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In this paper, we introduce a new environmentally friendly silver electroplating bath, employing

5,5-dimethylhydantoin (DMH) and nicotinic acid (NA) as complexing agents, based on the

prediction of computational chemistry. An excellent silver electrodeposit with properties suitable

for application in electronics packaging was obtained from the newly developed silver

electroplating bath, and the electroplating bath is simple and stable. Moreover, the silver(I)-

complexes in this bath possessed good complex stability. As a consequence, mirror-bright silver

electrodeposits on copper substrates with excellent leveling capability, smooth and compact

morphologies, high purity and conductivity, as well as excellent welding property could be

realized by adopting this unique bath. Based on the performances of the plating bath and silver

deposit, the introduced silver plating bath is a promising candidate for silver electrodeposition

applied in microelectronics to replace the conventional cyanide silver electroplating baths.
1. Introduction

Silver-based materials are widely used in microelectronics
owing to their excellent physico-chemical properties, good
corrosion resistance, high bulk conductivity, excellent welding
performance and beautiful features.1–6 Successfully obtaining
compact, smooth, and adhesive silver deposits for electronics
remains an important technological goal. Ever since the rst
patent described in 1840, silver deposits have usually been
electrodeposited in cyanide baths, which offer the most
consistent deposit quality at the lowest cost.7–11 Unfortunately,
cyanide is one of the most toxic chemicals available, and
therefore its use carries an extremely high risk to human health
and to the environment.12 Furthermore, disposal of the
exhausted plating bath and wastewater treatment are becoming
increasingly difficult and expensive, rendering this approach
highly unattractive from an industrial perspective.13,14

In order to overcome these challenges, a number of cyanide-
free silver plating bath congurations have been investigated
over recent years. The most notable cyanide-free silver plating
rce and Environment, School of Chemical

te of Technology, Harbin, 150001, China.

18616; Tel: +86-451-86418616

ormation Technology, School of Chemical

St Lucia, Brisbane, QLD 4072, Australia

tion (ESI) available. See DOI:

40
bath involves a thiosulfate-based formulation, and has proven
to be the most successful approach so far among several
investigated inorganic complexes. Mirror-bright silver deposits
with low porosity and high anti-tarnish capabilities were
obtained, with the silver electrodeposits obtained from the
sodium thiosulfate solutions possessing noticeably smooth
surfaces.15–18 While thiosulfate systems have found to not only
be inherently safer and environmentally friendlier than cyanide
systems, they also provide better deposit thickness distributions
on complex-shaped objects. However, the thiosulfates were
found to be unstable due to the disproportionation of free
thiosulfate ions to generate colloidal sulphur. The resulting
colloidal sulphur may then signicantly compromise the anti-
tarnish capability, conductivity, or other important properties
of the silver deposits, leaving it impractical for commercial
purposes.

Therefore, in order to overcome these inherent limitations of
thiosulfate and to successfully develop cyanide-free silver elec-
troplating systems, alternative complexing agents, especially
organic compounds with excellent stability and environmental
friendliness, require investigation. A number of attempts have
been made in the past few years to develop cyanide-free silver
plating baths. During these attempts, the complexing agents for
silver electroplating were widely investigated owing to their
important role in the electroplating process. As a result, new
complexing agents for cyanide-free silver plating baths, such as
uracil,19 ammonia,20,21 thiourea,22 HEDTA,23 2-
This journal is © The Royal Society of Chemistry 2014
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hydroxypyridine,24,25 and ionic liquids12,26 were proposed.
However, except for a few successful cases, most of these baths
still suffer from problems of instability, sensitivity to tempera-
ture or light, and relatively high toxicity and cost, as well as low
deposit quality, including severe adhesion and inferior
morphologies. Consequently, more efforts need to be directed
toward this technology to nd a comparable and environmental
friendly alternative to cyanide baths.

