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Abstract

In this article we generalize the aggregation theory in efficiency and productivity anal-

ysis by deriving solutions to the problem of aggregation of individual scale efficiency

measures, primal and dual, into aggregate primal and dual scale efficiency measures

of a group (e.g., industry). The new aggregation result is coherent with aggregation

framework and solutions that were earlier derived for other related efficiency measures

and can be used in practice for estimation of scale efficiency of an industry or other

groups of firms within it.
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1 Introduction

Analysis of economies of scale has been one of the fundamental subjects in economics, op-

erations research and production management, both in theory and especially in practice.

Indeed, the issue of attaining optimal scale of operations frequently appears among priority

questions on management agendas of various types of companies, whether private or public.

In this article we focus on the scale efficiency, which combines both the notion of optimal

scale and the notion of (relative) production efficiency. Our particular interest is in how to

appropriately measure the scale efficiency of a group—an industry consisting of firms, a firm

consisting of plants, a union consisting of countries, etc.

For several decades, many studies in various economics and business literature challenged

the issue of proper measurement of scale economies for various contexts and for various

estimators. These studies include the seminal works of Hanoch (1975), Panzar and Willig

(1977), Førsund and Hjalmarsson (1979), Banker (1984), Banker et al (1984), Färe and

Grosskopf (1985), Färe, Grosskopf and Lovell (1986), Banker and Thrall (1992), Førsund

(1996), Golany and Yu (1997), as well as more recent works of Førsund and Hjalmarsson

(2004), Krivonozhko et al. (2004), Hadjicostas and Soteriou (2006, 2010), Podinovski et al.

(2009), Zelenyuk (2013a,b,c), Peyrache (2013), to mention just a few.

In previous studies, researchers primarily focused on the measurement of scale economies

for an individual or disaggregate decision making unit (DMU). In the present work we will

focus on the issue of how to appropriately aggregate such individual scale efficiency measures,

or their estimates/scores obtained from these measures for individual DMUs, into aggregate

measures (or aggregate scores) of scale efficiency of a group. Indeed, after obtaining many

individual scale efficiency scores, researchers may truly need a proper way to summarize

these many scores into one or few numbers to present to their audience concisely. Clearly,

one could simply use a sample average of individual estimates—but which one: the arithmetic

or the geometric? More importantly, a problem with a sample average, whether arithmetic

or geometric, is that it ignores a relative weight of each DMU in the aggregation. On the

other hand, while a weighted average can account for a relative weight of each DMU, a

critical question arises along the use of a weighted average: Which set of weights should be

used? Indeed, conclusions and related policy implications may heavily depend on the weights

chosen for the aggregation. Therefore, our primary focus is on deriving the weights for the

aggregation of scale efficiency measures, which has not been done in the literature so far.

Studies on the aggregation problem in efficiency analysis go back to at least the seminal

work of Farrell (1957), who coined the term structural efficiency of an industry. This notion

was then criticized and elaborated by Førsund and Hjalmarsson (1979), who introduced the
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notion of efficiency of an average unit, and by Li and Ng (1995) who synthesized these

latter works, considering them in the context of aggregation weights based on shadow prices.

(See also a related discussion in Ylvinger (2000).) On the pure theoretical front, in their

seminal work, Blackorby and Russell (1999) unveiled several impossibility theorems for a

general aggregation problem of efficiency measures. One important implication of their

work was that any positive result on aggregation in efficiency measurement must involve

additional assumptions. This route was taken by Färe and Zelenyuk (2003) who, upon

accepting certain assumptions on aggregate technology, optimization behavior and prices,

and applying a revenue analogue of the fundamental theorem from Koopmans (1957), derived

a solution to the aggregation problem for the output oriented Farrell-type technical efficiency

measures. Similar approach was later used for deriving various aggregation results, such as

aggregation of input oriented technical efficiency measures (Färe et al., 2004), aggregation

of productivity indexes (Zelenyuk, 2006), aggregation within and between the sub-groups

(Simar and Zelenyuk, 2007), aggregation of economic growth rates (Zelenyuk, 2011), but

these works do not answer how the commonly used scale efficiency measures should be

aggregated.

In the present work, we generalize the existing approach of aggregation of efficiency

measures to the context of aggregation of scale efficiency measures, such that it is coherent

with and encompass previous aggregation results for the related efficiency measures. This is a

new theoretical result that can be relatively easily applied in practice for obtaining aggregate

scale efficiency measures from suitable estimates of the individual scale efficiency scores.

The paper is structured as following: Section 2 briefly outlines the theory of measuring

scale efficiency on individual level. Section 3 briefly outlines useful relationships between

various efficiency measures that will be used in derivations of solutions to the aggregation

problem. Section 4 proposes a solution to the aggregation problem from the perspective

of mathematical (functional equations) approach. Section 5 outlines economic approach to

solve the aggregation problem. Section 6 presents some special cases and Section 7 concludes.

2 Characterization of Individual Efficiencies

To keep our context general yet as simple as possible, let us consider a group of n decision

making units (plants or firms or countries, etc.), hereafter DMUs, indexed by k = 1, 2, . . . , n.

