 5H)⊕ (Q4 →
3, 2+, 5H)

J27 → 3, 46, 5, 22, 27 (L4 → 4, 5, 2+, 3H)⊕ (P3 → 4, 2+, 3H)⊕ 4 · (P4 → 4, 4+, 4H)⊕ (Q4 →
3, 2+, 5H)

J27 → 32, 44, 52, 22, 27 (L4 → 4, 5, 2+, 3H) ⊕ (P3 → 4, 2+, 3H) ⊕ (P5 → 5, 5+, 5H) ⊕ (P6 →
32, 6+, 6H)⊕ (Q5 → 4, 3+, 6H)

J27 → 33, 42, 53, 22, 27 (L4 → 4, 5, 2+, 3H)⊕ (P3 → 4, 2+, 3H)⊕ 2 · (P5 → 5, 5+, 5H)⊕ (P6 →
32, 6+, 6H)⊕ (Q4 → 3, 2+, 5H)

J27 → 34, 54, 22, 27 (L4 → 33, 2+, 3H)⊕ (P4 → 5, 3+, 4H)⊕ 3 · (P5 → 5, 5+, 5H)⊕ (Q4 →
3, 2+, 5H)

J27 → 34, 45, 22, 27 (L4 → 33, 2+, 3H)⊕ (P3 → 4, 2+, 3H)⊕ 4 · (P4 → 4, 4+, 4H)⊕ (Q4 →
3, 2+, 5H)

J27 → 35, 43, 5, 22, 27 (L4 → 4, 5, 2+, 3H)⊕ (P3 → 4, 2+, 3H)⊕ (P4 → 4, 4+, 4H)⊕ 2 · (P6 →
32, 6+, 6H)⊕ (Q4 → 3, 2+, 5H)

J27 → 36, 4, 52, 22, 27 (L4 → 4, 5, 2+, 3H)⊕(P5 → 32, 4+, 5H)⊕2·(P6 → 32, 6+, 6H)⊕(Q6 →
5, 4+, 7H)

J27 → 38, 42, 22, 27 (L4 → 33, 2+, 3H)⊕ (P3 → 4, 2+, 3H)⊕ (P4 → 4, 4+, 4H)⊕ 2 · (P6 →
32, 6+, 6H)⊕ (Q4 → 3, 2+, 5H)

J27 → 39, 5, 22, 27 (L4 → 33, 2+, 3H)⊕ (P5 → 32, 4+, 5H)⊕2 · (P6 → 32, 6+, 6H)⊕ (Q6 →
5, 4+, 7H)

J28 → 42, 55, 23, 28 (L4 → 4, 5, 2+, 3H)⊕2·(P4 → 5, 3+, 4H)⊕2·(P5 → 5, 5+, 5H)⊕(Q5 →
4, 3+, 6H)

J28 → 47, 5, 23, 28 (L4 → 4, 5, 2+, 3H)⊕ (P3 → 4, 2+, 3H)⊕ 3 · (P4 → 4, 4+, 4H)⊕ (Q5 →
4, 3+, 6H)

J28 → 3, 56, 23, 28 (L2 → 5, 2+, 1H)⊕3 · (P4 → 5, 3+, 4H)⊕2 · (P5 → 5, 5+, 5H)⊕ (Q4 →
3, 2+, 5H)

J28 → 3, 45, 52, 23, 28 (L4 → 4, 5, 2+, 3H)⊕ (P3 → 4, 2+, 3H)⊕ 3 · (P4 → 4, 4+, 4H)⊕ (P5 →
5, 5+, 5H)⊕ (Q4 → 3, 2+, 5H)

J28 → 32, 43, 53, 23, 28 (L4 → 4, 5, 2+, 3H) ⊕ (P4 → 5, 3+, 4H) ⊕ (P5 → 5, 5+, 5H) ⊕ (P6 →
32, 6+, 6H)⊕ (Q5 → 4, 3+, 6H)
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J28 → 33, 4, 54, 23, 28 (L4 → 4, 5, 2+, 3H)⊕ (P4 → 5, 3+, 4H)⊕ 2 · (P5 → 5, 5+, 5H)⊕ (P6 →
32, 6+, 6H)⊕ (Q4 → 3, 2+, 5H)

J28 → 33, 46, 23, 28 (L5 → 4, 32, 3+, 4H)⊕(P3 → 4, 2+, 3H)⊕4 ·(P4 → 4, 4+, 4H)⊕(Q4 →
3, 2+, 5H)

J28 → 34, 44, 5, 23, 28 (L4 → 4, 5, 2+, 3H)⊕(P3 → 4, 2+, 3H)⊕2 ·(P6 → 32, 6+, 6H)⊕(Q5 →
4, 3+, 6H)

J28 → 35, 42, 52, 23, 28 (L4 → 4, 5, 2+, 3H)⊕ (P3 → 4, 2+, 3H)⊕ (P5 → 5, 5+, 5H)⊕ 2 · (P6 →
32, 6+, 6H)⊕ (Q4 → 3, 2+, 5H)

J28 → 36, 53, 23, 28 (L4 → 33, 2+, 3H)⊕ (P4 → 5, 3+, 4H)⊕ 2 · (P5 → 5, 5+, 5H)⊕ (P6 →
32, 6+, 6H)⊕ (Q4 → 3, 2+, 5H)

J28 → 37, 43, 23, 28 (L5 → 4, 32, 3+, 4H)⊕ (P3 → 4, 2+, 3H)⊕ (P4 → 4, 4+, 4H)⊕2 · (P6 →
32, 6+, 6H)⊕ (Q4 → 3, 2+, 5H)

J28 → 38, 4, 5, 23, 28 (L4 → 33, 2+, 3H)⊕ (P3 → 4, 2+, 3H)⊕ (P5 → 5, 5+, 5H)⊕ 2 · (P6 →
32, 6+, 6H)⊕ (Q4 → 3, 2+, 5H)

J28 → 311, 23, 28 (L2 → 32, 1+, 1H)⊕2·(P5 → 32, 4+, 5H)⊕2·(P6 → 32, 6+, 6H)⊕(Q4 →
3, 2+, 5H)

J29 → 4, 56, 24, 29 (L4 → 4, 5, 2+, 3H)⊕ (P4 → 5, 3+, 4H)⊕ 3 · (P5 → 5, 5+, 5H)⊕ (Q6 →
5, 4+, 7H)

J29 → 46, 52, 24, 29 (L4 → 4, 5, 2+, 3H)⊕ (P3 → 4, 2+, 3H)⊕ 2 · (P4 → 4, 4+, 4H)⊕ (P5 →
5, 5+, 5H)⊕ (Q5 → 4, 3+, 6H)

J29 → 3, 44, 53, 24, 29 (L4 → 4, 5, 2+, 3H)⊕(P3 → 4, 2+, 3H)⊕2·(P4 → 4, 4+, 4H)⊕2·(P5 →
5, 5+, 5H)⊕ (Q4 → 3, 2+, 5H)

J29 → 32, 42, 54, 24, 29 (L4 → 4, 5, 2+, 3H)⊕ 2 · (P4 → 5, 3+, 4H)⊕ (P5 → 5, 5+, 5H)⊕ (P6 →
32, 6+, 6H)⊕ (Q5 → 4, 3+, 6H)

J29 → 32, 47, 24, 29 (L5 → 32, 4, 3+, 4H)⊕(P3 → 4, 2+, 3H)⊕4 ·(P4 → 4, 4+, 4H)⊕(Q5 →
4, 3+, 6H)

J29 → 33, 55, 24, 29 (L4 → 33, 2+, 3H)⊕ (P4 → 5, 3+, 4H)⊕ 3 · (P5 → 5, 5+, 5H)⊕ (Q6 →
5, 4+, 7H)

J29 → 33, 45, 5, 24, 29 (L4 → 4, 5, 2+, 3H)⊕ (P3 → 4, 2+, 3H)⊕ 3 · (P4 → 4, 4+, 4H)⊕ (P6 →
32, 6+, 6H)⊕ (Q4 → 3, 2+, 5H)

J29 → 34, 43, 52, 24, 29 (L4 → 4, 5, 2+, 3H)⊕(P4 → 5, 3+, 4H)⊕2 ·(P6 → 32, 6+, 6H)⊕(Q5 →
4, 3+, 6H)

J29 → 35, 4, 53, 24, 29 (L4 → 4, 5, 2+, 3H)⊕ (P4 → 5, 3+, 4H)⊕ (P5 → 5, 5+, 5H)⊕ 2 · (P6 →
32, 6+, 6H)⊕ (Q4 → 3, 2+, 5H)

J29 → 36, 44, 24, 29 (L4 → 33, 2+, 3H)⊕ (P3 → 4, 2+, 3H)⊕ 3 · (P4 → 4, 4+, 4H)⊕ (P6 →
32, 6+, 6H)⊕ (Q4 → 3, 2+, 5H)

J29 → 37, 42, 5, 24, 29 (L4 → 4, 5, 2+, 3H)⊕(P3 → 4, 2+, 3H)⊕3 ·(P6 → 32, 6+, 6H)⊕(Q4 →
3, 2+, 5H)

J29 → 38, 52, 24, 29 (L4 → 33, 2+, 3H)⊕ (P4 → 5, 3+, 4H)⊕ (P5 → 5, 5+, 5H)⊕ 2 · (P6 →
32, 6+, 6H)⊕ (Q4 → 3, 2+, 5H)

J29 → 310, 4, 24, 29 (L4 → 33, 2+, 3H)⊕ (P3 → 4, 2+, 3H)⊕ 3 · (P6 → 32, 6+, 6H)⊕ (Q4 →
3, 2+, 5H)

J30 → 57, 25, 30 (L2 → 5, 2+, 1H)⊕3 · (P4 → 5, 3+, 4H)⊕2 · (P5 → 5, 5+, 5H)⊕ (Q6 →
5, 4+, 7H)

J30 → 45, 53, 25, 30 (L4 → 4, 5, 2+, 3H)⊕ (P3 → 4, 2+, 3H)⊕ (P4 → 4, 4+, 4H)⊕ 2 · (P5 →
5, 5+, 5H)⊕ (Q5 → 4, 3+, 6H)

J30 → 3, 43, 54, 25, 30 (L4 → 4, 5, 2+, 3H)⊕ (P3 → 4, 2+, 3H)⊕ (P4 → 4, 4+, 4H)⊕ 3 · (P5 →
5, 5+, 5H)⊕ (Q4 → 3, 2+, 5H)
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J30 → 3, 48, 25, 30 (L3 → 3, 4, 2+, 2H)⊕2·(P3 → 4, 2+, 3H)⊕4·(P4 → 4, 4+, 4H)⊕(Q5 →
4, 3+, 6H)

J30 → 32, 4, 55, 25, 30 (L4 → 4, 5, 2+, 3H)⊕ (P4 → 5, 3+, 4H)⊕ 2 · (P5 → 5, 5+, 5H)⊕ (P6 →
32, 6+, 6H)⊕ (Q6 → 5, 4+, 7H)

J30 → 32, 46, 5, 25, 30 (L4 → 4, 5, 2+, 3H)⊕ (P3 → 4, 2+, 3H)⊕ 2 · (P4 → 4, 4+, 4H)⊕ (P6 →
32, 6+, 6H)⊕ (Q5 → 4, 3+, 6H)

J30 → 33, 44, 52, 25, 30 (L4 → 4, 5, 2+, 3H)⊕ (P3 → 4, 2+, 3H)⊕ 2 · (P4 → 4, 4+, 4H)⊕ (P5 →
5, 5+, 5H)⊕ (P6 → 32, 6+, 6H)⊕ (Q4 → 3, 2+, 5H)

J30 → 34, 42, 53, 25, 30 (L4 → 4, 5, 2+, 3H)⊕2·(P4 → 5, 3+, 4H)⊕2·(P6 → 32, 6+, 6H)⊕(Q5 →
4, 3+, 6H)

J30 → 35, 54, 25, 30 (L4 → 33, 2+, 3H)⊕ (P4 → 5, 3+, 4H)⊕ 2 · (P5 → 5, 5+, 5H)⊕ (P6 →
32, 6+, 6H)⊕ (Q6 → 5, 4+, 7H)

J30 → 35, 45, 25, 30 (L5 → 4, 32, 3+, 4H)⊕ (P3 → 4, 2+, 3H)⊕3 · (P4 → 4, 4+, 4H)⊕ (P6 →
32, 6+, 6H)⊕ (Q4 → 3, 2+, 5H)

J30 → 36, 43, 5, 25, 30 (L4 → 4, 5, 2+, 3H)⊕(P5 → 32, 4+, 5H)⊕2·(P6 → 32, 6+, 6H)⊕(Q5 →
4, 3+, 6H)

J30 → 37, 4, 52, 25, 30 (L4 → 4, 5, 2+, 3H)⊕(P4 → 5, 3+, 4H)⊕3 ·(P6 → 32, 6+, 6H)⊕(Q4 →
3, 2+, 5H)

J30 → 39, 42, 25, 30 (L5 → 4, 32, 3+, 4H)⊕(P3 → 4, 2+, 3H)⊕3·(P6 → 32, 6+, 6H)⊕(Q4 →
3, 2+, 5H)

J30 → 310, 5, 25, 30 (L4 → 33, 2+, 3H)⊕ (P4 → 5, 3+, 4H)⊕ 3 · (P6 → 32, 6+, 6H)⊕ (Q4 →
3, 2+, 5H)

J31 → 44, 54, 26, 31 (L4 → 4, 5, 2+, 3H)⊕ (P3 → 4, 2+, 3H)⊕ 3 · (P5 → 5, 5+, 5H)⊕ (Q5 →
4, 3+, 6H)

J31 → 49, 26, 31 (L2 → 4, 3+, 1H)⊕4 · (P3 → 4, 2+, 3H)⊕3 · (P4 → 4, 4+, 4H)⊕ (Q5 →
4, 3+, 6H)

J31 → 3, 42, 55, 26, 31 (L4 → 4, 5, 2+, 3H)⊕ (P3 → 4, 2+, 3H)⊕ 4 · (P5 → 5, 5+, 5H)⊕ (Q4 →
3, 2+, 5H)

J31 → 3, 47, 5, 26, 31 (L4 → 4, 5, 2+, 3H)⊕ (P3 → 4, 2+, 3H)⊕ 5 · (P4 → 4, 4+, 4H)⊕ (Q4 →
3, 2+, 5H)

J31 → 32, 56, 26, 31 (L2 → 32, 1+, 1H)⊕2 ·(P4 → 5, 3+, 4H)⊕3 ·(P5 → 5, 5+, 5H)⊕(Q6 →
5, 4+, 7H)

J31 → 32, 45, 52, 26, 31 (L4 → 4, 5, 2+, 3H) ⊕ (P3 → 4, 2+, 3H) ⊕ (P4 → 4, 4+, 4H) ⊕ (P5 →
5, 5+, 5H)⊕ (P6 → 32, 6+, 6H)⊕ (Q5 → 4, 3+, 6H)

J31 → 33, 43, 53, 26, 31 (L4 → 4, 5, 2+, 3H)⊕ (P3 → 4, 2+, 3H)⊕ (P4 → 4, 4+, 4H)⊕ 2 · (P5 →
5, 5+, 5H)⊕ (P6 → 32, 6+, 6H)⊕ (Q4 → 3, 2+, 5H)

J31 → 34, 4, 54, 26, 31 (L4 → 4, 5, 2+, 3H)⊕ (P4 → 5, 3+, 4H)⊕ (P5 → 5, 5+, 5H)⊕ 2 · (P6 →
32, 6+, 6H)⊕ (Q6 → 5, 4+, 7H)

J31 → 34, 46, 26, 31 (L4 → 33, 2+, 3H)⊕ (P3 → 4, 2+, 3H)⊕ 5 · (P4 → 4, 4+, 4H)⊕ (Q4 →
3, 2+, 5H)

J31 → 35, 44, 5, 26, 31 (L4 → 4, 5, 2+, 3H)⊕(P3 → 4, 2+, 3H)⊕2·(P4 → 4, 4+, 4H)⊕2·(P6 →
32, 6+, 6H)⊕ (Q4 → 3, 2+, 5H)

J31 → 36, 42, 52, 26, 31 (L4 → 4, 5, 2+, 3H)⊕ (P4 → 5, 3+, 4H)⊕2 · (P5 → 32, 4+, 5H)⊕ (P6 →
32, 6+, 6H)⊕ (Q5 → 4, 3+, 6H)

J31 → 37, 53, 26, 31 (L4 → 33, 2+, 3H)⊕ (P4 → 5, 3+, 4H)⊕ (P5 → 5, 5+, 5H)⊕ 2 · (P6 →
32, 6+, 6H)⊕ (Q6 → 5, 4+, 7H)

J31 → 38, 43, 26, 31 (L4 → 33, 2+, 3H)⊕ (P3 → 4, 2+, 3H)⊕2 · (P4 → 4, 4+, 4H)⊕2 · (P6 →
32, 6+, 6H)⊕ (Q4 → 3, 2+, 5H)
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J31 → 39, 4, 5, 26, 31 (L4 → 4, 5, 2+, 3H)⊕(P5 → 32, 4+, 5H)⊕3·(P6 → 32, 6+, 6H)⊕(Q4 →
3, 2+, 5H)

J31 → 312, 26, 31 (L4 → 33, 2+, 3H)⊕ (P5 → 32, 4+, 5H)⊕3 · (P6 → 32, 6+, 6H)⊕ (Q4 →
3, 2+, 5H)

J32 → 43, 55, 27, 32 (L4 → 4, 5, 2+, 3H)⊕ (P4 → 5, 3+, 4H)⊕ 3 · (P5 → 5, 5+, 5H)⊕ (Q5 →
4, 3+, 6H)

J32 → 48, 5, 27, 32 (L4 → 4, 5, 2+, 3H)⊕ (P3 → 4, 2+, 3H)⊕ 4 · (P4 → 4, 4+, 4H)⊕ (Q5 →
4, 3+, 6H)

J32 → 3, 4, 56, 27, 32 (L4 → 4, 5, 2+, 3H)⊕ (P4 → 5, 3+, 4H)⊕ 4 · (P5 → 5, 5+, 5H)⊕ (Q4 →
3, 2+, 5H)

