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Abstract In recent years, it has been found that many phenomena in engi-
neering, physics, chemistry and other sciences can be described very success-
fully by models using mathematical tools from Fractional Calculus. Recently,
a new space and time fractional Bloch-Torrey equation (ST-FBTE) has been
proposed [13], and successfully applied to analyse diffusion images of human
brain tissues to provide new insights for further investigations of tissue struc-
tures.

In this paper, we consider the ST-FBTE with a nonlinear source term
on a finite domain in three-dimensions. The time and space derivatives in
the ST-FBTE are replaced by the Caputo and the sequential Riesz fractional
derivatives, respectively. Firstly, we propose a spatially second-order accurate
implicit numerical method (INM) for the ST-FBTE whereby we discretize
the Riesz fractional derivative using a fractional centered difference. Secondly,
we prove that the implicit numerical method for the ST-FBTE is uniquely
solvable, unconditionally stable and convergent, and the order of convergence
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of the implicit numerical method is O(τ2−α + τ +h2x +h2y +h2z). Finally, some
numerical results are presented to support our theoretical analysis.

Keywords Fractional Bloch-Torrey equation · Fractional Calculus · implicit
numerical method · fractional centered difference · solvability · stability ·
convergence

1 Introduction

It is now well accepted that many phenomena in engineering, physics, chem-
istry and other sciences can be described very successfully by models that
employ the theory of derivatives and integrals of fractional order [4,5,10,11,
18,20,22,28,29]. At present, fractional order equations have been applied to
model dynamical systems in science and engineering [12,26]. These new frac-
tional models are more adequate than the previously used integer order models
[17], because fractional order derivatives and integrals enable the description
of the memory and hereditary properties of different substances.

In physics, particularly when applied to diffusion, fractional order dynam-
ics lead to an extension of Brownian motion to what is called anomalous
diffusion [13]. Anomalous diffusion concerns the theory of diffusing particles
in environments that are not locally homogeneous, including disorder that is
not well-approximated by assuming a unified change in the diffusion constant.
Such systems include diffusion in complicated structures such as brain tissue.
Hall and Barrick [7] show that the usual manner to study the diffusive dy-
namics is to investigate the mean square displacement

⟨
r2(t)

⟩
of the particles,

namely ⟨
r2(t)

⟩
∝ tα, t→ ∞, (1)

where α is the anomalous diffusion exponent.
A very interesting and particular class of complex phenomena arises in the

nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI)
fields, and Fractional Calculus may help to express a physical meaning by uti-
lizing the fractional derivative operator [14,15]. If the complex heterogeneous
structure, such as spatial connectivity, can facilitate the movement of parti-
cles at a certain scale, fast motions may no longer obey the classical Fick’s law
and may indeed have a probability density function that follows a power-law.
For example, if C(x, t) represents the concentration of the diffusing species in
one-dimension, then a space-time Riesz-Caputo fractional diffusion equation
of the form

C
0 D

α
t C(x, t) = Kx

∂βC(x, t)

∂|x|β
, (2)

emerges from Fick’s first law in the continuity equation [6], where Kx is the
generalized diffusion coefficint, C

0 D
α
t is the Caputo time fractional derivative

of order α (0 < α < 1) with respect to t with starting point at t = 0 defined
as [17]:

C
0 D

α
t C(x, t) =

1

Γ (1− α)

∫ t

0

C ′(x, τ)

(t− τ)α
dτ, (3)
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and Rβ
x = ∂β

∂|x|β is the Riesz fractional derivative of order β (1 < β ≤ 2) with

respect to x, which is defined in equation (5) below.
Recently, some authors have used Fractional Calculus to investigate the

connection between fractional order dynamics and diffusion by solving the
Bloch-Torrey equation [13,23,24]. They have demonstrated that a Fractional
Calculus based diffusion model can be successfully applied to analyzing d-
iffusion images of human brain tissues and provide new insights for further
investigations of tissue structures. The following new diffusion model was pro-
posed for solving the Bloch-Torrey equation using Fractional Calculus with
respect to time and space [13]:

τα−1 C
0 D

α
t Mxy(r, t) = λMxy(r, t) +Dµ2(β−1)RβMxy(r, t), (4)

where λ = −iγ(r ·G(t)), r = (x, y, z), G(t) is the magnetic field gradient, γ
and D are the gyromagnetic ratio and the diffusion coefficient, respectively. In
addition, Rβ = (Rβ

x +R
β
y +R

β
z ) is a sequential Riesz fractional order operator

in space [8]. Mxy(r, t) = Mx(r, t) + iMy(r, t), where i =
√
−1, comprises the

transverse components of the magnetization; τα−1 and µ2(β−1) are the frac-
tional order time and space constants needed to preserve units, respectively
(0 < α ≤ 1, and 1 < β ≤ 2). The fractional order dynamics derived from
the space fractional Bloch-Torrey equation can be used to fit the signal at-
tenuation in diffusion-weighted images obtained from Sephadex gels, human
articular cartilage and a human brain [13], and can also be used to analyse
diffusion images of healthy human brain tissues in vivo at high b values up to
4700 sec/mm2 (b is the degree of diffusion sensitization defined by the ampli-
tude and the time course of the magnetic field gradient pulses used to encode
molecular diffusion displacements [9]) [27].

Compared with the considerable work carried out on the theoretical analy-
sis, relatively little work has been done on the numerical solution of (4). Magin
et al. [13] derived the analytical solutions with fractional order dynamics in
space (i.e., α = 1, β an arbitrary real number, 1 < β ≤ 2) and time (i.e.,
0 < α < 1, and β = 2), respectively. Yu et al. [24] derived an analytical solu-
tion for solving (4) using a fractional Laplacian based model and an effective
implicit numerical method for solving (4) using a Riesz fractional based model.
They also considered the stability and convergence of the implicit numerical
method. However, due to the computational overheads necessary to perform
the simulations for solving (4) in three dimensions, Yu et al. [24] present-
ed a preliminary study based on a two-dimensional example to confirm their
theoretical analysis. Yu et al. [23] proposed a fractional alternating direction
implicit scheme to overcome the computational bottlenecks described in [24],
they also proved the stability and convergence of the proposed method. How-
ever, the order of convergence in [23,24] is O(τ2−α + hx + hy + hz) first order
in space.