Our main focus in the paper will be on aggregate efficiencies—measures that would represent

various types of efficiency of a group of DMUs (e.g., a firm consisting of plants, an industry

consisting of firms, etc.). We also want such aggregate measures of a group to be related

or constructed from the individual efficiency measures obtained for each DMU in such a
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group. Following somewhat standard notation for defining individual efficiency measures, let

xk = (xk
1, . . . , x

k
N)′ ∈ R

N
+ be a vector of N inputs that a DMU k uses to produce a vector of

M outputs, denoted by yk = (yk
1 , . . . , y

k
M)′ ∈ R

M
+ . Furthermore, we assume that technology

of a DMU k ∈ {1, 2, . . . , n} can be characterized by the technology set denoted by T k and

defined, in general terms, as

T k =
{
(x, y) ∈ R

N
+ R

M
+ : DMU k can produce y from x

}
. (2.1)

Equivalently, technology can be characterized via the output correspondence P k : R
N
+ → 2R

M
+

that assigns to each input vector x ∈ R
N
+ a subset of all output vectors y ∈ R

M
+ that can be

produced with this particular x, and for a DMU k ∈ {1, 2, . . . , n} it is formally defined as

P k(x) =
{
y ∈ R

M
+ : (x, y)∈T k

}
, x ∈ R

N
+ . (2.2)

We assume that technology set satisfies standard regularity conditions of production theory

(see Färe and Primont (1995)). To involve duality results, we also assume that all output

sets, P k(x), are convex for all x ∈ R
N
+ , k ∈ {1, 2, . . . , n}. This is a common assumption

in economics, which is coherent with the principle of decreasing marginal rate of technical

transformation regarding the substitution between outputs that is commonly assumed in

microeconomics theory. Note, however, that for our general developments we do not assume

convexity of T k, although making such assumption is also possible (as is sometimes done in

practical estimations), yet it would impose additional restrictions and so we stay free from

it here.1

Using these characterizations of technologies, we will focus on the output orientation in

efficiency measurement, particularly focusing on the following Farrell-type or radial output

oriented measure of technical (in)efficiency, formally defined for a DMU k ∈ {1, 2, . . . , n} as

TEk(x, y) = sup
{
θ ∈ R++ : θy∈P k(x)

}
, (x, y) ∈ T k. (2.3)

Incidentally, note that for any (x, y) ∈ T k, we have TEk(x, y) ≥ 1 and we will focus only

on the practical case when TEk(x, y) < ∞. Thus, 1/TEk(x, y) ∈ (0, 1], i.e., the reciprocal

of (2.3) gives a score between 0 and 1, with 1 standing for full or 100% technical efficiency

level, output oriented.2

1Here, for the sake of space, we will focus on output orientation only, while the input orientation case
can be derived in similar manner (in which case, instead of convexity of the output sets, one would need to
assume convexity of the input requirement sets, defined as Lk(yk) =

{
x ∈ R

N
+ : (x, y)∈T k

}
, y ∈ R

M
+ ).

2Note there appears to be some confusion in the literature about this measure. Some authors use the
output oriented Farrell technical efficiency measure defined as a reciprocal of (2.3), which in some cases might
be preferred as it immediately has a convenient scale between 0 and 1. While the derivations below can be
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Originally, Farrell (1957) focused on (an input analogue of) this measure for the context

of a particular case of activity analysis model. Later, in their seminal paper, Charnes et

al (1978) resurrected Farrell’s approach and unveiled interesting dual characterization of his

efficiency measure, with shadow price and shadow revenue-cost ratio interpretations, sparking

a new area in operations research and econometrics and coining it as data envelopment

analysis (DEA). While the DEA would be a natural estimator of (2.3), other estimators,

such as regression-based methods, including stochastic frontier analysis (SFA), or a synthesis

of them, such as stochastic-DEA method (e.g., see Simar and Zelenyuk, 2011) can work for

our context as well. Therefore, we will consider our theoretical developments for a general

case, regardless of what estimator is to be used for it. Also note that, besides not requiring

convexity of T , unlike in the commonly assumed DEA context, we also allow for each DMU

k ∈ {1, 2, . . . , n} to have its own unique technology (with possibility to be inefficient w.r.t.

it), for the sake of generality. Clearly, assuming a common technology (as is often done in

practice) would be a special case, and we briefly return to it in Section 6.

We will also use a dual characterization of the output correspondence and of efficiency

measures—the revenue function, which for a DMU k ∈ {1, 2, . . . , n} with an input allocation

x ∈ R
N
+ is defined as

Rk(x, p) = max
y

{
py : y ∈ P k(x)

}
, x ∈ R

N
+ , p ∈ R

M
+ , (2.4)

where p = (p1, ..., pM) ∈ R
M
+ is the row-vector of prices corresponding to the (column) output

vector y and here we will focus only on the practical case when REk(x, p) �= 0.

To achieve our aggregation result, throughout this work we will focus on the output price

vector p that is the same across all DMUs, which one could think of as a benchmark or a

reference price vector selected for the purpose of aggregation. For example, if we consider a

microeconomics context, then p could be taken to be a vector of equilibrium prices at the

output markets. Alternatively, p can also be chosen to be the vector of shadow prices for the

outputs for the considered group of firms (e.g., see Li and Ng (1995) for a motivation), etc.

The differences in prices that one may face in practice can then be viewed as a variation or

noise around these benchmark (equilibrium or shadow or other selected common) prices.3

Besides serving as an alternative (dual) complete characterization of technology of a

DMU, due to duality theory in economics, the revenue function (2.4) also serves as the dual

written with this definition as well, we used definition (2.3) because it is more convenient for our derivations
that follow, and may help avoiding confusions because previous works on aggregation of efficiency we refer
to also used (2.3). To avoid confusions, we also refer to (2.3) as ‘Farrell-type measure’ rather than ‘Farrell
measure’. We thank anonymous referee for inspiring this comment.

3See Kuosmanen, Cherchye and Sipiläinen (2006) and Zelenyuk (2006, 2011) for a more extensive discus-
sion about this assumption.
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to the Farrell’s output oriented technical efficiency measure (2.3), given regularity conditions,

convexity of P k(x) and strictly positive output prices, and so it is often used to define the

dual efficiency measures. Specifically, for a given DMU k ∈ {1, 2, . . . , n} with a combination

(x, y, p), the revenue (in)efficiency measure that we will use is defined as the ratio of the

maximal revenue implied for (x, p) to the actual revenue that the DMU k incurred for this

same combination (x, p), i.e.,

REk(x, y, p) =
Rk(x, p)

py
, for py �= 0 (2.5)

Incidentally, note that for any (x, y) ∈ T k and p ∈ R
M
++ we have 1/REk(x, y, p) ∈ (0, 1], i.e.,

this measure of efficiency also gives a score between 0 and 1, with 1 standing for full or 100%

revenue efficiency level.

