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Abstract

In this article we generalize the aggregation theory- in efficiency and productivity anal-
ysis by deriving solutions to the problem of aggregation of individual scale efficiency
measures, primal and dual, into aggregate primal and dual scale efficiency measures
of a group (e.g., industry). The new aggregation result is coherent with aggregation
framework and solutions that were earlier derived for other related efficiency measures
and can be used in practice for estimation of scale efficiency of an industry or other
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1 Introduction

Analysis of economies of scale has been one of the fundamental subjects in economics; op-
erations research and production management, both in theory and especially in practice.
Indeed, the issue of attaining optimal scale of operations frequently appears among priority
questions on management agendas of various types of companies, whether private or public.
In this article we focus on the scale efficiency, which combines both the motion of optimal
scale and the notion of (relative) production efficiency. Our particular interest is in how to
appropriately measure the scale efficiency of a group—an industry consisting of firms, a firm
consisting of plants, a union consisting of countries, etc.

For several decades, many studies in various economics and business literature challenged
the issue of proper measurement of scale economies for various contexts and for various
estimators. These studies include the seminal works-of Hanoch (1975), Panzar and Willig
(1977), Fersund and Hjalmarsson (1979), Banker (1984), Banker et al (1984), Fare and
Grosskopf (1985), Fire, Grosskopf and Lovell (1986), Banker and Thrall (1992), Forsund
(1996), Golany and Yu (1997), as well as more recent works of Forsund and Hjalmarsson
(2004), Krivonozhko et al. (2004), Hadjicostas and Soteriou (2006, 2010), Podinovski et al.
(2009), Zelenyuk (2013a,b,c), Peyrache (2013), to mention just a few.

In previous studies, researchers primarily focused on the measurement of scale economies
for an individual or disaggregate decision making unit (DMU). In the present work we will
focus on the issue of how to appropriately aggregate such individual scale efficiency measures,
or their estimates/scores obtained from these measures for individual DMUs, into aggregate
measures (or aggregate scores) of scale efficiency of a group. Indeed, after obtaining many
individual scale efficiency scores, researchers may truly need a proper way to summarize
these many scores into one or few numbers to present to their audience concisely. Clearly,
one could simply use a sample average of individual estimates—but which one: the arithmetic
or_the geometric? More importantly, a problem with a sample average, whether arithmetic
or geometric, is that it ignores a relative weight of each DMU in the aggregation. On the
other hand, while a weighted average can account for a relative weight of each DMU, a
critical question arises along the use of a weighted average: Which set of weights should be
used? Indeed, conclusions and related policy implications may heavily depend on the weights
chosen for the aggregation. Therefore, our primary focus is on deriving the weights for the
aggregation of scale efficiency measures, which has not been done in the literature so far.

Studies on the aggregation problem in efficiency analysis go back to at least the seminal
work of Farrell (1957), who coined the term structural efficiency of an industry. This notion

was then criticized and elaborated by Forsund and Hjalmarsson (1979), who introduced the



notion of efficiency of an average unit, and by Li and Ng (1995) who synthesized these
latter works, considering them in the context of aggregation weights based on shadow prices.
(See also a related discussion in Ylvinger (2000).) On the pure theoretical front, intheir
seminal work, Blackorby and Russell (1999) unveiled several impossibility theorems for a
general aggregation problem of efficiency measures. One important implication of their
work was that any positive result on aggregation in efficiency measurement must involve
additional assumptions. This route was taken by Fére and Zelenyuk (2003) who, upon
accepting certain assumptions on aggregate technology, optimization behavior and prices,
and applying a revenue analogue of the fundamental theorem from Koopmans (1957), derived
a solution to the aggregation problem for the output oriented Farrell-type technical efficiency
measures. Similar approach was later used for deriving various aggregation results, such as
aggregation of input oriented technical efficiency measures (Fare et al., 2004), aggregation
of productivity indexes (Zelenyuk, 2006), aggregation within and between the sub-groups
(Simar and Zelenyuk, 2007), aggregation of economic growth rates (Zelenyuk, 2011), but
these works do not answer how the commonly used scale efficiency measures should be
aggregated.

In the present work, we generalize the existing approach of aggregation of efficiency
measures to the context of aggregation of scale efficiency measures, such that it is coherent
with and encompass previous aggregation results for the related efficiency measures. This is a
new theoretical result thatcan berelatively easily applied in practice for obtaining aggregate
scale efficiency measures from suitable estimates of the individual scale efficiency scores.