The Grünwald-Letnikov derivative approximation scheme of order O(h) is
generally used to approximate the Riesz fractional derivative [17,18,20,23,24,
29]. In order to obtain a better approximation, Ortigueira [16] defined the
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‘fractional centered derivative’ and proved that the Riesz fractional derivative
of an analytic function can be represented by the fractional centered derivative.
Celik and Duman [3] used the fractional centered derivative to approximate
the Riesz fractional derivative and applied the Crank-Nicolson method to a
fractional diffusion equation that utilises the Riesz fractional derivative, and
showed that the method is unconditionally stable and convergent with O(h2)
accuracy. Yu et al. [25] derived an effective implicit numerical method for
solving (4) in two-dimensions with a linear source term using the fractional
centered derivative to approximate the Riesz fractional derivative. They also
considered the stability and convergence of the implicit numerical method,
however, they did not consider the method’s solvability, and the order of con-
vergence in [25] is O(τ2−α + τ + h2x + h2y).

In this paper, we build upon the work in [25] and use a fractional centered
derivative to approximate the Riesz fractional derivative, and propose a new
effective implicit numerical method for the space and time fractional Bloch-
Torrey equation (ST-FBTE) with a nonlinear source term with initial and
boundary conditions on a finite domain in three-dimensions, and prove that the
implicit numerical method for the ST-FBTE is uniquely solvable, uncondition-
ally stable and convergent. The convergence order is O(τ2−α+τ+h2x+h

2
y+h

2
z).

The remainder of this article is arranged as follows. Some mathematical
preliminaries related to Fractional Calculus are introduced in section 2. In sec-
tion 3, we propose a new effective implicit numerical method for the ST-FBTE.
The solvability, stability and convergence of the implicit numerical method are
investigated in sections 4, 5 and 6, respectively. Finally, some numerical result-
s are presented to show that our new implicit numerical method can obtain
second order space accuracy, which is O(τ2−α + τ + h2x + h2y + h2z).

2 Preliminary knowledge

In this section, we give some preliminary information that is assumed through-
out this paper.

Definition 1. [23] The Riesz fractional operator Rβ for n − 1 < β ≤ n on a
finite domain [0, L1]× [0, L2]× [0, L3] is defined as

Rβ
xC(x, y, z, t) =

∂βC(x, y, z, t)

∂|x|β
= −cβ(0Dβ

x +x D
β
L1
)C(x, y, z, t), (5)

where cβ = 1
2 cos(πβ

2 )
, β ̸= 1,

0D
β
xC(x, y, z, t) =

1

Γ (n− β)

∂n

∂xn

∫ x

0

C(ξ, y, z, t)dξ
(x− ξ)β+1−n

,

xD
β
L1
C(x, y, z, t) =

(−1)n

Γ (n− β)

∂n

∂xn

∫ L1

x

C(ξ, y, z, t)dξ
(ξ − x)β+1−n

.
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Similarly, we can define the Riesz fractional derivatives Rβ
yC(x, y, z, t) =

∂βC(x,y,z,t)
∂|y|β and Rβ

zC(x, y, z, t) = ∂βC(x,y,z,t)
∂|z|β of order β (1 < β ≤ 2) with

respect to y and z.
Now, we present our solution techniques for the ST-FBTE for a finite

domain. Firstly, the ST-FBTE (4) can be rewritten as:

Kα
C
0 D

α
t Mxy(r, t) = λMxy(r, t) +KβR

βMxy(r, t), (6)

where Kα = τα−1 and Kβ = Dµ2(β−1).
For the numerical solutions of the ST-FBTE, we equate real and imaginary

components to express (6) as a coupled system of partial differential equations
for the components Mx and My, namely

Kα
C
0 D

α
t Mx(r, t) = Kβ(

∂β

∂|x|β
+

∂β

∂|y|β
+

∂β

∂|z|β
)Mx(r, t) + λGMy(r, t), (7)

Kα
C
0 D

α
t My(r, t) = Kβ(

∂β

∂|x|β
+

∂β

∂|y|β
+

∂β

∂|z|β
)My(r, t)− λGMx(r, t), (8)

where λG = γ(r ·G(t)).
For convenience, (7) and (8) are decoupled, which is equivalent to solving

Kα
C
0 D

α
t M(r, t) = Kβ(

∂β

∂|x|β
+

∂β

∂|y|β
+

∂β

∂|z|β
)M(r, t) + f(M, r, t), (9)

where M can be either Mx or My, and f(M, r, t) = λGMy(r, t) if M = Mx,
and f(M, r, t) = −λGMx(r, t) if M =My.

3 Implicit numerical method for the ST-FBTE

In this section, we propose a new implicit numerical method for the following
space and time fractional Bloch-Torrey equation with initial and boundary
conditions on a finite domain:

Kα
C
0 D

α
t M(r, t) = Kβ(

∂β

∂|x|β
+

∂β

∂|y|β
+

∂β

∂|z|β
)M(r, t) + f(M, r, t), (10)

M(r, 0) = M0(r), (11)

M(r, t)|Ω̄ = 0, (12)

where 0 < α ≤ 1, 1 < β ≤ 2, 0 < t ≤ T , r = (x, y, z) ∈ Ω, Ω is the finite
rectangular region [0, L1] × [0, L2] × [0, L3], and Ω̄ is R3 − Ω, the nonlinear
source term f(M, r, t) is assumed locally Lipschitz continuous.
Remark 1: [1,2] We say that f : X → X is globally Lipschitz continuous
if for some L > 0, we have ∥f(u) − f(v)∥ ≤ L∥u − v∥ for all u, v ∈ X,
and is locally Lipschitz continuous, if the latter holds for ∥u∥, ∥v∥ ≤M with
L = L(M) for any M > 0.
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Baeumer et al. [1,2] showed how to solve nonlinear reaction-diffusion equa-
tions of type (10) by an operator splitting method when the abstract function
f is only locally Lipschitz (see [1,2,21]).