However, researching new complexing agents through
experimentation is expensive, both in time and resources.
Therefore, time-saving techniques to choose or design better
complexing agents for silver electroplating are urgently needed.
Computational chemistry is an emerging area of research for
the modeling of small chemical and biological systems in order
to understand and predict their behaviors at the molecular
level.27–29 Quantum chemical calculations30–35 and molecular
dynamic (MD) simulations36–38 have become useful methods to
study many natural systems in pharmacology,39 chemistry,40–45

and biology.46,47 Moreover, the bonding interactions between
ions and complexing agents can be studied by computational
chemistry.48–51

In addition to the coordinating ability with metal ions in
solution, complexing agents can adsorb on metal surfaces, due
to their oxygen and nitrogen containing components. MD
simulation is a convenient way to study the interactions
between molecules and interfaces,52–55 and has been used to
simulate the adsorption behaviours of organic molecules,56,57

electroplating additives,58,59 and corrosion inhibitors60,61 on
metal surfaces.

In this work, 5,5-dimethylhydantoin (DMH) was selected as a
complexing agent for silver electroplating. Compared to those
reported complexing agents used for cyanide-free silver elec-
troplating baths, hydantoin,62 a heterocyclic structure organic
molecule with good solubility and stability in alkaline solution
in a large temperature range, and its derivatives act as more
stable complexing agents for silver(I)63 and other metal ions.64,65

Among a series of substituted hydantoins, DMH is the most
commercially available as a complexing agent for metal elec-
troplating at high current density ranges and high tempera-
tures.66 Despite this progress, no commercial process utilizing
this silver plating bath has yet been reported, due to the
disadvantage of the bath or the deposit performance.

In order to improve the performance of the DMH-based
silver electroplating bath, we tested auxiliary complexing agents
usually used for the DMH-based cyanide-free silver electro-
plating bath. Quantum chemical calculations were employed to
investigate the electronic properties and orbital information of
the studied complexing agents. The interactions between the
possible complexing agents and the metal surface were studied
by MD simulations. The performances of the silver deposit and
DMH-based silver electroplating bath were determined by
experiment. Based on these studies, a mirror-bright silver
deposit with excellent leveling capability, smooth and compact
morphologies, and high purity and conductivity, as well as
excellent welding properties could be obtained from the studied
bath without any additives.
This journal is © The Royal Society of Chemistry 2014
2. Experimental
2.1 Quantum chemical calculations and MD simulations

Quantum chemical calculations were performed by the DMol3

module in Materials Studio (from Accelrys Inc.). Some elec-
tronic properties and orbital information of the studied com-
plexing agents were calculated by DFT methods using the BLYP
exchange–correlation functional. 12 complexing agents with
oxygen and nitrogen containing heterocyclic structures or
oxygen and nitrogen containing chain organic compounds were
selected as potential complexing agents to be investigated.

MD simulations of the adsorption interactions between the
complexing agents and the copper and silver surfaces were
carried out in a simulation box with periodic boundary condi-
tions using Materials Studio. The box consisted of a silver or
copper surface (cleaved along the (111) plane, with a volume of
2.600 nm � 2.600 nm � 1.179 nm of Ag and 2.300 nm �
2.300 nm � 1.043 nm of Cu, respectively.), a liquid phase, and a
vacuum layer of 1 nm height. The liquid phase was water
molecules with a density of 1 g cm�3 and containing 3 com-
plexing agent molecules. The MD simulations were performed
at 328 K, utilizing a NVT ensemble and the COMPASS force
eld, with a time step of 1 fs and a simulation time of 200 ps.

The interaction energy between the metal surface and
organic molecules was calculated using eqn (1).

EInteraction ¼ ETotal � EMetal � EAgents (1)

where ETotal was the total energy of the copper or silver crystal
together with the adsorbed complexing agents and EMetal and
EAgents were the total energy of the copper or silver crystal and
free agents, respectively. The adsorption energy was the nega-
tive value of the interaction energy.
2.2 Measurements and apparatus

Silver electroplating experiments were conducted under galva-
nostatic conditions in a cell, employing a silver anode and a
copper substrate. All solutions in this work were prepared using
analytical grade reagents and deionized water. AgNO3 was
chosen as the source of silver ions, and a silver anode with a
distance of 5–15 cm to the working electrode, was used to make
up for the consumption of silver ions during the electrodepo-
sition. The silver plating bath was prepared by adding AgNO3

solution into a solution containing DMH, NA, and K2CO3, and
the pH value of the bath was adjusted to 10.0–14.0 with KOH
solution.