Now, to define the scale efficiency measures, we will use an auxiliary, CRS-hypothetical

technology defined, for each DMU k ∈ {1, 2, . . . , n}, as

Ť k =
{
δ(x, y) : (x, y)∈T k, ∀δ > 0

}
, (2.6)

i.e., Ť k is the set generated from T k as the conical closure of T k. Intuitively, Ť k can be

understood as the smallest CRS technology set that includes the actual technology set T k

such that the upper boundary or technological frontier of Ť k is just tangent with that of T k

(at least at one point) and these tangent points are called the best possible scale allocations

of (x, y).4 For some technologies, such best scale allocations may be not unique as well as

there might be uncountably infinite number of them. Also, it must be clear that, if an actual

technology exhibits CRS (i.e., T k = δT k,∀δ > 0), then (and only then), by construction, we

have T k = Ť k. This type of measurement is coherent with and frequently used in the DEA

approach–in a sense it is just another, more general way to write what is usually done in DEA,

so that the generalization allows for other methods to be used (e.g., SFA, stochastic-DEA,

etc.).

Now, let us define the CRS-hypothetical output correspondence, P̌ k : R
N
+ → 2R

M
+ that

assigns to each input vector x ∈ R
N
+ the subset of all output vectors y ∈ R

M
+ that can be

produced with this particular x if technology was given by (2.6). Specifically, for a DMU

k ∈ {1, 2, . . . , n}, it is formally defined similarly to how we defined (2.2), as

P̌ k(x) =
{
y ∈ R

M
+ : (x, y) ∈ Ť k

}
, x ∈ R

N
+ . (2.7)

4Also see Frisch (1965) for discussion of the concept of technically optimal scale points.
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So, by construction, P̌ k(x) is an equivalent characterization of the CRS-hypothetical tech-

nology set Ť k, in the sense that, for all k ∈ {1, 2, . . . , n} we have

y ∈ P̌ k(x), x ∈ R
N
+ ⇐⇒ (x, y) ∈ Ť k. (2.8)

Furthermore, the output oriented technical efficiency measure on the CRS-hypothetical tech-

nology for an allocation (x, y) ∈ T k for DMU k ∈ {1, 2, . . . , n} is given by

ˇTE
k
(x, y) = max

{
λ ∈ R

1

++ : λy ∈ P̌ k(x)
}

, (x, y) ∈ T k. (2.9)

Note that for any (x, y) ∈ T k we have ˇTE
k
(x, y) ≥ 1 and for technical purposes, to make

the measurement of scale efficiency possible, we also focus on the case when ˇTE
k
(x, y) <

∞, ∀k ∈ {1, 2, . . . , n}. As a result we have 1/ ˇTE
k
(x, y) ∈ (0, 1], i.e., this measure of efficiency

gives a score between 0 and 1, with 1 standing for 100% technical efficiency level (output

oriented) but w.r.t. the CRS-hypothetical technology rather than the original one.

Similarly, the revenue function with respect to the CRS-hypothetical technology for a

DMU k ∈ {1, 2, . . . , n} would be given by

Řk(x, p) = max
y

{
py : y ∈ P̌ k(x)

}
, x ∈ R

N
+ , p ∈ R

M
+ , (2.10)

while the associated revenue efficiency w.r.t. the CRS-hypothetical technology for a DMU

k ∈ {1, 2, . . . , n} facing allocation (x, y) and output prices p would be given by

ŘE
k
(x, y, p) =

Řk(x, p)

py
, for py �= 0. (2.11)

As it is for other efficiency measures defined above, for any (x, y) ∈ T k and p ∈ R
M
++ we have

1/ŘE
k
(x, y, p) ∈ (0, 1], i.e., the reciprocal of (2.11) gives a score between 0 and 1, with 1

standing for full or 100% revenue efficiency level w.r.t. the CRS-hypothetical technology.

Given (2.3) and (2.9) as well as (2.5) and (2.11), we can obtain primal and dual measures

of scale efficiency. In particular, the primal (or technical or technology-based) scale efficiency

measure for a DMU k ∈ {1, 2, . . . , n} for an allocation (x, y) ∈ T k is defined as

TSEk(x, y) =
ˇTE

k
(x, y)

TEk(x, y)
, (2.12)

Because T k ⊆ Ť k, for any (x, y) ∈ T k we have ˇTE
k
(x, y) ≥ TEk(x, y), and therefore

1/TSEk(x, y) ∈ (0, 1], ∀k ∈ {1, 2, . . . , n}, i.e., the reciprocal of this measure of efficiency

gives a score between 0 and 1, with 1 standing for 100% primal scale efficiency level.
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Similarly, the dual (or revenue based) scale efficiency measure for a DMU k ∈ {1, 2, . . . , n}

with an input level x and output prices p, with REk(x, p) �= 0, would be

RSEk(x, p) =
ŘE

k
(x, y, p)

REk(x, y, p)
=

Řk(x, p)

Rk(x, p)
, (x, y) ∈ T k, p ∈ R

M
++. (2.13)

Because T k ⊆ Ť k we have Řk(x, p) ≥ Rk(x, p) and therefore 1/RSEk(x, p) ∈ (0, 1], ∀k ∈

{1, 2, . . . , n}, i.e., the reciprocal of this measure of efficiency also gives a score between 0

and 1, with 1 standing for 100% revenue-based scale efficiency level. Note that RSEk(x, p)

is independent from the output levels, which happens due to optimization behavior over

outputs involved in (2.4) and (2.10) and due to benchmarking with respect to the same

actual revenue py.