Thus, we assume that for all k = 1, 2, · · · , N , ∥u(x, y, z, tk)∥, ∥v(x, y, z, tk)∥ ≤
Mk with a constant Mk > 0 for any r = (x, y, z) ∈ Ω, we have

∥f(u(x, y, z, tk))− f(v(x, y, z, tk))∥ ≤ L(Mk)∥u(x, y, z, tk)− v(x, y, z, tk)∥
= Lk∥u(x, y, z, tk)− v(x, y, z, tk)∥, (13)

where we have defined Lk = L(Mk) and Lmax = max
0≤k≤N

Lk.

Let hx = L1/N1, hy = L2/N2, hz = L3/N3, and τ = T/N be the spa-
tial and time steps, respectively. For i, j, k ∈ N and n ∈ N, we denote the
exact and numerical solutions M(r, t) at a point (xi, yj , zk) at the moment
of time tn as m(xi, yj , zk, tn) and mn

i,j,k, respectively. Similar notations for
f(M(xi, yj , zk, tn), xi, yj , zk, tn) and f

n
i,j,k.

Firstly, utilizing the discrete scheme in [18], we can discretize the Caputo
time fractional derivative of m(xi, yj , zk, tn+1) as

C
0 D

α
t m(xi, yj , zk, tn+1) =

τ−α

Γ (2− α)

n∑
l=0

bl[m(xi, yj , zk, tn+1−l)

− m(xi, yj , zk, tn−l)] +O(τ2−α), (14)

where bl = (l + 1)1−α − l1−α, l = 0, 1, · · · , N .
Secondly, adopting the fractional centered difference scheme in [3], we can

discretize the Riesz fractional derivative as

∂β

∂|x|β
m(xi, yj , zk, tn+1) = − 1

hβx

i∑
p=−N1+i

ωpm(xi−p, yj , zk, tn+1) +O(h2x),

(15)
where the coefficients ωp are defined by

ωp =
(−1)pΓ (β + 1)

Γ (β2 − p+ 1)Γ (β2 + p+ 1)
, p = 0,∓1,∓2, · · · . (16)

Similarly,

∂β

∂|y|β
m(xi, yj , zk, tn+1) = − 1

hβy

j∑
q=−N2+j

ωqm(xi, yj−q, zk, tn+1)+O(h2y), (17)

∂β

∂|z|β
m(xi, yj , zk, tn+1) = − 1

hβz

k∑
r=−N3+k

ωrm(xi, yj , zk−r, tn+1) +O(h2z).

(18)
The nonlinear source term can be treated either explicitly or implicitly. In

this paper, we use an explicit method and evaluate the nonlinear source term
at the previous time step:

fn+1
i,j,k = fni,j,k +O(τ). (19)
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In this way, we avoid solving a nonlinear system at each time step and obtain an
unconditionally stable and convergent numerical scheme, as shown in sections
5 and 6. However, the shortcoming of the explicit method is that it generates
additional temporal error, as shown in (19).

Then we can obtain the implicit numerical scheme:

Kατ
−α

Γ (2− α)

n∑
l=0

bl(m
n+1−l
i,j,k −mn−l

i,j,k) = −Kβ(
1

hβx

i∑
p=−N1+i

ωpm
n+1
i−p,j,k

+
1

hβy

j∑
q=−N2+j

ωqm
n+1
i,j−q,k +

1

hβz

k∑
r=−N3+k

ωrm
n+1
i,j,k−r) + fni,j,k. (20)

Thus, we have the following implicit difference approximation:

mn+1
i,j,k + µ1

i∑
p=−N1+i

ωpm
n+1
i−p,j,k + µ2

j∑
q=−N2+j

ωqm
n+1
i,j−q,k

+µ3

k∑
r=−N3+k

ωrm
n+1
i,j,k−r =

n−1∑
l=0

(bl − bl+1)m
n−l
i,j,k + bnm

0
i,j,k + µ0f

n
i,j,k, (21)

i = 1, 2, · · · , N1 − 1, j = 1, 2, · · · , N2 − 1, k = 1, 2, · · · , N3 − 1,

with

m0
i,j,k = gi,j,k = g(xi, yj , zk),

mn+1
0,j,k = mn+1

N1,j,k
= mn+1

i,0,k = mn+1
i,N2,k

= mn+1
i,j,0 = mn+1

i,j,N3
= 0,

(i = 0, 1, · · · , N1, j = 0, 1, · · · , N2, k = 0, 1, · · · , N3)

where µ0 = ταΓ (2−α)
Kα

, µ1 =
Kβτ

αΓ (2−α)

Kαhβ
x

, µ2 =
Kβτ

αΓ (2−α)

Kαhβ
y

, µ3 =
Kβτ

αΓ (2−α)

Kαhβ
z

,

and noting that the coefficients µ0, µ1, µ2, µ3 > 0 for 0 < α ≤ 1 and 1 < β ≤ 2.
Remark 2: If we use the implicit method to approximate the nonlinear source
term, the numerical method of the ST-FBTE can be written as:

mn+1
i,j,k + µ1

i∑
p=−N1+i

ωpm
n+1
i−p,j,k + µ2

j∑
q=−N2+j

ωqm
n+1
i,j−q,k

+µ3

k∑
r=−N3+k

ωrm
n+1
i,j,k−r =

n−1∑
l=0

(bl − bl+1)m
n−l
i,j,k + bnm

0
i,j,k + µ0f

n+1
i,j,k ,(22)

namely, replace fni,j,k in (21) with fn+1
i,j,k . This numerical method is stable and

convergent when the nonlinear source term f(M, r, t) satisfies the local Lips-
chitz condition (13) (see [21]).
Lemma 1. The coefficients bl (l = 0, 1, 2, · · ·) satisfy:

(1) b0 = 1, bl > 0 for l = 1, 2, · · ·;
(2) bl > bl+1 for l = 0, 1, 2, · · ·.

