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We investigate the energy relaxation �T1� process of a qubit coupled to a bath of dissipative two-level
fluctuators �TLFs�. We consider the fluctuators strongly coupled to the qubit both in the limit of spectrally
sparse single TLFs as well as in the limit of spectrally dense TLFs. We conclude that the avoided level
crossings, usually attributed to very strongly coupled single TLFs, could also be caused by many weakly
coupled spectrally dense fluctuators.
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I. INTRODUCTION

With the current progress in fabrication, manipulation,
and measurement of superconducting qubits it became cru-
cial to understand the microscopic nature of the environment,
responsible for decoherence. Recent experiments showed
considerable advances even in the presence of the low fre-
quency, 1 / f , noise without eliminating its sources. The op-
eration at the “optimal point” in the quantronium1 or the
drastic reduction in unharmonicity in the transmon2 reduced
dephasing �increased T2� significantly. Especially in the
transmon the relation T2�2T1 is now routinely reported,
which implies that the decoherence is limited by the energy
relaxation �T1� process, i.e., the pure dephasing is
suppressed.

The microscopic nature of the dissipative environment,
responsible for the energy relaxation, is still unknown. While
the effects of the electromagnetic environment, including the
Purcell effect, can be reliably estimated,3 the intrinsic
sources of relaxation remain unidentified. There exist numer-
ous indications that the charge and the critical-current noise
are induced by collections of two-level fluctuators �TLFs�
residing, possibly, in the tunnel junction or at the surface of
the superconductors.4,5 Several microscopic models of TLFs
have been proposed.6–9 It was suggested4,10 that in charge
qubits the relaxation is due to charge fluctuators which are
simultaneously responsible for the 1 / f charge noise.11 On the
other hand, the flux noise might also be due to a large num-
ber of paramagnetic impurities.12,13 In addition, strong signa-
tures of resident two-level systems were found, especially in
Josephson phase qubits14,15 in which the Josephson junctions
have relatively large areas. Recently the coherent dynamics
of a qubit coupled strongly to a single TLF was explored
with the idea to use the TLF as a naturally formed quantum
memory.16,17

Strong coupling to fluctuators as a source of decoherence
of a qubit was the focus of research in the past, cf., e.g., Refs.
18–20. These works concentrated, however, on single-level
fluctuators, i.e., an electron jumping back and forth between
a continuum and a localized level. Such a system maps onto
an overdamped dissipative two-level system.21 In contrast,
here we study the effect of strong coupling to underdamped
�coherent� two-level fluctuators.

In this paper we analyze the properties of a qubit coupled
to TLFs and, in particular, the relaxation process. On one
hand, we study the dissipative dynamics of a qubit strongly
coupled to a single fluctuator; these results could be useful
for the analysis of the experimental data, e.g., for phase qu-
bits. On the other hand, we investigate a qubit coupled to a
collection of TLFs and our findings allow us to speculate
about some general features of the microscopic picture be-
hind the phenomenon of qubit relaxation, which could ac-
count for the experimental observations. In the next section
we discuss in more detail the analysis in this paper and pos-
sible features of the fluctuator bath.

II. MOTIVATION AND DISCUSSION

Below we investigate the dynamics of a qubit coupled to
one or many TLFs. Our findings, together with certain ob-
servations concerning the experimental data, allow us to
speculate about the properties of the collections of TLFs in
real samples. In other words, we suggest a possible structure
of the fluctuator bath, which is consistent with these
observations.

In this paper, we first consider a single TLF coupled reso-
nantly to the qubit, i.e., with its energy splitting close to that
of the qubit. These results can be useful for the analysis of
experiments in which the qubit is coupled resonantly to a
single TLF �while the other fluctuators are far away from
resonance and do not contribute to the qubit’s dynamics� or
strongly coupled to one TLF and weakly to the rest, which
form a “background.” In this regime the TLF strongly affects
the qubit’s dynamics and we observe two effects: �i� coherent
oscillations with the excitation energy going back and forth
between the qubit and the TLF and �ii� the decay to the
ground state due to the energy relaxation in either the TLF or
the qubit. The oscillations themselves also show decay,
dominated by dephasing processes. We describe the oscilla-
tion and relaxation processes and determine the relevant time
scales.

Further, we discuss the dynamics of a qubit coupled to a
collection of TLFs. Our motivation is based on the following
observations from the analysis of the experimental data: �a�
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strongly coupled TLFs �strongly coupled refers to a strong
qubit-TLF coupling� were observed experimentally in phase
qubits with large-area junctions.14–16 In these qubits the T1
time shows rather regular behavior as a function of the en-
ergy splitting of the qubit �in the regions between the
avoided level crossings, which arise in resonance with the
strongly coupled TLFs�; �b� in smaller phase and flux qubits
the T1 time often shows a seemingly random behavior as a
function of the energy splitting of the qubit;1,4,22 �c� the
strong coupling observed in Refs. 14–16 requires a micro-
scopic explanation. For instance, a large dipole moment of
the TLF, ed, is needed to account for the data, where d is of
the order of the width of the tunnel barrier and e is the
electron charge; and �d� experiments13 suggest a very high
density of �spin� fluctuators on the surface of superconduct-
ors.