Our goal now is to find a proper way to aggregate the scores yielded by these individual

scale efficiency measures, which we will derive with a help of important relationships and

decompositions of the efficiency measures that we outline in the next section.

3 Key Decompositions of Individual Efficiency

In our further derivations we will utilize the following well-known decomposition of individual

revenue efficiency measure, that hold for any k ∈ {1, 2, . . . , n},

REk(x, y, p) = TEk(x, y) × AEk(x, y, p), ∀(x, y) ∈ T k, ∀p ∈ RM
++ (3.1)

for the actual technology and, analogously for the CRS-hypothetical technology,

ŘE
k
(x, y, p) = ˇTE

k
(x, y) × ǍE

k
(x, y, p), ∀(x, y) ∈ T k, ∀p ∈ RM

++ (3.2)

where AEk(x, y, p) and ǍE
k
(x, y, p) are so-called allocative efficiency measures (output ori-

ented), measuring inefficiency due to non-optimal (w.r.t. revenue optimization) allocation of

outputs given p (see Färe and Primont (1995) for more details).

Because ∀(x, y) ∈ T k we have ŘE
k
(x, y, p) ≥ ˇTEk(x, y) we have 1/ǍE

k
(x, y, p) ∈

(0, 1], ∀k ∈ {1, 2, . . . , n}, i.e., the reciprocal of this measure of efficiency also gives a score

between 0 and 1, with 1 standing for full or 100% of output oriented allocative efficiency

level, but now w.r.t. the CRS-hypothetical technology and prices p.

Furthermore, note that we can also decompose ŘE
k
(x, y, p) into revenue efficiency and

revenue based scale efficiency, as

ŘE
k
(x, y, p) = REk(x, y, p) × RSEk(x, y, p), (x, y) ∈ T k, p ∈ R

M
++. (3.3)
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Moreover, for any DMU k ∈ {1, 2, . . . , n}, we can also decompose the individual revenue-

based scale efficiency measure, RSEk(x, y, p), into technical and allocative parts, as

RSEk(x, y, p) = TSEk(x, y) × ASEk(x, y, p), ∀(x, y) ∈ T k,∀p ∈ RM
++. (3.4)

where the latter component of (3.4) is given by

ASEk(x, y, p) =
ǍE

k
(x, y, p)

AEk(x, y, p)
, ∀(x, y) ∈ T k,∀p ∈ RM

++ (3.5)

and we will refer to (3.5) as output oriented allocative scale (in)efficiency measure. Note,

however, that unlike for revenue and technical efficiency measures, we cannot guarantee

that ˇAEk(x, y, p) ≥ AEk(x, y, p) or vice verse, and so one cannot guarantee in general that

1/ASEk(x, y, p) is within (0, 1].

Combining the above results, we get the following decomposition of the CRS-hypothetical

revenue efficiency measure on the individual or disaggregate level

ŘE
k
(x, y, p) = TEk(x, y) × AEk(x, y, p) × TSEk(x, y) × ASEk(x, y, p), (3.6)

and it holds for any (x, y) ∈ T k, p ∈ RM
++ and all DMUs k ∈ {1, 2, . . . , n}.

In words, (3.7) decomposes the CRS-hypothetical-based revenue efficiency measure of

a DMU k into four components: (i) the output oriented technical efficiency measure, (ii)

the output oriented allocative efficiency measure, (iii) the output oriented technical scale

efficiency measure, and (iv) the output oriented allocative scale efficiency measure. Now, the

question is how to coherently aggregate all these measures from individual level into a group

level, so that, preferably, such decomposition is also maintained at the aggregate level.

4 Efficiency Aggregation: Mathematical Approach

One way to describe the problem of aggregation we face here is by formulating a goal to find

a sequence of aggregation functions f1, f2, f3, ... that would relate the aggregate efficiency

measures, which we denote here with ŘE , RE, TE, AE, RSE, TSE and ASE, to the

sets of their individual analogues. That is, we want to find some appropriate functions

f1, f2, f3, f4, f5, f6 and f7, where

ŘE = f1

(
ŘE

1
, ..., ŘE

n
)

(4.1)

RE = f2

(
RE1, ..., REn

)
(4.2)

9



  

TE = f3

(
TE1, ..., TEn

)
(4.3)

AE = f4

(
AE1, ..., AEn

)
(4.4)

RSE = f5

(
RSE1, ..., RSEn

)
(4.5)

TSE = f6

(
TSE1, ..., TSEn

)
(4.6)

ASE = f7

(
ASE1, ..., ASEn

)
(4.7)

such that some desirable conditions on these relationships hold.

While our primal focus in this paper is on aggregation equations regarding the primal

and dual measures of scale efficiency, i.e., on (4.5) and (4.6), it is natural to desire that

our aggregation solutions to (4.5) and (4.6) are also coherent with solutions to aggregation

problems regarding the other efficiency measures. For example, it is natural to desire that

the functions f1, f2, f3, f4, f5, f6 and f7 are such that we are able to obtain decompositions

on the aggregate level that are analogous to those we can obtain on the individual level in

(3.1), (3.3) and (3.4). That is, we may wish to require that the following relationships among

the aggregate efficiency measures hold

RE = TE × AE, (4.8)

ŘE = RE × RSE, (4.9)

RSE = TSE × ASE. (4.10)

In turn, these conditions (4.8)-(4.11) would also imply that we must have the following

decomposition

ŘE = TE AE TSE ASE, (4.11)

which is an analogue to the decomposition on the individual level given in (3.6).

