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Abstract 

A fundamental understanding of the processes affecting fluid transport in the voids of porous 

materials constitutes a key step in numerous emerging applications in nanotechnology, materials 

design, membrane science and biology. By a purely hard sphere treatment of the diffusant, for over 

a century the Knudsen-based method has been the primary technique in our craft for investigating 

the transport of fluids in confined space, particularly in narrow disordered nanoporous adsorbents, 

catalysts and membranes. However, recent theoretical results and simulations, as well as 

experimental data on transport in well characterised narrow nanoporous materials indicate that the 

apparent success of the correlation is not necessarily a vindication of the Knudsen theory. Instead, 

these simulations, and the unrealistically high tortuosities obtained on application of the correlation, 

demonstrate the Knudsen model to substantially overestimate the diffusivity due to significant 

dispersive fluid-solid interaction. Besides affecting the molecular trajectories, which are no longer 

linear, the presence of the fluid-solid interaction leads to strong density profiles and adsorbate 

inhomogeneity in the direction normal to the pore walls. In this work, contributions are made 

involving such fundamental understanding of fluid transport in nanopores, and novel approaches are 

developed to facilitate the comprehensive analysis of transport in supported silica membranes. 

Firstly, an analysis of the transport of single gases in macroporous α-alumina substrates having a 

mean pore size of around 500 nm was conducted, and the results indicate that the tortuosity is 

dependent on the gas, and varies with operating conditions in the slip flow regime. A new effective 

medium theory (EMT) approach for modelling the transport in the substrate was developed to 

include the entire pore size distribution and the pore aspect ratio effect due to finite pore length. 

Theoretical results of the EMT provide an improvement on existing models that are based on 

empirical correlations using a representative pore size. The dependence of tortuosities on operating 

conditions in macroporous networks in slip flow regime is caused by the difference in dependence 

of Knudsen and viscous flow-based permeability on pore size, temperature and pressure; these yield 

different tortuosity limits for the pure Knudsen and viscous flow, respectively, in the presence of 

pore size distribution. Besides these, the importance of the choice of representative pore radius in 

determining the apparent tortuosity trends with temperature is also extensively provided in different 

nanoporous network.  

Moreover, a mesoporous γ-alumina membrane having a mean pore size around of 10.4 nm was 

synthesized on the surface of the macroporous α-alumina substrate by dip-coating. The transport 

mechanism of single gases in the mesoporous γ-alumina layer was investigated by the EMT 

approach to predict the macroscopic flow rate, using the classical slip flow model and a version 

corrected for finite molecular size, as well as the recent-developed Oscillator model in this 
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laboratory. The analysis results indicate that all the three diffusion models describe the experimental 

data accurately and the interfacial pressure is correctly resolved in the approach, without the 

artifacts observed with the methodology using a single pore size.  

In addition, using literature data on the diffusion of N2, Xe and i-C4H10 in mesoporous Shell silica 

spheres (mean pore size 14.2 nm), the transport of gases was also analyzed to predict the pore 

coordination number for various diffusion models. It has found that both the Knudsen model and 

the Oscillator model adequately interpret the data in conjunction with EMT approach due to this 

large pore size. A mesoporous amorphous silica layer having mean pore size of around 3.7 nm was 

further synthesized on the asymmetric support comprising a macroporous substrate and mesoporous 

interlayer. The transport mechanism of single gases in the mesoporous silica layer was investigated 

to predict the membrane thickness. The most satisfactory results were obtained with the Oscillator 

model, in which the fitting error was significantly reduced using an acceptable membrane thickness, 

indicating that the Knudsen model fails to represent the transport for the mesopores in silica.  

Finally, a microporous amorphous silica layer was also synthesized on the asymmetric support, 

having a mean pore size around 1.5 nm. The adsorption and transport mechanism of single gases in 

the microporous silica membrane was examined, with the pore resistance represented by a 

combination of pore mouth and internal pore diffusion resistances. It has found that the pore mouth 

barrier dominates the overall transport resistance; and the internal diffusion resistance in the 

relatively smaller pores is significant, especially for weakly adsorbed gases at higher temperature. 

Overall, this thesis explored gas transport in different porous materials under low pressure limits, 

using modification of established diffusion models. The results provide fundamental understanding 

about how the adsorptive and diffusive behaviour of adsorbate is affected by the adsorbent structure 

at the nanoscales. These results are accompanied by detailed investigations to explain fluid-

dependence of tortuosity under different transport mechanisms. While this work has predominantly 

focused on silica membranes, the results and models developed are generally applicable to transport 

in other nanoporous materials. 
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Chapter 1: Introduction 

1.1 Background 

Modeling fluid transport and adsorption in narrow pores has been an object of interest for over one 

century due to its significance of industrial applications, e.g. heterogeneous catalysis and adsorptive 

separation [1]. Among these, models based on viscous and Knudsen flow are most commonly used 

to represent the effect of fluid-fluid and fluid-wall interaction in the disordered porous materials [2]. 

Recently, with rapid development of novel nanomaterials [3-8], the topic has gained renewed 

attention. However, the century-old Knudsen-based model is still used as a routine to explain 

experimental data even for the narrow microporous materials by conducting empirical fittings. 

Unrealistically high tortuosities are generally obtained in the correlation, especially for silica 

materials [9], indicating the diffusivity is significantly over predicted in the narrow pores. As in 

such narrow pores, the dispersive interaction between fluid molecule and pore walls is expected to 

produce new types of phase transition and diffusive reflection that are not observed in the large 

pores in which the classic Knudsen model is frequently applied. Therefore, a fundamental 

understanding of confinement on diffusion and adsorption is central to the design and application of 

the novel nanomaterials to fulfill the newly-emerged technology, such as membrane separation, gas 

storage and drug delivery [5].  

In recent years, the rapid development of computing technology has enable scientists and engineers 

to develop and apply molecular modeling and theory to investigate the fluid behaviors in the new 

porous materials to provide fundamental mechanism of the diffusion and adsorption in the narrow 

pores. Molecular dynamics (MD) simulation has become a new recourse for predicting gas 

diffusivity and shown that the Knudsen approach has significantly overpredicted the diffusivity for 

2 and 3 nm pores of silica membrane [10, 11], suggesting the importance of fluid-solid interaction 

on the transport efficiency. The main advantage of MD simulation is that once the pore structure 

and the fluid-pore interaction are determined, the fluid adsorption and transport behaviour can be 

extensively examined For instance, the MD approach has successfully predicted the extreme fast 

diffusivity in carbon nanotube due to the smooth surface texture of the carbon wall [12]. Another 

significant artifact of the Knudsen model in predicting the transport of fluid in the narrow pore is 

the assumption of uniform fluid density across the pore radius, which is always identical to the bulk 

density in the Knudsen model, regardless of the temperature and gas species. However, extensive 

simulation results have indicated that the local density in the pore is dependent on the interaction 

between the fluid and pore wall, which is expected to substantially differ from the bulk density and 

varies with temperature [13, 14]. More details about the comparison between MD simulation and 
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Knudsen model are available in the literature [1, 10, 15-17]. On the other hand, due to the time-

consuming nature of MD, new tractable theories are still highly desirable. In the line of the Knudsen 

model, activated diffusion model is proposed by incorporating an empirical activated energy to 

reduce the diffusivity, with using a stronger temperature dependence as a generalization of the 

Knudsen model [18-22]. However, such treatment still significantly over-predicts the diffusivity 

when the pore diameter is above 1 nm in comparison with the MD result [16].  

Contrary to the above suggestions of modification of the Knudsen model in mesopores and 

micropores, some tractable theories are proposed based on the consideration of the nonuniform 

density profile in the pore. However, these models involve approximations, and have not been 

validated against molecular simulations [23-25]. Other models have neglected dispersive fluid-fluid 

interactions [26].  

Aided by the finding from MD simulations that the nonuniform equilibrium density profile of the 

fluid is essentially preserved during the transport [27], significant success is achieved in Bhatia’s 

laboratory through consideration of dispersive interaction and equilibrium density profile to 

simplify the transport mechanical model for low density region (low Knudsen number). The new 

developed model is termed as “Oscillator model”, which is extremely efficient from a 

computational standpoint, and the model has been extensively validated by the MD simulation [22]. 

By including the fluid-fluid interaction in a way of frictional approach, the “Oscillator model” can 

be extended to higher density regions (high Knudsen number) [2]. Although the Oscillator model 

has been extensively validated against the MD results and some experimental data, the theory needs 

further validation based on experimental data, and this constitutes one of the aims of this subject. 

In this project, the supported silica membrane is employed to investigate the transport mechanism 

of light gases and validate the applicability of the Oscillator model in the narrow nanopores. For 

such materials, the whole system generally consists of different layers for the convenience of 

industrial purpose. For instance, a typical supported silica membrane is constructed in an 

asymmetric fashion, comprising a thin membrane layer with narrower pores, in which the gas 

separation occurs, coated on a relatively thick porous asymmetric support. A thick porous α-

alumina substrate coated with a thin γ-alumina interlayer is usually selected as the asymmetric 

support [28-30]. The substrate is made of unconsolidated micron sized (3 m) crystal particles, to 

provide good mechanical strength for the whole membrane; the main pores of the substrate are 

macroporous. The γ-alumina crystal particles in the interlayer are significantly smaller (0.05 m) 

and deposited on the surface of the substrate to obtain a smooth, defect-free surface over which the 

active silica layer is coated; the main pores of the interlayer are mesoporous. 
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In addition, the main challenge attending the application of any theory to experimental transport 

data in the supported membrane is the complicacy of the pore network, including the pore 

connectivity and shape as well as the presence of nonuniformity of the size. The ‘traditional’ 

method to model the transport in the supported membrane is based on empirical correlation in the 

spirit of dusty gas model (DGM), by choosing a representative pore for each layer. However, the 

interfacial pressures between layers are not directly measurable, and the analysis of diffusion 

through each layer is often based on arbitrary assumptions, regardless of the variation of controlling 

mechanism with operating conditions, including temperature and gas species [31]. Furthermore, the 

typical correlation of the DGM rely on the assumption that the tortuosity is exclusively determined 

by the topology of the porous medium; however, some work has extensively shown that the 

apparent tortuosity can be significantly influenced by the diffusion mechanism in the pores due to 

the pore size distribution [16, 32].  

Effective medium theory (EMT) provides the necessary machinery to resolve the above issues, and 

in this method, a nonuniform network with a distribution of conductance is replaced by a uniform 

one in which each conductance is assigned an effective value [33-35]. The effective medium theory 

has been extensively used to investigate the tortuosity for microporous silica membrane by 

assuming infinite long capillaries, discovering the dependence of gas species and temperature [16, 

17]. However, the symmetric support made of Al2O3 crystal particles by sintering at high 

temperature is different from the silica media as the pore dimension in the substrate and the 

interlayer is comparable to the pore length, leading axial divergence of the local transport direction 

in the pore. Thus, it is very interesting to extend EMT to model the transport mechanism of 

unconsolidated alumina support by considering the aspect ratio effect, to determine the pressure 

profile in the whole membrane system. The advantage of effective medium method over the 

‘traditional’ approach is that the entire pore size distribution of each layer is taken into account, 

rather than using an arbitrary representative pore size as shown by DGM. By utilizing the 

relationship between pore structure and macroscopic flow rate, the diffusion model can be directly 

validated. 

1.2 Objectives 

The main target of this PhD thesis is to investigate the transport mechanism of gases through 

nanoporous silica membrane and validate the applicability of the Knudsen model and the Oscillator 

model at the single pore level. The core work of this project is to apply the well-known effective 

medium theory based methodology in the typical mesoporous/microporous supported silica 

membrane system layer by layer, to test the corresponding diffusion model step by step, so as to 
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provide a general approach at different levels and demonstrate the connection between molecular 

modeling and its application to practical supported silica membranes. In particular, the following 

objectives are achieved: 

1. Investigating the transport mechanism in the macroporous alumina substrates at low pressure 

regime and exploring the relationship between the apparent tortuosity and pore network structure by 

effective medium theory with considering the aspect ratio effect. 

2. Synthesizing a mesoporous γ-alumina interlayer on the substrate by crystal particle packing 

method by dip-coating process, and investigating the transport mechanism of the mesoporous 

interlayer to validate the applicability of the Knudsen model and the Oscillator model by effective 

medium theory. 

3. Synthesizing a mesoporous supported silica membrane by controllable surfactant template by sol-

gel process, and investigating the diffusion mechanism of the mesoporous silica membrane to 

validate the applicability of the Knudsen model and the Oscillator model by effective medium 

theory. 

4. Synthesizing a microporous supported silica membrane by acid hydrolysis of TEOS and MTES, 

and investigating the adsorption and transport in the microporous silica membrane by effective 

medium theory, with decomposing the pore resistance into internal pore body resistance and pore 

body resistance based on the combination of the Oscillator model and transition-state theory. 

1.3 Summary of the thesis 

The thesis comprises of eight chapters of which five chapters covers all the works finished in the 

time frame of the PhD project, in particular, chapters 3, 4, 5, 6 and 7 are comprised of the author’s 

relevant journal manuscripts. A short description of the chapters is briefly provided as follows: 

Chapter 1 addresses an overview of significance of adsorption and transport phenomena of 

nanomaterial to practical industrial applications and understanding the transport of confined fluid in 

the supported silica membrane as well as problems needed to be solved. Accordingly, concrete 

objectives of this thesis are given. 

Chapter 2 provides a comprehensive description of the synthesis of supported membranes and a 

summary of the existing important transport models and theories for the supported silica 

membranes made by sol-gel process in which the Knudsen model, the Oscillator model and 

effective medium theory are emphasized. 
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Chapter 3 presents the transport mechanism of single gases in macroporous α-alumina substrates 

(mean pore size 500 nm) with considering the pore aspect ratio effect, based on the modelling 

results of effective medium theory, showing that the tortuosity is dependent on operating condition 

in the slip flow regime. 

Chapter 4 presents the transport mechanism of single gases in a mesoporous γ-alumina interlayer 

with a mean pore size 10.4 nm by predicting the macroscopic permeation results based on effect 

medium theory. 

Chapter 5 presents the transport mechanism of single gases in a mesoporous supported silica 

membrane with a mean pore size 3.7 nm by effect medium theory approach to validate the 

Oscillator model, showing that the Oscillator model provides more accurate apparent diffusivity 

than the Knudsen model. 

Chapter 6 presents the transport mechanism in a mesoporous silica spheres with a mean pore size 

14.5 nm based on the new N2 adsorption isotherm by effect medium theory approach and Dusty Gas 

Model to investigate the diffusion mechanism. Furthermore, the relationship between the tortuosity 

and the representative pore radius is also addressed. 

Chapter 7 presents the adsorption and transport mechanism of single gases in a microporous 

supported silica membrane with a mean pore size 1.5 nm by effective medium theory approach 

based on the combination of the transition state theory and the Oscillator model. 

Chapter 8 summaries conclusions based on all the works conducted in this thesis. Further, 

recommendations for extension of the current research project are also addressed in the end. 
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Chapter 2: Literature review 

This chapter reviews the existing literature on silica supported membranes for gas separation 

application. It begins with an introduction to the membrane (synthesizing methods and pore 

network structure and characterization) in section 2.1, with focusing on sol-gel process by 

molecular imprinting method. Then the existing problem in modelling of gas transport for the 

disordered nanoporous materials and the evolutions of transport models of gases in the pore are 

addressed in section 2.2, with emphasis on the classic Knudsen model, Activated Diffusion model, 

Transition-state theory (TST), “Oscillator model”, Dusty Gas model (DGM), Maxwell-Stefan 

model (MSM) and “Friction model”. Finally, the fundamental principles of effective medium theory 

(EMT) for modelling the transport of gases in the disordered materials are discussed in section 2.3. 

2.1 Overview of silica membranes 

Fluid diffusion and adsorption in confined space is an important unit operation in industry, ranging 

from the traditional applications such as industrial gas separation and purification, carbon capture 

and storage, catalysis reaction, and removal of volatile organic liquid from air exhaust stream, to a 

host of new applications such as drug delivery, fuel cell, desalination, clean energy and lab-on-chip 

technology [1-3]. Among these, a large amount of work has been done on membrane-based devices 

in the last two decades [4-10]. The membrane separation process is believed to be more energy 

efficient and holds a promise to be an alternative way to replace the well-established and energy 

intensive methods such as cryogenic distillation and adsorptive process. A key advantage of 

inorganic membranes over polymeric membranes for gas separation is the thermal stability under 

harsh conditions where organic membranes undergo degradation [11]. Different methods have been 

developed to synthesize silica membranes for several decades, and some important approaches are 

briefly introduced in the following  

2.1.1 Membrane synthesis approaches 

Not only should an ideal membrane have an excellent stability under a wide range of operation 

conditions, but also produce high selectivity and permeance for chemicals of interest. Therefore, the 

development of high performance membranes for industrial application with low cost attracts 

increasing attention from both researchers and industry. In 1980s, porous Vycor glasses were 

employed to obtain silica amorphous membrane by heat treatment and acid etching of 

alkaliorosilicate glasses to separate H2 from H2S,  and the pore size was in the range of 3-5 nm, 

yielding low gas selectivities < 5 [12]. In 1989, Chemical vapour deposition (CVD) methodology is 

successfully employed to prepare thin silica membrane on porous substrate in the work of Gavalas 
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and Megiris et al.[13] by SiH4 oxidation within the walls of porous Vycor tubes, demonstrating the 

potential of gas separation by size exclusion by creating ultramicropores. In 1993, the hydrothermal 

seed method was proposed to synthesis zeolite membrane on the α-Al2O3 substrate [14]. The use of 

seed crystals facilitates the fabrication of zeolite membranes as a seeded substrate grows to a pure-

phase zeolite membrane more easily even when the crystallization conditions (pH and temperature) 

and the chemical batch composition are not optimum.  

Although the silica membrane synthesised by CVD and hydrothermal method demonstrated very 

high selectivity, it is rather difficult to control for the cases of micropores larger than the size of 

nitrogen [15, 16].  Finally sol-gel silica [17], although studied as a material since 1980s, was 

employed as gas separation membranes by dip-coating process in the work of de Lange in 1990s 

[18-20], and generally produces higher permeance and lower selectivities than CVD silica 

membranes. Although, the obtained porous silica is hydrophilic [14-16] and to be easily susceptible 

to hydrolytic cleavage by adsorbed water vapour,  the sol-gel derived membrane offers a simple and 

cost-effective route in microporous silica membranes.  

Since this time, extensive research on silica membranes has been mainly concentrated on the 

improvement of permeance and ideal selectivities, and the improvement of membrane stability [21]. 

After the first synthesis of the mesoporous silicate molecular sieves such as M41S by molecular 

imprinting method [22], the formation of the mesoporous phases was later discovered by Huo et al. 

through a cooperative self-organization of charged surfactant micelles and inorganic species [23], 

and an intense research has been devoted to make molecular sieve membranes (MSS) for various 

purpose. Since the main pore size of the membrane can be tailored by changing surfactants and 

templates [24-28] in this approach, the sol-gel process are discussed in details. 

2.1.2 Sol-gel silica process  

A silica sol-gel process can be described as colloidal suspension of polymerised silica formed by 

the hydrolysis and polycondensation of monomeric silicon alkoxide precursors (Si(OR)4) with 

water, using mineral acid or base as catalyst [17]. The reactions involved in the process are 

summarized in eqs. (2.1)-(2.3). In the hydrolysis reaction, the organic alkoxy group (-OR) of the 

silica precursor is hydrolysed with water to form silanol (Si-OH) bonds and alcohol (R-OH) as the 

by-product. The silanol (Si-OH) precursor can further either react with alkoxy group to produce 

siloxane (Si-O-Si) bonds and alcohol, or with another silanol group to form siloxane and water. As 

indicated by the reserve of eqs. (2.2) and (2.3), it can participate in esterification or alcoholysis reactions.  

2Si-OR+H O Si-OH R-OH
hydrolysis

esterification
                            (2.1) 
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Si-OR+HO-Si Si-O-Si R-OH
condensation

alcoholysis
                             (2.2) 

2Si-OH+HO-Si Si-O-Si H O
condensation

alcoholysis
                             (2.3) 

The obtained silica sol solution can greatly vary with the composition of the three main components: 

the silica precursor, water and alcohol, which is also used in excess as a solvent to promote 

hydrolysis reaction. Because water is produced as a by-product of the condensation reaction, a value 

of 2 is theoretically sufficient to completely hydrolyse and polymerize the silica precursor to yield 

anhydrous, as shown by the net reaction: 

4 2 2Si(OR) +2 H O SiO 4 ROHn n n                             (2.4) 

However, numerous experiments have shown that the hydrolysis reaction does not go to the 

completion even in excess water (r>>2, r is the molar ratio between two reactants), instead, a 

spectrum of intermediate species ([SiO (OH) (OR) ]z nx y ; where 2 4x y z    and y is the number of 

hydroxyl group) are produced [17].  

Although silica-sol formation can be described into the three base equations, the idealised number 

of unique, individual silica species is 15, giving 165 unique reactions in theory [29]. In practice, as 

the sol-gel reaction proceeds, macromolecule of silica polymer are formed, leading to an 

exponential increase in the number of unique molecular species and unique reactions, and 

ultimately a polymeric silica matrix is obtained. To characterize the network of the amorphous 

polymeric silica gel, Kay and Assink suggested 15 distinct silica species based on the number of 

each of the four relevant bonds (Si-O-R; Si-O-H; Si-O-Si) around an individual silicon atom to 

show how the silica skeletal structure is influenced by the hydrolysis and condensation reactions 

[29].   

Figure 2.1 depicts 4 basic polymeric silica units according to the Si-O bonds arbitrarily labelled as 

Q0-Q4 to represent partially and fully condensed silica species, where the Q number refers to the 

number of siloxane bonds (O-Si-O) for each silicon atom. In addition, 29Si-NMR spectroscopy has 

the ability to characterize the silicon-oxygen bonds of Q0-Q4 and is routinely used to determine 

condensation degree of the silica gel based on the deconvolution of the Nuclear Magnetic 

Resonance spectroscopy (NMR) spectrum.  

Based on fractal theory [17], high concentration of silanol (Q2 and Q3) is a good indication of high 

fraction of weakly branched structure and favours the formation of micropores after calcination. As 
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depicted in Figure 2.2, the 29Si-NMR spectrum can be mathematically deconvoluted, and Diniz da 

Costa et al. [3] has employed this technique to analysis the composition of the molecular sieve silica 

(MSS) to conclude that two-step sol–gel process produces films with smaller pore size than the 

single-step sol–gel process as the two-step xerogels consistently had higher Q3 and Q2 species 

compared with single-step xerogels.  

 

Figure 2.1 Reactions and Si species in sol gel synthesis (adapted from [29]). 

 

 

Figure 2.2 De-convoluted 29Si-NMR spectrum (adapted from [3]). 
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Either mineral acids or bases can be used to catalyse the hydrolysis and condensation reaction.  As 

illustrated in Figure 2.3, it is evident that acid condition favours the formation of long-chained and 

weakly-branched silica monomers, and the preferred reaction sites for condensation are the least 

acidic (most likely protonated) silanol bonds at the ends of silica chain [17]. In this way an acid 

catalysed sol produces long chains of siloxane bonds (Q4) and weakly branched silica (Q1, Q2 and 

Q3) polymer. After drying and calcination, the silica sol is densified into a mesh like structure and 

the connected interchain apertures form pores of 2-4 Å, which has been confirmed in several 

nitrogen adsorption studies that an increase in sol acidity gives higher microporous volume [30].  

Conversely, base catalysis favours the formation of highly-branched silica as in this case the 

preferred reaction sites for condensation are the most acidic (most likely deprotonated) silanol 

bonds of the Q3 Si atoms, allowing the structure to settle to its most thermodynamically favoured 

configuration with as many siloxane bonds (Q4) as possible and creating a highly branched silica 

network. After calcination, the highly branched base catalysed sol is densified into small clusters 

containing larger (>2 nm) intercluster pores. The acid-catalysis based sol-gel process is extensively 

used to explore molecular sieve membranes for gas separation [4, 7, 10, 31-35], and the selectivity 

can go up to thousands [3, 36].   

 

Figure 2.3  Comparison of (a) acid and (b) base catalysed sol-gel structure evolution during 

calcinations [37], and (c) N2 adsorption isotherms of pH controlled xerogels [30]. 

2.1.3 Molecular imprinting method 

Although polymeric condensation of silica precursor in sol-gel process can produce very narrow 

pores for the molecular sieves membrane and adsorbents [7], most of microporous and mesoporous 

silica materials are largely synthesized by molecular imprinting method [2, 6, 8, 22-24, 26, 28, 38, 
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39] to fulfil various applications, such as catalytic support, pervaporation, desalination and drug 

delivery nanocarriers [40-43]. In chemistry, molecular imprinting is a technique to create template-

shaped confined spaces in polymeric materials with memory of the template molecules (surfactant 

or ligand) to be used in the molecular recognition.  

The first experiment of molecular imprinting on a solid was attempted by Russian scientist, 

Poljakov, in 1930s [44], in which a silica gel was prepared in the presence of aromatic hydrocarbon 

and a relatively high adsorption capacity was observed for smaller adsorbate molecule as the 

template after drying. Because the nanopore analysis techniques (such as pressure swing adsorption 

process) were not invented yet, the significance of this research was not realised. However, the 

modern molecular template imprinting in pore synthesis occurred in 1970s by Lussier et al. [45] 

through the preparation of pillared clay or silicates to create large internal surfaces and cavities that 

enhance catalytic activity and adsorptive capacity [39, 45-47].  

Figure 2.4 depicts the synthesis mechanism of the pillared clay. It is evident that the fundamental 

principle of pillared clay is based on the ion exchange of cationic hydroxy transition complexes 

with alkali metallic ion, and the pores are formed by intercalation of layered aluminosilicates, thus 

changing the types of the cationic complexes, the pore size is controllable. However, not only are 

the pores in these materials generally irregularly spaced and broadly distributed, but also the final 

products retains, in part, the layered nature of the precursor material [39]. Despite these efforts, 

mesostructured molecular sieves with regular, ordered channel systems have remained ambiguous, 

and the significance of “template” was not fully explored [2], thus the technique is not widely used 

in the synthesis of nanoporous materials.  

 

Figure 2.4 Schematic drawing of pillared clay mechanism [46]. 

Considerable success was achieved in 1990s in the work of Mobil scientists [22] and Japanese 

scientists [48], through the discovery of mesostructured silicates, which incorporates surfactant 

molecules in the sol-gel process. The cationic surfactant molecule is comprised of hydrophobic and 

hydrophilic functional groups and cooperatively assembled as micelle in the inorganic precursor 
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species solvent [24]. After hydrolysis and condensation, the polymeric structure is densified around 

the surfactant assembles, which is vaporized at high temperature, creating well-defined and regular 

open pore network. A liquid crystal templating mechanism (LCT) has been proposed for the 

formation of these materials, in which surfactant liquid crystal structures serve as organic templates 

[2, 22]. More importantly, the concept of molecular imprinting was first postulated and explored in 

the synthesis of mesoporous silicate materials [49-51]. The key advantage of this method over the 

pillared clays process is that pores are directly designed, with high hydrothermal stability and 

regularity, and the pore dimension can be tailored through the choice of templates [2, 39]. 

2.1.4 Membrane synthesis by dip-coating 

A sol-gel silica membrane can be described as a membrane formed from a silica sol-gel solution, 

and this is generally achieved through the deposition of a sol-gel onto a porous substrate through a 

dip-coating process. In gas separation area, the microporous membrane thickness should be as small 

as possible in order to get high permeability and selectivity of gases for industrial application [3, 31, 

32, 52]. The preparation of mesoporous silica thin film by surfactant self-assembly took its origin 

from the pioneer work by Ozin’s and Brinker’s group [53-55].  Figure 2.5 depicts the scheme of 

mesostructured thin film deposition in dip-coating process by evaporation induced self-assembly 

(EISA) and its various successive steps. It is evident that EISA can thus be described by 

competitive processes related to the kinetics of condensation versus the kinetics of organization. 

 

Figure 2.5 Mesostructured thin-film formation by dip-coating [25]. 



 

2-8 
 

A typical structure of silica membrane coated on the asymmetric alumina support is depicted in 

Figure 2.6 [56]. It evident that a complete supported silica membrane system is comprised by a thin 

selective top layer with narrow pores, in which the separation occurs, and a relative thick 

macroporous support to provide main mechanical stability and robustness required for effective 

operation. A thick porous α-alumina substrate coated with a thin γ-alumina interlayer is usually 

selected as the asymmetric support [21, 56, 57]. The α-alumina substrate is made of unconsolidated 

micron sized crystal particles, to obtain a macroporous structure with good mechanical resistance 

and low flow resistance, and the γ-alumina crystal particles in the interlayer are much smaller and 

deposited on the surface of the α-alumina substrate to create a smooth, defect-free surface over 

which the active silica layer is coated. An intermediate layer may greatly lower the roughness of a 

surface by means of the preferential deposition of more material into the greatest defects.  

 

Figure 2.6 A typical structure of membrane synthesized by dip-coating [56]. 

When mass transfer takes place through a supported silica membrane system, the penetrant 

molecule must migrate through not only the membrane layer itself but also all of the other layers 

surrounding the membrane, such as the boundary layers, which produces additional resistances to 

the mass transport process. For porous membrane, the transport process through the membrane 

itself depends on the fluid-solid and fluid-fluid interaction, and the corresponding flow mechanism 

and theories that may occurs in the pores of the supported silica membrane is largely determined by 

pores size and fluid species [58]. To understand the transport mechanism in the supported 

membrane, the pore network of each layer must be explicitly provided, including the pore size 

distribution, shape, structure and porosity and tortuosity coefficient [59], thus a variety of different 

of diffusion models such as the classic Knudsen and viscous model, surface diffusion and activated 
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diffusion as well as the recent-developed Oscillator model, will be extensively addressed in the next 

section. 

2.2 Theories of fluid transport in narrow pores 

The transport of fluids in narrow pores has long been of interest to engineers and scientists due to its 

importance in several well-established industrial applications such as catalytic and noncatalytic 

fluid-solid reactions as well as in adsorptive separations and electrochemical processes, and the 

optimization of their performance heavily relies on a deeper understanding of how the fluid flow is 

affected by the topology of the pore space. Recent advances in templating methods and techniques 

of nanomaterials synthesis have led to a rapid growth of a vast array of novel nanoporous materials 

such as carbon nanotubes (CNT) [60], MCM-41 silicas [22] and  metalorganic frameworks (MOF) 

[61], which have catalyzed the emergence of new applications such as gas storage, lithium battery, 

and supercapacitor as well as drug delivery.  

On the other hand, complement to these inventions in the nanopores materials synthesis [62], the 

interest of molecular diffusion in these porous solids has been significantly enhanced since the 

movement of fluids into the narrow pore spaces of such materials is common to all above 

applications. In addition to the diffusion, the understanding of structural characterization and 

adsorption equilibrium is also crucial to the modeling and process design of such applications as the 

adsorption effect is significant even in the mesopores at room temperature [1, 63, 64]. Based on the 

principles of nonequilibrium thermodynamics [65], the diffusional properties of the single 

components and the binary/ternary mixtures related to the application of silicas are generalized in 

the following. 

2.2.1 Pure component transport 

In this subsection, we review some of the most influential theories of mass transfer in small pores 

and confined spaces, which is the foremost information that you must have to gain an understanding 

of the transport mechanism in a porous system. Considering a simpler medium, a straight and 

structureless cylindrical capillary, several types of flow can be more readily identified, which can be 

used as basis to represent the transport for the pore structure of a real solid through mathematical 

idealisation. Starting from the classic viscous flow, century old Knudsen diffusion, activation 

diffusion and the recent-developed Oscillator model which share a common point of departure in 

the Maxwell–Stefan diffusion equations are addressed. In particular, the conceptual basis of the 

models and the validity of the assumptions and simplifications necessary to obtain their final 

expression are displayed to cover a wide pore size range and operation conditions.  
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2.2.1.1 The viscous model  

When the flow of gas is stimulated by a driving force of total pressure gradient due to the 

Newtonian viscosity, the flow is called the viscous or laminar flow. As given in Figure 2.7, in the 

flow a continuum regime and molecular chaos prevail and the equation of continuity holds, so all 

species move at the same speed and pass through the tube without any separation. In addition, since 

the flow inside the pore is assumed laminar and no slip at the surface of the wall, the velocity 

profile is parabolic in shape [47].  

 

 

 

Figure 2.7 The momentum-flux distribution and velocity profile in the axial direction for a 

downward flow in a circular tube [62].  

In such a flow, a majority of the gas molecules undergo intermolecular collisions rather than wall 

collisions, thus the flux equation in a narrow pore with radius, rp, can be derived based on the 

Newton's law of viscosity as:  

                                            

2( )

16
i o p

v
g

P P r
j P

R T


                                                                    (2.5) 

where jv is flux; Pi is feed pressure; Po is outlet pressure; η is the dynamic viscosity; Rg is the gas 

constant coefficient; T is Kelvin temperature; ∇P is pressure gradient. Eqn. (2.5) is the well-known 
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Hagen-Poiseuille equation, which is independently discovered by Hagen and Poiseuille in 1839 and 

1840, respectively, by investigating the linear flow in pipe [47]. This mode of viscous flow is only 

validated for low Reynolds number (less than 2100) when the mean free path, λ, as estimated by 

eqn. (2.6), is much smaller to the pore diameter (high Knudsen number region, Kn = /d >>1). 
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                                                                            (2.6) 

where kB is Boltzmann constant; σff  is the collision diameter of gas molecules. 

2.2.1.2 The Knudsen model 

In small pore size, as the pressure reduces, the viscous continuum mechanism will break down, the 

mean free path, , of a molecule increases, hence the collisions of molecule-wall becomes more and 

more significant as the gas diffusing through the pore. A low density gas condition will set in when 

the fluid-wall collision become dominated over the intermolecular collisions, and the flow is termed 

as Knudsen flow due to the proposition by Knudsen by conducting the experiments with relative 

large glass tubes of 33-145 μm under vacuum conditions [1, 66, 67]. Knudsen’s initial analysis was 

proposed based on the argument of momentum conservation, and it was later improved by 

Smoluchowski [58] through a detailed argument of molecular trajectories to provide the now classic 

equation for diffusivity 

                          
97Kn p

T
D r

M
                                                                      (2.7) 

where, DKn is Knudsen diffusivity in m2/s and M is molecular molar mass in g/mol. Based on the 

phenomenological model, the Knudsen diffusivity permits the estimation of flux for the fluid 

molecule diffusing in a pore of rp (m) under the bulk pressure gradient, ∇P. 

Kn
Kn

g

D
j P

R T
                                                                       (2.8) 

Figure 2.8 depicts the schematic drawing of molecular trajectory and potential field profile in pore 

for the Knudsen diffusion. It is evident that the gas molecules are assumed to be “hard spheres” 

which travels axially in the chemical potential field, and there is no solid-fluid interaction until 

collision, thus the adsorption effect of gases exerted by the wall is neglected and the radial density 

gradient of a pore cross section is uniform and constant [68, 69]. In the model, the hard sphere 

particle was reflected diffusely during the collision and lost all memory of their original tangential 

momentum [58].  
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Figure 2.8 Schematic drawing of Knudsen diffusion mechanism. 

As shown in eqn. (2.7), it is evident that the Knudsen diffusivity depends on the molecular weight 

of the diffusant and molecules with smaller weight travel faster than the heavier ones under the 

same operating conditions. Thus, separation of mixtures is possible with this mechanism, and the 

selectivity factor coefficient of the two gases, ABS , can be estimated by 

B
AB

A

M
S

M
                                                              (2.9) 

It is important to note that the linear correlation of diffusivity with T M  and the selectivity 

coefficient between two gases, as established by the Knudsen model, are often used as a criterion to 

validate assumptions regarding transport mechanisms in nanoporous materials [6, 70]. Further, if 

the size exclusion effect of fluid molecules is included since the molecules cannot completely reach 

the pore wall because of repulsive forces, the Knudsen diffusivity is corrected as 

' 97( 0.5 )Kn p ff

T
D r

M
                                                             (2.10) 

 where ff is the Lennard-Jones (LJ) fluid-fluid collision diameter in metre.   

The Knudsen model normally occurs at very low pressure and channels of small sizes in the range 

between 10 nm and 100 nm [71], while the viscous flow is more dominant in large pores at high 

pressures. At intermediate pressures and pore size, the mean free path is comparable to pore size, 

and both viscous and Knudsen flow are important, thus the two fundamentals of diffusion 

mechanisms are expected to control the transport. In such a case, a combined flow is proposed as 

slip flow to predict the pore flux ( v Knj j j  ). 
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Diffuse reflection for molecule-wall collisions is a key assumption in the development of the 

Knudsen model. Such an assumption has shown to be reasonable for the oxide surfaces, such as 

zeolites and silicates [58], at which gas-solid interactions are governed by the surface oxygen atoms. 

However, the diffusion of fluids through CNTs has been shown to be significantly higher than the 

Knudsen diffusivity. This is due to molecular specular reflections in wall collisions as the carbon 

surfaces are extraordinary ordered and smooth, leading to a very low momentum accommodation 

(fraction of tangential momentum lost to the wall) and rapid mass transfer. Therefore, the diffuse 

reflection held by the Knudsen model is no longer applicable for the transport of gases in ordered 

and smooth surface.  

Another important assumption used in the development of the Knudsen model is the disregard of 

the dispersive solid-fluid interaction arising from the presence of walls between two concessive 

reflections, so fluid density in the pore is uniform and identical to the bulk gas. This assumption has 

shown to be reasonable when the molecular/channel is very small, and good agreement with 

experiments has been observed in relatively wide cylinders of a few micrometers diameter [58]. 

Nevertheless, for mesopores (in the size range of 2 to 50 nm) below a certain temperature which 

increases with decrease in pore size, the molecules will not have enough velocity to escape from the 

wall attraction field in the vicinity of the pore wall, thus adsorption is expected and the pore density 

begins to vary with radial position and differs from the bulk, especially for gases with a strong 

affinity to the solid, at low temperatures and under stringent confinement. Further, gas-solid 

interaction can alters not only pore density, but also increase the collision frequency by reducing the 

mean time of the trajectory, so the pore diffusivity is significantly overestimated by the Knudsen-

based model [72]. The failure of the Knudsen model in the presence of fluid-solid interaction has 

been shown in extensive available experimental and theoretical results [42, 73-77] .  

2.2.1.3 Surface diffusion model 

When the pore size is comparable to the fluid molecular dimensions but still larger than the 

effective range of the external potential field of the solid wall, the interaction between the gas 

molecules and the pore walls cannot be neglected because of large internal area. In such as case, the 

Knudsen model fails and gas mobility through the narrow pore channels, such as zeolites or bulk 

solid oxides, require adsorption of molecules on the pore surface first before the subsequent 

diffusion process, and this phenomenon, referred as ‘surface diffusion’, is frequently used to 

represent the gas permeation through the microporous materials. Although the transport mechanism 

of surface diffusion is the very complicated process, and extensive research has been devoted to 

better understand this type of diffusion [78].  
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Figure 2.9 depicts the schematic drawing of molecular hopping mechanism to describe the surface 

transport. It is evident that the pore surface is comprised of specific adsorption sites, at which 

adsorbed molecules are anchored. Assuming the energy intensity of these sites to be higher than the 

thermal energy of a molecule (kBT, where kB is the Boltzmann constant), molecules at each site must 

gain enough energy to jump from one site to the next vacancy [47].  

 

 

Figure 2.9 Schematic drawing of surface diffusion mechanism. 

Based on Fick law and local equilibrium theory, the adsorbed gas molecules on the pore surface can 

migrate through the pores driven by the surface concentration gradients, and the surface diffusion 

flux,  js,  is estimated as [79-81] . 

                                 

s
ss

dC
j D

dz
                                                             (2.11) 

Here Ds is the surface diffusivity Cs (mol/m3) represents the surface concentrations under a certain 

pressure.  

In contrast to the Knudsen diffusion, the surface diffusivity of adsorbed molecules varies with the 

loading and normally increases sharply with loading, thus the contribution of surface diffusion 

increases with increase in molecular size (σff) and weight (M) since these molecules are the most 

easily condensed and adsorbed species, having higher loading density [47]. Based upon the 

statistical mechanical theory, the surface concentration can be treated as functions of the 

temperature and pressure in gas bulk phase [82], and the diffusivity can be estimated from the 
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surface coverage of the adsorption isotherm. The surface diffusion model is frequently used to 

combine with bulk flow in parallel  to interpret the observed permeation data (c.f. Figure 2.10), with 

dispersive adsorption and inhomogeneity of adsorbate density [58] empirically considered in the 

surface diffusivity. 

 

 

  

Figure 2.10 Permeation flux of benzene (a) and hexane (b) on porous glass membrane with a mean 

pore diameter of 4 nm by experiments (symbols) and surface diffusion model (solid lines) [81]. 

2.2.1.4 Activated diffusion model 

When the pore size further decreases and approaches molecular dimension, the potential intensity is 

so amplified and the adsorbates are strongly constrained by the surroundings.  In such a case, the 

ordinary methods of determining surface diffusion encounter a difficulty as the gas molecules need 

to acquire sufficient energy to overcome large potential barriers before passing through the narrow 

and long passages. This phenomenon, termed as activated diffusion’, is widely employed to 

represent the gas permeation through ultramicroporous silica-based materials [3].  

Figure 2.11 depicts the schematic drawing of molecular hopping mechanism to describe the surface 

transport. It is evident that the hopping rate of a penetrant depends greatly upon the concentration of 
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‘gates’ that are large enough to accommodate the penetrant molecule. This concept of acquiring a 

“sufficient amount of energy” is justified by by incorporating an Arrhenius form activation energy 

that has been observed experimentally [3, 27, 63], and given as  

                            ( )m
o

g

E
D D

R T


                                                     (2.12) 

where Do is a temperature independent proportionality constant, Em is the mobility energy for (J 

mol-1). The activated flux is treated much same as the surface diffusion based on Fick law as given 

in eqn. (2.11).  

 

 

Figure 2.11 Schematic drawing of activated diffusion mechanism. 

Assuming the adsorption occurs in the Henry law region, the surface molar concentration, C, is 

evaluated as 

                           
C KP                                                              (2.13) 

where P is the pressure (Pa) and K is the Henry’s coefficient, which can be estimated from a van’t 

Hoff equation: 

                          

stQ

RToK K e                                                             (2.14) 

where Qst is the isosteric of adsorption heat, (J mol-1). 
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Substituting eqs. (2.12)–(2.14) into eqn. (2.11), a temperature dependency flux in the Henry regime, 

is obtained 

/a gE R T

o o

dP
j D K e

dz
                                                        (2.15) 

where Ea ( a st mE Q E  ) is the apparent activation energy which is required to passing through the 

pore barrier. 

The activated diffusion is treated much same as the surface diffusion, based on the assertion that the 

pore spaces are so narrow and the distinction between the gas phase and the adsorbed phase 

disappear under the overlap of interaction potentials from the pore walls. This will create a much 

stronger potential to trap the gas molecules, however, an activation energy barrier may need to be 

overcome to travel through the pore passage or the pore entry. Thus, the interaction potential field is 

included in the activation energy and adsorption coefficient. Although the activated model could fit 

the permeation data and predict temperature dependence of flux [34, 83-85], the diffusion models 

discussed so far, lack the ability to accurately predict the activated process in terms of size, shape, 

and chemical nature of the penetrant, empirical correlation is still necessary to obtain the activation 

energy (Ea) and diffusivity constant (DoKo) . 

2.2.1.5 Transition-state theory 

In microporous silicas and zeolites, the pore network is often fabricated in a regular pattern of 

narrow cages and channels, and the gas molecules are tightly confined by the effects of the walls 

throughout the whole host region through which the guest travels, so molecular walls interaction 

must be adequately modeled. In such cases, guests often imply activated diffusion that enables 

passage through an aperture of the same size as the kinetic diameter of the guest [86].  

Figure 2.12 describes the schematic drawing of molecular hopping trajectory and its potential 

energy changes. As shown in the diagram, a hypersurface assumed in phase space has two 

properties: (1) it divides space into a reactant region (Si) and a product region (Sj), and (2) similar to 

reversible reaction, the trajectory migrating through this “dividing surface (DS)” in the products 

direction originated at reactants and will not recross the surface until being thermalized and attained 

in a product state [87]. In transition-state theory (TST), the dividing surface is conventionally 

placed at the saddle point of potential fields and diffusivity coefficient can be estimated by equating 

the net rate coefficient to the one way flux.  
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Figure 2.12 Schematic drawing of transition state theory mechanism for a system with three-

dimensional configuration space, and an assumed potential energy changes during one successful 

trajectory from state Si to state Sj through the bottle neck.  