The paper is structured as following: Section 2 briefly outlines the theory of measuring
scale efficiency on individual level. Section 3 briefly outlines useful relationships between
various efficiency measures that will be used in derivations of solutions to the aggregation
problem.Section 4 proposes a solution to the aggregation problem from the perspective
of mathematical (functional equations) approach. Section 5 outlines economic approach to

solve the aggregation problem. Section 6 presents some special cases and Section 7 concludes.

2 Characterization of Individual Efficiencies

To keep our context general yet as simple as possible, let us consider a group of n decision
making units (plants or firms or countries, etc.), hereafter DMUs, indexed by k = 1,2,... n.
Our main focus in the paper will be on aggregate efficiencies—measures that would represent
various types of efficiency of a group of DMUs (e.g., a firm consisting of plants, an industry
consisting of firms, etc.). We also want such aggregate measures of a group to be related

or constructed from the individual efficiency measures obtained for each DMU in such a



group. Following somewhat standard notation for defining individual efficiency measures, let
ab = (af, ..., 2%) € RY be a vector of N inputs that a DMU k uses to produce a vector of
M outputs, denoted by y* = (yf,...,yk,) € RY. Furthermore, we assume that technology
of a DMU k € {1,2,...,n} can be characterized by the technology set denoted by T* and

defined, in general terms, as
TF = {(:p,y) € Rf Rf : DMU k can produce y from x} Y (2.1)

Equivalently, technology can be characterized via the output correspondence P : RY — 28Y
that assigns to each input vector z € Rf a subset of all output/ vectors y € ]Rf that can be

produced with this particular z, and for a DMU k € {1,2,...,n} it is formally defined as

Piz)={yeRY : (z,y)el*}, x € RY. (2.2)

We assume that technology set satisfies standard regularity conditions of production theory
(see Fare and Primont (1995)). To involve duality results, we also assume that all output
sets, P¥(z), are convex for all € RY; &k € {1,2,...,n}. This is a common assumption
in economics, which is coherent with the principle of decreasing marginal rate of technical
transformation regarding the substitution between outputs that is commonly assumed in
microeconomics theory. Note; however, that for our general developments we do not assume
convexity of T%, although making such assumption is also possible (as is sometimes done in
practical estimations), yet it would impose additional restrictions and so we stay free from
it here.!

Using these characterizations of technologies, we will focus on the output orientation in
efficiency measurement, particularly focusing on the following Farrell-type or radial output

oriented measure of technical (in)efficiency, formally defined for a DMU k € {1,2,...,n} as
TE*(z,y) =sup{0 € Ry, : OyeP*(2)}, (2,y) € T". (2.3)

Incidentally, note that for any (z,y) € T*, we have TE¥(x,y) > 1 and we will focus only
on the practical case when TE*(x,y) < co. Thus, 1/TE*(x,y) € (0,1], i.e., the reciprocal
of (2.3) gives a score between 0 and 1, with 1 standing for full or 100% technical efficiency

level, output oriented.?

'Here, for the sake of space, we will focus on output orientation only, while the input orientation case
can be derived in similar manner (in which case, instead of convexity of the output sets, one would need to
assume convexity of the input requirement sets, defined as L*(y*) = {ac € Rj\_’ : (m,y)GT’“} , YE Rf).

2Note there appears to be some confusion in the literature about this measure. Some authors use the
output oriented Farrell technical efficiency measure defined as a reciprocal of (2.3), which in some cases might
be preferred as it immediately has a convenient scale between 0 and 1. While the derivations below can be



Originally, Farrell (1957) focused on (an input analogue of) this measure for the context
of a particular case of activity analysis model. Later, in their seminal paper, Charnes. et
al (1978) resurrected Farrell’s approach and unveiled interesting dual characterization of his
efficiency measure, with shadow price and shadow revenue-cost ratio interpretations, sparking
a new area in operations research and econometrics and coining it as data envelopment
analysis (DEA). While the DEA would be a natural estimator of (2.3), other estimators,
such as regression-based methods, including stochastic frontier analysis (SFA), or a synthesis
of them, such as stochastic-DEA method (e.g., see Simar and Zelenyuk, 2011) can work for
our context as well. Therefore, we will consider our theoretical developments for a general
case, regardless of what estimator is to be used for it. Also note that, besides not requiring
convexity of T, unlike in the commonly assumed DEA context, we also allow for each DMU
k€ {1,2,...,n} to have its own unique technology (with possibility to be inefficient w.r.t.
it), for the sake of generality. Clearly, assuming a common technology (as is often done in
practice) would be a special case, and we briefly return to it in Section 6.