Proof: See [11].
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Lemma 2. The coefficients ωp (p ∈ N) satisfy:
(1) ω0 ≥ 0, ω−k = ωk ≤ 0 for all |k| ≥ 1;

(2)
∞∑

p=−∞
ωp = 0;

(3) For any positive integer n,m with n < m, we have
n∑

p=−m+n
ωp > 0.

Proof: See [3,16].

4 Solvability of the implicit numerical method

We let Mn+1 = [mn+1
1,1,1,m

n+1
2,1,1, · · · ,m

n+1
N1−1,N2−1,N3−1]

T , N∗ = (N1 − 1)(N2 −
1)(N3 − 1), and M0 = [g1,1,1, g2,1,1, · · · , gN1−1,N2−1,N3−1]

T , respectively, then
the implicit difference approximation (21) can be written in matrix form as

(I +A)Mn+1 =
n−1∑
l=0

(bl − bl+1)M
n−l + bnM

0 + µ0F
n, (23)

where Fn = [fn1,1,1, f
n
2,1,1, · · · , fnN1−1,N2−1,N3−1]

T , I ∈ RN∗×N∗
is the identi-

ty matrix. A = [asv] ∈ RN∗×N∗
is a coefficient matrix. If s = v for s =

1, 2, · · · , N∗, then we obtain

ass = ω0(µ1 + µ2 + µ3). (24)

In addition, let s∗ = (k − 1)(N3 − 1) + (j − 1)(N2 − 1) + i, then we have

N3−1∑
r=1

N2−1∑
q=1

N1−1∑
p=1

as∗,(r−1)(N3−1)+(q−1)(N2−1)+p − as∗,s∗

= µ1

i∑
p=−N1+i,p̸=0

ωp + µ2

j∑
q=−N2+j,q ̸=0

ωq + µ3

k∑
r=−N3+k,r ̸=0

ωr, (25)

for i = 1, 2, · · · , N1 − 1, j = 1, 2, · · · , N2 − 1, k = 1, 2, · · · , N3 − 1.
Theorem 1. The difference equation defined by (23) is uniquely solvable.
Proof: Let λ be the eigenvalue of the matrix A. Then by the Gerschgorin’s
circle theorem [19] and Lemma 2, we have

|λ− ω0(µ1 + µ2 + µ3)| ≤ ri

= µ1

i∑
p=−N1+i,p̸=0

|ωp|+ µ2

j∑
q=−N2+j,q ̸=0

|ωq|+ µ3

k∑
r=−N3+k,r ̸=0

|ωr|

< ω0(µ1 + µ2 + µ3), (26)

where
∞∑

p=−∞,p̸=0

|ωp| = ω0,
∞∑

q=−∞,q ̸=0

|ωq| = ω0 and
∞∑

r=−∞,r ̸=0

|ωr| = ω0, that

is, we have
0 < λ < 2ω0(µ1 + µ2 + µ3). (27)

Hence the spectral radius of the matrix (I+A) is greater than one. There-
fore, the difference equation defined by (23) is uniquely solvable.



A spatially second-order accurate implicit numerical method for ST-FBTE 9

5 Stability of the implicit numerical method

In this section, we prove the stability of the implicit numerical method for the
ST-FBTE.

Let m̃n
i,j,k be the approximate solution of the implicit numerical method

(21), and setEn = [ψn
1,1,1, ψ

n
2,1,1, · · · , ψn

N1−1,N2−1,N3−1]
T , where ψn

i,j,k = mn
i,j,k−

m̃n
i,j,k, and let f̃ni,j,k be the approximation of fni,j,k.
Assuming that ∥En∥∞ = max

1≤i≤N1−1,1≤j≤N2−1,1≤k≤N3−1
|ψn

i,j,k|, then we can

obtain the following theorem by mathematical induction.
Theorem 2. The implicit numerical method defined by (21) is unconditionally
stable, and there is a positive constant C∗

1 , such that

∥En+1∥∞ ≤ C∗
1∥E0∥∞, n = 0, 1, 2, · · · .

Proof: From (21), the error ψn
i,j,k satisfies

ψn+1
i,j,k + µ1

i∑
p=−N1+i

ωpψ
n+1
i−p,j,k + µ2

j∑
q=−N2+j

ωqψ
n+1
i,j−q,k + µ3

k∑
r=−N3+k

ωrψ
n+1
i,j,k−r

=
n−1∑
m=0

(bm − bm+1)ψ
n−m
i,j,k + bnψ

0
i,j,k + µ0(f

n
i,j,k − f̃ni,j,k), (28)

for i = 1, 2, · · · , N1−1, j = 1, 2, · · · , N2−1, k = 1, 2, · · · , N3−1. Since f satisfies
the local Lipschitz condition (13), we have

|fni,j,k − f̃ni,j,k| ≤ Ln|ψn
i,j,k|. (29)

When n = 0, assume that ∥E1∥∞ = max
1≤i≤N1−1,1≤j≤N2−1,1≤k≤N3−1

|ψ1
i,j,k| =

|ψ1
i∗,j∗,k∗

|. Using Lemma 2, and noting that µ1, µ2, µ3 > 0 we have

∥E1∥∞ = |ψ1
i∗,j∗,k∗

|

≤ |ψ1
i∗,j∗,k∗

|+ µ1

i∗∑
p=−N1+i∗

ωp|ψ1
i∗,j∗,k∗

|+ µ2

j∗∑
q=−N2+j∗

ωq|ψ1
i∗,j∗,k∗

|

+µ3

k∗∑
r=−N3+k∗

ωr|ψ1
i∗,j∗,k∗

|

= [1 + ω0(µ1 + µ2 + µ3)]|ψ1
i∗,j∗,k∗

|+ µ1

i∗∑
p=−N1+i∗,p ̸=0

ωp|ψ1
i∗,j∗,k∗

|

+µ2

j∗∑
q=−N2+j∗,q ̸=0

ωq|ψ1
i∗,j∗,k∗

|+ µ3

k∗∑
r=−N3+k∗,r ̸=0

ωr|ψ1
i∗,j∗,k∗

|

≤ [1 + ω0(µ1 + µ2 + µ3)]|ψ1
i∗,j∗,k∗

|+ µ1

i∗∑
p=−N1+i∗,p ̸=0

ωp|ψ1
i∗−p,j∗,k∗

|
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+µ2

j∗∑
q=−N2+j∗,q ̸=0

ωq|ψ1
i∗,j∗−q,k∗

|+ µ3

k∗∑
r=−N3+k∗,r ̸=0

ωr|ψ1
i∗,j∗,k∗−r|.