The electrochemical measurements were performed in a
three-electrode cell using a potentiostat/galvanostat (PAR-
STAT2273 Electrochemical Integrated Test System, Princeton
Applied Research) at 328 K. A glassy carbon electrode (GCE)
with a diameter of 3 mmwas employed as the working electrode
(WE). The counter electrode (CE) was a platinum plate with an
area of 1 cm2. A mercuric oxide electrode (Hg/HgO) was used as
the reference electrode (RE). The potential scan was initiated at
an open circuit potential from �1.30 V to 1.15 V, with a sweep
rate of 10 mV s�1 at 328 K.
RSC Adv., 2014, 4, 40930–40940 | 40931
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A gloss meter was employed to measure the glossiness of the
silver deposits. Field emission scanning electron microscopy
(FESEM, XL30S-FEG, FEI) was used to study the surface
morphologies of the silver deposits. An atomic force microscope
(AFM) was employed to study the surface roughness of the silver
deposits. The AFM analysis was carried out with a Dimension
Icon (Bruker), working in contact mode with silicon nitride
cantilevers. The micro-hardness of the deposit was measured by
a micro-hardness tester. The investigation of impurities in the
deposits was performed by X-ray photoelectron spectroscopy
(XPS). The XPS spectra were taken using a PHI 5700 ESCA
System (Physic Electronics, USA) operating at room tempera-
ture. The excitation source was Al Ka radiation (photoelectron
energy, 1486.6 eV), and the photoelectrons were detected with a
hemispherical analyzer. A contact resistance tester was present
to test the contact resistance of the silver deposits. The welding
property measurements were performed on an Ultrasonic
bonder (Ultrasonic Technology Co., Ltd).

3. Results and discussion
3.1 Quantum chemical calculations and MD simulations

The oxygen and nitrogen species in organic molecules ensure a
rm coordination with metal ions (Ag+), as well as adsorption
on metal surfaces (Cu or Ag). Twelve different possible com-
plexing agents forming silver(I)-complexes were studied, based
on their molecular structures.

Quantum chemical calculations based on DFT principles
were employed to study the electronic properties and orbital
information of each agent. According to the frontier molecular
orbital theory, the energy of the highest occupied molecular
orbital (HOMO) and of the lowest unoccupied molecular orbital
(LUMO) are oen associated with the electron donating ability
and electron accepting ability of molecules. Higher values of
EHOMO (energy of HOMO) and lower values of ELUMO (energy of
LUMO) indicate a tendency of a molecule to donate and accept
electrons, respectively.

Fig. 1 exhibits the distribution of the HOMO and electron
cloud densities of the studied complexing agents. The presence
of nitrogen and oxygen atoms gave signicant contributions to
the HOMO, expect in the case of HEDTA. This was due to the
electron donating properties of the nitrogen and oxygen atoms,
resulting in the ability to form silver(I)-complex coordinated
bonds.

The distribution of LUMO is displayed in Fig. 2. Molecules
(a)–(h) showed a similar localization of the LUMO and electron
cloud densities, indicating similar electronic properties and
electron accepting abilities. In addition to the localization of the
molecular orbitals, EHOMO and ELUMO, and their difference (DE)
are useful tools to characterize the electronic properties and
adsorption behaviors of each agent.

EHOMO and ELUMO, along with DE, are important molecular
electronic properties that determine the behavior and adsorp-
tion properties of various complexing agents. A schematic
depiction of these values based on the frontier molecular
orbitals is presented in Fig. 3. Structures (a), (e), (g), and (h) with
similar, relatively high EHOMO values of �5.912 eV, �5.922 eV,
40932 | RSC Adv., 2014, 4, 40930–40940
�5.892 eV, and �5.920 eV, respectively, are possibly good
complexing agents owing to their propensity to donate electrons
to Ag+ and to form coordinated molecular structures. The
difference between the frontier molecular orbitals of these
structures was mainly in ELUMO. This corresponds to varying DE
values, leading to different stabilities of the complexing agent
adsorption layers on the metal surface.67,68 With the smallest DE
calculated for structures (a), (e), (g), and (h), this suggests a
more effective adsorption of NA on the metal surfaces.