In a successfully migration, the hopping time, τ, from a pore body i to a neighboring pore body j is 

generally given as [72] 

1
A B

A Bk
 




                                                       (2.16) 

Here the crossing frequency A Bk   constant is essentially a ratio of two configurational integrals and 

are readily estimated by potential filed integration over the dividing surface and cage volume once 

the states and dividing surface have been determined, which follows [88] 
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Here m is the molecular mass and (r) is the potential energy of the guest molecule. It is evident 

that not all trajectories that migrates the dividing surface in the direction from i to accomplish 

ultimate thermalized state of the system in the destination state j.  For instance, like reversible 

reaction, recrossing may occurs as given in Figure 2.13, wherein the guest gas ‘jump; back through 

the dividing surface and thermalizes in the origin state.  Thus a dynamical correction factor, or 

transmission coefficient,  , is defined as [88] 

sucessful trajectories throughDS

attempted trajectories throughDS
                                     (2.18) 

The value of , varies with guest and is general obtained from the average over a large number of 

MD trajectories initialized at the transition state, using the truncated implementation. The detailed 

procedure to determine at an arbitrary loading is described in the literature [89-91], which have 

shown a strong variation of gases and pore system. However, the transmission probability is 

generally close to unity for light gases [88, 92, 93].  

Finally, the diffusivity in transition state theory is readily obtained [91]:  

2 / 6TST A BD k                                                          (2.19) 

where ζ is the centre-to-centre distance between neighbouring pores (i and j).  

Following the arguments of Nguyen and Bhatia [88, 92] and Nguyen et al. [94], eqn. (2.19) can be 

approximated to be an Arrhenius form. 

/aE RT
TST o

T
D A e

M
                                                          (2.20) 

Here Ea is the activation energy, given by the enthalpy barrier and is affected by the interaction 

between the fluid and pore walls. Ao is a constant related to the pore length, fluid molecular size and 

pore shape. 

2.2.1.6 The Oscillator model 

As discussed above, fluid particles in the century-old Knudsen formulation are treated as ‘hard 

sphere’, and the dispersive fluid-solid interaction is neglected between the diffuse collisions, so the 

Knudsen model can be applied to predict the transport coefficients in sufficiently large pores where 

the adsorption effects are negligible. However, as pores reduce in size, the fluid-solid interaction 

becomes more and more important where the adsorption effect in the pore is substantially important. 

In such a case, the Knudsen diffusivity fails, and the statistical mechanical ‘Oscillator model’, 
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developed in this laboratory provides an analytical result for the diffusivity in low-density limit for 

a LJ fluid oscillates between diffuse reflections with pore walls under the interaction of a 

conservative one-dimensional potential field exerted by the wall [95-97].  

In the Oscillator model, fluid particles are treated as ‘soft spheres’, and the dispersive fluid-solid 

interaction is explicitly considered between the concessive collisions. The Oscillator model can be 

used to predict the adsorption effect and transport diffusivity for a wide pore size, ranging from 

micropores to macropores, without requiring any empirical activation energy amendments and any 

assumptions concerning about the fluid-solid interaction intensity. This represents a significant 

advantage over the earlier Knudsen model and other approaches, and the pore fluid is treated as a 

whole, without any flow segregation between bulk and surface contributions, avoiding the 

empiricism associated with this partitioning [58].   

In the Oscillator model, the diffusivity of a LJ particle under conditions of diffuse reflection in a 

cylindrical pore, Dosc, is estimated as [95] 

2
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o

k T
D

m
  

                                                                  (2.21) 

τ is the reflecting time between two concessive wall collisions, which is estimated by 
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where pr and p  are the radial and angular components of the molecular momentum, and clr  and 

cor  represent the radial bounds of a fluid molecule trajectory between consecutive diffuse 

reflections (c.f. Figure 2.13), determined through the solution of ( ', , , ) 0r rp r r p p  . 

Here ( ', , , )r rp r r p p  is the radial momentum at position 'r  for a molecule having radial 

momentum pr at position r. The hoping time, τ, is dependent on the motion energy in radial 

direction and the profile of radial momentum ( ', , , )r rp r r p p  can be obtained by solving the 

motion equations of a particle in the force field produced by the wall as 
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Figure 2.13 Schematic of trajectories of an oscillating molecule projected onto the pore cross 

section [97]. 

Assuming a canonical distribution of energies, the average hoping time,    can be obtained and 

the final formulation of Dosc, is given by [98] 
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where ( )r  is the solid-fluid potential, m is fluid particle mass, 1 / Bk T   and 
( )

0

rQ re dr   .  

In low density limit, the adsorption effect is represented by the equilibrium constant, K, and it is 

evaluated by 

( )/
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r

r k T

p

K e rdr
r T

 
                                                   (2.25)

 

It is evident that the dispersive interaction has significant influence on the diffusivity and adsorption 

effect. The value of the fluid-wall interaction potential, ( )r , strongly depends on the pore wall 

composition and structure. If the pore is composed of infinitely thick walls, the interaction potential 

profile, ( )r , is given by [99] 
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Here sf is the LJ solid-fluid collision diameter, sf is the LJ potential well depth, ρv is the atoms 

density in the wall (atoms per unit volume) and ( , , ; )hF x y z w  is the Hypergeometric function. 

If the pore is composed of a single layer wall, the interaction potential profile, ( )r , is readily 

obtained by [100] 
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            (2.27) 

where ρs is the pore wall surface density (atoms per unit area). 

Figure 2.14 depicts the diffusivity comparison of the Oscillator model with Knudsen model and 

molecular dynamic simulation (MD) for methane in cylindrical silica pores at 450K [95]. It is 

evident that the agreements between oscillator model with the MD results at all pore sizes, in both 

the micro and the mesopore region, and the Knudsen diffusivity represents an upper limit that can 

only be reached when (r) = 0. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.14 Variation with pore diameter of the low density transport coefficient calculated by MD 

and theoretical method for methane at 450K in cylindrical silica pores. Taken from Bhatia et al [95]. 
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The Oscillator model has been extensively validated by the molecular simulation and experimental 

work. It has been shown that, in the high temperature and large pore size limit, Oscillator diffusivity 

converges to the Knudsen diffusion coefficient demonstrating the consistency of this approach. 

2.2.2 Multicomponent transport 

The above diffusion models are generally derived from the single component experiments or 

molecular ‘statistic mechanics’ without considering any momentum interspecies exchanges, so 

these models can be straightforwardly used to predict the transport phenomena for the gas mixtures 

when only gas-solid interactions are important in low density limits. However, adaptations of the 

single fluid theories are only useful for a limited type of systems. In narrow mesoporous and 

microporous materials at low temperature, the fluid density in the vicinity of pore wall significantly 

differs from the low pressure density in the bulk arising from strong fluid-solid interaction, leading 

strong interspecies friction force, thus the development of a more generally applicable tractable 

model for multicomponent is still necessary. In this subsection, several important empirical and 

rigorous diffusion theories of multicomponent that may be applied in the nanoporous materials are 

extensively discussed [101]. 

2.2.2.1 Dusty Gas Model 

Based on the arbitrary combination of wall-mediated and fluid-fluid diffusion of gases in porous 

glass membranes, the dusty gas model (DGM) developed by Evans and co-workers has become the 

most popular strategy to model multicomponent transport in porous media [102-105]. The 

fundamentals of this model initially originates from the concept of the Lorentz gas for isobaric 

system where the membrane solid is treated as motionless dusts due to the extreme large molecular 

mass and uniformly distributed with other gas species [106]. Following this idea, ‘dust’ molecules 

are secured in space by assigning an external ‘clamping’ force to balance the dragging force exerted 

by the other fluids. It is evident that the membrane solid is automatically selected as the reference 

framework of the whole system in the binary gas diffusion [58].  

The theory is later refined by unified framework for a combined the wall-mediated and bulk 

diffusion when a pressure gradient is applied in the membrane. By incorporating the ‘dust’ species 

in the Maxwell-Stefan diffusion equations, the relationship between the fluxes and transport driving 

forces are obtained. The general equation form of an ideal gas mixture of n species, without any 

external forces, is given as 

                           

0

1 0 0
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n
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where Pi is the partial pressure of species, i, ρt is the total molar density, B0 is a constant 

characteristic of the medium alone, e
ijĐ represent the effective binary pair diffusion coefficients in 

the porous medium which are inversely proportional to the pressure and independent of pore size, 

0
e
iD  is the effective diffusivity from the dragging force exerted by the porous medium. xi and xj  are 

the molar fraction for i and j, respectively. The second term on the right-hand side is called the 

permeation flux and is applied to take into account the effect of total pressure gradient on mass 

transport (viscous permeation flux). The wall-affected diffusivity is often estimated based on the 

Knudsen model, which is supplemented by a surface diffusion contribution when adsorption occurs, 

without any contribution in regards of the hydrodynamic flow in the bulk [107].  

It is evident that the DGM lacks of a firm molecular basis in its derivation, and its validity in 

multicomponent systems has been criticized by Kerhof and Geboers [101] and Bhatia et al [58] on 

the grounds that the internal reference frames for the wall-mediated and interspecies diffusion in its 

original development are inconsistent with each other, with one is located on the motionless pore 

wall and the other is chosen as the mass center, respectively. Not only does the model inherit the 

shortcomings from assumption of the Knudsen diffusion for wall mediated transport, but also from 

the inhomogenously dispersed “dusty gas molecules”. Thus the model can only empirically 

correlate the experimental flux when the assumption fails under conditions of practical importance 

[73], and its apparent success in application is largely due to the presence of structure-related fitting 

parameters such as tortuosity, which mask model errors [1].  

In addition, use of a single representative pore size is another key deficiency of this approach, as the 

pore size distribution (PSD) has significant influence for nanoscale porous materials [1]. For 

instance, the recent study in our laboratory has demonstrated that the variation of tortuosity with 

operating conditions such as pressure, temperature and gas species, is expected for the disordered 

nanoporous materials in the presence of pore size distribution, and this conclusion is completely in 

contradiction to the assumption of DGM in the derivation, in which the tortuosity is exclusively 

determined by the pore network [73, 108-111].  

2.2.2.2 Generalized Maxwell-Stefan Model 

The Maxwell-Stefan Model (MSM) is a theory that is independently proposed by Maxwell and 

Stefan, and it is employed to describe the gas diffusion in multicomponent systems under steady 

state [112]. The basic concept of the model is that a difference between the molecular friction and 

thermodynamic interactions leads to the diffusion flux, and the molecular friction between two 
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components is proportional to their speed difference and mole fractions. The Maxwell–Stefan 

equation is given as 

1

n
j i i j

i
j t ij
j i

x j x j
x

C Đ



                                                                 (2.29) 

where ijĐ  is Maxwell-Stefan binary diffusivity, Ct is total molar concentration of fluid mixtures, 

and there is no i - i interaction diffusivity in the theory as the intermolecular interaction of the same 

species (i-i) won’t cause any net changes to average momentum for the whole ‘i’ species. In the 

derivation of MSM, ijĐ  is defined as ij ijĐ P f , where fij is the drag coefficient for the drag that 

the molecule “i” feels as a result of interactions with the molecule of type “j.  

The MSM can be simplified to be Fick law. However, the MS diffusivity has the physical 

significance of an inverse drag coefficient and is more easily interpretable and predictable than 

Fickian diffusivity (Dij). For instance, ijĐ  depends on the characteristics of species i and j 

(molecule shapes, etc.) as well as the system temperature and pressure, but largely independent on 

their relative compositions, and Dij is complicated functions of composition. In addition, the Fickian 

diffusion coefficients (Dij) may be negative and defined based on a molar-averaged velocity 

reference frame, while 0ijĐ   and is independent of reference frame; the binary diffusivity matrix 

is symmetric ( ij jiĐ Đ ) but the Fickian diffusivity matrix is not symmetric (Dij ≠ Dji). However, it 

is important to note that the GMS approach does not explicitly incorporate pore adsorption field, but 

implicitly considered through the MS pure component diffusivity, which may be obtained from 

experiment or MD simulation.  

The ‘traditional’ Maxwell-Stefan formulation is later extended by Krishna and co-workers in a 

spirit of DGM to account for the adsorption effect in narrow nanoporous thin membrane by 

introducing a surface diffusion contribution when adsorption is prevalent [107], which is termed as 

Generalized Maxwell-Stefan (GMS) theory, and it has become the most-common used model to 

describe the multicomponent mass transport in a zeolite and molecular sieve membrane [35, 64, 69, 

113]. According to the theory, the driving force at isotherm conditions is the chemical potentials 

(
T i ), which is balanced by the friction due to the velocity of molecule (j) and the diffusivity ( ijĐ ).  

In their derivation, molecules are assumed to jump from one adsorption site to the other one driven 

by the adsorbate concentration gradient, and the adsorption site to which a molecule jumps may be 

vacant or inhabited by another adsorbate. When a molecule of i jump to a vacant site, a momentum 

exchange between the “vacant” site and the molecule is occurred and characterized by a surface 

diffusion coefficient, s
iĐ . Further, when a molecule of i jumps to a site which is already inhabited 
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by a molecule of j and replaces the latter, a net momentum change of i in this process is referred by 

a Maxwell-Stefan binary surface diffusion coefficient, s
ijĐ . It is evident that no net change on the 

average momentum for species i will occur when the molecule is displaced by another molecule of i 

[58]. 

Based on above discussion, the MSM could be developed to investigate adsorbate-adsorbent system 

as an alternative way to describe surface diffusion by rewriting the chemical potential gradients in 

terms of mole fraction gradient by introducing thermodynamic factor ij  and assuming the 

adsorbed site as (n+1)th component 
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                                  (2.30) 

i is the fractional coverage of i and given by 

i
i

sat

q

q
                                                             (2.31) 

where qi is the adsorption amount of i in the adsorbent in mmol/g and qsat is the saturation 

adsorption amount. p  is particle density, p  is particle porosity. Analogous to Fick’s law, the 

surface chemical potential gradient can be rewritten in terms of the gradient of fractional occupancy 

by introducing a matrix of thermodynamic factors ( ij ) 
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where if  is the fugacity of i in the bulk fluid mixture. Introducing an n-dimensional square matrix 

[ ]sB  having elements,    
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eqn. (2.30) can be recast into n-dimensional matrix notation, after some manipulation. 

 1( ) [ [ ] ( )[] ]sat
s s

p p B     qJ                                                   (2.34) 

Where ij  could be computed from the adsorption isotherm and f is the fugacity. For low pressure, 

ij  is easily obtained from classical adsorption isotherms, e.g. Langmuir equation. 
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The countersoprtion diffusivity ( s
ijĐ ) can be empirically evaluated based only on information of 

pure component diffusivities (
i

sĐ ) by Vignes equation [35]. 

                                 
/( ) /( )[ ] [ ]i i j j i js s s

ij i jĐ Đ Đ                                                  (2. 37) 

The coefficient s
iĐ must in general be estimated experimentally or through molecular simulation. 

The GMS theory could be described as a surface diffusion due to equilibrium adsorption for the 

mass transport at high occupancies, which is supplemented by an activated gaseous process for 

mass transport at low occupancies.  

2.2.2.3 The relevant site model 

Because the GMS theory only caters for the correlation effects that causes slowing down of the 

more mobile species and does not cater for the additional hindrance effect due to the steric expelling, 

so it could not explain the concentration dependency of the diffusivity in the cage-like zeolite. The 

Relevant Sit Model (RSM) [114-117] is based on Maxwell-Stefan framework with one extra 

parameter that describes the adsorption properties of the relevant site to solve this issue. The model 

is formulated around the idea of segregated adsorption in cage-like zeolite, where the molecules are 

located either in the cage or its window site, and only the molecules located at the windows site are 

able to hop to another cage, therefore the surface MS diffusivity in the model depends on the 

concentration, which is observed in some work. In RSM, the concentration dependency of the MS 

diffusivity is given by [117] 

                                     

* (0)(1 )i i iĐ Đ                                                (2.38) 

Where * (0)iĐ  is diffusivity constant, iq  is the loading of guest molecules in zeolite, *
iq  is the 

loading of molecules at the relevant site, θi is the total occupancy ( stat
i i iq q  , 

s ta t
iq  being the 

saturation loading).  
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By incorporating the MS diffusivity in the expression of flux in terms of relevant site properties 

( * * lni i i ij Đ q f   ), the final model formulation is given as 

* *(0)(1 ) lni i i i ij Đ q f                                                                      (2.39) 

The relevant loading is evaluated by Langmuir type isotherm. 

                                         

* *
*

*1

stat
i i

i
i

q K f
q

K f



                                                                          (2.40) 

where the *sa tq and *K are the Langmuir constant of the relevant site and f is the fugacity  

corresponding to the total loading of q. The adsorption constant K* is normally assumed a Van’t 

Hoff dependency and related to the activation energy.  

The above equations plus the adsorption isotherm are sufficient to describe the loading dependency 

of the MS diffusivity. The model could depict the simulation data very well for single components 

by optimizing the parameters empirically (c.f. Figure 2.15), and derive constant activation energy 

and extend to the binary mixtures compared to the Reed-Ehrlich approach [77]. Although all 

mentioned parameters have particular physical meaning, all of them can be only empirically 

obtained by regression, so some parameters are not predictive and could not be separated, such as 

the lump diffusivity, * *sat
i iq D .  

 

Figure 2.15 MS diffusivity of CH4 in DDR at 300, 373, 473, 573 K calculated from MD simulation 

(symbols). Lines represent model results with the RSM except the data at 300 K, where the line 

represents a model prediction based on the parameters obtained from the data for 373, 473 and 573 

K [116]. 
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2.2.2.4 Friction based model 

Since the Knudsen model and the DGM-based model have their own problems in describing the 

density inhomogeneity of narrow pores for mixtures, a friction based model is proposed to validate 

the finite density by directly considering fluid-wall potentials without arbitrarily flow segregations 

[74]. In the theory, the diffusion driving force of specie, i, is balanced by Newtonian internal shear 

stress tensor and dragging force of other species when fluid-fluid interaction is of importance such 

as in the bulk of the pore, and a wall friction force is added when the molecules enter into the 

repulsive region of the fluid-solid interaction potential as gas density falls into low density limit. 

Figure 2.16 depicts the molecules under friction effect nearby the potential minimum region from 

the walls. 
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Figure 2.16 Illustration of potential energy profile and region of friction corresponding to the 

repulsive part of the potential energy curve [118]. 

For one-dimensional axial flow of a fluid mixture in a cylindrical pore of radius, R, the equation of 

motion for species, i, reads [74] 

1

( )1
( ) ( ) ( ) ( ) ( ) 1,2,...

n
i j i ji i

i i t B i i i oi
j ij

x x v vdv dd
r r r k T r va r r i n

r dr dr dz Đ

    



                   (2.41) 

in which the chemical potential, μi/dz, is the chemical potential in axial direction, ρi and ρt are the 

local molar density of specie i and total local molar density for all the species, respectively, iv  is the 
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local mean axial velocity, ijĐ  represents the MS mutual diffusivity, i  is a uniformly distributed 

wall friction coefficient for species i and is independent of fluid density and position. Beside, a(r – 

roi) is the Heaviside function whose value is unity for r > roi and zero otherwise. It is evident that 

the last term on the right hand side of eqn. (2.41) stands for the rate of momentum loss due to wall 

collisions in the vicinity of the wall, roi  < r < rp, where roi represents the position of the minimum 

of the fluid-solid potential for species i.  

The velocity profile is derived by integration as: 

' '

10 0 0 0

'

"( ) ( ") ( ")' '
( ) ( ) " ( ") '' ''

' ( ') ' ( ') ( ") ( ")

'
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i j i ji
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dr
a r r r r v r dr i n

r r

  
  

 





  

  

   

 

           (2.42) 

i is determined in the low density limit by the Oscillator model as 
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k T re dr

D re dr














                                                            (2.43) 

In addition, the density and viscosity profile must be provided. Aided by the finding from MD that 

the density inhomogeneity is essentially preserved during the transport [58], the density profile 

across the pore, ( )i r , can be estimated by density functional theory, Monte Carlo simulation 

(MC), and locally averaged density model (LADM) with a suitable correlation theories, and the 

mixture viscosity in the pore can be predicted based on the approach developed by Galliero et al 

[119].  

Upon expressing the velocity in terms of chemical potential gradients, eqs. (2.42) and (2.43) may be 

iteratively solved for the centerline velocities ( )iov r and the velocity profile ( )iov r which are 

respectively described as 

1
( )

n i
io ijj

d
v r A

dz




                                                            (2.44) 

1
( )

n i
i ijj

d
v r X

dz




                                                            (2.45) 

Then the Onsager coefficient of irreversible thermodynamics [120-122] can be readily estimated as 
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2 0

2
( )

R

ij i ijr r X dr
R

                                                         (2.46) 

This permits evaluation of flux based on friction coefficients from intermolecular interaction 

parameters. The friction-based model of binary transport has been validated by the molecular 

simulation, showing significant success for the mesopores [74].   

2.3 EMT theory 

All of the above diffusion models are developed for a single cylindrical pore. However, as 

discussed in section 2.1, a critical issue of testing the validity of any transport theory in the recent-

developed nanoporous materials is that the common mesoporous solids such as silicas and aluminas 

are highly disordered and possess a complex multi-scalar pore network [58]. This is clearly 

demonstrated in the typical supported silica membrane (c.f. Figure 2.6), which includes a 

macroporous α-alumina substrate, a mesoporous γ-alumina interlayer and amorphous silica layer. In 

the substrate and interlayer, the pores are synthesized by the cavities confined by the consolidated 

large crystal particles, thus not only must the pore size distribution and connectivity be considered, 

but also the pore aspect ratio and shape distribution assumes importance [108]. However, in most 

experimental studies [6], it is common to ignore the above complexities in nanoporous materials, 

and the corresponding diffusion models are arbitrarily applied to investigate the transport in the 

pores based on a mean pore radius by introducing pore network related parameters, such as porosity 

and tortuosity, which usually masks the failure of the diffusion model [76]. 

Effective medium theory (EMT) provides a necessary machinery to consider all these complexities 

of the pore network of each layer by replacing the nonuniform pore network with an effective one 

having pores of uniform conductance, and the diffusion model which is dependent on the pore size, 

can be directly used in the single pore level [123]. Bhatia et al [1, 111]  has recently used this 

technique to predict  the variation of apparent tortuosity with adsorbate, temperature and pore size 

distribution for silica microporous membranes, showing the tortuosity is not exclusively determined 

by solid morphology but is also affected by fluid species and operating conditions. 

Figure 2.17 depicts the schematic drawing for the fundamental principle behind EMT. It is evident 

that the actual network of disordered pores with randomly distributed conductance is replaced by an 

ordered, uniform one providing the same overall resistance of flow as the original one.  For two-

phase medium, the equation is given as 

( )
0

( ( 1) )2

e

e
N
 

 



 

                                                (2.47) 
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where λ is the conductance and λe is the effective conductance; N is the coordination number or pore 

connectivity, i.e., the number of pores meeting at the intersection. It is noted that the effective 

conductance is derived based on the pore number distribution, which can be obtained from the 

experimental pore volume distribution, fv(rp), by  

2
20

( )
( )

( )
v p

N p
v p

p p
p

f r
f r

f r
r dr

r





                                                       (2.48) 

For a pore of radius of rp, the conductance, , is defined as the ratio of the molecular current to the 

chemical potential gradient, following: 
2 ( ) ( )p o p pr D r K r

l


                                                        (2.49) 

where Do(rp)K(rp) is the apparent diffusivity, including both the diffusivity and equilibrium constant 

(K) based on the relevant diffusion models and pore size as provided above, and l is the pore length.  

 

Figure 2.17 Illustration of the EMT approach. The network on the left represents the original 

system illustrated by the disordered of the width and the grey level of a bond. The right panel 

represents the EMT with a regular, non-disordered structure [124]. 

The flux in a pore of radius, rp, is estimated by 

2
2

1
( ) cos ( )

1
e

p
p g

l N dP
j r

r R T N dz

 


          
                        (2.50) 

where z represents the coordinate along the macroscopic diffusion direction, (N-1)/(N+1) is a 

correlation effect factor due to the finite possibility that a diffusant returns to a pore that it has just 

passed through, and 2cos ( )  stands for the local diffusion direction effect in a single pore level, 

which is not necessarily axial when the pore length is comparable to the pore diameter, and the 
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aspect ratio effect (defined as x=rp/l) must be taken into account [126-128]. By assuming the local 

transport direction to be that closest to the macroscopic flux direction, the expression for 2cos ( )  

can be rewritten as [127, 128]  

2
2 2 1/2

4 2
cos ( ) ( ) 1

3(1 4 ) 3(1 4 )

x
g x

x x
    

 
  (2.51) 

where g(x) is the reciprocal coefficient of random orientation under the restriction 

                       0( ) 1/3xg x                                                                        (2.52) 

where the local diffusion will become axial for vanishing aspect ratio, and the pores could then be 

safely treated as infinite long channels. 

Assuming the pseudo pressure to be locally uniform in the network, the net flux in the equivalent 

uniform network is obtained by the integration of eqn. (2.50) over the pore volume distribution, to 

provide 

2

2

( ) 1

1
e

p g

l g x N dP
J

r l R T N dz




              
                                            (2.53) 

As mentioned above, in practice, experimental data is commonly interpreted phenomenologically 

based on a mean pore radius, pr , by introducing pore network related parameters such as tortuosity 

and porosity, following 

( ) ( )o p p

app g

D r K r dP
J

R T dz




   
 

                                                 (2.54) 

where app is an apparent tortuosity that is generally obtained by fitting the experimental flux. 

Comparing Eqs. (2.53) and (2.54), the theoretical prediction of apparent tortuosity is given by 

2

2

( ) ( ) 1

( ) 1
p o p p

app
e

r l D r K r N

l g x N





        

                                              (2.55) 

This permits evaluation of flux and apparent tortuosity for the nanoporous materials with a pore size 

distribution, which can be directly used to compare with macroscopic experimental data [73, 109].  
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2.4 Summary 

From above discussion, it is clear that the flow mechanism is highly determined by the pore size, 

thus different transport models may be combined with effective medium theory to describe the 

experimental results for the different types and layers of supported silica membranes. However, in 

general, the Knudsen and viscous diffusion may be applied for macropores above 50 nm without 

consideration of fluid-solid dispersive interaction; while the Oscillator model and Knudsen model 

will be attempted in the mesoporous and microporous silica membranes in low density limits.
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Chapter 3: The transport of gases in macroporous α-alumina substrates 

The infiltration of fluids through the voids of porous materials is common place to several well 

established and emerging technologies, and optimizing their performance relies heavily on 

developing a deeper understanding of how the fluid flow is affected by the topology of the pore 

space. This is particularly challenging when the medium is unconsolidated, since it is not only the 

pore size distribution and pore network connectivity that must be considered, but also the pore 

aspect ratio distribution will often assume importance. In chapter, we introduce a modified 

Effective Medium Theory (EMT) where the effect of non-vanishing aspect ratios is considered in 

order to describe the transport mechanism of several light gases through unconsolidated 

macroporous α-alumina tubular substrates. It is confirmed that the tortuosity is not just a property of 

the medium, but also depends (weakly) on the operating conditions due to the combined effect of 

viscous and Knudsen contributions. The coordination number and average pore length are the only 

adjustable parameters in the theory, which allowed adequate prediction of the variation of the 

apparent tortuosity with temperature for the investigated gases.  

3.1 Introduction 

Since the discovery of MCM-41 and SBA-15 [1-3], much research has been devoted to the 

synthesis of inorganic nanoporous materials by the sol-gel process to tackle emerging and long-

standing challenges in a variety of fields, such as gas separation, heterogeneous catalysis and drug 

delivery [4-7]. This has brought considerable attention to the modeling and simulation of the 

transport of fluids in nanoconfined spaces, due to its relevance for both process and materials design 

and optimization [8-11]. Nevertheless, little progress had been made until recently, and most of the 

work still largely relies on empirical modifications of the century-old Knudsen model [12], which 

ignores adsorption, to describe the effect of fluid-wall collision on diffusion [13]. Although the 

Knudsen model can qualitatively display some agreement with the experimental variation of the 

permeability with temperature, unrealistically high tortuosities are commonly obtained when 

applied under conditions in which adsorption is known to be important [14-17]. Furthermore, 

statistical mechanical theory [14, 15, 17] and molecular dynamics simulations (MD) [18, 19] have 

confirmed the overprediction of the diffusion coefficient estimated through the Knudsen approach 

for a variety of gases in 2 and 3 nm pore size silica membranes. The main reason for such 

overprediction in pores of a few molecular diameters is the assumption that no dispersive 

interactions exist between the fluid and the pore walls, which artificially increases the travel time of 

the fluid molecules between successive fluid-wall collisions and yields a higher diffusivity than that 

obtained when van der Waals interactions are incorporated [14, 15, 17]. However, for sufficiently 
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wide pores, the effect of the pore walls field over the fluid particles can be safely ignored and the 

Knudsen model provides an adequate estimation of the (low-density) diffusion coefficient. 

In practice, an inorganic membrane system consists of a thin selective (“active”) layer with narrow 

pores in which separation occurs, and a relatively thick support with a wide average pore size so as 

to enhance mechanical resistance for industrial application while minimizing the resistance to flow. 

Porous asymmetric alumina discs and tubes consisting of a α-alumina substrate and a γ-alumina 

interlayer are usually chosen as the support [20-22]. The α-alumina substrate is made of packed 

crystal particles (2 m) to create macropores and provide mechanical resistance [23], while the 

crystal particles of γ-alumina are smaller(0.05 m) [24] and are coated over the surface of the α-

alumina substrate to produce a uniform, defect-free surface over which the active layer is deposited. 

Due to the complex nature of transport through the membrane after dip-coating [25], modeling of 

fluid diffusion in the two different layers of the support is often based on the arbitrary assumption 

that the resistance to flow of the α-alumina substrate is negligible, thereby transferring all of the 

support resistance to the γ-alumina layer where, in addition, only the viscous contribution is 

considered. While these assumptions lead to reasonable tortuosities of the order of 3 - 4 [9, 26],  

they artificially transfer much of the active layer resistance to the support when the complete 

membrane system is analyzed, as recently shown by Bhatia and Nicholson [16].  

For this reason, it is of great interest to understand the true nature and relative contribution of the 

different transport mechanisms through the substrate. This will in turn provide better understanding 

of the transport mechanism in the selective layer, since the real magnitude of the resistance offered 

by this layer can be determined from the (full) membrane permeation experiments if the support 

resistance is known. The current work aims to investigate the diffusion of several light gases in the 

α-alumina tubular substrate and the relationship between tortuosity and operating conditions by 

means of a modified EMT in which the aspect ratio, i.e. the ratio of pore radius to pore length, is 

different from zero [27, 28]. This is particularly important when analyzing unconsolidated media 

such as the α-alumina layer, since in these cases the pore length is expected to be of the same order 

of magnitude as the pore radius. The technique provides good agreement with the experimental data 

and proves valuable to extract information on how the materials morphology affects the transport. 

3.2 Materials characterization and experiments 

The α-alumina tubular substrates were obtained from Australia Chemtech Trading & Service 

Company, and are made of packed α-alumina particles sintered at high temperature. Permeation 

experiments were conducted on two substrate samples (arbitrarily labeled as substrate A and 

substrate B) having different pore size, by flowing six different gases (H2, He, CH4, N2, CO2 and Ar) 
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through the substrate walls under the operating conditions listed in Table 3.1.  It is noted that the 

permeation experiments was carried out from high temperature (573 K) to low temperature (293 K) 

to avoid any water blockage effect. A schematic drawing of the experimental setup and the direction 

of the gas flow through the substrate is shown in Figures 3.1a and 3.1b, respectively.  

Table 3.1. operating conditions for single gas permeation in two tubular substrates. 

Substrate Inlet pressure, bar Outlet pressure, bar Temperature range, K 

A 1.97 1.01 303 - 573 

B 1.47 1.01 293 - 573 

 

 

Figure 3.1 Sketch of (a) the experimental setup, and (b) substrate, for single gas permeation 

experiments. 

The volumetric flow-rate is measured by water displacement method with a 1000 ml Schott bottle 

and a stop watch, and converted to molar flow-rate by means of an appropriate equation of state. It 

is noted that the permeate velocity of gases is extreme fast, thus the water resistance is negligible in 

such context and the measured flow rate has high accuracy, which is less than 5%, compared with 

the data based on bubble flow meter. The crystal particle size and pore size distribution of the α-

alumina substrate were investigated by Scanning Electron Microscopy (SEM) and Mercury 

Porosimetry (Micrometrics, IV9500) and the results are depicted in Figures 3.2 and 3.3, respectively. 

In addition, the skeletal density of the substrate material was obtained by Helium Pycnometry, using 

a Micromeritics Accupyc 1330 instrument.  
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Figure 3.2 SEM images of the two substrates. (a) substrate A, and (b) substrate B. 
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Figure 3.3 Pore size distributions of the two substrates, determined by mercury porosimetry. 

The SEM results indicated that the two samples have similar particle sizes (1 - 3 μm). The porosity 

and apparent density of substrate A extracted from Mercury Porosimetry were 33.3% and 3.85 

g/mL respectively, while the Helium Pycnometry yielded a skeletal density of 3.96 g/mL. For 

substrate B, the porosity and apparent density obtained from Mercury Porosimetry were 35.70% 

and 3.89 g/mL respectively, while its skeletal density was 3.91 g/mL. The similarity between the 

Mercury Porosimetry and Helium Pycnometry-based densities indicate that most of the void volume 

in the two samples corresponds to macropores, confirming the reliability of the pore size 

distribution determined through the Mercury Porosimetry technique. Figure 3.3 shows unimodal 
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pore size distributions for both samples, with sharp peaks at 577.0 nm and 730.9 nm for substrates 

A and B, respectively, which will be taken as the representative pore diameters in the experimental 

calculations below.  

3.3 Transport model 

3.3.1 Flow mechanisms 

Since all of the measured pore diameters exceed 100 nm, far above the range of the potential field 

produced by the wall, adsorption is negligible and a simple model superimposing Knudsen and 

viscous contributions is appropriate to describe the transport mechanism in the macropores.  

Assuming cylindrical pores, in the spirit of the Dusty Gas Model (DGM) [29, 30], the relationship 

between flow-rate and temperature can readily be expressed as [8] 

2 972

ln( / ) 8
p p

g gapp o i

r P rP L
F T

r r R T R M

 
 

 
   

 
                                           (3.1) 

in which the term ln( / )o ir r  accounts for the change in curvature over the thickness of the substrate 

wall. Here F is flow rate, T is temperature; L is tube length; P  is the average pressure through the 

substrate,   is viscosity, gR  is the gas constant, P is the pressure drop, and ro and ri are the outer 

and inner pore radii respectively. Furthermore, pr is the representative pore radius, M the fluid 

molar mass, ε the substrate porosity, and τapp the (apparent) tortuosity coefficient, usually left as an 

adjustable parameter It is noted that the DGM has been criticized on the grounds that it uses 

conflicting frames of reference [15], with the frame of reference being the stationary solid phase in 

one step and the mixture centre of mass in another step of the derivation where the diffusion flux is 

defined. However, this inconsistency does not arise in the case of a pure component. Further, the 

DGM is based on the assumption of a non-interacting hard sphere gas and solid. However, this is 

not a concern in large pores (i.e. macropores), in which dispersive fluid-wall interactions may be 

neglected. Indeed, it is readily seen that the internally consistent Distributed Friction Model (DFM) 

of Bhatia and Nicholson [31] reduces to eqn. (3.1) for such pores.  

From eqn. (3.1), plotting F T  versus 1/ T  should yield a straight line whose intercept depends on 

the particular gas. Alternately, if we recast eqn. (3.1) as 

2 9 72
( )

ln ( / ) 8
p p
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r P M rP L
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then, plotting F TM  versus /M T  may be expected to yield a straight line whose slope and 

intercept is independent of the particular gas species if app is purely a structural parameter. The 

tortuosity, app, may be readily determined from the slope or the intercept of the plots based on eqn. 

(3.1) or eqn. (3.2). 

To avoid differences between the tortuosities obtained from the slope and intercept, τapp is often 

obtained from eqn. (3.1), following 

2 972

ln( / ) 8
p p

app
ggo i

r P M rP L

RF TM r r R T

 


 
   

 
                                              (3.3) 

3.3.2 Transport in pore networks 

Effective medium theory (EMT) offers a convenient route to modeling transport in disordered pore 

networks, avoiding the uncertainty of choosing a representative pore size in eqs. (3.1)-(3.3). The 

fundamental principle behind EMT is replacing the actual network of disordered pores with 

randomly distributed conductances by a uniform network with the same overall resistance to flow as 

the original one. Bhatia and coworkers have recently used this technique to predict the variation of 

apparent tortuosity with adsorbate, temperature and pore size distribution parameters in silica 

microporous membranes,  showing that the tortuosity is not exclusively determined by the pore 

structure but is also affected by the particular fluid and the operating conditions [14, 17]. However, 

the EMT formulation used in most of the previous works assumes infinitely long capillaries, i.e. 

vanishing aspect ratios [14, 17, 28, 32, 33]. This is not a reasonable assumption for the alumina 

substrate samples since, as depicted in Figure 3.2, the constituent particles are relatively “round” 

and, consequently, the interstitial pores will have diameters and lengths of similar order of 

magnitude.  A modified EMT will be employed here considering non-vanishing aspect ratios [27, 

28] to predict the apparent tortuosity in the macroporous alumina substrate. 

For a pore of arbitrary radius rp, the molecular current, i, is given in terms of the chemical potential 

gradient (  ) by 

2 ( )
( )p a o p

g

r D r
i

R T

 
                                                                       (3.4) 

At low bulk pressure, eqn. (3.4) may be rewritten, using the Gibbs-Duhem equation, as [14] 

2 ( ) ( )p p o p

g

r K r D r
i P

R T l


                                                                       (3.5) 



3-7 
 

Here, l is pore length and P is the pseudobulk pressure at which the bulk fluid will be in equilibrium 

with the adsorbate of density a . K(rp) is the equilibrium constant at the pseudo-bulk pressure and 

Do(rp) is the corrected pore diffusivity, which includes fluid-wall and fluid-fluid interactions effects.  

In the present development we neglect fluid-wall dispersive interactions for the substrate 

macropores, thereby taking the equilibrium constant K(rp) as unity and, following eqn. (3.1), Do(rp) 

to be given by 

( ) ( ) ( )o p vis p Kn pD r D r D r                                                                     (3.6)  

where Dvis(rp) is the viscous diffusivity given by the well-known Hagen-Poiseuille equation, 

2

8
p

vis

Pr
D


                                                                                              (3.7) 

and  DKn(rp) is the Knudsen diffusivity, given by 

97.0Kn p

T
D r

M
                                                                                (3.8) 

where rp is the pore radius in metres, M is the molecular weight in g/mole, and DKn has the units of 

m2/s. The conductance for a pore of radius rp is defined as the ratio of the current to the potential 

difference. Following eqn. (3.5), this results in 

2 ( )p o pr D r

l


                                                                                        (3.9) 

It is assumed that on the pore scale local equilibrium prevails, so that the pseudo-bulk pressure drop 

∆P is considered to be pore size independent. The effective medium conductance λe is given by the 

solution to [14, 34] 

( )
0

( ( / 2 1) )
e

eN

 
 




 
                                                                 (3.10) 

where N is the coordination number, i.e., the number of pores meeting at an intersection and   

represents a number average over the pores. The pore number distribution fN(rp) is related to the 

pore volume distribution fv(rp) in Figure 3.3 by  
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2( )pv p Nf r r lf                                                                                (3.11) 

in which the pore volume distribution fv(rp) satisfies 

0

( )v p pf r dr


                                             (3.12) 

so that the number average is defined by 

0

1
( ) ( ) ( )p p N p p

t

h r h r f r dr
N



                   (3.13) 

where Nt is the total density of pores, given by 

22
0 0

( )
( ) v p

t N p p p
pp

f r
N f r dr dr

r lr l




 

        (3.14) 

For the effective medium, the directionally averaged flux in a pore of radius rp may be expressed as 

[14] 

2
2

1
( ) cos ( )

1
e

p
p g

l N dP
j r

r R T N dz

 


          
                                         (3.15) 

where z represents the coordinate along the macroscopic flux direction, 2cos ( ) 1/ 3   for long 

randomly oriented capillaries having a vanishing aspect ratio [27], and the factor (N-1)/(N+1) 

accounts for a correlation effect which arises because of the finite probability that a diffusing 

molecule returns to a pore that it has just traversed [35, 36]. For the porous substrates examined 

here, whose microstructure is depicted in Figure 3.2, the assumption of vanishingly small aspect 

ratio would not appear to be reasonable, and one has [27, 28] 

2
2 2 1/2

4 2
cos ( ) ( ) 1

3(1 4 ) 3(1 4 )

x
g x

x x
    

 
   (3.16) 

where x (=rp/l) is the aspect ratio. Eqn. (3.16) is derived on the assumption that in a pore of finite 

aspect ratio, the net flow direction is along the direction closest to the macroscopic diffusion 

direction, as depicted in Figure 3.4. 
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Figure 3.4 Diffusion directions in a pore with finite aspect ratio. 

The macroscopic flux is given by 

0

( ) ( )m p v p pj j r f r dr


                             (3.17) 

which combines with eqs. (3.11)-(3.16) to provide 

2
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                                                  (3.18) 

In practice, when interpreting experimental data it is common to evaluate the diffusivity and flux 

considering only a single representative pore size, pr , such as a mean or modal pore size, and the 

phenomenological expression 

( )o p
m

app g

D r dP
j

R T dz




   
 

                                                         (3.19) 

where app  corresponds to the apparent tortuosity already defined in eqn. (3.1), and is obtained by 

fitting eqs. (3.1) or (3.2) to the experimental permeation measurements. Comparing eqs. (3.18) and 

(3.19), the theoretical value of the apparent tortuosity is found to be 

2

2

( ) 1

( ) 1
p o p

app
e

r l D r Z

l g x Z





        

                                                          (3.20) 
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The above equation will be used here to investigate the apparent tortuosity of the macroporous -

alumina substrate with pores of finite aspect ratio. 

3.4 Results and discussion 

3.4.1 Dependence of tortuosity on operating conditions 

As mentioned above, plotting F T  versus 1/ T  at constant mean pressure should yield a 

straight line whose slope and intercept provide independent estimates of the tortuosity. Figure 3.5 

depicts the variation of F T  with 1/ T  obtained from experimental permeation data (symbols) 

of several light gases at a mean pressure of 1.49 bar and 1.24 bar in substrates A and B, respectively, 

and the corresponding best linear fit (solid lines). The corresponding experimental error is evaluated 

as: 

2 2( ) ( )
2F T

F T

F T

  
 


                                                    (3.21) 
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Figure 3.5 Variation of F T with 1/ T for each gas. (a) substrate A, and (b) substrate B. The 

mean experimental error of F T  is around 5%. 

Considering the deviation of bottle volume (1.5 %), the stop watch uncertainty (0.01 s) and the 

reaction time (0.19 s) [37], the average error of flow rate ( /F F ) is around 3.5 %. Besides this, 

the temperature control accuracy of the Lindberg tube furnace is 1 K and the mean experimental 

temperature is around 440 K, thus the temperature relative error ( /T T ) is less than 1 %. It is 

evident that the experimental error for F T  is less than 5 %.  In the subsequent chapter, the setup is 

refined by a bubble flow meter using a wide glass tube (inner diameter around 6 cm) to get more 
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accurate flow rates for the same substrate (sample A) under the same condition. The average flow 

rate deviation reduces to 2.8 %, which provides the experimental error for F T  less than 4 %. On 

the other hand, on comparison of the two methods at the same condition, the average difference in 

flow rate is around 4 %, suggesting water resistance is negligible due to the extremely high velocity 

of gases from the permeate side. Thus the current water displacement approach is reliable. 

The linearity of the data (r2 > 0.99) suggests that eqn. (3.1) appropriately correlates the relationship 

between flow and temperature for the different gases.  Following eqn. (3.1), it is readily seen that 

the intercept of the lines on the ordinate in Figure 3.5 is related with the relative weight of Knudsen 

diffusion to the overall flow. This Knudsen contribution corresponds to 30-80% of the total flow-

rate in the two substrates for most gases, based on the Knudsen diffusion weights depicted in Figure 

3.6. These results are in disagreement with the recent work of Ruthven et al. [26], who arbitrarily 

assume the viscous contribution to dominate the transport through a similar substrate with a much 

smaller average pore radius of 50 nm, where the Knudsen contribution is expected to be even larger.  
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Figure 3.6 Relative contribution of Knudsen diffusion to transport through (a) substrate A, and (b) 

substrate B. 

The intersection of the fitting lines for the different gases in Figure 3.5a reveals that the tortuosity is 

not gas independent. This is further confirmed by the tortuosity values extracted from the intercept 

(τi) and slope (τs) of the lines for each gas using the values of representative pore radius of 288.5 nm 

and 365.45 nm for substrates A and B, respectively, reported in Table 3.2. In all cases, the tortuosity 

is considerably lower than 3, which is characteristic of packed beds and, in general, of 

unconsolidated media [38-40]. It is also seen that there is considerable difference between τi and τs 

for both substrates and all of the gases, and that both τi and τs vary significantly from gas to gas.  