Based on these observations we speculate about a possible
microscopic picture of the fluctuations, which could be con-
sistent with these observations: First, one could expect in the
analysis of the dependence of T1 on the level splitting that
the contribution of each fluctuator is peaked near its level
splitting �when it is resonant with the qubit and can absorb
its energy efficiently�. Further, one might assume that for a
large collection of spectrally dense TLFs �that is, with a
dense distribution of the level splittings�, the corresponding
peaks overlap strongly and the resulting T1-energy curve is
smooth �even though for a dense distribution the contribu-
tions of the TLFs are not necessarily independent�. Indeed,
this general picture is consistent with the data: in charge and
flux qubits, with smaller-area junctions, the TLFs are not
spectrally dense and resonances with single TLFs can be
resolved in the dependence of the relaxation rate on the level
splitting. This may look as a seemingly random collection of
peaks. In contrast, in phase qubits, with large-area junctions,
there are many TLFs �for instance, the TLFs could be located
in the junctions so that their number would scale with the
junction area�; thus the spectral distribution of their level
splittings is dense and almost continuous. This may produce
a smooth T1-vs-energy curve. Furthermore, one can specu-
late about the structure of the fluctuator bath. Suggested sce-
narios of the microscopic nature of the fluctuators find it
difficult to explain the existence of the strongly coupled
TLFs, which were observed, for instance, in the qubit spec-
troscopy via the avoided level crossings.14–16

In other words, in our picture each TLF is only coupled to
the qubit and they are essentially decoupled from each other.
For each of them the coupling to the qubit is much weaker
than observed in experiments.14–16 For a dense uniform dis-
tribution of the TLFs splittings, usual relaxation of the qubit
takes place. However, as we find below, if the level splittings
of the TLFs accumulate close to some energy value �which
may be a consequence of the microscopic nature of the
TLFs�, as far as the qubit’s dynamics is concerned the situ-
ation is equivalent to a single strongly coupled TLF. Thus, in
our picture, weakly coupled TLFs may conspire to emulate a
strongly coupled TLF, visible, e.g., via qubit spectroscopy.
Note, however, also the results of Refs. 23–25 pointing to-
ward single strongly coupled TLFs.

To demonstrate this kind of behavior, we further study the
regime, where two or more fluctuators are in resonance with

the qubit. Our main observation in this case is that the fluc-
tuators form a single effective TLF with stronger coupling to
the qubit.

For a collection of many TLFs with a low spectral density,
we estimate the statistical characteristics �by averaging over
the possible spectral distributions� of the random relaxation
rate of the qubit and estimate corrections to this statistics due
to the resonances that involve multiple TLFs.

Finally, we discuss collections of spectrally dense TLFs.
In this case we identify two regimes. If the TLFs are distrib-
uted homogeneously in the spectrum, they form a con-
tinuum, to which the qubit relaxes, and the dynamics is de-
scribed by a simple exponential decay. If, however, a
sufficiently strong local fluctuation of the spectral density of
TLFs occurs, the situation resembles again that with a single,
strongly coupled fluctuator. This may explain the origin of
the strongly coupled TLFs observed in the experiment.

III. MODEL

We consider the system described by the following
Hamiltonian:

Ĥ = −
1

2
�q�z −

1

2�
n

� f ,n�z,n +
1

2
�x�

n
v�,n�x,n + ĤBath. �1�

The first term, the Hamiltonian of the qubit in its eigenbasis

reads Ĥq=− 1
2�q�z, where �q is the level splitting between the

ground and the excited states, and �z is the Pauli matrix.
Similarly, the Hamiltonian of the nth TLF in its eigenbasis

reads Ĥf ,n=− 1
2� f ,n�z,n. We consider only transverse couplings

with the strengths v�,n, described by the third term. We note
that the qubit-TLF interaction �e.g., the charge-charge cou-
pling� would typically produce also other coupling terms in
the qubits’s eigenbasis �longitudinal and mixed terms; cf. the
discussion of the purely longitudinal coupling ��z�z relevant
for the dephasing by 1 / f noise, e.g., in Refs. 26 and 27�.
However, for our purposes �description of relaxation� the
transverse coupling is most relevant since it gives rise to
spin-flip processes between the qubit and TLFs. In our model
all TLFs interact with the qubit but not with each other. This
assumption is reasonable since the TLFs are microscopic ob-
jects distributed over, e.g., the whole area of the Josephson
junction. Thus, they typically are located far from each other

but interact with the large qubit. The term ĤBath describes the
coupling of each TLF and of the qubit to their respective
baths. We model the environment of the qubit and of the
TLFs as a set of baths characterized by the variables Xi and
coupling constants �i �specific examples are provided be-
low�. We write down and solve the Bloch-Redfield
equations28,29 for the coupled system of qubit and TLFs.

In the course of solving the Bloch-Redfield equations
many rates �elements of the Redfield tensor� play a role. It is
useful to reduce those rates, when possible, to the “funda-
mental” rates, i.e., those characterizing the decoupled TLFs
and the qubit. Each fluctuator is thus characterized by its
own relaxation rate �1

f ,n and by the pure dephasing rate ��
f ,n,

with the total dephasing rate given by �2
f ,n= �1 /2��1

f ,n+��
f ,n.

We define these rates below and also discuss the generaliza-
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tion for the case of a non-Markovian environment. Also the
qubit is characterized by its intrinsic �not related to fluctua-
tors� relaxation rate �1

q and the pure dephasing rate ��
q . Again

�2
q= �1 /2��1

q+��
q . In what follows the mentioned rates are

treated as fundamental. All the other rates, emerging in the
coupled system of the qubit and fluctuators, are denoted by
capital letters 	.