We will also use a dual characterization of the output correspondence and of efficiency
measures—the revenue function, which for a DMU k € {1,2,...,n} with an input allocation

z € RY is defined as
RF(z,p) =max{py : y€ P"(x)}, zeRY, peRY, (2.4)
y

where p = (p1, ..., pm) € Rf is the row-vector of prices corresponding to the (column) output
vector y and here we will focus only on the practical case when RE*(z,p) # 0.

To achieve our aggregation result, throughout this work we will focus on the output price
vector p that'is-the same across all DMUs, which one could think of as a benchmark or a
reference price vector selected for the purpose of aggregation. For example, if we consider a
microeconomics context, then p could be taken to be a vector of equilibrium prices at the
output markets. Alternatively, p can also be chosen to be the vector of shadow prices for the
outputs for the considered group of firms (e.g., see Li and Ng (1995) for a motivation), etc.
The differences in prices that one may face in practice can then be viewed as a variation or
noise around these benchmark (equilibrium or shadow or other selected common) prices.?
Besides serving as an alternative (dual) complete characterization of technology of a

DMU, due to duality theory in economics, the revenue function (2.4) also serves as the dual

written with this definition as well, we used definition (2.3) because it is more convenient for our derivations
that follow, and may help avoiding confusions because previous works on aggregation of efficiency we refer
to also used (2.3). To avoid confusions, we also refer to (2.3) as ‘Farrell-type measure’ rather than ‘Farrell
measure’. We thank anonymous referee for inspiring this comment.

3See Kuosmanen, Cherchye and Sipildinen (2006) and Zelenyuk (2006, 2011) for a more extensive discus-
sion about this assumption.



to the Farrell’s output oriented technical efficiency measure (2.3), given regularity conditions,
convexity of P¥(z) and strictly positive output prices, and so it is often used to define the
dual efficiency measures. Specifically, for a given DMU k € {1,2,...,n} with a combination
(x,y,p), the revenue (in)efficiency measure that we will use is defined as the ratio of the
maximal revenue implied for (z,p) to the actual revenue that the DMU £ incurred for this
same combination (z,p), i.e.,

Rk
REk(xa yap) = M

, for py # 0 (2.5)
Incidentally, note that for any (z,y) € T* and p € RY, we have 1/RE*(z,y,p) € (0,1], i.e.,
this measure of efficiency also gives a score between 0 and 1, with 1 standing for full or 100%
revenue efficiency level.

Now, to define the scale efficiency measures, we will use an auxiliary, CRS-hypothetical
technology defined, for each DMU k € {1,2,...,n}; as

TF = {6(z,y) : (@,y)€T*, V6 >0}, (2.6)

i.e., T* is the set generated from T* as the conical closure of T%. Intuitively, T% can be
understood as the smallest CRS technology set that includes the actual technology set T*
such that the upper boundary or technological frontier of T* is just tangent with that of 7%
(at least at one point) and these tangent points are called the best possible scale allocations
of (z,y).* For some technologies, such best scale allocations may be not unique as well as
there might be uncountably infinite number of them. Also, it must be clear that, if an actual
technology exhibits CRS (i.e., T = §T*,¥d > 0), then (and only then), by construction, we
have TF = T*. This type of measurement is coherent with and frequently used in the DEA
approach—in a sense it is just another, more general way to write what is usually done in DEA,
so-that the generalization allows for other methods to be used (e.g., SFA, stochastic-DEA,
etc.).