Admitting such framework implies that the aggregation problem we face here is an ex-

ample of a system of functional equations. If, in addition, we require that the weights of the

aggregation (denoted here with ωk, k = 1, . . . , n) remain the same in all equations of the

aggregation problem, then the only solution to this problem requires that all the aggregation

functions are weighted geometric means (see Aczél (1990, p.27), Eichhorn (1978, p. 94) for

more details). That is, the solution to the aggregation problem would be

ŘE =
n∏

k=1

(ŘE
k
)ω

k

(4.12)

10



  

RE =
n∏

k=1

(REk)ω
k

(4.13)

TE =
n∏

k=1

(TEk)ω
k

(4.14)

AE =
n∏

k=1

(AEk)ω
k

(4.15)

TSE =
n∏

k=1

(TSE)ω
k

(4.16)

ASE =
n∏

k=1

(ASEk)ω
k

(4.17)

RSE =
n∏

k=1

(RSEk)ω
k

. (4.18)

A weakness of such an approach, however, is that while formally answering the question

about the aggregation function, this approach does not answer the question about what

exactly the aggregation weights should be. A natural choice for the weights here in the

output oriented or revenue-focused approach could be, for example, the observed revenue

shares, i.e., ωk = pyk/
∑n

k=1
pyk, k = 1, ...n. This would be in the spirit of Farrell (1957)

definition of structural efficiency of an industry. However, one could also argue that other

weights (e.g., cost shares) might also be adequate. Moreover, there is no particular (eco-

nomic) reason for the weights to be the same in all aggregation functions rather than being

different for aggregating different efficiency measures. For example, some of the aggregation

equations might have weights being the maximal (i.e., optimal w.r.t. p) revenue shares, given

by Rk(x, p)/
∑n

k=1
Rk(x, p), while other aggregation equations could use technically efficient

shares for the aggregation, i.e., pyk
∗
/
∑n

k=1
pyk

∗
, where yk

∗
= ykTEk (e.g., see a related dis-

cussion on weights in Ylvinger (2000) and Färe and Zelenyuk (2007)). In fact, in the next

sections, taking economic approach will indeed yield different weights for different efficiency

measures.

It is worth noting here again that the issue of weights can often be even more important

than the issue of aggregating functions—mainly because the aggregating functions are usually

some type of averages and so usually yield similar results, especially for small variations of

the scores being aggregated, while different weights can easily lead to dramatically different

results and even may imply radically different policy implications. Our goal therefore is to

derive some meaningful, economically compelling weights, as we do in the next section.
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5 Efficiency Aggregation: Economics Approach

5.1 Aggregate Technology and Aggregate Efficiency

The goal of this sub-section is to define and outline characterization of aggregate technology.

This aggregate technology will then be used to derive an aggregation scheme for aggregating

scale efficiency such that it is coherent with aggregation of other related efficiency measures.

To achieve this goal, let us denote the input and output allocations among DMUs within a

group of interest by X = (x1, . . . , xn), which is an N × n matrix, and by Y = (y1, . . . , yn),

which is an M × n matrix.

A critical step here is to define a group technology—the aggregate technology of all

DMUs within the group. Following Färe and Zelenyuk (2003), one natural way for our

(output oriented) context is to assume the additive structure of aggregation for the output

sets

P (X) = P (x1, ..., xk, ..., xn) =
n∑

k=1

P k(xk), xk ∈ RN
+ , k = 1, ..., n, (5.1)

i.e., the aggregate output set is the Minkowski sum of the individual output sets.

The group or aggregate revenue function can now be obtained in a fashion similar to the

definitions on the disaggregated level we had in (2.4), but now with respect to the aggregate

technology given in (5.1), i.e.,

R(X, p) = max
y

{
py : y ∈ P (X)

}
, p ∈ RM

++, xk ∈ RN
+ , k = 1, ..., n. (5.2)

Similarly as was done on the disaggregate level, in (2.5), and letting Y =
∑n

k=1
yk to

denote the group’s total actual output vector, we can use the aggregate revenue function to

measure the aggregate revenue efficiency of a group that, facing output prices p, produced

Y from an allocation of inputs X, via the following formula

RE(X,Y , p) =
R(X, p)

pY
, for pY �= 0. (5.3)

Intuitively, (5.3) is a measure of aggregate revenue efficiency of the group, that takes the

maximal revenue obtainable from producing optimal (w.r.t. p) level of output and selling

it at prices p, using the aggregate technology (5.1) and the matrix of input allocations X

and compares it to the actual revenue of the group, given by pY . As other measures we

considered above, 1/RE(X,Y , p) gives a score between 0 and 1, with 1 standing for full or

100% aggregate or group revenue efficiency level, w.r.t. the aggregate technology (5.1).
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We now introduce new concepts that will help us deriving the new aggregation results.

We start with the aggregate CRS-hypothetical technology, defined in a similar fashion as we

did in (5.1), i.e.,

P̌ (X) = P̌ (x1, ..., xk, ..., xn) =
n∑

k=1

P̌ k(xk), xk ∈ RN
+ , k = 1, ..., n, (5.4)

where P̌ k(xk) were defined in (2.7).

Intuitively, P̌ (X) is the CRS-hypothetical analogue of P (X), constructed in the same

fashion as the latter, but where the Minkowski summation is not over the original output

sets but over their CRS-hypothetical analogues. Thus, P̌ (X) will represent the aggregate

CRS-hypothetical technology.

Based on this set-characterization of the aggregate CRS-hypothetical technology, we can

define the aggregate dual (revenue-based) characterization of technology and of efficiencies,

analogous to those we did on the individual level, in (2.10), (2.11) and (2.13). Specifically,

and analogous to (2.10), the aggregate CRS-hypothetical revenue function can be obtained

from

Ř(X, p) = max
y

{
py : y ∈ P̌ (X)

}
, p ∈ RM

++, xk ∈ RN
+ , k = 1, ..., n. (5.5)

Intuitively, with this CRS-hypothetical aggregate revenue function (5.5), we look at what

is the maximal level of total revenue the group can obtain by selling (at prices p) output

produced from the endowed input allocations X (without their reallocation across DMUs) if

the technology were given by P̌ (X). Similarly as in (5.2), because the adopted aggregation

structure (5.4) allows for reallocation of outputs but not for reallocation of inputs, the same

nature of aggregation is then inherited by the aggregate CRS-hypothetical revenue function

as well as by all the efficiency measures based on it.