MD simulations were performed to study the adsorption
behaviors of all the studied complexing agents on Cu (111) and
Ag (111) surfaces, with the results from the DMH simulations
included in this paper and the remainder in the ESI† due to
space limitations. The adsorption behaviors of DMH on Cu
(111) and Ag (111) surfaces are shown in Fig. 4 and 5, respec-
tively. Fig. 4(a) and 5(a) show the initial conguration of the MD
simulation boxes. Fig. 4(b) and 5(b) show the nal equilibrium
conguration of the MD simulation boxes at 328 K, with a time
step of 1 fs and a simulation time of 200 ps. Fig. 4(c) and 5(c)
display the top view of the nal equilibrium conguration of the
simulation box. The interface absorption structures of DMH on
Cu and Ag surfaces are shown in Fig. 4(f) and 5(f), respectively.
Fig. 4(d), 5(d), 4(e), and 5(e) show the energy and temperature
uctuation curves of the MD simulations. These plots indicate
that the simulation systems were already at equilibrium by their
completion.

The adsorption energies and MD simulation boxes of all the
other studied complexing agents are summarized in Table 1
and Fig. S1–S22 (ESI†), respectively.

The main conclusions drawn from these simulations high-
light that structures (a), (b), (e), (f), (g), (h), (i), (k), and (l) could
adsorb on the metal surfaces with higher energies (with an
adsorption energy on Cu (111) greater than 250 kJ mol�1, and
greater than 190 kJ mol�1 on the Ag (111) surface). Moreover, as
shown in Fig. S1–S22 (ESI†), DMH, 2-hydroxypyridine, pyridine,
imidazole, NA, nicotinamide, succinimide, and uracil rings
were virtually parallel to the copper and silver surfaces, sug-
gesting effective adsorptions on the metal surfaces. The results
of the MD simulations showed that 2-hydroxypyridine, pyridine,
imidazole, NA, nicotinamide, succinimide, uracil, HEDTA, and
triethylenetetramine could adsorb on the copper and silver
surfaces strongly, leading to a higher inhibited effect for silver
electrodeposition on the copper and silver surfaces.

Based on the quantum chemical calculations and MD
simulations, with similar, relatively high EHOMO values and
effective adsorptions on the metal surfaces, 2-hydroxypyridine,
NA, and uracil could be used as auxiliary complexing agents for
the DMH-based cyanide-free silver electroplating bath, because
of their strong electron donating abilities and high adsorption
energies. Combined with its other advantages, such as low cost,
good solubility, and stability in alkaline solution in a large
temperature range, NA was selected as an auxiliary complexing
agent for the introduced DMH-based silver electroplating bath
in the present paper. Electrochemical measurements and silver
electroplating were carried out to further conrm these
predictions.
This journal is © The Royal Society of Chemistry 2014
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Fig. 1 Localization of the highest occupied molecular orbital (HOMO) of (a) DMH, (b) 2-hydroxypyridine, (c) pyridine, (d) imidazole, (e) NA, (f)
nicotinamide, (g) succinimide, (h) uracil, (i) HEDTA, (j) ethylenediamine, (k) triethanolamine, and (l) triethylenetetramine.

Fig. 2 Localization of the lowest unoccupied molecular orbital (LUMO) of (a) DMH, (b) 2-hydroxypyridine, (c) pyridine, (d) imidazole, (e) NA, (f)
nicotinamide, (g) succinimide, (h) uracil, (i) HEDTA, (j) ethylenediamine, (k) triethanolamine, and (l) triethylenetetramine.
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3.2 Stability of the plating bath

The stability of the employed silver plating bath, particularly in
the case of extreme temperature (high or low) conditions, is a
very important consideration for practical applications. For
these investigations, the plating bath was heated at 373 K for 15
This journal is © The Royal Society of Chemistry 2014
minutes, followed by rapid cooling back to room temperature,
in order to gauge the temperature stability. No changes to the
bath were detected, and the mirror-bright silver deposits could
still be obtained from the bath aer the aforementioned
thermal experiments. These observations indicate that the
RSC Adv., 2014, 4, 40930–40940 | 40933
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Fig. 3 Schematic diagrams of the frontier molecular orbitals of (a) DMH,
(b) 2-hydroxypyridine, (c) pyridine, (d) imidazole, (e) NA, (f) nicotinamide, (g)
succinimide, (h) uracil, (i) HEDTA, (j) ethylenediamine, (k) triethanolamine,
and (l) triethylenetetramine, and the calculated E (eV).
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silver plating bath utilized possessed excellent thermal stability
in the investigated range. Furthermore, aer 12 months of bath
storage, no precipitates or bath discoloration were visually
observed, indicating good stability over this long time period.