For instance, the difference in τi between N2 and CO2 in substrate A is 37%, and in substrate B this 
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difference is 32%. Similarly, the difference between τi and τs for CO2 is 26% for substrate A and 

65% for substrate B. 

Table 3.2 Tortuosity calculated according to slope and intercept of correlation. 

Substrate A τi τs Substrate B τi τs 

He 1.77 1.89 He 1.73 1.64 

H2 1.92 1.80 H2 1.96 1.39 

CH4 1.73 1.77 CH4 1.83 1.38 

N2 1.56 2.56 N2 1.70 1.51 

Ar 1.64 1.96 Ar 1.77 1.44 

CO2 2.13 1.69 CO2 2.25 1.36 

all gases, Figure 3.7(a) 1.78 1.90 all gases, Figure 3.7(b) 1.91 1.39 

 

To overcome this inconsistency of the tortuosities calculated from the slope and intercept of the 

linear correlation based on eqn. (3.1), we instead used the pore radius as a second fitting parameter. 

Thus, the slope and intercept for each gas were used to estimate a tortuosity and effective pore 

radius. Table 3.3 gives the values obtained for each gas by this procedure. Considerable variation in 

effective pore radius between different gases is seen in the Table, for each substrate. For example, 

the pore radius of substrate A based on CO2 is almost twice that of N2, while for substrate B it is 

higher by nearly 50%. In addition, the tortuosity shows considerable variation between gases, 

indicating that the approach is untenable.   

Table 3.3 Mean pore radius and tortuosity of substrates for different gases, based on correlation 

using eqn. (3.1). 

Substrate A Substrate B  

Gas Mean pore radius, rp 

(nm) 
Tortuosity 

Mean pore radius,  rp 

(nm) 

Tortuosity 

 

He 259 1.66 358 1.82 

H2 296 2.05 480 2.77 

CH4 270 1.69 448 2.41 

N2 179 1.08 381 1.91 

Ar 231 1.37 418 2.18 

CO2 349 2.69 564 3.75 
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Alternatively, the tortuosity may be obtained by plotting the data for all of the gases together 

according to eqn.(3.2), which suggests that plotting F TM versus /M T  should produce a 

straight line with intercept and slope that are independent of the particular gas. Such a plot is 

depicted in Figure 3.7, however the resulting intercept and slope-based tortuosities for the combined 

plot, reported in Table 3.2, show significant differences. 
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Figure 3.7 Variation of F TM  with /M T  for several gases in (a) substrate A, and (b) 

substrate B. The mean experimental error of F TM  is around 5%. 

In addition, systematic deviations from the linear fit are seen for different gases. For example, the 

data for CH4 are consistently higher, while that for CO2 is consistently lower. Nevertheless, the 

difference between τi and τs is somewhat less for substrate A than it is for substrate B, possibly due 

to the slightly narrower pore size distribution of former (c.f. Figure 3.2). Thus, the proper choice of 

representative pore size in the presence of a pore size distribution is an important issue which will 

affect the difference between the tortuosity values extracted from the slope and intercept of the 

linear correlation. 

The discrepancies between τi and τs in the graphical methods are caused by the arbitrary choice of 

representative pore radius, and neglect of pore size distribution. In the case of the combined linear 

fits in Figure 3.7, the discrepancy is also affected by the assumption that tortuosity is independent of 

operating conditions, such as temperature, pressure and the particular gas species. As a result, it 

appears that it is not appropriate to calculate tortuosity by means of the above regression methods. 

In order to demonstrate the relationship between tortuosity and operating conditions, an apparent 

tortuosity at each temperature was calculated using eqn. (3.3), and was found to be gas-dependent 
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and to increase with increase in temperature. As an example, the tortuosity for CO2 in substrate B is 

plotted against temperature in Figure 3.8, clearly showing a systematic increase in the apparent 

tortuosity as the temperature increases, and this is not likely to be the consequence of a typical 

experimental error. When the data in Figure 3.8 were fitted by a linear correlation, the slope was 

0.000684 with an error of 0.00015 within a 95% confidence interval. Thus, the slope is statistically 

significant, and different from zero. As further evidence for statistical significance of the positive 

effect of temperature on tortuosity, the data of Figure 3.8 was divided into 2 groups, one in which 

the tortuosity was above the overall average value (group A) and another in which the tortuosity 

was below this average (group B). Use of the t-test [40] showed the p-value for the null hypothesis 

(i.e. no difference between the two groups) to be 0.005, which is much smaller than the generally 

accepted value of 0.05 or less for rejecting the null hypothesis. Thus, the null hypothesis could be 

safely rejected, and a significant correlation between tortuosity and temperature exists. In the 

following section we explain the dependence of app on T, using the modified EMT described above.  
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Figure 3.8 Variation of apparent tortuosity with temperature for CO2 in substrate B, based on eqn. 

(3.3). 

3.4.2 Data interpretation using effective medium theory 

In order to investigate the variations of tortuosity of the substrates with temperature and diffusing 

gas, the modified EMT described in Section 3.3 is adopted. Since neither the pore length 

distribution nor the pore connectivity can be extracted from the characterization results, a constant 
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length l is assumed and, along with the coordination number N, is taken as a fitting parameter. 

Figures 3.9a and 3.9b show the variation of F T  with 1/ T for the different gases using the 

best fit values of N = 12 and l = 0.33 μm for substrate A, and N = 12, l = 0.30 μm for substrate B. 

Such high values of the coordination number N are consistent with the close packing of spherical 

particles, such as in face-centred or hexagonal close packing. The modified EMT predicts well the 

experimental data for He, Ar, N2 CH4 and CO2, and only marginally overpredicts the data for H2, 

suggesting that the selected values for N and l adequately capture the substrate pore network 

topology. Nevertheless, it must be noted that the current theory assumes cylindrical, straight pores, 

while the real pores formed by the voids between the alumina particles are clearly irregular. In this 

sense, the values of N and l should be understood as the effective coordination number and pore 

length of an equivalent network comprised of ideal cylindrical pores that offers the same overall 

resistance to flow as the substrate samples.  

The increase in the tortuosity with temperature depicted in Figure 3.8 for CO2 was further verified 

for all of the gases, demonstrating that both Knudsen and viscous contributions play an important 

role in the transport through the substrate. As a matter of fact, if Knudsen flow was the only 

transport mechanism active during the experiments, it is clear that the effective conductance 

resulting from the solution of eqn. (3.10) would be proportional to T1/2, canceling out to T1/2, 

canceling out the T1/2 factor from Do in the numerator of eqn. (3.20) and yielding, as a consequence, 

a temperature-independent tortuosity. On the other hand, if Do was purely viscous, it would be 

proportional again to some function of the temperature which, by a similar argument, would 

ultimately lead to a temperature-independent tortuosity. The subtle changes in tortuosity with 

increasing temperature observed in Figure 3.8 are not due to experimental uncertainty, since there is 

a systematic trend toward higher tortuosities; thus, they can only be due to the combined effect of 

the two transport mechanisms. However, it is expected to lead to the relative contribution of the two 

mechanisms to vary with temperature. At low temperatures the viscous contribution will have a 

higher weight than it has at higher temperatures, as noted in Figure 3.6. More interestingly, a single 

dominant transport mechanism would also cancel the effect of pressure (P) and molar mass (M), 

demonstrating the traditional concept of a purely material topology dependent tortuosity to be a 

limiting case. 

Following eqn. (3.20), a tortuosity increasing with increasing T (with l assumed uniform) can only 

mean that the ratio 2 ( ) /op p er D r l    increases with T. This is in fact not surprising since, as T 

increases, the relative contribution of Knudsen flow in the large pores becomes more important, 

whereas in the narrow pores, where Knudsen flow is dominant even at the lowest temperature, its 
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relative contribution does not change significantly. Therefore, increasing T is essentially increasing 

the weight of the Knudsen contribution in the larger pores to the overall flow. However, in the large 

and highly conductive pores the drop in the viscous diffusion coefficient with temperature arising 

from an increasing viscosity overweighs the increase in the Knudsen diffusion coefficient, leading 

to a conductance increasing with temperature. On the contrary, the conductance increases slightly 

with temperature in the narrow pores as the viscous contribution is negligible. For the particular 

pore size distribution and connectivity of our sample, the decrease of conductance in the large pores 

dominates, and the effective conductance obtained from EMT tends to decrease with increase in 

temperature. At the mean pore radius the conductance was verified to increase with temperature for 

H2 and He, and slowly decrease for the other investigated gases.  Consequently, the ratio ( ) /o p eD r   

increases with temperature, leading to the observed increase in the tortuosity. 
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Figure 3.9 Variation of F T  with 1 / T  in -alumina substrates for each gas. The symbols 

represent experimental values, while the lines are model results, with (a) l = 0.33 μm and N = 12 for 

substrate A, and (b) l = 0.30 μm and N = 12 for substrate B. The mean experimental error of F T  

is around 5% 

The above observations could explain the apparent success of Jareman et al [41] in modeling pure 

gas permeation as a combination of Knudsen and viscous flow in a MFI film by arbitrarily 

assuming a constant tortuosity in the γ-alumina interlayer. Due to the very weak changes in 

tortuosity with temperature and gas species, taking tortuosity constant, as noted in Jareman’s work 

still yields a satisfactory fitting of experimental data. However, assuming viscous flow to dominate 

transport in the macroporous α-alumina substrate is seriously flawed when modeling supported 

membrane systems, since the consequence of this is that much of the membrane layer resistance 

will be transferred to the support. For example, in our case, the Knudsen resistance constitutes over 
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40-80% of the total resistance for most gases (c.f. Figure 3.6), even for a pore size as large as 500 

nm, a pressure of 2 bars in the substrate side and a temperature of 300 K. On the other hand, the 

agreement between the theoretical and experimental tortuosities (well both below 3) confirms that 

the transport mechanism through the macroporous alumina is similar to that of a gas diffusing 

through a micron scale unconsolidated bed, where the aspect ratio plays an important role in the 

local diffusion direction. 

The model pore length of about 0.30 μm is somewhat smaller than the particle size observed in the 

SEM, which is in the range of 1 - 3 μm (c.f. Figure 3.2). This is explained by the fact that the model 

pore is perfectly cylindrical, while the real pores synthesized by the packing of roughly spherical 

particles are irregular, having typically wide mouths of large diffusivity at the ends and a 

constricted region in the middle, as depicted in Figure 3.10. The large diffusivity mouths lead to an 

average short pore length when the real pores are idealized into perfectly cylindrical pores of 

constant diameter. The reason why the experiments with substrate A yielded a longer pore length 

than substrate B is because the particles comprising substrate A are a little larger than the particles 

in substrate B. 

 

 

Figure 3.10 Relationship between real pore and idealized cylindrical pore. 

 

3.4.3 Influence of operating conditions 

The above results have shown that in the presence of combined Knudsen and viscous flow the 

apparent tortuosity is not a property of the porous medium alone, but depends also on operating 

variables such as temperature, pressure, and the gas species.  

In the following, we explore the influence of the above factors on the apparent tortuosity by 

assuming a Rayleigh number pore radius density distribution [14, 17], which is expressed as: 
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                        (3.22) 

Here, ro is the minimum pore radius, and rm is the modal pore radius. The standard deviation of this 

distribution is readily seen to be 

0.7024( )m m os r r                                                                     (3.23) 

Figure 3.11 depicts the variation of apparent tortuosity with the relative standard deviation 

according to eqn. (3.23) for (a) N = 6 and (b) N = 12 at 300 K and 200 kPa for N2, Ar, CO2, He, H2 

and CH4 in pores with a uniform length of 900 nm. In this and all subsequent figures the reference 

pore radius pr is taken as the number averaged radius. For N = 6 the tortuosity increases as the 

relative standard deviation increases. At a given mean pore radius, increasing the standard deviation 

is equivalent to decreasing the minimum pore radius, which in turn increases the availability of both 

narrow, poorly conductive and large, highly conductive pores as the distribution widens. This leads 

to the formation of short circuit paths that tend to increase the tortuosity. Furthermore, decreasing 

the minimum pore radius increases the population of low aspect ratio pores, which, as discussed 

above, contributes to increasing the tortuosity. However, for N = 12 the network availability is very 

high, and the increase in fraction of large pores dominates on increasing standard deviation, and this 

leads to decrease in tortuosity. Only subtle discrepancies between the tortuosities of the different 

gases exist, and such discrepancies vanish at very small standard deviation, indicating that it is the 

very existence of a pore size distribution that is responsible for a gas dependent tortuosity. 
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Figure 3.11 Variation of τapp with relative standard deviation for several gases in porous  medium 

following a Rayleigh distribution of pore radius, with (a) N = 6, rm = 300 nm, and l = 900 nm, and 

(b) N = 12, rm = 300 nm and l  = 900 nm at P = 200 kPa, T  = 300 K. 



3-19 
 

Figure 3.12 depicts the variation in tortuosity with (a) relative standard deviation and (b) 

temperature, for argon at different mean pore radius and at the indicated process conditions, which 

suggest that, at given pore length, decrease of pore radius will increase the tortuosity.  On the other 

hand, the increase in tortuosity with temperature is in all cases very subtle, which is generally the 

case in those systems were adsorption is negligible. We notice that increasing the mean pore radius 

at constant relative standard deviation always decreases the tortuosity. This is not surprising since, 

as long as the width of the pore size distribution is held constant, it is only the aspect ratio that is the 

critical variable affecting the tortuosity and, as seen above; higher aspect ratios (wider pores) tend 

to decrease the tortuosity. 
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Figure 3.12 Variation of τapp  with (a) standard deviation, and (b) temperature for various pore radii 

in porous medium following a Rayleigh distribution, with N = 12 and l = 900 nm at P = 200 kPa for 

argon. 
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Figure 3.13 depicts the variation in tortuosity with temperature at (a) several coordination numbers 

and (b) several pore lengths, for argon at the indicated process conditions. The decrease of 

tortuosity with increasing coordination number is quite natural, since the higher N is, the more 

alternate paths are available at every intersection, decreasing the chance for a molecule to retrace its 

path. Figure 3.13b leads to an equivalent conclusion to that extracted from Figure 3.12a, confirming 

that lower aspect ratios tend to increase the tortuosity. 
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Figure 3.13 Variation of τapp with temperature, for various values of (a) coordination number, and 

(b) pore length, in porous medium following a Rayleigh distribution of pore radius, with rm = 300 

nm and s/rm = 0.35 at P = 200 kPa for argon. 

Figure 3.14a illustrates the variation of effective conductance, λe, with temperature for several gases 

in a network following a Rayleigh distribution of pore radii with N = 12 and rm = 300 nm at the 

indicated operating condition. According to Figure 3.14a, the effective conductance decreases 
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monotonically with temperature for all of the gases except for H2 and He, which is due to the 

reduction in the viscous diffusion term, which makes the Knudsen contribution increasingly 

dominant, particularly in the wide pores. However, similar to what was discussed in the previous 

section, the total diffusion coefficient (i.e. Dvis + DKn) tends to decrease with increase in temperature 

in the largest pores because of the effect of increasing viscosity. Since the cross-section area of the 

widest pores is much larger than that of the narrowest pores, the decrease in conductance with 

temperature of the former overcomes the effect of the increase in conductance in the latter, leading 

to a decrease in effective conductance with increase in temperature. For H2 and He, however, even 

the large pores are predominantly in the Knudsen regime at all temperatures, which causes an 

increase in conductance with temperature.  

Figure 3.14b depicts the temperature variation of the diffusivity at the mean pore radius, ( )o pD r , 

determined using eqn. (3.6). The mean pore radius is taken here as the number averaged pore radius. 

In general, the trend is the same as that observed in the effective conductance, although the ratio 

( ) /o p eD r 
 
increases

 
with T for all of the gases, leading to a tortuosity that increases with increase 

in temperature. However, at a coordination number of 4 the decrease in ( )o pD r  is faster than that in 

e for argon, leading to a tortuosity that decreases with increase in temperature, as depicted in 

Figure 3.13a. This dependence of the temperature variation on the coordination number can be 

explained by noting that the more interconnected the network is, the greater the probability to have 

a wide pore in an intersection and, consequently, the stronger the effect of temperature changes is 

‘felt’ over the whole structure. 

Figure 3.15 depicts the variation in tortuosity with relative standard deviation at (a) several 

pressures and (b) several temperatures, for argon at the process conditions indicated in the plot. The 

apparent tortuosity decreases with increasing pressure (Figure 3.15a) and increases with increasing 

temperature (Figure 3.15b) in the whole range of relative standard deviation, which is a 

consequence of the interplay between the Knudsen and viscous contributions to diffusion. At the 

pressures considered in Figure 3.15a, viscous and Knudsen flow are always present; however, as the 

pressure increases the curves tend to converge to a limiting curve, termed the viscous limit, since 

viscous flow starts to become dominant and the tortuosity becomes progressively more independent 

of process conditions (P and T). The same argument explains the increase of tortuosity with 

temperature: as T is increased, since the relative contribution of Knudsen flow rises (c.f. Figure 3.6), 

particularly in the large pores, as discussed above. In the limit of low pressure only Knudsen flow is 

present and the apparent tortuosity reaches its maximum value, leading to the limiting curve termed 
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the Knudsen limit. Similarly, at very high pressure only viscous flow is exists and the apparent 

tortuosity reaches its minimum possible value given by the viscous limit. 
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Figure 3.14 Variation of (a) effective conductance, and (b) diffusivity at the number averaged pore 

radius with temperature for various gases in a porous medium following a Rayleigh distribution of 

pore radii, with N = 12, rm = 300 nm, s/rm = 0.35 and l = 900 nm at P=200 kPa.  

In summary, in the transition regime between Knudsen and viscous flow, the tortuosity is not only 

dependent on the properties of the medium but also on operating conditions such as temperature and 

pressure as well as gas species, due to the combined effect of viscous and Knudsen flows. 



3-23 
 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
1.00

1.10

1.20

1.30

1.40

1.50

1.60

ap
p

ar
en

t 
to

rt
u

os
ity

, 
 a

p
p

relative standard deviation, s/rm

400 kPa

Ar, N = 12
T = 300 K
l = 900 nm
rm = 300 nm

(a)

100 kPa

Knudsen limit

Viscous limit

 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
1.00

1.10

1.20

1.30

1.40

1.50

1.60

ap
p

ar
en

t 
to

rt
u

os
ity

, 
 a

p
p

relative standard deviation, s/rm

Ar, N =12
P = 200 kPa
l = 900 nm
rm = 300 nm

500 K

300 K

Knudsen limit

Viscous limit

(b)

 

Figure 3.15 Variation of τapp with relative standard deviation, for various values of (a) pressure, and 

(b) temperature in porous medium following a Rayleigh distribution of pore radius, with N  = 12, rm 

= 300 nm and l   = 900 nm at P  = 200 kPa for argon. 

3.5 Conclusion 

Single gas permeation experiments with six gases (N2, Ar, CO2, He, H2 and CH4) have been 

conducted over a wide temperature range in two tubular macroporous α-alumina substrates. The 

results show that the transport mechanism in the substrates is a combination of viscous and 

Knudsen flows when the feed pressure is below 2 bars. By using a modified effective medium 

theory considering the aspect ratio to explore the behavior of the apparent tortuosity for the 

different gases, it is shown that, in the presence of viscous and Knudsen flow the apparent tortuosity 

is not a porous medium property alone, but also depends on the operating conditions and the 
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particular gas species. The average coordination number and pore length of the substrate samples 

constitute the only fitting parameters in the theory. Our results do not support the assumption that 

viscous flow is dominant in substrates with pore sizes around 50 nm and at low pressure. Instead, 

our work shows that the contribution of Knudsen flow for all gases in the two substrates, with even 

much larger average pore sizes, is as much as 80% at low pressure. It could be reasonably expected 

that, for substrate with much smaller pore size, the influence of viscous flow is negligible at the 

same pressures. Finally, by assuming a Rayleigh pore size distribution in the substrate, the influence 

of operating conditions and network parameters is theoretically investigated to show the interplay 

between aspect ratio and short circuiting effects. We find that, when the aspect ratio decreases, the 

apparent tortuosity increases, and the tortuosity tends to become more independent of operating 

conditions when one flow mechanism becomes dominant. Porous ceramic alumina substrates are 

extensively used in water treatment from contaminants and seawater desalination by liquid filtration [42-

44], for which the fluid transport mechanism in pores is dominated by laminar flow. Thus apparent tortuosity 

based on the viscous limit is expected for such applications.  
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Chapter 4: The transport of gases in a mesoporous γ-alumina supported membrane 

In this chapter, we investigate the low pressure diffusion of several gases in a mesoporous γ-

alumina membrane of pore diameter 10.4 nm, coated on a macroporous α-alumina tubular substrate. 

Transport data for the uncoated substrate is also separately obtained and interpreted using the 

conventional slip flow correlation with a single representative pore size, and with effective medium 

theory while considering the entire pore size distribution. It is shown that the conventional 

correlation based on a single pore size yields significant anomalies in the tortuosity and pressure 

profile for all gases, which are eliminated on using the effective medium theory, demonstrating the 

importance of considering the pore size distribution (PSD). These anomalies lead to failure of the 

correlation for the membrane layer.  

The effective medium theory is also extended to the disordered membrane layer, using the classical 

slip flow model and a version corrected for finite molecular size, as well as the Oscillator model 

developed in this laboratory. All the diffusion models fitted the experimental data accurately, 

without the artifacts observed with the commonly used single pore size model. The results make 

evident the importance of correctly taking the pressure profile into account, in any investigation for 

a multi-layered supported membrane (i.e. with a macroporous substrate and a mesoporous 

membrane layer). It is seen that the slip flow model leads to significantly higher apparent 

diffusivities than the Oscillator flow model at small pore sizes. Nevertheless, the performance of all 

three diffusion models is comparable, and it is not possible to distinguish between them for the 

large pore diameter of 10.4 nm of the mesoporous γ-alumina membrane layer. The results 

unequivocally show that it is critical to consider the full PSD for each layer rather than using a 

single representative pore size in modelling membrane transport, and in interpreting experimental 

permeability data. 

4.1 Introduction 

The achievement of technical advances in a variety of fields, such as catalysis, adsorptive separation 

and drug delivery requires a deep understanding of infiltration of fluids through nanoconfined 

spaces, as well as the development of porous materials with controllable structures, and the 

systematic tailoring of pore architecture [1-3]. In the last few decades numerous carbon-based [4, 5] 

and inorganic [6-8] nanoporous materials, and high quality membranes with a variety of 

applications have been synthesised by various methods such as sol-gel processing [9, 10], chemical 

vapour deposition (CVD) [11] and hydrothermal techniques [12]. All these developments have 

stimulated considerable interest in the modeling and simulation of fluid behaviour in such materials 

[13-17]. These works have highlighted significant deficiencies in existing approaches, which have 
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been developed based on the assumption of negligible interaction between the fluid and solid. 

Nevertheless, the majority of modern work has followed the Dusty Gas Model (DGM), which 

utilises this assumption, while arbitrarily superposing the pore wall-affected and hydrodynamic 

fluxes [18].  

When the pores are far larger than the range of the potential field of the wall, the pore wall-affected 

diffusion is dominated by fluid-wall collisions and represented by the classical Knudsen model [19, 

20]. In that case, an appropriate estimate of the flow rate in tubular substrate is given by [2] 
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Here, the term ln(Ro/Ri) accounts for the change in curvature over the thickness of the tube, with Ro 

(m) and Ri (m) the outer and inner tube radii, respectively. Further, T is temperature (K), L (m) is 

the tube length, P is the average pressure (Pa), η is fluid viscosity (Pa.s), M represents the fluid 

molar mass (g/mol), Rg is the gas constant, ε is the substrate porosity and τapp the apparent tortuosity 

coefficient of the porous medium. pr (m) is a selected representative pore radius in the porous 

medium, which is used as a reference to estimate the apparent tortuosity from measurements of  F 

(moles/s).   

Although the classical Knudsen model can successfully predict the experimental data for transport 

in macroporous materials at low pressures, the application of the Knudsen diffusion model in 

mesoporous materials has been the subject of criticism because the dispersive interaction between 

the fluid and the pore walls is not negligible [16, 21]. Indeed, it has been extensively found that 

interpretation of experimental data using the Knudsen model in such small pores leads to 

unrealistically high tortuosities, indicating significant overestimation of the diffusivity [22-24].  

Molecular level modeling of the transport, in particular molecular dynamics (MD) simulation, is 

finding increasing use in predicting pore diffusivity, and has shown that the Knudsen approach 

overpredicts the diffusivity for 2 and 3 nm silica pores [16, 23, 25]. However, due to its 

computational intensity, the MD method is still impractical for use in interpreting experiment 

results in disordered materials, and a new tractable theory founded on molecular principles is of 

considerable interest. Extraordinary success has been achieved recently in this laboratory, with the 
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development of a statistical mechanical theory [26, 27], termed as ‘Oscillator model’, which 

considers dispersive interactions, overcoming the limitations of the Knudsen model. By comparing 

the Knudsen and Oscillator model diffusivities with MD results for silica pores, it has been shown 

that the Knudsen equation overestimates the diffusivity even for a pore diameter of 10 nm [26]. 

This situation depends on the strength of the solid-fluid interaction, and the extent of the 

discrepancy will vary with the structure and chemical composition of the pore walls. 

The application of any model to interpret data on the transport in a supported membrane requires 

individual consideration of the resistance of the membrane and support layers. In practice, an 

inorganic membrane system is fabricated in an asymmetric fashion, consisting of a thin selective 

(“active”) top layer with narrow pores in the region of molecular sieving dimensions, in which 

separation occurs. The top layer is generally deposited on interlayers followed by a relatively thick 

substrate with wide pores to enhance mechanical resistance while minimising the resistance to flow. 

Asymmetric alumina tubes consisting of a α-alumina thick substrate (1 - 2 mm) and a γ-alumina 

interlayer are usually selected as the support [28-30]. The α-alumina layer is made of packed crystal 

particles ( 3 m) to create macropores and provide mechanical resistance [31], while the crystal 

particles of γ-alumina are much smaller (0.05 m) [32], and are coated over the surface of the α-

alumina layer to produce a uniform, defect-free surface over which the active layer is deposited.  

Since the interfacial pressures between layers are not directly measurable, the analysis of diffusion 

through the substrate and the interlayer is often based on arbitrary hypothesis regarding the 

dominant transport mechanism in the substrate. As an example, some authors assume dominance of 

viscous flow in the support [33], which permits a reasonable membrane tortuosity (around 3) but is 

in disagreement with straightforward theoretical estimates of the relative resistances for Knudsen 

and viscous flow [21, 34]. Depending on the pore structure of a material, the theoretical tortuosity 

range varies between unity and infinity; however, it is generally in the range of 4-10 for 

consolidated materials [35, 36], and below 2 for unconsolidated materials [37, 38].  

Indeed, a recent study from this laboratory [2] has experimentally verified that such assumptions are 

incorrect, and that at low pressure Knudsen diffusion is the dominant transport mechanism in a 

symmetrical macroporous α-alumina substrate having a mean pore size of a few hundred 

nanometers [2]. Furthermore, most conventional correlations rely on the hypothesis that the 

tortuosity is fully determined by the material topology; however, in our previous work it has been 

extensively confirmed that tortuosity depends weakly on the operating conditions due to the 

interplay between Knudsen and viscous diffusion in the slip flow regime [2]. This makes the 

investigation of the diffusion in a supported membrane much more complicated, as a single 
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tortuosity cannot be used to describe the transport of different gases at different temperatures. In 

addition, the thickness of the interlayer or membrane layer is generally kept very small (several 

microns) in order to permit high permeation rates [39, 40]. As a consequence, the interlayer 

pressure and the actual driving force through the membrane is unknown, and it is presumably quite 

sensitive to the gas species and operating conditions, differing significantly from values derived 

using empirical correlations which ignore the pore size distribution (PSD) or make arbitrary 

assumptions regarding the dominant flow resistance through the support.  

As a result of the above complexities, it is important for the support resistance to be separately 

investigated, and correctly accounted for, in interpreting transport data for a supported membrane. 

Studies with a 2-layer system (γ-alumina interlayer over -alumina substrate) will permit 

unequivocal understanding of the mechanism of fluid transport in the mesoporous γ-alumina layer 

coated on the macroporous substrate, and validate the applicability of the Knudsen model in the γ-

alumina mesopores. This understanding will be critical to interpreting data for transport in a three-

layer membrane, and obtaining fundamental insight into the mechanism and governing resistance 

for flow in the selective layer deposited over the γ-alumina interlayer. Therefore, following the 

steps of our previous work, we developed here three different methods to explore the diffusion 

mechanisms in a simple mesoporous γ-alumina supported membrane, while considering the 

resistance of the substrate and membrane layer. The technique provides good agreement with 

experimental data and proves to be valuable for extracting information on how the interlayer 

pressure and tortuosity is influenced by the operating conditions, such as temperature and gas 

species. 

4.2 Materials characterization and experiments 

The α-alumina tubular substrate was obtained from Australia Chemtech Trading & Service 

Company, and is made of packed α-alumina particles sintered at high temperature. The pore size 

distribution of the substrate was obtained using Mercury Porosimetry (Micrometrics, IV 9500), and 

is depicted in Figure 4.1. The porosity and skeletal density extracted from Mercury Porosimetry 

were 33.3% and 3.85 g/mL, respectively, very similar to the density of 3.96 g/mL obtained through 

Helium Pycnometry. The similarity between the Mercury Porosimetry and Helium Pycnometry-

based densities reveals that most of the voids in the substrate correspond to macropores, confirming 

the reliability of the PSD determined through Mercury Porosimetry in Figure 4.1. The 

corresponding pore volume and surface area are 0.13 cm3/g and 1.01 m2/g, respectively, which were 

subsequently used to estimate the representative pore radius. To further understand the substrate 
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structure, Scanning Electron Microscopy (SEM) images can be found in our recent work [2], which 

suggest that the size of the substrate particles was around 2-3 μm.  
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Figure 4.1 Pore size distribution of the substrate determined by mercury porosimetry. 

The membrane layer was prepared from a γ-alumina solution (20 wt%) purchased from Sigma-

Aldrich, with an average particle sizes of about 50 nm, as verified through the SEM micrograph in 

Figure 4.2.  

 

Figure 4.2 SEM image of the uncalcined γ-alumina powder 

The γ-alumina solution was diluted to 2 wt% with deionized water, and coated onto the outer 

cylindrical substrate, while the inner surface was sealed during the dip-coating process. Subsequent 
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to coating and drying in a temperature controlled oven at 40 ºC for 2 hours, the membrane was 

calcined at 700 ºC for 2.5 hours. In order to make a nearly defect-free membrane, ten alumina layers 

were coated over the outer surface of the substrate, where each layer was coated, dried and calcined 

under the same conditions as the first layer. The remaining diluted solution was dried and calcined 

under the same conditions as the supported membrane to obtain agglomerated γ-alumina powder, 

which was characterized by nitrogen adsorption at 77 K by using a Micrometrics ASAP2020. The 

pore size distribution of this agglomerated powder was taken to represent the pore structure of the γ-

alumina membrane layer. 

The N2 adsorption isotherm was analyzed by nonlocal density function theory (NLDFT) assuming 

cylindrical pores with oxide surface, and the obtained pore size distribution is plotted in Figure 4.3.  
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Figure 4.3 Pore size distribution of the calcined γ-alumina powder, obtained by nonlocal density 

function theory (NLDFT) interpretation of N2 adsorption data. 

The corresponding pore volume and surface area are 0.48 cm3/g and 164.15 m2/g, respectively, 

which were subsequently used to estimate the porosity and representative pore radius. The skeletal 

density of the γ-alumina powder measured by helium pycnometry was 3.09 g/mL, significantly 

smaller than the reference density between 3.6 and 4.0 g/mL [41], indicating the presence of voids 

inaccessible to He inside the γ-alumina particles or their agglomerates. The accessible porosity of 

the powder was determined by  

1
p

p

V

V








                                                                    (4.3) 

in which Vp is the pore volume obtained through the NLDFT characterization, and ρ is the true 

density from Helium Pycnometry. Following eqn. (4.3), the accessible porosity of the alumina 

powder is estimated to be 0.57. 
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The thickness of the supported layer (z) is difficult to determine precisely since the boundary 

between the membrane layer and the substrate is somewhat diffuse. This is clearly demonstrated in 

the SEM micrographs (Figure 4.4), where the thickness varies between 1.37 and 2.32 µm. The 

variation in film thickness is attributed to the underlying topology of the -alumina substrate, which 

varies in height and has a high roughness. As a result of the thin -alumina film coating, a more 

homogeneous and smooth layer is formed, although with slightly varying thickness. Based on these 

micrographs, an average value of z = 2 μm was considered a suitable estimate for the present 

calculations. In order to estimate an appropriate tortuosity, in this work a representative cylindrical 

pore size for the substrate and membrane layers in eqs. (4.1) and (4.2) is based on  

2 p
p

V
r

S
                                                                       (4.4) 

 

where S is the surface area obtained through the Mercury Porosimetry or NLDFT characterization. 

This definition of the representative pore radius is perhaps the most common, although other 

alternatives such as the peak size of the PSD or number averaged pore radius have also been used 

[2]. Following eqn. (4.4), the obtained pr  is 257.05 nm for the substrate and 5.22 nm for -alumina 

membrane layer. 

 

Figure 4.4 SEM image of the interfacial region between the substrate and the membrane layer. 

The transport mechanism in the substrate has been previously examined based on the commonly 

used correlations in eqs. (4.1) and (4.2) with the flow rate measured by the water displacement 

method [2]. However, the resistance of water becomes increasingly more important when the 

membrane layer is deposited on the substrate surface. To minimize the experimental error, more 
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accurate measurement of the flow rate through the substrate alone and the supported membrane 

were therefore made here using a bubble flow meter.  

The membranes were tested in a dead-end mode, where one end of the membrane was sealed so 

gases had to diffuse through the membrane. Permeation experiments were conducted on the 

substrate and the supported membrane, respectively, by flowing six gases (H2, He, CH4, N2, Ar and 

CO2) at a constant feed pressure, PF =1.97 bar, and several temperatures ranging from 30 to 300 ºC; 

the outlet pressure (Po) corresponds to atmosphere pressure (1.01 bar). Schematic drawings 

indicating the direction of gas flow through the substrate and supported membrane are illustrated in 

Figure 4.5, in which the volumetric flow rate is measured by a bubble flow meter and later 

converted to molar flow rate by means of the ideal gas equation of state. In the sketch, P1 represents 

the interfacial pressure between the -alumina substrate and the -alumina layer. It is noted that the 

permeation experiments was carried out from high temperature (300 ºC) to low temperature (30 ºC) 

to avoid any water blockage effect. 

 

Figure 4.5 Schematic drawing of the flow direction in (a) the substrate, and (b) the supported 

membrane.  
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For clarity, the flow rate in the substrate and the membrane, although equal at steady state, are 

labeled as Fs and Fc, respectively. Besides, the structure parameters (porosity, tortuosity, tube length 

and average pore size) of the substrate and the membrane layer are identified by subscripts s and c, 

respectively, unless stated otherwise. 

4.3 Transport models 

4.3.1 Transport in a single pore 

The gas diffusivity in a single pore is highly related to its pore size, which is defined in several 

different ways as depicted in Figure 4.6. For pores much larger than the fluid molecules for which 

the density is approximately constant along the radial coordinate (K=1),  the diffusivity is estimated 

based on the geometrical radius (rs), which is the distance between the centreline of the pore and the 

surface atoms on the walls. 

 

Figure 4.6 Illustration of different pore radii used in the classical Knudsen model (rs), the corrected 

Knudsen model ( c
sr ), and the Oscillator model (rosc). 

Slip flow has been extensively validated in the macroporous substrate at low pressure [2], for which 

the Knudsen (DKn) and viscous diffusivity (Dvis) are given by 

 

97Kn s

T
D r

M
                                                              (4.5) 

2

8
s

vis

Pr
D


                                                                     (4.6) 
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Since the macropores in the substrate are larger than 100 nm, based on the PSD in Figure 4.1, and 

are much larger than the fluid molecular size, eqs. (5) and (6) can be safely used to predict the 

apparent diffusivity ( a
o Kn visD D D  ) in the substrate, neglecting any exclusion effects due to finite 

molecular size. 

For smaller pores in which the finite size effect of the fluid molecules must be taken into account, 

the pore radius must be corrected as 

2
ffc

s sr r                                                           (4.7) 

where ff is the Lennard-Jones (LJ) fluid-fluid collision diameter, which is listed in Table 4.1 for the 

gases in this work. This applies to the mesopores in the membrane layer, for which the apparent 

diffusivity ( c c c
o Kn visD D D  ) may be predicted based on the corrected pore radius ( c

sr ) through eqs. 

(4.5) and (4.6), while neglecting adsorption and effects of inhomogeneity (i.e. considering that the 

equilibrium constant K = 1). 

Table 4.1 Fluid-fluid Lennard-Jones parameters [23] used in the Oscillator model. 

Parameters H2 He CH4 N2 Ar CO2 

σff (nm) 0.2915 0.2551 0.381 0.3572 0.341 0.3472 

εff/kB (K) 38.0 10.22 148.2 93.98 120.0 221.9 

 

An alternative method to estimate the apparent diffusivity in the membrane layer is based on the 

recently developed Oscillator model [27], which considers the (low-density) radial density profile 

inside the pores. The pore radius used in the Oscillator model is the distance between the centreline 

of the pore and the centre of the surface atoms on the walls, rosc, defined as 

2osc s ssr r                                                            (4.8) 

 

where ss is the Lennard-Jones (LJ) solid-solid collision diameter. In the γ-alumina, the surface is 

assumed to consist of a surface layer of oxygen atoms, thus the oxygen atom radius, is be added to 

the geometrical pore radius rs in Figure 4.3, to yield rosc. According to the Oscillator model, for the 

diffusion of a LJ fluid under conditions of diffuse reflection in a cylindrical pore the diffusivity 

(Dosc) is given as 
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              (4.9) 

 

where ( )r  is the solid-fluid potential, m is fluid particle mass, 1 / Bk T   and 

0
exp( ( ))Q r rdr


  . Further, pr and p are the radial and angular components of the molecular 

momentum, while  clr  and cor  represent the radial bounds of a fluid molecule trajectory between 

consecutive diffuse reflections, extracted from the solution of ( ', , , ) 0r rp r r p r  . Details of the 

derivation of eqn. (4.9) can be found elsewhere  [1]. The equilibrium constant is given by 

 

( )/
2

0

2 osc

B

r
r k T

osc

K e rdr
r

                                                                     (4.10) 

 

and the apparent diffusivity based on the pseudo-bulk concentration gradient is then estimated as 

osc
o oscD D K , with viscous transport considered to be negligible in the mesoporous membrane layer. 

The value of ( )r  depends strongly on the pore wall structure. In this work, the pore walls in the 

membrane layer are assumed to be infinitely thick and comprised of closely-packed LJ sites. The 

integration of the LJ interaction potential over the wall volume yields [42], 

 

 
2 2

2 3
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( )

32( ) 1 ( ) ( ) 1 ( )

h osc h osc
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osc sf osc osc sf osc

F r r F r r
r

r r r r r r
    

 

       
         

                 (4.11) 

 

Here sf is the LJ solid-fluid collision diameter, εsf is the LJ potential well depth, ρv is the pore wall 

density (atoms per unit volume) and ( , , ; )hF x y z w  is the Hypergeometric function. An alternate 

expression assuming a single layer pore wall has been derived elsewhere [43], and was used in 

recent work [23]; however, here we use the expression in eqn. (4.11), given the large size of the -

alumina particles (~ 50 nm) comprising the pore walls compared to the length scale of the LJ 

interaction (~ 3sf). The Lennard-Jones (LJ) parameters of the different gases used in our 

experiments are given in Table 4.1, and the LJ parameters for the γ-alumina are taken from Blas et 

al. [44] as εss/kB = 108.47 K,  σss = 0.303 nm, with ρv = 52.24 nm-3. The Lorentz-Berthelot mixing 

rules are employed to evaluate the fluid-solid LJ parameters /sf Bk  and sf [26]. 
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4.3.2 Transport in pore networks 

As mentioned above, a key factor hindering the application of transport theories to the interpretation 

of experimental data or its incorporation in process design is the complexity of the material 

topology, which involves variables such as connectivity and PSD. Effective medium theory 

provides a method to account for these variables by replacing the nonuniform network with a 

uniform one where all pores offer the same resistance to flow. The inverse of that resistance is what 

is called the effective conductance. In our previous work [2], we have already applied this technique 

to model the transport in the substrate at low pressure, and the tortuosity was confirmed to vary with 

temperature due to the interplay between Knudsen and viscous diffusion. However, the previous 

methodology can only be used in the macroporous homogenous tubular substrate where the driving 

pressure gradient is well defined. For a heterogeneous supported membrane consisting of a 

macroporous substrate and a mesoporous γ-alumina layer the pressure gradient through each layer 

cannot be measured directly; consequently, the apparent tortuosity for each layer cannot be 

determined and the methodology is untenable. In order to eliminate the uncertainty on the 

tortuosities, a method based on flow rate is developed here, which is applicable for the homogenous 

substrate by itself as well as to each layer of a supported membrane having two or more layers (i.e. 

the substrate and membrane layers). 

For a pore of radius rp, the conductance is defined as the ratio of the current to the driving force: 

2 ( ) ( )p p o pr K r D r

l


                                                               (4.12) 

where Do(rp) is the pore diffusivity, and K(rp) is the equilibrium constant, based on the relevant  

pore radius as defined above. Thus, Do(rp) =
a
oD  or c

oD  for the classical slip flow and corrected slip 

flow model, respectively, which will be applied for the substrate as well as membrane layers. For 

the membrane layer, the Oscillator model provides the alternative Do(rp) = osc
oD . Further,   1pK r   

for the large substrate macropores for which the Knudsen model is considered to hold. 

The effective medium conductance e is obtained from the solution to [45, 46] 

( )
0

( ( / 2 1) )
e

eN

 
 




 
                                                    (4.13) 
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where N is the coordination number, i.e., the number of pores meeting at an intersection and  

represents a number average over the pores. The directionally averaged local flux in a pore of radius 

rp may be expressed as [45] 

2
2

1
( ) cos ( )

1
e

p
p g

l N dP
j r

r R T N dz

 


          
   (4.14) 

where z represents the coordinate along the macroscopic flux direction, 2cos ( )  accounts for the 

local diffusion direction, which is not necessarily axial [47], and the factor (N-1)/(N+1) stands for a 

correlation effect which arises because of the finite probability that a diffusing molecule returns to a 

pore that it has just traversed [35, 36]. For unconsolidated materials such as the substrate depicted in 

Figure 4.4, with non-vanishing aspect ratio x = rp/l, the local direction of flow is assumed close to 

the macroscopic transport direction, and the expression for 2cos ( )  can be written as [37, 47]  

2
2 2 1/2

4 2
cos ( ) ( ) 1

3(1 4 ) 3(1 4 )

x
g x

x x
    

 
  (4.15) 

The overall flux in the equivalent uniform network can be obtained by integration over the pore 

volume distribution, giving [2] 

2

2

( ) 1

1
e

p g

l g x N dP
J

r l R T N dz




              
                                                 (4.16) 

For a given layer, the apparent tortuosity is obtained by equating the flux in eqn. (4.16) to the 

empirical model ( ) ( )( / ) /p o p app gJ K r D r dP dz R T   , yielding [2] 

2

2

( ) ( ) 1

( ) 1
p p o p

app
e

r l K r D r N

l g x N





        

                                                    (4.17) 

where pr  
is a representative pore radius, such as that defined in eqn. (4.4). 

Since the tortuosity cannot be directly measured experimentally and the flux, J, varies with radial 

position in tubular materials, it is more suitable to choose the flow rate, F, as the variable for the 

analysis of the transport mechanism in the substrate or the membrane, since F is experimentally 

measurable and always constant across the substrate and the membrane layer. The expression for F 

is derived from integration of eqn. (4.16) over the substrate (or the membrane) thickness 

2

2

2 ( ) 1
( )

ln( ) 1
e

p o i g

L l g x N
F P

r l R R R T N

         
                                         (4.18) 
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which can be rewritten as 

2

2

2 ( ) 1
( )

ln(1 ) 1
e

p c i g

L l g x N
F P

r l z R R T N

          
                                    (4.19) 

where zc is the thickness of the substrate or membrane layer.  

Since the thickness of the substrate tube (zc = 2.13 mm) is comparable to Ri (Ri = 4.25 mm), no 

further simplifications can be done on eqn. (4.19). On the other hand, the thickness of the 

membrane layer (zc ≈ 2 μm) is much smaller than its inner radius (Ro = 6.38 mm), so that ln(1+zc/Ro) 

≈ zc/Ro, and the flow rate expression reduces to 

2

2

2 ( ) 1
( )

1
o e

c p g

R L l g x N
F P

z r l R T N

          
                                       (4.20) 

Since neither the pore length distribution nor the pore connectivity can be extracted from the 

characterization results, a constant length l is assumed and, along with the coordination number N, 

is taken as an adjustable parameter obtained by fitting the flow rate through the following objective 

optimization function 

2

2
1

( )1
( , )

n
mi ei

i ei

F F
Q N l

n F


                                                  (4.21) 

where n is the number of experimental flow rate points for all gases, Fei is the experimental flow 

rate value for data point i, and Fmi is the theoretical value of the flow rate obtained by effective 

medium theory corresponding to the same operating conditions in Fei. For clarity, the structure 

related parameters (coordination number, pore length and model tortuosity) of the substrate and 

the membrane layer are distinguished by subscripts s and c, respectively, unless stated otherwise. 