J32 → 3, 46, 52, 27, 32 (L4 → 4, 5, 2+, 3H)⊕ (P3 → 4, 2+, 3H)⊕ 4 · (P4 → 4, 4+, 4H)⊕ (P5 →
5, 5+, 5H)⊕ (Q4 → 3, 2+, 5H)

J32 → 32, 44, 53, 27, 32 (L4 → 4, 5, 2+, 3H)⊕ (P3 → 4, 2+, 3H)⊕ 2 · (P5 → 5, 5+, 5H)⊕ (P6 →
32, 6+, 6H)⊕ (Q5 → 4, 3+, 6H)

J32 → 33, 42, 54, 27, 32 (L4 → 4, 5, 2+, 3H)⊕ (P3 → 4, 2+, 3H)⊕ 3 · (P5 → 5, 5+, 5H)⊕ (P6 →
32, 6+, 6H)⊕ (Q4 → 3, 2+, 5H)

J32 → 33, 47, 27, 32 (L5 → 4, 32, 3+, 4H)⊕(P3 → 4, 2+, 3H)⊕5 ·(P4 → 4, 4+, 4H)⊕(Q4 →
3, 2+, 5H)

J32 → 34, 55, 27, 32 (L4 → 33, 2+, 3H)⊕ (P4 → 5, 3+, 4H)⊕ 4 · (P5 → 5, 5+, 5H)⊕ (Q4 →
3, 2+, 5H)

J32 → 34, 45, 5, 27, 32 (L4 → 4, 5, 2+, 3H)⊕ (P3 → 4, 2+, 3H)⊕ (P4 → 4, 4+, 4H)⊕ 2 · (P6 →
32, 6+, 6H)⊕ (Q5 → 4, 3+, 6H)

J32 → 35, 43, 52, 27, 32 (L4 → 4, 5, 2+, 3H) ⊕ (P3 → 4, 2+, 3H) ⊕ (P4 → 4, 4+, 4H) ⊕ (P5 →
5, 5+, 5H)⊕ 2 · (P6 → 32, 6+, 6H)⊕ (Q4 → 3, 2+, 5H)

J32 → 36, 4, 53, 27, 32 (L4 → 4, 5, 2+, 3H)⊕(P4 → 5, 3+, 4H)⊕3 ·(P6 → 32, 6+, 6H)⊕(Q6 →
5, 4+, 7H)

J32 → 37, 44, 27, 32 (L5 → 4, 32, 3+, 4H)⊕(P3 → 4, 2+, 3H)⊕2·(P4 → 4, 4+, 4H)⊕2·(P6 →
32, 6+, 6H)⊕ (Q4 → 3, 2+, 5H)

J32 → 38, 42, 5, 27, 32 (L4 → 4, 5, 2+, 3H) ⊕ 2 · (P5 → 32, 4+, 5H) ⊕ 2 · (P6 → 32, 6+, 6H) ⊕
(Q5 → 4, 3+, 6H)

J32 → 39, 52, 27, 32 (L4 → 33, 2+, 3H)⊕ (P4 → 5, 3+, 4H)⊕ 3 · (P6 → 32, 6+, 6H)⊕ (Q6 →
5, 4+, 7H)

J32 → 311, 4, 27, 32 (L5 → 4, 32, 3+, 4H)⊕(P5 → 32, 4+, 5H)⊕3·(P6 → 32, 6+, 6H)⊕(Q4 →
3, 2+, 5H)

J33 → 42, 56, 28, 33 (L4 → 4, 5, 2+, 3H)⊕2·(P4 → 5, 3+, 4H)⊕3·(P5 → 5, 5+, 5H)⊕(Q5 →
4, 3+, 6H)

J34 → 313, 29, 34 (L2 → 32, 1+, 1H)⊕2·(P5 → 32, 4+, 5H)⊕3·(P6 → 32, 6+, 6H)⊕(Q4 →
3, 2+, 5H)

Table A.24: Table of decompositions for Lemma 1.6.39 with j = 5

t Difference triples

11 {5, 24, 29}, {7, 20, 27}, {8, 23, 31}, {9, 21, 30}, {10, 26, 36}, {11, 28, 39},
{12, 25, 37}, {13, 22, 35}, {14, 18, 32}, {15, 19, 34}, {16, 17, 33}

12 {5, 21, 26}, {7, 27, 34}, {8, 23, 31}, {9, 24, 33}, {10, 28, 38}, {11, 29, 40},
{12, 30, 42}, {13, 19, 32}, {14, 25, 39}, {15, 22, 37}, {16, 20, 36}, {17, 18, 35}
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t Difference triples

13 {5, 20, 25}, {7, 28, 35}, {8, 26, 34}, {9, 29, 38}, {10, 23, 33}, {11, 31, 42},
{12, 32, 44}, {13, 30, 43}, {14, 27, 41}, {15, 21, 36}, {16, 24, 40}, {17, 22, 39},
{18, 19, 37}

14 {5, 18, 23}, {7, 30, 37}, {8, 31, 39}, {9, 26, 35}, {10, 28, 38}, {11, 25, 36},
{12, 33, 45}, {13, 34, 47}, {14, 32, 46}, {15, 29, 44}, {16, 27, 43}, {17, 24, 41},
{19, 21, 40}, {20, 22, 42}

15 {5, 33, 38}, {7, 13, 20}, {8, 34, 42}, {9, 28, 37}, {10, 31, 41}, {11, 29, 40},
{12, 27, 39}, {14, 35, 49}, {15, 36, 51}, {16, 32, 48}, {17, 30, 47}, {18, 26, 44},
{19, 24, 43}, {21, 25, 46}, {22, 23, 45}

16 {5, 12, 17}, {7, 34, 41}, {8, 31, 39}, {9, 35, 44}, {10, 30, 40}, {11, 32, 43},
{13, 29, 42}, {14, 36, 50}, {15, 37, 52}, {16, 38, 54}, {18, 33, 51}, {19, 27, 46},
{20, 25, 45}, {21, 28, 49}, {22, 26, 48}, {23, 24, 47}

17 {5, 9, 14}, {7, 34, 41}, {8, 37, 45}, {10, 36, 46}, {11, 31, 42}, {12, 32, 44},
{13, 30, 43}, {15, 39, 54}, {16, 40, 56}, {17, 38, 55}, {18, 35, 53}, {19, 33, 52},
{20, 28, 48}, {21, 26, 47}, {22, 29, 51}, {23, 27, 50}, {24, 25, 49}

18 {5, 30, 35}, {7, 29, 36}, {8, 31, 39}, {9, 41, 50}, {10, 28, 38}, {11, 44, 55},
{12, 46, 58}, {13, 43, 56}, {14, 45, 59}, {15, 42, 57}, {16, 24, 40}, {17, 37, 54},
{18, 33, 51}, {19, 34, 53}, {20, 32, 52}, {21, 26, 47}, {22, 27, 49}, {23, 25, 48}

19 {5, 32, 37}, {7, 31, 38}, {8, 33, 41}, {9, 30, 39}, {10, 46, 56}, {11, 47, 58},
{12, 49, 61}, {13, 29, 42}, {14, 45, 59}, {15, 48, 63}, {16, 44, 60}, {17, 40, 57},
{18, 35, 53}, {19, 36, 55}, {20, 34, 54}, {21, 22, 43}, {23, 27, 50}, {24, 28, 52},
{25, 26, 51}

20 {5, 33, 38}, {7, 32, 39}, {8, 35, 43}, {9, 31, 40}, {10, 48, 58}, {11, 30, 41},
{12, 47, 59}, {13, 51, 64}, {14, 49, 63}, {15, 46, 61}, {16, 50, 66}, {17, 45, 62},
{18, 42, 60}, {19, 36, 55}, {20, 37, 57}, {21, 23, 44}, {22, 34, 56}, {24, 28, 52},
{25, 29, 54}, {26, 27, 53}

21 {5, 35, 40}, {7, 34, 41}, {8, 37, 45}, {9, 33, 42}, {10, 51, 61}, {11, 32, 43},
{12, 54, 66}, {13, 50, 63}, {14, 53, 67}, {15, 49, 64}, {16, 52, 68}, {17, 48, 65},
{18, 44, 62}, {19, 27, 46}, {20, 38, 58}, {21, 39, 60}, {22, 25, 47}, {23, 36, 59},
{24, 31, 55}, {26, 30, 56}, {28, 29, 57}

22 {5, 29, 34}, {7, 30, 37}, {8, 28, 36}, {9, 45, 54}, {10, 46, 56}, {11, 27, 38},
{12, 43, 55}, {13, 44, 57}, {14, 51, 65}, {15, 52, 67}, {16, 42, 58}, {17, 49, 66},
{18, 53, 71}, {19, 50, 69}, {20, 41, 61}, {21, 47, 68}, {22, 48, 70}, {23, 39, 62},
{24, 40, 64}, {25, 35, 60}, {26, 33, 59}, {31, 32, 63}

23 {5, 29, 34}, {7, 28, 35}, {8, 30, 38}, {9, 47, 56}, {10, 27, 37}, {11, 46, 57},
{12, 48, 60}, {13, 45, 58}, {14, 54, 68}, {15, 44, 59}, {16, 53, 69}, {17, 55, 72},
{18, 43, 61}, {19, 51, 70}, {20, 42, 62}, {21, 50, 71}, {22, 41, 63}, {23, 52, 75},
{24, 49, 73}, {25, 39, 64}, {26, 40, 66}, {31, 36, 67}, {32, 33, 65}

24 {5, 29, 34}, {7, 28, 35}, {8, 30, 38}, {9, 27, 36}, {10, 48, 58}, {11, 49, 60},
{12, 47, 59}, {13, 50, 63}, {14, 51, 65}, {15, 46, 61}, {16, 54, 70}, {17, 45, 62},
{18, 55, 73}, {19, 57, 76}, {20, 44, 64}, {21, 53, 74}, {22, 56, 78}, {23, 52, 75},
{24, 42, 66}, {25, 43, 68}, {26, 41, 67}, {31, 40, 71}, {32, 37, 69}, {33, 39, 72}

25 {5, 29, 34}, {7, 28, 35}, {8, 52, 60}, {9, 27, 36}, {10, 51, 61}, {11, 26, 37},
{12, 50, 62}, {13, 53, 66}, {14, 49, 63}, {15, 55, 70}, {16, 48, 64}, {17, 56, 73},
{18, 47, 65}, {19, 57, 76}, {20, 59, 79}, {21, 46, 67}, {22, 58, 80}, {23, 45, 68},
{24, 54, 78}, {25, 44, 69}, {30, 41, 71}, {31, 43, 74}, {32, 40, 72}, {33, 42, 75},
{38, 39, 77}
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t Difference triples

26 {5, 28, 33}, {7, 27, 34}, {8, 29, 37}, {9, 53, 62}, {10, 26, 36}, {11, 52, 63},
{12, 54, 66}, {13, 51, 64}, {14, 55, 69}, {15, 50, 65}, {16, 56, 72}, {17, 57, 74},
{18, 49, 67}, {19, 59, 78}, {20, 48, 68}, {21, 60, 81}, {22, 61, 83}, {23, 47, 70},
{24, 58, 82}, {25, 46, 71}, {30, 43, 73}, {31, 44, 75}, {32, 45, 77}, {35, 41, 76},
{38, 42, 80}, {39, 40, 79}

27 {5, 27, 32}, {7, 28, 35}, {8, 26, 34}, {9, 55, 64}, {10, 56, 66}, {11, 25, 36},
{12, 53, 65}, {13, 54, 67}, {14, 57, 71}, {15, 58, 73}, {16, 52, 68}, {17, 59, 76},
{18, 51, 69}, {19, 60, 79}, {20, 50, 70}, {21, 61, 82}, {22, 62, 84}, {23, 49, 72},
{24, 63, 87}, {29, 45, 74}, {30, 47, 77}, {31, 44, 75}, {33, 48, 81}, {37, 41, 78},
{38, 42, 80}, {39, 46, 85}, {40, 43, 83}

28 {5, 27, 32}, {7, 26, 33}, {8, 58, 66}, {9, 25, 34}, {10, 57, 67}, {11, 24, 35},
{12, 56, 68}, {13, 59, 72}, {14, 55, 69}, {15, 60, 75}, {16, 54, 70}, {17, 62, 79},
{18, 53, 71}, {19, 63, 82}, {20, 64, 84}, {21, 52, 73}, {22, 65, 87}, {23, 51, 74},
{28, 48, 76}, {29, 61, 90}, {30, 47, 77}, {31, 49, 80}, {36, 42, 78}, {37, 44, 81},
{38, 50, 88}, {39, 46, 85}, {40, 43, 83}, {41, 45, 86}

29 {5, 44, 49}, {7, 72, 79}, {8, 42, 50}, {9, 71, 80}, {10, 41, 51}, {11, 70, 81},
{12, 40, 52}, {13, 69, 82}, {14, 39, 53}, {15, 60, 75}, {16, 68, 84}, {17, 38, 55},
{18, 67, 85}, {19, 37, 56}, {20, 66, 86}, {21, 36, 57}, {22, 65, 87}, {23, 35, 58},
{24, 64, 88}, {25, 48, 73}, {26, 63, 89}, {27, 47, 74}, {28, 62, 90}, {29, 54, 83},
{30, 61, 91}, {31, 45, 76}, {32, 46, 78}, {33, 59, 92}, {34, 43, 77}

30 {5, 46, 51}, {7, 78, 85}, {8, 45, 53}, {9, 77, 86}, {10, 44, 54}, {11, 76, 87},
{12, 43, 55}, {13, 75, 88}, {14, 42, 56}, {15, 59, 74}, {16, 57, 73}, {17, 65, 82},
{18, 72, 90}, {19, 41, 60}, {20, 71, 91}, {21, 40, 61}, {22, 70, 92}, {23, 39, 62},
{24, 69, 93}, {25, 38, 63}, {26, 68, 94}, {27, 52, 79}, {28, 36, 64}, {29, 66, 95},
{30, 37, 67}, {31, 58, 89}, {32, 49, 81}, {33, 47, 80}, {34, 50, 84}, {35, 48, 83}

31 {5, 84, 89}, {7, 51, 58}, {8, 82, 90}, {9, 50, 59}, {10, 81, 91}, {11, 49, 60},
{12, 80, 92}, {13, 48, 61}, {14, 79, 93}, {15, 47, 62}, {16, 54, 70}, {17, 46, 63},
{18, 76, 94}, {19, 77, 96}, {20, 75, 95}, {21, 43, 64}, {22, 44, 66}, {23, 42, 65},
{24, 73, 97}, {25, 74, 99}, {26, 41, 67}, {27, 56, 83}, {28, 40, 68}, {29, 57, 86},
{30, 55, 85}, {31, 38, 69}, {32, 39, 71}, {33, 45, 78}, {34, 53, 87}, {35, 37, 72},
{36, 52, 88}

32 {5, 85, 90}, {7, 49, 56}, {8, 83, 91}, {9, 48, 57}, {10, 82, 92}, {11, 47, 58},
{12, 81, 93}, {13, 46, 59}, {14, 80, 94}, {15, 63, 78}, {16, 44, 60}, {17, 62, 79},
{18, 54, 72}, {19, 42, 61}, {20, 76, 96}, {21, 74, 95}, {22, 75, 97}, {23, 43, 66},
{24, 41, 65}, {25, 39, 64}, {26, 73, 99}, {27, 40, 67}, {28, 70, 98}, {29, 71, 100},
{30, 38, 68}, {31, 53, 84}, {32, 45, 77}, {33, 69, 102}, {34, 55, 89}, {35, 51, 86},
{36, 52, 88}, {37, 50, 87}

33 {5, 50, 55}, {7, 82, 89}, {8, 48, 56}, {9, 81, 90}, {10, 47, 57}, {11, 80, 91},
{12, 46, 58}, {13, 79, 92}, {14, 45, 59}, {15, 78, 93}, {16, 44, 60}, {17, 68, 85},
{18, 77, 95}, {19, 43, 62}, {20, 76, 96}, {21, 42, 63}, {22, 75, 97}, {23, 41, 64},
{24, 74, 98}, {25, 40, 65}, {26, 73, 99}, {27, 39, 66}, {28, 72, 100}, {29, 54, 83},
{30, 71, 101}, {31, 53, 84}, {32, 70, 102}, {33, 61, 94}, {34, 69, 103}, {35, 51, 86},
{36, 52, 88}, {37, 67, 104}, {38, 49, 87}
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34 {5, 52, 57}, {7, 88, 95}, {8, 51, 59}, {9, 87, 96}, {10, 50, 60}, {11, 86, 97},
{12, 49, 61}, {13, 85, 98}, {14, 48, 62}, {15, 84, 99}, {16, 47, 63}, {17, 66, 83},
{18, 64, 82}, {19, 73, 92}, {20, 81, 101}, {21, 46, 67}, {22, 80, 102}, {23, 45, 68},
{24, 79, 103}, {25, 44, 69}, {26, 78, 104}, {27, 43, 70}, {28, 77, 105}, {29, 42, 71},
{30, 76, 106}, {31, 58, 89}, {32, 40, 72}, {33, 74, 107}, {34, 41, 75}, {35, 65, 100},
{36, 55, 91}, {37, 53, 90}, {38, 56, 94}, {39, 54, 93}

35 {5, 94, 99}, {7, 57, 64}, {8, 92, 100}, {9, 56, 65}, {10, 91, 101}, {11, 55, 66},
{12, 90, 102}, {13, 54, 67}, {14, 89, 103}, {15, 53, 68}, {16, 88, 104}, {17, 52, 69},
{18, 60, 78}, {19, 86, 105}, {20, 51, 71}, {21, 49, 70}, {22, 84, 106}, {23, 85, 108},
{24, 83, 107}, {25, 47, 72}, {26, 48, 74}, {27, 46, 73}, {28, 81, 109}, {29, 82, 111},
{30, 45, 75}, {31, 62, 93}, {32, 44, 76}, {33, 63, 96}, {34, 61, 95}, {35, 42, 77},
{36, 43, 79}, {37, 50, 87}, {38, 59, 97}, {39, 41, 80}, {40, 58, 98}