With the well known inequality |Z1|− |Z2| ≤ |Z1−Z2|, using Lemma 1 we
have

∥E1∥∞ = |ψ1
i∗,j∗,k∗

|

≤

∣∣∣∣∣∣[1 + ω0(µ1 + µ2 + µ3)]ψ
1
i∗,j∗,k∗

+ µ1

i∗∑
p=−N1+i∗,p ̸=0

ωpψ
1
i∗−p,j∗,k∗

+µ2

j∗∑
q=−N2+j∗,q ̸=0

ωqψ
1
i∗,j∗−q,k∗

+ µ3

k∗∑
r=−N3+k∗,r ̸=0

ωrψ
1
i∗,j∗,k∗−r

∣∣∣∣∣∣
=

∣∣∣∣∣∣ψ1
i∗,j∗,k∗

+ µ1

i∗∑
p=−N1+i∗

ωpψ
1
i∗−p,j∗,k∗

+ µ2

j∗∑
q=−N2+j∗

ωqψ
1
i∗,j∗−q,k∗

+µ3

k∗∑
r=−N3+k∗

ωrψ
1
i∗,j∗,k∗−r

∣∣∣∣∣
= |b0ψ0

i∗,j∗,k∗
+ µ0(f

0
i,j,k − f̃0i,j,k)|.

Using local Lipschitz condition (29), we have

∥E1∥∞ ≤ |ψ0
i∗,j∗,k∗

|+ µ0L0|ψ0
i∗,j∗,k∗

| ≤ |ψ0
i∗,j∗,k∗

|+ µ0Lmax|ψ0
i∗,j∗,k∗

|
= (1 + µ0Lmax)|ψ0

i∗,j∗,k∗
| = (1 + µ0Lmax)∥E0∥∞.

Let ξ = 1 + µ0Lmax, thus, ∥E1∥∞ ≤ ξ∥E0∥∞.
Now, we suppose that ∥Em∥∞ ≤ ξ∥E0∥∞,m = 1, 2, · · · , n. Assuming

∥En+1∥∞ = max
1≤i≤N1−1,1≤j≤N2−1,1≤k≤N3−1

|ψn+1
i,j,k| = |ψn+1

i∗,j∗,k∗
|, and using Lem-

ma 2 again, we can obtain

∥En+1∥∞ = |ψn+1
i∗,j∗,k∗

|

≤ |ψn+1
i∗,j∗,k∗

|+ µ1

i∗∑
p=−N1+i∗

ωp|ψn+1
i∗,j∗,k∗

|+ µ2

j∗∑
q=−N2+j∗

ωq|ψn+1
i∗,j∗,k∗

|

+µ3

k∗∑
r=−N3+k∗

ωr|ψn+1
i∗,j∗,k∗

|

= [1 + ω0(µ1 + µ2 + µ3)]|ψn+1
i∗,j∗,k∗

|+ µ1

i∗∑
p=−N1+i∗,p ̸=0

ωp|ψn+1
i∗,j∗,k∗

|

+µ2

j∗∑
q=−N2+j∗,q ̸=0

ωq|ψn+1
i∗,j∗,k∗

|+ µ3

k∗∑
r=−N3+k∗,r ̸=0

ωr|ψn+1
i∗,j∗,k∗

|
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≤ [1 + ω0(µ1 + µ2 + µ3)]|ψn+1
i∗,j∗,k∗

|+ µ1

i∗∑
p=−N1+i∗,p ̸=0

ωp|ψn+1
i∗−p,j∗,k∗

|

+µ2

j∗∑
q=−N2+j∗,q ̸=0

ωq|ψn+1
i∗,j∗−q,k∗

|+ µ3

k∗∑
r=−N3+k∗,r ̸=0

ωr|ψn+1
i∗,j∗,k∗−r|.

Using inequality |Z1| − |Z2| ≤ |Z1 − Z2| and Lemma 1 again, we have

∥En+1∥∞

≤

∣∣∣∣∣∣[1 + ω0(µ1 + µ2 + µ3)]ψ
n+1
i∗,j∗,k∗

+ µ1

i∗∑
p=−N1+i∗,p ̸=0

ωpψ
n+1
i∗−p,j∗,k∗

+µ2

j∗∑
q=−N2+j∗,q ̸=0

ωqψ
n+1
i∗,j∗−q,k∗

+ µ3

k∗∑
r=−N3+k∗,r ̸=0

ωrψ
n+1
i∗,j∗,k∗−r

∣∣∣∣∣∣
=

∣∣∣∣∣∣ψn+1
i∗,j∗,k∗

+ µ1

i∗∑
p=−N1+i∗

ωpψ
n+1
i∗−p,j∗,k∗

+ µ2

j∗∑
q=−N2+j∗

ωqψ
n+1
i∗,j∗−q,k∗

+µ3

k∗∑
r=−N3+k∗

ωrψ
n+1
i∗,j∗,k∗−r

∣∣∣∣∣
=

∣∣∣∣∣
n−1∑
m=0

(bm − bm+1)ψ
n−m
i∗,j∗,k∗

+ bnψ
0
i∗,j∗,k∗

+ µ0(f
n
i,j,k − f̃ni,j,k)

∣∣∣∣∣ .
Using local Lipschitz condition (29) again, we have

∥En+1∥∞ ≤
n−1∑
m=0

(bm − bm+1)∥En−m∥∞ + bn∥E0∥∞ + µ0Ln|ψn
i∗,j∗,k∗

|

≤ ξ
n−1∑
m=0

(bm − bm+1)∥E0∥∞ + bn∥E0∥∞ + µ0Lmax∥En∥∞

≤ (bn + b0ξ − bnξ)∥E0∥∞ + ξµ0Lmax∥E0∥∞
= (ξ2 − bnµ0Lmax)∥E0∥∞.