For the pure substrate by itself, operating conditions such as temperature and pressure can be 

directly monitored in the experiments, so the driving pressure drop, (-ΔP), is available, and the 

coordination number (Ns) and pore length (ls) can readily be obtained by fitting the model in eqn. 

(4.18), based on minimization of Q(Ns, ls). On the other hand, the interfacial pressure, P1, in the 

heterogeneous supported membrane is undetectable, so the driving force, (-ΔP), in each layer is not 

directly available. However, the adjustable parameters for the coated membrane layer (Nc and lc) 

can be indirectly obtained by solving the relationship 

   1 1, ,s F c oF P P F P P                                            (4.22) 
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to obtain P1, and subsequently minimizing Q(Nc ,lc). Here sF  is the flow rate predicted by eqn. (4.18) 

for the substrate as part of the supported membrane, and cF  is the flow rate predicted by eqn. (4.20) 

for the membrane layer. 

In this way, the interfacial pressure, P1, is estimated theoretically, and the structure parameters (Nc 

and lc) of the supported membrane layer are optimized based on eqn. (4.21). 

4.4 Results and discussion 

4.4.1 Failure of conventional correlations based on a single pore size 

We first examine the use of the commonly used correlation in eqs. (4.1) and (4.2), for the flow 

through the substrate alone, using a single representative pore size, as is often the practice in the 

experimental literature. Thus, the presence of a pore size distribution is overlooked in the diffusion 

modeling. According to eqn. (4.1), plotting sF T  versus 1/ T  at constant mean pressure should 

yield a straight line whose slope and intercept provide independent estimates of the tortuosity, 

termed as τs and τi, respectively. Such a plot is depicted in Figure 4.7(a), where the deviation 

between the regression line (solid lines) and the experimental data (symbols) is observed to be 

very small for all the gases, indicating the model adequately fits the experimental data. However, 

the regression lines are not parallel to each other as a purely material-dependent tortuosity would 

suggest, and the lines corresponding to some of the heaviest gases (N2, Ar and CO2) even cross 

over each other. Alternatively, the tortuosity can be obtained by plotting 
sF TM versus /M T  

for all the gases together according to eqn. (4.2), and a straight line with intercept and slope that 

are independent of the particular gas should be observed. Such plot is shown in Figure 4.7(b), 

where it is evident that some of gases (CH4 and H2) systematically deviate from the regression line. 

Moreover, the tortuosity varies slightly from gas to gas, as is evident from the fitting results given 

in Table 4.2.  

Table 4.2 Fitted apparent tortuosity based on use of a single representative pore size. 

Parameters 
H2 He CH4 N2 Ar CO2 

Overall tortuosity based 

on Figure 4.7(b) 

τi 1.59 1.66 1.50 1.46 1.59 1.72 1.66 

τs 1.79 1.36 1.56 1.69 1.45 1.35 1.38 
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To investigate the transport in the membrane layer, the interfacial pressure (P1) can be estimated 

from the measured flow rate by using eqn. (4.1) with the apparent substrate tortuosity given in 

Table 4.2. Assuming the Knudsen model to hold, a straight line through the origin should then be 

obtained upon plotting the membrane layer permeance (π = J/ΔP) against 1 TM  following eqn. 

(2), since viscous flow is negligible for the narrow pore size range of 5-25 nm of the membrane 

layer (c.f. Figure 4.3). Using the individual τi and τs for each gas, the estimated interfacial pressure 

is illustrated in Figure 4.8(a), in which anomalous behavior with temperature is observed, with the 

interfacial pressure increasing with temperature under some conditions. Furthermore, unexpected 

crossover between gases is observed. The corresponding regression line for the membrane layer is 

depicted in Figure 4.8(b), in which the obtained apparent tortuosity of this layer is about 2.92. 

However, large systematic deviation of the different gases from the regression line is seen, and the 

behavior of all the gases is nonlinear. Similar behaviour is obtained by using the overall 

tortuosities for τi and τs for all gas together in the substrate, given in Table 4.2. As shown in 

Figures 4.8(c) and 4.8(d), the obtained interfacial pressure and the corresponding regression line 

are now significantly different, and yield a higher value of tortuosity (τapp = 3.58), but with similar 

pattern of deviation from the expected linear behavior. 

 

Figure 4.7 (a) Variation of  sF T  with 1 / T , and (b) variation of 
sF TM  with /M T  for 

several gases in the uncoated substrate. The symbols are the experimental points, and the lines are 

the regression results obtained using eqs. (4.1) and (4.2). 
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Figure 4.8 Variation of interfacial pressure with temperature and linear regression results for the 

membrane layer according to eqs. (4.1) and (4.2), using fitted tortuosities given in Table 4.2. (a) 

The interfacial pressure obtained using individual gas tortuosities, (b) linear regression using 

individual gas tortuosities, (c) the interfacial pressure obtained using the combined overall 

tortuosity, and (d) linear regression using the combined overall tortuosity. The symbols are the 

experimental points, and the lines are the model results obtained using eqs. (4.1) and (4.2). 

The diffusion in the membrane layer can now be investigated by equating the flow rates through 

the substrate and membrane layers, using the interfacial pressure indicated in Figure 4.8(a) or 4.8(c) 

and assuming a suitable flow mechanism in this layer. To demonstrate the results of this method, 

the three models discussed in Section 4.3.1 are used to estimate the apparent tortuosity in the 

membrane layer; these include the Knudsen, the corrected Knudsen (corrected for pore size as in 

eqn. (4.7) and the Oscillator models, using the interfacial pressure in Figure 4.8(a). For the 

classical and corrected Knudsen models, the corresponding apparent tortuosity variation with 

temperature in the membrane layer is depicted in Figures 4.9(a) and 4.9(b) respectively, showing 

the apparent tortuosity to vary strongly with temperature, lying between 2 and 5 in the temperature 

range investigated. Similar behavior is seen for the Oscillator model, as depicted in Figure 4.9(c), 
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with significant tortuosity variation (between 1.5 and 4). Although variation of tortuosity with both 

temperature and gas is expected based on the Oscillator model when adsorption is strong [23], 

such variations of tortuosity should be very small for large pores for which adsorption is negligible. 

Thus, a nearly constant tortuosity should be expected for the pore size of 5.22 nm for all the gases, 

in contradiction of the results in Figures 4.9(a)-4.9(c).  

 

 

 

 

 

 

 

Figure 4.9 Variation of apparent tortuosity with temperature for the membrane layer, using 

individual fitted tortuosities for each gas in the substrate given in Table 4.2, and ignoring the pore 

sized distribution. (a) classical Knudsen model, (b) corrected Knudsen model, and (c) Oscillator 

model. 

It is important to note that the above anomalous results are not necessarily an indication of failure 

of the flow models, but are most likely a result of using a representative pore radius in the 

substrate - the commonly used main assumption in the analysis - rather than considering the pore 

size distribution. In fact, it has been theoretically validated that the tortuosity is not only directly 

influenced by pore topology, but also affected by the conditions of the fluid flow in the pores [2, 
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45, 46]. For instance, in the slip flow regime, the apparent substrate tortuosity varies with 

temperature when using a representative pore radius due to the different contributions of viscous 

and Knudsen flow in pores of different sizes [2]. The same phenomenon is also evident here, as 

shown in Figure 4.10 for N2 in the uncoated substrate, and a mild temperature dependency for 

tortuosity is observed, with a slight decrease in tortuosity with increase in temperature. This 

tortuosity has been estimated from the measured flow rate at each temperature, using eqn. (4.1). 

As evidence for statistical significance of the effect of temperature on tortuosity, the data in Figure 

4.10 was divided into 2 groups according to temperature. Application of one-way analysis of 

variance (ANOVA) [48] showed the p-value for the null hypothesis (i.e. no difference between 

two groups) to be 0.02. This is significantly smaller than the generally accept value of 0.05 for 

rejecting the null hypothesis, indicating there is a significant relationship between temperature and 

tortuosity. Interestingly, the present observation is different from our previous work, in which an 

increase in tortuosity with temperature was found. The different trend is due to the different 

representative pore radius used here. In the present work this radius is estimated based on eqn. 

(4.4), while in the earlier work we had used the number averaged pore radius [2]. Thus, it is clear 

that the choice of representative pore size has an important bearing on the relationship between 

tortuosity and temperature, when the contributions of both viscous and wall-mediated diffusive 

flow are important. 
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Figure 4.10 Variation of apparent tortuosity with temperature for N2 flow in the substrate, based on 

eqn. (4.1) and using the representative pore radius define in eqn. (4.4). 

It is evident that the commonly used model, based on eqs. (4.1) and (4.2) with a single pore size, 

can only crudely explain the results and further improvements are needed. As shown in our earlier 

work, such anomalies can be explained by the use of a pore size distribution with a suitable 
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network model [2, 36, 45]. Here we use effective medium theory (EMT) for this purpose, 

exploring the transport in the membrane layer with this powerful method in the next section. 

4.4.2 Application of effective medium theory 

4.4.2.1 Transport in uncoated substrate 

Given the above inconsistencies in the tortuosity values based on eqs. (4.1) or (4.2), we employed 

effective medium theory for the transport in the uncoated substrate. The advantage of this method is 

that it accounts for the pore size distribution, rather than using a single arbitrary representative pore 

size such as in eqn. (4.4). 

Instead of fitting the apparent tortuosity, the effective medium theory described in eqs. (4.12)-(4.19) 

establishes a direct relation between the experimental flow rate and the macroscopic driving force. 

The structure parameters Ns and ls were obtained by minimizing the objective function defined in 

eqn. (4.21), covering all the gases and temperature points at which measurements were made. 

Figure 4.11(a) depicts the variation of F with T obtained from experimental permeation data 

(symbols) and the corresponding best fit (solid lines) obtained using the structure parameters Ns = 

12 and ls = 300 nm for several light gases. The slip flow model with the Knudsen and viscous 

contributions given in eqs (4.5) and (4.6) was used for individual pores. It is readily seen that the 

new model can accurately predict the fluid behavior in the substrate except for a slight 

overestimation of the data for H2, suggesting that the selected values for Ns and ls adequately 

capture the substrate pore network topology. Nevertheless, we note that the current theory assumes 

straight cylindrical pores, somewhat different from the real pores formed by the irregular voids 

between the alumina particles. In this sense, the values of Ns and ls should be understood as the 

effective coordination number and pore length of an equivalent network comprised of ideal 

cylindrical and straight pores providing the same overall resistance to flow as the actual substrate.  

The model pore length (ls = 300 nm) is only slightly shorter than the one reported in our previous 

work ls = 330 nm, for the same substrate by fitting the experimental tortuosity to the model 

tortuosity provided by eqn. (4.17) [2]. The difference is mainly due to the greater accuracy of the 

current measurements, and to a smaller extent due to the fitting of the flow rate rather than the 

tortuosity. The bubble flow meter expectedly provides more accurate results; because of this, we 

will continue to take ls = 300 nm in the ensuing calculations. The model pore length is only about 

10% of the real particles size, because the real pore space between the aggregated alumina particles 

is not perfectly cylindrical but has wide mouths and a central constriction, so the model pore length 

must be shortened to produce an equivalent uniform diffusivity [2]. The variation of tortuosity with 
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temperature for all gases is illustrated in Figure 4.11(b), using the representative pore radius of 

257.05 nm in eqn. (4.17), showing a decrease in tortuosity with increase in temperature. This is 

consistent with the experimentally observed behavior illustrated in Figure 4.10. Such variation is a 

consequence of the combination of Knudsen and viscous flows, as discussed in our previous work 

[2].  

 

Figure 4.11 (a) Variation of Fs with temperature, and (b) variation of apparent tortuosity with 

temperature, for the uncoated substrate. The symbols are the experimental points, and the lines are 

the model results obtained using eqs. (4.17) or (4.18) with Ns = 12, ls = 300 nm, and the classical 

slip flow model in the substrate. 

The systematic decrease is due to a different representative pore radius, which leads to decrease of 

the ratio of the apparent diffusivity ( )o pD r  to the effective conductance λe with increase in 

temperature. The model parameters for the substrate (Ns = 12 and ls = 300 nm) will be used in the 

prediction of the transport in the supported membrane. 

4.4.2.2 Transport in the coated membrane layer 

All of the above results rely on the understanding of the fluid behavior within individual pores in 

the pore space to produce appropriate diffusivity estimates to be used along with effective medium 

theory. Although the slip flow model was extensively validated for macrospores in the substrate [2], 

the flow mechanisms in the mesopores remains controversial [22]. To interpret data obtained here 

for the coated membrane, three different flow models (classical slip flow model, corrected slip flow 

and Oscillator model) were applied to reference the transport in the mesopores, as follows. 
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4.4.2.2.1 Slip flow in the membrane layer 

In this case, we assumed the classical slip flow model in the mesopores described by eqs. (4.5) and 

(4.6). The structural parameters of the coated membrane layer were obtained by fitting the flow rate 

versus temperature data, by minimizing the objective function in eqn. (4.21). Figure 4.12(a) shows 

the variation of flow rate with temperature for the different gases in the supported membrane, using 

the fitted values of Nc = 12 and lc = 5 nm for the coated membrane layer and Ns = 12 and ls = 300 

nm, as fitted above for the substrate. The symbols correspond to the experimental data, and the lines 

to the model results. As noted in our recent work [2], such high values of the coordination number 

N, of 12, are consistent with the close packing of spherical particles, such as in face-centred or 

hexagonal close packing. This agreement is to be expected given the unconsolidated nature of the 

substrate and the membrane layers, and provides support for the EMT approach adopted. The model 

pore length of 5 nm is around 10% of the particle size (~50 nm) of the unconsolidated porous 

medium of the coated membrane layer, yielding the same particle size to pore length ratio as 

obtained for the substrate.  

Since the model predicted the experimental data well except for marginal overprediction for H2 as 

illustrated in Figure 4.12(a), it is meaningful to examine the corresponding interfacial pressure, P1. 

The variation of P1 with temperature for several gases is depicted in Figure 4.12(b). The interfacial 

pressure (P1) decreases monotonically with increase in temperature for all the gases, and represents 

a significant improvement over the results obtained using the correlation in eqs. (4.1) or (4.2) with 

the tortuosity parameters in Table 4.2. The latter leads to an increase in interfacial pressure above a 

temperature of about 500 K, as illustrated in Figure 4.8(a). This apparent increase is clearly due to 

the use of a single representative pore size in the modeling, while neglecting the PSD. Figure 4.12(b) 

shows that the interfacial pressure profile is significantly different for each of the gases, with the 

following order, from the highest to the lowest interfacial pressure, observed at all temperatures: 

CO2>CH4>N2>Ar>H2>He. This is clearly indicative of a higher relative resistance of the substrate 

for the lighter gases. 

Accordingly, the driving force in the membrane layer varies significantly from gas to gas and with 

temperature for any given species. For instance, at low temperature (303 K) the pressure gradient 

for CO2 is almost twice as much as the one for He since the outlet pressure is about 1 bar, and the 

pressure gradient for CO2 at low temperature (303 K) is almost 30% higher than that at 573 K. 

Figure 4.12(c) indicates that the relative pressure drop over the substrate constitutes most of the 

driving force (more than 95%) through the supported membrane for all the gases. This is a 

consequence of the substrate thickness being considerably larger than the thickness of the 
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membrane layer. Therefore, it is of paramount importance to correctly take the pressure drop 

through each of the layers into account for similar supported membranes before analyzing the 

transport, as it is not uncommon to neglect the resistance offered by the substrate based only on its 

(typically) large mean pore size.  

 

Figure 4.12 (a) Variation of Fc with temperature, (b) variation of interfacial pressure, P1, with 

temperature, (c) variation of the relative pressure drop in the substrate with temperature, for flow of 

different gases in the supported membrane, and (d) the variation of model tortuosity, τapp, with 

temperature for membrane layer. The symbols are the experimental points, and the lines are the 

model results obtained using eqs. (4.20) and (4.22) with Nc = 12, lc = 5 nm, and the classical slip 

flow model in the membrane layer. 

Figure 4.12(d) depicts the apparent tortuosity variation with temperature for the membrane layer 

based on eqn. (4.17), indicating negligible tortuosity variation (between 1.360 and 1.362) with 

temperature and gas when effective medium theory is used. This tortuosity variation is much 

smaller than that obtained through the empirical correlation method discussed above (2-5), 

indicating the importance of considering the PSD. The low value of the membrane layer tortuosity, 

of around 1.36, is also more reasonable given the unconsolidated nature of the -alumina layer (c.f. 

temperature (K)

250 300 350 400 450 500 550 600

F
c,

 m
ol

/s

0.00

1.00x10-3

2.00x10-3

3.00x10-3

4.00x10-3

modelH2

He

CH4

N2

Ar
CO2

(a)

temperature (K)

300 350 400 450 500 550 600
P

1
  (

P
a)

101000

102000

103000

104000

105000

106000

101325

(b)

CO
2 

CH
4 

 N
2 

 Ar 
H

2 

He 

temperature (K)

300 350 400 450 500 550 600re
la

tiv
e 

p
re

ss
u

re
 d

ro
p

 in
 s

u
p

p
or

t 
(%

)

95.5

96.0

96.5

97.0

97.5

98.0 (c)

He 
H2 

Ar
N2 

CH4 

CO2 

temperature (K)

300 350 400 450 500 550 600
1.3606

1.3608

1.3610

1.3612

1.3614

1.3616

1.3618

He
H2 

Ar
N2

CH4 

CO2 

ap
p

ar
en

t 
to

rt
u

os
ity

, 
 a

p
p

(d)



4-24 
 

Figure 4.2), and is in the range reported for packed beds [43]. On the other hand high values, such 

as those in the range of 2-5, obtained here using a single representative pore size, are far too large 

for unconsolidated porous media, but are commonly accepted in the literature because they are 

fortuitously in the range expected for long cylindrical pores. Nevertheless, the inadequacy of the 

single pore size approach is evident from the anomalous behavior with respect to temperature. The 

nearly constant tortuosity for the membrane layer obtained using effective medium theory can be 

explained by noting that the viscous flow contribution to the overall diffusivity, given by eqn. (4.6), 

varies with rp
2, and is negligible in the narrow mesopores of the membrane layer (i.e. a

o KnD D ). In 

the absence of viscous effects,  the factor (T)1/2 appearing in the terms e and ( )o pD r  in eqn. (4.17) 

cancels out, leading to a constant tortuosity that depends only on the pore size distribution [2].  

The interfacial pressure variation with temperature or gas can be found by equating the model flow 

rate for the substrate and the membrane, as given in eqs. (4.18) and (4.20), to obtain 

 
1 ( ) (1 )

c c
e e
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                                                 (4.23) 
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is a property of the supported membrane (ω=87,137.64 in this 

work), c
e  is the effective conductance for the coated membrane layer and s

e is the effective 

conductance for the substrate. 

Since ω is temperature independent, it is readily seen that it is the ratio of the effective conductance 

between the substrate and the membrane ( /c s
e e  ) that determines the interfacial pressure at any 

temperature. Figure 4.13 depicts the variation of interfacial pressure with the conductance ratio, 

/c s
e e  . Both c

e  and s
e , as well as their ratio /c s

e e  , decrease with increasing temperature, which 

makes the interfacial pressure lower at higher temperature. In this sense, although the flow rate for 

He is lower than the flow rate for H2 in both substrate and membrane, /c s
e e  is lower for H2 than it 

is for He, which makes H2 to have higher interfacial pressure than He. 

In the above estimations based on the classical slip flow model in eqs. (4.5) and (4.6), it is assumed 

that the size of the fluid molecules is negligible. However, in the narrow pores of the membrane 

layer with PSD depicted in Figure 4.3, the fluid molecule can make a considerable fraction of the 

smallest pores inaccessible. By taking the fluid molecule size into account, a corrected slip flow 

model ( c c c
o Kn visD D D  ) can be used to examine the transport in the membrane layer. Nevertheless, 

very similar results are obtained compared to those provided by the classical slip flow model as 
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shown in Figure 4.14(a), with exactly the same values of the fitted structural parameters (Nc = 12, lc 

= 5 nm). This is because the fluid molecule size represents a small fraction of the pore volume for 

pores above a size of about 10ff. In Figure 4.14(b), the predicted interfacial pressure, P1, is slightly 

larger than that obtained through the classical method for the same gas species, however, the 

difference between pressure gradients in membrane layer is not completely negligible for the two 

models, especially at low temperature. For instance, the driving force in the membrane layer for N2 

obtained by the corrected slip flow model is 10% larger than that obtained by the classical slip flow 

model at 303 K, in the membrane layer. Additionally, the corrected flow model yields the same 

order for the gases from the highest to the lowest P1 at every temperature, and the pressure loss in 

the substrate is still dominant for all gases (above 95%) as shown in Figure 4.14(c).  
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Figure 4.13 Variation of P1 with effective conductance ratio in the supported membrane, based on 

eqn. (4.23). 

The predicted apparent tortuosity using the corrected slip flow model is also almost constant with 

temperature for each gas, but slightly varies between the gases, lying between 1.44 and 1.47 as 

illustrated in Figure 4.14(d).  The variation of tortuosity between the different gases is mainly 

caused by the effect of the correction to the pore radius on the conductance, which depends on the 

gas species. The slight tortuosity increase compared to the classical slip flow model is due to the 

disproportionate decrease in conductance of the small pores on correcting the pore radius, compared 

to the large pores. This leads to the large pore offering short circuit paths, thereby increasing the 

tortuosity. This tortuosity increase is larger for the larger molecules. 
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Figure 4.14 (a) Variation of Fc with temperature, (b) variation of interfacial pressure, P1, with 

temperature, (c) variation of the relative pressure drop in the substrate with temperature, for flow of 

different gases in the supported membrane, and (d) the variation of model tortuosity, τapp, with 

temperature for membrane layer. The symbols are the experimental points, and the lines are the 

model results obtained using eqs. (4.20) and (4.22) with Nc = 12, lc = 5 nm, and the corrected slip 

flow model in the membrane layer. 

Although the above results based on the slip flow model for the membrane layer accurately 

predicted the experimental data and produced a reasonable tortuosity, it is important to note that the 

models for transport at the single pore level employed so far cannot be unequivocally validated, as 

direct measurement of the interfacial pressure P1 is not possible. Thus the models may still produce 

accurate flow rates by adjusting the corresponding coordination number and pore length even when 

the slip flow fails. The interfacial pressures are the true ones only when the actual diffusion 

mechanism is provided. However, since the models have explained the data for several gases with 

the same membrane parameters, a high degree of confidence in these results is expected. 

Nevertheless, the above results (slip flow or corrected slip flow models) constitute just two 
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‘explanations’ to the experiments, and it is meaningful to apply the Oscillator model as an 

alternative to explore the diffusion mechanism and seek out another explanation to the experimental 

data. 

4.4.2.2.2 Oscillator model in the membrane layer 

In this case, the Oscillator model is applied in the pores of the membrane layer, with viscous flow 

neglected at this scale. The variation of flow rate with temperature obtained for the supported 

membrane is illustrated in Figure 4.15(a), showing the Oscillator model to yield similar results as 

the slip flow model, with only slight overestimation for the case of H2. The fitted structure 

parameters are Nc = 12 and lc = 5 nm, matching those obtained with the prior models. This indicates 

that both the slip flow model and the Oscillator model are adequate for the system under study.  

The interfacial pressures estimated through the Oscillator model are plotted in Figure 4.15(b), 

where the pressure again decreases monotonically with temperature for each gas, and the order of 

interfacial pressures from highest to lowest is exactly the same as before, i.e. 

CO2>CH4>N2>Ar>H2>He. The interfacial pressure predicted by the Oscillator model is 

significantly higher than that derived from the slip flow model for each gas, since the diffusivity 

obtained from the Oscillator model is smaller than that provided by the slip-flow model [23, 45]. 

Nevertheless, the overall pressure drop is still dominated by the substrate part for all the gases, as 

illustrated in Figure 4.15(c). The estimated apparent tortuosities are depicted in Figure 4.15(d), in 

which a slightly smaller tortuosity (in the range of 1.28-1.29) is seen. The apparent tortuosity 

obtained by this flow model demonstrates a very weak dependence on temperature and gas species, 

and different temperature tendencies. For example, the tortuosity decreases with temperature for H2 

and He, but increases with temperature for CH4, N2, Ar and CO2. The above results are not 

surprising since the temperature dependence in the Oscillator model is much more complex than 

that in the Knudsen model, and the temperature dependence of the conductance at the average pore 

radius (effectively of ( ) ( )p o pK r D r ), is different from that of the effective conductance, λe in eqn. 

(4.17). This leads to the complex behavior of the tortuosity-temperature relationship, discussed at 

length elsewhere [45]. 

From the above results, it is clear that the diffusivity in the pores influences the obtained interfacial 

pressure very significantly, so it is meaningful to compare the apparent diffusivity between the three 

flow models. The pore radius (center-center) for the membrane is in the range of 1 to 12 nm based 

on the pore size distribution in Figure 4.3, and the corresponding apparent diffusivities in this range 

provided by the two models (classical, corrected slip flow and Oscillator models) are plotted in 
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Figure 4.16 for a light gas (H2), a gas of intermediate mass (CH4) and a heavy gas (Ar), at low 

temperature (300 K) and high temperature (500 K). 

 

Figure 4.15 (a) Variation of Fc with temperature, (b) variation of interfacial pressure, P1, with 

temperature, (c) variation of the relative pressure drop in the substrate with temperature, for flow of 

different gases in the supported membrane, and (d) the variation of model tortuosity, τapp, with 

temperature for membrane layer. The symbols are the experimental points, and the lines are the 

model results obtained using eqs. (4.20) and (4.22) with Nc = 12, lc = 5 nm, and the Oscillator model 

in the membrane layer. 

It is noted the two models predict almost the same apparent diffusivity when the pore radius is 

larger than 6 nm. For narrower pores, the diffusivity between two models is significantly different, 

though this difference appears less prominent on the logarithmic scale used for the ordinate in 

Figures 4.16(a) and 4.16(b). The above observation explains the difference in interfacial pressure 

obtained by the two models. The comparison of apparent diffusivity of the corrected slip flow and 

Oscillator model is given in Figures 4.16(c) and 4.16(d), and shows that the corrected slip flow 
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model provides an apparent diffusivity ( c
oD ) larger than the Oscillator model ( osc

oD ) by 10-50% in 

the selected pore size range at both temperatures. On the other hand, it is important to mention that 

the equilibrium constant, K, based on eqn. (4.10) is close to unity for all the gases even at low 

temperature (300 K), suggesting very weak adsorption in the alumina pores. 

 

Figure 4.16 Variation of apparent diffusivity with pore radius (center to center) based on the 

classical, corrected slip flow model and Oscillator model for H2, CH4 and Ar. (a) classical and 

corrected slip flow models at 300 K, (b) classical and corrected slip flow models at 500 K, (c) 

corrected slip flow model and Oscillator model at 300 K, and (d) corrected slip flow model and 

Oscillator model at 500 K. 

4.5 Summary and Conclusions 

Single gas permeation experiments with six gases (N2, Ar, CO2, He, H2 and CH4) have been 

conducted over a wide range of temperatures (30 to 300 ºC) in a tubular macroporous α-alumina 
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substrate and a supported mesoporous γ-alumina membrane. The transport through both substrate 

and membrane layers were examined by both conventional correlations and a rigorous effective 

medium theory method based on three different diffusion models. The results of the conventional 

correlation method show that while it can capture the transport mechanism in the substrate, it fails 

to adequately model the behavior because of the assumption of a temperature-independent 

tortuosity and the use of a single representative pore size while neglecting details of the pore size 

distribution. These simplifications lead to artifacts in the interfacial pressure variation with 

temperature, and to failure of the correlation in the membrane layer. For the rigorous EMT method, 

the fluid behavior was examined by fitting the theoretical and experimental flow rates for the 

substrate to obtain the corresponding structure parameters (Ns = 12 and ls = 300 nm) using the 

classical slip flow model in the macropores. Based on this, both slip flow models (classical and 

corrected) and the Oscillator model have been used to predict the apparent diffusivity in the 

membrane layer, providing three possible explanations for the transport in the membrane layer. 

These confirm that the effective medium theory method adequately predicts the fluid transport in 

the substrate and membrane layer by using only two adjustable structure parameters in each layer.  

Using the EMT for each layer, all the three diffusion models predict a monotonic decrease in 

interfacial pressure with temperature and a nearly constant tortuosity for the membrane layer, in 

which the pressure gradient significantly varies with gas species and temperature. Further, the 

pressure drop along the substrate is dominant for all the gases (greater than 95% of the overall drop). 

The estimated apparent pore length for the substrate, and the membrane layer using the three 

diffusion models, is 10% of the alumina particle size in each case. The different interfacial pressure 

predicted by the three models was explained by comparing the corresponding apparent diffusivity 

among the three models, and showed the difference of apparent diffusivity predicted by the classical 

and corrected slip flow models is not negligible for pores smaller than 6 nm – thus consideration of 

the finite molecular size is important in such pores. Comparing the apparent diffusivity based on the 

corrected slip flow and the Oscillator model, the corrected slip flow provides apparent diffusivity 

larger by 10-50% for pores between 1 and 12 nm (center to center) than the Oscillator model. The 

near-unity value of the equilibrium constant according to eqn. (4.10) indicated very weak 

adsorption for alumina materials even at low temperature and small pore size.  

For the large pore size of the membrane layer, of about 10.4 nm diameter, there is little difference 

between the Knudsen (and its corrected form) and Oscillator models, and it is not possible to 

distinguish their performance. In smaller pore membranes the difference may be expected to be 

more significant, and this will be demonstrated in a forthcoming paper. The significance of the 

above results verifies that effective medium theory is an efficient and accurate way to explore the 
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diffusion in supported multi-layer membranes to obtain structure parameters that can be used to 

predict the transport behavior, avoiding the pitfalls of neglecting the pore size distribution. The 

parameters determined here will be used in modeling the transport in supported three-layer 

membranes in our future work. 
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Chapter 5: The transport of gases in a supported mesoporous silica membrane 

In this chapter, we investigate the low pressure transport of several gases in a disordered 

mesoporous silica membrane of mean pore diameter 3.70 nm, deposited on a porous tubular 

asymmetric support. The transport data for the supported membrane is examined using three 

different diffusion models, the classical Knudsen model, a version corrected for finite molecular 

size, as well as the Oscillator model developed in this laboratory, using a representative pore size in 

each layer. We show that the correlation by the Knudsen approach, or its modification for finite 

molecular size, overestimates the diffusion coefficient in the membrane layer, and yields 

unrealistically high tortuosities, which vary with temperature and gas species. The apparent 

tortuosity is significantly reduced to a more reasonable range based on Oscillator model, which 

accounts for dispersive fluid-solid interaction and the effect of adsorption on the transport.  

In order to overcome the lack of transferability associated with fitting of a variable tortuosity, 

effective medium theory is used to model the transport in the different layers, while considering the 

entire pore size distribution for each layer, using only fundamental structural parameters. It is found 

that the classical and corrected Knudsen models yield significant deviations even with an 

unrealistically high thickness for the membrane layer, due to the overestimation of the diffusivity. 

The most satisfactory results are obtained with the Oscillator model, in which the fitting error is 

significantly reduced with acceptable membrane thickness. The results indicate that the Knudsen 

model fails to represent the transport for the mesopores of mean size of 3.70 nm in silica, and that 

the Oscillator model provides a more accurate apparent diffusivity which accounts for the effects of 

adsorption. We also show that use of the effective medium theory provides a satisfactory option to 

model the transport, using only fundamental structural parameters that are transferable. 

5.1 Introduction 

Mass transport in confined spaces is fundamental to the application of porous materials in areas 

such as adsorption, separation and catalysis. In the last decade, interest in the subject has been 

considerably enhanced by the rapid emergence of new nanoporous materials which are believed to 

hold promise for such applications [1-5]. The Knudsen model, developed a century ago, is still the 

primary tool to examine the diffusion of gases in porous materials when the pore diameter exceeds 

the (arbitrary) IUPAC micropore limit of 2 nm [6-8]. However, direct verification of the Knudsen 

model was originally performed at low density with relatively large tubes of 33–145 μm diameter 

[9], in which  the diffusion is dominated by the fluid-wall diffuse reflection, with negligible 

influence of the dispersive force exerted by the wall [10].  On the other hand, most porous materials 

are often examined under conditions in which inter-molecular collisions are also of importance. 
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Thus, the viscous contribution also needs to be considered; this is often represented by Hagen-

Poiseuille equation.  

The most successful approach based on this principle is the Dusty Gas Model (DGM) of Mason and 

his workers, , which arbitrarily superposes pore wall-affected diffusion and hydrodynamic fluxes 

[11]. When adsorption is negligible, the pore wall-affected diffusion is often represented by the 

Knudsen model, which is supplemented by a surface diffusion contribution when adsorption is 

significant, with the hydrodynamic contribution assumed negligible [12, 13]. Although it lacks a 

firm molecular basis, the DGM approach is commonly applied by researchers [14-16] due to its 

simplicity; this is generally done by empirically correlating experimental data using a representative 

pore radius. For instance, several nanoporous materials are highly disordered, and the use of 

structure-related fitting parameters such as tortuosity is generally required. Use of a single 

representative pore size is a major shortcoming of this method, as the pore size distribution (PSD) 

has significant influence for nanoscale porous materials [12].  In addition, unambiguous 

confirmation of the validity of the Knudsen model in narrow pores with nanoscale dimension, to 

which the Knudsen model is frequently applied, has never been obtained. Although it can 

successfully correlate experimental data for various nanoscale materials, the interpretation of 

experimental data using the Knudsen model in such narrow pores leads to unrealistically high 

tortuosities, which mask the failure of the diffusion model and indicate significant overestimation of 

the diffusivity [17-19]. 

The failure of the Knudsen model in the mesopores is believed to be due to the neglect of dispersive 

solid-fluid interactions during the transport. However, when the pores are much larger than the 

range of potential field exerted by the wall, the classical Knudsen model can be safely employed to 

represent the fluid-wall diffusion, and the DGM can be applied to model the transport. For instance, 

in macroporous tubular substrate where the pores radius is in the range of hundreds of nanometers, 

the relationship between the flow rate (F) and temperature can readily expressed as [20] 
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                                               (5.1) 

Here, the term ln(Ro/Ri) accounts for the change in curvature over the thickness of the tube, and Ro 

(m) and Ri (m) are the outer and inner tube radii, respectively. Furthermore, T represents 

temperature (K), L (m) is the tube length, P is the average pressure (Pa), η is fluid viscosity (Pa.s), 

M is the fluid molar mass (g/mol) and Rg is the gas constant. ε is the substrate porosity and app the 

apparent tortuosity coefficient, which is normally obtained through correlation based on the 

experimental data. 
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Molecular dynamics (MD) simulations do not suffer from many of the uncertainties arising from the 

assumptions and simplifications introduced in theoretical models, and have become an invaluable 

recourse for predicting pore diffusivity; this is particularly important when direct measurements are 

either impossible or inadequate. According to the simulation results, not only does the Knudsen 

approach overestimate the diffusivity for mesopores [21-23], but also misinterprets the fluid density 

profile across the pore radius. The latter is not uniform and identical to the bulk conditions, but is 

strongly affected by the pore radius and pore structure due to the potential field produced by the 

pore walls [21-23].  

On the other hand, MD is still impractical for routine use due to its high computational demand, and 

the quest for a tractable theory founded on molecular principles is therefore of much importance. 

Considerable efforts have been devoted to modify the Knudsen model by introducing an Arrhenius-

type factor containing an activation energy term [24-27], so as to incorporate a stronger temperature 

dependence, but this approach is somewhat empirical and lacks molecular basis. On the other hand, 

considerable success has been achieved in this laboratory, through the development of the 

‘Oscillator model’, which considers the solid-fluid dispersive interaction before collision, and the 

density profile difference between the pores and bulk is represented by the equilibrium constant 

[28-30]. The new theory has been extensively validated against the MD results and some 

experimental data [6], and is extremely efficient from a computational standpoint, requiring only 2-

5 min of CPU time, in contrast to 10-24 hours for MD simulations. Nevertheless, the model needs 

further confirmation, which constitutes one of the aims of this article. 

A significant challenge attending the application of any theory to experimental transport data is the 

intricacy of the pore network, including the connectivity and pore shape as well as the presence of 

non-uniform pore size, especially in disordered and heterogeneous porous materials. For instance, a 

typical supported silica membrane system is fabricated in an asymmetric fashion, comprising a thin 

selective top layer with narrow pores, in which the separation occurs, coated on a relative thick 

porous support. A thick porous α-alumina tube coated with a thin γ-alumina interlayer is usually 

selected as the asymmetric support [31-33]. The α-alumina substrate is made of unconsolidated 

micron sized (3 m) crystal particles, to obtain a macroporous structure with good mechanical 

resistance. The γ-alumina crystal particles in the interlayer are much smaller (0.05 m) and 

deposited on the surface of the α-alumina substrate to create a smooth, defect-free surface over 

which the active silica layer is coated. The ‘traditional’ method to model the transport in the 

supported membrane is based on empirical fitting in the spirit of DGM, by choosing a 

representative pore for each layer. However, the interfacial pressures between layers are not directly 

measurable, and the analysis of diffusion through each layer is often based on arbitrary assumptions, 
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regardless of the variation of controlling mechanism with operating conditions, including 

temperature and gas species [7].  

Besides, considering the large pore size in the substrate (a few hundred nanometers), some authors 

assume dominance of viscous flow even at low pressure conditions [14, 15, 34], which permits a 

reasonable membrane tortuosity but is contradicted by straightforward theoretical analysis [35]. 

Indeed, substantial experiments have verified that such assumption is incorrect, and both Knudsen 

flow and viscous flow are of importance in the macroporous substrate at low pressure [16, 20, 36-

38]. Furthermore, most conventional correlations based on the DGM rely on the hypothesis that the 

tortuosity is solely determined by the topology of the medium; however, our previous work has 

extensively shown that the apparent tortuosity can be significantly influenced by the diffusion 

mechanism in the pores [12, 16]. In addition, the apparent tortuosity is not directly measurable, but 

is obtained based on an arbitrarily chosen representative pore radius that may be evaluated by 

various prescriptions (e.g. from pore volume to surface area ratio, or peak of pore size distribution). 

Thus, any correlation based on such a representative pore radius cannot be used to unequivocally 

validate the corresponding transport mechanism in a disordered material.  

As a result of the above uncertainties, it is of interest to develop a new approach which can be 

unambiguously applied to model the transport in disordered supported porous membranes, with the 

resistance for each layer correctly accounted for, in interpreting experimental data. Effective 

medium theory (EMT) provides the necessary machinery for resolving the above issues, and in this 

method, a nonuniform network with a distribution of conductance is replaced by a uniform one in 

which each conductance is assigned an effective value [39-42]. This approach has been successfully 

employed to examine the transport in unconsolidated materials and in a heterogeneous supported -

aluminamembrane [20], in which the macroscopic parameters can be directly predicted, so it does 

not suffer from the uncertainties arising from an arbitrary apparent tortuosity in the empirical 

method. In this spirit, we apply this technique to explore the diffusion mechanisms in a typical 

mesoporous amorphous silica membrane, having a mean pore diameter of 3.70 nm, coated on an 

asymmetric alumina support, while considering the resistance of each layer. The results permit 

unequivocal understanding of the mechanism of fluid transport in the mesoporous silica layer, and 

demonstrate the inadequacy of the Knudsen model in representing the diffusion in this layer.  
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5.2 Materials synthesis, characterization and membrane permeation experiments 

5.2.1 Macroporous substrate 

The α-alumina tubular substrate was obtained from Australia Chemtech Trading & Service 

Company, and is made of packed α-alumina particles sintered at high temperature. The tube has an 

inner radius of 4.25 mm and an outer radius of 6.38 mm, and a length of 8.20 cm.  Since the pore 

structure of the substrate mainly comprises interstitial voids between the α-alumina crystals, the 

particle size has dramatically influence on the size of the pores. Before conducting any pore size 

characterization, the substrate was investigated by Scanning Electron Microscopy (SEM), showing 

the particle size to be round 3 m, and the pore space to comprise macropores. A more accurate 

pore size distribution was then characterized by mercury porosimetry (Micrometrics, IV 9500), and 

the mean pore radius was found to be around 250 nm. The details of the characterization of the pore 

network for the substrate can be found in our recent work [16]. We note here that the permeation 

experiments with the pure substrate, coated asymmetric support, and coated silica membrane, were 

conducted using three separate 8.2 cm long piece cut from the same 2 m piece of the substrate tube. 

The structural characterizations presented here were done on a sample from this large tube, and are 

considered representative of the properties of all the shorter tubes cut from this. 

5.2.2 Mesoporous interlayer 

The asymmetric support was synthesized in this laboratory by dip-coating the -alumina substrate 

in a γ-alumina solution (20 wt%) purchased from Sigma-Aldrich, with an average particle size of 

about 50 nm. For the dip-coating the solution was diluted to 2 wt% with deionized water, and the 

inner surface of the substrate was sealed. The dip-coating was performed at a rate of 10 cm/min 

using a dip-coating apparatus, and the coated tube subsequently oven-dried at 40 oC for 2 hours. 

The as-synthesized asymmetric support was then calcined at 700 C for 2.5 hours. In order to make 

a nearly defect-free membrane, ten γ-alumina layers were coated over the substrate, in which each 

interlayer was coated, dried and calcined under the same conditions as the first layer. The remaining 

diluted solution was processed under the same conditions as the asymmetric support to obtain an 

agglomerated γ-alumina powder, which was characterized by nitrogen adsorption at 77 K using a 

Micrometrics ASAP2020. The indicative pore radius was around 5.2 nm, and the pore structure of 

this agglomerated powder was taken to represent the pore structure of the γ-alumina on the substrate. 

The thickness of the interlayer was then examined by SEM, giving a value of around 2 μm. The 

details of characterization of the pore network of the interlayer can be found in our previous 

publication [20]. 
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5.2.3 Mesoporous silica  

The silica membrane layer was synthesized using a tetraethylorthosilica (TEOS) silica sol templated 

with Pluronic P123 (EO20PO70EO20, MW= 5800, Sigma-Aldrich), a non-ionic block copolymer. A 

mixture of 27.00 mL H2O, 27.00 mL diluted HCl (2.30 mol/L), 44.35 mL ethanol, 56.00 mL TEOS 

was stirred vigorously for 20 min, then a mixture of P123 and ethanol was added to the solution and 

the stirring continued until the P123 completely dissolved.  

The as-synthesized tubular asymmetric support was dipped into the solution, using the dip-coating 

apparatus, at a rate of 10 cm/min, and subsequently oven-dried at 40 C for 2 hours. The surfactant 

was then removed by calcination at 600 C for 2.5 hours with a heating/cooling rate 1 C/min, which 

was confirmed to be sufficient to vaporize the surfactant by thermogravimetric analysis (TGA). As 

seen in Figure 5.1(a), the organic surfactant began to decompose at 180 C and is completely 

removed by 600 C. The completely disappearance of the surfactant was further demonstrated by 

Fourier transform infrared spectroscopy (FTIR). As depicted in Figure 5.1(b), the characteristic 

bands of CH3 (2980 cm-1), CH2 (2922 cm-1), and CH (2851 cm-1) in P123 are entirely eliminated 

after calcining, indicting the absence of any organic residuals in the silica gel [43]. To ensure 

complete coverage of the membrane, ten silica layers were deposited over the asymmetric support, 

and each silica layer was coated, dried and calcined under the same conditions as the first layer. The 

remaining silica sol was processed under the same conditions as the membrane to obtain porous 

silica powder, which was taken to represent the pore structure of the silica membrane layer.  

 

 

Figure 5.1 (a) Thermogravimetric analysis curve for the uncalcined silica xerogel, and (b) the 

Fourier transform infrared spectroscopy (FTIR) of the calcined and uncalcined silica xerogel.  
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The obtained porous silica powder was characterized by nitrogen adsorption at 77 K, and the pore 

size distribution was examined by nonlocal density function theory (NLDFT) assuming cylindrical 

pores with an oxide surface. The pore size distribution for the calcined silica gel is illustrated in 

Figure 5.2, indicating that majority of the pores are within the mesoporous range, and the 

corresponding pore volume and surface area are 0.48 cm3/g and 519.87 m2/g respectively, which 

were subsequently used to estimate the porosity and average pore radius.  