In order to further investigate the stability of the bath, cyclic
voltammetry was used to study the electrochemical behavior
from inserting a GCE into the bath. The potential scan of the
cyclic voltammetry started at an open circuit potential, with a
sweep rate of 10 mV s�1 from�1.30 V to 1.15 V. Fig. 6 shows the
cyclic voltammograms curves obtained aer different electro-
deposition times or aer storage for different durations of time.
As seen in this gure, there was no signicant change in the
reduction and oxidation peaks of the silver plating baths aer
different electrodeposition times, or aer storage for 10 days,
indicating that the silver plating bath possesses good electro-
chemical stability. Moreover, compared with the cyclic voltam-
mograms of AgNO3 solution displayed in Fig. S23 (ESI†), the
silver deposit potential negatively shied in the presence of the
complexing agents. This illustrates that the silver complexes in
the introduced bath possessed high complex stability and that
DMH, as well as NA, can signicantly inhibit the reduction of
silver.

In order to further conrm the above conclusions, a
displacement reaction was employed. Poorly adhering silver
deposits on copper substrates usually result from a displace-
ment reaction occurring between copper and silver(I)-complexes
inside the electrolyte before electroplating. Commonly, a thin
silver deposit is strike-plated before electrodeposition to over-
come this problem; however, if the displacement reaction in the
silver plating bath can be avoided, the strike-plating process
could become unnecessary. In this experiment, a copper
substrate with a removed surface oxide layer was immersed in
the silver plating bath. No difference was observed on the
copper surface aer immersion for 10–15 minutes. Thus, no
strike-plating process was necessary to obtain good adherent
silver deposits on the copper substrate using the introduced
40934 | RSC Adv., 2014, 4, 40930–40940
silver plating bath containing DMH and NA as complexing
agents.

The current efficiency of the plating bath, tested by a copper
coulometer, was nearly 100% in the working current density
range. Silver electrodeposition or anodic dissolution without
side reactions can also signicantly increase the stability of the
bath. In consideration of the excellent performance, along with
the high stability in a large temperature range, and aer long
storage times, and in terms of electrodeposition efficiency, the
bath possesses practical signicance in various elds of
application.
3.3 Function of silver electroplating

Based on the quantum chemical calculations and MD simula-
tions, DMH and NA were chosen as the complexing agents for
the introduced silver plating bath. The optimal technological
parameters, such as current density, temperature, and time,
were determined by the deposit appearance. Parameters with
which mirror-bright and smooth silver deposits were obtained
were used for the silver electrodeposition in present work.

Aer the silver plating onto copper substrates was carried
out, mirror-bright silver deposits were obtained from plating
baths containing DMH and NA complexing agents. The glossi-
ness of the silver deposits obtained from the plating bath and
from the conventional cyanide silver electroplating bath was
compared, as listed in Table 2. The glossiness measurements
were repeated ve times for every deposit.

The glossiness of the silver deposits obtained from the
introduced bath was very close to those of the cyanide bath
silver deposits. This indicates that the introduced bath could be
a promising candidate for electronic packaging, such as for
LEDs, which require a glossiness of silver deposits of around
1.0–2.0.

The surface morphology is also a very important consider-
ation for electronic packaging applications. Field emission
scanning electron microscopy (FESEM) and atomic force
microscopy (AFM) techniques were employed to characterize
the surface morphology of the silver deposits. Fig. 7 displays the
SEM top view images of the silver deposits obtained from the
silver electroplating bath introduced in this work. It can be
clearly seen that the silver deposit was smooth and that the
corresponding size of grains was less than 100 nm (Fig. 7(b)).
These observations are most likely due to using a combination
of DMH and NA as the composite complexing agents, which
caused an increase in the cathodic polarization and which
resulted in smaller grains in the silver deposit. As observed in
the cyclic voltammograms displayed in Fig. 6, the onset of the
Ag+ reduction reaction was at �0.80 V and the deposition peak
was at �0.95 V, with a large polarization of silver, suggesting
that DMH and NA can signicantly inhibit the reduction of
silver, and thereby tiny silver particles can be obtained.