35 {5, 94, 99}, {7, 58, 65}, {8, 92, 100}, {9, 55, 64}, {10, 56, 66}, {11, 91, 102},
{12, 89, 101}, {13, 90, 103}, {14, 54, 68}, {15, 52, 67}, {16, 88, 104}, {17, 61, 78},
{18, 51, 69}, {19, 53, 72}, {20, 85, 105}, {21, 87, 108}, {22, 84, 106}, {23, 48, 71},
{24, 46, 70}, {25, 49, 74}, {26, 83, 109}, {27, 80, 107}, {28, 47, 75}, {29, 82, 111},
{30, 43, 73}, {31, 45, 76}, {32, 63, 95}, {33, 60, 93}, {34, 62, 96}, {35, 42, 77},
{36, 50, 86}, {37, 44, 81}, {38, 41, 79}, {39, 59, 98}, {40, 57, 97}

36 {5, 95, 100}, {7, 56, 63}, {8, 93, 101}, {9, 53, 62}, {10, 54, 64}, {11, 92, 103},
{12, 90, 102}, {13, 91, 104}, {14, 52, 66}, {15, 50, 65}, {16, 89, 105}, {17, 70, 87},
{18, 49, 67}, {19, 69, 88}, {20, 48, 68}, {21, 58, 79}, {22, 85, 107}, {23, 83, 106},
{24, 84, 108}, {25, 47, 72}, {26, 45, 71}, {27, 46, 73}, {28, 82, 110}, {29, 80, 109},
{30, 81, 111}, {31, 44, 75}, {32, 42, 74}, {33, 61, 94}, {34, 78, 112}, {35, 51, 86},
{36, 41, 77}, {37, 59, 96}, {38, 76, 114}, {39, 60, 99}, {40, 57, 97}, {43, 55, 98}

37 {5, 56, 61}, {7, 92, 99}, {8, 54, 62}, {9, 91, 100}, {10, 53, 63}, {11, 90, 101},
{12, 52, 64}, {13, 89, 102}, {14, 51, 65}, {15, 88, 103}, {16, 50, 66}, {17, 87, 104},
{18, 49, 67}, {19, 76, 95}, {20, 86, 106}, {21, 48, 69}, {22, 85, 107}, {23, 47, 70},
{24, 84, 108}, {25, 46, 71}, {26, 83, 109}, {27, 45, 72}, {28, 82, 110}, {29, 44, 73},
{30, 81, 111}, {31, 43, 74}, {32, 80, 112}, {33, 60, 93}, {34, 79, 113}, {35, 59, 94},
{36, 78, 114}, {37, 68, 105}, {38, 77, 115}, {39, 57, 96}, {40, 58, 98}, {41, 75, 116},
{42, 55, 97}

38 {5, 58, 63}, {7, 98, 105}, {8, 57, 65}, {9, 97, 106}, {10, 56, 66}, {11, 96, 107},
{12, 55, 67}, {13, 95, 108}, {14, 54, 68}, {15, 94, 109}, {16, 53, 69}, {17, 93, 110},
{18, 52, 70}, {19, 73, 92}, {20, 71, 91}, {21, 81, 102}, {22, 90, 112}, {23, 51, 74},
{24, 89, 113}, {25, 50, 75}, {26, 88, 114}, {27, 49, 76}, {28, 87, 115}, {29, 48, 77},
{30, 86, 116}, {31, 47, 78}, {32, 85, 117}, {33, 46, 79}, {34, 84, 118}, {35, 64, 99},
{36, 44, 80}, {37, 82, 119}, {38, 45, 83}, {39, 72, 111}, {40, 61, 101}, {41, 59, 100},
{42, 62, 104}, {43, 60, 103}

39 {5, 33, 38}, {7, 32, 39}, {8, 35, 43}, {9, 31, 40}, {10, 34, 44}, {11, 30, 41},
{12, 78, 90}, {13, 79, 92}, {14, 77, 91}, {15, 80, 95}, {16, 81, 97}, {17, 76, 93},
{18, 82, 100}, {19, 75, 94}, {20, 83, 103}, {21, 84, 105}, {22, 74, 96}, {23, 85, 108},
{24, 86, 110}, {25, 73, 98}, {26, 88, 114}, {27, 72, 99}, {28, 87, 115}, {29, 89, 118},
{36, 65, 101}, {37, 67, 104}, {42, 60, 102}, {45, 61, 106}, {46, 63, 109},
{47, 64, 111}, {48, 59, 107}, {49, 70, 119}, {50, 66, 116}, {51, 69, 120},
{52, 71, 123}, {53, 68, 121}, {54, 58, 112}, {55, 62, 117}, {56, 57, 113}
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40 {5, 39, 44}, {7, 38, 45}, {8, 41, 49}, {9, 37, 46}, {10, 40, 50}, {11, 36, 47},
{12, 81, 93}, {13, 82, 95}, {14, 80, 94}, {15, 83, 98}, {16, 35, 51}, {17, 79, 96},
{18, 84, 102}, {19, 78, 97}, {20, 87, 107}, {21, 88, 109}, {22, 77, 99}, {23, 85, 108},
{24, 76, 100}, {25, 86, 111}, {26, 75, 101}, {27, 89, 116}, {28, 90, 118},
{29, 74, 103}, {30, 91, 121}, {31, 92, 123}, {32, 72, 104}, {33, 73, 106},
{34, 71, 105}, {42, 68, 110}, {43, 69, 112}, {48, 65, 113}, {52, 62, 114},
{53, 64, 117}, {54, 61, 115}, {55, 67, 122}, {56, 70, 126}, {57, 63, 120},
{58, 66, 124}, {59, 60, 119}

41 {5, 62, 67}, {7, 102, 109}, {8, 60, 68}, {9, 101, 110}, {10, 59, 69}, {11, 100, 111},
{12, 58, 70}, {13, 99, 112}, {14, 57, 71}, {15, 98, 113}, {16, 56, 72}, {17, 97, 114},
{18, 55, 73}, {19, 96, 115}, {20, 54, 74}, {21, 84, 105}, {22, 95, 117}, {23, 53, 76},
{24, 94, 118}, {25, 52, 77}, {26, 93, 119}, {27, 51, 78}, {28, 92, 120}, {29, 50, 79},
{30, 91, 121}, {31, 49, 80}, {32, 90, 122}, {33, 48, 81}, {34, 89, 123}, {35, 47, 82},
{36, 88, 124}, {37, 66, 103}, {38, 87, 125}, {39, 65, 104}, {40, 86, 126},
{41, 75, 116}, {42, 85, 127}, {43, 63, 106}, {44, 64, 108}, {45, 83, 128},
{46, 61, 107}

42 {5, 64, 69}, {7, 108, 115}, {8, 63, 71}, {9, 107, 116}, {10, 62, 72}, {11, 106, 117},
{12, 61, 73}, {13, 105, 118}, {14, 60, 74}, {15, 104, 119}, {16, 59, 75},
{17, 103, 120}, {18, 58, 76}, {19, 102, 121}, {20, 57, 77}, {21, 80, 101},
{22, 78, 100}, {23, 89, 112}, {24, 99, 123}, {25, 56, 81}, {26, 98, 124}, {27, 55, 82},
{28, 97, 125}, {29, 54, 83}, {30, 96, 126}, {31, 53, 84}, {32, 95, 127}, {33, 52, 85},
{34, 94, 128}, {35, 51, 86}, {36, 93, 129}, {37, 50, 87}, {38, 92, 130}, {39, 70, 109},
{40, 48, 88}, {41, 90, 131}, {42, 49, 91}, {43, 79, 122}, {44, 67, 111}, {45, 65, 110},
{46, 68, 114}, {47, 66, 113}

43 {5, 114, 119}, {7, 113, 120}, {8, 68, 76}, {9, 69, 78}, {10, 67, 77}, {11, 110, 121},
{12, 111, 123}, {13, 109, 122}, {14, 65, 79}, {15, 66, 81}, {16, 64, 80},
{17, 107, 124}, {18, 108, 126}, {19, 106, 125}, {20, 62, 82}, {21, 63, 84},
{22, 61, 83}, {23, 71, 94}, {24, 103, 127}, {25, 104, 129}, {26, 102, 128},
{27, 60, 87}, {28, 57, 85}, {29, 101, 130}, {30, 56, 86}, {31, 100, 131}, {32, 58, 90},
{33, 99, 132}, {34, 55, 89}, {35, 98, 133}, {36, 52, 88}, {37, 75, 112}, {38, 54, 92},
{39, 96, 135}, {40, 51, 91}, {41, 74, 115}, {42, 53, 95}, {43, 73, 116}, {44, 49, 93},
{45, 72, 117}, {46, 59, 105}, {47, 50, 97}, {48, 70, 118}

44 {5, 115, 120}, {7, 67, 74}, {8, 113, 121}, {9, 66, 75}, {10, 112, 122}, {11, 65, 76},
{12, 111, 123}, {13, 64, 77}, {14, 110, 124}, {15, 63, 78}, {16, 109, 125},
{17, 62, 79}, {18, 108, 126}, {19, 61, 80}, {20, 107, 127}, {21, 84, 105},
{22, 59, 81}, {23, 83, 106}, {24, 72, 96}, {25, 57, 82}, {26, 103, 129},
{27, 101, 128}, {28, 102, 130}, {29, 58, 87}, {30, 56, 86}, {31, 54, 85},
{32, 100, 132}, {33, 98, 131}, {34, 99, 133}, {35, 55, 90}, {36, 53, 89}, {37, 51, 88},
{38, 97, 135}, {39, 52, 91}, {40, 94, 134}, {41, 95, 136}, {42, 50, 92}, {43, 71, 114},
{44, 60, 104}, {45, 93, 138}, {46, 73, 119}, {47, 69, 116}, {48, 70, 118},
{49, 68, 117}
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45 {5, 68, 73}, {7, 112, 119}, {8, 66, 74}, {9, 111, 120}, {10, 65, 75}, {11, 110, 121},
{12, 64, 76}, {13, 109, 122}, {14, 63, 77}, {15, 108, 123}, {16, 62, 78},
{17, 107, 124}, {18, 61, 79}, {19, 106, 125}, {20, 60, 80}, {21, 105, 126},
{22, 59, 81}, {23, 92, 115}, {24, 104, 128}, {25, 58, 83}, {26, 103, 129},
{27, 57, 84}, {28, 102, 130}, {29, 56, 85}, {30, 101, 131}, {31, 55, 86},
{32, 100, 132}, {33, 54, 87}, {34, 99, 133}, {35, 53, 88}, {36, 98, 134}, {37, 52, 89},
{38, 97, 135}, {39, 51, 90}, {40, 96, 136}, {41, 72, 113}, {42, 95, 137},
{43, 71, 114}, {44, 94, 138}, {45, 82, 127}, {46, 93, 139}, {47, 69, 116},
{48, 70, 118}, {49, 91, 140}, {50, 67, 117}

46 {5, 70, 75}, {7, 118, 125}, {8, 69, 77}, {9, 117, 126}, {10, 68, 78}, {11, 116, 127},
{12, 67, 79}, {13, 115, 128}, {14, 66, 80}, {15, 114, 129}, {16, 65, 81},
{17, 113, 130}, {18, 64, 82}, {19, 112, 131}, {20, 63, 83}, {21, 111, 132},
{22, 62, 84}, {23, 87, 110}, {24, 85, 109}, {25, 97, 122}, {26, 108, 134},
{27, 61, 88}, {28, 107, 135}, {29, 60, 89}, {30, 106, 136}, {31, 59, 90},
{32, 105, 137}, {33, 58, 91}, {34, 104, 138}, {35, 57, 92}, {36, 103, 139},
{37, 56, 93}, {38, 102, 140}, {39, 55, 94}, {40, 101, 141}, {41, 54, 95},
{42, 100, 142}, {43, 76, 119}, {44, 52, 96}, {45, 98, 143}, {46, 53, 99},
{47, 86, 133}, {48, 73, 121}, {49, 71, 120}, {50, 74, 124}, {51, 72, 123}

47 {5, 124, 129}, {7, 75, 82}, {8, 122, 130}, {9, 74, 83}, {10, 121, 131}, {11, 73, 84},
{12, 120, 132}, {13, 72, 85}, {14, 119, 133}, {15, 71, 86}, {16, 118, 134},
{17, 70, 87}, {18, 117, 135}, {19, 69, 88}, {20, 116, 136}, {21, 68, 89},
{22, 115, 137}, {23, 67, 90}, {24, 78, 102}, {25, 113, 138}, {26, 66, 92},
{27, 64, 91}, {28, 111, 139}, {29, 112, 141}, {30, 110, 140}, {31, 62, 93},
{32, 63, 95}, {33, 61, 94}, {34, 108, 142}, {35, 109, 144}, {36, 107, 143},
{37, 59, 96}, {38, 60, 98}, {39, 58, 97}, {40, 105, 145}, {41, 106, 147}, {42, 57, 99},
{43, 80, 123}, {44, 56, 100}, {45, 81, 126}, {46, 79, 125}, {47, 54, 101},
{48, 55, 103}, {49, 65, 114}, {50, 77, 127}, {51, 53, 104}, {52, 76, 128}

48 {5, 125, 130}, {7, 74, 81}, {8, 123, 131}, {9, 71, 80}, {10, 72, 82}, {11, 122, 133},
{12, 120, 132}, {13, 121, 134}, {14, 70, 84}, {15, 68, 83}, {16, 69, 85},
{17, 119, 136}, {18, 117, 135}, {19, 118, 137}, {20, 67, 87}, {21, 65, 86},
{22, 116, 138}, {23, 91, 114}, {24, 64, 88}, {25, 90, 115}, {26, 63, 89},
{27, 76, 103}, {28, 112, 140}, {29, 110, 139}, {30, 111, 141}, {31, 62, 93},
{32, 60, 92}, {33, 61, 94}, {34, 109, 143}, {35, 107, 142}, {36, 108, 144},
{37, 59, 96}, {38, 57, 95}, {39, 58, 97}, {40, 106, 146}, {41, 104, 145},
{42, 105, 147}, {43, 56, 99}, {44, 54, 98}, {45, 79, 124}, {46, 102, 148},
{47, 66, 113}, {48, 53, 101}, {49, 77, 126}, {50, 100, 150}, {51, 78, 129},
{52, 75, 127}, {55, 73, 128}

49 {5, 74, 79}, {7, 122, 129}, {8, 72, 80}, {9, 121, 130}, {10, 71, 81}, {11, 120, 131},
{12, 70, 82}, {13, 119, 132}, {14, 69, 83}, {15, 118, 133}, {16, 68, 84},
{17, 117, 134}, {18, 67, 85}, {19, 116, 135}, {20, 66, 86}, {21, 115, 136},
{22, 65, 87}, {23, 114, 137}, {24, 64, 88}, {25, 100, 125}, {26, 113, 139},
{27, 63, 90}, {28, 112, 140}, {29, 62, 91}, {30, 111, 141}, {31, 61, 92},
{32, 110, 142}, {33, 60, 93}, {34, 109, 143}, {35, 59, 94}, {36, 108, 144},
{37, 58, 95}, {38, 107, 145}, {39, 57, 96}, {40, 106, 146}, {41, 56, 97},
{42, 105, 147}, {43, 55, 98}, {44, 104, 148}, {45, 78, 123}, {46, 103, 149},
{47, 77, 124}, {48, 102, 150}, {49, 89, 138}, {50, 101, 151}, {51, 75, 126},
{52, 76, 128}, {53, 99, 152}, {54, 73, 127}
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50 {5, 76, 81}, {7, 128, 135}, {8, 75, 83}, {9, 127, 136}, {10, 74, 84}, {11, 126, 137},
{12, 73, 85}, {13, 125, 138}, {14, 72, 86}, {15, 124, 139}, {16, 71, 87},
{17, 123, 140}, {18, 70, 88}, {19, 122, 141}, {20, 69, 89}, {21, 121, 142},
{22, 68, 90}, {23, 120, 143}, {24, 67, 91}, {25, 94, 119}, {26, 92, 118},
{27, 105, 132}, {28, 117, 145}, {29, 66, 95}, {30, 116, 146}, {31, 65, 96},
{32, 115, 147}, {33, 64, 97}, {34, 114, 148}, {35, 63, 98}, {36, 113, 149},
{37, 62, 99}, {38, 112, 150}, {39, 61, 100}, {40, 111, 151}, {41, 60, 101},
{42, 110, 152}, {43, 59, 102}, {44, 109, 153}, {45, 58, 103}, {46, 108, 154},
{47, 82, 129}, {48, 56, 104}, {49, 106, 155}, {50, 57, 107}, {51, 93, 144},
{52, 79, 131}, {53, 77, 130}, {54, 80, 134}, {55, 78, 133}

51 {5, 39, 44}, {7, 38, 45}, {8, 40, 48}, {9, 37, 46}, {10, 42, 52}, {11, 36, 47},
{12, 104, 116}, {13, 105, 118}, {14, 35, 49}, {15, 102, 117}, {16, 34, 50},
{17, 103, 120}, {18, 101, 119}, {19, 106, 125}, {20, 107, 127}, {21, 100, 121},
{22, 108, 130}, {23, 99, 122}, {24, 109, 133}, {25, 98, 123}, {26, 110, 136},
{27, 97, 124}, {28, 111, 139}, {29, 112, 141}, {30, 96, 126}, {31, 114, 145},
{32, 115, 147}, {33, 95, 128}, {41, 88, 129}, {43, 113, 156}, {51, 80, 131},
{53, 79, 132}, {54, 81, 135}, {55, 82, 137}, {56, 78, 134}, {57, 83, 140},
{58, 90, 148}, {59, 92, 151}, {60, 89, 149}, {61, 77, 138}, {62, 91, 153},
{63, 87, 150}, {64, 93, 157}, {65, 94, 159}, {66, 76, 142}, {67, 85, 152},
{68, 75, 143}, {69, 86, 155}, {70, 84, 154}, {71, 73, 144}, {72, 74, 146}