The pore structure of the silica powder was investigated by Transmission electron microscopy 

(TEM) as in Figure 5.3, showing that the diameter of most pores is less than 5 nm in accord with 

the PSD determined by NLDFT. The skeletal density of the silica powder measured by Helium 

Pycnometry was 2.23 g/cm3, close to the theoretical density of around 2.3 g/cm3 [44], indicating 

that essentially all voids in the sample are accessible. The accessible porosity of the powder was 

determined by  

1
p

p

V

V








                                                                    (5.2) 

in which Vp is the pore volume obtained through the NLDFT characterization, and ρ is the true 

density from Helium Pycnometry. Following eqn. (5.2), the accessible porosity of the silica powder 

is estimated to be 0.52. 
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Figure 5.2 Pore size distribution of the calcined silica powder, obtained by nonlocal density 

function theory (NLDFT) interpretation of N2 adsorption data. 
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Figure 5.3 Transmission electron microscopy image of the porous silica powder. 

In order to estimate an appropriate tortuosity for each layer based on the correlation using eqn. (5.1), 

in this work an average cylindrical pore radius is evaluated following: 

2 p
p

V
r

S
                                                                       (5.3) 

where S is the surface area determined through the NLDFT characterization or Mercury 

Porosimetry. This definition of the representative pore radius is perhaps the most common, although 

other alternatives such as the peak size of the PSD or number averaged pore radius have also been 

used. Following eqn. (5.3), the obtained pr  is 257.05 nm for the substrate, 5.22 nm for interlayer, 

and 1.85 nm for the silica layer.  

The value of the thickness for each layer is critical in modeling the transport in the supported 

membrane, while considering the resistance for each layer. For the macroporous substrate, the 

thickness can be directly measurable by a caliper; for the mesoporous interlayer and membrane 

layer, the corresponding thickness is only several microns, and has to be evaluated through the SEM 

images. Since the boundaries between the layers are ill-defined and somewhat diffuse, the thickness 

of the interlayer and membrane layer cannot be precisely evaluated. As depicted in the Scanning 

Electron Microscopy (SEM) images in Figure 5.4, the thickness of the silica membrane layer varies 

between 12 and 18 m (after accounting for the thickness of the interlayer of 2 m) due to the 

underlying uneven topology of the asymmetric support, which varies in height and has some surface 

roughness, and an average membrane thickness of 15 µm was taken for the transport data analysis. 
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Figure 5.4 Scanning electron microscopy image of the supported silica membrane layer. 

5.2.4 Single gas membrane permeation experiments 

The transport mechanism in the homogenous substrate and asymmetric support has been previously 

investigated independently in our previous work [20] by conducting two sets of single gas 

permeation experiments. It was confirmed that the transport in the macroporous substrate can be 

adequately modeled as slip flow, with both Knudsen and viscous contributions being important. The 

corresponding transport mechanism for the interlayer could be represented by three diffusion 

models, including the classical slip flow, a correction version for finite molecular size and the 

Oscillator model.  

To explore the diffusion in the narrower pore silica membrane deposited on the asymmetric support, 

single gas permeation experiments were performed here under the same conditions as in the earlier 

study [20], as illustrated in Figure 5.5.  

The flow of six different gases (H2, He, CH4, N2, Ar and CO2) was investigated, with the gas 

entering from the substrate side at a constant feed pressure, PF =1.97 bar, permeating through the 

interlayer, and finally leaving from the silica layer side, where the outlet pressure (Po) corresponds 

to atmosphere pressure (1.01 bar). The operating temperature was varied from 30 to 300C. The 

volumetric flow rate was measured by a bubble flow meter and later converted to molar flow rate 

by means of the ideal gas equation of state. In the transport modeling discussed below, the 

interfacial pressure between the substrate and the interlayer is arbitrarily labeled as P1, and the 

interfacial pressure between the interlayer and the silica membrane layer is represented by P2. It is 
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noted that the permeation experiments was carried out from high temperature (300 C) to low 

temperature (30 C) to avoid any water blockage effect. 

 

Figure 5.5 Schematic drawing of the flow direction in the supported silica membrane and the 

interface between different layers. 

For clarity, the flow rates in the substrate, interlayer and the silica membrane layer, although equal 

at steady state, are labeled respectively as Fs, Fc and Fm. Besides, the structural parameters (porosity, 

tortuosity, tube length and average pore radius) for the substrate, interlayer and the silica membrane 

layer are identified by subscripts s, c and m. 

5.3 Transport models 

5.3.1 Transport in a single pore 

Following our previous work, an important aim of this article is to explore the transport of 

adsorbates in a narrow pore mesoporous silica material having a disordered network, with various 

flow mechanisms employed at the single pore level. To distinguish the diffusivity estimated by 

different models, the pore radius used for each model must be precisely defined. As suggested in 

Figure 5.6, there are several ways to define a pore radius, which will be extensively discussed in the 

following. 
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Figure 5.6 Illustration of different pore radii used in the classical Knudsen model (rs), the corrected 

Knudsen model ( c
sr ), and the Oscillator model (rosc). 

5.3.1.1 Classical slip flow model 

In the classical slip flow model, the diffusivity is estimated based on the geometrical pore radius (rs), 

defined as the distance between the centerline of the pore and the surface of atom on the walls, with 

the fluid molecular size considered negligible compared to the pore radius, which is reasonable for 

macropores (rs > 25 nm). The classical slip flow model has been extensively validated at low 

pressure, for which the Knudsen (DKn) and viscous diffusivity (Dvis) are respectively represented as 

97Kn s

T
D r

M
                                                               (5.4) 

2

8
s

vis

Pr
D


                                                                   (5.5) 

with the variables having the same units as in eqn. (5.1). Besides, the density profile along the radial 

coordinate is considered to be constant and identical to the bulk, therefore, the equilibrium constant 

is always unity for Knudsen and viscous diffusion (K=1). Since the pores in the substrate are larger 

than 100 nm, the slip flow model with an apparent diffusivity (  )a
o Kn visD D D   can be safely used 

for the transport in the substrate, without exclusion effects due to the relatively small molecular size. 

5.3.1.2 Corrected slip flow model 

For smaller pores, the exclusion effect of fluid molecules should be taken into account, and pore 

radius is corrected as 
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2c
s s ffr r                                                               (5.6) 

where ff is the Lennard-Jones (LJ) fluid-fluid collision diameter, listed in Table 5.1 for the gases 

relevant to in this article. The apparent diffusivity ( c c c
o Kn visD D D  ) is estimated based on the 

corrected pore radius ( c
sr ) through eqs. (5.4) and (5.5), taking the equilibrium constant as unity. 

Since the finite fluid molecular size can lead to a considerable fraction of the smallest pores 

becoming inaccessible in the interlayer and silica membrane, the corrected slip flow model is 

applied to predict the alternative apparent diffusivity for the pores in these layers so as to fully 

confirm the validity of the Knudsen model at the corresponding pore sizes. 

Table 5.1 Fluid-fluid Lennard-Jones parameters used in the Oscillator model. 

parameters H2 He CH4 N2 Ar CO2 

σff (nm) 0.2915 0.2551 0.381 0.3572 0.341 0.3472

εff/kB (K) 38.0 10.22 148.2 93.98 120.0 221.9 

 

5.3.1.3 Oscillator model 

An alternative way to evaluate the apparent diffusivity in the interlayer and silica membrane layer is 

based on the Oscillator model [23], which considers the (low-density) radial density profile inside 

the pores. However, the pore radius used in the Oscillator model is different from the ones used in 

the slip flow model, and is the distance between the centreline of the pore and the centre of the 

surface atoms on the walls, rosc, following 

2osc s ssr r                                                                   (5.7) 

where ss is the LJ solid-solid collision diameter of the atoms on the pore walls.  

 

In the Oscillator model, the diffusivity of a LJ fluid under conditions of diffuse reflection in a 

cylindrical pore, Dosc, is estimated as 
22

2

( , , )

( , , )
( ) 2 2

0 0 0

2 '

( ', , , )

cl rr

co r p pr

r r p ppp
r m mr

osc r
r rr

dr
D e dr e dp e dp

mQ p r r p p











              (5.8) 

where ( )r  is the solid-fluid potential, m is fluid particle mass, 1 / Bk T   and ( )

0

rQ re dr   . 

Further, pr and p are the radial and angular components of the molecular momentum, and clr  and 



5-13 
 

cor  represent the radial bounds of a fluid molecule trajectory between consecutive diffuse 

reflections, determined through the solution of ( ', , , ) 0r rp r r p p  . Here, ( ? ,  , )r rp r r p p  is its 

radial momentum when it is at radial position, ´r , given that it has radial momentum pr at r, and is 

obtained from 

 
1/2

22
2

2
( ? ,  , ) 2 ( ) ( ') 1 ( )

'r r r

p r
p r r p p m r r p r

r r


  
               

         (5.9) 

 

The equilibrium constant (K) for Oscillator model is readily obtained from 

( )/
2

0

2 osc

B

r
r k T

osc

K e rdr
r

                                                                     (5.10) 

The value of the interaction potential, ( )r , strongly depends on the pore wall composition and 

structure. For γ-alumina, the pore is assumed to have infinitely thick walls comprising randomly 

distributed oxygen ions, and these ions are considered to dominate the interaction between the fluid 

and the pore walls. Assuming LJ interaction between the fluid molecules (taken as a single LJ site) 

and the oxygen ions in the wall, the interaction potential profile, ( )r , is given by [45] 

2 2
2 3

9 39 2 3 2

7 ( 4.5, 3.5,1; ( ) ) ( 1.5, 0.5,1; ( ) )
( )

32( ) 1 ( ) ( ) 1 ( )

h osc h osc
sf v sf

osc sf osc osc sf osc

F r r F r r
r

r r r r r r
    

 

       
         

                   (5.11) 

Here sf is the LJ solid-fluid collision diameter, sf is the LJ potential well depth, ρv is the oxygen 

density in the wall (ions per unit volume) and ( , , ; )hF x y z w  is the Hypergeometric function. The LJ 

parameters for the gases used in our experiments are listed in Table 5.1, and the LJ parameters for 

the γ-alumina are taken from Blas et al. [46] as εss/kB = 108.47 K, σss = 0.303 nm, with ρv = 52.24 nm-

3. For silica, the pore is composed of a single layer wall, in which the interaction between fluid and 

pore walls is considered to be dominated by a surface layer of oxygen ions, leading to the interaction 

energy profile [47] 

2 2
2 2

10 410 2 4 2

63 ( 4.5, 4.5,1; ( ) ) 3 ( 1.5, 1.5,1;( ) )
( ) 4

128( ) 1 ( ) 4( ) 1 ( )

h osc h osc
sf s sf

osc sf osc osc sf osc

F r r F r r
r

r r r r r r
    

 

       
         

            (5.12) 

where ρs is the pore wall surface density (atoms per unit area). The LJ parameters for the silica layer 

are evaluated based on the results from Neimark et al. [48] as εss/kB = 492.7 K, σss = 0.28 nm, with ρs 

= 10.47 nm-2. The Lorentz-Berthelot mixing rules are employed to estimate the solid-fluid LJ 

parameters /sf Bk  and sf
 
[28]. Finally, the apparent low density diffusivity based on the pseudo-
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bulk concentration gradient is then estimated as osc
o oscD D K , ignoring the viscous contribution due to 

fluid-fluid interaction. 

5.3.2 Transport in pore networks 

A critical factor impeding the application of any transport theory in disordered nanoporous 

materials is the complexity of material topology, involving the variables such as connectivity, pore 

structure and pore size distribution. This is clearly evident in the typical supported silica membrane, 

which comprises the macroporous α-alumina substrate, mesoporous γ-alumina interlayer and 

mesoporous or microporous amorphous silica layer. In the substrate and interlayer, the pores form 

the spaces between unconsolidated crystal particles, and not only must the pore size distribution and 

pore network connectivity be considered but also the pore aspect ratio distribution assumes 

importance [16].  

Effective medium theory (EMT) offers a convenient tool to account for these complexities of the 

network for each layer by replacing the nonuniform pore network with an effective one having 

pores of uniform conductance. With a hybrid model combining the correlated random walk theory 

(CRWT) and EMT on this effective network, the macroscopic flow rate can be precisely predicted 

for the interpretation of experimental data. In our previous work [16], we have already applied this 

technique to model the transport in the macroporous substrate and confirmed the variation of 

tortuosity with operating conditions due to the combined effects of the Knudsen and viscous 

contributions (which have different associated tortuosities in the limiting regimes where they 

govern the transport). The methodology has been further extended to predict the transport properties 

of an asymmetric support comprised of the macroporous substrate and the mesoporous interlayer 

[20]. The results clearly demonstrated that the classical and corrected slip flow models, or the 

Oscillator model, can adequately represent the transport in the interlayer, and confirmed that the 

pressure gradients vary significantly with operating conditions and gases. Following the line of our 

previous works, we utilize this methodology to model the transport for the silica layer coated on the 

asymmetric support while the taking the resistance for each layer into account, and investigate the 

validity of the classical Knudsen diffusion model in the silica mesopores, which are considerably 

narrower than those of the -alumina interlayer.. 

For a pore of radius of rp, the conductance, , is defined as the ratio of the molecular current to the 

pressure gradient driving force, following 
2 ( ) ( )p o p pr D r K r

l


                                                                     (5.13) 
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where Do(rp)K(rp) is the apparent diffusivity, including both the diffusivity and equilibrium constant 

(K) based on the relevant pore radius as provided above, and l is the pore length. For the 

macroporous substrate, the combination of classical Knudsen and viscous diffusivity is used to 

estimate the apparent diffusivity (Do = )Kn visD D , with K = 1, and for interlayer and membrane 

layer, the apparent diffusivity can be estimated based on this expression or with pore size correction 

following eqn. (5.7) for the corrected slip flow model. The Oscillator model provides the alternative 

Do = osc
oD , with the viscous contribution being neglected, and K(rp) following eqn. (5.10).  

Assuming that local equilibrium prevails in the pores, the effective medium conductance, e is 

determined through the solution to [39] 

( )
0

( ( / 2 1) )
e

eN

 
 




 
                                                    (5.14) 

where N represents the coordination number, i.e., the average number of pores meeting at each node, 

and   is an average over the pore number distribution. The flux in a pore of radius, rp, is assessed 

as 

2
2

1
( ) cos ( )

1
e

p
p g

l N dP
j r

r R T N dz

 


          
                         (5.15) 

where z represents the coordinate along the macroscopic flux direction, 2cos ( )  accounts for the 

local diffusion direction, which is not necessarily axial [49], and the factor (N-1)/(N+1) stands for a 

correlation effect which arises because of the finite probability that a diffusing molecule returns to a 

pore that it has just passed through [50, 51]. For unconsolidated media such as the macroporous 

substrate and mesoporous interlayer, the pore radius is comparable to the pore length, and the 

diffusion direction in the pore is not purely axial; consequently the aspect ratio effect must be taken 

into account. By assuming the local transport direction to be that closest to the macroscopic flux 

direction, the expression for 2cos ( )  can be rewritten as [49, 52]  

2
2 2 1/2

4 2
cos ( ) ( ) 1

3(1 4 ) 3(1 4 )

x
g x

x x
    

 
  (5.16) 

where x is the aspect ratio (rp/l). Upon assuming the pseudo pressure to be locally uniform in the 

network, the net flux in the equivalent uniform network is obtained upon integration of eqn. (5.15) 

over the pore volume distribution, to yield 

2

2

( ) 1

1
e

p g

l g x N dP
J

r l R T N dz




              
                                              (5.17) 



5-16 
 

In practice, experimental data is commonly interpreted phenomenologically, while using a 

representative pore radius, pr , and introducing a tortuosity, following 

( ) ( )o p p

app g

D r K r dP
J

R T dz




   
 

                                                            (5.18) 

where app is an apparent tortuosity that is generally obtained by fitting the experimental flux. 

Comparing eqs. (5.17) and (5.18), the theoretical prediction of apparent tortuosity is given by 

2

2

( ) ( ) 1

( ) 1
p o p p

app
e

r l D r K r N

l g x N





        

                                                    (5.19) 

In the present work we use eqn. (5.3) to define the representative pore radius, pr . 

In the tubular supported membrane, the steady state flow rate (F) is constant across the substrate, 

interlayer and membrane layer, and integration of eqn. (5.17) over the radial coordinate for each 

layer, yields 

2

2

2 ( ) 1
( )

ln( ) 1
e

p o i g

L l g x N
F P

r l R R R T N

         
                                        (5.20) 

where Ri and Ro are the inner and outer radius of the layer, respectively. Since the thickness of the 

substrate tube (2.13 mm) is comparable to Ri (Ri = 4.25 mm), no further simplifications can be done 

on eqn. (5.20). For the interlayer, the thickness of this interlayer (zc ≈ 2 μm) is much smaller than 

the outer radius of the tube (Ro = 6.38 mm), so that ln(Ri/Ro) ≈ zc/Ro, and the expression for the flow 

rate simplified to 

2

2

2 ( ) 1
( )

1
o e

c p g

R L l g x N
F P

z r l R T N

          
                                          (5.21) 

In addition to its very small thickness, the silica membrane layer is consolidated, so that the pores in 

this layer are not interstitial voids between particles. Assuming long cylindrical pores, the aspect 

ratio may be considered small for the silica layer, and the flow rate in this layer is then obtained as 

2

2

2 1
( )

3 1
o e

m p g

R L l N
F P

z r l R T N

          
                                         (5.22) 

It is to be noted that the flow rate in the silica layer is independent of l (as the effective conductance, 

e, is inversely proportional to l). This is not the case for the substrate and interlayer, for which the 

function g(x) is a nonlinear function of l. For clarity, the structural parameters (coordination number, 
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pore length and apparent tortuosity) of the substrate, interlayer and silica layer are distinguished by 

subscripts s, c and m.  

The above model may be readily applied to the interpretation of membrane transport data. In the 

present case, the silica membrane thickness, zm, and coordination number, Nm, are taken as the 

adjustable parameters, and can be determined by minimization of the error 

2

2
1

( )1
( , )

n
mi ei

i ei

F F
Q N l

n F


       (5.23) 

where n is the number of experimental flow rate points for all gases, Fei is the experimental flow 

rate value for data point i, and Fmi is the corresponding model flow rate obtained by effective 

medium theory. The estimation of the theoretical flow rate requires solving the flow rate 

relationships for the three layers: 

     1 1 2 2, , , , , , , , ,s F s s c c c m o m mF P P N l F P P N l F P P N z             (5.24) 

to determine the interfacial pressures, P1 and P2. The structural parameters of the substrate (Ns, ls) 

and interlayer (Nc, lc) have been determined in our prior study [20], and have the values Ns = Nc = 

12, ls = 300 nm, lc = 5 nm. These values have been used in the present work in conjunction with 

effective medium theory. 

5.4 Results and discussion 

5.4.1 Comparison of permeance of the different layers in the membrane 

The individual diffusion resistance for each layer of the membrane cannot be characterized from 

overall permeation experiments on the 3-layer composite membrane, as the interfacial pressures 

between the layers are unknown. However, the apparent permeance (π = J/(-ΔP)) of the substrate, 

asymmetric support and the 3-layer membrane can be determined from the corresponding 

permeation experiments separately conducted with these. 

In chapter 4 [20] we presented flow rate versus temperature results for the substrate and for the γ-

alumina coated asymmetric support, for the six different gases used here, at pressures similar to 

those used here. Figure 5.7 depicts the variation of the permeance with gas molecular size (taken 

as the LJ size parameter), for the substrate and the asymmetric γ-alumina coated support, based on 

the earlier data [20], and for the 3-layer composite membrane based on the data obtained here, for 

(a) 30 C, and (b) 300 C. In estimating the flux based on the measured flow rates, we have taken 

the outer surface of the alumina substrate as the standard area. It is evident from Figure 5.7 that the 
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difference of the apparent permeance between the substrate and the asymmetric support is very 

small, around 5% in both cases, and that the main resistance in the asymmetric support is provided 

by the macroporous substrate rather than the mesoporous interlayer. On the other hand, the 

apparent permeance of the supported silica membrane ranges from 10 to 15% of the apparent 

permeance of the asymmetric support, indicating that the main resistance is provided by the silica 

membrane layer but the resistance of the support is also significant.  

 

Figure 5.7 Variation of the apparent permeance with gas molecular size for the substrate, the 

asymmetric support and supported membrane, at (a) 30 ºC, and (b) 300 ºC, respectively. 

5.4.2 Correlation of membrane transport data using single pore size in each layer 

It is important to note that the above apparent permeance analysis of each layer is largely 

qualitative, which is only indicative of the relative importance of their resistance. These must 

depend on temperature and, for the substrate, also depend on pressure, due to the significance of 

viscous transport in this layer [16]. In order to correctly account for the resistance of each layer 

and explore the transport for the membrane layer, the interfacial pressures, P1 and P2 (c.f. Figure 

5.5), must be specified. Here, we will first attempt to use the ‘traditional’ correlation based on a 

mean pore radius to investigate the interfacial pressures and transport mechanism for the silica 

membrane layer in the 3-layer composite membrane. For this we will appeal to our recent data for 

permeation through the uncoated substrate and the asymmetric support without the silica 

membrane layer [20], to permit evaluation of the interfacial pressures in the 3-layer membrane 

system, while using eqn. (5.3) to provide the mean pore radius.  
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Assuming the classical slip flow model of eqn. (5.1) in the substrate, the interfacial pressure, P1,  

for the 3-layer system is estimated by comparing the flow rate data for the substrate itself with that 

for the substrate as part of the supported membrane. Thus, following eqn. (5.1), we use  

2 2
1

1
substrate support
alone in membrane

( ) 97 ( ) 97
( ) ( )

16 16
p F O p p F p

F O F
g g g g

J T J T

r P P r r P P r
P P P P

R T R M R T R M 

   
   
                               

  (5.25) 

to estimate P1 for the asymmetric support, and for the 3-layer membrane. This assumes that the 

tortuosity of the substrate is unchanged and transferable to the substrate part in the 3-layer 

membrane. Subsequently, using these values of P1 we adopt a similar method for the γ-alumina 

layer to estimate P2 in the 3-layer system (c.f. Figure 5.5), following 

asymmetric 3-layer1 1 2
support system

( ) ( )O

J T J T

P P P P

   
          

   

   (5.26) 

assuming negligible viscous contribution in the pores of the γ-alumina (~11.5 nm dia. [20] ). J 

represents the flux based on the outer radius of the tube as F/(2πRoL).  

Figure 5.8 depicts the variation of interfacial pressures, P1 (Figure 5.8(a)) and P2 (Figure 5.8(b)) 

with temperature, for the 3-layer membrane, based on the flow rate versus temperature data 

obtained here and that for the substrate and asymmetric support obtained in our recent work [20]. 

This flux versus temperature data for the various gases, obtained here and obtained in our recent 

work [20], is tabulated in the Supplementary Information. It is evident from Figure 5.8(a) that the 

estimated interfacial pressure generally decreases with increase in temperature for all the gases, 

similar to the results in our recent work [20]. However, the curves do show some fluctuation, 

largely arising from experimental scatter, with cross-over between gases. As will be subsequently 

evident the anomalous crossover results from the use of a single pore size in the substrate. As 

illustrated in Figure 5.8 (b), similar behavior is observed for P2. Further, based on the feed pressure, 

PF, of 1.97 bar and the permeate pressure, Po, of 1.01 bar in our experiments, it is evident from the 

results in Figure 5.8 that the dominant pressure drops in the supported membrane lie in the 

mesoporous silica layer (around 90%) and in the macroporous substrate (around 9%), suggesting 

the pressure loss in the interlayer is negligible (around 1%). This is consistent with the above 

analysis based on the apparent permeance in Figure 5.7.  

Once the interfacial pressures are obtained, the pressure driving force in the silica layer can be 

readily evaluated, and the apparent tortuosity of this layer can be explicitly examined for each gas at 
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any temperature based on an appropriate diffusion mechanism. In what follows we extensively test 

the validity of the three diffusion models discussed above (the classical Knudsen model, a corrected 

version for finite molecular size, and the Oscillator model), for the silica layer using a single 

representative mean pore size as defined in eqn. (5.3) and a membrane thickness of 15 m based on 

the SEM micrograph (Figure 5.4). 

 

Figure 5.8 Variation of the interfacial pressures, P1 and P2 with temperature based on eqn. (5.1), 

using a representative pore radius for each layer. (a) Interfacial pressure, P1, and (b) interfacial 

pressure, P2. 

5.4.2.1 Classical and corrected Knudsen model-based correlation 

For the silica layer, having pores in the size range of 2-7 nm diameter, the viscous contribution to 

the flow may be neglected, and the tortuosity at each temperature point may be readily evaluated 

from eqn. (5.1). Figure 5.9(a) depicts the variation of tortuosity with temperature for the active 

silica layer in the membrane, using the estimated values of P2 depicted in Figure 5.8(b), and the 

mean pore radius defined by eqn. (5.3). It is evident that the estimated tortuosities are unreasonably 

high (between 8 and 19), and have a strong temperature and gas dependence, following the order 

He > H2 > N2   Ar > CH4 > CO2, which is observed at each temperature. As mentioned in Chapter 

4, the extreme high tortuosity only occurs to the material in which the pores are poorly connected 

with each other, i.e., the pore coordination number is close to unity. However, according to the 

work of Seaton based on percolation theory from N2 adsorption, the pore coordination number for 

silica is in the range between 3 and 6, which indicates that the maximum intrinsic tortuosity for 

silica is around 4 [53-55]. It is also evident from Figure 5.9(a) that the trend of the tortuosity 

variation with temperature is sensitive to the gas species, showing a tortuosity increase with 

increase in temperature for the heavier gases (Ar, N2, CH4 and CO2), a decrease for He, and little 
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change for H2. Such variation of tortuosity with temperature and gas species is unexpected for the 

Knudsen model, for which a constant, purely pore structure-dependent, tortuosity is predicted [12, 

20], as ( ) /oD r T M  with K = 1 in this case, so that eqs. (5.13), (5.14) and (5.19) lead to a 

constant tortuosity.  

 

Figure 5.9 (a) Empirical variation of the apparent tortuosity for the silica layer with temperature, 

obtained using the classical Knudsen diffusion model, (b) linear regression for all the gases based 

on the classical Knudsen diffusion model in the silica layer, (c) variation of the apparent tortuosity 

with temperature for the silica layer, obtained using the corrected Knudsen diffusion model, and (d) 

linear regression for all the gases based on the corrected Knudsen diffusion model in silica layer. 

The symbols are the experimental points, and the lines are the model results using eqn. (5.18), 

taking the membrane thickness as zm = 15 μm based on the SEM image. 

However, the behavior observed here is completely consistent with that predicted using the 

Oscillator model with effective medium theory [12], including even the ordering of the gases with 

increasing tortuosity. This provides strong support for the validity of the latter approach. As an 
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alternative, one may obtain an overall tortuosity for the silica layer based on eqn. (5.18) by 

plotting the permeance (π = J/(-ΔP)) versus1 TM . A linear correlation passing through the origin 

is then expected if the Knudsen model is valid, and the apparent tortuosity may then be evaluated 

from the slope. Such a plot is illustrated in Figure 5.9(b), where it is evident that some of gases 

(CH4 and CO2) systematically deviate from the regression line, especially at low temperature. As 

marked in the ellipses, much of the experimental data for the heavier gases (CO2 and CH4) is 

significantly higher than the regression line, indicating that strong adsorption occurred for these 

gases at low temperature, for which the density difference between the pore  and bulk fluids is 

significant. In addition, the apparent tortuosity obtained from the slope is 16.2, which is extremely 

high. This high a tortuosity mainly arises from the overestimation of apparent diffusivity by the 

Knudsen model [6, 12], and to a smaller extent from the neglect of the pore size distribution for 

each layer. 

A reduced diffusivity in the membrane layer may be obtained by considering the exclusion effect 

due to finite molecular size following eqn. (5.6), and the corrected Knudsen model is used to 

estimate the tortuosity for each gas, with the fluid LJ parameters given in Table 5.1. The variation 

of the apparent tortuosity with temperature obtained using by this model is depicted in Figure 

5.9(c), where it is seen that the apparent tortuosity is only slightly reduced for each gas. It is 

evident that the tortuosity values are still unreasonably high (between 7 and 17), and a systematic 

dependence on temperature is still evident with this method. To eliminate the temperature 

dependence for each gas, the apparent tortuosity can be empirically obtained as above from a 

linear correlation of the permeance with 1 TM . Such a plot is illustrated in Figure 5.9(d), with 

the estimated apparent tortuosities given in Table 5.2, showing significant variation with gas and 

having the same order as before, i.e., He > H2 > N2  Ar > CH4 > CO2. For instance, the difference 

in apparent tortuosity for He and CO2 is more than 150%, in contradiction to theory, which 

predicts that the apparent tortuosity should be independent of temperature, and only marginally 

different between gases for the corrected Knudsen model due to molecular size differences [20]. 

Table 5.2 Apparent tortuosity of silica layer for various gases based on empirical correlation using 

the corrected Knudsen model. 

tortuosity H2 He CH4 N2 Ar CO2 

τapp 15.3 16.1 12.4 13.4 13.4 9.4 
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The above anomalies indicate that neither the classical nor the corrected Knudsen equation is able 

to satisfactorily model the transport in the silica layer based on a single representative pore radius. 

Besides the neglect of the pore size distribution, both fail due to the significant overestimation of 

the apparent diffusivity and the neglect of adsorption, which leads to an unreasonably high 

estimated tortuosity. 

5.4.2.2 Oscillator model-based correlation 

The Oscillator model provides an alternative approach to correlate the experimental flux in the 

silica layer, in which the apparent diffusivity (KDosc) is estimated using eqs. (5.8) and (5.10) while 

considering the fluid-solid interaction with the LJ parameter given in Table 5.1. The variation of 

apparent tortuosity with temperature, estimated using eqn. (5.18), is depicted in Figure 5.10(a), 

showing the tortuosity to be dramatically decreased for each gas compared to that estimated using 

the Knudsen or corrected Knudsen approach. In addition, the tortuosity variation with temperature 

and gas species is consistent with the prediction by theory [12], due to the more complex 

dependence of flux on temperature and fluid molecular parameters in the Oscillator model. As 

with the Knudsen model, a linear correlation of permeance (π = J/(-ΔP)) against ( ) ( )osc p pD r K r T  

was performed for each gas in accordance with eqn. (5.18), as depicted in Figure 5.10 (b), and the 

tortuosity derived from the slope. It evident that the correlation arising from the Oscillator model 

is much more satisfactory than the Knudsen approach, without the anomalies arising from the 

strong adsorption of CH4 and CO2 at low temperature observed in the Knudsen approach. This 

suggests that the adsorption is correctly considered in the equilibrium constant, K, using the 

Oscillator model. The apparent tortuosity for each gas is given in Table 5.3, in which a strong gas 

dependence is observed, with similar order as before, i.e., He > H2 > N2  Ar > CH4 > CO2. This 

dependence of tortuosity on diffusing species is consistent with theoretical predictions, and our 

previous observation that more strongly adsorbed gases have lower tortuosity except at sub-

nanometer sizes [6]. 

Table 5.3 Apparent tortuosity of silica layer for various gases based on empirical correlation using 

the Oscillator model. 

 

 

tortuosity H2 He CH4 N2 Ar CO2 

τapp 8.94 10.37 7.66 7.59 7.64 6.00 
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Figure 5.10 (a) Empirical variation of the apparent tortuosity with temperature for the silica layer, 

obtained using the Oscillator model, and (b) linear regression for all gases based on the Oscillator 

model in the silica layer. 

The above success of the Oscillator model can be explored by examining the difference of 

apparent diffusivity and equilibrium constant for each model at the mean pore radius, pr , defined 

by eqn. (5.3). Figures 5.11 (a) and (b) illustrate the variation of apparent diffusivity with gas 

molecular size for the classical Knudsen model, its corrected version accounting for finite 

molecular size, and for the Oscillator model, at 30 ºC and 300 ºC, respectively. It is evident that the 

apparent diffusivity is only decreased by about 10% by the exclusion due to finite molecular size 

in the corrected Knudsen model for each gas, but almost halved by the Oscillator model, indicating 

that the diffusivity is greatly overestimated by the Knudsen model at the mean pore of the silica 

layer. Since the equilibrium constant (K) reflects the adsorption intensity, it is interesting to 

investigate the influence of factors such as gas species and temperature on K. Such a plot is 

depicted in Figure 5.11(c), and it is evident that the adsorption equilibrium constant is strongly 

depended on the gas species and temperature. For the strongly adsorbed gases (CH4 and CO2), the 

value of K is as high as 5-7 at 30 ºC, but decreases to almost unity at 300 ºC. For the moderately 

adsorbing gases (N2 and Ar), the value of K is around 2.5 at 30 ºC, and falls to almost unity at 

300ºC, while for the most weakly adsorbed gases (He and H2), the value of K is almost unity at 

both temperatures. These results are consistent with the observations based on Figures 5.9(b) and 

5.9(d), where the adsorption effect is seen to be most significant for the heavier gases at low 

temperature. On the other hand the adsorption of the lighter gases is very weak even at very low 

temperature, indicating that the densities of the pore and bulk fluid are almost identical at all 

temperatures, thus, the correlation can provide good agreement with the experimental data over the 

whole temperature range. 
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Figure 5.11 Variation of the apparent diffusivity with gas molecular size predicted by the classical 

Knudsen model, a correction version for finite molecular size, and by the Oscillator model, at (a) 30 
ºC, and (b) 300 ºC respectively, at a pore radius rp = 1.85 nm for silica, and (c) variation of the 

equilibrium constant with gas molecular size at 30 ºC and 300 ºC.  

Although a more acceptable apparent tortuosity of membrane layer is permitted by Oscillator 

model for each gas, it is evident that the methodology, based on a single pore size, can only 

qualitatively explain the results, and some anomalies occur in the correlation results. For instance, 

unexpected crossover of tortuosities between some of the heavier gases (N2, Ar and CH4) is 

observed, and the tortuosity for He is still very high (around 11). In addition, the above analysis 

while demonstrating better agreement for the Oscillator model is correlative and cannot be used 

predicatively, since the tortuosity is found not to be transferable between different fluids and 

temperatures. We have previously shown that our hybrid correlated random walk-effective 

medium analysis in eqs. (5.13)-(5.22) [6, 12, 40] can successfully predict fluxes and tortuosities 

for the macroporous substrate and the interlayer having large mesopores of size about 11.5 nm 

diameter [16, 20], using fundamental structural parameters of the solid (pore coordination number, 
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N, and pore length l) while accounting for the whole pore size distribution. We therefore next 

explore the application of this approach to the current data for the narrower pore size silica layer, 

using the three different diffusion models (Knudsen, corrected Knudsen and the Oscillator model) 

at the single pore level. 

5.4.3 Application of effective medium theory 

Given the high tortuosity and its lack of transferability based on the empirical correlation using a 

single pore size, effective medium theory is next utilized to investigate the transport using an 

appropriate diffusion models for each layer. The advantage of this method is that it accounts for the 

entire pore size distribution for each layer, rather than using an arbitrary single pore size as in eqn. 

(5.18). Here we have used the pore volume distribution for each layer, fv(rp), determined as 

described in Section 5.2, with the corresponding number distribution,  fN(rp), for use with the 

effective  medium theory following 

2

( )
( )

p

v p
N p

f r
f r

r l
                                                             (5.27) 

By utilizing the relationship between pore structure and macroscopic flow rate in eqn. (5.20), the 

diffusion model can be directly validated, with the coordination number (N), and membrane 

thickness (z) or pore length (l) as the fitting parameters. In the 3-layer composite membrane, the 

diffusion mechanisms and structural parameters for the substrate and interlayer must be determined 

in advance before investigating the transport in the silica layer. For unconsolidated media such as 

the substrate and interlayer, the aspect ratio plays an important role in the local transport, and the 

coordination number and pore length are used as the fitted parameters; these have been determined 

in our prior study [20], with the values Ns = Nc = 12, ls = 300 nm, lc = 5 nm. For the consolidated 

silica layer, the pore aspect ratio is assumed to be negligibly small (i.e. x = 0, g(x) = 1/3), so that the 

local transport direction in the pore is purely axial, the fitted structural parameters are the 

coordination number (Nm) and membrane thickness (zm) based on eqn. (5.22) by equating the flow 

rate between each layer as described in eqn. (5.24). Following our previous work, the classical slip 

flow model, its corrected version for finite molecular size, and the Oscillator model are employed in 

this methodology to independently investigate the diffusion in the silica layer. 

5.4.3.1 Slip flow in the membrane layer 

With the classical slip flow model used in each layer (substrate, interlayer and membrane layer), the 

structural parameters of the silica layer were obtained by minimizing the fitting error of the flow 

rate, given in eqn. (5.23). For this eqn. (5.24) was solved to obtain the interlayer pressures with the 
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substrate and interlayer parameters as determined previously [20] and given above. Figure 5.12(a) 

illustrates the variation of flow rate with temperature for the experimental permeation data 

(symbols), and the corresponding best fit (lines) obtained using the silica membrane layer structural 

parameters of Nm = 3 and zm = 22.5 m, for several gases. As seen in Figure 5.12(a), the model flow 

rates for the light gases (H2 and He) are significantly larger than the experimental values, despite 

the high value of the fitted membrane thickness compared to the actual value of about 15 m. This 

indicates that the corresponding apparent diffusivity is still significantly overestimated for these 

gases. For instance, the model flow rate for He is 25% higher than the experimental value at 30 ºC.  

 

 

 

 

 

 

Figure 5.12 Variation of (a), (b) flow rate with temperature obtained from experimental permeation 

data (symbols) and the corresponding best fit (lines) based on the classical slip flow model in the 

silica layer, using the structural parameters of Nm = 3, with (a) zm = 22.5 m and (b) zm = 15 m, and 

(c) the relative error, Q(Nm, zm), with coordination number for several values of membrane thickness. 

In addition, the model generally underestimates the flow rate for the strongly adsorbed gas (CO2 and 

CH4) at low temperature, which is mainly due to the neglect of the effect of adsorption. For 

example, the model flow rate for CO2 is 40% lower than the experimental one at 30ºC. On the other 

hand, the model does provide good agreement with the experimental results for the moderately 
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adsorbed gas (N2 and Ar); however, it may be recognised that this is achieved by the use of an 

unrealistically large membrane thickness - this masks the overestimation of the diffusivity for these 

gases. As is evident from Figure 5.4, the membrane thickness varies between 12 and 18 m. Figure 

5.12(b) compares the variation of the flow rate with temperature for the experimental permeation 

data (symbols) and the corresponding model curve (lines) obtained using a membrane thickness of 

15 m and coordination number Nm = 3. It is evident that the model flow rate is significantly higher 

than the experimental one for all the gases, and the relative deviation is even larger than 60% for 

some conditions, confirming the overprediction of the apparent diffusivity by the classical slip flow 

model in the silica pores. The failure of this diffusion model is further demonstrated by the plot of 

the relative fitting error, Q(Nm, zm), versus coordination number (Nm) for several membrane 

thickness (zm), depicted in Figure 5.12(c). It is evident that any arbitrary changes of the thickness 

(zm) and coordination number (Nm) increase the error significantly compared to the best fit model 

results in Figure 5.12(a). Thus, it is clear that the diffusivity is significantly overestimated by the 

Knudsen model due to the neglect of the dispersive force exerted by the wall. 

Similar overprediction is also observed for the corrected slip flow model, in which the effective 

pore size is adjusted to account for finite molecular size, following eqn. (5.6). Figure 5.13(a) 

compares the variation of the flow rate with temperature for the different gases, for the experimental 

permeation data (symbols) and the corresponding best fit (lines) obtained using the structural 

parameters of Nm = 3 and zm = 17.5 m. It is evident that the fitted membrane thickness (17.5 m) is 

reduced to a more realistic value, and the model provides better agreement with experimental data 

for the weakly adsorbed gases (H2 and He).  

Nevertheless, the total deviation for the other heavier gases is still very large and the corresponding 

flow rate is systematically underestimated by the model due to the high membrane thickness. Figure 

5.13(b) depicts the comparison between the data and the model results using the mean value of zm = 

15 m and Nm = 3. In this case the model provides good agreement with experimental data for the 

moderately adsorbed gases (N2 and Ar), but the flow rate for the weakly adsorbed gases (He and H2) 

and the strongly adsorbed gases (CH4 and CO2) shows significant deviation, exceeding 30% at low 

temperature. Figure 5.13(c) depicts the sensitivity of the relative error, Q(Nm, zm), to coordination 

number (Nm) and membrane thickness (zm). As for the uncorrected slip flow model, the error is very 

sensitive to the coordination number, and any change in assumed membrane thickness from the best 

fit value of 17.5 m increases the fitting error. Thus, it is clear that neither the slip flow model nor 

its corrected version can satisfactorily interpret the data. 
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Figure 5.13 Variation of (a), (b) flow rate with temperature obtained from experimental permeation 

data (symbols) and the corresponding best fit (lines) based on the corrected slip flow model in the 

silica layer, using the structural parameters of Nm = 3, with (a) zm = 17.5 m and (b) zm = 15 m, and 

(c) the relative error, Q(Nm, zm), with coordination number for several values of membrane thickness. 

5.4.3.2 Oscillator model in the membrane layer 

The apparent diffusivity (KDosc) can be directly evaluated by the Oscillator model with the 

adsorption effect represented by the equilibrium constant, K. Figure 5.14 (a) illustrates the 

comparison of the variation of the flow rate with temperature between the experimental permeation 

data (symbols) and the model (lines) using the best fit structural parameters of Nm = 3 and zm = 15 

m, for the different gases. It is evident that the fitted membrane thickness reduces to a more 

reasonable value, consistent with that observed in the SEM image, in comparison to the Knudsen 

model or its corrected form. In addition, the agreement between the model line and the experiment 

value is much better, especially for the heavier gases at low temperature. For instance, the flow rate 

for CO2 is higher than N2 at low temperature (30 ºC) for the experiment, but cannot be predicted by 
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the Knudsen model. However, this behavior is found for the Oscillator model, since the equilibrium 

constant for CO2 is much higher than N2 in the silica pores at low temperature as indicated in Figure 

5.11(c); this leads to a higher apparent diffusivity for CO2 compared to that for N2 at low 

temperature. Further, it is important to note that the current theory assumes straight cylindrical 

pores with smooth surfaces, which is different from the real voids formed in the silica matrix, in 

which the pore shape is irregular with a rough surface as seen in Figure 5.3. Thus the values of Nm 

should be understood as the effective coordination number of an equivalent network comprised of 

ideal cylindrical and straight pores, with a smooth surface providing the same overall resistance to 

flow as the actual silica layer.  

On the other hand, it is evident that Oscillator model marginally underestimates the flow rate for all 

the gas except He, for which a small overprediction occurs. The discrepancy can be justified that the 

real voids with roughness surface can provides extra resistance, which is not included in any part of 

the effective medium theory. The resistance caused by the surface roughness is not considered here, 

and may be expected to be related to the molecular size, with the smaller molecules such as He 

being more sensitive to the surface texture and thereby facing greater resistance. Thus the model 

slightly overestimates the flow rate for He, for which the resistance is underestimated. The success 

of the Oscillator model is further demonstrated by plotting the relative error function, Q(Nm, zm), 

versus coordination number (Nm) for several membrane thickness (zm). As seen in Figure 5.14(b), 

the error is 50% less than that for the Knudsen approach, indicating that the diffusion in the silica 

mesoporous membrane is more accurately represented by the Oscillator model.  

We note here that we have used the membrane thickness as a fitting parameter to illustrate the 

reliability of the method, which leads to an optimum value of the thickness in excellent agreement 

with the average value obtained from the SEM image. This provides convincing evidence for the 

validity of the Oscillator model at this pore size scale, while the Knudsen model requires an 

unrealistically large membrane thickness due to its overprediction. Thus when the membrane 

thickness can be specified based on the independent measurements, the coordination number need 

be the only fitting parameter when interpreting membrane transport data based on the Oscillator 

model. However, in practice accurate specification of the membrane thickness is somewhat difficult 

because the interlayer boundaries are often diffuse, with some interpenetration. In such 

circumstances it may be pertinent to use effective membrane thickness as a fitting parameter. In the 

present case it is evident that a consistent membrane thickness is obtained for all gases when using 

the Oscillator model, but not when using the Knudsen model for the transport in the silica layer. 
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Figure 5.14 Variation of (a) flow rate with temperature, obtained from experimental permeation 

data (symbols) and the corresponding best fit (lines) based on the Oscillator model in the silica layer, 

obtained using the structural parameters of Nm = 3 and zm = 15 m, and (b) the relative error, Q(Nm, 

zm), with coordination number for several values of membrane thickness. 

Figure 5.15(a) depicts the relative pressure drop in the silica layer, for the parameters Nm = 3 and zm  

= 15 m corresponding to the best fit. It is evident that most of the pressure drop (85-90%) in the 3-

layer membrane lies in the silica layer consistent with the conclusions based on Figure 5.7. The 

balance of the pressure drop essentially lies in the -alumina substrate, as depicted in Figure 5.15(b). 