From Lemma 1, we know that b0 = 1 and bn → 0 as n → ∞. Also, note that
ξ = 1 + µ0Lmax, then it is easy to know that ξ2 − bnµ0Lmax > 0. Hence, let
C∗

1 = ξ2 − bnµ0Lmax, we have

∥En+1∥∞ ≤ C∗
1∥E0∥∞. (30)

Hence the implicit numerical method defined by (21) is unconditionally
stable.
Remark 3: If we use an implicit method to approximate the nonlinear source
term, as shown in Remark 2, we can prove that the numerical method defined
in (22) is stable when 1 − µ0Lmax > 0, which is independent of the spatial
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step. In fact, when the time step is small, the condition 1 − µ0Lmax > 0 is
generally satisfied.

6 Convergence of the implicit numerical method

In this section, we prove the convergence of the implicit numerical method for
the ST-FBTE.

Setting θni,j,k = m(xi, yj , zk, tn)−mn
i,j,k, and denoting

Rn = [θn1,1,1, θ
n
2,1,1, · · · , θnN1−1,N2−1,N3−1]

T ,

where R0 = 0. Note that Rn and 0 are ((N1 − 1) × (N2 − 1) × (N3 − 1))
vectors, respectively.

From (10)-(21), the error θni,j,k satisfies

θn+1
i,j,k + µ1

i∑
p=−N1+i

ωpθ
n+1
i−p,j,k + µ2

j∑
q=−N2+j

ωqθ
n+1
i,j−q,k + µ3

k∑
r=−N3+k

ωrθ
n+1
i,j,k−r

=

n−1∑
m=0

(bm − bm+1)θ
n−m
i,j,k + µ0(f(M(xi, yj , zk, tn), xi, yj , zk, tn)− fni,j,k)

+ C1τ
α(τ2−α + τ + h2x + h2y + h2z), (31)

for i = 1, 2, · · · , N1 − 1, j = 1, 2, · · · , N2 − 1, k = 1, 2, · · · , N3 − 1.
Since f satisfies the local Lipschitz condition (13), we have

|f(M(xi, yj , zk, tn), xi, yj , zk, tn)− fni,j,k| ≤ Ln|θni,j,k|. (32)

Assuming ∥Rn+1∥∞ = max
1≤i≤N1−1,1≤j≤N2−1,1≤k≤N3−1

|θn+1
i,j,k|, then we can ob-

tain the following theorem by mathematical induction.
Theorem 3. The implicit difference approximation defined by (21) is conver-
gent, and there is a positive constant C∗, such that

∥Rn+1∥∞ ≤ C∗(τ2−α + τ + h2x + h2y + h2z), n = 0, 1, 2, · · · . (33)

Proof:When n = 0, assume that ∥R1∥∞ = max
1≤i≤N1−1,1≤j≤N2−1,1≤k≤N3−1

|θ1i,j,k| =

|θ1i∗,j∗,k∗
|. Similarly, using Lemma 2, and noting that µ1, µ2, µ3 > 0, we have

∥R1∥∞ = |θ1i∗,j∗,k∗
|

≤ |θ1i∗,j∗,k∗
|+ µ1

i∗∑
p=−N1+i∗

ωp|θ1i∗,j∗,k∗
|+ µ2

j∗∑
q=−N2+j∗

ωq|θ1i∗,j∗,k∗
|

+µ3

k∗∑
r=−N3+k∗

ωr|θ1i∗,j∗,k∗
|
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= [1 + ω0(µ1 + µ2 + µ3)]|θ1i∗,j∗,k∗
|+ µ1

i∗∑
p=−N1+i∗,p ̸=0

ωp|θ1i∗,j∗,k∗
|

+µ2

j∗∑
q=−N2+j∗,q ̸=0

ωq|θ1i∗,j∗,k∗
|+ µ3

k∗∑
r=−N3+k∗,r ̸=0

ωr|θ1i∗,j∗,k∗
|

≤ [1 + ω0(µ1 + µ2 + µ3)]|θ1i∗,j∗,k∗
|+ µ1

i∗∑
p=−N1+i∗,p ̸=0

ωp|θ1i∗−p,j∗,k∗
|

+µ2

j∗∑
q=−N2+j∗,q ̸=0

ωq|θ1i∗,j∗−q,k∗
|+ µ3

k∗∑
r=−N3+k∗,r ̸=0

ωr|θ1i∗,j∗,k∗−r|.

Let V = C1τ
α(τ2−α + τ + h2x + h2y + h2z), using inequality |Z1| − |Z2| ≤

|Z1 − Z2|, Lemma 1 and local Lipschitz condition (32), we have

∥R1∥∞ ≤

∣∣∣∣∣∣[1 + ω0(µ1 + µ2 + µ3)]θ
1
i∗,j∗,k∗

+ µ1

i∗∑
p=−N1+i∗,p̸=0

ωpθ
1
i∗−p,j∗,k∗

+µ2

j∗∑
q=−N2+j∗,q ̸=0

ωqθ
1
i∗,j∗−q,k∗

+ µ3

k∗∑
r=−N3+k∗,r ̸=0

ωrθ
1
i∗,j∗,k∗−r

∣∣∣∣∣∣
=

∣∣∣∣∣∣θ1i∗,j∗,k∗
+ µ1

i∗∑
p=−N1+i∗

ωpθ
1
i∗−p,j∗,k∗

+ µ2

j∗∑
q=−N2+j∗

ωqθ
1
i∗,j∗−q,k∗

+µ3

k∗∑
r=−N3+k∗

ωrθ
1
i∗,j∗,k∗−r

∣∣∣∣∣
= |µ0(f(M(xi∗ , yj∗ , zk∗ , t0), xi∗ , yj∗ , zk∗ , t0)− f0i∗,j∗,k∗

) +V|
≤ |µ0L0θ

0
i∗,j∗,k∗

+V| = b−1
0 V.