Similarly to (2.11), the respective aggregate revenue efficiency w.r.t. the aggregate CRS-

hypothetical technology can be measured by

ŘE(X,Y , p) =
Ř(X, p)

pY
, for pY �= 0. (5.6)

Intuitively, (5.6) is a measure of CRS-hypothetical aggregate revenue efficiency of the group

that takes the maximal revenue obtained from selling (at prices p) output produced from

X (without their reallocation across DMUs) and compares it to the actual revenues of the

group, pY , assuming technology P̌ (X) were feasible for this group. This latter proviso

makes the entire difference between (5.6) and (5.3). Note also that 1/ŘE(X,Y , p) gives a

score between 0 and 1, with 1 standing for full or 100% aggregate revenue efficiency level
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w.r.t. the aggregate CRS-hypothetical technology.

In its turn, we define the aggregate revenue scale efficiency measure of a group, analo-

gously to those we have on the individual level, in (2.13),

RSE(X, p) =
ŘE(X,Y , p)

RE(X,Y , p)
=

Ř(X, p)

R(X, p)
. (5.7)

Note that RSE(X, p) is independent not only from Y and any individual yk but also from the

total outputs of the group, Y , and total observed or actual revenues pY , which is due to the

optimization (over outputs) involved in the construction of the revenue function as well as

due to the process of benchmarking w.r.t. the same level of observed revenues, pY . Also note

that because Ř(X, p) ≥ R(X, p), we have 1/ ˇRSE(X,Y , p) ∈ (0, 1], i.e., this measure also

gives a score between 0 and 1, with 1 standing for 100% aggregate revenue scale efficiency

level w.r.t. the aggregate CRS-hypothetical technology (5.4).

5.2 Individual vs. Aggregate Efficiency Measures

In this sub-section we establish relationships between the disaggregate (primal and dual) scale

efficiency measures and their aggregate analogues under the aggregate technology structure

defined in (5.1) and (5.4). In other words, we are interested in deriving aggregation functions

and aggregating weights that relate the aggregate or group scale efficiency measures with their

disaggregate or individual scale efficiency measures that are commonly estimated in practice.

With the derivations that follow, we will justify the use of weighted arithmetic average

aggregating function, where the weights (and the aggregation function) are derived from the

economic optimization behavior and specific assumptions on aggregation of technologies and

on output prices. Following Färe and Zelenyuk (2003) (also see Koopmans (1957)), we have

R(X, p) =
n∑

k=1

Rk(xk, p). (5.8)

and therefore,

RE = RE(X, Y, w) =
n∑

k=1

REk(xk, yk, p)ωk, (5.9)

where ωk is the observed or actual (revenue-based) share-weight of DMU k in its group, i.e.,

formally

ω
k =

pyk

∑n

k=1
pyk

, k = 1, ..., n, (5.10)
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so that

RE = TE × AE, (5.11)

where

TE =
n∑

k=1

TEk(xk, yk)ωk, (5.12)

and

AE =
n∑

k=1

AEk(xk, yk, p)ωk
a, (5.13)

with

ω
k
a =

pykTEk(xk, yk)∑n

k=1
pykTEk(xk, yk)

. (5.14)

Incidentally, note that the weights for aggregation of the allocative efficiency measures are

different from those used for aggregation of the revenue and technical efficiency measures

and, in particular, they account or correct for the technical inefficiency of the revenue shares

used for weighting.

By the same line of proof as for (5.8) (see Färe and Zelenyuk (2003, 2007)), analogous

result follows for the aggregate revenue function based on the aggregate CRS-hypothetical

technology, i.e., we have

Ř(X, p) =
n∑

k=1

Řk(xk, p). (5.15)

and

ŘE = ŘE(X, Y, p) =
n∑

k=1

ŘE(xk, yk, p)ωk. (5.16)

where the individual weights ωk, k ∈ {1, . . . , n} are the same as weights that appear in (5.9),

and defined explicitly in (5.10).

In words, (5.16) says that the aggregate revenue efficiency measure w.r.t. the aggregate

CRS-hypothetical technology, can be obtained by aggregating the individual revenue effi-

ciency measures w.r.t. the individual CRS-hypothetical technology defined in (2.11), where

the aggregating function is also the arithmetic average with individual weights given by the

actual revenue shares of the individual k in the actual total revenue of its group.

Furthermore, note that from (5.7), it follows immediately that

ŘE(X,Y , p) = RE(X,Y , p) RSE(X,Y , p). (5.17)
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i.e., we can decompose the aggregate revenue efficiency w.r.t. the aggregate CRS-hypothetical

technology into two components: (i) the aggregate revenue efficiency (w.r.t. the aggregate

technology) and (ii) the aggregate revenue scale efficiency.

More importantly, we can obtain the aggregate revenue scale efficiency of a group,

RSE(X,Y , p), from the set of its individual analogues,
{
RSEk(xk, yk, p)

}n

k=1
. Specifically,

combining (5.9) with (5.17) and applying some algebra, we get the following aggregation

scheme:

RSE(X,Y , p) =
n∑

k=1

RSEk(xk, yk, p)ωk
r , (5.18)

where

ω
k
r =

pykREk(xk, yk, p)∑n

k=1
pykRE(xk, yk, p)

=
Rk(xk, p)∑n

k=1
Rk(xk, p)

. (5.19)

Note that the weights that came out in the aggregation scheme (5.18), and described

by (5.19), are different from those obtained for aggregation of revenue functions, technical

and allocative efficiencies—here, they are the efficient revenue shares w.r.t. the individual

revenue functions.