Interestingly, for the weakly adsorbed gases He and H2 the relative pressure drop in the silica 

decreases, while that in the substrate increases, with increase in temperature, which is contrary to 

the behavior for the other gases. This is readily seen to be because of the larger increase in the 

apparent diffusivity (KDosc) in the silica layer with increase in temperature compared to that in the 

substrate (in which the Knudsen model is adequate), for He and H2, due to the effect of fluid-solid 

interaction (c.f. Figure 5.11). It may be noted that the equilibrium constant is close to unity for He 

and H2, and nearly constant, so that the increase in apparent diffusivity for these gases is essentially 

due to the increase in pore diffusivity. On the other hand for the other more strongly adsorbed gases 

the apparent diffusivity with increase in temperature is much more modest due to the decrease in the 

equilibrium constant, evident in Figure 5.11(c). This leads to the increase in relative pressure drop 

in the silica layer with increase in temperature for these gases seen in Figure 5.15(a). This increase 

is the largest for the most strongly adsorbed gases, CH4 and CO2, for which the equilibrium 

constant reduces the most with increase in temperature. 
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Figure 5.15 Variation of (a), (b) relative pressure drop over (a) the substrate layer, and (b) the  

silica membrane layer, and (c) the apparent silica layer tortuosity with temperature for various gases, 

based on eqn. (19) and the Oscillator model in the silica layer, with the fitted structural parameters 

(Nm = 3 and zm = 15 m). 

5.5 Summary and conclusions 

Single gas permeation experiments with six gases (N2, Ar, CO2, He, H2 and CH4) have been carried 

out over a wide range of temperature (30-300 ºC) in a mesoporous silica membrane coated on an 

asymmetric support. The transport through the silica membrane layer has been examined using both 

conventional correlations based on a single representative pore radius, and a more rigorous effective 

medium theory considering the pore size distribution for each layer. The correlation results 

demonstrate that the classical Knudsen diffusion model, and a version corrected for finite molecular 

size, significantly overpredict the diffusivity, which leads to very high apparent tortuosities 

(between 8 and 19). In addition, it is seen that adsorption effects are important for all gases except 
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He and H2, particularly at low temperature, and should be taken into account. On the other hand the 

Oscillator model, which considers the adsorption, leads to a significantly lower apparent diffusivity, 

and correlates the experimental flux versus temperature data much more accurately for all the gases 

in comparison to the Knudsen model. 

To more precisely investigate and validate the transport mechanism in silica layer, the various 

diffusion models are tested using a more rigorous methodology based on effective medium theory 

while considering the pore size distribution for each layer. The failure of classical Knudsen 

approach and its version corrected for finite molecular size is also demonstrated through the 

effective medium approach, with the flow rate overestimated for all the gases by over 30%. Use of 

the Oscillator model which considers dispersive fluid solid interaction in the interlayer and the silica 

layer, leads to significantly lower diffusivities, and better fit of the experimental data compared to 

the Knudsen approach, with deviation for each gas around 8%. It is found that the resistance of the 

interlayer is negligible in the supported 3-layer membrane, and the governing resistance lies in the 

silica layer with about 85-90% of the total pressure drop lying in this layer, and about 10% in the 

substrate. In addition, the apparent tortuosity for each gas is examined, and at all the temperatures 

the order from the highest to the lowest is He > H2 > N2 > Ar > CH4 > CO2. It is found that the 

tortuosity depends strongly on gas species, and increases with temperature due to increased short 

circuiting by larger pores at higher temperatures. This increase is the weakest for the least adsorbing 

gases, He and H2, whose adsorption equilibrium constant is nearly constant and close to unity. For 

the more strongly adsorbing gases, the opposing effects of increase in temperature on pore 

diffusivity and equilibrium constant lead to a stronger increase in the apparent diffusivity with 

increase in temperature for larger pores, while the short circuiting effect in smaller pores is reduced 

at high temperature, and more gas molecules tend to flow through larger pores, therefore the 

tortuosity increases. 
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5.6 Supplementary Information 

Table S5.1. The flux of substrate at various temperatures for different gases 

J (mol/s/m2) Temp 

(K) N2 Ar CO2 He H2 CH4 

303.15 0.49520015 0.40312937 0.48616747 0.86608515 1.35833801 0.72309871

333.15 0.43667650 0.36940182 0.43944222 0.82025366 1.25175594 0.62516186

363.15 0.39933599 0.32311737 0.38972287 0.77160313 1.16068288 0.58507987

393.15 0.37452932 0.30620888 0.35393779 0.73365756 1.10886142 0.55135365

423.15 0.35557893 0.28921078 0.32242618 0.69859865 1.04372773 0.50779876

453.15 0.33691473 0.26942380 0.29772046 0.65114431 0.98249758 0.46685162

483.15 0.31501382 0.25291510 0.27293985 0.61712999 0.93580213 0.43433344

513.15 0.29759884 0.23858587 0.25587612 0.59382309 0.92140214 0.41905203

543.15 0.28424579 0.22717799 0.24117920 0.57019720 0.87510145 0.39276950

573.15 0.27496583 0.21928021 0.22758014 0.54831055 0.83117165 0.37546227

 

Table S5.2 The flux of asymmetric support at various temperatures for different gases 

J (mol/s/m2) Temp 

(K) N2 Ar CO2 He H2 CH4 

303.15 0.46573097 0.37442462 0.44680899 0.83275210 1.29014429 0.67215916

333.15 0.42075383 0.33935171 0.38672006 0.75850884 1.19788896 0.60481156

363.15 0.39244378 0.30321197 0.35881971 0.71889278 1.11391324 0.55332011

393.15 0.35252719 0.28927002 0.32083612 0.69451766 1.05004455 0.52913606

423.15 0.33534942 0.27119178 0.30393695 0.66379717 1.01004519 0.46983187

453.15 0.31732624 0.25784413 0.27653614 0.62737456 0.94531570 0.44889732

483.15 0.29817064 0.24214149 0.25767504 0.59319014 0.88856566 0.41549542

513.15 0.27936031 0.22854335 0.24056459 0.56793474 0.85397814 0.39258637

543.15 0.26654230 0.21940116 0.22750873 0.54924176 0.81485358 0.37120874

573.15 0.25389082 0.21106526 0.21425656 0.52681416 0.78396216 0.35469704
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Table S5. 3 The flux of 3-layer silica membrane at various temperatures for different gases 

J (mol/s/m2) Temp 

(K) N2 Ar CO2 He H2 CH4 

303.15 0.05196507 0.04305573 0.06617804 0.09951732 0.15791272 0.07335468

333.15 0.04806602 0.04048572 0.05796064 0.09887448 0.15091598 0.06992954

363.15 0.04385377 0.03729710 0.05130041 0.09479313 0.14309578 0.06379910

393.15 0.04176024 0.03535106 0.04692214 0.09167631 0.13702039 0.06010757

423.15 0.03934275 0.03336190 0.04331483 0.09012524 0.13220444 0.05580689

453.15 0.03755143 0.03175853 0.03945077 0.08695103 0.12615169 0.05292282

483.15 0.03564948 0.03012621 0.03642936 0.08426269 0.12195880 0.05004419

513.15 0.03416740 0.02868790 0.03423884 0.08204317 0.11808398 0.04772105

543.15 0.03284644 0.02761597 0.03210244 0.07939264 0.11383636 0.04565234

573.15 0.03154827 0.02655736 0.03042637 0.07744164 0.11032010 0.04385890
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Chapter 6: Understanding the diffusional tortuosity of porous materials: an effective medium 

theory perspective 

The interpretation of experimental data on transport in porous materials is often based on the use of 

a single representative pore size, overlooking effects of the pore size distribution (PSD) and pore 

network connectivity, and fitting a tortuosity into which all such uncertainties are consigned. In this 

chapter, using literature data on the diffusion of N2, Xe and i-C4H10 in mesoporous Shell silica 

spheres, we demonstrate that the tortuosity depends on the choice of the representative pore radius 

as well as gas species. Both the Knudsen model and the Oscillator model considering dispersive 

fluid-solid interactions, developed in this laboratory, are found to adequately interpret the data in 

conjunction with effective medium theory (EMT) by fitting a network coordination number instead 

of tortuosity. This insensitivity to model is due to the large mean mesopore radius of 7.4 nm for this 

silica; however, the Oscillator model is found to yield a value of the coordination number closer to 

the range of values expected for this material.  

Using the EMT we demonstrate that the tortuosity is dependent on temperature and diffusing 

species, because of differences in temperature dependence between the conductance at the 

representative pore radius and the true conductance which depends on the network connectivity and 

PSD. In the slip flow regime, which is obtained at large pore size, we show that the superposition of 

Knudsen and viscous mechanisms leads to temperature and species dependence of tortuosity, 

because of the different pore size dependence of the two contributions. This leads to different 

limiting tortuosities and PSD dependence in the Knudsen and viscous flow regimes. These critical 

aspects are largely unappreciated in the literature, and even systematic variations of tortuosity with 

temperature or diffusing species usually overlooked, often leading to misrepresentation of the 

underlying mechanism. 

6.1 Introduction  

Advances in templating methods and techniques of nanomaterials synthesis have led to the rapid 

growth of a vast array of novel nanoporous materials, which hold potential for applications in areas 

such as adsorption and gas storage, membrane separation, heterogeneous catalysis and drug delivery  

[1-5]. These developments have stimulated considerable interest in the modeling of adsorption and 

fluid transport in the confined spaces of such materials, which is central to their applications [6-8]. 

The most common approach in the modeling of transport in nanoporous materials relates the flux (J) 

to an effective diffusion coefficient (De) and the bulk pressure gradient ( P ) through the 

phenomenological relation [9-11]: 
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where Rg is the gas constant and T is the temperature. Since nanoporous materials often comprise a 

network of pores that is disordered and has a pore size distribution, the interpretation of the 

effective diffusivity therefore generally involves pore network parameters, such as porosity (ε), and 

an apparent tortuosity (τapp). In general, the various theories developed to estimate the effective 

diffusivity based on the properties of the fluids and the porous medium, have the form [12-16] 
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where 
aD  is the apparent pore diffusivity, commonly evaluated using an appropriate diffusion 

models while choosing an appropriate representative pore size. Although the porosity can be 

extracted from gas adsorption or mercury porosimetry analysis [17], the apparent tortuosity is often 

empirically estimated by fitting experimental flux data to a correlation suggested by an assumed 

transport model.  

Apparent success of the correlation (e.g. effective diffusivity versus T M  , where M is molecular 

weight, as per the established Knudsen model), and proximity of the fitted tortuosity to the 

theoretical value of 3 for a random walk, is often used as a criterion to validate assumptions 

regarding transport mechanisms in disordered nanoporous materials; however, this approach has 

been criticized on fundamental grounds [18, 19]. Nevertheless, due to its simplicity, the above 

approach has become routine in investigations of diffusion in the newly-synthesized nanoporous 

materials [5, 6, 20]. In this spirit, the most commonly used model is the Dusty Gas Model (DGM) 

of Mason and coworkers [13], which arbitrarily superposes pore wall-affected diffusion and 

hydrodynamic fluxes. When adsorption is negligible, the pore wall-affected diffusion is often 

represented by the Knudsen model, which is supplemented by a surface diffusion contribution when 

adsorption is significant [21].  

Although the DGM based approach utilizing the Knudsen diffusion model has been successfully 

used to correlate experimental data, its validity for multicomponent systems has been criticized by 

Kerkhof and Geboers [22] and Bhatia et al.[15], who demonstrate internal inconsistencies in its 

development. Nevertheless, while not inconsistent in pure component systems, it yields unphysical 

parameter values when adsorption effects are not negligible, and the fluid molecular size is not 

insignificant in comparison to the pore size. Under these conditions, very high tortuosities are often 

obtained for mesoporous materials if the Knudsen diffusivity is utilized in the DGM approach [23-

26]; this is attributed to the overprediction of the diffusivity by the Knudsen model, due to its 
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neglect of the dispersive force exerted by the wall [15, 17-19, 27-29]. As a result there is much 

interest in the development of new diffusion models that consider the potential field of the walls [18, 

30-32]. Significant success has been achieved in this laboratory through the development of the 

‘Oscillator model’ which considers the effect of the solid-fluid dispersive interaction on the 

diffusion as well as on the adsorption [31, 33, 34].  

Another key deficiency of the DGM approach is that the apparent tortuosity is incorporated as an 

effective parameter, which is assumed to be exclusively determined by the properties of the porous 

medium, and is considered constant. However, it has been experimentally confirmed that the 

apparent tortuosity can be influenced by the operating conditions such as temperature and gas 

species [16, 17, 28]. For instance, in the slip flow regime in macroporous materials, to which the 

DGM is frequently applied, the apparent tortuosity of the macroporous network varies (albeit 

weakly) with temperature and gas species due to the combined effects of viscous flow and Knudsen 

diffusion [28]. At the mesopore scale, where viscous flow is negligible at low pressures, the 

experimentally observed variation of tortuosity with temperature and gas species can be reconciled 

by the effect of the fluid-wall interaction, and the resulting differences in temperature dependence 

of the diffusivity in pores of different size as predicted by the Oscillator model [17, 28]. This leads 

to short circuiting effects by pores of higher conductance in the network, and to the dependence of 

the apparent tortuosity on temperature and gas species, as well as pressure [27]. This shortcoming 

of the DGM, which considers the tortuosity to be dependent only on the porous medium, has been 

demonstrated through experiments with a multi-layered supported mesoporous membrane [17, 28, 

29], whereby the transport properties of the composite were sequentially investigated as each layer 

was added. Rigorous layer-by-layer analysis showed the combination of the Oscillator model with 

an effective medium theory treatment of network effects to be the most successful approach in 

modeling the transport in each layer [29]. 

Effective medium theory (EMT) offers a convenient route to model transport in disordered 

nanoporous materials, while considering the entire pore size distribution, by replacing the actual 

random network with an effective one having a uniform conductance in each pore. One advantage 

of this method is that it enables rigorous analysis of the relationship between apparent tortuosity and 

the pore structure as well as  properties of the diffusing fluid. Thus, its application in conjunction 

with an appropriate diffusion model, such as the Knudsen or Oscillator models [31], has been key to 

the interpretation of membrane data and the resolution of the temperature and species dependence 

of the tortuosity of disordered nanomaterials and membranes [17, 19, 27-29]. 
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In our recent studies [17, 28], we have demonstrated this technique along with the Knudsen or 

Oscillator model, to satisfactorily represent the transport in a macroporous substrate and in a 

mesoporous γ-alumina membrane having mean pore radius of 5 nm, as well as a mesoporous silica 

membrane having a mean pore radius of 1.85 nm [29]. In addition, our results showed significant 

differences in predicted dependence of tortuosity on temperature for a given macroporous network 

in the slip flow regime, when the representative pore radius was based on either the number 

averaged pore size or on the volume to surface area ratio [17, 28]. Further, in mesoporous silica 

materials, the trend of the predicted dependence of tortuosity on temperature varies with the gas for 

the Oscillator model when the representative pore radius is defined based on the volume to the 

surface area ratio [29], differing from our previous finding that the tortuosity increases with 

temperature for all the investigated gases when the representative pore radius is represented by the 

peak of the number distribution [19, 27]. This raises the important question of how the tortuosity 

trends depend on choice of representative pore radius, when the details of the pore size distribution 

are overlooked, as is common in interpreting experimental data. Therefore, in the current work, we 

use this powerful technique (EMT) to investigate how the tortuosity and its variation with 

temperature is affected by the pore network structure and the choice of representative pore radius in 

different flow regimes. As an example to illustrate these effects, we examine published data on the 

diffusion of various gases in mesoporous silica spheres, with the results for this material providing 

the motivation for further study to better understand these complex effects on transport in such 

disordered nanoporous materials.  

6.2 Materials characterization  

Mesoporous silica spheres of diameter 2.7 mm were obtained from ExxonMobil Corporate 

Research laboratories; these spheres were internally labeled Shell S980B at ExxonMobil. The 

sample was characterized by mercury porosimetry (Micrometrics, IV9500), and the pore size 

distribution (PSD) is illustrated in Figure 6.1, in which a sharp peak is observed at around a pore 

radius of 6 nm, indicating the majority of the pores are within the mesoporous range. The 

corresponding pore volume (Vp) and surface area (Sg) by this method are 0.96 cm3/g and 258.67 

m2/g respectively. Similar values have been obtained by Reyes et al [35] for this silica using N2 

physisorption in which the pore volume and surface area are 1.16 cm3/g and 204 m2/g respectively. 

However, the mean pore radius obtained here of 7.4 nm (2Vp/Sg) is substantially different from the 

value of 3.5 nm quoted by Reyes et al. [35]. The basis of the value of 3.5 nm given by Reyes et al. 

is not known, as the value of 2Vp/Sg based on their own reported data is 11.4 nm. It may be noted 

that in a separate article, based on measured liquid imbibition rates, Iglesia et al. [36] estimate the 

pore radius of the Shell silica S980B spheres as 8.5 nm, in good agreement with the current value of 
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7.4 nm. In light of these results it was concluded that the value of 3.5 nm is incorrect. To further 

confirm our result, the silica spheres were examined by Transmission electron microscopy (TEM). 

The micrograph depicted in Figure 6.2 shows the solid phase to be highly consolidated, and 

majority of the pores to lie between 5 nm and 10 nm, in accord with the mercury porosimetry-based 

PSD. The similarity of pore volumes between different methods indicates that most of the void 

volume is accessible to mercury; thus, in what follows, the pore size distribution in Figure 6.1 is 

taken to represent that of the pore network of the sample.  

 

 

 

 

 

 

 

 

Figure 6.1 Pore size distribution of mesoporous Shell silica spheres, determined by mercury 

porosimetry. 

 

 

 

 

 

 

 

 

Figure 6.2 Transmission electron microscopy image of Shell mesoporous silica spheres. 
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The skeletal density of the silica spheres measured by Helium Pycnometry was 2.22 g/cm3, which is 

very close to the theoretical density of around 2.30 g/cm3 [37], suggesting that most of voids in the 

sample are accessible by the gas. The accessible porosity () of the powder was estimated to be 0.68, 

following  

1
p

p

V

V








                                                                    (6.3) 

in which Vp is the pore volume obtained through the characterization by mercury porosimetry, and ρ 

is the true density from Helium Pycnometry.  

6.3 Transport models 

6.3.1 Transport in a single pore 

Central to the work reported here is the effective medium theory to predict the apparent tortuosity 

for disordered nanoporous materials by considering the entire pore size distribution, with the 

diffusivity represented by a suitably chosen model at the single pore level. To estimate the 

diffusivity using different models, the pore radius used for each model must be precisely defined. 

As illustrated in Figure 6.3, there are several ways to define a representative pore radius, which will 

be extensively addressed for the corresponding diffusion models, as it must depend on the 

interaction potential. All of the models discussed below are based on the assumption of the flow of 

a pure fluid. 

 

 

 

 

 

 

 

 

Figure 6.3 Illustration of the different pore radii used in the classical Knudsen model (rs), the 

corrected Knudsen model ( c
sr ), and the Oscillator model (rosc). 
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6.3.1.1 Slip flow model 

For pores much larger than the size of fluid molecules, the exclusion effect is negligible, and the 

density along the radial coordinate is uniform, and identical to the bulk density (K=1), which 

effectively implies a hard sphere interaction potential. In this case the diffusivity is estimated based 

on the geometrical pore radius (rs), which is the radial distance from the pore center to the wall 

surface. The slip flow model is extensively employed to represent the diffusivity in macroporous 

materials, for which the Knudsen (DKn) and viscous diffusivity (Dvis), are given by 

4 2
97

3
s B

Kn s

r k T T
D r

m M
                                                                    (6.4) 

2

8
s

vis

Pr
D


                                                                     (6.5) 

here M represents the fluid molar mass (g/mol), η is fluid viscosity (Pa.s) and P  is the average 

pressure (Pa). The apparent diffusivity (Da) is regarded as the combination of DKn and Dvis 

( a Kn visD D D  ). For pores smaller than 10ff, the molecular size must be taken into account, and 

the pore radius is corrected to be rc by 

2c s ffr r                                                             (6.6) 

where ff is the Lennard-Jones (LJ) fluid-fluid collision diameter, which is listed in Table 6.1 for the 

gases in this article [19, 27, 38]). The apparent diffusivity ( c c c
a Kn visD D D  ) is evaluated based on the 

corrected pore radius through eqs. (6.4) and (6.5), and the inhomogeneity of the density profile in 

the pore is neglected (i.e. considering the equilibrium constant K=1). 

Table 6.1 Fluid-fluid Lennard-Jones parameters used in the Oscillator model 

Parameters 
He CH4 N2 i-butane Xe 

σff (nm) 0.2551 0.381 0.3572 0.5278 0.4047 

εff/kB (K) 10.22 148.2 93.98 330.1 231.0 

 

The relative importance of viscous flow may be assessed by examining the ratio DKn/Dvis for the 

hard sphere fluid. Use of the kinetic theory result 1/2 25( ) /16B ffmk T    and the definition of the 

mean free path 2/ 2B ffk T P   [39], leads to (20/ / 3) /Kn v sisD rD  . Thus, as an 

approximation, the viscous contribution is nearly insignificant for conditions under which the mean 
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free path exceeds the pore size. As an example, for Ar, for which, 0.34 nmff  , the mean free 

path is estimated as 40.3 nm at a pressure of 2 bar at 300 K. Thus, under these conditions viscous 

flow is negligible in pores smaller than about 40 nm in radius, but must be considered in larger 

pores. 

6.3.1.2 Oscillator model 

As the pore size is reduced, the dispersive force exerted by the walls plays an important role in the 

fluid diffusion. In this case, not only does the Knudsen approach fail to evaluate the single pore 

diffusivity accurately, but also the density profile in the pore becomes nonuniform and differs from 

the bulk value [33, 40]. In this case, the Oscillator model provides an alternative to estimate the 

diffusivity and adsorption effect in the pores, in which the corresponding pore radius is the half 

distance of the center-to-center pore diameter, i.e. 

2
ss

osc sr r                                                                   (6.7) 

where ss is the LJ solid-solid collision diameter of the atoms on the pore walls. For a cylindrical 

pore, at low density, the Oscillator model diffusivity (Dosc) of a LJ fluid particle under the 

conditions of diffuse reflection is given as [31, 33] 

22

2

( , , )

( , , )
( ) 2 2

0 0 0

2 '

( ', , , )

cl rr

co r p pr

r r p ppp
r m mr

osc r
r rr

dr
D e dr e dp e dp

mQ p r r p p











            (6.8) 

where ( ? ,  , )r rp r r p p  is the radial momentum of the particle at ´r : 

1/2
22

2
2

( ? ,  , ) 2 ( ) ( ') 1 ( )
'r r fs fs r

p r
p r r p p m r r p r

r r


  
                 

                (6.9) 

given that it has radial momentum pr at r. Here p  is the angular momentum, 
fs  is the one-

dimensional fluid-solid potential, m is fluid particle mass, β=1/kBT and ( )

0

rQ re dr   . Further, clr  

and cor  are the radial bounds of the trajectory of the particle, determined through the solution of 

( ', , , ) 0r rp r r p p  . A detailed derivation of eqn. (6.8) can be found elsewhere [31].  

An advantage of the Oscillator model is that it considers the whole adsorbed phase in the pore under 

the influence of the fluid-solid potential, with its continuous density profile based on the canonical 

energy distribution, within a single framework without approximating it as comprising a liquid-like 

surface phase and a bulk gas phase in the remainder of the pore. The latter approximation of the 

adsorbate in terms of two uniform phases has frequently been used in the past [21, 41], with the 
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liquid-like phase assumed to undergo surface diffusion. This empiricism is avoided in the Oscillator 

model. 

The adsorption effect is represented by the equilibrium constant (K) in the Oscillator model, and is 

readily obtained using 

( )/
2

0

2 osc

B

r
r k T

osc

K e rdr
r

                                                          (6.10) 

and the apparent low density diffusivity based on the pseudo-bulk concentration gradient is then 

estimated as osc
a oscD D , with viscous transport considered to be negligible. The value of the 

interaction potential, ( )r , strongly depends on the pore wall composition and structure. In this 

work, the pore walls in the silica spheres are assumed to be infinite thick and comprised of closely-

packed LJ sites, with the interaction between the fluid particles and the pore wall being dominated 

by oxygen ions. The assumption of interaction purely with oxygen in silica is commonly made [42, 

43] since oxygen ions are predominant on the surface and effectively screen the interaction of the 

silicon. The interaction energy profile is estimated by [44] 

2 2
2 3

9 39 2 3 2

7 ( 4.5, 3.5,1; ( ) ) ( 1.5, 0.5,1; ( ) )
( )

32( ) 1 ( ) ( ) 1 ( )

h osc h osc
fs v fs

osc fs osc osc fs osc

F r r F r r
r

r r r r r r
    

 

       
         

         (6.11) 

Here σfs is the LJ fluid-solid collision diameter, εfs is the LJ potential well depth,  ρv is the pore wall 

density (atoms per unit volume) and Fh(x,y,z;w) represents the Hypergeometric function. The LJ 

parameters of the different gases used in this work is given in Table 6.1, and the LJ parameters for 

the silica are taken from Kumar et al. [45] as εss/kB = 165.0 K,  σss = 0.27 nm, with ρv = 46.57 nm-3. 

The Lorentz-Berthelot mixing rules are employed to estimate the fluid-solid LJ parameters εfs/kB and 

σfs . We note here that the model assumes a structureless wall with diffuse reflection, as in the 

Knudsen model, and an LJ diffusing species. These are clearly simplifications, and in particular the 

simple LJ assumption will not be satisfactory for complex molecules such as long chain alkanes or 

for aromatics. 

6.3.2 Transport in pore networks 

An important aim of this article is to investigate the transport in disordered mesoporous materials 

using diffusion models at the single pore level, for which the apparent tortuosity can be theoretical 

evaluated based on the effective medium theory [46]. Considering a random network of 

interconnected pores having a coordinate number, N, the predicted apparent tortuosity can be 

derived as follows. 
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For a pore radius rp, the conductance, , is defined as the ratio of the molecular current to the 

driving force (taken here as the pseudo-bulk density gradient), i.e. 
2 ( ) ( )p o p pr D r K r

l


                                                           (6.12) 

where Do(rp)K(rp) is the apparent diffusivity, including both the diffusivity and equilibrium constant 

(K) based on the relevant pore radius as provided in Figure 6.3, and l is the pore length. The 

presence of the equilibrium constant K in eqn. (6.12) is due to the choice of the pseudo-bulk density 

gradient as the driving force, since the diffusivity Do(rp) is based on an adsorbed phase density 

gradient driving force. The pseudo-bulk density is defined as the density of the bulk phase that 

would be in equilibrium with the adsorbed phase. For macroporous materials, the combination of 

the classical Knudsen and viscous diffusivity is used to estimate the apparent diffusivity (Do = Da), 

with K = 1. For narrower pores the apparent diffusivity is estimated based on the corrected pore size 

( c
o aD D ), with K = 1, and the Oscillator model provides an alternative apparent diffusivity 

( osc
o oD D ), with K(rp) defined in eqn. (6.10).  

Assuming the pseudo-bulk pressure drop (-ΔP) is independent of the pore size, the effective 

medium conductance, e is given by the solution of [12, 14] 

( )
0

( ( / 2 1) )
e

eN

 
 




 
                                                    (6.13) 

where   is an average over the pore number distribution, and N is the pore network coordination 

number (i.e. number of pores meeting at an intersection). Physically, this is an effective parameter 

that represents the connectivity of the pore network, which has been found useful in consistently 

explaining the adsorption of molecules of different size [47], as well as adsorption hysteresis [48] 

and the transport of gases in membranes and supports [17, 28, 29]. For the effective medium, the 

pore flux is estimated as [9] 

2
2

1
( ) cos ( )

1
e

p
p g

l N dP
j r

r R T N dz

 


          
                                (6.14) 

where z represents the coordinate along the macroscopic flux direction, (N-1)/(N+1) stands for a 

correlation effect due to the finite possibility that a diffusing molecule re-enters a pore that it has 

just left, and the factor 2cos ( )  accounts for the local diffusion direction, which is not necessarily 

axial but depends on the pore aspect ratio (x=rp/l). For unconsolidated media, pores are formed from 

the space between the consolidated crystal particles in which the pore size is comparable to the pore 

length, so the diffusion direction in the pore is not axial but dependent on the aspect ratio.  
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By assuming that the local diffusion follows the closest path to the macroscopic flux, the expression 

of 2cos ( )  is obtained as [9, 49]  

2
2 2 1/2

4 2
cos ( ) ( ) 1

3(1 4 ) 3(1 4 )

x
g x

x x
    

 
                      (6.15) 

For consolidated materials, the pore aspect ratio is negligibly small, so that the local diffusion 

direction is axial, and upon taking x = 0, we obtain g(x) = 1/3. 

The net flux in the equivalent uniform network is obtained upon integration of eqn. (6.14) over the 

pore volume, to yield 
2

2

( ) 1

1
e

p g

l g x N dP
J

r l R T N dz




              
                                        (6.16) 

In practice, it is common to interpret the experimental data phenomenologically based on the 

effective diffusivity at a mean pore radius,
pr , so that eqs. (6.1) and (6.2) yield 

( ) ( )o p p

app g

D r K r dP
J

R T dz




   
 

                                               (6.17) 

where 
aD  is replaced by ( ) ( )o p pD r K r . Combining eqs. (6.16) and (6.17), the theoretical apparent 

tortuosity is obtained as 
2

2

( ) ( ) 1

( ) 1
p o p p

app
e

r l D r K r N

l g x N





        

                                  (6.18) 

This is the tortuosity an experimentalist would be expected to obtain, when interpreting 

experimental data using a single representative pore size, rp. As is evident from eqn. (6.18), the 

representative pore radius, pr , critically affects the estimated apparent tortuosity and its variation 

with diffusing species and temperature; this is due to the difference in temperature dependence 

between ( ) ( )o p pD r K r  and e, and this difference will depend on the fluid. This representative pore 

radius can be chosen in several ways. In experimental work, the most commonly used 

representative pore radius is estimated based on the ratio of pore volume and surface area, following  

2 p
p

g

V
r

S
                                                                    (6.19) 

where Sg is the surface area determined through gas adsorption or mercury porosimetry. In addition, 

the number average radius provides another alternative, and is defined by 

0

0

( )

( )

p N p p

p

N p p

r f r dr
r

f r dr



 


                                                    (6.20) 
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where fN(rp) is the pore number distribution. The relationship between the pore volume distribution, 

fv(rp), and fN(rp) is given as 

2

( )
( )

p

v p
N p

f r
f r

Hr
                                                               (6.21) 

where 2

0

[ ( ) / ]v p p pH f r r dr


  . Further, the peak of the pore volume distribution, fv(rp), is also 

frequently taken as the representative pore radius. Finally, the peak of the number distribution, 

fN(rp), provides another choice of representative pore radius to be investigated here in estimating 

tortuosity. For clarity, the representative pore radii defined in eqs. (6.19) and (6.20) are labelled as 

vr  and 
nr respectively, while we define rv and rn as the peaks of the pore volume and number 

distribution respectively. In the following, the above pore radii are employed to predict the apparent 

tortuosity, and to investigate the effect of choice of representative pore size on this tortuosity.  

6.4 Results and discussion 

We first examine the data of Reyes et al. [35] for the diffusion of N2, Xe and i-C4H10 in mesoporous 

Shell silica spheres, showing that while the different models are applicable at the large pore sizes 

prevalent in this material, the pore size distribution and network topology, usually neglected in 

interpretations of diffusion data, has critical influence on the tortuosity. Further, we demonstrate 

that in narrower pore size structures, where the pore wall interaction influences the transport 

significantly so that the Knudsen model is inapplicable, the apparent tortuosity varies with gas and 

operating conditions, and this variation depends on the choice of representative pore radius in a 

non-trivial way. 

6.4.1 Diffusion in mesoporous silica spheres 

The intraparticle diffusivity in the mesoporous Shell silica spheres was obtained from the work of 

Reyes et al. [35], who studied the diffusion of N2, Xe and i-C4H10 in this material over a wide range 

of temperature, by the frequency response technique. The authors reported that the diffusion is in 

the Knudsen regime as the experimental temperature and gas species dependence of the diffusivities 

followed a /T M  dependence. This conclusion was further supported by Ruthven et al. [30] by 

correlating the measured diffusivity with the Knudsen diffusivity using a representative pore radius 

of 3.5 nm, to derive an acceptable apparent tortuosity (τapp = 4.2). However, as illustrated in Figures 

6.1 and 6.2, the mean pore radius of the sample is clearly much larger than 3.5 nm, so the estimation 

of the tortuosity requires reconsideration based on a more relevant pore size. Further, it is 
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instructive to re-examine the transport mechanism in the silica spheres using the different 

representative pore radii (rn, nr , rv and 
vr ) with different diffusion models. It was found that the 

values of the pore radii rn, nr  and rv are very close to each other for the pore size distribution given 

in Figure 6.1, so only the results based on 
vr  and 

nr  are discussed in the following section. 

6.4.1.1 Classical Knudsen model 

Figure 6.4(a) and (b) depicts the correlation results based on the classical Knudsen model 

with ( ) 1pK r  , using 
vr  (7.4 nm) and 

nr  (6.1 nm), in which high apparent tortuosities of 9.3 and 7.7 

respectively are extracted from the regression line. These tortuosities are significantly larger than 

the value of about 4.2 quoted by Ruthven using an unrealistically low pore radius of 3.5 nm [30], 

highlighting the effect of the choice of representative pore radius. It is readily seen that the three 

tortuosities of 9.3, 7.7 and 4.2 vary linearly with the associated representative pore radius, which is 

to be expected given the proportionality of the Knudsen diffusion coefficient to this pore radius. 

These tortuosities may be interpreted by effective medium theory, with the diffusivity represented 

by the classical Knudsen model. Considering that the mesoporous silica sphere is highly 

consolidated, the aspect ratio is taken as x = 0, so that   1/ 3g x  , and the coordination number, N, 

is the only adjusted parameter for a chosen representative pore radius (
vr  or

nr ).  

 

Figure 6.4 Correlation of the diffusivity in mesoporous Shell silica spheres based on the classical 

Knudsen model using different representative pore radii. (a) 
vr  and (b) 

nr . Experimental pressure 

used is 2.13 kPa [35]. 

According to the effective medium theory, for the Knudsen model for which ( ) 1pK r  , the 

predicted tortuosity should be independent of temperature and gas species, since the factor (T/M)1/2 
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appearing in the terms λe and ( )o pD r  in eqn. (6.18), cancels out [28]. Such a plot for 
vr  is depicted 

in Figure 6.5, in which the predicted τapp decreases with increase in coordination number, and the 

fitted value of the coordination number for the tortuosity in Figure 6.4(a) is 2.92. The same 

coordination number may be estimated for all choices of representative pore radius with the pore 

size distribution in Figure 6.1, because of the linearity between tortuosity and this representative 

pore size for the Knudsen model. In general, a value between 3 and 6 has been found for the value 

of N for consolidated silica materials based on interpretation of N2 adsorption data using percolation 

theory [48, 50, 51], and the present value is in the low end of this range. Based on the linearity in 

Figure 6.4 for all gases the Knudsen model appears to be satisfactory for the large mesopore sizes 

pertinent to the Shell silica sample; however, the low value of N given the high porosity of 68% of 

this silica suggests that this may be an artifact [19]. Consequently, it is important to explore the 

interpretation of the data using the other models discussed in Section 6.3.1.  

 

 

 

 

 

 

 

Figure 6.5 Variation of apparent tortuosity with coordination number for mesoporous Shell silica 

spheres, based on the classical Knudsen model using different representative pore radii. (a) 
vr  and 

(b) 
nr . 

6.4.1.2 Corrected Knudsen model 

Since the Knudsen diffusion model appears adequate for the large pore size of the silica based on 

the linearity in Figure 6.4, it may be expected that the corrected Knudsen and Oscillator models will 

also be satisfactory. In the above Knudsen model-based correlation the tortuosity is exclusively 

determined by the porous medium and is independent of the gas and temperature. However, as 

demonstrated in our previous results [17], the tortuosity and its variation with temperature and gas 

is significantly affected by the choice of diffusion model. For instance, the apparent tortuosity 
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size correction to the pore radius on the conductance. Therefore it is of interest to examine the 

tortuosity for the corrected Knudsen model based on 
vr  and 

nr  by introducing the molecular 

exclusion effect, using the LJ parameters listed in Table 6.1. Such plots are depicted in Figures 

6.6(a) and (b), in which the apparent tortuosity is extracted from the slope of the correlation for 

each gas using the corrected Knudsen model with ( ) 1pK r  . As shown in Figure 6.6(a), the 

apparent tortuosity based on 
vr  is only slightly reduced and differs only marginally between the 

gases; similar behavior is observed for 
nr  in Figure 6.6(b) albeit with smaller tortuosities than those 

in Figure 6.6(a). The trend of dependence of tortuosity on gas species is in accord with the 

prediction for the corrected Knudsen model using effective medium theory, in which the tortuosity 

variation with gas is mainly caused by the different correction to the pore radius, with larger 

molecules showing higher tortuosity [17].  

 

Figure 6.6 Correlation of the diffusivity in mesoporous Shell silica spheres based on the corrected 

Knudsen model using different representative pore radii. (a) 
vr  and (b) 

nr . Experimental pressure 

used is 2.13 kPa [35]. 

To further examine the exclusion effect, the tortuosity versus coordination number based on 
vr  and 

nr  is plotted in Figures 6.7(a) and (b) respectively, using eqn. (6.18) with ( ) 1pK r  , in which the 

predicted tortuosity is expected to be independent of temperature but to vary slightly between gases. 

As shown in Figure 6.7(a) τapp decreases with increase in coordination number, and the fitted 

coordination number for the tortuosity values in Figure 6.6(a) is 3.25. This is slightly larger than 

that based on the classical Knudsen model, but still in the low end of the range of typical values 

obtained for silica based on percolation theory interpretations of N2 adsorption data [50]. Figure 
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6.7(b) depicts the apparent tortuosity versus coordination number for representative pore radius 

taken as 
nr , yielding a fitted coordination number of 3.24 for the tortuosities in Figure 6.6(b), very 

similar to the value provided by 
vr . However, it is noted that for all coordination numbers the 

predicted order of the tortuosity for the gases in Figure 6.7 is i-butane  Xe>N2, which is different 

from the experimental order, Xe>i-butane  N2, in Figure 6.6. This inconsistency can only be 

attributed to experimental scatter, as the tortuosity variation between gases is small, and such 

differences may not be accurately resolved by the experiments.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.7 Variation of apparent tortuosity with coordination number for mesoporous Shell silica 

spheres, based on the corrected Knudsen model using different representative pore radii. (a) 
vr  and 

(b) 
nr . 
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6.4.1.3 Oscillator model 

The Oscillator model from this laboratory was also applied to interpret the experimental data with 

the LJ interaction parameters given in Table 6.1, and the experimental tortuosity evaluated from the 

ratio between the model-based diffusivity and the observed diffusivity, with ( )pK r  predicted by eqn. 

(6.10). In this approach, the experimental tortuosity varies with temperature and species, which is 

expected for the Oscillator model since the dependence of the conductance on the gas is much more 

complex for the Oscillator model than for the Knudsen model for in which the temperature and gas 

dependence term (T/M)1/2 cancels out of eqn. (6.18). This leads to the complex tortuosity 

dependence on gas and temperature as discussed elsewhere [29]. The results based on 
vr  and 

nr  are 

plotted in Figures 6.8 and 6.9 respectively, with the symbols representing the experimental 

tortuosities, and the lines are the model results obtained using eqn. (6.18). We note here that for the 

frequency response analysis used by Reyes et al. [35] their reported diffusivity represents that based 

on a gas phase concentration gradient, and must be interpreted as /o expKD  , where K  is the mean 

equilibrium constant, defined as 

0

1
( ) ( )p v p p

p

K K r f r dr
V



                                                           (6.22) 

and exp is the experimental tortuosity.  

As shown in Figure 6.8, the experimental tortuosity based on 
vr  is below the values obtained for the 

Knudsen model or its version corrected for molecular size, and varies slightly with gas and 

temperature following the order N2   Xe > i-butane. The predicted tortuosities based on EMT 

decrease with increase in coordination number but slightly increase with increase in temperature for 

all the gases. The estimated coordination number consistent with the results for all the gases is 

around 4.0, which is somewhat larger than the value obtained using the Knudsen based approach, 

and in accord with values from percolation theory-based interpretations of nitrogen adsorption 

isotherms on silicas [50].  

Similar results are obtained for 
nr  in Figure 6.9, although the apparent tortuosities are even smaller 

than those in Figure 6.8. The estimated coordination number using p nr r  is very similar to that 

based on 
vr , at 4.0. Besides, the predicted tortuosity order of the gases in both cases follows the 

pattern N2 Xe > i-butane for all coordination numbers. This is clearly indicative of a higher 

tortuosity (albeit only very slightly) for the more weakly adsorbed gases. Such tortuosity 

dependence on gas is expected for the Oscillator model where stronger adsorption in small pores 
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enhances their conductance at low temperature, mitigating the short circuiting effects of larger pores, 

and therefore leading to a lower tortuosity [19, 27, 29]. Nevertheless, the pore sizes in the 

mesoporous Shell silica spheres are sufficiently large that the short circuiting effect is not as 

prominent as that in small pores (less than 2 nm), and the tortuosity difference between i-butane and 

Xe or N2 is therefore small.  

 

 

 

 

 

 

 

 

Figure 6.8 Variation of apparent tortuosity with temperature for mesoporous Shell silica spheres, 

using representative pore radius, 
vr , for different gases. (a) N2, (b) Xe, and (c) i-butane. The 

symbols represent the experimental tortuosity and lines the theoretical results based on the 

Oscillator model with EMT, for different coordination numbers, in the Henry’s Law region. 
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Figure 6.9 Variation of apparent tortuosity with temperature for mesoporous Shell silica spheres, 

using representative pore radius, 
nr , for different gases. (a) N2, (b) Xe, and (c) i-butane. The 

symbols represent the experimental tortuosity and lines the theoretical results based on the 

Oscillator model with EMT, for different coordination numbers, in the Henry’s Law region. 

The small tortuosity variation with gas can be explained by plotting the variation of pore 

conductance, represented as λl, with the pore radius for each gas, as illustrated in Figure 6.10 for the 

lowest and highest temperature (308 K and 573 K). It is evident that the conductance monotonically 

increases with increase in pore radius in a similar way for all three gases, indicating that short 

circuiting effects by large pores are similar for all gases, and their tortuosities therefore differ only 

marginally. Further, adsorption is not strong even at low temperature, and the variation of 
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conductance with pore size is similar for both temperatures; thus the tortuosities are almost constant 

over the temperature range as given in Figures 6.8 and 6.9.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.10 Variation in conductance (as λl) with pore radius, for different gases, at (a) 308 K, and 

(b) 573 K. 

It is clear from the above that the diffusion mechanism in the mesoporous silica spheres is 

satisfactorily represented by the Oscillator model. Thus, it would appear that all three models 

(Knudsen, corrected Knudsen and the Oscillator model) can be used for the large pore sizes of the 

mesoporous Shell silica. Nevertheless, the larger fitted coordination number of 4 based on the 

Oscillator model would appear somewhat more reasonable given the high porosity of 68% of this 

silica.  
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6.4.2 Influence of pore structure  

Our recent results have shown that the tortuosity is not exclusively determined by the properties of 

the porous medium, but also significantly dependent on the diffusing gas and process conditions as 

well as the diffusion model adopted [16, 17, 19, 27, 29]. The present results have shown that it also 

depends on the choice of representative pore radius, as this affects the intrinsic diffusivity values 

based on which the tortuosity is determined. In this section we investigate these features and the 

diverse variety of behavior that results from different choices of the representative pore radius. 

Assuming a Rayleigh distribution, the relationship between the pore radius, rp, and number density, 

fN(rp), is given by 

2 2[( ) /2( ) ]

2

( )
( )

( )
p o n or r r rp o

N p
n o

r r
f r e

r r
  




                                (6.23) 

here, ro is the minimum pore radius and rn is the peak of the number distribution (or modal pore 

radius). The standard deviation of this distribution is readily seen to be 

0.7024( )n os r r                                             (6.24) 

The mean pore radius, 
vr , based on the ratio between the pore volume and surface area, is 

expressed as 

2 ( )

( )

o
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p N p pr
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p N p pr

r lf r dr
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                                                 (6.25) 

Further, rv is the peak of the pore volume distribution, fv(rp), which follows  

2

2

( )
( )

( )
o

p N p
v p p

p N p pr

r lf r
f r V

r lf r dr



                                       (6.26) 

Figures 6.11(a) and (b) depict the pore number and volume distribution for macroporous networks, 

with modal pore radii rn = 50 nm and 200 nm respectively.  

The minimum pore radius, ro is taken such that the relative standard deviation, s/rn, has a value of 

0.50, and the different choices of representative pore radii for each pore network are marked. 

Significant differences between the various possible choices for representative pore radii are evident. 