AFM three-dimensional height images of the copper
substrate with and without silver deposits are presented in
Fig. 8(a) and (b), respectively. The copper substrate clearly has
trenches on the surface (Fig. 8(a)), while the silver deposit
surface (Fig. 8(b)) shows a relatively smoother morphology. The
This journal is © The Royal Society of Chemistry 2014
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Fig. 4 (a) Initial configuration of the simulation box (DMH visualized by balls and sticks, water molecule visualized by lines). (b) Final equilibrium
configuration of the MD simulation box (adsorption behaviors of DMH on the Cu surface). (c) Top view of the final equilibrium configuration of
the simulation box. (d) Energy fluctuation curves of the MD simulation. (e) Temperature fluctuation curve of the MD simulation. (f) Interface
adsorption structure of DMH on the Cu surface.
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trenches almost disappear aer the copper surface was elec-
trodeposited with silver. The Ra, Rq, and Rmax of the copper
surface were 6.64 nm, 8.34 nm and 55.0 nm, respectively. In
contrast, the Ra, Rq and Rmax of the silver deposit surface were
4.11 nm, 3.26 nm and 29.2 nm, respectively. It can therefore be
concluded from the AFM measurements that the introduced
bath for silver plating possessed an excellent levelling capacity.
3.4 Micro-hardness of silver deposit

The micro-hardness (HV) inuences the service life of the silver
deposits and is an important property for its application in
microelectronics, aerospace, automotive and jewelry industries.
Fig. 9 displays a comparison of the micro-hardness of silver
deposits obtained from the introduced bath in this work, a
conventional cyanide bath and a conventional hard silver elec-
troplating bath.
This journal is © The Royal Society of Chemistry 2014
The micro-hardness of the silver deposit obtained from the
introduced bath without any additives is 68 (HV), close to
70 (HV) for a cyanide bath silver deposit and lower than 120
(HV) for a hard silver deposit. Therefore, the silver deposit
obtained from the introduced bath could be processed and
welded for electronic packaging applications in a fashion
similar to cyanide-based silver deposits. In consideration of the
excellent performances in terms of processing and welding, the
introduced bath in this work could be applied in microelec-
tronics to replace the conventional cyanide silver electroplating
bath.
3.5 Purity of silver deposit

Impurities such as complexing agents or additives interfused in
the deposits are common in metal electrodeposition and seri-
ously affect the properties and quality of the resulting deposits.
For applications in microelectronics, aerospace, automotive,
RSC Adv., 2014, 4, 40930–40940 | 40935
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Fig. 5 (a) Initial configuration of the simulation box (DMH visualized by balls and sticks, water molecule visualized by lines). (b) Final equilibrium
configuration of theMD simulation box (adsorption behaviors of DMHon the Ag surface). (c) Top view of the final equilibrium configuration of the
simulation box. (d) Energy fluctuation curves of the MD simulation. (e) Temperature fluctuation curve of the MD simulation. (f) Interface
adsorption structure of DMH on the Ag surface.

Table 1 Adsorption energies of all the studied complexing agents on
Cu (111) and Ag (111) surface (unit of kJ mol�1)

Cu (111) Ag (111)

a DMH 280.853 228.083
b 2-Hydroxypyridine 262.090 197.080
c Pyridine 234.354 209.943
d Imidazole 196.565 155.168
e NA 341.474 259.066
f Nicotinamide 357.929 267.830
g Succinimide 294.902 224.983
h Uracil 344.961 257.226
i HEDTA 383.468 303.342
j Ethylenediamine 188.086 127.467
k Triethanolamine 294.839 249.504
l Triethylenetetramine 365.863 216.507

40936 | RSC Adv., 2014, 4, 40930–40940
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and jewelry industries, the anti-tarnish abilities and electrical
properties of the silver deposits are severely compromised by
impurities. XPS analyses were carried out to examine the
composition of the atoms in the silver deposit.

An XPS survey scan was taken over a wide binding energy
region from 1.200–1350.000 eV, which indicated the presence of
silver, carbon, nitrogen, oxygen, and sulphur species. The
binding energy of the C 1s peak at 284.6 eV was used as an
internal standard.