Now, we suppose that ∥Rm∥∞ ≤ b−1
m−1V, m = 1, 2, · · · , n. Assuming

∥Rn+1∥∞ = max
1≤i≤N1−1,1≤j≤N2−1,1≤k≤N3−1

|θn+1
i,j,k| = |θn+1

i∗,j∗,k∗
|, and using Lem-

ma 2 again we have

∥Rn+1∥∞ = |θn+1
i∗,j∗,k∗

|

≤ |θn+1
i∗,j∗,k∗

|+ µ1

i∗∑
p=−N1+i∗

ωp|θn+1
i∗,j∗,k∗

|+ µ2

j∗∑
q=−N2+j∗

ωq|θn+1
i∗,j∗,k∗

|

+µ3

k∗∑
r=−N3+k∗

ωr|θn+1
i∗,j∗,k∗

|

= [1 + ω0(µ1 + µ2 + µ3)]|θn+1
i∗,j∗,k∗

|+ µ1

i∗∑
p=−N1+i∗,p ̸=0

ωp|θn+1
i∗,j∗,k∗

|
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+µ2

j∗∑
q=−N2+j∗,q ̸=0

ωq|θn+1
i∗,j∗,k∗

|+ µ3

k∗∑
r=−N3+k∗,r ̸=0

ωr|θn+1
i∗,j∗,k∗

|

≤ [1 + ω0(µ1 + µ2 + µ3)]|θn+1
i∗,j∗,k∗

|+ µ1

i∗∑
p=−N1+i∗,p ̸=0

ωp|θn+1
i∗−p,j∗,k∗

|

+µ2

j∗∑
q=−N2+j∗,q ̸=0

ωq|θn+1
i∗,j∗−q,k∗

|+ µ3

k∗∑
r=−N3+k∗,r ̸=0

ωr|θn+1
i∗,j∗,k∗−r|.

Using inequality |Z1| − |Z2| ≤ |Z1 − Z2| and Lemma 1 again, we have

∥Rn+1∥∞

≤

∣∣∣∣∣∣[1 + ω0(µ1 + µ2 + µ3)]θ
n+1
i∗,j∗,k∗

+ µ1

i∗∑
p=−N1+i∗,p̸=0

ωpθ
n+1
i∗−p,j∗,k∗

+µ2

j∗∑
q=−N2+j∗,q ̸=0

ωqθ
n+1
i∗,j∗−q,k∗

+ µ3

k∗∑
r=−N3+k∗,r ̸=0

ωrθ
n+1
i∗,j∗,k∗−r

∣∣∣∣∣∣
=

∣∣∣∣∣∣θn+1
i∗,j∗,k∗

+ µ1

i∗∑
p=−N1+i∗

ωpθ
n+1
i∗−p,j∗,k∗

+ µ2

j∗∑
q=−N2+j∗

ωqθ
n+1
i∗,j∗−q,k∗

+µ3

k∗∑
r=−N3+k∗

ωrθ
n+1
i∗,j∗,k∗−r

∣∣∣∣∣
=

∣∣∣∣∣
n−1∑
m=0

(bm − bm+1)θ
n−m
i∗,j∗,k∗

+ µ0(f(M(xi∗ , yj∗ , zk∗ , tn), xi∗ , yj∗ , zk∗ , tn)

−fni∗,j∗,k∗
) +V

∣∣ .
Using local Lipschitz condition (32) again, we have

∥Rn+1∥∞ ≤

∣∣∣∣∣
n−1∑
m=0

(bm − bm+1)θ
n−m
i∗,j∗,k∗

+ µ0Lnθ
n
i∗,j∗,k∗

+V

∣∣∣∣∣
≤

n−1∑
m=0

(bm − bm+1)b
−1
n−m−1V + µ0Lmaxb

−1
n−1V +V

≤
n−1∑
m=0

(bm − bm+1)b
−1
n V + µ0Lmaxb

−1
n V +V

= b−1
n (b0 − bn + µ0Lmax + bn)V

= b−1
n (b0 + µ0Lmax)V

= ξb−1
n V.
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Noting that V = C1τ
α(τ2−α + τ + h2x + h2y + h2z), and

lim
n→∞

b−1
n

nα
= lim

n→∞

n−α

(n+ 1)1−α − n1−α
=

1

1− α
,

therefore there exists a positive constant C2, such that

∥Rn+1∥∞ ≤ ξC1C2n
ατα(τ2−α + τ + h2x + h2y + h2z).

Finally, noting that nτ ≤ T is finite, so there exists a positive constant C∗,
such that ∥Rn+1∥∞ ≤ C∗(τ2−α + τ + h2x + h2y + h2z) for n = 0, 1, 2, · · ·.

Hence, the implicit numerical method defined by (21) is convergent.
Remark 4: If we use an implicit method to approximate the nonlinear source
term, as shown in Remark 2, we can prove that the numerical method defined
in (22) is convergent when 1−µ0Lmax > 0, which is independent of the spatial
step. In fact, when the time step is small, the condition 1 − µ0Lmax > 0 is
generally satisfied.

7 Numerical results

Due to the computational overheads necessary to perform the simulations
for the space and time fractional Bloch-Torrey equation in three dimensions,
we present here a preliminary study based on a two-dimensional example to
confirm our theoretical analysis.

In example 1, we use the same example in [24], where the source term
depends only on space and time, for comparison to show that our new implicit
numerical method can obtain second order space accuracy, which is O(τ2−α+
τ + h2x + h2y + h2z).
Example 1.