Now, let us define the CRS-hypothetical output correspondence, P* : Rf — 2BY that
assigns to each input vector z € Rf the subset of all output vectors y € R that can be
produced with this particular z if technology was given by (2.6). Specifically, for a DMU
ke {1,2,...,n}, it is formally defined similarly to how we defined (2.2), as

Pra)={yeRY : (z,y) € T*}, zeR}. (2.7)

4 Also see Frisch (1965) for discussion of the concept of technically optimal scale points.



So, by construction, Pk(x) is an equivalent characterization of the CRS-hypothetical tech-

nology set 7%, in the sense that, for all k € {1,2,...,n} we have

y € PMz), 2 € RY = (2,y) € T". (2.8)

Furthermore, the output oriented technical efficiency measure on the CRS-hypothetical tech-
nology for an allocation (x,y) € T* for DMU k € {1,2,...,n} is given by

TFk(x7y) =max{AeR., 1y € P¥a)}, (z,y) €T (2.9)

Note that for any (z,y) € T* we have TFk(x,y) > 1 and for technical purposes, to make
the measurement of scale efficiency possible, we also focus on the case when TE’k(:c, y) <
oo, Vk € {1,2,...,n}. Asaresult we have 1/TEk(x, y) € (0,1], i.e., this measure of efficiency
gives a score between 0 and 1, with 1 standing for 100% technical efficiency level (output
oriented) but w.r.t. the CRS-hypothetical technology rather than the original one.

Similarly, the revenue function with respect to the CRS-hypothetical technology for a
DMU k € {1,2,...,n} would be given by

RF(z,p) = max{py : y€ P"(x)}, zeRY, peRY, (2.10)
Yy

while the associated revenue efficiency w.r.t. the CRS-hypothetical technology for a DMU
ke {1,2,...,n} facingallocation (z,y) and output prices p would be given by

k
m, for py # 0. (2.11)
by

.k
RE(x,y,p) =
As it is for other efficiency measures defined above, for any (z,y) € T* and p € R}, we have
1/RVEk(:C,y,p) € (0,1], i.e., the reciprocal of (2.11) gives a score between 0 and 1, with 1
standing for full or 100% revenue efficiency level w.r.t. the CRS-hypothetical technology.
Given (2.3) and (2.9) as well as (2.5) and (2.11), we can obtain primal and dual measures
of scale efficiency. In particular, the primal (or technical or technology-based) scale efficiency
measure for a DMU k € {1,2,...,n} for an allocation (z,y) € T" is defined as
TE" (2,y)
TSE* =1 2.12
Because T% C T*, for any (z,y) € T* we have TFk(:E, y) > TE*(z,y), and therefore
1/TSE*(z,y) € (0,1], Vk € {1,2,...,n}, i.e., the reciprocal of this measure of efficiency

gives a score between 0 and 1, with 1 standing for 100% primal scale efficiency level.



Similarly, the dual (or revenue based) scale efficiency measure fora DMU k € {1,2,...,n}
with an input level 2 and output prices p, with RE*(x,p) # 0, would be
RE'(2,y,p) _ R*(x.p)

p y
RSE*(z,p) = REF ey )~ Bap) (z,y) €TF, pe RY,. (2.13)

Because T% C T* we have RF(x,p) > RF(x,p) and therefore 1/RSE*(z,p) €(0,1], Vk €
{1,2,...,n}, i.e., the reciprocal of this measure of efficiency also gives a score between 0
and 1, with 1 standing for 100% revenue-based scale efficiency level. Note that RSE*(z, p)
is independent from the output levels, which happens due to optimization behavior over
outputs involved in (2.4) and (2.10) and due to benchmarking with respect to the same
actual revenue py.

Our goal now is to find a proper way to aggregate the scores yielded by these individual
scale efficiency measures, which we will derive with a help of important relationships and

decompositions of the efficiency measures that we outline in the next section.

3 Key Decompositions of Individual Efficiency

In our further derivations we will utilize the following well-known decomposition of individual

revenue efficiency measure, that hold for any k € {1,2,... n},

RE*(x,y,p) = TE*(x,y) x AE*(z,y,p), Y(z,y) € T", Vp € Rﬁr (3.1)

for the actual technology and, analogously for the CRS-hypothetical technology,

RE"(x,y,p) = TE"(1,y) x AE"(z,y,p), V(z,y) € T*, Vpe RM, (3.2)

where AE®(x,y,p) and AVEk(m, y,p) are so-called allocative efficiency measures (output ori-
ented), measuring inefficiency due to non-optimal (w.r.t. revenue optimization) allocation of
outputs given p (see Fire and Primont (1995) for more details).