In turn, the characterization of the aggregate revenue scale efficiency given in (5.18)-

(5.19), helps decomposing ŘE(X,Y , p) even further, by employing the decomposition of the

aggregate revenue scale efficiency measure into technical and allocative parts. Specifically,

after some algebra, we arrive to the following system of aggregation equations

RSE(X,Y , p) = TSE × ASE (5.20)

where

TSE =
n∑

k=1

TSEk(xk, yk)ωk
r (5.21)

and

ASE =
n∑

k=1

ASEk(xk, yk, p)ωk
rts (5.22)

with ωk
r given in (5.19), and

ω
k
rts =

Rk(xk, p)TSEk(xk, yk)∑n

k=1
Rk(xk, p)TSEk(xk, yk)

. (5.23)

Incidentally, note again that the weights that came out in the aggregation of the primal

scale efficiency measures, in (5.21), are the same as those derived for the aggregation of the
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dual (revenue-based) scale efficiency measures, described by (5.19). On the other hand, the

weights that come out in the aggregation of allocative scale efficiency measures, in (5.22),

and described in (5.23) are different from those we derived earlier for the aggregation of

revenue functions or for the aggregation of technical and allocative efficiency measures, as

they also account for the primal scale inefficiency.

Finally, combining the statements above, we also get a desirable decomposition of the

CRS-hypothetical revenue efficiency on the aggregate level—analogous to the decomposition

we have on the disaggregated level that appeared in (3.6), i.e., we have

ŘE(X,Y , p) = TE × AE × TSE × ASE. (5.24)

In words, with the aggregation scheme derived from the revenue version of the Koopmans’

theorem (and given our assumptions on the aggregate technology, same output prices, stan-

dard regularity conditions, etc.), we are able to decompose the aggregate CRS-hypothetical

revenue efficiency measure into four components of different types of aggregate efficiency

measures, namely: (i) the aggregate technical efficiency measure, (ii) the aggregate allocative

efficiency measure, (iii) the aggregate primal scale efficiency measure, and (iv) the aggregate

allocative scale efficiency measure. Incidentally, note that the product of the last two gives

the aggregate dual scale efficiency, while the product of the first two gives the aggregate rev-

enue efficiency measure. We thus attained the main goal of this paper—derived a coherent

and economically compelling aggregation scheme for scale efficiency measures that embraces

previous aggregation results, with a natural decomposition (5.24) that is analogous to de-

composition (3.6) that exists at individual level. In the next sub-section we will discuss

an important issue of proper stratification that is pertinent particularly to the context of

aggregating scale efficiency measures.

5.3 Stratification

Various types of stratification of a group into sub-groups may be motivated for various

empirical contexts, e.g., private vs. public firms in an industry, foreign vs. local firms,

sub-groups of firms under different regulation regimes, sub-groups of countries in different

economic unions or organizations (e.g., OECD vs. non-OECD countries, EU vs. non-EU,

developed vs. developing countries, etc.) Accounting for such differences in a group and

adapting aggregation scheme to such stratification may be vital in practice. The issue of

efficiency aggregation within a sub-group and across several sub-groups into a larger group

was first analyzed in Simar and Zelenyuk (2007) for the context of aggregation of technical

and revenue efficiency measures. Similar approach can be applied here as well.
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Importantly, even when there is no exogenous categorical variables that divide an ana-

lyzed group into distinct sub-groups, for the case of scale efficiency measurement there is a

natural justification for stratifying a group of considered DMUs into potentially three sub-

groups: (i) DMUs that are scale efficient, (ii) DMUs that are scale inefficient due to not

exhausting the scale economies (i.e., too small to be scale efficient) and (iii) DMUs that

are scale inefficient due to experiencing dis-economies of scale (i.e., too large to be scale

efficient). Stratifying into these three groups, especially into the last two, and then proper

aggregation within these sub-groups and between them is particularly important here be-

cause the reciprocals of the individual scale efficiency measures, whether primal or dual, give

a score between 0 and 1 regardless of whether the firm is in group (ii) or in group (iii).

In other words, the standard individual scale efficiency measures we considered above are

not indicative of the source or cause of the scale inefficiency and ignoring this fact in pro-

ducing the aggregate scale efficiency scores, whether primal or dual, would lead to missing

important information about the scale economies. To do a proper aggregation, one should

first stratify the estimates into the three groups and then apply the aggregation formulas

derived above to aggregate the scale efficiency scores of DMUs within each of these three

sub-groups separately. The resulting aggregate efficiency scores of sub-groups can then be

aggregated into a larger group that consists of all or some of the sub-groups, using proper

between-weights—the weights that would ensure hierarchical consistency of aggregation, as

discussed in more details in Simar and Zelenyuk (2007).

6 Some Special Cases

It is now worth considering some interesting special cases for our aggregation problem. First

of all, note that if all DMUs exhibit (or are to be measured with respect to) the same

technology then the formulas derived above can still be applied without any changes.

Secondly, note that for all the types of efficiency measures considered here, except the

allocative scale efficiency component, the aggregate efficiency is equal to one (i.e., 100%

efficiency of the certain type) if and only if each individual efficiency score is equal to one.

Thirdly, note that each DMU in the group exhibits CRS technology if and only if

ˇTEk(x, y) = TEk(x, y), ∀k ∈ {1, . . . ., n} , (6.1)

or, if and only if

Řk(x, p) = Rk(x, p), ∀k ∈ {1, . . . ., n} , (6.2)
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and therefore, if and only if

RSE = TSE = 1. (6.3)

This is an important indication property of a scale efficiency measure that one may want an

aggregate scale efficiency measure to satisfy.