For instance, the difference between 
nr and rn is around 20%, and increases to 40% between rv and 

rn. To examine the influence of modal pore radius on the representative pore radii, distributions 
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having modal radii of rn = 2 nm and 8 nm, with the same relative standard deviation of 0.5, are 

depicted in Figures 6.11(c) and (d). The relative difference of the representative pore radii is almost 

identical to that obtained for the macroporous network; thus, the variation of representative pore 

radius is also considerable in mesoporous networks with wide pore size distributions. Much smaller 

differences were found for the mesoporous Shell silica, in which the number average, 
nr , is very 

close to the peaks rv and rn due to its pore size distribution being much narrower. 

 

Figure 6.11 Illustration of different representative pore radii for the Rayleigh pore number 

distribution with various modal pore radii, and the corresponding pore volume distribution, for 

s/rn=0.50. (a) Representative pore radii 
nr  and rn, corresponding to a Rayleigh pore number 

distribution for macroporous networks I and II. (b) Representative pore radii 
vr  and rv, and pore 

volume distribution, for macroporous networks I and II.  (c) Representative pore radii,
nr  and rn, 

corresponding to a Rayleigh pore number distribution for mesoporous networks III and IV. (d) 

Representative pore radii 
vr  and rv, and pore volume distribution, for mesoporous networks III and 

IV. 
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To investigate the effect of representative pore radii on different nanoporous networks, the pore 

network with the modal pore radius of 200 nm is assumed to represent macroporous materials, in 

which the transport is adequately represented by slip flow [28], and the pore network with a modal 

pore radius 2 nm is assumed to represents mesoporous materials in which the diffusion is better 

represented by the Oscillator model [19, 27, 29, 34]. 

6.4.2.1 Macroporous network 

In macroporous media having length scale of a few hundred nanometers, the pores are either formed 

by voids between large crystallites (micron sized) or the space created by the emulsion templates in 

the sol-gel technique [52]. In the first type of pore, the radius is comparable to the pore length, and 

the aspect ratio (x ≠ 0) effect must be taken into account [28]; while in the second type, the pore 

radius is far less than the pore length, and the aspect ratio is small, i.e. 0x   [29]. Unconsolidated 

macroporous materials are often employed as the substrate to provide the main mechanical 

resistance for the membrane layer in industrial practice [29]. For such materials, the aspect ratio is 

considered here and the tortuosity trends with operating conditions are examined using various 

representative pore radii to demonstrate what an experimentalist may be expected to observe in this 

type of material. 

Figure 6.12 depicts the variation of tortuosity with temperature for argon for several coordination 

numbers based on eqn. (6.18), using different representative pore radii, and constant pore length and 

pressure. The apparent diffusivity comprises a combination of Knudsen and viscous diffusion, 

following the slip flow model. It is evident that the tortuosity trends strongly depend on the 

representative pore radius and coordination number. At low coordination number (N=3) in Figure 

6.12(a), the tortuosity monotonically decreases with increase in temperature for all the pore radii, 

and increases with increase in the representative pore radius. With increase in coordination number 

the tortuosity is reduced, as seen in Figures 6.12(b)-(d), which is because of the reduction in short 

circuiting effects with increase in connectivity.  

In addition, a variety of trends in tortuosity, both increasing and decreasing with respect to 

temperature, are obtained. Nevertheless, at the macropore sizes chosen the temperature effect is 

weak due to the dominance of the viscous flow mechanism. It is clear from the EMT expression in 

eqn. (6.18) that when either Knudsen or viscous flow dominates, the temperature and gas-specific 

factors will cancel, and the tortuosity will be dependent on the properties of the pore network only. 

When both viscous and Knudsen contributions are important, the variation of tortuosity will depend 

on the difference between the temperature dependence of ( ) ( )o p pD r K r  and e. With increase in pr  
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the temperature dependence of ( ) ( )o p pD r K r  will be weaker, leading to a milder increase or even 

reduction in tortuosity with increase in temperature.  

 

Figure 6.12 Variation of apparent tortuosity with temperature for different representative pore radii 

and several coordination numbers, based on slip flow in an unconsolidated porous medium 

following a Rayleigh pore number distribution, with rn = 200 nm, l = 800 nm, and s/rn=0.50 at 

P=200 kPa, for argon. (a) N=3, (b) N=6, (c) N=9 and (d) N=12. 

As shown above, different representative pore radii can result in different tortuosity trends with 

temperature for the same pore network, due to the difference in temperature dependence of 

( ) ( )o p pD r K r  and e arising from the combination of Knudsen and viscous diffusion. For larger 

representative pore radius the tortuosity tends to decrease with increase in temperature, while for 

smaller representative pore radius the trend is a decreasing one.  

To further explore this phenomenon, the effect of relative standard deviation using the largest (rv) 

and the smallest (rn) representative pore radius was investigated at different temperature and 
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pressure for N = 6, as depicted in Figures 6.13(a) and (b). It is seen that either decrease in 

temperature or increase in pressure yields a higher tortuosity over the given relative standard 

deviation range investigated, indicating that stronger viscous flow leads to higher tortuosity. This is 

due to the quadratic dependence of the viscous flow diffusivity on pore radius, evident in eqn. (6.5), 

as opposed to the linear dependence of the Knudsen diffusivity in eqn. (6.4); this leads to greater 

short circuiting by larger pores when viscous flow dominates. From Figure 6.13 it is also evident 

that the temperature dependence of the apparent tortuosity in slip flow is mainly caused by the 

different tortuosity limits for pure Knudsen or viscous diffusion. For representative pore radius rv, 

the tortuosity increases with increase in relative standard deviation in both the viscous and Knudsen  

limits, which is because of increase in rv with increase in the relative standard deviation, evident 

from Figure 6.12. Consequently, with increase in rv, ( ) ( )o v vD r K r  increases faster with increase in 

the relative standard deviation compared to e, leading to increase in tortuosity with increase in 

relative standard deviation following eqn. (6.18). However, this increase in tortuosity is stronger for 

viscous flow compared to Knudsen diffusion because of the quadratic dependence on pore size 

leading to stronger short circuiting by larger pores. 

On the other hand, when rn is chosen as the representative pore radius the tortuosity instead reduces 

with increase in the relative standard deviation, with the Knudsen limit now being higher than the 

viscous limit, as seen in Figures 6.13(c) and (d). This is because rn, and therefore ( ) ( )o n nD r K r , is 

unchanged with increase in relative standard deviation, while e continues to increase due to larger 

fraction of large pores. This increase is larger in the viscous limit, and dominates over the short 

circuiting effects of large pores, because of the quadratic dependence of the viscous flow diffusivity 

on pore size. As a result, the tortuosity in the viscous limit is lower than that in the Knudsen limit, 

and reduces with increase in the relative standard deviation of the PSD.  

As shown in Figure 6.12, the tortuosity-temperature relationship is strongly influenced by the 

coordination number. Figure 6.14 depicts the variation of tortuosity with coordination number in the 

Knudsen and viscous limits, for the porous network given in Figure 6.12, based on eqn. (6.18) and 

different representative pore radii. It is evident that the tortuosity decreases with increase in 

coordination number in both limits, and at sufficiently small coordination number the tortuosity in 

the viscous limit is always higher. This is because of the greater short circuiting when the network 

connectivity is reduced, and the stronger effect of the reduced connectivity on the short circuiting in 

the viscous limit due to its quadratic pore size dependence. With increase in representative pore size 

the cross-over of the Knudsen limit-based tortuosity to higher values occurs at higher coordination 
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numbers because of this quadratic increase of the viscous flow diffusivity with this pore size in 

contrast to the linear increase of the Knudsen diffusivity.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.13 Variation of apparent tortuosity with relative standard deviation for argon, using 

representative pore radius rv, for different (a) temperature, and (b) pressure, and using 

representative pore radius rn, for different (c) temperature, and (d) pressure. Based on slip flow in 

an unconsolidated porous medium following a Rayleigh pore number distribution, with N=6, rn = 

200 nm and l=800 nm. 

 

The changes in relative importance of viscous flow and Knudsen diffusion lead to the increase or 

decrease of apparent tortuosity with temperature for different representative pore radii. Since the 

relative importance of these two modes depends on the gas, it is of interest to compare the apparent 

tortuosity of various gases. Such plots are given in Figures 6.15(a) and (b), using rv and rn for N=6, 

for a light gas (H2), an intermediate gas (CH4) and two heavier gases (Ar and CO2).  
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Figure 6.14 Variation of apparent tortuosity with coordination number in the Knudsen and viscous 

flow limits, for several representative pore radii, in an unconsolidated porous medium following a 

Rayleigh pore number distribution, with rn = 200 nm, l = 800 nm, and s/rn=0.50 at P=200 kPa for 

argon. (a) rn, (b) 
nr , (c) 

vr  and (d) rv. 

As illustrated in Figure 6.15(a), the apparent tortuosities of all gases decrease with increase in 

temperature, following a systematic pattern: CO2 > CH4 > Ar > H2, which is consistent with a 

decreasing order of relative importance of viscous flow. This order is reversed in Figure 6.15(b) 

when the smaller representative pore radius of 200 nm is used, due to the increased importance of 

Knudsen diffusion. Upon plotting the apparent tortuosity versus relative standard deviation based 

on rv and rn in Figures 6.15(c) and (d) respectively, the two different gas orders are again found, 

consistent with the conclusion derived in Figure 6.13 that the ordering of the tortuosity in the 
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Knudsen and viscous limits significantly depends on the representative pore radius, with the viscous 

limit higher for larger representative pore radius but lower for smaller representative pore radius. 

 

Figure 6.15 Variation of apparent tortuosity with temperature for different gases, using 

representative pore radius (a) rv, and (b) rn, at pressure P = 200 kPa, and variation of apparent 

tortuosity with relative standard deviation, for different gases using representative pore radius (c) rv, 

and (d) rn, at T=300 K and P=200 kPa. Based on slip flow in an unconsolidated porous medium 

following a Rayleigh pore number distribution, with N=6, rn = 200 nm and l = 800 nm. 

6.4.2.2 Mesoporous network 

In mesoporous materials, the pores exist either as the spaces between precipitated small 

agglomerated crystal particles [28], or as spaces within the consolidated particles themselves, 

created by molecular imprinting or liquid crystal templating [1]. The pores of the first type have 

comparable pore radius and pore length, so that the aspect ratio effect must be appropriately 

considered (i.e. x ≠  0); while for the second type pores, the pore radius is far less than the pore 
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length, and the aspect ratio effect is negligible (i.e. x = 0). One aim of the current work is to 

investigate the effect of network structure on the tortuosity trends for consolidated materials such as 

mesoporous silica, for which the aspect ratio effect is taken to be negligibly small, and the 

diffusivity is evaluated based on the Oscillator model with the parameters given above. 

Figure 6.16 depicts the variation of tortuosity of several gases with temperature, using 

representative pore radii rv and rn, for different coordination numbers (N=3 and 6), based on the 

Oscillator model, in a mesoporous silica material having a Rayleigh pore number distribution with 

rn=2 nm and s/rn=0.50. Figure 6.16(a) shows that for low coordination number, the tortuosity-

temperature trend based on rv depends on the gas species - the tortuosity decreases (weakly) with 

increase in temperature for a non-adsorbed gas (He) but increases for the adsorbed gases (Xe, i-

butane and CH4). When the coordination number increases to 6 in Figure 6.16(b), the trend is 

similar; however, compared to the results in Figure 6.16(a), the tortuosity is roughly halved and the 

temperature dependence is weaker. This is due to the reduction in short circuiting effects with 

increase in connectivity. In Figure 6.16(c), for low coordination number and rn as representative 

pore radius, weak tortuosity dependence on gas is also seen, in which the tortuosity is almost 

constant for He but increases with increase in temperature for Xe and CH4. 

On the other hand, the tortuosity of i-butane slightly decreases at first before increasing, with 

increase in temperature. When the coordination number increases to 6 in Figure 6.16(d), the 

tortuosity slightly increases with increase in temperature for He but decreases for Xe and CH4, 

although the effects are not strong. It is of interest to note that the tortuosity of i-butane is 

substantially larger than the others at low temperature, and monotonically decreases with increase in 

temperature, approaching the tortuosity of the other gases at high temperature.  

The diverse tortuosity behavior of the different gases can be understood from the variation of the 

conductance with the pore radius for the gases. As shown in Figure 6.17(a) and (b), the conductance 

increases monotonically with pore radius for He, CH4 and Xe, however, the effect of temperature on 

conductance is weak for these gases at all pore sizes, so that there is little change in the short 

circuiting effect of the larger pores with temperature. Consequently the tortuosity is only weakly 

affected by temperature for these gases. For i-butane it is seen that the small pores have a high 

conductance at low temperature, consequently the short circuiting effect is lower at low temperature, 

leading to a significantly lower tortuosity, especially at low temperatures. With increase in 

temperature the conductance peak at small pore size is attenuated, leading to greater short circuiting 

by larger pores, and increase in tortuosity with increase in temperature. However, the opposite 

behavior is obtained for high connectivity (N=6) and 2 nmp nr r  , because the conductance 
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reduces significantly with increase in temperature for this pore size, leading to a decrease in 

tortuosity with increase in temperature. Thus, it is clear that the dependence of tortuosity on 

coordination number and representative pore radius is caused by the difference in temperature 

dependence between ( ) ( )o p pD r K r  and effective conductance (λe).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.16 Variation of apparent tortuosity with temperature for different gases in the low-

pressure region, using representative pore radius rv and different coordination numbers, (a) N=3 and 

(b) N=6, and using representative pore radius rn and different coordination numbers, (c) N=3 and (d) 

N=6. Based on the Oscillator model in a consolidated porous silica medium with infinite thick walls, 

following a Rayleigh pore number distribution, with rn=2 nm and s/rn=0.50. 

Figure 6.18 depicts the variation of tortuosity with relative standard deviation, s/rn, for several gases, 

in a mesoporous silica material having a Rayleigh pore number distribution, with rn = 2 nm and T = 

300 K. 
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Figure 6.17 Variation in conductance (as λl) with pore radius for different gases, at (a) 300 K, and 

(b) 600 K. 

As shown in Figures 6.18(a) and (b) at N = 3, the apparent tortuosity based on rv increases 

significantly with increase in s/rn for all gases except the most strongly adsorbing one (i-butane). 

The steep increase for the less adsorbing gases (He, CH4 and Xe) is due to the increased short 

circuiting with increase in s/rn, due to the increase in conductance with pore size for these gases 

(Figure 6.17(a)), combined with the increase in ( ) ( )o p pD r K r  resulting from increase in rv with 

increase in s/rn. However, for i-C4H10 the short circuiting effect is weak due to the high conductance 

of small pores, evident from Figure 6.17(a), and as a result the tortuosity varies only slightly from 

the uniform network value of 5.4. Similar behaviour is observed when the representative pore radius 

is taken to be rn (2 nm) and the coordination number is 3, as seen in Figure 6.18(c); however, in this 

case the tortuosity increase for the less adsorbing gases is smaller than in Figure 6.18(a), because 

( ) ( )o p pD r K r  remains constant with increase in s/rn. On the other hand the tortuosity shows a 

stronger increase for i-C4H10, because ( ) ( )o p pD r K r  remains constant while the short circuiting by 

larger pores increases (i.e. e decreases) with increase in s/rn. Figure 6.18(d) shows that for a larger 

connectivity of N = 6, for which the short circuiting effects are weaker, the value of e initially 

increases, before decreasing as s/rn increases. On the other hand for i-C4H10 the short circuiting 

effect dominates and e decreases, leading to increase in tortuosity with increase in s/rn (albeit more 

weakly than for N = 3). As discussed above, such diverse tortuosity behaviors are mainly caused by 

the different dependence of ( ) ( )o p pD r K r  and effective conductance (λe) on coordination number.  
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Figure 6.18 Variation of tortuosity with relative standard deviation for different gases in the low 

pressure region, using representative pore radius rv, and coordination number (a) N=3 and (b) N=6, 

and using representative pore radius rn, and coordination number (c) N=3 and (d) N=6. based on the 

Oscillator model in a consolidated porous silica material with infinite thick pore walls following a 

Rayleigh pore number distribution with rn=2 nm. 

In summary, the apparent tortuosity of a nonuniform mesoporous network is not only determined by 

the properties of porous medium but also significantly affected by the diffusing fluid and choice of 

representative pore radius.  

6.5 Conclusion 

We have demonstrated here that the tortuosity of a porous material, as obtained from experimental 

transport data, depends on the choice of the representative pore size at which the model-based 

diffusivity is evaluated. Interpretation of the data of Reyes et al. [35] for the diffusion of various 

gases in Shell silica spheres, using different representative pore sizes and models with EMT, 

indicates that the fitted coordination numbers obtained using EMT are relatively independent of the 
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representative pore radius for all the models. This suggests that the coordination number in the 

EMT is a more robust parameter than the apparent tortuosity based on arbitrary representative pore 

size, in modelling of transport in disordered nanoporous materials. The coordination number 

obtained by the classical Knudsen model is 2.92, which is slightly low given the high porosity of 

this consolidated material (68 %). On the other hand, the coordination numbers fitted using the 

corrected Knudsen and Oscillator models are 3.24 and 4.00 respectively, of which the latter is more 

in line with expectation, suggesting that the transport mechanism is more accurately represented by 

the Oscillator model. However, at the large pore size of this silica (7.4 nm mean pore radius), the 

differences between the models are small. 

The effective medium theory approach has been used to investigate the dependence of the apparent 

tortuosity on operating conditions and pore network characteristics for macroporous and 

mesoporous materials in different flow regimes. In the slip flow regime for a macroporous network, 

the apparent tortuosity is highly affected by the pore network structure and operating conditions 

(temperature, pressure and gas species), and displays different tortuosity limits for Knudsen 

diffusion and viscous flow in nonuniform networks. Besides, the dependence of tortuosity on 

temperature is also highly affected by the network coordination number and choice of 

representative pore radius at which the pore diffusivity is evaluated.  

The tortuosity can increase, decrease or remain almost constant with change in temperature, due to 

the changes in short circuiting effects of the more conducting pores with changes in coordination 

number. In general, for large representative pore radius and low coordination number, the tortuosity 

tends to be higher in the viscous limit than in the Knudsen limit. Similar behaviour is found for 

mesoporous consolidated silica materials, where the tortuosity dependence on temperature is highly 

determined by the pore network, representative pore radius and gas species, and is governed by the 

different temperature dependence of ( ) ( )o p pD r K r ) and the effective conductance (λe). In general 

more strongly adsorbed gases tend to show lower tortuosity at low coordination number and 

temperature. These complex effects are largely overlooked by experimentalists, as it is common to 

fit a temperature and species independent tortuosity. Nevertheless, while the effective medium 

theory approach is successful in interpreting the tortuosity, we note here that the assumption of 

cylindrical pore shape and a network of uniform connectivity are clearly idealistic, and deviations 

from the theory may be ascribed to the inaccuracies of such assumptions. It is pertinent here to 

recall Aris’ observation that “when models are made of the configuration of the pore structure the 

tortuosity can be related to some other geometrical parameter but in general it is a fudge factor of 

greater or less sophistication” [53]. It may be argued that to some extent the effective medium 
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approach reduces the level of “fudge”, as it incorporates the effect of process conditions not 

otherwise addressed by purely geometrical considerations in the case of pure component systems.  
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6.6 Nomenclature 

Da                 apparent diffusivity in pore, based on a combination of Knudsen and viscous  

diffusivities, m-2 s-1 

c
aD                 apparent diffusivity in pore, based on a combination of corrected Knudsen and viscous 

diffusivities in a pore, m-2 s-1 

osc
aD               apparent diffusivity in a pore based on the Oscillator model, m-2 s-1 

De                  effective diffusivity, m-2 s-1 

DKn                Knudsen diffusivity, m-2 s-1 

c
KnD                corrected Knudsen diffusivity in pore, m-2 s-1 

Do                  diffusivity in pore, m-2 s-1 

Dosc                Oscillator model diffusivity pore, m-2 s-1 

Dvis                viscous contribution to diffusivity in pore, m-2 s-1 

c
visD                 corrected viscous contribution to diffusivity in pore, m-2 s-1 

aD                   apparent diffusivity based on mean pore radius, m-2 s-1 

fN                    pore number distribution, 1/nm 

fv                     pore volume distribution, cm-3 nm-1 g-1 

Fh(x,y,z;w)      Hypergeometric function 

g(x)                 local diffusion factor  

J                      molar flux, mol-1s m-2 

kB                    Boltzmann constant, J K-1 

K                     equilibrium constant in a pore 

l                       pore length, nm 

m                     molecular mass, kg 

M                    molecular molar weight, g/mol 

N                     pore coordination number 

pr                     radial momentum, kg.m/s 

pθ                    angular momentum, kg.m2/s 

P                      mean pressure in the pore, Pa 

rs                     geometrical pore radius, nm 

rc                     corrected pore radius, nm 

rcl                    upper radial position of the trajectory, nm 

rco                    lower radial position of the trajectory, nm 

ro                     minimum pore radius in the pore size distribution, nm 
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vr                     representative pore radius based on the peak of pore volume distribution, nm 

nr                     representative pore radius based on peak of pore number  distribution, nm 

rosc                   pore radius for Oscillator model, nm 

nr                      representative pore radius based on number average, nm 

pr                      representative pore radius, nm 

vr                      2Vp/Sg, nm 

Rg                    ideal gas constant, J.K-1.mol-1 

s                      standard deviation of the pore size distribution, nm 

Sg                     pore surface area, m2/g 

T                      temperature, K 

Vp                     pore volume, cm3/g 

x                       aspect ratio, rp/l 

z                       coordinate in the transport direction 

Greek letters 

β                       1/kBT, J-1 

∆P                    pressure difference, Pa 

ε                       porosity 

εff                     LJ fluid-fluid potential well depth, J 

εfs                     LJ fluid-solid potential well depth, J 

εss                     LJ solid-solid potential well depth, J 

η                       viscosity of the fluid, Pa.s 

λ                       conductance, m3/s 

λe                      effective conductance, m3/s 

ρ                       skeletal density, g/cm3 

ρv                      atom volume density, 1/nm3 

σff                      LJ fluid-fluid collision diameter, nm 

σfs                      LJ fluid-solid collision diameter, nm 

σss                     LJ solid-solid collision diameter, nm 

τapp                    apparent tortuosity 

fs                      LJ fluid-solid potential, J
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Chapter 7: Adsorption and transport of gases in a supported microporous silica membrane 

In this chapter, we investigate gas adsorption and transport in a disordered microporous silica 

membrane having mean pore diameter 1.5 nm, coated on a porous tubular asymmetric support. The 

adsorption isotherms are found to be Langmuirian, with equilibrium constants that are accurately 

predicted for nonpolar gases, considering Lennard-Jones (LJ) interactions with a single layer of 

oxygen atoms on the pore surface. For the polar gas, CO2, the hydroxyls groups on the pore walls 

strongly increase the affinity with the pore wall s, and a superposition of the LJ potential and an 

empirically represented electrostatic interaction is found to be adequate in correlating the 

Langmuirian equilibrium constant.  

The gas transport in the microporous silica layer is investigated using effective medium theory, with 

single pore transport represented by combination of pore mouth and internal pore diffusion 

resistances. Good agreement is observed for all the gases using different coordination numbers, 

indicating that the essential features of the transport in the silica micropores are captured in the 

approach. It is found that the overall transport resistance is dominated by the pore mouth barrier; 

however, the internal diffusion resistance in the relatively smaller pores is significant, especially for 

weakly adsorbed gases at higher temperature. In addition, the dependence of the pore mouth barrier 

coefficient on temperature and diffusing species are in good agreement with predictions of 

transition-state theory, with larger more strongly adsorbed molecules having higher activation 

energy. The proposed methodology is validated against experiment by comparison of the predicted 

flux for different gases in the supported membrane at various feed pressures in the low pressure 

range of 2-4 bar, using the parameters obtained at 2 bar. 

7.1 Introduction 

The modeling of fluid transport in narrow pores and confined spaces has attracted considerable 

interest among scientists and engineers for over a century [1-3], due to its importance to a variety of 

conventional applications in adsorptive gas separation as well as in heterogeneous catalysis and 

electrochemical process. Interest in the subject has considerably increased in the last two decades, 

as a consequence of the development of a vast array of novel disordered and ordered nanoporous 

materials [4-9], having potential for use in these as well as in emerging applications such as in gas 

storage [10], molecular sieve membranes [11], drug delivery [12] and biosensors [13], all of which 

involve the movement of fluids through highly confined spaces. The established and most popular 

approach to modeling gas transport in narrow pores is that of Knudsen [1], dating back to the first 

decade of the 20th century, and neglects the effects of dispersive fluid-solid interactions on the 

diffusion. While this simplification is justified for the relatively large tubes of 33-145 μm used by 
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Knudsen in his original experimental verification [1], its applicability to nanoscale pores where the 

density profile is highly nonuniform has been questioned [2, 14-16]. However, due to its simplicity 

and ease of use, the Knudsen model and its analogues have been routinely applied to gas transport 

in narrow pore materials [17-20]. 

In actual practice, the intermolecular interaction is non-negligible, and must be considered when the 

mean free path in the pressure range of interest (generally in the region of a few bars) is not much 

larger than the pore size. In the case of macropores the effect of intermolecular interactions may be 

included by means of an additive viscous contribution [21-23]. The most popular method based on 

this principle is the Dusty Gas Model (DGM) of Mason and coworkers, which arbitrarily divides 

the total flux vector into a wall-affected diffusive and a hydrodynamic non-segregative contribution 

[24]. When adsorption is negligible, the pore wall-affected diffusion is often represented by the 

Knudsen model, which is supplemented by a surface diffusion contribution when adsorption is 

significant in mesopores [25]. Consequently, the intrinsic characteristics of the Knudsen model are 

inherited in this approach, and the confirmation of the diffusion model still largely relies on the 

correlation of diffusion data with T M , where M is molecular weight, as predicted by the Knudsen 

model [26].  

Although it lacks a firm molecular basis, due to its simplicity the DGM approach is commonly 

employed to explore the diffusion mechanism in newly-synthesized materials; this is generally done 

by empirically correlating experimental data using a representative pore size, while determining a 

structure-related parameter such as tortuosity [27]. Use of a single pore size is a key deficiency of 

this method as the pore size distribution (PSD) has significant influence on the transport, especially 

for materials with several nanometers. Another weakness inherent to the Knudsen model is the 

disregard of the dispersive solid-fluid interaction arising from the presence of the wall; the 

dispersive van der Waals interaction, for example via the Lennard-Jones (LJ) interaction model, 

dramatically decreases the diffusivity by reducing the travel time between successive collisions [15]. 

As a result of the dispersive interaction, the fluid density in the pore is non-uniform, and 

significantly differs from that in the bulk, and is strongly dependent on the pore radius and gas 

species as well as temperature [2, 28].  

Traditionally, the tortuosity factor is incorporated as an effective parameter and assumed to be 

exclusively determined by the properties of the porous medium. However, it has been theoretically 

and experimentally shown that in nanoscale pores the apparent tortuosity is influenced by operating 

conditions such as temperature, pressure and gas species [14, 15, 21, 29]. All errors arising from the 

neglect of such dependence are therefore lumped within the fitted tortuosity, masking errors related 
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to the transport model itself [21]. Consequently, unambiguous confirmation of the validity of the 

Knudsen diffusion in nanosized pores, to which the Knudsen model is frequently employed, is not 

possible by simple correlation. Indeed, it has been extensively demonstrated that while the DGM 

can empirically correlate experimental data, extremely high tortuosities are often obtained for 

mesoporous materials when the Knudsen model is utilized [17, 30-32]. This is mainly due to the 

omission of adsorption effects and overprediction of the diffusivity by the Knudsen equation, and to 

a lesser extent due to the disregard of the pore size distribution when a single representative pore 

size is used [14, 15, 33].  

For small pore sizes, approaching the micropore scale, it is frequently assumed that the gas 

molecules adsorb on the pore walls, and migrate on the pore surface as an adsorbed species. In this 

spirit, models comprising surface diffusion and Knudsen flow in parallel have been formulated in 

order to provide stronger temperature dependence and yield an acceptable tortuosity [18, 34]; 

however, such models often lead to tortuosities that increase greatly for weakly adsorbed gases [18]. 

Substantial work has been devoted to develop rigorous theories based on molecular principles to 

account for the effect of dispersive solid-fluid interaction on the transport [35-39], or otherwise 

indirectly consider the effect of interactions by using measured pure component diffusivities in 

mixture transport models [25]. However, most interpretations of experimental data largely rely on 

arbitrary modification of the Knudsen equation by introducing an Arrhenius-type factor to better 

capture the effect of temperature in micropores [17, 19, 35]. The most widely used model following 

this approach, originally used for hydrocarbons and known as the gas translation (GT) theory, is 

that of Xiao and Wei [35]. Later, the theory was extended to any adsorptive gases by Yoshioka et al 

[19] by considering the effective diffusion length instead of the actual pore size. However, the 

original derivation of the GT theory is semi-empirical, as the estimation of the activation energy 

based on the difference of LJ potential energy between the pore channel and intersection lacks a 

firm molecular basis [39]. For instance, in a silica pore of 3 nm, the diffusivity of CH4 as modeled 

by the GT approach falls in the Knudsen regime due to the low apparent activation energy for such 

a small molecule [35], which is contradicted by molecular dynamics (MD) simulations [2, 35, 40].  

Considerable success has been accomplished recently in this laboratory, through the development of 

a statistical mechanical theory of transport in nanopores, aided by the finding from MD simulations 

that the nonuniform equilibrium density profile of the fluid is essentially preserved during the 

transport [41].  The new model, termed as ‘Oscillator model’, considers the dispersive solid-fluid 

interaction before collision, and the adsorption effect is represented through the canonical energy 

distribution in the pore [36], overcoming the limitations of the Knudsen approach. Not only has the 

new theory been extensively validated against MD simulations [36, 39], but it has also been 
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successfully used to interpret experimental data [14-16, 29]. Indeed, comparison of the Knudsen 

and Oscillator model diffusivities with those from MD simulations for silica pores shows that the 

Knudsen equation significantly overpredicts the diffusivity for methane at 450 K by 30% even for a 

pore diameter of 10 nm, indicating the importance of considering the effect of van der Waals forces 

on pore diffusion even when the molecule/channel size ratio is less than 5% [39]. 

However, in disordered materials narrow pore necks may affect the rate of entry of molecules in the 

pores, although this has little impact on the equilibrium constant, which principally depends on the 

size of the pore body. This effect may be considered by means of transition-state theory (TST) [37, 

42-44], and the GT theory of Xiao and Wei [35] may be envisioned in this light. While the pore 

mouth resistance may be expected to control in materials with very narrow molecularly sized entries, 

in systems with transitional pores the internal pore diffusion may also have significant resistance. 

Membrane transport models involving such dual resistances have yet to be formulated, but may be 

derived by combining the Oscillator model with a TST-based pore mouth resistance model to 

investigate the transport in such disordered microporous materials. 

Another significant impediment in the application of any diffusion theory to microporous or 

mesoporous materials is the complexity of the pore network, including the pore connectivity, and 

the presence of a pore size distribution as well as surface roughness. This is particularly challenging 

for the investigation of supported membranes, in which the system comprises a thin selective top 

layer and a mesoporous interlayer coated on a macroporous substrate. Not only must the pore size 

distribution of each layer be considered, but also the aspect ratio and pore shape are of importance. 

Effective medium theory (EMT) provides the necessary machinery for resolving such issues, and 

has been used to derive fundamental insights into transport in disordered nanoporous materials [14-

16, 21, 29]. In this method, a nonuniform pore network with a distribution of conductance is 

replaced by a uniform one in which each conductance is assigned an effective value. This allows 

explicit modeling of network-related effects, thereby permitting more direct verification of transport 

models. In our previous work [16] employing this technique we have demonstrated that the 

transport in a mesoporous silica membrane having pores of mean size 3.7 nm is not well 

represented by the Knudsen model due to overestimation of the diffusivity and neglect of adsorption 

effects, and that the Oscillator model, which accounts for these factors provides a more accurate 

result.  Following the line of our previous work [16], here we further develop this approach to 

include also a pore mouth resistance, and investigate the diffusion for a microporous supported 

silica membrane, having a mean pore diameter of 1.5 nm, coated on an asymmetric alumina support, 

while also considering the pore size distribution for each layer. The results permit an understanding 

of the mechanism of fluid transport in the microporous silica layer, and demonstrate the importance 
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of considering both the dispersive interaction and pore mouth restriction effect in the silica 

micropores. 

7.2 Materials characterization and experiments 

7.2.1 Asymmetric support 

As described in a recent publication from this laboratory [29], the asymmetric support was 

synthesized by dip-coating a diluted γ-alumina solution (2 wt.% from Sigma-Aldrich) on the outer 

surface of a tubular α-alumina substrate (Australia Chemtech Trading & Service Company), having 

an inner radius of 4.25 mm and an outer radius of 6.38 mm, and a length of 8.20 cm. Since the pores 

of the substrate and interlayer are mainly made of interstitial spaces between crystal particles by 

sintering at high temperature, the particle size has significant influence on the size of the pores. 

Therefore, before conducting any adsorption-based characterization, the pore network structure of 

the substrate and interlayer was investigated by Scanning Electron Microscopy (SEM), revealing 

the mean particle sizes to be 3 μm and 50 nm, respectively, with an interlayer thickness of around 2 

μm. A more accurate pore size distribution of the substrate was determined by mercury porosimetry 

(Micromeritics, IV 9500), indicating a mean pore radius of 250 nm. The pore size distribution (PSD) 

of the interlayer was assumed to be represented by that of the agglomerated γ-alumina powder, 

which was analyzed by N2 adsorption at 77 K, using a Micromeritics ASAP2020 volumetric 

analyser. The adsorption isotherm was interpreted by nonlinear density function theory (NLDFT) 

assuming cylindrical pore with an oxide surface, and the indicative pore radius was around 5.2 nm. 

The details of characterization of the pore network for the substrate and the interlayer can be found 

in our recent work [29].  

7.2.2 Microporous silica preparation 

The microporous silica membrane used in this work was prepared by the sol-gel process, which 

comprises two steps: (1) preparation of the colloidal sol, and (2) sol-coating on the pre-synthesized 

asymmetric support and firing [45, 46]. In the first step, the silica colloidal-sol solution was 

prepared by co-polymerization of methyltriethoxysilane (TEOS) and tetraethylorthosilane (MTES) 

using a two-step acid-catalyst process. A mixture of 13.50 mL MTES, 29.0 mL TEOS, 39.20 mL 

EtOH, 3.90 mL H2O and 0.06 mL diluted HCl (2.30 mol/L) was refluxed at 333 K for 90 min with 

stirring at 200 rpm, then additional 4.54 mL water and 4.80 mL HCl were added to the solution, 

resulting in the final molar ratio of 0.35: 0.65: 3.8: 5.1: 0.056. In the second step, the asymmetric 

support was dipped into the solution, using a dip-coating apparatus, at a rate of 10 cm/min. The 

support was immersed for 1 min, and subsequently oven-dried at 333 K for 2 h. The membrane was 
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then heated at 1 K/min to 673 K, and calcined at this temperature for 30 min. To ensure full 

coverage of the membrane, ten layers were coated on the asymmetric support, and each layer was 

processed under the same conditions as the first layer.  

After completing the coating on the support, the remained sol was dried and ground using a mortar 

and pestle, then calcined under the same conditions as the membrane, and subsequently 

characterized for its pore size distribution using N2 adsorption at 77 K, as above. This PSD was 

used to represent the pore network of the membrane layer. The calcination condition was designed 

based on the decomposition curve of the uncalcined xerogels by thermogravimetric analysis (TGA), 

which indicated that the selected temperature was sufficient to remove the nonhydrolyzed groups. 

As seen in Figure 7.1(a), at temperatures less than 373 K the weight loss was mainly caused by the 

vaporization of water; after 523 K, the nonhydrolyzed groups began to decompose and 

condensation reactions continued to occur in the silica matrix until 1073 K. The complete 

disappearance of the nonhydrolyzed groups in the membrane layer is further demonstrated by 

Fourier transform infrared spectroscopy (FTIR) for the calcined and uncalcined xerogels in Figure 

7.1(b), in which the characteristic band of CH3 and CH2 in TEOS and MTES (around 2900 cm-1) 

was completely eliminated after calcination, indicating the absence of any organic residuals in the 

silica sample [16].  

 

Figure 7.1 (a) Decomposition curve of the uncalcined silica xerogel by thermogravimetric analysis 

(TGA), and (b) Fourier transform infrared spectroscopy (FTIR) of the calcined and uncalcined silica 

xerogel. 
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7.2.3 Microporous silica characterization 

7.2.3.1 Low temperature nitrogen adsorption 

The pore size distribution of the calcined silica powder was obtained using density function theory 

(DFT) based interpretation of the N2 isotherm at 77 K, assuming cylindrical pores with an oxide 

surface. As illustrated in Figure 7.2, the majority of the pores are within the micropore range, and 

the corresponding pore volume (Vp) and surface area (Sg) are 0.18 cm3/g and 528.34 m2/g, 

respectively. The pore structure of the silica powder was further examined by High Resolution 

Transmission Electron Microscopy (HRTEM) at 200kV (JEOL 2010). The TEM micrograph, 

shown in Figure 7.3, indicates a pore diameter of around 1.5 nm, in accord with the average pore 

diameter evaluated based on the pore volume to surface area ratio, given by 4Vp/Sg. The skeletal 

density of the silica powder extracted from Helium pycnometry was 2.00 g/cm3, which is slightly 

smaller than the theoretical density of around 2.30 g/cm3 [47], suggesting the presence of pores 

inaccessible to He inside the amorphous silica. The accessible porosity of the powder can be 

determined by 

1
p

p

V

V








                                                                 (7.1) 

in which ρ is the true density from Helium pycnometry.  Following eqn. (7.1), the accessible 

porosity of the microporous silica is estimated to be 0.26.  

 

 

 

 

 

 

 

 

Figure 7.2 Pore size distribution of the calcined silica gel, obtained using nonlinear density function 

theory (NLDFT) interpretation of N2 adsorption data at 77 K. 
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Figure 7.3 High Resolution Transmission electron microscopy (HRTEM) image of the 

microporous silica powder. 

7.2.3.2 Thermogravimetry 

Characterization of hydroxyl groups on the pore surface was performed on the calcined silica 

powder by thermogravimetry, following the method of Markovic et al [17]. The surface density of 

the hydroxyl groups can be estimated by   

2000

3
m

OH
g

w
N

S
                                                           (7.2) 

in which wm is the percentage weight loss and NOH is the concentration of hydroxyl groups in nm-2. 

By excluding the physically adsorbed water on the silica surface, the measured weight loss of the 

sample during temperature increase (473-1273 K) is 5.9%, which yields a surface density of the 

hydroxyl groups of approximately 7.5 nm-2. This value is significantly larger than the density of 

hydroxyl groups in the silica glass membrane synthesised by Markovic [18], for which a low value 

of 3.8 nm-2 was obtained. More polar hydroxyl groups on the surface increase the adsorption 

affinity for polar gases due to the additional dipolar interactions besides the dispersive force [17]. 

7.2.3.3 Scanning electron microscopy 

Knowledge of the dimension of each layer is crucial to modeling of the transport in the supported 

membrane, which requires consideration of the resistance for each layer. For the macroporous 
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substrate, the measurement can be directly conducted; for the interlayer and membrane layer, the 

thicknesses are only several microns and have to be estimated by electron microscope imaging. 

Considering that the boundaries between the interlayer and membrane layer are ill-defined and 

irregular, the distance cannot be precisely evaluated. As illustrated in Figure 7.4, the average 

membrane thickness is about 5 μm after excluding the interlayer thickness; this thickness was used 

in the analysis of the diffusion in the silica layer. 

 

 

 

 

 

 

 

 

 

Figure 7.4 Scanning electron microscopy (SEM) image of the cross section of the supported 

microporous silica membrane. 

7.2.4 Adsorption equilibria of single gases 

Adsorption measurements were carried out using a high pressure volumetric analyzer 

(Micromeritics HPVA-100) based on a classical volumetric method operated in the static mode. 

Since the free space was measured by He, the isotherms of five other pure gases (H2, CH4, Ar, N2 

and CO2) were examined for three different temperatures (303, 333 and 363 K). In the experiments, 

the silica powder was degassed at 573 K for several hours and subsequently exposed to the 

adsorptive gas at different pressures up to 30 bar, with temperature control provided by a circulating 

water bath. The classical Langmuir isotherm was applied to describe the equilibrium relationship 

between the adsorbed amount, q, and the pressure in the gas phase, P, following  

max 1
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q q
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in which Kl  (Pa-1) is the Langmuir adsorption constant and qmax (mol/g) is the total saturation 

capacity of the adsorbate.  In this model qmax is only determined by the gas species, while Kl is 

dependent on temperature and gas species, following the thermodynamic 

relation, / /( )( ) /
o o

g gS R H R T o
lK e e P  , where oH is the adsorption enthalpy change, oS  is the 

entropy change relative to the standard pressure oP (101325 Pa). The isosteric heat of adsorption, Q 

( oH ), can be readily evaluated from the slope of the linear correlation between ln Kl and 1/T. 

7.2.5 Single gas permeation measurements 

The transport in the macroporous substrate and mesoporous interlayer has been independently 

examined in our previous work by conducting two sets of single gas  (H2, He, CH4, N2, Ar, and CO2) 

permeation experiments [29]. It was confirmed that the transport in the macroporous substrate at 

low pressure can be adequately represented by a combination of Knudsen diffusion and viscous 

flow. The corresponding transport for the interlayer can be adequately modeled by any of three 

different diffusion models; these are the classical Knudsen model, a modified Knudsen model 

corrected for finite molecular size, and the Oscillator model. To explore the diffusion mechanism in 

the microporous silica layer, single gas permeation experiments were carried out at temperatures 

between 303 K and 573 K for several feed pressures (1.98, 2.98 and 3.98 bar). It is noted that the 

permeation experiments was carried out from high temperature (300 ºC) to low temperature (30 ºC) 

to avoid any water blockage effect. Details of the experimental setup and procedure can be found in 

our previous work [16].  

In the analysis to follow, to distinguish the driving force for each layer, the outlet pressure (equal to 

the atmosphere pressure) is labeled as Po, and the feed pressure is represented by PF. Further, the 

interfacial pressure between the interlayer and substrate is given as P1, while the interfacial pressure 

between the interlayer and membrane layer is represented by P2. To distinguish the flow rates and 

structural parameters for the substrate, interlayer and membrane layers, the subscripts s, c and m are 

used for these layers, respectively.  

7.3 Transport models 

7.3.1 Transport in a single pore 

The main aim of this work is to investigate the transport of gases in a disordered microporous silica 

membrane having nonuniform pore size, and to validate the use of Oscillator model at this scale. 

The diffusivity in a single pore is strongly related to its pore size, and therefore the pore size must 
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be precisely defined. As described in Figure 7.5, there are several ways to determine a pore radius, 

depending on the diffusion model used. 

 

 

 

 

 

 

 

 

 

 

Figure 7.5 Illustration of different pore radii used in the classical Knudsen model (rs), the corrected 

Knudsen model (
c

sr ), and the Oscillator model (rosc). 

7.3.1.1 Classical slip flow model 

In the classical slip flow model, the transport coefficient (also referred to as diffusivity) is evaluated 

based on the geometrical pore radius (rs), defined as the distance between the centerline of the pore 

and the surface of the walls, with the fluid molecular size considered negligible in comparison. The 

slip diffusivity is a combination of Knudsen (DKn) and viscous contributions, which are respectively 

represented as 

97Kn s
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in which T represents temperature in K, M is the fluid molecular weight (g/mol), P is the average 

pressure (Pa) and η is fluid viscosity (Pa.s). In the Knudsen and viscous flow models the density 
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profile along the radial coordinate is considered uniform and identical to the bulk, thus the 

equilibrium constant is unity for slip flow (K=1). Since the pores in the alumina substrate are 

macroporous, the slip flow model with an apparent diffusivity (  )a
o Kn visD D D   can be safely used for 

the transport in the substrate, with exclusion effects due to finite fluid molecular size neglected [21]. 

Since the interlayer has a large mesopore size of about 11.5 nm diameter, while providing only 

about 10% of the transport resistance in the asymmetric support, the transport in this layer may also 

be satisfactorily represented by the classical slip flow model, as demonstrated in our recent work 

[29].  

7.3.1.2 Oscillator model 

In the microporous silica layer, the dispersive interaction between fluid and pore wall must be 

considered, and the Oscillator model is applied to evaluate the diffusivity and equilibrium constant. 

However, the pore radius used in the Oscillator model differs from the ones used in the Knudsen 

and viscous flow equations, and is taken as the half center-to-center pore diameter for the surface 

atoms on the walls, rosc, following: 

2
ss

osc sr r                                                                 (7.6) 

where ss is the LJ solid-solid collision diameter of the atoms on the pore walls.  