Because V(x,y) € T* we have RVEk(m,y,p) > TE*(x,y) we have 1/AVEk(x,y,p) €
(0,1], Yk € {1,2,...,n}, i.e., the reciprocal of this measure of efficiency also gives a score
between 0 and 1, with 1 standing for full or 100% of output oriented allocative efficiency
level, but now w.r.t. the CRS-hypothetical technology and prices p.

Furthermore, note that we can also decompose RVEk(x,y, p) into revenue efficiency and

revenue based scale efficiency, as

-k
RE (z,y,p) = RE"(z,y,p) x RSE*(z,y,p), (x,y) € T", pe RY,. (3.3)



Moreover, for any DMU k € {1,2,...,n}, we can also decompose the individual revenue-

based scale efficiency measure, RSE*(z,y, p), into technical and allocative parts, as
RSE*(x,y,p) = TSE*(x,y) x ASE"(z,y,p), V(x,y) € T" Vpe RY,. (3.4)
where the latter component of (3.4) is given by

-k
ASE*(z,y,p) = %, V(z,y) € T",Vp € RY, (3.5)
and we will refer to (3.5) as output oriented allocative scale (in)efficiency measure. Note,
however, that unlike for revenue and technical efficiency measures, we cannot guarantee
that AEk(f, y,p) > AE*(z,y,p) or vice verse, and so one cannot guarantee in general that
1/ASE*(z,y,p) is within (0, 1].
Combining the above results, we get the following decomposition of the CRS-hypothetical

revenue efficiency measure on the individual or disaggregate level
RE"(2,y.p) = TE"(x,y) x AB(2.y,p) x TSE*(z,y) x ASE*(z,y,p).  (3.6)

and it holds for any (z,y) € T%; p € R}, and all DMUs k € {1,2,...,n}.

In words, (3.7) decomposes the CRS-hypothetical-based revenue efficiency measure of
a DMU Fk into four components: (i) the output oriented technical efficiency measure, (ii)
the output oriented allocative efficiency measure, (iii) the output oriented technical scale
efficiency measure, and (iv) the output oriented allocative scale efficiency measure. Now, the
question is how to coherently aggregate all these measures from individual level into a group

level, so that, preferably, such decomposition is also maintained at the aggregate level.

4 Efficiency Aggregation: Mathematical Approach

One way to describe the problem of aggregation we face here is by formulating a goal to find
a sequence of aggregation functions fi, fo, f3,... that would relate the aggregate efficiency
measures, which we denote here with RE , RE, TE, AE, RSE, TSE and ASE, to the

sets of their individual analogues. That is, we want to find some appropriate functions

J1: f2, f3, [, I5, fe and f7, where

RE = f, <RVE1, ...,RVEn) (4.1)
RE = f, (RE", ..., RE") (4.2)

9



TE = f; (TE",...,TE") (4.3)
AE = f, (AEY, ..., AE™) (4.4)
RSE = f5 (RSE", ..., RSE") (4.5)
TSE = fs (TSE',...,TSE") (4.6)
ASE = f7 (ASE", ..., ASE") (4.7)

such that some desirable conditions on these relationships hold.

While our primal focus in this paper is on aggregation equations regarding the primal
and dual measures of scale efficiency, i.e., on (4.5) and (4.6), it is natural to desire that
our aggregation solutions to (4.5) and (4.6) are also coherent with solutions to aggregation
problems regarding the other efficiency measures. For example, it is natural to desire that
the functions f1, fa, f3, f1, f5, fe and fr are such that we are able to obtain decompositions
on the aggregate level that are analogous to those we can obtain on the individual level in
(3.1), (3.3) and (3.4). That is, we may wish-to require that the following relationships among

the aggregate efficiency measures hold

RE — TE x AF, (4.8)
RE = RE x RSE, (4.9)
RSE = TSE x ASE. (4.10)

In turn, these conditions (4.8)-(4.11) would also imply that we must have the following
decomposition
RE=TE AE TSE ASE, (4.11)

which'is an analogue to the decomposition on the individual level given in (3.6).