IV. SINGLE TLF

We first consider a system of a qubit and a single TLF,

Ĥ = −
1

2
�q�z −

1

2
� f�z +

1

2
v��x�x + ĤBath. �2�

We restrict ourselves to the regime �q�� f 
v�. Then the
ground state �0���g↑� and the highest energy level �3�
��e↓� are only slightly affected by the coupling. On the
other hand the states �e↑� and �g↓� form an almost degenerate
doublet. The coupling v� lifts the degeneracy to form the
two eigenstates �1�=−cos �

2 �g↓�+sin �
2 �e↑� and �2�=sin �

2 �g↓�
+cos �

2 �e↑� �cf. Fig. 1�. Here we introduced the angle tan �
=v� /�
, where �
��q−� f is the detuning between the qu-
bit and the TLF. The energy splitting between the levels �1�
and �2� is given by 
osc=�v�

2 +�
2.

A. Transverse TLF-bath coupling

First, we consider the simplest case in which only the TLF
is coupled to a dissipative bath and this coupling is trans-
verse. The coupling operator in Eq. �2� takes the form

ĤBath =
1

2
� f ,��x · Xf ,�, �3�

where the bath variable X̂f ,� is characterized by the �non-

symmetrized� correlation function Cf ,��t��	X̂f ,��t�X̂f ,��0��.
In thermal equilibrium we have Cf ,��−
�=e−
/TCf ,��
�. We
assume here that T�� f, i.e., that the temperature is effec-
tively zero so that we can neglect excitations.

We solve the Bloch-Redfield equations28,29 for the
coupled system using the secular approximation. As the ini-
tial condition we take the qubit in the excited state and the
TLF in its thermal equilibrium state. Tracing out the TLF’s
degrees of freedom we find the dynamics of 	�z� �Fig. 2�.

For the expectation value 	�z� we find the following ex-
pression:

	�z�t�� = 	�z�� + a↓,1e−	↓,1t + a↓,2e−	↓,2t

+ aosc cos�
osct�e−	osct, �4�

where 	�z���−1 is the zero-temperature equilibrium value.
We can separate the right-hand side of Eq. �4� into damped
oscillations, with decay rate 	osc, and a purely decaying part.
The amplitude and the decay rate of the oscillating part are
given by

aosc =
v�

2

v�
2 + �
2 , �5�

	osc =
1

2
�1

f . �6�

Here the rate

�1
f =

1

4
� f ,�

2 Cf ,��
 � �q� �7�

is the relaxation rate of the fluctuator. We observe that the
decay rate of the oscillations, 	osc, is independent of the
coupling strength v� and of the detuning �
. Note that the
physics considered here is only relevant near the resonance
� f ��q and we assume that the spectrum Cf ,��
� is suffi-
ciently smooth in this region so that Cf ,��� f��Cf ,���q�.

For the purely decaying part we find

a↓,1 = 2 sin4 �

2
, a↓,2 = 2 cos4 �

2
,

	↓,1 = 	10
f = cos2 �

2
�1

f , 	↓,2 = 	20
f = sin2 �

2
�1

f , �8�

where 	10
f and 	20

f are the rates with which the states �1� and
�2� decay into the ground state �0� �cf. Fig. 3�.

As we can see, the decay law for 	�z�t��− 	�z�� is given
by a sum of several exponents. It is sometimes useful, e.g.,
for comparison with experiments where no fitting to a spe-

FIG. 1. Level structure of the coupled qubit-TLF system in reso-
nance �
=0. For v�=0 the middle levels form a degenerate dou-
blet. The coupling lifts the degeneracy and splits the levels by the
oscillation frequency 
osc.

0 1 2 3 4
t �1�Γ1�

�0.5

0.0

0.5

1.0
�Σz�t��

FIG. 2. �Color online� 	�z� as a function of time in units of the
inverse TLF relaxation rate �1

f for the case of the qubit exactly in
resonance with the TLF �dotted black line�. One observes oscilla-
tions with frequency 
osc. The solid red curve gives the decay av-
eraged over the oscillations, characterized by aav and 	av and the
dashed blue curve shows the envelope described by aenv and 	env.
Parameters in this plot are �in units of �1

f �: �q=� f =100 and v�

=10.
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cific decay law was performed, to define a single decay rate
for the whole process. If a function f�t� decays from
f�t=0�=a to f�t→��=0, we can define the single decay rate
	 from 
0

�f�t�dt=a /	.
We can introduce the single decay rate in two different

ways, either effectively averaging over the oscillations or
including all parts and describing the envelope curve �cf. Fig.
2�. In the first case, averaging over the oscillations, we
choose f�t�=a↓,1e−	↓,1t+a↓,2e−	↓,2t and obtain for the ampli-
tude and the decay rate

aav = a↓,1 + a↓,2 = 1 +
�
2

v�
2 + �
2 , �9�

	av =
a↓,1 + a↓,2

a↓,1

	↓,1
+

a↓,2

	↓,2

=
1

2
�1

f v�
2 �v�

2 + 2�
2�
v�

4 + 5v�
2 �
2 + 4�
4 . �10�

This gives a quasi-Lorentzian line shape of 	av��
� with the
width of the order of the coupling v� and the maximum
value at resonance of 	av��
=0�= 1

2�1
f .

Figure 4 shows the amplitudes and rates characterizing
the decay of the oscillations �dashed red� and of the purely
decaying part �solid blue� of the qubits 	�z�.