52 {5, 38, 43}, {7, 37, 44}, {8, 39, 47}, {9, 36, 45}, {10, 40, 50}, {11, 35, 46},
{12, 106, 118}, {13, 107, 120}, {14, 34, 48}, {15, 104, 119}, {16, 105, 121},
{17, 108, 125}, {18, 33, 51}, {19, 103, 122}, {20, 109, 129}, {21, 102, 123},
{22, 110, 132}, {23, 101, 124}, {24, 111, 135}, {25, 112, 137}, {26, 100, 126},
{27, 113, 140}, {28, 99, 127}, {29, 114, 143}, {30, 98, 128}, {31, 116, 147},
{32, 117, 149}, {41, 89, 130}, {42, 115, 157}, {49, 82, 131}, {52, 81, 133},
{53, 83, 136}, {54, 80, 134}, {55, 84, 139}, {56, 85, 141}, {57, 93, 150},
{58, 94, 152}, {59, 79, 138}, {60, 91, 151}, {61, 97, 158}, {62, 92, 154},
{63, 90, 153}, {64, 78, 142}, {65, 95, 160}, {66, 96, 162}, {67, 77, 144},
{68, 87, 155}, {69, 76, 145}, {70, 86, 156}, {71, 88, 159}, {72, 74, 146},
{73, 75, 148}
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13 {6, 26, 32}, {8, 27, 35}, {9, 25, 34}, {10, 31, 41}, {11, 33, 44}, {12, 24, 36},
{13, 29, 42}, {14, 23, 37}, {15, 28, 43}, {16, 30, 46}, {17, 21, 38}, {18, 22, 40},
{19, 20, 39}

14 {6, 25, 31}, {8, 28, 36}, {9, 29, 38}, {10, 27, 37}, {11, 33, 44}, {12, 35, 47},
{13, 32, 45}, {14, 34, 48}, {15, 24, 39}, {16, 30, 46}, {17, 26, 43}, {18, 22, 40},
{19, 23, 42}, {20, 21, 41}

15 {6, 23, 29}, {8, 30, 38}, {9, 31, 40}, {10, 36, 46}, {11, 28, 39}, {12, 35, 47},
{13, 37, 50}, {14, 27, 41}, {15, 34, 49}, {16, 32, 48}, {17, 25, 42}, {18, 33, 51},
{19, 26, 45}, {20, 24, 44}, {21, 22, 43}

16 {6, 20, 26}, {8, 32, 40}, {9, 33, 42}, {10, 31, 41}, {11, 37, 48}, {12, 38, 50},
{13, 30, 43}, {14, 39, 53}, {15, 29, 44}, {16, 35, 51}, {17, 28, 45}, {18, 34, 52},
{19, 36, 55}, {21, 25, 46}, {22, 27, 49}, {23, 24, 47}
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17 {6, 17, 23}, {8, 34, 42}, {9, 35, 44}, {10, 33, 43}, {11, 36, 47}, {12, 41, 53},
{13, 32, 45}, {14, 40, 54}, {15, 31, 46}, {16, 39, 55}, {18, 30, 48}, {19, 37, 56},
{20, 38, 58}, {21, 28, 49}, {22, 29, 51}, {24, 26, 50}, {25, 27, 52}

18 {6, 14, 20}, {8, 36, 44}, {9, 37, 46}, {10, 35, 45}, {11, 38, 49}, {12, 43, 55},
{13, 34, 47}, {15, 33, 48}, {16, 41, 57}, {17, 42, 59}, {18, 40, 58}, {19, 31, 50},
{21, 39, 60}, {22, 29, 51}, {23, 30, 53}, {24, 32, 56}, {25, 27, 52}, {26, 28, 54}

19 {6, 10, 16}, {8, 38, 46}, {9, 39, 48}, {11, 36, 47}, {12, 37, 49}, {13, 44, 57},
{14, 45, 59}, {15, 35, 50}, {17, 34, 51}, {18, 42, 60}, {19, 43, 62}, {20, 32, 52},
{21, 40, 61}, {22, 41, 63}, {23, 30, 53}, {24, 31, 55}, {25, 33, 58}, {26, 28, 54},
{27, 29, 56}

20 {6, 9, 15}, {8, 39, 47}, {10, 38, 48}, {11, 41, 52}, {12, 37, 49}, {13, 40, 53},
{14, 36, 50}, {16, 51, 67}, {17, 44, 61}, {18, 46, 64}, {19, 43, 62}, {20, 45, 65},
{21, 42, 63}, {22, 32, 54}, {23, 35, 58}, {24, 31, 55}, {25, 34, 59}, {26, 30, 56},
{27, 33, 60}, {28, 29, 57}

21 {6, 8, 14}, {9, 40, 49}, {10, 41, 51}, {11, 39, 50}, {12, 42, 54}, {13, 57, 70},
{15, 37, 52}, {16, 46, 62}, {17, 36, 53}, {18, 48, 66}, {19, 45, 64}, {20, 35, 55},
{21, 47, 68}, {22, 43, 65}, {23, 44, 67}, {24, 32, 56}, {25, 38, 63}, {26, 34, 60},
{27, 31, 58}, {28, 33, 61}, {29, 30, 59}

22 {6, 65, 71}, {8, 10, 18}, {9, 41, 50}, {11, 40, 51}, {12, 42, 54}, {13, 39, 52},
{14, 43, 57}, {15, 49, 64}, {16, 53, 69}, {17, 38, 55}, {19, 37, 56}, {20, 46, 66},
{21, 47, 68}, {22, 36, 58}, {23, 44, 67}, {24, 48, 72}, {25, 45, 70}, {26, 33, 59},
{27, 35, 62}, {28, 32, 60}, {29, 34, 63}, {30, 31, 61}

23 {6, 21, 27}, {8, 20, 28}, {9, 40, 49}, {10, 46, 56}, {11, 47, 58}, {12, 45, 57},
{13, 48, 61}, {14, 50, 64}, {15, 44, 59}, {16, 54, 70}, {17, 43, 60}, {18, 55, 73},
{19, 53, 72}, {22, 52, 74}, {23, 39, 62}, {24, 51, 75}, {25, 38, 63}, {26, 42, 68},
{29, 36, 65}, {30, 41, 71}, {31, 35, 66}, {32, 37, 69}, {33, 34, 67}

24 {6, 22, 28}, {8, 21, 29}, {9, 35, 44}, {10, 48, 58}, {11, 49, 60}, {12, 47, 59},
{13, 50, 63}, {14, 51, 65}, {15, 46, 61}, {16, 55, 71}, {17, 45, 62}, {18, 57, 75},
{19, 54, 73}, {20, 56, 76}, {23, 41, 64}, {24, 42, 66}, {25, 52, 77}, {26, 53, 79},
{27, 40, 67}, {30, 38, 68}, {31, 43, 74}, {32, 37, 69}, {33, 39, 72}, {34, 36, 70}

25 {6, 23, 29}, {8, 22, 30}, {9, 51, 60}, {10, 52, 62}, {11, 28, 39}, {12, 49, 61},
{13, 50, 63}, {14, 53, 67}, {15, 54, 69}, {16, 48, 64}, {17, 57, 74}, {18, 47, 65},
{19, 59, 78}, {20, 46, 66}, {21, 58, 79}, {24, 44, 68}, {25, 55, 80}, {26, 56, 82},
{27, 43, 70}, {31, 40, 71}, {32, 45, 77}, {33, 42, 75}, {34, 38, 72}, {35, 41, 76},
{36, 37, 73}

26 {6, 24, 30}, {8, 23, 31}, {9, 25, 34}, {10, 52, 62}, {11, 53, 64}, {12, 51, 63},
{13, 54, 67}, {14, 55, 69}, {15, 50, 65}, {16, 56, 72}, {17, 49, 66}, {18, 60, 78},
{19, 61, 80}, {20, 48, 68}, {21, 58, 79}, {22, 59, 81}, {26, 44, 70}, {27, 57, 84},
{28, 43, 71}, {29, 45, 74}, {32, 41, 73}, {33, 42, 75}, {35, 47, 82}, {36, 40, 76},
{37, 46, 83}, {38, 39, 77}

27 {6, 22, 28}, {8, 23, 31}, {9, 55, 64}, {10, 56, 66}, {11, 21, 32}, {12, 53, 65},
{13, 54, 67}, {14, 57, 71}, {15, 58, 73}, {16, 52, 68}, {17, 63, 80}, {18, 51, 69},
{19, 62, 81}, {20, 50, 70}, {24, 48, 72}, {25, 60, 85}, {26, 61, 87}, {27, 59, 86},
{29, 45, 74}, {30, 46, 76}, {33, 42, 75}, {34, 43, 77}, {35, 49, 84}, {36, 47, 83},
{37, 41, 78}, {38, 44, 82}, {39, 40, 79}
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28 {6, 15, 21}, {8, 24, 32}, {9, 57, 66}, {10, 23, 33}, {11, 56, 67}, {12, 58, 70},
{13, 55, 68}, {14, 59, 73}, {16, 53, 69}, {17, 54, 71}, {18, 62, 80}, {19, 65, 84},
{20, 52, 72}, {22, 64, 86}, {25, 49, 74}, {26, 63, 89}, {27, 48, 75}, {28, 60, 88},
{29, 47, 76}, {30, 61, 91}, {31, 46, 77}, {34, 44, 78}, {35, 50, 85}, {36, 51, 87},
{37, 42, 79}, {38, 45, 83}, {39, 43, 82}, {40, 41, 81}

29 {6, 25, 31}, {8, 26, 34}, {9, 24, 33}, {10, 55, 65}, {11, 57, 68}, {12, 82, 94},
{13, 56, 69}, {14, 58, 72}, {15, 59, 74}, {16, 54, 70}, {17, 60, 77}, {18, 53, 71},
{19, 61, 80}, {20, 64, 84}, {21, 52, 73}, {22, 66, 88}, {23, 67, 90}, {27, 48, 75},
{28, 63, 91}, {29, 47, 76}, {30, 62, 92}, {32, 46, 78}, {35, 44, 79}, {36, 51, 87},
{37, 49, 86}, {38, 43, 81}, {39, 50, 89}, {40, 45, 85}, {41, 42, 83}

30 {6, 18, 24}, {8, 26, 34}, {9, 58, 67}, {10, 25, 35}, {11, 59, 70}, {12, 84, 96},
{13, 60, 73}, {14, 57, 71}, {15, 61, 76}, {16, 56, 72}, {17, 62, 79}, {19, 55, 74},
{20, 69, 89}, {21, 54, 75}, {22, 65, 87}, {23, 68, 91}, {27, 50, 77}, {28, 66, 94},
{29, 49, 78}, {30, 63, 93}, {31, 64, 95}, {32, 48, 80}, {33, 53, 86}, {36, 45, 81},
{37, 46, 83}, {38, 44, 82}, {39, 51, 90}, {40, 52, 92}, {41, 47, 88}, {42, 43, 85}

31 {6, 30, 36}, {8, 29, 37}, {9, 61, 70}, {10, 28, 38}, {11, 63, 74}, {12, 27, 39},
{13, 59, 72}, {14, 62, 76}, {15, 60, 75}, {16, 64, 80}, {17, 65, 82}, {18, 66, 84},
{19, 68, 87}, {20, 58, 78}, {21, 77, 98}, {22, 57, 79}, {23, 71, 94}, {24, 73, 97},
{25, 56, 81}, {26, 69, 95}, {31, 52, 83}, {32, 67, 99}, {33, 53, 86}, {34, 51, 85},
{35, 54, 89}, {40, 48, 88}, {41, 55, 96}, {42, 50, 92}, {43, 47, 90}, {44, 49, 93},
{45, 46, 91}

32 {6, 31, 37}, {8, 30, 38}, {9, 54, 63}, {10, 29, 39}, {11, 65, 76}, {12, 28, 40},
{13, 61, 74}, {14, 64, 78}, {15, 62, 77}, {16, 66, 82}, {17, 67, 84}, {18, 68, 86},
{19, 69, 88}, {20, 60, 80}, {21, 79, 100}, {22, 59, 81}, {23, 72, 95}, {24, 73, 97},
{25, 58, 83}, {26, 75, 101}, {27, 71, 98}, {32, 53, 85}, {33, 70, 103}, {34, 55, 89},
{35, 52, 87}, {36, 56, 92}, {41, 49, 90}, {42, 57, 99}, {43, 48, 91}, {44, 50, 94},
{45, 51, 96}, {46, 47, 93}

33 {6, 32, 38}, {8, 31, 39}, {9, 47, 56}, {10, 30, 40}, {11, 65, 76}, {12, 29, 41},
{13, 66, 79}, {14, 64, 78}, {15, 67, 82}, {16, 68, 84}, {17, 63, 80}, {18, 69, 87},
{19, 70, 89}, {20, 71, 91}, {21, 62, 83}, {22, 81, 103}, {23, 77, 100}, {24, 61, 85},
{25, 74, 99}, {26, 60, 86}, {27, 75, 102}, {28, 73, 101}, {33, 55, 88}, {34, 72, 106},
{35, 57, 92}, {36, 54, 90}, {37, 58, 95}, {42, 51, 93}, {43, 53, 96}, {44, 50, 94},
{45, 59, 104}, {46, 52, 98}, {48, 49, 97}

34 {6, 33, 39}, {8, 32, 40}, {9, 69, 78}, {10, 31, 41}, {11, 38, 49}, {12, 30, 42},
{13, 67, 80}, {14, 68, 82}, {15, 66, 81}, {16, 70, 86}, {17, 71, 88}, {18, 72, 90},
{19, 65, 84}, {20, 73, 93}, {21, 64, 85}, {22, 74, 96}, {23, 75, 98}, {24, 63, 87},
{25, 83, 108}, {26, 77, 103}, {27, 62, 89}, {28, 79, 107}, {29, 76, 105}, {34, 57, 91},
{35, 59, 94}, {36, 56, 92}, {37, 58, 95}, {43, 54, 97}, {44, 60, 104}, {45, 61, 106},
{46, 53, 99}, {47, 55, 102}, {48, 52, 100}, {50, 51, 101}

35 {6, 35, 41}, {8, 34, 42}, {9, 36, 45}, {10, 33, 43}, {11, 69, 80}, {12, 32, 44},
{13, 68, 81}, {14, 70, 84}, {15, 67, 82}, {16, 71, 87}, {17, 66, 83}, {18, 72, 90},
{19, 73, 92}, {20, 74, 94}, {21, 65, 86}, {22, 89, 111}, {23, 75, 98}, {24, 64, 88},
{25, 85, 110}, {26, 76, 102}, {27, 78, 105}, {28, 63, 91}, {29, 79, 108},
{30, 77, 107}, {31, 62, 93}, {37, 58, 95}, {38, 59, 97}, {39, 57, 96}, {40, 60, 100},
{46, 53, 99}, {47, 54, 101}, {48, 61, 109}, {49, 55, 104}, {50, 56, 106}, {51, 52, 103}
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36 {6, 35, 41}, {8, 34, 42}, {9, 40, 49}, {10, 33, 43}, {11, 69, 80}, {12, 32, 44},
{13, 71, 84}, {14, 68, 82}, {15, 70, 85}, {16, 72, 88}, {17, 73, 90}, {18, 97, 115},
{19, 67, 86}, {20, 74, 94}, {21, 75, 96}, {22, 77, 99}, {23, 66, 89}, {24, 87, 111},
{25, 83, 108}, {26, 65, 91}, {27, 79, 106}, {28, 64, 92}, {29, 78, 107}, {30, 63, 93},
{31, 81, 112}, {36, 59, 95}, {37, 76, 113}, {38, 60, 98}, {39, 61, 100}, {45, 56, 101},
{46, 57, 103}, {47, 55, 102}, {48, 62, 110}, {50, 54, 104}, {51, 58, 109},
{52, 53, 105}

37 {6, 34, 40}, {8, 35, 43}, {9, 33, 42}, {10, 72, 82}, {11, 73, 84}, {12, 32, 44},
{13, 74, 87}, {14, 31, 45}, {15, 71, 86}, {16, 75, 91}, {17, 76, 93}, {18, 70, 88},
{19, 99, 118}, {20, 77, 97}, {21, 69, 90}, {22, 79, 101}, {23, 80, 103}, {24, 68, 92},
{25, 85, 110}, {26, 89, 115}, {27, 67, 94}, {28, 81, 109}, {29, 66, 95}, {30, 83, 113},
{36, 60, 96}, {37, 61, 98}, {38, 78, 116}, {39, 63, 102}, {41, 59, 100}, {46, 58, 104},
{47, 64, 111}, {48, 57, 105}, {49, 65, 114}, {50, 62, 112}, {51, 55, 106},
{52, 56, 108}, {53, 54, 107}

38 {6, 37, 43}, {8, 36, 44}, {9, 39, 48}, {10, 35, 45}, {11, 38, 49}, {12, 34, 46},
{13, 76, 89}, {14, 77, 91}, {15, 75, 90}, {16, 78, 94}, {17, 79, 96}, {18, 74, 92},
{19, 80, 99}, {20, 73, 93}, {21, 81, 102}, {22, 82, 104}, {23, 72, 95}, {24, 83, 107},
{25, 84, 109}, {26, 71, 97}, {27, 85, 112}, {28, 70, 98}, {29, 86, 115}, {30, 87, 117},
{31, 69, 100}, {32, 88, 120}, {33, 68, 101}, {40, 63, 103}, {41, 64, 105},
{42, 66, 108}, {47, 59, 106}, {50, 60, 110}, {51, 67, 118}, {52, 62, 114},
{53, 58, 111}, {54, 65, 119}, {55, 61, 116}, {56, 57, 113}

39 {6, 36, 42}, {8, 35, 43}, {9, 37, 46}, {10, 38, 48}, {11, 34, 45}, {12, 79, 91},
{13, 80, 93}, {14, 33, 47}, {15, 77, 92}, {16, 78, 94}, {17, 81, 98}, {18, 82, 100},
{19, 76, 95}, {20, 83, 103}, {21, 75, 96}, {22, 84, 106}, {23, 74, 97}, {24, 85, 109},
{25, 86, 111}, {26, 73, 99}, {27, 87, 114}, {28, 90, 118}, {29, 72, 101},
{30, 89, 119}, {31, 71, 102}, {32, 88, 120}, {39, 65, 104}, {40, 67, 107},
{41, 64, 105}, {44, 66, 110}, {49, 59, 108}, {50, 62, 112}, {51, 70, 121},
{52, 61, 113}, {53, 69, 122}, {54, 63, 117}, {55, 68, 123}, {56, 60, 116},
{57, 58, 115}

40 {6, 47, 53}, {8, 46, 54}, {9, 48, 57}, {10, 45, 55}, {11, 50, 61}, {12, 44, 56},
{13, 82, 95}, {14, 83, 97}, {15, 43, 58}, {16, 80, 96}, {17, 42, 59}, {18, 81, 99},
{19, 79, 98}, {20, 84, 104}, {21, 91, 112}, {22, 78, 100}, {23, 90, 113},
{24, 77, 101}, {25, 89, 114}, {26, 76, 102}, {27, 92, 119}, {28, 75, 103},
{29, 87, 116}, {30, 94, 124}, {31, 74, 105}, {32, 93, 125}, {33, 73, 106},
{34, 86, 120}, {35, 88, 123}, {36, 85, 121}, {37, 70, 107}, {38, 72, 110},
{39, 69, 108}, {40, 71, 111}, {41, 68, 109}, {49, 66, 115}, {51, 67, 118},
{52, 65, 117}, {60, 62, 122}, {63, 64, 127}