Admitting such framework implies that the aggregation problem we face here is an ex-
ample of a system of functional equations. If, in addition, we require that the weights of the
aggregation (denoted here with »*, & = 1,...,n) remain the same in all equations of the
aggregation problem, then the only solution to this problem requires that all the aggregation
functions are weighted geometric means (see Aczél (1990, p.27), Eichhorn (1978, p. 94) for
more details). That is, the solution to the aggregation problem would be

RE = ﬁ(RVEk)"’k (4.12)

10



RE = f[(RE’f)“’“ (4.13)

TE = ﬁ(TE’f)“’“ (4.14)
AE = ﬁ(AE’“)‘*’k (4.15)
TSE = ﬁ(TSE)“’k (4.16)
ASE = ﬁ(ASE’“)“’k (4.17)
RSE = ﬁ(RSE’“)‘”k. (4.18)

A weakness of such an approach, however, is that while formally answering the question
about the aggregation function, this approach does not answer the question about what
exactly the aggregation weights should be. A natural choice for the weights here in the
output oriented or revenue-focused approach could be, for example, the observed revenue
shares, i.e., of = py*/ > _{py*, k = 1,..n. This would be in the spirit of Farrell (1957)
definition of structural efficiency of an industry. However, one could also argue that other
weights (e.g., cost shares) might also be adequate. Moreover, there is no particular (eco-
nomic) reason for the weights to be the same in all aggregation functions rather than being
different for aggregating different efficiency measures. For example, some of the aggregation
equations might have weights being the maximal (i.e., optimal w.r.t. p) revenue shares, given
by RF(a,p)/ > ._, R*(x,p), while other aggregation equations could use technically efficient
shares for the aggregation, i.e., py¥/ > py, where y¥ = y*TE* (e.g., see a related dis-
cussion on weights in Ylvinger (2000) and Fére and Zelenyuk (2007)). In fact, in the next
sections, taking economic approach will indeed yield different weights for different efficiency
measures.

It is worth noting here again that the issue of weights can often be even more important
than the issue of aggregating functions—mainly because the aggregating functions are usually
some type of averages and so usually yield similar results, especially for small variations of
the scores being aggregated, while different weights can easily lead to dramatically different
results and even may imply radically different policy implications. Our goal therefore is to

derive some meaningful, economically compelling weights, as we do in the next section.

11



5 Efficiency Aggregation: Economics Approach

5.1 Aggregate Technology and Aggregate Efficiency

The goal of this sub-section is to define and outline characterization of aggregate technology.
This aggregate technology will then be used to derive an aggregation scheme for aggregating
scale efficiency such that it is coherent with aggregation of other related efficiency measures.
To achieve this goal, let us denote the input and output allocations among DMUs within a
group of interest by X = (z',...,2"), which is an N x n matrix, and by Y = (y',...,y"),
which is an M x n matrix.

A critical step here is to define a group technology—the aggregate technology of all
DMUs within the group. Following Fare and Zelenyuk (2003), one natural way for our
(output oriented) context is to assume the additive structure of aggregation for the output

sets

P(X)=P(a',...a* ..,a") = _PHa*), «* e RY k=1,..n, (5.1)
k=1
i.e., the aggregate output set is the Minkowski sum of the individual output sets.
The group or aggregate revenue function can now be obtained in a fashion similar to the
definitions on the disaggregated level we had in (2.4), but now with respect to the aggregate
technology given in (5.1), i.e:,

R(X,py=max{py : y€ P(X)}, pe RY., 2" e RY k=1,...n (5.2)
Yy

Similarly as was done on the disaggregate level, in (2.5), and letting Y = Y7 v to
denote the group’s total actual output vector, we can use the aggregate revenue function to
measure the aggregate revenue efficiency of a group that, facing output prices p, produced

Y from an allocation of inputs X, via the following formula

R(X,p)

RE(X,Y,p) = , for pY #0. (5.3)

Intuitively, (5.3) is a measure of aggregate revenue efficiency of the group, that takes the
maximal revenue obtainable from producing optimal (w.r.t. p) level of output and selling
it at prices p, using the aggregate technology (5.1) and the matrix of input allocations X
and compares it to the actual revenue of the group, given by pY. As other measures we
considered above, 1/RE(X,Y,p) gives a score between 0 and 1, with 1 standing for full or
100% aggregate or group revenue efficiency level, w.r.t. the aggregate technology (5.1).

12



We now introduce new concepts that will help us deriving the new aggregation results.
We start with the aggregate CRS-hypothetical technology, defined in a similar fashion as we
did in (5.1), i.e.,

P(X)=P(',...ab 2" =S PHa¥), ¥ e RY k=1,..n, (5.4)
k=1
where P*(z*) were defined in (2.7).