Fig. 10 displays the composition of the original surface and a
10.0 nm depth of silver deposit obtained from the DMH and NA
silver plating bath. The concentration of atoms at the original
surface and at a 10.0 nm depth of silver deposit measured by
XPS are shown in Table 3.

Ag, C, N, and O were present on the surface with atomic
contents of 54.06 at% (Ag 3d), 34.27 at% (C 1s), 7.74 at% (N 1s),
and 3.93 at% (O 1s), but no signals for S 2p, respectively. No
This journal is © The Royal Society of Chemistry 2014
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Fig. 6 Cyclic voltammograms of the introduced silver plating bath (a)
40 A h L�1 electrodeposition in 45 days, (b) 15 A h L�1 electrodeposition
in 20 days, (c) 10 A h L�1 electrodeposition in 10 days, (d) new prepared
bath, (e) stored 10 days without electrodeposition. (A h L�1, ampere-
hour per liter silver plating bath, indicates the power consumption or
the workload of the silver plating bath).

Table 2 Glossiness of silver deposits obtained from different silver
electroplating baths

Maximum Minimum Average Range

Introduced bath 1.77 1.52 1.690 0.25
Cyanide bath 1.78 1.67 1.724 0.11

Fig. 7 SEM images of the top views of silver deposits obtained from
the silver electroplating bath introduced in this work, (a) 5000 times
magnification and (b) 100 000 times magnification.

Fig. 8 AFM three-dimensional height images of (a) the polished
copper surface and (b) the silver deposit surface.

Fig. 9 Micro-hardness of silver deposits obtained from the introduced
bath in this work, the conventional cyanide bath and the conventional
hard silver electroplating bath.

Fig. 10 XPS spectra of the original surface and a 10.0 nm depth of
silver deposits. (a) XPS spectra of silver, (b) XPS spectra of carbon, (c)
XPS spectra of nitrogen, (d) XPS spectra of oxygen, and (e) XPS spectra
of sulfur.

This journal is © The Royal Society of Chemistry 2014
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signals for O and S could be detected at a 10.0 nm depth of silver
deposit at the sensitivity limit of XPS, indicating that DMH and
NA only adsorbed on the surface of silver, while the content of
DMH and NA in the bulk silver was very low and the purity of the
silver deposit was very high.
RSC Adv., 2014, 4, 40930–40940 | 40937
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Table 3 Concentration of atoms at the original surface and at a
10.0 nm depth of silver deposit measured by XPS (units of atom%)

Ag 3d (%) C 1s (%) O 1s (%) N 1s (%) S 2p (%)

No etching 54.06 34.27 3.93 7.74 0
Etching 2 min 74.87 25.13 0 0 0
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The surface adsorption of DMH or NA did not inuence the
conductivity of the bulk silver, since the surface adsorption
layer was only a single molecular layer. Thus, the silver deposit
obtained from the introduced bath could be used in micro-
electronics, aerospace, automotive, and jewelry applications,
due to its high purity and electrical properties.
Fig. 11 Scheme of the welding property measurement.

Table 5 Welding properties of silver deposits obtained from different
silver electroplating baths (units of gf)

Maximum Minimum Average Variance

Introduced bath 6.80 6.30 6.54 0.50
Cyanide bath 6.90 6.20 6.54 0.11
3.6 Conductivity of silver deposit

The conductivity of the silver deposit is a key function for the
application in microelectronics. The contact resistance of silver
deposits obtained from the introduced bath and from the
conventional cyanide silver electroplating bath was studied with
the same technique. The process was repeated up to ve times
for every deposit, with the results of the contact resistance
measurements displayed in Table 4.

As shown in Table 4, the contact resistance of the silver
deposit obtained from the introduced bath was smaller than
that of the cyanide deposit. For application with electronics
packaging, silver deposits with smaller contact resistance could
signicantly increase the service life of microelectronics. This
indicated that the cyanide silver electroplating bath could be
improved for application in microelectronics by replacing
cyanide with the suggested bath.
3.7 Welding properties of silver deposit

To be applied in electronic packaging, the silver deposit should
possess excellent welding properties with solder and connec-
tors. The welding properties of prepared silver deposits were
measured by a wire pull technique, as depicted in Fig. 11.