41 {6, 35, 41}, {8, 34, 42}, {9, 36, 45}, {10, 33, 43}, {11, 84, 95}, {12, 32, 44},
{13, 83, 96}, {14, 85, 99}, {15, 31, 46}, {16, 81, 97}, {17, 86, 103}, {18, 80, 98},
{19, 82, 101}, {20, 87, 107}, {21, 79, 100}, {22, 88, 110}, {23, 89, 112},
{24, 78, 102}, {25, 91, 116}, {26, 94, 120}, {27, 77, 104}, {28, 93, 121},
{29, 76, 105}, {30, 92, 122}, {37, 69, 106}, {38, 70, 108}, {39, 72, 111},
{40, 90, 130}, {47, 62, 109}, {48, 65, 113}, {49, 66, 115}, {50, 64, 114},
{51, 75, 126}, {52, 71, 123}, {53, 74, 127}, {54, 63, 117}, {55, 73, 128},
{56, 68, 124}, {57, 61, 118}, {58, 67, 125}, {59, 60, 119}
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42 {6, 51, 57}, {8, 50, 58}, {9, 52, 61}, {10, 49, 59}, {11, 53, 64}, {12, 48, 60},
{13, 87, 100}, {14, 88, 102}, {15, 47, 62}, {16, 85, 101}, {17, 46, 63}, {18, 86, 104},
{19, 84, 103}, {20, 89, 109}, {21, 45, 66}, {22, 83, 105}, {23, 96, 119},
{24, 82, 106}, {25, 95, 120}, {26, 81, 107}, {27, 94, 121}, {28, 80, 108},
{29, 93, 122}, {30, 99, 129}, {31, 79, 110}, {32, 98, 130}, {33, 78, 111},
{34, 97, 131}, {35, 91, 126}, {36, 92, 128}, {37, 90, 127}, {38, 74, 112},
{39, 77, 116}, {40, 73, 113}, {41, 76, 117}, {42, 72, 114}, {43, 75, 118},
{44, 71, 115}, {54, 69, 123}, {55, 70, 125}, {56, 68, 124}, {65, 67, 132}

43 {6, 40, 46}, {8, 41, 49}, {9, 39, 48}, {10, 42, 52}, {11, 89, 100}, {12, 38, 50},
{13, 88, 101}, {14, 37, 51}, {15, 87, 102}, {16, 90, 106}, {17, 36, 53}, {18, 85, 103},
{19, 86, 105}, {20, 84, 104}, {21, 91, 112}, {22, 92, 114}, {23, 93, 116},
{24, 83, 107}, {25, 94, 119}, {26, 82, 108}, {27, 95, 122}, {28, 81, 109},
{29, 96, 125}, {30, 80, 110}, {31, 97, 128}, {32, 79, 111}, {33, 98, 131},
{34, 99, 133}, {35, 78, 113}, {43, 72, 115}, {44, 73, 117}, {45, 75, 120},
{47, 71, 118}, {54, 67, 121}, {55, 68, 123}, {56, 74, 130}, {57, 77, 134},
{58, 66, 124}, {59, 76, 135}, {60, 69, 129}, {61, 65, 126}, {62, 70, 132},
{63, 64, 127}

44 {6, 40, 46}, {8, 39, 47}, {9, 41, 50}, {10, 38, 48}, {11, 42, 53}, {12, 37, 49},
{13, 89, 102}, {14, 90, 104}, {15, 36, 51}, {16, 87, 103}, {17, 88, 105},
{18, 91, 109}, {19, 92, 111}, {20, 86, 106}, {21, 93, 114}, {22, 85, 107},
{23, 94, 117}, {24, 84, 108}, {25, 95, 120}, {26, 96, 122}, {27, 83, 110},
{28, 97, 125}, {29, 98, 127}, {30, 82, 112}, {31, 100, 131}, {32, 81, 113},
{33, 99, 132}, {34, 101, 135}, {35, 80, 115}, {43, 73, 116}, {44, 74, 118},
{45, 76, 121}, {52, 67, 119}, {54, 69, 123}, {55, 71, 126}, {56, 68, 124},
{57, 77, 134}, {58, 72, 130}, {59, 78, 137}, {60, 79, 139}, {61, 75, 136},
{62, 66, 128}, {63, 70, 133}, {64, 65, 129}

46 {6, 58, 64}, {8, 57, 65}, {9, 59, 68}, {10, 56, 66}, {11, 60, 71}, {12, 55, 67},
{13, 61, 74}, {14, 96, 110}, {15, 54, 69}, {16, 95, 111}, {17, 97, 114}, {18, 94, 112},
{19, 53, 72}, {20, 93, 113}, {21, 52, 73}, {22, 98, 120}, {23, 92, 115}, {24, 51, 75},
{25, 91, 116}, {26, 106, 132}, {27, 90, 117}, {28, 107, 135}, {29, 89, 118},
{30, 104, 134}, {31, 88, 119}, {32, 109, 141}, {33, 103, 136}, {34, 87, 121},
{35, 108, 143}, {36, 86, 122}, {37, 100, 137}, {38, 101, 139}, {39, 105, 144},
{40, 102, 142}, {41, 99, 140}, {42, 81, 123}, {43, 82, 125}, {44, 80, 124},
{45, 84, 129}, {46, 85, 131}, {47, 83, 130}, {48, 78, 126}, {49, 79, 128},
{50, 77, 127}, {62, 76, 138}, {63, 70, 133}

47 {6, 71, 77}, {8, 117, 125}, {9, 69, 78}, {10, 116, 126}, {11, 68, 79}, {12, 115, 127},
{13, 67, 80}, {14, 114, 128}, {15, 66, 81}, {16, 113, 129}, {17, 65, 82},
{18, 112, 130}, {19, 64, 83}, {20, 111, 131}, {21, 63, 84}, {22, 110, 132},
{23, 62, 85}, {24, 98, 122}, {25, 109, 134}, {26, 61, 87}, {27, 108, 135},
{28, 60, 88}, {29, 107, 136}, {30, 59, 89}, {31, 106, 137}, {32, 58, 90},
{33, 105, 138}, {34, 57, 91}, {35, 104, 139}, {36, 56, 92}, {37, 103, 140},
{38, 55, 93}, {39, 102, 141}, {40, 54, 94}, {41, 101, 142}, {42, 76, 118},
{43, 100, 143}, {44, 75, 119}, {45, 99, 144}, {46, 74, 120}, {47, 86, 133},
{48, 97, 145}, {49, 72, 121}, {50, 96, 146}, {51, 73, 124}, {52, 95, 147},
{53, 70, 123}
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48 {6, 125, 131}, {8, 124, 132}, {9, 74, 83}, {10, 72, 82}, {11, 70, 81}, {12, 121, 133},
{13, 122, 135}, {14, 120, 134}, {15, 71, 86}, {16, 69, 85}, {17, 67, 84},
{18, 118, 136}, {19, 119, 138}, {20, 117, 137}, {21, 68, 89}, {22, 65, 87},
{23, 80, 103}, {24, 115, 139}, {25, 88, 113}, {26, 78, 104}, {27, 102, 129},
{28, 114, 142}, {29, 63, 92}, {30, 64, 94}, {31, 62, 93}, {32, 111, 143},
{33, 112, 145}, {34, 110, 144}, {35, 60, 95}, {36, 61, 97}, {37, 59, 96},
{38, 108, 146}, {39, 109, 148}, {40, 107, 147}, {41, 57, 98}, {42, 58, 100},
{43, 56, 99}, {44, 105, 149}, {45, 106, 151}, {46, 77, 123}, {47, 54, 101},
{48, 79, 127}, {49, 91, 140}, {50, 66, 116}, {51, 90, 141}, {52, 76, 128},
{53, 73, 126}, {55, 75, 130}

49 {6, 43, 49}, {8, 42, 50}, {9, 44, 53}, {10, 45, 55}, {11, 41, 52}, {12, 101, 113},
{13, 102, 115}, {14, 40, 54}, {15, 99, 114}, {16, 100, 116}, {17, 39, 56},
{18, 103, 121}, {19, 38, 57}, {20, 97, 117}, {21, 98, 119}, {22, 96, 118},
{23, 104, 127}, {24, 105, 129}, {25, 95, 120}, {26, 106, 132}, {27, 107, 134},
{28, 94, 122}, {29, 108, 137}, {30, 93, 123}, {31, 109, 140}, {32, 92, 124},
{33, 112, 145}, {34, 91, 125}, {35, 111, 146}, {36, 90, 126}, {37, 110, 147},
{46, 82, 128}, {47, 83, 130}, {48, 85, 133}, {51, 80, 131}, {58, 77, 135},
{59, 79, 138}, {60, 76, 136}, {61, 78, 139}, {62, 86, 148}, {63, 87, 150},
{64, 88, 152}, {65, 89, 154}, {66, 75, 141}, {67, 84, 151}, {68, 81, 149},
{69, 73, 142}, {70, 74, 144}, {71, 72, 143}

50 {6, 77, 83}, {8, 129, 137}, {9, 76, 85}, {10, 128, 138}, {11, 75, 86}, {12, 127, 139},
{13, 74, 87}, {14, 126, 140}, {15, 73, 88}, {16, 125, 141}, {17, 72, 89},
{18, 124, 142}, {19, 71, 90}, {20, 123, 143}, {21, 70, 91}, {22, 122, 144},
{23, 69, 92}, {24, 121, 145}, {25, 93, 118}, {26, 105, 131}, {27, 107, 134},
{28, 80, 108}, {29, 66, 95}, {30, 117, 147}, {31, 65, 96}, {32, 116, 148},
{33, 64, 97}, {34, 115, 149}, {35, 63, 98}, {36, 114, 150}, {37, 62, 99},
{38, 113, 151}, {39, 61, 100}, {40, 112, 152}, {41, 60, 101}, {42, 111, 153},
{43, 59, 102}, {44, 110, 154}, {45, 58, 103}, {46, 109, 155}, {47, 57, 104},
{48, 82, 130}, {49, 84, 133}, {50, 106, 156}, {51, 68, 119}, {52, 94, 146},
{53, 67, 120}, {54, 78, 132}, {55, 81, 136}, {56, 79, 135}

51 {6, 77, 83}, {8, 127, 135}, {9, 75, 84}, {10, 126, 136}, {11, 74, 85}, {12, 125, 137},
{13, 73, 86}, {14, 124, 138}, {15, 72, 87}, {16, 123, 139}, {17, 71, 88},
{18, 122, 140}, {19, 70, 89}, {20, 121, 141}, {21, 69, 90}, {22, 120, 142},
{23, 68, 91}, {24, 119, 143}, {25, 67, 92}, {26, 106, 132}, {27, 118, 145},
{28, 66, 94}, {29, 117, 146}, {30, 65, 95}, {31, 116, 147}, {32, 64, 96},
{33, 115, 148}, {34, 63, 97}, {35, 114, 149}, {36, 62, 98}, {37, 113, 150},
{38, 61, 99}, {39, 112, 151}, {40, 60, 100}, {41, 111, 152}, {42, 59, 101},
{43, 110, 153}, {44, 58, 102}, {45, 109, 154}, {46, 82, 128}, {47, 108, 155},
{48, 81, 129}, {49, 107, 156}, {50, 80, 130}, {51, 93, 144}, {52, 105, 157},
{53, 78, 131}, {54, 104, 158}, {55, 79, 134}, {56, 103, 159}, {57, 76, 133}
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52 {6, 135, 141}, {8, 79, 87}, {9, 133, 142}, {10, 78, 88}, {11, 132, 143}, {12, 77, 89},
{13, 131, 144}, {14, 76, 90}, {15, 130, 145}, {16, 75, 91}, {17, 129, 146},
{18, 74, 92}, {19, 128, 147}, {20, 73, 93}, {21, 127, 148}, {22, 72, 94},
{23, 126, 149}, {24, 71, 95}, {25, 86, 111}, {26, 124, 150}, {27, 96, 123},
{28, 84, 112}, {29, 110, 139}, {30, 68, 98}, {31, 69, 100}, {32, 121, 153},
{33, 122, 155}, {34, 120, 154}, {35, 66, 101}, {36, 67, 103}, {37, 65, 102},
{38, 118, 156}, {39, 119, 158}, {40, 117, 157}, {41, 63, 104}, {42, 64, 106},
{43, 62, 105}, {44, 115, 159}, {45, 116, 161}, {46, 114, 160}, {47, 60, 107},
{48, 61, 109}, {49, 59, 108}, {50, 113, 163}, {51, 83, 134}, {52, 85, 137},
{53, 99, 152}, {54, 97, 151}, {55, 70, 125}, {56, 80, 136}, {57, 81, 138},
{58, 82, 140}

53 {6, 40, 46}, {8, 39, 47}, {9, 41, 50}, {10, 38, 48}, {11, 42, 53}, {12, 109, 121},
{13, 110, 123}, {14, 37, 51}, {15, 107, 122}, {16, 36, 52}, {17, 108, 125},
{18, 106, 124}, {19, 35, 54}, {20, 111, 131}, {21, 105, 126}, {22, 112, 134},
{23, 104, 127}, {24, 113, 137}, {25, 103, 128}, {26, 114, 140}, {27, 102, 129},
{28, 115, 143}, {29, 101, 130}, {30, 116, 146}, {31, 119, 150}, {32, 100, 132},
{33, 120, 153}, {34, 99, 133}, {43, 92, 135}, {44, 118, 162}, {45, 91, 136},
{49, 117, 166}, {55, 83, 138}, {56, 85, 141}, {57, 82, 139}, {58, 84, 142},
{59, 86, 145}, {60, 87, 147}, {61, 94, 155}, {62, 95, 157}, {63, 81, 144},
{64, 96, 160}, {65, 98, 163}, {66, 90, 156}, {67, 97, 164}, {68, 93, 161},
{69, 89, 158}, {70, 78, 148}, {71, 88, 159}, {72, 77, 149}, {73, 79, 152},
{74, 80, 154}, {75, 76, 151}

54 {6, 83, 89}, {8, 139, 147}, {9, 82, 91}, {10, 138, 148}, {11, 81, 92}, {12, 137, 149},
{13, 80, 93}, {14, 136, 150}, {15, 79, 94}, {16, 135, 151}, {17, 78, 95},
{18, 134, 152}, {19, 77, 96}, {20, 133, 153}, {21, 76, 97}, {22, 132, 154},
{23, 75, 98}, {24, 131, 155}, {25, 74, 99}, {26, 130, 156}, {27, 100, 127},
{28, 113, 141}, {29, 115, 144}, {30, 86, 116}, {31, 71, 102}, {32, 126, 158},
{33, 70, 103}, {34, 125, 159}, {35, 69, 104}, {36, 124, 160}, {37, 68, 105},
{38, 123, 161}, {39, 67, 106}, {40, 122, 162}, {41, 66, 107}, {42, 121, 163},
{43, 65, 108}, {44, 120, 164}, {45, 64, 109}, {46, 119, 165}, {47, 63, 110},
{48, 118, 166}, {49, 62, 111}, {50, 117, 167}, {51, 61, 112}, {52, 88, 140},
{53, 90, 143}, {54, 114, 168}, {55, 73, 128}, {56, 101, 157}, {57, 72, 129},
{58, 84, 142}, {59, 87, 146}, {60, 85, 145}

55 {6, 46, 52}, {8, 45, 53}, {9, 47, 56}, {10, 48, 58}, {11, 44, 55}, {12, 49, 61},
{13, 113, 126}, {14, 43, 57}, {15, 112, 127}, {16, 114, 130}, {17, 42, 59},
{18, 110, 128}, {19, 41, 60}, {20, 109, 129}, {21, 111, 132}, {22, 115, 137},
{23, 108, 131}, {24, 116, 140}, {25, 117, 142}, {26, 107, 133}, {27, 118, 145},
{28, 106, 134}, {29, 119, 148}, {30, 105, 135}, {31, 120, 151}, {32, 104, 136},
{33, 121, 154}, {34, 122, 156}, {35, 103, 138}, {36, 124, 160}, {37, 102, 139},
{38, 123, 161}, {39, 125, 164}, {40, 101, 141}, {50, 93, 143}, {51, 95, 146},
{54, 90, 144}, {62, 85, 147}, {63, 86, 149}, {64, 88, 152}, {65, 97, 162},
{66, 84, 150}, {67, 96, 163}, {68, 87, 155}, {69, 100, 169}, {70, 83, 153},
{71, 99, 170}, {72, 94, 166}, {73, 98, 171}, {74, 91, 165}, {75, 82, 157},
{76, 92, 168}, {77, 81, 158}, {78, 89, 167}, {79, 80, 159}

Table A.26: Difference triples for Lemma 1.3.6
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t Difference triples

56 {6, 145, 151}, {8, 85, 93}, {9, 143, 152}, {10, 84, 94}, {11, 142, 153}, {12, 83, 95},
{13, 141, 154}, {14, 82, 96}, {15, 140, 155}, {16, 81, 97}, {17, 139, 156},
{18, 80, 98}, {19, 138, 157}, {20, 79, 99}, {21, 137, 158}, {22, 78, 100},
{23, 136, 159}, {24, 77, 101}, {25, 135, 160}, {26, 76, 102}, {27, 92, 119},
{28, 133, 161}, {29, 103, 132}, {30, 90, 120}, {31, 118, 149}, {32, 73, 105},
{33, 74, 107}, {34, 130, 164}, {35, 131, 166}, {36, 129, 165}, {37, 71, 108},
{38, 72, 110}, {39, 70, 109}, {40, 127, 167}, {41, 128, 169}, {42, 126, 168},
{43, 68, 111}, {44, 69, 113}, {45, 67, 112}, {46, 124, 170}, {47, 125, 172},
{48, 123, 171}, {49, 65, 114}, {50, 66, 116}, {51, 64, 115}, {52, 121, 173},
{53, 122, 175}, {54, 63, 117}, {55, 89, 144}, {56, 91, 147}, {57, 106, 163},
{58, 104, 162}, {59, 75, 134}, {60, 86, 146}, {61, 87, 148}, {62, 88, 150}