To describe the envelope we choose f�t�=a↓,1e−	↓,1t

+a↓,2e−	↓,2t+aosce
−	osct �Fig. 2�. This gives

	env =
a↓,1 + a↓,2 + aosc

a↓,1

	↓,1
+

a↓,2

	↓,2
+

aosc

	osc

=
1

2
�1

f 2v�
2 �v�

2 + �
2�
2v�

4 + 5v�
2 �
2 + 4�
4 ,

�11�

with amplitude aenv=a↓,1+a↓,2+aosc=2. This again gives a
quasi-Lorentzian peak with height 	env��
=0�= 1

2�1
f and

width similar to that of Eq. �10�.
The results presented above are valid in the regime when

the coupling between the qubit and the TLF is stronger then
the decay rates due to the interaction with the bath, v�
�1

f .
In the opposite limit the golden-rule results hold, with the
relaxation rate �v�

2 /�1
f �cf. Refs. 18, 20, and 30�.

B. General coupling

We now provide the results for the general case, when
both the qubit and TLF are coupled to heat baths. The cou-
pling in Eq. �2� is given by

ĤBath =
1

2
�� f ,��z · Xf ,� + � f ,��x · Xf ,�� +

1

2
��q,��z · Xq,�

+ �q,��x · Xq,�� . �12�

It includes both transverse �� � and longitudinal � � � coupling
for both the qubit and the fluctuator. The temperature is still
assumed to be well below the level splitting �q�� f so that
we can neglect excitation processes from the ground state.

We specify now the main ingredients of the Bloch-
Redfield tensor of the problems. As in Eq. �8� the relaxation
rates from the states �1� and �2� to the ground state due to the
transverse coupling of the fluctuator are given by

	10
f = cos2 �

2
�1

f , 	20
f = sin2 �

2
�1

f ,

�1
f =

1

4
� f ,�

2 Cf ,��
 � �q� . �13�

Similarly the transverse qubit coupling gives rise to new
rates,

	10
q = sin2 �

2
�1

q, 	20
q = cos2 �

2
�1

q,

�1
q =

1

4
�q,�

2 Cq,��
 � �q� . �14�

FIG. 3. �Color online� Level structure of the coupled qubit-
fluctuator system in the simplest case where only the TLF couples
to a heat bath. The rates 	10

f and 	20
f in Eq. �8� lead from levels �1�

and �2�, respectively, to the ground state �0�. The excited state �3� is
not included in this illustration.

(b)

(a)

FIG. 4. �Color online� Amplitudes a and rates 	 for the decay of
the oscillating �dashed red� and purely decaying �solid blue� part of
the qubit’s 	�z� as a function of the detuning �
 between the qubit
and fluctuator. The detuning is taken in units of the coupling v�.
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The longitudinal coupling to the baths, ��z ,�z, gives two
types of additional rates in the Redfield tensor, a pure
dephasing rate, 	�, and the transition rates between the states
�1� and �2�,

	�
f = cos2 ���

f ,

	12
f =

1

4
� f ,�

2 sin2 �Cf ,��− 
osc� ,

	21
f =

1

4
� f ,�

2 sin2 �Cf ,��
osc� ,

where ��
f is the pure dephasing rate of the TLF,

��
f =

1

2
� f ,�

2 Sf ,��
 = 0� . �15�

Here Sf ,��
�= 1
2 
Cf ,��
�+Cf ,��−
�� is the symmetrized cor-

relator.
Similarly, the rates due to the qubit’s longitudinal cou-

pling to the bath are given by

	�
q = cos2 ���

q ,

	12
q =

1

4
�q,�

2 sin2 �Cq,��− 
osc� ,

	21
q =

1

4
�q,�

2 sin2 �Cq,��
osc� ,

��
q =

1

2
�q,�

2 Sq,��
 = 0� . �16�

Figure 5 gives an illustration of the processes involved in the
formation of the Redfield tensor.

For 	�z�t�� we again obtain the decay law, Eq. �4�. The
amplitude of the oscillating part, aosc, is still given by Eq.
�5�. The decay rate of the oscillations is, however, modified

	osc =
1

2
�	1 + 	12 + 	21� + 	�. �17�

The rates without a superscript represent the sum of the re-
spective rates for the qubit and TLF,

	1 = �1
f + �1

q, 	� = 	�
f + 	�

q ,

	12 = 	12
f + 	12

q , 	21 = 	21
f + 	21

q .

The purely decaying part is given by a slightly more com-
plicated expression. Defining

A = 	10 + 	12, B = 	20 + 	21,

C = ��A − B�2 + 4	12	21,

we obtain

a↓,1/2 =
1

2
�1 + cos2 �� �

2 cos ��A − B� + �	12 + 	21�sin2 �

2C
,

	↓,1/2 =
1

2
�A + B � C� .

In the limit �q,� =� f ,� =�q,�=0, we reproduce the results of
the previous section.

The decay of the average is again characterized by

aav = a↓,1 + a↓,2 = 1 +
�
2

v�
2 + �
2 , �18�

	av =
a↓,1 + a↓,2

a↓,1

	↓,1
+

a↓,2

	↓,2

. �19�

We work in the experimentally relevant limit 
osc�T. Then
we obtain

	12
f = 	21

f = sin2 �	v
f ,

	12
q = 	21

q = sin2 �	v
q ,

where

	v
f �

1

4
� f ,�

2 Sf ,��
osc� ,

	v
q �

1

4
�q,�

2 Sq,��
osc� . �20�

The decay rate of the average then reads

	av =
v�

2 + 2�
2

2�v�
2 + �
2�

�	1 −
4�1

f2
�
2

v�
2 �	1 + 4	v� + 4�1

f �
2� ,

�21�

where 	v=	v
f +	v

q.
At resonance the resulting relaxation rate 	av is the mean

of the decay rates of the qubit and TLF. Thus, if the TLF
relaxes slower than the qubit �as was the case in Ref. 16�, 	av
decreases. Figure 6 shows the average decay rate 	av for the
two cases with �1

f bigger �solid blue� and smaller �dotted red�
than �1

q. The double-peaked structure in the first case is due
to the contribution 	v of the longitudinal coupling to the
baths. Exactly in resonance and far away from resonance the
effect of 	v vanishes while for �
�v� it produces some-
what faster relaxation.