In the Oscillator model [36], the diffusivity of a LJ fluid under diffuse reflection in a cylindrical 

pore is given as 
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is the radial momentum when it is at radial position, ´r , given that it has radial momentum pr at r, p 

is the angular momentum, and 1cr  and 0cr  represent the radial bounds of the trajectory of the 

molecular particle between two continuous reflections, obtained from the solution 

of ( ', , , ) 0r rp r r p p  . Further, m is the molecular mass, 1( )Bk T   and ( )

0

sf rQ re dr   . 
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( )sf r  is the one dimensional solid-fluid interaction potential profile, and strongly depends on the 

structure and composition of the pore wall. Here, we consider a smooth cylindrical pore composed 

of a single layer wall with randomly distributed Lennard Jones sites. Integration of the LJ solid-

fluid interaction over the pore surface yields the hypergeometric potential [48], 

2 2 2 2
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           (7.9) 

Here sf is the LJ solid-fluid collision diameter, sf is the LJ potential well depth, ρs is the pore wall 

surface site density (atoms per unit area) and ( , , ; )hF x y z w  is the Hypergeometric function. In 

silicas, the interaction between the fluid and pore walls is often considered to be dominated by a 

surface layer of oxygen ions, and the LJ parameters for the solid are evaluated based on the results 

from Neimark et al. [49] as εss/kB = 492.7 K,  σss = 0.28 nm, with ρs = 10.47 nm-2. The Lorentz-

Berthelot mixing rules are applied to estimate the solid-fluid LJ parameters εsf/kB and σsf , using  the 

LJ parameters of the gases listed in Table 7.1. 

Table 7.1 Fluid-fluid Lennard-Jones parameters used in the Oscillator model 

Parameters H2 He CH4 N2 Ar CO2 

σff (nm) 0.2915 0.2551 0.381 0.3572 0.341 0.3472 

εff/kB (K) 38.0 10.22 148.2 93.98 120.0 221.9 

 

The low density equilibrium constant (K) for a given pore radius is readily obtained from 
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7.3.1.3 Transition-State theory 

The above diffusion models are developed for a long cylindrical pore with a uniform surface. 

However, in practice, pores in nanoporous materials are irregular, having constricted pore necks or 

mouths, which can significantly reduce the pore accessibility. As illustrated in Figure 7.6, although 

a nonuniform pore may be idealised as an equivalent perfect cylindrical pore with radius based on 

the pore volume to surface area ratio, this does not consider the presence of a pore mouth resistance 
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effect in the irregular pore, arising from the narrow entry; thus the total transport resistance may be 

underpredicted in the model pore.  

 

 

 

 

 

 

 

Figure 7.6 Schematic drawing of a representative irregular pore and its equivalent cylindrical pore 

representation. 

To address this restriction effect in micropores, we employ the TST [37, 42-44] to estimate the 

crossing frequency for pore mouth penetration by adsorbate molecules. According to the TST, the 

hopping time, τ, from a pore body A to a neighboring pore body B is generally given as 
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where the crossing frequency A Bk   follows 
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Here  is a transmission probability, m is the molecular mass, (r) is the potential energy of the 

diffusing molecule, and the integral in the numerator is taken over the dividing surface (DS) 

between the two pores. The above integrals over the diving surface and the pore volume combine to 

provide the Gibbs free energy barrier ( cG ) of the hopping process through the pore mouth, and the 

above equation can be expressed as 
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in which ADS is the area of the dividing surface and VA is volume of pore body A, and cG  is the 

free energy barrier for a molecule in pore body A to cross the dividing surface DS. Expressing the 

Gibbs free barrier in terms of the corresponding enthalpy and entropy changes, the crossing 

frequency A Bk   is readily obtained as 
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in which cH  and - cS are the enthalpic and entropic barriers for a fluid molecule migrating from 

the pore body A through the pore mouth to pore body B. We note that cH is determined by the 

interaction between the fluid and pore walls, and cS is predominantly related to the difference in 

degree of confinement of the fluid molecules between the dividing surface and the pore body A. 

A pore mouth restriction-related diffusivity (DTST) may be obtained as 2 / 6TST A BD k  [42], where 

ζ is the centre-to-centre distance between neighbouring pores, and following the arguments of 

Nguyen and Bhatia [37, 43] and Nguyen et al. [44] is approximated as 

/aE RT
TST o

T
D A e

M
                                                          (7.15) 

Here Ea is the activation energy, given by the enthalpy barrier in eqn. (7.14), and is affected by the 

interaction between the fluid and pore walls. Ao is a constant related to the pore length, fluid 

molecular size and pore shape. In general cS  varies only weakly with gas species in eqn. (7.14), 

so that Ao is nearly constant (i.e. only weakly dependent on the diffusing species). 

Since the transport through the pore mouth and internal diffusion in the pore body occur in series, 

the pore mouth resistance based on the above model can be combined with the Oscillator theory of 

pore diffusion to represent the overall transport resistance in a single pore of arbitrary size. Suitable 

averaging over the pore size distribution, such as by effective medium theory [14-16, 21, 29], then 

provides the effective diffusivity in the pore structure. 

7.3.2. Transport in pore networks 

As discussed above, the presence of nonuniformity in disordered nanoporous materials is a key 

factor complicating the direct application of any diffusion model to experimental data. This is the 

case for the supported silica membrane. For instance, the asymmetric support comprises a 

macroporous substrate and mesoporous interlayer, and in both layers the pores are mainly formed 
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by the space between crystal particles of different size. Consequently, both the support and 

interlayer are unconsolidated, and have pore lengths comparable to diameter. Thus, not only must 

the pore size distribution and connectivity be considered, but also the effect of finite aspect ratio 

(pore radius to length ratio) should be suitably addressed [50], as pore network and tortuosity 

models commonly assume essentially zero aspect ratio. However, the amorphous silica membrane 

layer is generally consolidated, as the pores are synthesized by molecular imprinting, and so the 

aspect ratio is small. However, for microporous membranes the pore entry resistance due to pore 

mouth constrictions in the disordered silica may be important, and should be accurately 

incorporated in the transport model for the microporous silica layer. 

Effective medium theory provides the tools for describing these complexities in disordered porous 

materials by replacing the nonuniform network with a uniform one in which all of the pores offer 

the same conductance to the flow. Following the line of our previous work, we extend this 

methodology to interpret the transport in the microporous silica layer deposited on an identical 

asymmetric support by considering the pore diffusion resistance and that of the pore mouth based 

on the combination of Oscillator model and transition-state theory. The application of effective 

medium theory for the macroporous substrate and the mesoporous interlayer, while using the 

classical slip flow model in each layer, has been demonstrated elsewhere [16], so only the 

derivation of EMT for the microporous silica layer is given in the current work. 

For a cylindrical pore of radius rp, the conductance, λ can be expressed in terms of the pore mouth 

and Oscillator model transport coefficients, following the series resistance model 

2

1 1 1

( ) ( )p osc p osc p TST

l

r K r D r D 
 

   
 

                                         (7.16) 

It is assumed that local equilibrium prevails at the nanoscale so that the pseudo-pressure drop in the 

pores is independent of the size of the pores. The effective medium conductance, λe, is estimated by 

the solution to [51] 

( )
0

( ( / 2 1) )
e

eN

 
 




 
                                              (7.17) 

where N is the coordination number or pore connectivity, i.e., the average number of pores meeting 

at each node, and   represents a number average over the pores. For the effective medium, the 

pore flux is obtained as 
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l dP
j r

r R T dz




   
 

                                        (7.18) 

Considering that the pseudo-bulk pressure is uniform in the pores of the membrane, and the silica 

material is consolidated, the net flux in the equivalent uniform network is obtained by integration of 

eqn. (7.18) over the pore volume distribution, to yield [16, 52, 53] 

2

2

1

3 1
m e m m

m
p m g m

l N dP
J

r l R T N dz

 


              
                                      (7.19) 

At steady state, the flow rate (F) in the tubular supported membrane is constant, and integration of 

eqn. (7.19) over the radial coordinate of the silica membrane layer provides [16] 

2

2

2 1
( )

3 1
m o e m m

m
m p m g m

R L l N
F P

z r l R T N

     
     

                                  (7.20) 

where Ro is the outer radius of the tube (Ro = 6.38 mm), and zm is the membrane thickness and L is 

the tube length (L= 8.20 cm). It is to be noted that the predicted flow rate in the silica layer is 

independent of l, as the effective conductance, e, is inversely proportional to l, so that the l factor 

cancels out in eqn. (7.20). The derivation of the EMT expressions for the flow rate for the substrate 

(Fs) and the interlayer (Fc) can be found elsewhere [29].  

The estimation of the theoretical flow rate requires solving the flow rate relationships for the three 

layers: 

     1 1 2 2, , , , , , , , , ,s F s s c c c m o m a mF P P N l F P P N l F P P N E l             (7.21) 

to determine the interfacial pressures, P1 and P2. For the asymmetric support used here the 

structural parameters of the unconsolidated structure of the support (Ns, ls) and interlayer (Nc, lc) 

have been determined in our prior study [29], and have the values Ns = Nc = 12, ls = 300 nm, lc = 5 

nm. These values have been used in the present work in conjunction with effective medium theory 

to determine the pore structure and activation energy in the microporous silica layer. 

7.4 Results and discussion 

7.4.1 Adsorption isotherms 

Figures 7.7 (a-e) depict the experimental isotherms (symbols) and the Langmuir model fittings 

(solid lines) for various adsorptive gases (H2, CH4, N2, Ar and CO2) in the microporous silica 
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powder at temperatures of 303, 333 and 363 K, with the adsorption capacity maxq  assumed constant 

for each gas at the different temperatures.  

 

 

 

 

 

 

 

 

Figure 7.7 Measured adsorption equilibria of (a) H2, (b) CH4, (c) N2, (d) Ar and (e) CO2 at three 

temperatures (T =303, 333 and 363 K) fitted with Langmuir isotherm model (parameters given in 

Table 7.2). Fitted isotherms are represented by lines, and experimental data by symbols. 
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It is evident that CO2 is the most strongly adsorbed molecule, followed by CH4, while N2 and Ar 

have comparatively weaker adsorption, and H2 is the least-adsorbed gas. For H2 the isotherms are 

nearly linear and show very small amount of adsorption in the given condition. It is also seen that 

the Langmuir model (solid lines) provides good agreement with the experimental data for all the 

gases, over the pressure range below 30 bar, suggesting that fluid-solid interaction dominates under 

these conditions. The fitted Langmuir parameters, obtained using eqn. (7.3) with a nonlinear fitting 

method, are listed in Table 7.2. We note that the obtained Langmuir parameters in eqn. (7.3) are 

only the ‘apparent’ values ( maxq  and lK ) for the silica material due to the nonuniformity of the 

pore structure. Since lK  is related to the adsorption affinity, it is meaningful to compare the values 

between the gases. It is evident that lK  tends to be lower at higher temperature for all the gases as is 

to be expected, and follows the pattern CO2>CH4>N2>Ar>H2, which is consistent with the ordering 

of the adsorption affinities based on the isotherms discussed above. Further, the adsorption isosteric 

heat (Q), based on the linear fitting of the correlation between ln( lK ) and 1/T, is also given in the 

Table 7.2, and will be subsequently compared with the activation energy for the silica membrane 

layer obtained by effective medium theory in the next. 

The equilibrium constant in eqn. (7.10) represents the ratio between the pore density and the bulk 

gas density at low density in a pore of radius rosc. Averaging over the pore volume yields the 

effective low density equilibrium constant of the silica micropores 

0

0

1
( ) ( )

( )
osc p v p p

v p p

K K r f r dr
f r dr



 


                                   (7.22) 

which is related to the Langmuir constant Kl in eqn. (7.3) by 

maxl g

p

K R T q
K

V
                                                       (7.23) 

Here fv(rp) is the pore volume distribution of the micropores, to which the pore volume Vp is related 

by 
0

( )p v p pV f r dr


  . 

As discussed above, the equilibrium constant in a pore is dependent on the potential field, and 

therefore strongly influenced by the model for the pore walls. We therefore compared the 

predictions of eqs. (7.10) and (7.22) for the effective equilibrium constant using the potential energy 

model in eqn. (7.9), with that from eqn. (7.23) using the Langmuir adsorption constant of our 

microporous silica. 
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Figure 7.8 depicts the variation of ln( K ) with 1000/T for the results based on the adsorption data 

(symbols) and the model predictions (solid lines) for the single layer pore wall structure. It is found 

that that the obtained order of the equilibrium constants, CO2>CH4>N2≈Ar>H2, agrees with the 

observed result. Further, it is evident that the predictions for the single layer wall model are in good 

agreement with experimental values for most of the gases (H2, CH4, N2 and Ar), indicating the 

potential field is accurately represented by this model for the nonpolar gases. The disagreement for 

CO2 in Figure 7.8 is largely caused by the high density (7.5 nm-2) of hydroxyl group on the pore 

surface, which significantly increases fluid-solid interaction strength due to the associated 

electrostatic interactions [17]. To allow for this effect, an additional term, intended to empirically 

represent the Coulombic interactions, is superimposed with the single layer LJ interaction potential 

so as to permit matching of the experimental equilibrium constants for CO2. We empirically 

represent the electrostatic interaction potential, ( )e r , as  

2
( )

( )e
osc

B
r

r r
 


                                                       (7.24) 

in which B (K.nm2) is a fitting constant. 

 

 

 

 

 

 

 

 

 

Figure 7.8 Comparison of the model prediction with experiment data for the variation of apparent 

equilibrium constant with temperature. The symbols represent the experimental apparent 

equilibrium constant from gas adsorption data, K , based on eqn. (7.23), and the solid lines represent 

the predicted apparent equilibrium constant, K , using eqn. (7.22). The dashed line is the fitted result 

of CO2, after empirical addition of the electrostatic interaction with the wall following eqn. (7.22). 
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The above interaction term is additively combined with the right hand side of eqn. (7.9) to yield an 

effective fluid-solid interaction to predict the corresponding equilibrium constant and diffusivity for 

CO2 in Oscillator model. As shown in Figure 7.8, the fitted result (dashed line) provides good 

agreement with the experimental data, and the obtained constant B has the value of -37.51 K.nm2. 

The above results indicate that the gas species and temperature-dependent adsorption in the silica 

micropores is successfully captured by the canonical energy distribution in eqn. (7.10) and in the 

Oscillator model, while using the information on the pore size distribution. 

In view of the above agreement, the standard silica LJ parameters of the single layer model given is 

Section 7.3.1.2 were employed in the Oscillator model to predict the diffusivity and adsorption 

effect for all the gases, with the added electrostatic interaction empirically modeled in eqn. (7.24) 

only used in the prediction for CO2 in the silica membrane layer. 

7.4.2 Application of effective medium theory 

Given the complexity of the pore structure in each layer, we employed effective medium theory to 

investigate the transport in the supported microporous silica layer using the proposed theoretical 

description of gas diffusivity discussed above in eqn. (7.16). The advantage of this approach is that 

the entire pore size distribution for each layer is appropriately considered, rather using an arbitrary 

mean pore radius for empirical correlation. By utilizing the relationship between the macroscopic 

flow rate and the pore structure, following eqn. (7.20), the diffusion model can be directly 

validated, using the activation energy, Ea, and coefficient Ao in eqn. (7.15) as the only fitting 

parameters for any coordination number Nm. 

With the classical slip flow applied in the macroporous substrate and the mesoporous interlayer, 

the above three-layer membrane model was fitted to the experimental flow rate data for various 

temperatures at a feed pressure at 1.98 bar using eqn. (7.21) to obtain the interfacial pressures 

between the layers, P1 and P2. Various coordination numbers lying between 3 and 6 were chosen, 

based on connectivity range for silica reported by Seaton [54]. All the coordination numbers work 

equally well in the fitting, and a relevant example of the obtained result is plotted in Figure 7.9(a) 

for Nm=6, with the experimental data representing by symbols and model results by solid lines. It 

is evident that the agreement between the experimental data and model results is excellent, 

suggesting that the transport in the silica micropores is adequately represented by the combination 

of Oscillator model and transition-state theory. The corresponding variation of interfacial pressure, 

P1 and P2, with temperature is depicted in Figures 7.9(b) and (c), respectively, showing strong gas 

dependence due to the adsorption effect as predicted in our earlier work [16].  
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It is seen that the interfacial pressures of the least adsorbed gases He and H2, P1 and P2, decrease 

monotonically with increase in temperature, while for the intermediate adsorbed gases, N2 and Ar, 

a milder decreasing tendency occurs. It is of interest that for the more strongly adsorbed gas (CH4), 

the interfacial pressures increase up to about 350 K, and decrease mildly at higher temperature 

after passing through a weak maximum. However, for the strongest adsorbed gas, CO2, the 

corresponding interfacial pressures monotonically increase over the given temperature range. 

Using these pressures, the pressure gradients for substrate, interlayer and membrane layers were 

examined for each gas at different temperature, and it was found that the pressure drop in both the 

substrate (PF-P1) and the interlayer (P1-P2) is very small, less than 5% of the total pressure 

difference, suggesting the resistance in the supported membrane is mainly provided by the silica 

membrane layer (> 95%) 

 

 

 

 

 

 

 

Figure 7.9 (a) Variation of flow rate, (b) interfacial pressure, P1 and (c) P2, with temperature at feed 

pressure PF=1.98 bar based on eqn. (7.21), using the parameter values Nm=6, and zm=5 μm. In (a) 

the symbols are the experimental data and the lines are the model results. 
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Following our earlier work [16], the relative importance of the individual diffusion resistance for 

each layer was also examined by comparison of the corresponding permeation data separately 

obtained for the substrate, the asymmetric support and the supported membrane, with the apparent 

permeance of each gas at different temperatures estimated using ( )J P   . Figures 7.10(a) and 

(b) depict the variation of the permeance with gas molecular size (taken as LJ size parameter), for 

the substrate and the asymmetric support based on the earlier experiments [16], and for the 3-layer 

composite membrane based on the data obtained here, for the lowest and highest experimental 

temperature (303 and 573 K), respectively. In estimating the flux based on the experimental flow 

rate the area is based on the outer surface of the macroporous substrate. It is evident that the 

difference of the apparent permeance between the substrate and asymmetric support is very small, 

around 5% in both cases, suggesting that the main resistance (95%) in the asymmetric support is 

experienced in the alumina substrate. In addition, the apparent permeance of the supported silica 

membrane is only 4% of the apparent permeance of the asymmetric support, indicating that the 

main transport resistance (> 95%) is provided by the microporous silica layer, in agreement with 

the analysis of the pressure drop in each layer based on the data in Figures 7.9(b) and (c). The 

similarity of the both methods suggests that the support resistance can be safely neglected in 

preliminary analyses of the transport in the supported microporous silica membrane layer. 

 

Figure 7.10 Variation of the apparent permeance with gas molecular size for the substrate, the 

asymmetric support and supported membrane, at (a) 303 K, and (b) 573 K, respectively. 

Table 7.3 shows the effect of assumed pore coordination number, Nm, on the fitted pore mouth 

resistance-related parameters. It is noted that Ao deceases slightly with increase in assumed pore 

coordination number, to compensate for the reduced network tortuosity associated with larger Nm. 

Further, although all the values of Ao for the different gases are of similar magnitude, it is evident 
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that a small variation occurs, with smaller molecule tending to have higher value for all the 

coordination numbers. This small variation is consistent with eqn. (7.14) as larger molecules will 

be subjected to greater degree of confinement at the narrow pore mouths, so that the entropy 

decrease ( cS ) increases with increase of diffusant molecular size. Further, the activation energy, 

Ea, while decreasing much more mildly for different coordination numbers, is strongly dependent 

on the molecular size and adsorption strength, and follows a systematic pattern, i.e., CO2 > CH4 > 

Ar > N2 > H2 > He, suggesting more strongly adsorbed molecules need to overcome higher 

activation energy to migrate through the same pore mouth. For instance, for Nm=6, the activation 

energy of Ar, with a LJ diameter 0.314 nm, is 7.39 kJ/mol, which is significantly higher than that 

for He (1.79 kJ/mol), with a much smaller LJ diameter of 0.2551 nm. On the other hand, CO2 

(11.93 kJ/mol) shows slightly higher activation energy than CH4 (9.90 kJ/mol), despite its smaller 

LJ size parameter (c.f. Table 7.1). This is most likely related to the stronger interaction of CO2, 

and to rotational restrictions faced by the real CO2 at narrow pore entries, which is not explicitly 

considered through a LJ model based approach.   

To explore the relationship between the temperature dependence of the pore diffusion resistances, 

we examine the apparent activation energy for the Oscillator model diffusivity, osc
aE , given by [39] 

lnosc osc
a

d D
E

d 
                                                                 (7.25) 

It is noted that the above activation energy is only construed as an ‘apparent’ value based on the 

Arrhenius character of the temperature dependence for each pore radius, as there is no real 

activation barrier to the axial transport for the structureless cylindrical pore surface assumed here; 

this can only be considered as the ‘energy’ suitably averaged over the trajectories arising from 

diffuse reflection. Figure 7.11 depicts the variation in apparent activation energy of diffusion with 

pore radius for all the gases. It is evident that ‘apparent activation energy’ increases with pore 

radius, especially for stronger adsorbed gas species. Comparing this energy with the entry 

activation energy barrier (Ea) in Table 7.3, it is evident that although their ordering with respect to 

gas is similar, the value of the Oscillator model apparent energy osc
aE  is far less than that for the 

pore mouth (Ea), suggesting that the entry activation barrier is due to the repulsive effects 

associated with the steric hindrance in the narrow space of the pore mouth, rather than dispersive 

effects.  
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Figure 7.11 Variation of apparent activation energy of Oscillator model diffusivity with pore radius 

in the silica layer. 

In microporous materials, the activation energy is frequently assumed to be linearly related to the 

adsorption enthalpy change or the isosteric heat following [55, 56] 

o
aE H                                                                  (7.26) 

in which α is defined as the Brønsted–Evans–Polanyi (BEP) relation constant and commonly 

assumed to be 0.50 [57]. By comparing the obtained activation energy (Ea) in Table 7.3 with the 

fitted isosteric heat (Q) in Table 7.2, it is evident that the gas with higher isosteric heat encounters 

a larger pore mouth energy barrier, indicating the two parameters are correlated. On the other hand, 

although the activation energy is systematically smaller than the isosteric heat in the current work, 

the aE Q  ratio is not uniform at 0.50, and is strongly dependent on the gas species, varying from 

0.48 to 0.85. Similar results have been found by Trivedi and Axe [58], who measured the 

intraparticle diffusion of Cd and Zn in microporous oxides, over a wide range of ionic strength. 

Their data shows that the BEP relation constant strongly depends on the adsorbent and varies 

between 0.58 and 0.82.  

Since the activated energy is determined by the enthalpic barrier cH , it may be expected that Ea is 

strongly dependent on the fluid-solid interactions in the pore body and at the pore neck. Figure 

7.12 depicts the variation in apparent activation energy of each gas (Ea) with the interaction 

parameter (εfsσfs
2/kB) for different coordination numbers. This correlation is suggested by the form 
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of eqn. (7.9).  It is evident that apparent activation energy correlates with the parameter εfsσfs
2/kB, 

and stronger fluid-solid interaction does enhance the ‘energy barrier’ for the gas flowing through 

the pore mouth. 

 

 

 

 

 

 

 

 

 

Figure 7.12 Variation of apparent activation energy of each gas with the parameter group εfsσfs
2/kB, 

for different coordination numbers in the silica layer. 

The above results indicated that the activation energy is indeed influenced by fluid-solid 

interaction, but the assumption of linearity between the activation energy and adsorption heat is 

largely empirical and arbitrary. One explanation for this artifact is that the activation energy Ea is 

determined by both the pore mouth and pore body structure, while the isosteric heat of the gas is 

mainly related to the adsorption in the pore body. Further, the linear empirical relation is based on 

fit of an overall diffusivity [55, 56], without the decomposition into the pore mouth and internal 

pore body diffusional resistances. Since the ratio of these resistances depends on the diffusing 

species, as will be subsequently shown, this linearity can only be expected to be a ‘rough’ guide.   

It is noted that the pore mouth resistance and Oscillator resistance is not affected by hydroxyl 

groups for nonpolar gases, as their interaction sites are not ascribed partial charges. However, for 

polar gases such as CO2, the hydroxyl group density may be expected to have significant influence 

on the parameters of the transition state theory and the Oscillator model due to electrostatic 

interactions. Thus, the magnitude of the constant B in eqn. (7.24) may be expected to increase with 

increase in the surface hydroxyl group density, and this will lead to an increase in the equilibrium 
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(7.14), for the transition state theory, the activation energy (Ea) is determined by the enthalpy 

change ( cH ) of the migration from the pore body to the pore mouth, which is predominantly 

related to fluid-solid interactions; consequently, Ea may be expected to increase for polar gases 

when the hydroxyl group density increases. 

Following the transition-state theory, the coefficient, Ao, should slightly depend only weakly on 

the gas species as the features captured in this coefficient are mainly related to the pore structure 

and the entropic barrier at the pore mouth [43]. This is indeed observed in Table 7.3, with Ao 

varying only mildly between gases for a given coordination number. The least variation is 

obtained for Nm= 6, for which the average value of Ao is about 1.30×10-8 m2s-1.kg0.5.mol-0.5.K-0.5. 

This value of Ao may now be used to estimate the order of magnitude of the model pore length, l, 

following eqs. (7.14) and (7.15), while assuming the jump length ζ in 2 / 6TST A BD k   to be equal 

to the mean pore length and neglecting the entropic barrier. Since the transmission probability κ, is 

generally close to unity [43], this yields 
0 ( / 6 ) 1000 / 2gA l b R  , where b is the ratio of the pore 

cross-section to that of the dividing surface at the pore mouth, from which we obtain . While the 

precise value of the area ratio b is unknown, one may reasonably assume it to be in the region of 4-

9 (i.e. a radius ratio of 2-3, given the mean pore body radius of 0.75 nm). Thus, an order of 

magnitude of the mean pore length is about 10 nm, which is a very reasonable value for the pore 

body radius of 0.75 nm.  

To demonstrate the importance of internal diffusion resistance in the pore body during the 

transport, the Oscillator conductance is defined as 

2 ( )p osc osc posc r D K r

l


                                                             (7.27) 

By comparing the pore diffusion conductance, λosc, with the overall pore conductance, λ, in eqn. 

(7.16), the relative pore body resistance can be precisely investigated.  

Figures 7.13(a-f) depict the variation of the ratio between the Oscillator and pore conductance 

( osc  ), for pore radius in the range of 0.4 to 1.4 nm for each gas, and coordination number Nm=6. 

It is evident that strong temperature dependence occurs for each gas. It is noted that the 

conductance ratio decreases with increase in temperature for all the gases, suggesting the 

importance of the pore body resistance is enhanced at high temperature. In addition, by comparing 

the value of osc   between the gases, it is evident that stronger adsorbed gas tends to have 

relatively higher conductance ratio, suggesting the pore body resistance becomes relatively lower. 

For instance, at the same temperature, the conductance ratio for CO2 is much larger than that for 
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H2, so the restriction effect of pore mouth is far more influential on the more strongly adsorbed 

molecule, which is consistent with the trend based on the activation energy, Ea. Thus, for example, 

for H2 the relative pore body resistance ( osc  ) lies in the range of 0.08-0.25, and is significant, 

while that for CO2 at 423 K and 573 K it is in the range of about 0.025-0.1, and is essentially 

negligible.  

On the other hand, it is of interest to see that the conductance ratio increases with increase in pore 

radius, so that the internal pore diffusion resistance is more significant and non-negligible for 

smaller pores. However, this may be an artefact as we have not considered any correlation 

between pore body and pore mouth size. In practice smaller pores may also have a narrower more 

constricted entry. While we have considered the superposition of pore mouth and pore body 

resistance here, the most common method arbitrarily neglects diffusion resistance in the pore body 

for the transport, and assumes that the total resistance is governed by the narrow pore mouth, thus 

the overall conductance is exclusively determined by the transition-state theory [8, 59], with 

2 ( )p TST osc pTST r D K r

l


                                                            (7.28) 

By applying eqn. (7.28) in the effective medium theory, the approach could be equally well fitted 

to the experimental data, and the obtained values of '
0A  and '

aE  for each gas are given in Table 7.4. 

It is evident that although the newly-fitted values of '
aE  are slightly smaller than previous ones in 

Table 7.3 for all the coordination numbers, the ordering of the activation energies remains similar. 

In addition, in comparison with the fitted results in Table 7.3, the new results for '
0A  become 

significantly smaller and still vary with gas species for all the coordination numbers. This decrease 

is due to a compensation effect, arising from neglect of the internal diffusion resistance in the pore 

body.  

The above result demonstrates a key advantage of the combination of transition-state theory and 

the Oscillator model over the traditional method of using a single resistance, in that the effect of 

underlying factors, including pore and fluid properties and temperature, are correctly resolved, and 

the internal diffusion resistance in the pore body is properly considered. However, it is important 

to note that this does not necessarily suggest failure of the traditional method using a single 

resistance based on the use of TST, given the similarity in the fittings. A factor to be considered is 

that the Oscillator model diffusivity is obtained based on infinite-long pores, while imposing 

diffuse reflection at a uniform structureless pore wall. Since the real pores in the silica membrane 

have finite pore length and an atomistic surface with non-diffuse reflection, the diffusional  
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Figure 7.13 Variation of the conductance ratio (λosc/λ) with pore radius in the silica layer, for the 

lowest (303 K), intermediate (423 K) and highest temperature (573 K) for each gas, based on the 

parameters obtained at low feed pressure (1.98 bar), using coordination number Nm=6. (a) H2, (b) 

He, (c) CH4, (d) N2, (e) Ar and (f) CO2. 

resistance in the silica pores may be less than that predicted by the Oscillator model, and may then 
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relatively significant only constitute a small portion of the pore size distribution in Figure 7.2, 

leading to the transport of the microporous silica membrane lying in the transition region between 

the two methods.  

Since the internal diffusion resistance in the pore body should be appropriately taken into account 

for the smaller pores in the silica membrane layer, the transport in the silica layer is more 

accurately represented by the combination of transition-state theory and the Oscillator model. This 

is subsequently used below to predict the flux in the supported membrane at different pressures. 

7.4.3 Prediction of flux at different pressures 

The above results indicate the success of effective medium theory using the combination of 

transition-state theory and Oscillator model to evaluate the pore conductance. Since the best fitting 

is obtained for coordination number Nm = 6, it is meaningful to apply the corresponding parameters 

in Table 7.1 to validate the proposed approach for other feed pressures. Figure 7.14(a) depicts the 

variation of flow rate with temperature for the different gases at the feed pressure 2.98 bar in the 

supported microporous silica membrane, using the fitted values of Ao and Ea for Nm=6 based on the 

1.98 bar data (Figure 7.9a). The symbols correspond to the experimental points, and lines to the 

model results. It is evident that the model prediction matches the experimental data accurately for 

all the gases, indicating that the fitted parameters are independent of pressure, in this low-pressure 

range region. The variation of extracted interfacial pressures P1 and P2 with temperature is plotted 

in Figures 7.14 (b) and (c) respectively, having similar trends to the results obtained at lower 

pressure, i.e., the interfacial pressures for the least adsorbed gases (He and H2) decrease more 

sharply with increase in temperature than that for the intermediate adsorbed gases (N2 and Ar), and 

the interfacial pressure for CO2 still mildly increases with increases in temperature due to the strong 

adsorption effect. However, the interfacial pressure for CH4 monotonically decreases with increase 

in temperature, slightly different from the observation in Figures 7.9(b) and (c), which show a 

maximum before monotonically decreasing with temperature. The difference is largely caused by 

the decrease of the resistance in the macroporous substrate at higher pressure, arising from the 

increase of the viscous contribution.   

Figures 7.15 (a-c) depict the predictions for the supported membrane at a feed pressure of 3.98 bar, 

using the previous fitted value of Ao and Ea for Nm=6. It is evident that the model prediction (lines) 

is in a good agreement with the experimental points (symbols) for all the gases in Figure 7.15(a), 

and the interfacial pressure trends with temperature in Figures 7.15(b) and (c) are similar to the 

results in Figures 7.14(b) and (c) respectively, with the main pressure drop experienced in the 

membrane layer. It is evident that the resistance of the supported membrane is still dominated by 
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the microporous membrane layer (>95%) and the resistance in the asymmetric support is negligible, 

in accord with our previous conclusion based on Figures 7.9(b) and (c). The above results indicate 

that the applicability of the combination of Oscillator model and transition-state theory to the 

microporous silica layer is effective over a wide low pressure region. In addition, the above 

methodology, based on the hybrid effective medium-correlated random walk theory [53], can be 

extended to multicomponent systems to predict the Onsager coefficient for each gas, demonstrated 

in a general manner by Bonilla and Bhatia [60]. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.14 (a) Variation of flow rate, (b) interfacial pressure, P1 and (c) P2, with temperature at 

feed pressure PF=2.98 bar based on eqn. (7.21), using parameter values Nm=6 and zm=5 μm. In (a) 

the symbols are the experimental data and the lines are the model results. 
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Figure 7.15 (a) Variation of flow rate, (b) interfacial pressure, P1 and (c) P2, with temperature at 

feed pressure PF=3.98 bar based on eqn. (7.21), using parameter values Nm=6 and zm=5 μm. In (a) 

the symbols are the experimental data and the lines are the model results. 

7.5 Summary and conclusions 
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interaction. The relatively high value of equilibrium constant for CO2 in experiment was explained 

by the high density (7.5 nm-2) of hydroxyl groups on the pore surface. 

Single gas permeation experiments with six gases (H2, He, CH4, N2, Ar and CO2) have been 

conducted over a wide range of temperatures from 303 to 573 K in the supported microporous silica 

membrane, and the transport in the silica membrane layer is examined using effective medium 

theory based on a superposition of the Oscillator model and transition-state theory for predicting the 

macroscopic flow rate. Excellent agreement between the model and experimental data is obtained, 

and the results indicate that the pore mouth restriction provides the dominant resistance of each gas; 

however, the internal resistance in the pore body is still significant for relatively small pores, 

especially for less adsorbed gases at high temperature. The high values of pore mouth activation 

energy are considered to be caused by constrictions at the narrow pore mouths, not readily 

characterized independently. 

The results show that larger molecules need higher energy to migrate through the pore mouth, and 

the obtained activation energy of the pore mouth restriction effect systematically follows the pattern, 

CO2>CH4>Ar>N2>H2>He. The larger value of CO2 compared to CH4 is most likely due to the 

stronger adsorption in the pore body, although there may also be some effect of rotational restriction 

at pore mouths. The interfacial pressure analysis shows that the main pressure drop along the 

supported membrane is caused by the microporous silica layer and the resistance in the asymmetric 

support is negligible. The relationship of the interfacial pressure to temperature depends on gas 

species. For less adsorbed gas, the interfacial pressure tends to decrease with increase in 

temperature, contrary to the behaviour for CO2 which monotonically increases with temperature. 

The above approach has been used to describe the transport in the supported membrane at higher 

feed pressure, and the prediction is found to be in good agreement with experimental data, 

suggesting that the application of the superposition of the Oscillator model and transition-state 

theory in the microporous silica membrane is effective over the low pressure region. 
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Chapter 8: Conclusions and Recommendations 

8.1 Conclusions 

The focus of this thesis was on the investigation of transport mechanism in supported silica 

membranes at low pressure (below 4 bar) limits in the temperature between 30 and 300 oC by 

flowing gas from high temperature to low temperature. A key aim of this work was to develop a 

novel approach to include the important parameters of the pore network of each layer for the 

transport to explore the diffusion mechanism for the pores in the mesoporous and microporous 

silica membrane, using the well-established diffusion models in the literature. Table 8.1 summaries 

the main discoveries performed in current project, and the details of the novel findings are discussed 

below in details.  

Table 8.1 The summarized discoveries for the supported silica membranes in the thesis 

Materials Known permeation mechanism New findings 

Macroporous 

substrate (500 nm) 

Slip flow and constant tortuosity Slip flow, but with tortuosity 

weakly varying with operating 

conditions. 

Mesoporous 

interlayer (10.4 nm) 

Knudsen diffusion mechanism and 

constant tortuosity 

Both the Knudsen based and 

Oscillator models are applicable, 

but with weakly fluid and 

temperature dependent tortuosity  

Mesoporous silica   

layer (3.8 nm) 

Knudsen diffusion mechanism and 

negligible adsorption effect, with 

constant tortuosity 

The Oscillator model diffusion 

applies, and Knudsen model fails. 

The adsorption effect is significant, 

and tortuosity varies strongly with 

gases and temperature 

Microporous silica   

layer (1.5 nm) 

Knudsen diffusion or surface 

diffusion mechanism 

Transport mechanism in the 

transition region between 

mesopores and micropores, and the 

adsorption effect is strong. Effect of 

pore mouth resistance dominates. 

 

The first contribution of this thesis is related to the modification of effective medium theory (EMT) 

utilizing the entire pore size distribution and including the aspect ratio effect for the unconsolidated 
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porous media in which pore lengths are comparable to diameters. By the choice of a representative 

pore radius, the approach is employed to predict the apparent tortuosity to estimate the infiltration 

of single gases in macroporous substrates whose mean pore sizes are above 500 nm, under low 

pressure limits. The analytical results indicate that both the Knudsen diffusion and viscous diffusion 

are of importance in the macropores at given conditions, and the flow contributions is consistent 

with the theoretical estimation from the diffusion model, thus the arbitrary assumption in the 

literature that a viscous flow dominates the resistance of the substrate in the supported membrane is 

incorrect. In addition, it is found that the apparent tortuosity is not exclusively determined by the 

pore topology, but varies with temperature and operating conditions in the slip flow regime due to 

the difference of the tortuosity limits for the pure Knudsen and viscous flow. The theoretical results 

of EMT demonstrates an advancement on existing models (Dusty Gas Model (DGM)) that the 

apparent tortuosity can be explicitly resolved in terms of the pore network structure and fluid 

species as well as operating conditions rather than empirically obtained through the fitting based on 

the assumption of a constant value. 

The second contribution of this thesis is related to the investigation of transport mechanism of 

single gases in the mesoporous γ-alumina interlayer coated on the macroporous substrate based on 

the extension of EMT approach to predict the macroscopic flow rate rather than apparent tortuosity, 

without any assumption regarding the dominant resistance in substrate and arbitrary choice of the 

mean pore radius. The analysis results indicate that the diffusion in the interlayer having a mean 

pore size of 10.4 nm can be independently represented by the Knudsen model, and a correction for 

the finite molecular size, and the Oscillator model, and the interfacial pressure is correctly resolved, 

which monotonically decreases with increase in temperature without anomalies observed with the 

approach based on a single pore size. In addition, the results demonstrate the importance of the 

pressure difference for different gas species and temperature in each layer, which should be 

correctly taken into account in any investigation for a multi-layered supported membrane. Similar 

results are also obtained for a mesoporous silica spheres (S980B) having a mean pore size of around 

14 nm that both the Knudsen model and Oscillator model adequately interpret the data in 

conjunction with effective medium theory (EMT) by fitting a network coordination number. This 

insensitivity to model is due to the large mesopore radius for this silica; however, the Oscillator 

model is found to predict a value of the coordination number closer to the range of values expected 

for this material based on percolation theory. 

The third contribution of this thesis is related to the investigation of transport mechanism of single 

gases in the mesoporous silica membrane layer of mean pore diameter 3.7 nm, coated on the 

asymmetric support. It is discovered that both the classical and corrected Knudsen models yield 
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extreme high apparent tortuosity which varies with temperature and gas species, and the result are 

unexpected in the Knudsen models. This is largely caused by the overestimation of the diffusivity 

and neglect of adsorption effect. The most satisfactory results are obtained with the Oscillator 

model, in which variation of apparent tortuosity and adsorption is correctly considered. The results 

indicate that the Knudsen model fails to represent the diffusivity for the mesopores of mean size of 

3.7 nm in silica, and that the Oscillator model provides a more accurate diffusivity and equilibrium 

constant which accounts for the effects of dispersive interaction between the fluid and walls. 

The fourth contribution of this thesis is related to the investigation the influence of different 

representative pore radius of disordered porous materials on apparent tortuosity to explore its gas 

and temperature dependence. Using the EMT we demonstrate that the apparent tortuosity varies 

with operating conditions and diffusion mechanism due to the differences in temperature 

dependence between the conductance at the representative pore radius and the effective 

conductance which depends on the pore connectivity and PSD. In the slip flow regime for 

unconsolidated macroporous media, it is discovered the combination of Knudsen and viscous 

mechanisms leads to temperature and species dependence of tortuosity, because of the different 

pore size dependence of the two contributions. This leads to different limiting tortuosities and PSD 

dependence in the Knudsen and viscous flow regimes. For consolidated mesoporous media, the 

tortuosity variation of temperature and gas dependence is associated with the shortcut effect in 

pores having higher conductance, which can be attributed to either diffusivity or adsorption effect.  

The fifth contribution of this thesis is related to the evaluation of adsorption and transport 

mechanism of single gases in the microporous silica membrane layer of the mean pore diameter 1.5 

nm, deposited on the asymmetric support. The adsorption isotherms are found to be Langmuirian, 

and the equilibrium constants can be accurately predicted for nonpolar gases in Oscillator model by 

considering Lennard-Jones (LJ) interactions. For the polar gas, CO2, the hydroxyls groups on the 

pore walls strongly enhance the gas affinity with the pore walls, and an empirically additive 

electrostatic interaction is employed to predict the Langmuirian equilibrium constant. The EMT 

analysis results indicates that the pore transport can be adequately represented by combination of 

pore mouth and internal pore diffusion resistances based on the Oscillator model and Transition-

state theory, respectively, and the overall transport resistance is governed by the pore mouth barrier. 

In summary, this work highlights the importance of considering the fluid-solid interaction in the 

pores of several nanometers to predict the fluid transport and equilibrium constant. In addition, the 

analytical results essentially suggest the entire pore size distribution should be taken into account in 

any approach to investigate the apparent tortuosity and macroscopic transport. Furthermore, based 
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on our discoveries, it is fairly safe to conclude that the Knudsen model is satisfactory in pores lager 

than 20 nm for light gases, and the Oscillator model is useful in the pore range below that. 

8.2 Recommendations 

Although a significant progress of modeling the transport of single gases in disordered mesoporous 

and microporous silica materials has been made to understand the influence of the fluid-solid 

interaction on the diffusivity and adsorption effect, the complex nature of nanoporous silicas that 

dominates the physical behaviors of diffusant in narrow pores requires further intensive studies 

which is beyond the scope of the thesis. Indeed, this is an enormous subject and plenty of work can 

be done in the further. Based on this work, I list some potential work that could be derived from the 

present work. 

1. To enhance the hydrothermal stability of the amorphous silica, metal oxides are often doped in 

the silicas to prevent any further condensation of hydroxyl groups on the pore surface, which may 

block the passage of pores, thus further investigations can be made to investigate the adsorption and 

transport mechanism of gases in metal or metal oxides doped silica membranes to provide the 

location and nature of the interaction between the gases and metal oxide phases, which is little 

known in the literatures. Such a study will be beneficial to understanding the formation mechanism 

of oxidant, which is instructive to the experimental work. 

2. The work in this project is mostly associated with light gases for which the dispersive interaction 

is normally weak, thus the experimental conclusion cannot be directly extended to the heavier gases 

whose dispersive interaction is much stronger. It is of interest to experimentally test several other 

gases to investigate the adsorption and transport mechanism in the mesoporous and microporous 

silica pores in different range. Finally it will be great to experimental produce a diagram for 

different gases, showing the conditions where the Knudsen model start to fails for these gases. 

3. The gases used in this work are mostly pure gases under low density limits, and the 

intermolecular interaction is negligible. However, in the most industrial application, the gas sources 

consists of mixtures; thus, the interaction between different species may hold importance at low 

temperature, which should be taken into account in the defined conductance for effective medium 

theory approach. To achieve this purpose, the Maxwell-Stefan intermolecular diffusivity ( ( )ijĐ i j ) 

should be well understood to combine with the Knudsen model and Oscillator model in the future 

work.  
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4. The silica membranes used in this work have relatively large pores, and it cannot be employed to 

conduct gas separation process. The pores in molecular sieve membrane (MSM) are only several 

angstroms, exerting extremely high energy barrier to the gas molecules larger than the pores, thus 

the MSM is extensively synthesized to separate gas mixtures. However, the fundamental adsorption 

and diffusion mechanism of gases in this type membrane is poorly understood, and most of the 

work is largely based on empirical activation energy correlations. The Oscillator model and 

transition-state theory can be applied to provide more details on this subject. 

5. Beside silica membranes, other novel mesoporous and microporous membranes are also 

developed rapidly, such as titanium oxides membranes, carbon nanotubes (CNT) and metal organic 

frames (MOF), but the transport process remains elusive. To well predict the adsorption and 

transport of gases in these materials, the LJ parameters should be provided in advance to evaluate 

the dispersive fluid-solid interaction to determine the pores where the Knudsen model prevails or 

fails by effective medium theory. 
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