57 {6, 150, 156}, {8, 91, 99}, {9, 149, 158}, {10, 147, 157}, {11, 89, 100},
{12, 90, 102}, {13, 88, 101}, {14, 145, 159}, {15, 146, 161}, {16, 144, 160},
{17, 86, 103}, {18, 87, 105}, {19, 85, 104}, {20, 142, 162}, {21, 143, 164},
{22, 141, 163}, {23, 83, 106}, {24, 84, 108}, {25, 82, 107}, {26, 139, 165},
{27, 140, 167}, {28, 138, 166}, {29, 80, 109}, {30, 81, 111}, {31, 93, 124},
{32, 78, 110}, {33, 135, 168}, {34, 136, 170}, {35, 134, 169}, {36, 76, 112},
{37, 77, 114}, {38, 75, 113}, {39, 132, 171}, {40, 133, 173}, {41, 131, 172},
{42, 73, 115}, {43, 74, 117}, {44, 72, 116}, {45, 129, 174}, {46, 130, 176},
{47, 128, 175}, {48, 70, 118}, {49, 71, 120}, {50, 98, 148}, {51, 68, 119},
{52, 69, 121}, {53, 125, 178}, {54, 97, 151}, {55, 67, 122}, {56, 96, 152},
{57, 66, 123}, {58, 79, 137}, {59, 94, 153}, {60, 95, 155}, {61, 65, 126},
{62, 92, 154}, {63, 64, 127}

58 {6, 89, 95}, {8, 149, 157}, {9, 88, 97}, {10, 148, 158}, {11, 87, 98}, {12, 147, 159},
{13, 86, 99}, {14, 146, 160}, {15, 85, 100}, {16, 145, 161}, {17, 84, 101},
{18, 144, 162}, {19, 83, 102}, {20, 143, 163}, {21, 82, 103}, {22, 142, 164},
{23, 81, 104}, {24, 141, 165}, {25, 80, 105}, {26, 140, 166}, {27, 79, 106},
{28, 139, 167}, {29, 107, 136}, {30, 121, 151}, {31, 123, 154}, {32, 92, 124},
{33, 76, 109}, {34, 135, 169}, {35, 75, 110}, {36, 134, 170}, {37, 74, 111},
{38, 133, 171}, {39, 73, 112}, {40, 132, 172}, {41, 72, 113}, {42, 131, 173},
{43, 71, 114}, {44, 130, 174}, {45, 70, 115}, {46, 129, 175}, {47, 69, 116},
{48, 128, 176}, {49, 68, 117}, {50, 127, 177}, {51, 67, 118}, {52, 126, 178},
{53, 66, 119}, {54, 125, 179}, {55, 65, 120}, {56, 94, 150}, {57, 96, 153},
{58, 122, 180}, {59, 78, 137}, {60, 108, 168}, {61, 77, 138}, {62, 90, 152},
{63, 93, 156}, {64, 91, 155}

59 {6, 89, 95}, {8, 147, 155}, {9, 87, 96}, {10, 146, 156}, {11, 86, 97}, {12, 145, 157},
{13, 85, 98}, {14, 144, 158}, {15, 84, 99}, {16, 143, 159}, {17, 83, 100},
{18, 142, 160}, {19, 82, 101}, {20, 141, 161}, {21, 81, 102}, {22, 140, 162},
{23, 80, 103}, {24, 139, 163}, {25, 79, 104}, {26, 138, 164}, {27, 78, 105},
{28, 137, 165}, {29, 77, 106}, {30, 122, 152}, {31, 136, 167}, {32, 76, 108},
{33, 135, 168}, {34, 75, 109}, {35, 134, 169}, {36, 74, 110}, {37, 133, 170},
{38, 73, 111}, {39, 132, 171}, {40, 72, 112}, {41, 131, 172}, {42, 71, 113},
{43, 130, 173}, {44, 70, 114}, {45, 129, 174}, {46, 69, 115}, {47, 128, 175},
{48, 68, 116}, {49, 127, 176}, {50, 67, 117}, {51, 126, 177}, {52, 66, 118},
{53, 125, 178}, {54, 94, 148}, {55, 124, 179}, {56, 93, 149}, {57, 123, 180},
{58, 92, 150}, {59, 107, 166}, {60, 121, 181}, {61, 90, 151}, {62, 120, 182},
{63, 91, 154}, {64, 119, 183}, {65, 88, 153}

Table A.26: Difference triples for Lemma 1.3.6
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t Difference triples

60 {6, 155, 161}, {8, 154, 162}, {9, 92, 101}, {10, 90, 100}, {11, 88, 99},
{12, 151, 163}, {13, 152, 165}, {14, 150, 164}, {15, 89, 104}, {16, 87, 103},
{17, 85, 102}, {18, 148, 166}, {19, 149, 168}, {20, 147, 167}, {21, 86, 107},
{22, 84, 106}, {23, 82, 105}, {24, 145, 169}, {25, 146, 171}, {26, 144, 170},
{27, 83, 110}, {28, 80, 108}, {29, 98, 127}, {30, 142, 172}, {31, 109, 140},
{32, 96, 128}, {33, 126, 159}, {34, 141, 175}, {35, 78, 113}, {36, 79, 115},
{37, 77, 114}, {38, 138, 176}, {39, 139, 178}, {40, 137, 177}, {41, 75, 116},
{42, 76, 118}, {43, 74, 117}, {44, 135, 179}, {45, 136, 181}, {46, 134, 180},
{47, 72, 119}, {48, 73, 121}, {49, 71, 120}, {50, 132, 182}, {51, 133, 184},
{52, 131, 183}, {53, 69, 122}, {54, 70, 124}, {55, 68, 123}, {56, 129, 185},
{57, 130, 187}, {58, 95, 153}, {59, 66, 125}, {60, 97, 157}, {61, 112, 173},
{62, 81, 143}, {63, 111, 174}, {64, 94, 158}, {65, 91, 156}, {67, 93, 160}

Table A.26: Difference triples for Lemma 1.3.6

r πr

1 {{5, 6, 7, 8, 10}}
2 {{5, 7, 8, 9, 11}, {6, 10, 12, 13, 15}}
3 {{5, 8, 11, 16, 18}, {6, 9, 12, 13, 14}, {7, 10, 15, 17, 19}}
4 {{5, 11, 13, 21, 24}, {6, 8, 17, 19, 22}, {7, 14, 18, 20, 23}, {9, 10, 12, 15, 16}}
5 {{5, 13, 22, 23, 27}, {6, 14, 15, 16, 21}, {7, 8, 19, 20, 24}, {9, 11, 17, 25, 28},
{10, 12, 18, 26, 30}}

6 {{5, 6, 21, 22, 32}, {7, 8, 20, 23, 28}, {9, 12, 19, 31, 33}, {10, 14, 26, 27, 29},
{11, 15, 16, 18, 24}, {13, 17, 25, 30, 35}}

Table A.27: Table of partitions for Lemma 1.3.7 when S = {1, 2, 3, 4}

r πr

1 {{5, 7, 8, 9, 11}}
2 {{5, 8, 11, 13, 15}, {7, 9, 10, 12, 14}}
3 {{5, 7, 14, 18, 20}, {8, 10, 15, 16, 17}, {9, 11, 12, 13, 19}}
4 {{5, 7, 15, 23, 26}, {8, 9, 20, 21, 24}, {10, 13, 16, 17, 22}, {11, 12, 14, 18, 19}}
5 {{5, 11, 19, 26, 29}, {7, 9, 23, 24, 31}, {8, 16, 25, 27, 28}, {10, 13, 15, 18, 20},
{12, 14, 17, 21, 22}}

6 {{5, 13, 21, 30, 33}, {7, 12, 25, 29, 35}, {8, 9, 22, 26, 31}, {10, 11, 27, 28, 34},
{14, 15, 18, 23, 24}, {16, 17, 19, 20, 32}}

7 {{5, 10, 25, 30, 40}, {7, 12, 23, 34, 38}, {8, 14, 27, 32, 37}, {9, 19, 31, 36, 39},
{11, 20, 29, 33, 35}, {13, 15, 18, 22, 24}, {16, 17, 21, 26, 28}}

8 {{5, 17, 31, 35, 44}, {7, 12, 29, 30, 40}, {8, 24, 36, 37, 41}, {9, 11, 25, 38, 43},
{10, 15, 33, 34, 42}, {13, 19, 22, 26, 28}, {14, 16, 20, 23, 27}, {18, 21, 32, 39, 46}}

9 {{5, 13, 26, 37, 45}, {7, 14, 27, 41, 47}, {8, 10, 30, 34, 46}, {9, 16, 36, 38, 49},
{11, 17, 29, 43, 44}, {12, 23, 25, 28, 32}, {15, 18, 35, 40, 42}, {19, 21, 24, 31, 33},
{20, 22, 39, 48, 51}}

10 {{5, 16, 28, 47, 54}, {7, 15, 29, 46, 53}, {8, 17, 30, 45, 50}, {9, 14, 31, 44, 52},
{10, 13, 32, 42, 51}, {11, 18, 36, 41, 48}, {12, 19, 34, 40, 43}, {20, 25, 27, 33, 39},
{21, 23, 38, 49, 55}, {22, 24, 26, 35, 37}}

Table A.28: Table of partitions for Lemma 1.3.7 when S = {1, 2, 3, 4, 6}
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r πr

11 {{5, 17, 30, 51, 59}, {7, 16, 31, 50, 58}, {8, 18, 32, 49, 55}, {9, 15, 33, 48, 57},
{10, 19, 34, 47, 52}, {11, 14, 35, 46, 56}, {12, 20, 40, 45, 53}, {13, 22, 36, 43, 44},
{21, 27, 42, 54, 60}, {23, 26, 29, 37, 41}, {24, 25, 28, 38, 39}}

12 {{5, 18, 32, 55, 64}, {7, 17, 33, 54, 63}, {8, 19, 34, 53, 60}, {9, 16, 35, 52, 62},
{10, 20, 36, 51, 57}, {11, 15, 37, 50, 61}, {12, 21, 40, 49, 56}, {13, 14, 38, 48, 59},
{22, 23, 43, 45, 47}, {24, 30, 31, 39, 46}, {25, 27, 44, 58, 66}, {26, 28, 29, 41, 42}}

13 {{5, 19, 34, 59, 69}, {7, 18, 35, 58, 68}, {8, 20, 36, 57, 65}, {9, 17, 37, 56, 67},
{10, 21, 38, 55, 62}, {11, 16, 39, 54, 66}, {12, 22, 41, 53, 60}, {13, 15, 40, 52, 64},
{14, 23, 47, 51, 61}, {24, 25, 44, 45, 50}, {26, 31, 49, 63, 71}, {27, 30, 33, 42, 48},
{28, 29, 32, 43, 46}}

14 {{5, 20, 36, 63, 74}, {7, 19, 37, 62, 73}, {8, 21, 38, 61, 70}, {9, 18, 39, 60, 72},
{10, 22, 40, 59, 67}, {11, 17, 41, 58, 71}, {12, 23, 42, 57, 64}, {13, 24, 46, 56, 65},
{14, 15, 43, 55, 69}, {16, 25, 53, 54, 66}, {26, 27, 44, 45, 52}, {28, 30, 51, 68, 75},
{29, 33, 35, 47, 50}, {31, 32, 34, 48, 49}}

15 {{5, 21, 38, 66, 78}, {7, 20, 39, 65, 77}, {8, 22, 40, 64, 74}, {9, 19, 41, 63, 76},
{10, 23, 42, 62, 71}, {11, 18, 43, 61, 75}, {12, 24, 44, 60, 68}, {13, 25, 46, 59, 67},
{14, 16, 45, 58, 73}, {15, 17, 47, 57, 72}, {26, 27, 52, 55, 56}, {28, 35, 54, 70, 79},
{29, 36, 37, 49, 53}, {30, 32, 51, 69, 80}, {31, 33, 34, 48, 50}}

16 {{5, 22, 40, 70, 83}, {7, 21, 41, 69, 82}, {8, 23, 42, 68, 79}, {9, 20, 43, 67, 81},
{10, 24, 44, 66, 76}, {11, 19, 45, 65, 80}, {12, 25, 46, 64, 73}, {13, 26, 47, 63, 71},
{14, 18, 48, 62, 78}, {15, 27, 53, 61, 72}, {16, 17, 50, 60, 77}, {28, 30, 54, 55, 59},
{29, 38, 58, 75, 84}, {31, 36, 39, 49, 57}, {32, 34, 37, 51, 52}, {33, 35, 56, 74, 86}}

17 {{5, 23, 42, 74, 88}, {7, 22, 43, 73, 87}, {8, 24, 44, 72, 84}, {9, 21, 45, 71, 86},
{10, 25, 46, 70, 81}, {11, 20, 47, 69, 85}, {12, 26, 48, 68, 78}, {13, 27, 49, 67, 76},
{14, 19, 50, 66, 83}, {15, 28, 53, 65, 75}, {16, 17, 51, 64, 82}, {18, 29, 61, 63, 77},
{30, 33, 54, 55, 62}, {31, 38, 60, 80, 89}, {32, 39, 40, 52, 59}, {34, 36, 58, 79, 91},
{35, 37, 41, 56, 57}}

18 {{5, 22, 43, 75, 91}, {7, 21, 44, 74, 90}, {8, 23, 45, 73, 87}, {9, 20, 46, 72, 89},
{10, 24, 47, 71, 84}, {11, 19, 48, 70, 88}, {12, 25, 50, 69, 82}, {13, 26, 51, 68, 80},
{14, 27, 52, 67, 78}, {15, 18, 53, 66, 86}, {16, 28, 55, 65, 76}, {17, 29, 59, 64, 77},
{30, 38, 49, 54, 63}, {31, 39, 62, 85, 93}, {32, 40, 61, 81, 92}, {33, 41, 42, 56, 60},
{34, 35, 58, 83, 94}, {36, 37, 57, 79, 95}}

19 {{5, 23, 45, 79, 96}, {7, 22, 46, 78, 95}, {8, 24, 48, 77, 93}, {9, 25, 49, 76, 91},
{10, 21, 50, 75, 94}, {11, 26, 51, 74, 88}, {12, 27, 52, 73, 86}, {13, 20, 53, 72, 92},
{14, 28, 54, 71, 83}, {15, 29, 55, 70, 81}, {16, 19, 56, 69, 90}, {17, 30, 59, 68, 80},
{18, 31, 64, 67, 82}, {32, 42, 66, 89, 97}, {33, 43, 65, 87, 98}, {34, 39, 47, 57, 63},
{35, 41, 44, 58, 62}, {36, 40, 61, 84, 99}, {37, 38, 60, 85, 100}}

20 {{5, 24, 47, 82, 100}, {7, 23, 48, 81, 99}, {8, 25, 49, 80, 96}, {9, 22, 50, 79, 98},
{10, 26, 51, 78, 93}, {11, 21, 52, 77, 97}, {12, 27, 53, 76, 90}, {13, 28, 54, 75, 88},
{14, 20, 55, 74, 95}, {15, 29, 56, 73, 85}, {16, 19, 57, 72, 94}, {17, 30, 59, 71, 83},
{18, 31, 65, 70, 86}, {32, 34, 60, 63, 69}, {33, 44, 68, 92, 101}, {35, 43, 67, 91, 102},
{36, 42, 46, 58, 66}, {37, 41, 64, 89, 103}, {38, 40, 45, 61, 62},
{39, 84, 87, 104, 106}}

Table A.28: Table of partitions for Lemma 1.3.7 when S = {1, 2, 3, 4, 6}
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r πr

21 {{5, 25, 49, 86, 105}, {7, 24, 50, 85, 104}, {8, 26, 51, 84, 101}, {9, 23, 52, 83, 103},
{10, 27, 53, 82, 98}, {11, 22, 54, 81, 102}, {12, 28, 55, 80, 95}, {13, 29, 56, 79, 93},
{14, 21, 57, 78, 100}, {15, 30, 58, 77, 90}, {16, 20, 59, 76, 99}, {17, 31, 60, 75, 87},
{18, 32, 64, 74, 88}, {19, 33, 68, 73, 89}, {34, 39, 61, 62, 72}, {35, 45, 71, 97, 106},
{36, 46, 70, 96, 108}, {37, 47, 48, 63, 69}, {38, 42, 67, 94, 107}, {40, 43, 66, 92, 109},
{41, 44, 65, 91, 111}}

22 {{5, 26, 51, 90, 110}, {7, 25, 52, 89, 109}, {8, 27, 53, 88, 106}, {9, 24, 54, 87, 108},
{10, 28, 55, 86, 103}, {11, 23, 56, 85, 107}, {12, 29, 57, 84, 100}, {13, 30, 59, 83, 99},
{14, 31, 60, 82, 97}, {15, 22, 61, 81, 105}, {16, 32, 62, 80, 94}, {17, 21, 63, 79, 104},
{18, 33, 64, 78, 91}, {19, 34, 68, 77, 92}, {20, 35, 72, 76, 93}, {36, 46, 58, 65, 75},
{37, 47, 74, 101, 111}, {38, 45, 73, 102, 112}, {39, 48, 50, 66, 71},
{40, 49, 70, 95, 114}, {41, 43, 69, 98, 113}, {42, 44, 67, 96, 115}}

23 {{5, 27, 53, 93, 114}, {7, 26, 54, 92, 113}, {8, 28, 55, 91, 110}, {9, 25, 56, 90, 112},
{10, 29, 57, 89, 107}, {11, 24, 58, 88, 111}, {12, 30, 59, 87, 104},
{13, 31, 60, 86, 102}, {14, 23, 61, 85, 109}, {15, 32, 62, 84, 99}, {16, 22, 63, 83, 108},
{17, 33, 64, 82, 96}, {18, 34, 65, 81, 94}, {19, 21, 66, 80, 106}, {20, 35, 71, 79, 95},
{36, 38, 72, 76, 78}, {37, 50, 77, 105, 115}, {39, 49, 75, 103, 116},
{40, 51, 52, 69, 74}, {41, 48, 73, 101, 117}, {42, 46, 70, 100, 118},
{43, 45, 47, 67, 68}, {44, 97, 98, 119, 120}}