FIG. 5. �Color online� Illustration of the relevant transition pro-
cesses in the general case of arbitrary coupling of the qubit and
fluctuator to a heat bath. In addition to the transitions from the
central levels �1� and �2� to the ground state �0� with the rates 	10

and 	20, we now also have transitions between the two central
levels with the rates 	12 and 	21. The excited state �3� is again
omitted in the illustration.
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Non-Markovian effects

In the previous section we have shown 
see Eq. �17�� that
pure dephasing affects only the decay rate of the oscillations
of 	�z�. The result, Eq. �17�, is valid for a short-correlated
�Markovian� environment. More specifically the relations
	�

q =cos2 ���
q with ��

q = 1
2�q,�

2 Sq,��
=0� and 	�
f =cos2 ���

f with
��

f = 1
2� f ,�

2 Sf ,��
=0� are valid only in the Markovian case. The
generalization of these results to the case of non-Markovian
noise, e.g., 1 / f noise, is straightforward.1 Assuming that at
low frequencies Sq,� =Aq,� /
 and Sf ,� =Af ,� /
, we obtain

	�z�t�� = 	�z�� + a↓,1e−	↓,1t + a↓,2e−	↓,2t

+ aosc cos�
osct�f1/f�t�e−	osc� t, �22�

where ln f1/f�t��−t2 cos2 ���q,�
2 Aq,� +� f ,�

2 Af ,�� and 	osc� now
includes only Markovian contributions.

In resonance, �
=0, we have cos �=0 and therefore it
seems at the first sight that the 1 / f noise does not cause any
dephasing. Yet, as shown in Ref. 31, in this case the qua-
dratic coupling becomes relevant. The instantaneous splitting
between the middle levels of the coupled qubit-TLF system,
�1� and �2�, is given by


osc�Xq,�,Xf ,�� = �v�
2 + ��q,�Xq,� + � f ,�Xf ,��2

� v� +
1

2

��q,�Xq,� + � f ,�Xf ,��2

v�

. �23�

This dependence produces a random phase between the
states �1� and �2� and, as a result, additional decay of the
oscillations of 	�z�. We refer the reader to Ref. 31 for an
analysis of the decay laws and times. Thus slow �1 / f� fluc-
tuations make the decay of the coherent oscillations of 	�z�
faster without considerably affecting the average relaxation
rate 	av.

For strong 1 / f noise, thus, a situation arises in which the
oscillations decay much faster than the rest of 	�z�. In ex-
periments with insufficient resolution this may appear as a
fast initial decay from 	�z�=1 to 	�z�=1−aosc followed by a
slower decay with the rate 	av.

C. Two two-level fluctuators

As a first step toward the analysis of the effect of many
TLFs, we examine now the case when two fluctuators are
simultaneously at resonance with the qubit. This situation in
the weak-coupling regime was considered, e.g., in Ref. 32. In
this regime the fluctuators act as independent channels of
decoherence and thus the contributions from different TLF
are additive. However, in the regime of strong coupling be-
tween the qubit and the fluctuators, which is the focus of this
paper, we do not expect the decoherence effects of the two
fluctuators to simply add up. This means that the resulting
relaxation rate is not given by the sum of two single-
fluctuator rates. The Hamiltonian of the problem reads

Ĥ = −
1

2
�q�z −

1

2�
n=1

2

� f ,n�z,n +
1

2
�x�

n=1

2

v�,n�x,n + ĤBath,

�24�

where ĤBath contains now the coupling of each of the fluc-
tuators to its respective bath. In the regime of our interest,
�q�� f ,1�� f ,2
v�,1 ,v�,2, the spectrum splits into four parts.
The ground state is well approximated by �g↑↑�. Analo-
gously, the highest excited state is close to �e↓↓�. The cou-
pling v�,n is mainly relevant within two almost degenerate
triplets. The first triplet is spanned by the states with one
excitation: ��e↑↑� , �g↓↑� , �g↑↓��. In the second triplet,
spanned by ��g↓↓� , �e↑↓� , �e↓↑��, there are two excitations.
At low temperatures and for the initial state in which the
qubit is excited and the fluctuators are in their ground states,
only the first triplet and the global ground state are relevant.
Within the first triplet the Hamiltonian reads

1

2� 2�q v�,1 v�,2

v�,1 2� f ,1 0

v�,2 0 2� f ,2
� ,

where the energy is counted from the ground state.
First, we consider the two fluctuators exactly in resonance

with each other, � f ,1=� f ,2=� f, and approximately at reso-
nance with the qubit: �q�� f. We perform a rotation in the
two-state subspace spanned by the states, where one of the
TLF is excited, by applying the unitary transformation

U = �1 0 0

0 cos � sin �

0 − sin � cos �
� . �25�

Choosing the angle �=arccos
v�,1

�v�,1
2 +v�,2

2 , we arrive at the trans-

formed Hamiltonian

1

2� 2�q �v�,1
2 + v�,2

2 0

�v�,1
2 + v�,2

2 2� f 0

0 0 2� f

� .