Fourthly, if none of DMUs exhibits output oriented allocative inefficiency w.r.t. the

original output set and w.r.t. its CRS-hypothetical technology (i.e., when AEk = ǍE
k

=

1,∀k ∈ {1, . . . ., n}), then we have ASE = 1 and therefore

RSE = TSE (6.4)

which in turn will imply

ŘE = TE × TSE. (6.5)

Although having no allocative inefficiency is a sufficient condition for the dual and primal

(individual and aggregate) scale efficiencies to coincide, it is certainly not a necessary con-

dition. Indeed, a much weaker condition for the dual and primal (individual and aggregate)

scale efficiencies to yield equivalent results for any DMU k is for the technology of this DMU

k to be output scale homothetic (see Zelenyuk (2013b)), i.e. to satisfy the following property

P k(x) = Hk(x)P̌ k(x), x ∈ R
N
+ . (6.6)

where Hk(x) is a finite real-valued semi-continuous function Hk : R
N
+ → R

1
+ such that

Hk(x) ∈ (0, 1], ∀y ∈ R
M
+ . Intuitively, the structure of the individual technology of the type

given by (6.6) assumes that the output set can be decomposed (in the multiplicative way) into

the CRS-hypothetical output set, constructed from the original P k(x), and an appropriate

scaling factor Hk(x) that, in general, may depend only on the scale and the mix of inputs

described by x.

With some algebra, it can then be shown (see Zelenyuk (2013b)) that a DMU k has

output scale homothetic technology (6.6) if and only if

TEk(x, y) = Hk(x) ˇTEk(x, y), ∀(x, y) ∈ R
N+M
+ (6.7)

or, equivalently,

Rk(x, p) = Hk(x)Řk(x, p), ∀x ∈ R
N
+ , p ∈ R

M
++. (6.8)
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Therefore, an output scale homothetic technology is equivalent to saying that

TSEk(x, y) = RSEk(x, p) = 1/Hk(x), ∀(x, y) ∈ R
N+M
+ , p ∈ R

M
++. (6.9)

i.e., whenever the original output set differs from its CRS-hypothetical analogue by a scaling

factor (the size of which may vary over the scale or mix of inputs). In other words, whenever

P k(x) is a radial adjustment of P̌ k(x) by some factor Hk(x), we have exact equality of the

primal and the dual individual scale efficiency measures.

In turn, if every DMU k ∈ {1, . . . , n} exhibits output scale homothetic technology as in

(6.6), then

RSE = TSE =
n∑

k=1

(Hk(xk))−1
ω

k
r . (6.10)

i.e., the aggregate primal and dual scale efficiency measures are also equal.

Finally, in case information on output prices needed to compute the aggregation weights

is unavailable, additional assumptions can be imposed to derive price-independent weights

(see Färe and Zelenyuk (2007) for details).

7 Concluding Remarks

In this paper we developed a theory for aggregation of scale efficiency measures across DMUs

(firms, industries, countries, group of countries, etc.). The derivation is based on assuming

optimization behavior, additive aggregation structure on the output sets and the same (e.g.,

equilibrium) output prices across all DMUs. An advantage of the resulting aggregation

scheme (and aggregation weights, in particular) is that it is not ad hoc but derived from

certain assumptions coherent with economic theory, and coherent with previous aggregation

results.

This paper is just the first layer of theoretical foundation for analyzing aggregate scale

efficiency measures. Its goal was to provide mathematical structure with economic theory

foundation for such aggregation. The next layer shall be a statistical foundation. Indeed,

besides presenting an average of results, researchers and practitioners are often interested

in some measures of spread of the sample, such as the standard deviation, coefficient of

variation, interquartile range, etc., as well as in the possibility to use some statistical testing

procedures for inferring on various hypotheses. A hypothesis of an interest, for example,

might be whether the true aggregate scale efficiency for a particular sub-group is different

from unity (i.e., 100% efficiency) or some other level of interest. Another hypothesis of

interest might be whether the aggregate scale efficiency scores are equal across different
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sub-groups or not, or across time for the same sub-groups, etc. Estimating characteristics

of the sampling distribution of a statistic for a weighted mean where weights are random

variables as well and related testing is a challenging task. A potential solution here would be

to adapt the bootstrapping approach proposed in a different context by Efron (1979). This

is a subject in itself, in some way similar to the recent work of Simar and Zelenyuk (2007) for

bootstrapping the aggregate efficiency scores obtained via the DEA method, and we leave it

for further research.

It is also worth noting that the derived weights (and the theory in general) may not

be unique and perhaps better weight (and theories in general) could also be derived—and

we hope this particular work will stimulate this to happen. A natural extension to the

present work that might generate different weights would be to allow for reallocation of

inputs between DMUs in the technology aggregation structure and one of the ways to do

this is to adapt the approach of Nesterenko and Zelenyuk (2007) to the case of aggregation

of scale efficiencies.

Another interesting research question is an extension of the presented theory to the

intertemporal context—to measure changes of aggregate scale efficiency over time, as a com-

ponent of aggregate Malmquist productivity index or other indexes, by extending the work

of Zelenyuk (2006).

Similar aggregation theories can also be developed for the case when efficiency measures

are based on other functions, e.g., hyperbolic distance function, the directional distance

functions, etc. and these would be other natural paths for related future research (see Färe

et al (2008) and Bobykin and Zelenyuk (2010) for some related results).

Overall, we believe that the aggregation solution with economic theory justification de-

rived for the aggregation of scale efficiency in this paper must serve as a very useful platform

for future applied as well as theoretical work.
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Research Highlights  
for the article titled: 

Aggregation of Scale Efficiency 

We extend the aggregation theory in efficiency and productivity analysis  

We derive solutions for aggregation of individual scale efficiency measures 

We provide practical way of estimating scale efficiency of an industry (e.g., from DEA). 

The new aggregation result is coherent with previous aggregation frameworks  