The following time and space Riesz fractional diffusion equation with initial
and zero Dirichlet boundary conditions on a finite domain is considered (See
[24]):

Kα
C
0 D

α
t M(r, t) = Kβ(

∂β

∂|x|β
+

∂β

∂|y|β
)M(r, t) + f(r, t), (34)

M(r, 0) = 0, (35)

M(r, t)|Ω̄ = 0, (36)

where

f(r, t) =
Kβt

α+β

2cos(βπ/2)
((

2

Γ (3− β)
[x2−β + (1− x)2−β ]− 12

Γ (4− β)
[x3−β

+(1− x)3−β ] +
24

Γ (5− β)
[x4−β + (1− x)4−β ])y2(1− y)2

+(
2

Γ (3− β)
[y2−β + (1− y)2−β ]− 12

Γ (4− β)
[y3−β + (1− y)3−β ]
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+
24

Γ (5− β)
[y4−β + (1− y)4−β ])x2(1− x)2)

+
KαΓ (α+ β + 1)

Γ (β + 1)
tβx2(1− x)2)y2(1− y)2, (37)

and 0 < α ≤ 1, 1 < β ≤ 2, t > 0, r = (x, y) ∈ Ω, Ω is the finite rectangular
region [0, 1]× [0, 1], and Ω̄ is R2 −Ω.

The exact solution of this problem is M(r, t) = tα+βx2(1− x)2y2(1− y)2,
which can be verified by substituting directly into (34).

When Kα = 1.0,Kβ = 0.5, α = 0.8, and β = 1.8, Table 1 lists the max-
imum absolute error between the exact solution and the numerical solutions
obtained by the implicit numerical method, with spatial and temporal steps

τ
2−α
2 ≈ hx = hy = 1/4, 1/8, 1/16, 1/32 at time t = 1.0

Table 1 Comparison of maximum error for the implicit numerical method at time t = 1.0

τ
2−α
2 ≈ hx = hy Maximum error Error rate

1
4

0.000591593 -
1
8

0.000141157 4.20≈ 4
1
16

0.0000342583 4.12≈ 4
1
32

0.00000835079 4.10≈ 4

From Table 1, it can be seen that the

Error rate =
error(h)2

error( 12h)
2
≈ 4.

This is in good agreement with our theoretical analysis, namely the con-
vergence order of the implicit numerical method for this problem is O(τ2−α +
τ + h2x + h2y).

We now exhibit in example 2 the solution profiles of the time and space
Riesz fractional diffusion equation with a nonlinear source term.
Example 2.

Nonlinear time and space Riesz fractional diffusion equation with initial
and zero Dirichlet boundary conditions on a finite domain:

Kα
C
0 D

α
t M(r, t) = Kβ(

∂β

∂|x|β
+

∂β

∂|y|β
)M(r, t) + f(M, r, t), (38)

M(r, 0) = min{1.0, 10e−x2−y2

}, (39)

M(r, t)|Ω̄ = 0, (40)

where the nonlinear source term is Fisher’s growth equation f(M, r, t) =
0.25M(r, t)[1 −M(r, t)], and 0 < α ≤ 1, 1 < β ≤ 2, t > 0, r = (x, y) ∈ Ω, Ω
is the finite rectangular region [0, 1]× [0, 1], and Ω̄ is R2 −Ω.

The solution profiles of (38) by the implicit numerical method, with spatial
and temporal steps hx = hy = 1/32, τ = 1/322 at time t = 32/322 with
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Fig. 1 A plot of numerical solutions of ST-FBTE using the implicit numerical method
(INM) with spatial and temporal steps hx = hy = 1/32, τ = 1/322 at time t = 32/322
with Kα = 1.0, tfinal = 1.0 for different α, β and Kβ . (a) α = 1.0, β = 2.0,Kβ = 1.0. (b)
α = 1.0, β = 2.0,Kβ = 2.0. (c) α = 0.8, β = 1.8,Kβ = 1.0. (d) α = 0.8, β = 1.8,Kβ = 2.0.

Kα = 1.0, tfinal = 1.0 for different α, β and Kβ are listed in Figure 1. From
Figure 1, it can be seen that the coefficient Kβ impacts on the solution profiles
of (38), whereby a larger value of Kβ produces more diffuse profiles.

In Figure 2, we illustrate the effect of the fractional order in space for this
problem, with spatial and temporal steps hx = hy = 1/32, τ = 1/322 at time
t = 32/322 with Kα = 1.0,Kβ = 1.0, tfinal = 1.0 for β fixed at 2 and α
varying. From Figure 2, it can be seen that as α is decreased the diffusion
profiles becomes more pronounced.

In Figure 3, we illustrate the effect of the fractional order in time for this
problem, with spatial and temporal steps hx = hy = 1/32, τ = 1/322 at
time t = 32/322 with Kα = 1.0,Kβ = 1.0, tfinal = 1.0 for α fixed at 1 and
β varying. From Figure 3, it can be seen that as β is reduced the diffusion
becomes more pronounced.

8 Conclusions

In this paper, a new effective implicit numerical method for solving the frac-
tional Bloch-Torrey equation in three-dimensions with a nonlinear source term
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Fig. 2 A plot of numerical solutions of ST-FBTE using the implicit numerical method
(INM) with spatial and temporal steps hx = hy = 1/32, τ = 1/322 at time t = 32/322 with
Kα = 1.0,Kβ = 1.0, tfinal = 1.0 for β fixed at 2. (a) α = 1.0. (b) α = 0.9. (c) α = 0.5. (d)
α = 0.2.

has been derived. We prove that the implicit numerical method is uniquely
solvable, unconditionally stable and convergent. In addition, compared with
first order spatial accuracy of convergence in [24], and the two-dimensional
model with a linear source term in [25], our new implicit numerical method
can obtain second order space accuracy, which is O(τ2−α + τ + h2x + h2y + h2z).
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