Figure 7 gives an illustration of what happens. After the
rotation 
Eq. �25�� the qubit is coupled to only one effective
state �1�, whereas it is completely decoupled from the “dark”
state �2�. For symmetric coupling v�,1=v�,2 the states �1�
and �2� are just symmetric and antisymmetric superpositions

FIG. 6. �Color online� 	av as a function of the detuning �

�rates in units of the qubit’s relaxation rate �1

q, detuning in units of
the coupling strength v�� for the general case when the TLFs re-
laxation rate �1

f is higher �solid blue, �1
f =1.5�1

q�/lower �dashed red,
�1

f =0.5�1
q� than the qubit’s relaxation rate �1

q. The parameters in this
plot are 	v

q =	v
f =0.3 and v�=5 �in units of �1

q�.
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of �g↓↑� and �g↑↓�. Thus, the rotation demonstrates that the
situation is equivalent to only one effective TLF coupled to
the qubit with the coupling strength

ṽ� = �v�,1
2 + v�,2

2 .

Analyzing the coupling of the effective TLF to the dissipa-
tive baths �of both fluctuators�, we conclude that the effective
TLF is characterized by the relaxation rate

�̃1
f =

1

v�,1
2 + v�,2

2 �v�,1
2 �1

f ,1 + v�,2
2 �1

f ,2� .

At this point we can apply all the results of Sec. IV A with
v� replaced by the renormalized ṽ� and the relaxation rate
�1

f replaced by �̃1
f . In particular, using formulas �9� and �10�

we introduce

	av
�2���
� = 	av��
��v�→ṽ�,�1

f →�̃1
f . �26�

Here the superscript �2� stands for coupling to two fluctua-
tors. The function 	av

�2���
� is peaked around �
=0. The
height and the width of the peak depend on the relations
between the coupling strengths and the relaxation rates of the
two fluctuators. In the limiting cases of “clear domination,”
e.g., for v�,1
v�,2 and �1

f1 
�1
f2, everything is determined

by a single fluctuator. In the opposite limit of identical fluc-
tuators, i.e., for v�,1=v�,2 and �1

f1 =�1
f2, the height of the

peak 
Eq. �26�� is given by �1
f1 /2=�1

f2 /2, exactly as in the
case of a single fluctuator. The width of the peak is, however,
�2 times larger since ṽ�=�2v�,1=�2v�,2. Clearly, the relax-
ation rate of the qubit is not given by a sum of two relaxation
rates due to the two fluctuators.

If the fluctuators are not exactly in resonance, this result
still holds as long as their detuning �� f =� f ,1−� f ,2 is smaller
than the renormalized coupling ṽ�. For much larger detun-
ing, the rate is given by the sum of two single-TLF contri-
butions.

D. Many degenerate fluctuators

For a higher number of fluctuators in resonance, i.e., � f ,n
=� f, the argument presented above is still valid and the re-
sulting decoherence of the qubit’s state is the same as for a
single TLF with a renormalized coupling strength of

ṽ� = ��
n

v�,n
2

and an effective TLF relaxation rate

�̃1
f =

1

ṽ�
2 �

n
v�,n

2 �1
f ,n.

It should be stressed that this equivalence holds only within
the one-excitation subspace of the system.

If the system with many fluctuators is excited more than
once it is no longer equivalent to a system with one effective
TLF. Multiple excitation could be achieved, e.g., by follow-
ing the procedure used in Ref. 33 or that of Ref. 16 repeat-
edly, i.e., exciting the qubit while out of resonance, transfer-
ring its state to the TLFs, exciting the qubit again and so
forth. The simplest case is when all the fluctuators have
equal couplings to the qubit v�,n=v�. The system’s Hamil-
tonian reads then

H = −
1

2
�q�z − � fSz + v��xSx, �27�

where S���1 /2��n��,n.
For procedures of the type used in Refs. 16 and 33, i.e.,

when only the qubit can be addressed, the TLFs will remain
in the spin representation of S� in which they were originally
prepared. If the TLFs are all initially in their ground states,
the accessible part of the Hilbert space is that of a qubit
coupled to a spin N /2, where N is the number of TLFs. For
the procedure similar to that of33 the oscillation periods with
k excitations would be given by 2� / ṽ�,k, where ṽ�,k
=�k�N+1−k� ·v�.

V. COLLECTION OF FLUCTUATORS

We now analyze decoherence of a qubit due to multiple
TLFs. For this purpose, we introduce an ensemble of TLFs
with energy splittings � f ,n, distributed randomly. For each
fluctuator n we assume a uniform distribution of its energy
splitting � f ,n in a wide interval �E, with probability density
pn=1 /�E. The overall density of fluctuators is given by �0
�N /�E, where N is the total number of fluctuators in the
interval �E. For simplicity we assume all the fluctuators to
have the same coupling to the qubit v� and the same relax-
ation rate �1

f . The interval is much wider than a single peak,
�E
v�, and the total number of TLFs in the interval is N
=�0�E
1.