24 {{5, 28, 55, 97, 119}, {7, 27, 56, 96, 118}, {8, 29, 57, 95, 115}, {9, 26, 58, 94, 117},
{10, 30, 59, 93, 112}, {11, 25, 60, 92, 116}, {12, 31, 61, 91, 109},
{13, 32, 62, 90, 107}, {14, 24, 63, 89, 114}, {15, 33, 64, 88, 104},
{16, 23, 65, 87, 113}, {17, 34, 66, 86, 101}, {18, 35, 67, 85, 99}, {19, 22, 68, 84, 111},
{20, 36, 71, 83, 98}, {21, 37, 76, 82, 100}, {38, 39, 70, 74, 81}, {40, 50, 80, 110, 120},
{41, 51, 79, 108, 121}, {42, 52, 53, 69, 78}, {43, 54, 77, 102, 122},
{44, 48, 75, 106, 123}, {45, 47, 73, 105, 124}, {46, 49, 72, 103, 126}}

25 {{5, 29, 57, 101, 124}, {7, 28, 58, 100, 123}, {8, 30, 59, 99, 120}, {9, 27, 60, 98, 122},
{10, 31, 61, 97, 117}, {11, 26, 62, 96, 121}, {12, 32, 63, 95, 114},
{13, 33, 64, 94, 112}, {14, 25, 65, 93, 119}, {15, 34, 66, 92, 109},
{16, 24, 67, 91, 118}, {17, 35, 68, 90, 106}, {18, 36, 69, 89, 104},
{19, 23, 70, 88, 116}, {20, 37, 72, 87, 102}, {21, 38, 76, 86, 103},
{22, 39, 81, 85, 105}, {40, 46, 71, 73, 84}, {41, 52, 83, 115, 125},
{42, 53, 82, 113, 126}, {43, 54, 80, 110, 127}, {44, 55, 79, 108, 128},
{45, 51, 56, 74, 78}, {47, 48, 77, 111, 129}, {49, 50, 75, 107, 131}}

26 {{5, 30, 59, 105, 129}, {7, 29, 60, 104, 128}, {8, 31, 61, 103, 125},
{9, 28, 62, 102, 127}, {10, 32, 63, 101, 122}, {11, 27, 64, 100, 126},
{12, 33, 65, 99, 119}, {13, 34, 66, 98, 117}, {14, 35, 68, 97, 116},
{15, 26, 69, 96, 124}, {16, 36, 70, 95, 113}, {17, 25, 71, 94, 123},
{18, 37, 72, 93, 110}, {19, 38, 73, 92, 108}, {20, 24, 74, 91, 121},
{21, 39, 76, 90, 106}, {22, 40, 80, 89, 107}, {23, 41, 85, 88, 109}, {42, 53, 67, 75, 87},
{43, 54, 86, 120, 131}, {44, 52, 84, 118, 130}, {45, 55, 83, 115, 132},
{46, 56, 57, 77, 82}, {47, 58, 81, 111, 135}, {48, 50, 79, 114, 133},
{49, 51, 78, 112, 134}}

Table A.28: Table of partitions for Lemma 1.3.7 when S = {1, 2, 3, 4, 6}
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r πr

27 {{5, 31, 61, 108, 133}, {7, 30, 62, 107, 132}, {8, 32, 63, 106, 129},
{9, 29, 64, 105, 131}, {10, 33, 65, 104, 126}, {11, 28, 66, 103, 130},
{12, 34, 67, 102, 123}, {13, 35, 68, 101, 121}, {14, 27, 69, 100, 128},
{15, 36, 70, 99, 118}, {16, 26, 71, 98, 127}, {17, 37, 72, 97, 115},
{18, 38, 73, 96, 113}, {19, 25, 74, 95, 125}, {20, 39, 75, 94, 110},
{21, 24, 76, 93, 124}, {22, 40, 79, 92, 109}, {23, 41, 84, 91, 111}, {42, 43, 83, 88, 90},
{44, 57, 89, 122, 134}, {45, 58, 87, 119, 135}, {46, 56, 86, 120, 136},
{47, 55, 60, 77, 85}, {48, 53, 59, 78, 82}, {49, 52, 81, 117, 137},
{50, 54, 80, 114, 138}, {51, 112, 116, 139, 140}}

28 {{5, 34, 64, 115, 140}, {7, 33, 65, 114, 139}, {8, 35, 66, 113, 136},
{9, 32, 67, 112, 138}, {10, 36, 68, 111, 133}, {11, 31, 69, 110, 137},
{12, 37, 70, 109, 130}, {13, 38, 71, 108, 128}, {14, 30, 72, 107, 135},
{15, 39, 73, 106, 125}, {16, 29, 74, 105, 134}, {17, 40, 75, 104, 122},
{18, 41, 76, 103, 120}, {19, 28, 77, 102, 132}, {20, 42, 78, 101, 117},
{21, 27, 79, 100, 131}, {22, 43, 82, 99, 116}, {23, 26, 80, 98, 129},
{24, 44, 89, 97, 118}, {25, 45, 93, 96, 119}, {46, 47, 83, 85, 95},
{48, 60, 94, 127, 141}, {49, 59, 92, 126, 142}, {50, 61, 91, 123, 143},
{51, 57, 63, 81, 90}, {52, 56, 88, 124, 144}, {53, 58, 62, 86, 87},
{54, 55, 84, 121, 146}}

29 {{5, 35, 66, 119, 145}, {7, 34, 67, 118, 144}, {8, 36, 68, 117, 141},
{9, 33, 69, 116, 143}, {10, 37, 70, 115, 138}, {11, 32, 71, 114, 142},
{12, 38, 72, 113, 135}, {13, 39, 73, 112, 133}, {14, 31, 74, 111, 140},
{15, 40, 75, 110, 130}, {16, 30, 76, 109, 139}, {17, 41, 77, 108, 127},
{18, 42, 78, 107, 125}, {19, 29, 79, 106, 137}, {20, 43, 80, 105, 122},
{21, 44, 82, 104, 121}, {22, 28, 83, 103, 136}, {23, 45, 86, 102, 120},
{24, 27, 84, 101, 134}, {25, 46, 94, 100, 123}, {26, 47, 98, 99, 124},
{48, 53, 81, 85, 97}, {49, 61, 96, 132, 146}, {50, 62, 95, 131, 148},
{51, 60, 93, 129, 147}, {52, 63, 64, 87, 92}, {54, 58, 91, 128, 149},
{55, 59, 65, 89, 90}, {56, 57, 88, 126, 151}}

30 {{5, 53, 97, 103, 142}, {7, 59, 83, 118, 135}, {8, 22, 72, 105, 147},
{9, 21, 71, 100, 141}, {10, 14, 69, 101, 146}, {11, 36, 86, 106, 145},
{12, 34, 73, 121, 148}, {13, 33, 92, 98, 144}, {15, 66, 104, 109, 132},
{16, 17, 68, 99, 134}, {18, 52, 94, 116, 140}, {19, 51, 87, 110, 127},
{20, 65, 111, 112, 138}, {23, 27, 82, 93, 125}, {24, 30, 75, 108, 129},
{25, 61, 74, 139, 151}, {26, 43, 89, 117, 137}, {28, 54, 85, 123, 126},
{29, 49, 88, 120, 130}, {31, 35, 102, 114, 150}, {32, 45, 107, 113, 143},
{37, 63, 77, 131, 154}, {38, 46, 95, 122, 133}, {39, 57, 90, 149, 155},
{40, 50, 70, 76, 96}, {41, 67, 84, 128, 152}, {42, 56, 81, 136, 153},
{44, 55, 58, 78, 79}, {47, 60, 64, 80, 91}, {48, 62, 115, 119, 124}}

Table A.28: Table of partitions for Lemma 1.3.7 when S = {1, 2, 3, 4, 6}

r πr

2 {{6, 9, 12, 13, 16}, {8, 10, 11, 14, 15}}
3 {{6, 8, 13, 18, 19}, {9, 12, 16, 17, 22}, {10, 11, 14, 15, 20}}
4 {{6, 12, 15, 16, 19}, {8, 14, 17, 22, 27}, {9, 11, 18, 23, 25}, {10, 13, 20, 21, 24}}
5 {{6, 8, 19, 22, 27}, {9, 17, 21, 25, 30}, {10, 11, 18, 26, 29}, {12, 14, 23, 28, 31},
{13, 15, 16, 20, 24}}
Table A.29: Table of partitions for Lemma 1.3.7 when S = {1, 2, 3, 4, 5, 7}
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r πr

6 {{6, 9, 21, 24, 30}, {8, 19, 25, 33, 35}, {10, 11, 22, 27, 28}, {12, 17, 26, 31, 34},
{13, 14, 16, 20, 23}, {15, 18, 29, 32, 36}}

7 {{6, 13, 26, 27, 34}, {8, 19, 23, 36, 40}, {9, 18, 32, 33, 38}, {10, 12, 24, 29, 31},
{11, 16, 20, 22, 25}, {14, 21, 30, 37, 42}, {15, 17, 28, 35, 39}}

8 {{6, 11, 24, 31, 38}, {8, 9, 27, 30, 40}, {10, 14, 28, 29, 33}, {12, 23, 32, 42, 45},
{13, 17, 36, 37, 43}, {15, 19, 26, 39, 47}, {16, 21, 34, 41, 44}, {18, 20, 22, 25, 35}}

9 {{6, 11, 26, 36, 45}, {8, 19, 33, 37, 43}, {9, 12, 27, 40, 46}, {10, 13, 29, 38, 44},
{14, 18, 28, 47, 51}, {15, 21, 25, 30, 31}, {16, 22, 39, 41, 42}, {17, 34, 48, 49, 50},
{20, 23, 24, 32, 35}}

10 {{6, 12, 28, 42, 52}, {8, 20, 33, 44, 49}, {9, 13, 34, 38, 50}, {10, 11, 29, 40, 48},
{14, 26, 39, 53, 54}, {15, 24, 30, 47, 56}, {16, 19, 31, 51, 55}, {17, 21, 41, 43, 46},
{18, 23, 27, 32, 36}, {22, 25, 35, 37, 45}}

11 {{6, 23, 39, 42, 52}, {8, 14, 33, 47, 58}, {9, 13, 30, 43, 51}, {10, 17, 40, 41, 54},
{11, 12, 34, 44, 55}, {15, 21, 35, 36, 37}, {16, 25, 38, 56, 59}, {18, 26, 46, 48, 50},
{19, 20, 32, 53, 60}, {22, 28, 45, 57, 62}, {24, 27, 29, 31, 49}}

12 {{6, 22, 40, 50, 62}, {8, 18, 39, 41, 54}, {9, 16, 42, 43, 60}, {10, 17, 38, 47, 58},
{11, 19, 35, 51, 56}, {12, 30, 32, 36, 46}, {13, 28, 37, 63, 67}, {14, 25, 45, 53, 59},
{15, 31, 49, 52, 55}, {20, 21, 26, 33, 34}, {23, 24, 44, 61, 64}, {27, 29, 48, 57, 65}}

13 {{6, 30, 48, 56, 68}, {8, 21, 39, 57, 67}, {9, 17, 42, 44, 60}, {10, 15, 40, 43, 58},
{11, 31, 53, 54, 65}, {12, 29, 49, 55, 63}, {13, 35, 41, 62, 69}, {14, 26, 33, 36, 37},
{16, 19, 50, 51, 66}, {18, 22, 47, 52, 59}, {20, 24, 38, 64, 70}, {23, 32, 45, 61, 71},
{25, 27, 28, 34, 46}}

14 {{6, 23, 42, 58, 71}, {8, 20, 48, 50, 70}, {9, 36, 56, 62, 73}, {10, 28, 51, 55, 68},
{11, 34, 52, 57, 64}, {12, 31, 33, 37, 39}, {13, 16, 40, 49, 60}, {14, 25, 47, 59, 67},
{15, 21, 45, 54, 63}, {17, 19, 41, 61, 66}, {18, 29, 44, 72, 75}, {22, 30, 43, 65, 74},
{24, 32, 35, 38, 53}, {26, 27, 46, 69, 76}}

15 {{6, 21, 50, 54, 77}, {8, 23, 51, 56, 76}, {9, 24, 44, 60, 71}, {10, 36, 48, 65, 67},
{11, 30, 46, 63, 68}, {12, 20, 45, 62, 75}, {13, 37, 42, 72, 80}, {14, 34, 55, 66, 73},
{15, 17, 47, 59, 74}, {16, 18, 43, 52, 61}, {19, 27, 57, 58, 69}, {22, 26, 33, 40, 41},
{25, 32, 53, 78, 82}, {28, 29, 31, 39, 49}, {35, 38, 64, 70, 79}}

16 {{6, 20, 48, 56, 78}, {8, 32, 42, 68, 70}, {9, 34, 54, 66, 77}, {10, 16, 47, 53, 74},
{11, 12, 43, 59, 79}, {13, 30, 55, 57, 69}, {14, 19, 46, 60, 73}, {15, 23, 51, 63, 76},
{17, 24, 40, 82, 83}, {18, 38, 50, 81, 87}, {21, 29, 58, 64, 72}, {22, 27, 44, 80, 85},
{25, 45, 61, 75, 84}, {26, 31, 36, 41, 52}, {28, 33, 65, 67, 71}, {35, 37, 39, 49, 62}}

17 {{6, 18, 46, 62, 84}, {8, 29, 54, 68, 85}, {9, 20, 47, 70, 88}, {10, 12, 44, 59, 81},
{11, 21, 53, 56, 77}, {13, 14, 52, 55, 80}, {15, 60, 64, 79, 90}, {16, 37, 58, 71, 76},
{17, 24, 51, 72, 82}, {19, 28, 61, 73, 87}, {22, 32, 41, 45, 50}, {23, 30, 65, 66, 78},
{25, 40, 57, 83, 91}, {26, 31, 35, 43, 49}, {27, 34, 67, 69, 75}, {33, 36, 42, 48, 63},
{38, 39, 74, 86, 89}}

18 {{6, 34, 48, 75, 83}, {8, 17, 50, 61, 86}, {9, 41, 56, 71, 77}, {10, 30, 52, 68, 80},
{11, 39, 58, 70, 78}, {12, 33, 66, 69, 90}, {13, 38, 65, 67, 81}, {14, 35, 44, 87, 92},
{15, 26, 60, 63, 82}, {16, 28, 55, 74, 85}, {18, 42, 49, 84, 95}, {19, 20, 54, 73, 88},
{21, 29, 62, 64, 76}, {22, 32, 51, 91, 94}, {23, 31, 37, 45, 46}, {24, 27, 47, 89, 93},
{25, 43, 53, 57, 72}, {36, 40, 59, 79, 96}}
Table A.29: Table of partitions for Lemma 1.3.7 when S = {1, 2, 3, 4, 5, 7}
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r πr

19 {{6, 25, 52, 59, 80}, {8, 36, 50, 79, 85}, {9, 17, 57, 58, 89}, {10, 37, 68, 75, 96},
{11, 20, 61, 64, 94}, {12, 22, 48, 70, 84}, {13, 27, 54, 78, 92}, {14, 31, 49, 77, 81},
{15, 16, 51, 66, 86}, {18, 30, 63, 67, 82}, {19, 35, 69, 76, 91}, {21, 39, 73, 74, 87},
{23, 45, 60, 90, 98}, {24, 38, 46, 56, 72}, {26, 83, 93, 100, 102}, {28, 40, 44, 47, 65},
{29, 33, 53, 88, 97}, {32, 42, 43, 55, 62}, {34, 41, 71, 95, 99}}

20 {{6, 25, 61, 70, 100}, {8, 24, 60, 68, 96}, {9, 13, 57, 58, 93}, {10, 31, 62, 73, 94},
{11, 21, 59, 71, 98}, {12, 28, 55, 74, 89}, {14, 44, 64, 80, 86}, {15, 29, 66, 79, 101},
{16, 36, 48, 99, 103}, {17, 18, 51, 75, 91}, {19, 54, 63, 92, 102}, {20, 35, 65, 78, 88},
{22, 27, 67, 69, 87}, {23, 37, 52, 97, 105}, {26, 47, 77, 81, 85}, {30, 34, 50, 90, 104},
{32, 38, 82, 83, 95}, {33, 46, 56, 84, 107}, {39, 40, 42, 49, 72}, {41, 43, 45, 53, 76}}

21 {{6, 27, 51, 81, 99}, {8, 87, 93, 97, 111}, {9, 33, 55, 85, 98}, {10, 39, 69, 82, 102},
{11, 15, 59, 62, 95}, {12, 29, 66, 76, 101}, {13, 35, 73, 75, 100}, {14, 42, 74, 86, 104},
{16, 19, 52, 89, 106}, {17, 25, 63, 70, 91}, {18, 38, 54, 107, 109}, {20, 44, 58, 71, 77},
{21, 37, 72, 80, 94}, {22, 34, 67, 79, 90}, {23, 31, 68, 78, 92}, {24, 43, 84, 88, 105},
{26, 47, 61, 96, 108}, {28, 36, 57, 103, 110}, {30, 40, 50, 56, 64}, {32, 41, 45, 53, 65},
{46, 48, 49, 60, 83}}

22 {{6, 50, 72, 84, 100}, {8, 28, 68, 74, 106}, {9, 42, 80, 81, 110},
{10, 107, 111, 113, 115}, {11, 21, 70, 71, 109}, {12, 46, 59, 93, 94},
{13, 33, 66, 85, 105}, {14, 29, 67, 79, 103}, {15, 30, 57, 86, 98}, {16, 25, 54, 91, 104},
{17, 18, 65, 78, 108}, {19, 41, 64, 92, 96}, {20, 37, 75, 77, 95}, {22, 26, 62, 83, 97},
{23, 51, 56, 69, 87}, {24, 44, 47, 55, 60}, {27, 48, 49, 61, 63}, {31, 32, 73, 89, 99},
{34, 38, 39, 53, 58}, {35, 36, 82, 90, 101}, {40, 52, 88, 112, 116},
{43, 45, 76, 102, 114}}

23 {{6, 13, 61, 63, 105}, {8, 46, 79, 89, 114}, {9, 42, 68, 82, 99}, {10, 40, 74, 80, 104},
{11, 24, 70, 78, 113}, {12, 36, 71, 93, 116}, {14, 49, 72, 91, 100},
{15, 29, 73, 81, 110}, {16, 25, 65, 88, 112}, {17, 31, 57, 94, 103},
{18, 45, 56, 115, 122}, {19, 51, 59, 107, 118}, {20, 43, 77, 84, 98},
{21, 34, 66, 95, 106}, {22, 50, 83, 90, 101}, {23, 26, 67, 69, 87}, {27, 38, 48, 55, 58},
{28, 52, 86, 96, 102}, {30, 54, 75, 111, 120}, {32, 53, 76, 108, 117},
{33, 44, 47, 60, 64}, {35, 37, 62, 109, 119}, {39, 41, 85, 92, 97}}