Intuitively, ]%(X ) is the CRS-hypothetical analogue of P(X), constructed in the same
fashion as the latter, but where the Minkowski summation is not over the original output
sets but over their CRS-hypothetical analogues. Thus, P(X) will represent the aggregate
CRS-hypothetical technology.

Based on this set-characterization of the aggregate CRS-hypothetical technology, we can
define the aggregate dual (revenue-based) characterization of technology and of efficiencies,
analogous to those we did on the individual level, in (2.10), (2.11) and (2.13). Specifically,
and analogous to (2.10), the aggregate CRS-hypothetical revenue function can be obtained

from

ﬁ(X,p) = max{py Dy 6];3()()}, peRY. 2FeRY k=1,.,n (5.5)
Yy

Intuitively, with this CRS-hypothetical aggregate revenue function (5.5), we look at what
is the maximal level of total revenue the group can obtain by selling (at prices p) output
produced from the endowed input allocations X (without their reallocation across DMUs) if
the technology were given by ﬁ(X ). Similarly as in (5.2), because the adopted aggregation
structure (5.4) allows for reallocation of outputs but not for reallocation of inputs, the same
nature of aggregation is then inherited by the aggregate CRS-hypothetical revenue function
as well as by all the efficiency measures based on it.

Similarly to (2.11), the respective aggregate revenue efficiency w.r.t. the aggregate CRS-
hypothetical technology can be measured by

ﬁ(X, Y,p) = F()&p)’ for pY # 0. (5.6)

Intuitively, (5.6) is a measure of CRS-hypothetical aggregate revenue efficiency of the group
that takes the maximal revenue obtained from selling (at prices p) output produced from
X (without their reallocation across DMUs) and compares it to the actual revenues of the
group, pY, assuming technology ILD(X ) were feasible for this group. This latter proviso
makes the entire difference between (5.6) and (5.3). Note also that 1 /R;E(X .Y, p) gives a

score between 0 and 1, with 1 standing for full or 100% aggregate revenue efficiency level
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w.r.t. the aggregate CRS-hypothetical technology.
In its turn, we define the aggregate revenue scale efficiency measure of a group, analo-

gously to those we have on the individual level, in (2.13),

RE(X,Y,p) R(X,p)

RSB = 35X ¥y~ RXp)

. (5.7)

Note that RSE(X, p) is independent not only from Y and any individual ¢* but also from the
total outputs of the group, Y, and total observed or actual revenues pY, which is due to the
optimization (over outputs) involved in the construction of the revenue function as well as
due to the process of benchmarking w.r.t. the same level of observed revenues, pY . Also note
that because ﬁ(X, p) > R(X,p), we have 1/@()&',?, p) € (0,1], i.e., this measure also
gives a score between 0 and 1, with 1 standing for 100% aggregate revenue scale efficiency

level w.r.t. the aggregate CRS-hypothetical technology (5.4).

5.2 Individual vs. Aggregate Efficiency Measures

In this sub-section we establish relationships between the disaggregate (primal and dual) scale
efficiency measures and their aggregate analogues under the aggregate technology structure
defined in (5.1) and (5.4). In other words, we are interested in deriving aggregation functions
and aggregating weights that relate the aggregate or group scale efficiency measures with their
disaggregate or individual scale efficiency measures that are commonly estimated in practice.
With the derivations that follow, we will justify the use of weighted arithmetic average
aggregating function, where the weights (and the aggregation function) are derived from the
economic optimization behavior and specific assumptions on aggregation of technologies and

on output prices. Following Fire and Zelenyuk (2003) (also see Koopmans (1957)), we have

R(X,p) =) R p). (5.8)
k=1
and therefore,
RE = RE(X,Y,w) = Z RE*(2* % p)oF, (5.9)
k=1
where " is the observed or actual (revenue-based) share-weight of DMU k in its group, i.e.,
formally

k

k by
W= k=1,..n, 5.10
> h1Py” (5.10)
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so that

RE=TE x AE, (5.11)
where .
TE =Y TE*(a" y")o", (5.12)
k=1
and
A = Y0 AR i ok, (1)
k=1
with

k pyFTE* (%, y)
0, = = .
Y on PYFTEF(xk yk)

Incidentally, note that the weights for aggregation ‘of the allocative efficiency measures are

(5.14)

different from those used for aggregation of the revenue and technical efficiency measures
and, in particul