We find that the physics is controlled by the dimension-
less parameter �̄��0v�. For �̄�1 the probability for two
fluctuators to be in resonance with each other is low. Once
the qubit is in resonance with one of the TLFs, the decay law
of the qubit’s 	�z� takes the form �4�. In this regime we take
	av to characterize the decay. We expect that in most situa-
tions the oscillations in Eq. �4� will decay fast due to the pure
dephasing and one will observe a very fast partial �down to
half an amplitude� decay of 	�z� followed by further decay
with rate 	av. Thus the relaxation rate is given by a sum of
many well separated peaks, each contributed by a single fluc-
tuator. Since the positions of the peaks are random, we ex-
pect, for �̄�1, a randomly looking dependence of the qubit’s
relaxation rate on the qubit’s energy splitting �and a collec-
tion of rare peaks for lower densities, �̄�1�. To characterize
the statistical properties, we determine in Sec. V A the relax-

FIG. 7. �Color online� Illustration of the performed transforma-
tion in the one-excitation subspace of the Hamiltonian for the case
of equal couplings v�,1=v�,2=v�. Applying the rotation 
Eq. �25��
we arrive first in a situation where the state �2� �the dark state� is
completely decoupled from the other two states. The renormalized
coupling then splits the remaining two states, giving a situation
analogous to the coupling to one TLF.
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ation rate, averaged over realizations, and its variance.
For larger �̄�1 the situation changes, as the peaks be-

come dense and the probability to have two or more fluctua-
tors in resonance with each other is high. We conclude that it
is not reasonable anymore to characterize the decay of 	�z�
by 	av. In this limit the coherent oscillations turn into much
faster relaxation. The excitation energy is transferred from
the qubit to the TLFs on a new, short time scale, ���̄v��−1,
which we now call the relaxation time. The energy remains
in the TLFs for much longer time ��1 /�1

f � before it is re-
leased to the dissipative baths. Yet, if a strong enough fluc-
tuation of the TLFs spectral density occurs, coherent oscilla-
tions appear again. A set of TLFs almost at resonance with
each other form an effective strongly coupled fluctuator. The
decay time of the oscillations is due to the background den-
sity of TLFs rather than due to the coupling to the baths. This
could be an alternative explanations for the findings of Refs.
14–16. In Sec. V B we describe these two situations.

A. Independent fluctuators, �̄™1

In this regime the relaxation rate 	 is given by a sum of
single-fluctuator contributions. For a given realization of the
ensemble we obtain

	��q� = �
n

	av��q − � f ,n� . �28�

Integrating over the TLF energy splittings � f ,n, we obtain the
average relaxation rate

		� =� dN�p�N��
n

	av��q − � f ,n� � �1
f �̄ . �29�

Here dN�=d� f ,1¯d� f ,N and the probability distribution p�N�

=�npn is given by the product of single-TLF distribution
functions, pn= 1

�E =
�0

N .
We also find the variance

			2�� = 		2� − 		�2 � ��1
f �2�̄ . �30�

Thus

			2��
		�2 �

1

�̄
. �31�

This result can be expected. In the regime �̄�1 in each
realization of the environment the function 	��q� is a collec-
tion of rare peaks of height 1

2�1
f and width v�. The average

value of 	 is, thus, small but the fluctuations are large. As
expected, the relative variance decreases as the effective den-
sity �̄ increases.

As we have seen in Sec. IV C, the contribution from two
TLFs in resonance differs from the sum of two single-TLF
contributions. This effect leads to modifications of Eqs. �29�
and �30� with the further increase in the spectral density �̄ of
the fluctuators. The relaxation rate becomes lower than the
result, Eq. �29�, in the approximation of independent fluctua-
tors and the straightforward estimate gives

		� � �1
f ��̄ − c1�̄2� , �32�

Similarly, for the variance �which is close to the mean
square� we find

			2�� � ��1
f �2��̄ − c2�̄2� . �33�

Here both prefactors c1 ,c2�1. For example, c1=2−�2, c2
�1.71 in the rough approximation, when we �i� account for
correlations by using the rate 
Eq. �26�� for two resonant
TLFs to describe the joint effect of two fluctuators, n and m,
in a certain range around resonance, i.e., when their energy
splittings differ by less than the coupling strength, �� f ,n
−� f ,m��v� and �ii� neglect correlations for larger detunings
�� f ,n−� f ,m�.

Figure 8 shows the relaxation rate 	 for one possible re-
alization of the TLF distribution at �̄=0.5. The solid blue line
corresponds to the approximation of independent fluctuators

Eq. �28�� while the dashed red line is calculated using the
approximation described.

We see that the experimental data, where “random” be-
havior of the relaxation rate as a function of the qubit’s en-
ergy splitting was observed, could be consistent with the
situation depicted in Fig. 8, i.e, with �̄�1.

B. Spectrally dense fluctuators, �̄š1

For higher densities �̄ the calculations above are no longer
valid. In this section we discuss the limit of very high spec-
tral densities, �̄
1. In the following we restrict ourselves to
the one-excitation subspace of the system and neglect the
couplings to the baths. Thus we consider the one-excitation
subspace of the following Hamiltonian:

Ĥ = −
1

2
�q�z −

1

2�
n

� f ,n�z,n +
1

2
�x�

n
v�,n�x,n. �34�

Our purpose is to diagonalize the Hamiltonian in the one-
excitation subspace and to find the overlap of the initial state
�i� �qubit excited, all fluctuators in the ground state� with the
eigenstates ��k�, labeled by an index k, and having the
eigenenergies Ek. This allows us to obtain the time evolution
of the initial state,

FIG. 8. �Color online� 	 as a function of the qubit’s level split-
ting �q in units of the TLF relaxation rate �1

f for one possible real-
ization of the fluctuator distribution with �̄=0.5 and v�=5�1

f . Solid
blue line: approximation of independent fluctuators 
Eq. �28��.
Dashed red line: with account for correlations, see text. The correc-
tions are most pronounced in areas, where more than one fluctuator
is in resonance �	�

1
2�1

f �.
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�i�t�� = �
k

��k�	�k�i�e−iEkt. �35�

We begin with the case of a completely uniform spectral
distribution. This case is well known in quantum optics as
the Wigner-Weisskopf theory.34 We obtain a Lorentzian
shape of the overlap function. Figure 9 shows the overlap
�	�k � i��2 for an effective density �̄=1 as a function of Ek. We
arrive at the probability amplitude to find the qubit still ex-
cited after time t�0,

	i�i�t�� = �
k

�	�k�i��2e−iEkt

=� dE�
k

�	�k�i��2��E − Ek�e−iEt

=� dE

2�

	

�	

2
�2

+ E2

e−iEt = e−	t/2, �36�

where 	= �
2 �̄ ·v�. Thus the decay of the initially excited qu-

bit in this situation is described by a simple exponential de-
cay, �	i � i�t���2=e−	t. The width 	 of the Lorentzian in Fig. 9
determines the decay rate of the excited state.

Note that we did not include here the coupling of either
the qubit or the fluctuators to the dissipative baths. These
couplings will broaden each of the eigenstates by an amount
��1

f . As long as this broadening is smaller than the resulting
decay rate 	= �

2 �̄ ·v� �for strongly coupled fluctuators �v�


�1
f � and �̄�1 this is always the case�, the dissipative

broadening has little effect. Thus the system of the coupled
qubit and fluctuators remains for a long time ��1 /�1

f � in the
one-excitation subspace but the qubit relaxes much faster
and the energy resides in the fluctuators.

Further, we analyze the situation with a large number of
TLFs, whose energy splittings are accumulated near some
value. For instance, this behavior may originate from the
microscopic nature of the fluctuators. As we have seen
above, a collection of resonant TLFs is equivalent, within the
single-excitation subspace, to one effective TLF with a much
stronger coupling to the qubit. This results in two energy
levels, separated by this new strong effective coupling con-
stant. As we discussed above, this may be the origin of the
visible properties of strongly coupled TLFs. To illustrate this
setting, we show typical numerical results in Fig. 10. The
data are shown for the situation, where instead of many reso-
nant TLFs we have a large collection of TLFs distributed in
a certain energy range. On top of the homogeneous distribu-
tion with density �̄=1, we assume, locally, a higher density
��̄=10� of fluctuators with energies close to that of the qubit.

(b)

(a)

FIG. 9. �Color online� �a� Level structure of a qubit coupled to a
uniform spectral distribution of fluctuators. The one-excitation sub-
space is shown. The state, where the qubit is excited, �e↑ ↑ ↑¯�, is
coupled with strength v� to all other levels in this subspace. The
ground state �g↑ ↑ ↑¯� is energetically well separated from the
subspace with one excitation. �b� Overlap of the initial state �i�
= �e↑ ↑ ↑¯� with the eigenstates of the coupled system ��k� for a
uniform distribution of TLFs with an effective density �̄=1 as de-
picted above. The energy is counted from the energy of the initial
state.

(b)

(a)

FIG. 10. �Color online� �a� Level structure for a nonhomoge-
neous spectral distribution of TLFs. At energies near the qubit’s
level splitting �q the density is increased. The state �e↑ ↑ ↑¯� is
coupled equally to each level in the one-excitation subspace. �b�
Overlap of the initial state with the eigenstates of the coupled
system with a higher local density �̄local=10 between �=−10 and
�=10 �in units of v��. Out of resonance the effective density is
�̄=1.
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We obtain a double-peak structure for the overlap �	�k � i��2.
Performing again a calculation of Eq. �36�, we obtain oscil-
lations with frequency given by the energy splitting of the
two peaks in Fig. 10. The widths of the peaks �set at this
level by the local density� determine the decay rate of the
oscillations. If these peaks are wider than the dissipative
broadening, the latter can be neglected. Thus, the effect of
the fluctuator bath with strong density variations on the qubit
is equivalent to that of a single TLF with an effective cou-
pling strength ṽ� much stronger than the couplings v�,n be-
tween the qubit and the individual physical TLFs.

VI. CONCLUSIONS

In this paper we examined the effect of strongly coupled
two-level fluctuators on the dissipative dynamics of a qubit.
We have described the following phenomena: �a� if the qubit
and TLF are close to resonance, one should observe coherent
oscillations between them.16 We have analyzed the effects of
dissipation and the relaxation rates. These results may be
important in the studies of single two-level fluctuator sys-
tems, e.g., with the idea to use them as quantum memory. �b�

The situation of a qubit coupled to several TLFs with degen-
erate level splittings is equivalent to the coupling of the qubit
to a single effective TLF with a renormalized, stronger cou-
pling strength. �c� Collections of TLFs with spectral density
�̄�1 could show a seemingly random dependence of the
qubit’s relaxation rate on its level splitting. �d� In the dense
limit, �̄
1, we conclude that uniform distributions of the
TLF energies lead to the exponential relaxation of the qubit.
Local strong fluctuations of the density in the energy distri-
bution can, however, from the qubit’s viewpoint appear as a
single strongly coupled effective TLF. We conclude that the
signatures of strong coupling to single two-level systems of-
ten observed in qubit spectroscopy could well arise from
weak coupling to many nearly resonant TLFs. We emphasize
that this equivalence holds only for the initial state in which
the qubit is excited and the fluctuators are not.
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J. Lisenfeld, M. Marthaler, G. Schön, and A. Ustinov for
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