24 {{6, 101, 105, 117, 127}, {8, 17, 69, 77, 121}, {9, 29, 76, 82, 120},
{10, 40, 71, 92, 113}, {11, 14, 65, 72, 112}, {12, 42, 75, 86, 107},
{13, 35, 67, 99, 118}, {15, 41, 78, 97, 119}, {16, 51, 85, 96, 114},
{18, 36, 68, 94, 108}, {19, 27, 66, 95, 115}, {20, 28, 73, 79, 104},
{21, 23, 62, 98, 116}, {22, 39, 81, 83, 103}, {24, 49, 56, 59, 70}, {25, 46, 89, 91, 109},
{26, 45, 47, 58, 60}, {30, 31, 80, 87, 106}, {32, 34, 63, 122, 125}, {33, 44, 57, 64, 84},
{37, 43, 55, 61, 74}, {38, 50, 90, 100, 102}, {48, 54, 88, 110, 124},
{52, 53, 93, 111, 123}}

25 {{6, 23, 58, 91, 120}, {8, 19, 57, 76, 106}, {9, 35, 66, 83, 105}, {10, 11, 59, 61, 99},
{12, 29, 65, 92, 116}, {13, 33, 73, 74, 101}, {14, 21, 63, 90, 118},
{15, 36, 71, 95, 115}, {16, 39, 75, 77, 97}, {17, 25, 64, 80, 102}, {18, 26, 70, 84, 110},
{20, 38, 67, 89, 98}, {22, 37, 72, 87, 100}, {24, 46, 88, 96, 114}, {27, 28, 78, 81, 104},
{30, 108, 117, 125, 130}, {31, 109, 111, 124, 127}, {32, 45, 56, 107, 128},
{34, 54, 85, 119, 122}, {40, 44, 55, 60, 79}, {41, 47, 62, 103, 129},
{42, 43, 68, 69, 86}, {48, 50, 93, 121, 126}, {49, 52, 82, 112, 131},
{51, 53, 94, 113, 123}}
Table A.29: Table of partitions for Lemma 1.3.7 when S = {1, 2, 3, 4, 5, 7}
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r πr

26 {{6, 42, 69, 107, 128}, {8, 9, 67, 68, 118}, {10, 21, 76, 77, 122}, {11, 47, 86, 89, 117},
{12, 35, 73, 100, 126}, {13, 16, 66, 83, 120}, {14, 37, 64, 106, 119},
{15, 19, 70, 80, 116}, {17, 50, 71, 108, 112}, {18, 48, 61, 130, 135},
{20, 40, 74, 101, 115}, {22, 31, 84, 96, 127}, {23, 54, 87, 103, 113},
{24, 53, 62, 121, 136}, {25, 33, 88, 95, 125}, {26, 60, 93, 104, 111},
{27, 51, 85, 102, 109}, {28, 30, 91, 98, 131}, {29, 41, 65, 129, 134},
{32, 44, 92, 94, 110}, {34, 52, 78, 124, 132}, {36, 79, 105, 123, 133},
{38, 57, 59, 72, 82}, {39, 43, 97, 99, 114}, {45, 55, 56, 75, 81}, {46, 49, 58, 63, 90}}

27 {{6, 46, 81, 90, 119}, {8, 42, 73, 106, 129}, {9, 62, 63, 134, 142},
{10, 39, 84, 95, 130}, {11, 22, 64, 83, 114}, {12, 37, 71, 91, 113},
{13, 56, 99, 102, 132}, {14, 16, 68, 78, 116}, {15, 20, 65, 87, 117},
{17, 26, 72, 93, 122}, {18, 48, 92, 101, 127}, {19, 44, 88, 103, 128},
{21, 60, 85, 111, 115}, {23, 29, 66, 110, 124}, {24, 25, 80, 105, 136},
{27, 47, 89, 108, 123}, {28, 45, 97, 109, 133}, {30, 33, 82, 112, 131},
{31, 51, 69, 125, 138}, {32, 58, 77, 126, 139}, {34, 50, 61, 70, 75},
{35, 38, 96, 98, 121}, {36, 53, 100, 107, 118}, {40, 59, 79, 120, 140},
{41, 55, 57, 67, 86}, {43, 49, 74, 76, 94}, {52, 54, 104, 135, 137}}

28 {{6, 46, 92, 95, 135}, {8, 39, 80, 91, 124}, {9, 16, 71, 75, 121}, {10, 29, 82, 89, 132},
{11, 53, 69, 115, 120}, {12, 13, 65, 96, 136}, {14, 51, 99, 103, 137},
{15, 19, 73, 86, 125}, {17, 28, 84, 88, 127}, {18, 43, 85, 93, 117},
{20, 24, 83, 94, 133}, {21, 130, 140, 144, 147}, {22, 64, 102, 112, 128},
{23, 40, 67, 114, 118}, {25, 47, 104, 107, 139}, {26, 60, 97, 108, 119},
{27, 55, 98, 113, 129}, {30, 54, 63, 68, 79}, {31, 33, 66, 70, 72},
{32, 61, 77, 126, 142}, {34, 42, 101, 116, 141}, {35, 58, 59, 74, 78},
{36, 49, 109, 110, 134}, {37, 62, 87, 131, 143}, {38, 50, 100, 111, 123},
{41, 48, 105, 106, 122}, {44, 56, 57, 76, 81}, {45, 52, 90, 138, 145}}

29 {{6, 49, 85, 105, 135}, {8, 11, 66, 67, 114}, {9, 61, 78, 111, 119},
{10, 63, 93, 110, 130}, {12, 26, 71, 82, 115}, {13, 32, 70, 99, 124},
{14, 30, 74, 101, 131}, {15, 56, 96, 104, 129}, {16, 43, 97, 100, 138},
{17, 58, 95, 108, 128}, {18, 22, 80, 81, 121}, {19, 20, 89, 90, 140},
{21, 44, 87, 91, 113}, {23, 38, 98, 102, 139}, {24, 62, 75, 134, 145},
{25, 35, 72, 106, 118}, {27, 28, 86, 94, 125}, {29, 41, 83, 103, 116},
{31, 33, 69, 107, 112}, {34, 45, 68, 133, 144}, {36, 126, 136, 148, 150},
{37, 48, 65, 123, 143}, {39, 60, 84, 132, 147}, {40, 42, 77, 137, 142},
{46, 51, 55, 64, 88}, {47, 50, 52, 73, 76}, {53, 117, 127, 146, 151},
{54, 57, 92, 122, 141}, {59, 79, 109, 120, 149}}

30 {{6, 24, 83, 90, 143}, {8, 56, 88, 103, 127}, {9, 35, 76, 120, 152},
{10, 119, 129, 136, 156}, {11, 58, 97, 112, 140}, {12, 54, 100, 113, 147},
{13, 28, 71, 116, 146}, {14, 22, 72, 95, 131}, {15, 30, 85, 93, 133},
{16, 33, 73, 126, 150}, {17, 49, 86, 114, 134}, {18, 66, 80, 149, 153},
{19, 25, 91, 104, 151}, {20, 27, 84, 101, 138}, {21, 34, 77, 110, 132},
{23, 53, 96, 117, 137}, {26, 61, 106, 109, 128}, {29, 47, 105, 115, 144},
{31, 50, 64, 70, 75}, {32, 40, 89, 122, 139}, {36, 55, 111, 121, 141},
{37, 46, 107, 124, 148}, {38, 39, 99, 108, 130}, {41, 65, 118, 123, 135},
{42, 60, 67, 82, 87}, {43, 92, 125, 145, 155}, {44, 62, 94, 142, 154},
{45, 51, 57, 74, 79}, {48, 52, 59, 78, 81}, {63, 68, 69, 98, 102}}
Table A.29: Table of partitions for Lemma 1.3.7 when S = {1, 2, 3, 4, 5, 7}
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r πr

31 {{6, 45, 73, 120, 142}, {8, 55, 85, 118, 140}, {9, 31, 83, 109, 152},
{10, 43, 79, 127, 153}, {11, 64, 90, 119, 134}, {12, 27, 84, 101, 146},
{13, 21, 91, 92, 149}, {14, 25, 96, 100, 157}, {15, 30, 81, 102, 138},
{16, 18, 82, 89, 137}, {17, 53, 104, 105, 139}, {19, 20, 76, 117, 154},
{22, 58, 99, 126, 145}, {23, 52, 98, 113, 136}, {24, 40, 80, 115, 131},
{26, 44, 103, 123, 156}, {28, 39, 108, 114, 155}, {29, 54, 86, 129, 132},
{32, 57, 78, 151, 162}, {33, 67, 69, 75, 94}, {34, 51, 66, 74, 77},
{35, 36, 97, 122, 148}, {37, 56, 112, 116, 135}, {38, 60, 107, 124, 133},
{41, 62, 87, 143, 159}, {42, 61, 95, 150, 158}, {46, 65, 125, 130, 144},
{47, 59, 93, 147, 160}, {48, 49, 110, 128, 141}, {50, 63, 70, 72, 111},
{68, 71, 88, 106, 121}}

32 {{6, 23, 77, 102, 150}, {8, 36, 94, 109, 159}, {9, 60, 92, 131, 154},
{10, 16, 84, 91, 149}, {11, 72, 103, 117, 137}, {12, 34, 76, 130, 160},
{13, 71, 108, 123, 147}, {14, 64, 81, 133, 136}, {15, 45, 99, 104, 143},
{17, 44, 98, 111, 148}, {18, 31, 86, 120, 157}, {19, 37, 85, 127, 156},
{20, 42, 97, 100, 135}, {21, 29, 79, 126, 155}, {22, 49, 93, 119, 141},
{24, 38, 101, 112, 151}, {25, 66, 114, 115, 138}, {26, 46, 96, 129, 153},
{27, 68, 106, 134, 145}, {28, 63, 65, 74, 82}, {30, 51, 75, 83, 89},
{32, 50, 116, 128, 162}, {33, 41, 90, 124, 140}, {35, 47, 78, 161, 165},
{39, 62, 95, 158, 164}, {40, 53, 118, 121, 146}, {43, 58, 80, 142, 163},
{48, 55, 122, 125, 144}, {52, 54, 113, 132, 139}, {56, 69, 70, 88, 107},
{57, 67, 73, 87, 110}, {59, 61, 105, 152, 167}}
Table A.29: Table of partitions for Lemma 1.3.7 when S = {1, 2, 3, 4, 5, 7}

r πr

2 {{8, 11, 13, 14, 18}, {9, 10, 12, 15, 16}}
3 {{8, 11, 14, 18, 23}, {9, 10, 16, 17, 20}, {12, 13, 15, 19, 21}}
4 {{8, 13, 20, 23, 24}, {9, 11, 16, 21, 25}, {10, 12, 15, 18, 19}, {14, 17, 22, 26, 27}}
5 {{8, 16, 21, 28, 31}, {9, 11, 23, 24, 27}, {10, 14, 20, 26, 30}, {12, 13, 15, 18, 22},
{17, 19, 25, 29, 32}}

6 {{8, 11, 22, 27, 30}, {9, 12, 25, 28, 32}, {10, 18, 23, 29, 34}, {13, 15, 26, 33, 35},
{14, 17, 24, 31, 38}, {16, 19, 20, 21, 36}}

7 {{8, 10, 27, 29, 38}, {9, 12, 26, 28, 33}, {11, 19, 24, 37, 43}, {13, 16, 23, 35, 41},
{14, 22, 32, 36, 40}, {15, 20, 21, 25, 31}, {17, 18, 30, 34, 39}}

8 {{8, 20, 32, 34, 38}, {9, 22, 25, 41, 47}, {10, 11, 26, 30, 35}, {12, 18, 27, 43, 46},
{13, 23, 33, 42, 45}, {14, 19, 36, 37, 40}, {15, 21, 24, 29, 31}, {16, 17, 28, 39, 44}}

9 {{8, 18, 32, 39, 45}, {9, 12, 30, 35, 44}, {10, 19, 33, 38, 42}, {11, 26, 34, 46, 49},
{13, 20, 40, 41, 48}, {14, 22, 24, 29, 31}, {15, 16, 28, 47, 50}, {17, 21, 25, 27, 36},
{23, 37, 43, 51, 52}}

10 {{8, 45, 46, 47, 56}, {9, 13, 30, 44, 52}, {10, 14, 35, 38, 49}, {11, 26, 33, 39, 43},
{12, 16, 36, 40, 48}, {15, 20, 28, 29, 34}, {17, 22, 31, 50, 58}, {18, 24, 27, 32, 37},
{19, 25, 42, 53, 55}, {21, 23, 41, 51, 54}}

11 {{8, 15, 38, 42, 57}, {9, 22, 37, 45, 51}, {10, 23, 43, 44, 54}, {11, 28, 32, 56, 63},
{12, 19, 33, 48, 50}, {13, 24, 41, 49, 53}, {14, 20, 31, 58, 61}, {16, 30, 39, 40, 47},
{17, 26, 35, 52, 60}, {18, 25, 27, 34, 36}, {21, 29, 46, 55, 59}}
Table A.30: Table of partitions for Lemma 12 when S = {1, 2, 3, 4, 5, 6, 7}
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r πr

12 {{8, 11, 37, 38, 56}, {9, 13, 36, 41, 55}, {10, 18, 39, 49, 60}, {12, 31, 35, 40, 48},
{14, 16, 42, 51, 63}, {15, 25, 27, 33, 34}, {17, 57, 58, 65, 67}, {19, 20, 46, 47, 54},
{21, 23, 50, 53, 59}, {22, 24, 44, 62, 64}, {26, 30, 32, 43, 45}, {28, 29, 52, 61, 66}}
Table A.30: Table of partitions for Lemma 12 when S = {1, 2, 3, 4, 5, 6, 7}

r πr

3 {{9, 13, 15, 16, 21}, {10, 14, 17, 18, 23}, {11, 12, 19, 20, 22}}
4 {{9, 12, 17, 18, 20}, {10, 15, 16, 19, 22}, {11, 21, 23, 27, 28}, {13, 14, 24, 25, 26}}
5 {{9, 16, 20, 25, 30}, {10, 14, 21, 29, 32}, {11, 18, 19, 22, 26}, {12, 17, 23, 28, 34},
{13, 15, 24, 27, 31}}

6 {{9, 16, 29, 30, 34}, {10, 11, 23, 26, 28}, {12, 17, 20, 22, 27}, {13, 19, 25, 32, 39},
{14, 15, 24, 31, 36}, {18, 21, 33, 35, 37}}

7 {{9, 10, 24, 31, 36}, {11, 18, 23, 25, 27}, {12, 21, 29, 37, 41}, {13, 20, 28, 38, 43},
{14, 15, 26, 30, 33}, {16, 17, 32, 39, 40}, {19, 22, 34, 35, 42}}

8 {{9, 13, 27, 38, 43}, {10, 23, 35, 37, 39}, {11, 21, 31, 32, 33}, {12, 15, 26, 44, 45},
{14, 20, 29, 41, 46}, {16, 17, 25, 28, 30}, {18, 24, 36, 42, 48}, {19, 22, 34, 40, 47}}

9 {{9, 46, 49, 50, 54}, {10, 23, 26, 29, 30}, {11, 13, 33, 38, 47}, {12, 25, 31, 45, 51},
{14, 15, 35, 42, 48}, {16, 17, 28, 34, 39}, {18, 19, 40, 41, 44}, {20, 21, 27, 32, 36},
{22, 24, 37, 43, 52}}

10 {{9, 27, 30, 35, 41}, {10, 25, 43, 46, 54}, {11, 13, 36, 37, 49}, {12, 14, 32, 44, 50},
{15, 20, 38, 45, 48}, {16, 28, 29, 33, 40}, {17, 19, 34, 53, 55}, {18, 21, 31, 51, 59},
{22, 26, 39, 47, 56}, {23, 24, 42, 52, 57}}

11 {{9, 19, 37, 43, 52}, {10, 31, 34, 53, 60}, {11, 24, 44, 45, 54}, {12, 13, 33, 48, 56},
{14, 30, 46, 49, 51}, {15, 22, 32, 58, 63}, {16, 25, 36, 57, 62}, {17, 21, 47, 50, 59},
{18, 27, 35, 38, 42}, {20, 26, 40, 55, 61}, {23, 28, 29, 39, 41}}

12 {{9, 12, 42, 43, 64}, {10, 25, 40, 52, 57}, {11, 24, 44, 54, 63}, {13, 21, 46, 47, 59},
{14, 22, 45, 49, 58}, {15, 28, 48, 51, 56}, {16, 29, 39, 61, 67}, {17, 35, 41, 55, 66},
{18, 27, 30, 37, 38}, {19, 20, 31, 34, 36}, {23, 33, 53, 62, 65}, {26, 32, 50, 60, 68}}

13 {{9, 15, 41, 46, 63}, {10, 22, 42, 48, 58}, {11, 30, 38, 67, 70}, {12, 25, 47, 51, 61},
{13, 17, 45, 49, 64}, {14, 20, 44, 52, 62}, {16, 27, 33, 37, 39}, {18, 28, 40, 65, 71},
{19, 29, 57, 59, 68}, {21, 23, 54, 56, 66}, {24, 32, 53, 69, 72}, {26, 31, 36, 43, 50},
{34, 35, 55, 60, 74}}

14 {{9, 22, 42, 61, 72}, {10, 12, 44, 47, 69}, {11, 27, 50, 62, 74}, {13, 15, 43, 49, 64},
{14, 25, 46, 60, 67}, {16, 19, 48, 57, 70}, {17, 34, 41, 65, 75}, {18, 21, 54, 56, 71},
{20, 35, 37, 40, 52}, {23, 36, 38, 39, 58}, {24, 29, 45, 68, 76}, {26, 33, 55, 59, 63},
{28, 31, 53, 73, 79}, {30, 32, 51, 66, 77}}
Table A.31: Table of partitions for Lemma 1.3.7 when S = {1, 2, 3, 4, 5, 6, 7, 8}
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