A gold wire with d ¼ 25 mm was used for the welding
measurement of the silver deposit, with a pulling force of 80 gf.
The process was repeated up to ve times for every deposit, with
Table 5 showing the measurement results of the silver deposit
welding properties. The welding properties of the silver deposits
obtained from the introduced bath were close to that of the
cyanide bath silver deposit used in microelectronics for more
than 100 years. In the welding property measurements, no
break occurred in the welded joints (1st point and 2nd point),
indicating that the introduced silver deposit can be used in
Table 4 Contact resistances of silver deposits obtained from different s

10 gf 20 gf 30 gf 40 gf

Introduced deposit 8.2 6.2 5.0 4.6
Cyanide deposit 9.0 7.2 6.4 5.4

40938 | RSC Adv., 2014, 4, 40930–40940
microelectronics with high reliability. This shows that the
introduced silver deposit, with an excellent welding property,
can be used for electronic packaging to replace cyanide silver
electroplating baths.
4. Conclusions

In summary, we report a novel method for predicting the
behavior of complexing agents in mirror-bright silver electro-
plating processes, using quantum chemical calculations and
molecular dynamic simulations. The results of the quantum
chemical calculations suggest that DMH and NA could be used
as potential complexing agents for silver electroplating, based
on their electronic properties and orbital information. The
results of the MD simulations showed that DMH and NA could
adsorb onto the copper and silver surfaces strongly, leading to a
higher inhibited effect for silver electrodeposition on the copper
and silver surfaces.
ilver electroplating baths (units of 10�4 U)

50 gf 60 gf 70 gf 80 gf 90 gf 100 gf

4.2 3.8 3.4 3.2 3.0 3.0
5.0 4.8 4.4 4.2 4.2 4.0

This journal is © The Royal Society of Chemistry 2014
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Silver(I)-complexes in the proposed bath possessed good
complex stability, with no displacement reactions occurring
between the silver plating bath and the copper, indicating a
promising, efficient procedure that can omit the strike-plating
process. A mirror-bright silver deposit with excellent leveling
capability, smooth and compact morphologies, and high purity
and conductivity, as well as excellent welding properties could
be obtained from the introduced bath without any additives.

The plating bath, containing DMH and NA as complexing
agents for silver electrodeposition, is innovative, simple, stable
and environmentally friendly with low toxicity and an ease of
disposal. Furthermore, the excellent properties of the resulting
silver deposits render this plating bath arrangement as a highly
promising replacement for the conventional cyanide silver
electroplating baths commonly used in the microelectronics
industry.
Acknowledgements

Financial support from the State Key Laboratory of UrbanWater
Resource and Environment (Harbin Institute of Technology)
(2012DX03) for this work is gratefully acknowledged.
References

1 Z. S. Pereira and E. Z. da Silva, J. Phys. Chem. C, 2011, 115,
22870–22876.

2 R. Zhang, W. Lin, K. Lawrence and C. P. Wong, Int. J. Adhes.
Adhes., 2010, 30, 403–407.

3 W. Zhao, Y. Liu, J. Liu, P. Chen, I. W. Chen, F. Huang and
J. Lin, J. Mater. Chem. A, 2013, 1, 7942–7948.

4 R. Zhang, W. Lin, K. S. Moon and C. P. Wong, ACS Appl.
Mater. Interfaces, 2010, 2, 2637–2645.

5 P. Peng, A. Hu, H. Huang, A. P. Gerlich, B. Zhao and
Y. N. Zhou, J. Mater. Chem., 2012, 22, 12997–13001.

6 J. Wang, Z. Chen, Y. Hu, X. Jiang, D. Chen and W. Zhang, J.
Mater. Chem. C, 2013, 1, 230–233.

7 K. Márquez, G. Staikov and J. W. Schultze, Electrochim. Acta,
2003, 48, 875–882.

8 B. C. Baker, M. Freeman, B. Melnick, D. Wheeler, D. Josell
and T. P. Moffat, J. Electrochem. Soc., 2003, 150, C61–C66.

9 B. Bozzini, L. D'Urzo, C. Mele and V. Romanello, J. Phys.
Chem. C, 2008, 112, 6352–6358.

10 S. A. Hossain and M. Saitou, J. Appl. Electrochem., 2008, 38,
1653–1657.
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