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Abstract 

Aims: Polymorphisms of the ADIPOQ gene were associated with diabetic nephropathy (DN) in case-control studies predominantly among European 

populations. Gender may modify the ADIPOQ associated risk for DN. We investigated the association of 18 ADIPOQ polymorphisms with DN in a 

prospective Taiwanese cohort of type 2 diabetes (T2D) and explored whether gender plays a role in this genetic association.  

Methods: Selected single nucleotide polymorphisms (SNPs) of ADIPOQ were genotyped in 566 T2D patients with normoalbuminuria at baseline. 

DN was defined based on urinary albumin-to-creatinine ratio (ACR). The Cox proportional hazard model was used to explore the association of 

individual SNP to DN events under different genetic models over a 6-year follow-up period. Analyses were further stratified by gender.    

Results: In male patients, the adjusted hazard ratios under the recessive models were 1.81 for rs2241766 TT (vs. GT+GG, 95% CI=1.10-2.96, 

p=0.019) and 1.89 for rs1063537 CC (vs. CT+TT, 95% CI=1.15-3.11, p=0.013). In the Kaplan-Meier survival curve, males carrying rs2241766 TT 

(vs. GT+GG, p=0.050) and rs1063537 CC (vs. CT+TT, p=0.037) recessive homozygotes also had a reduced nephropathy-free survival rate. SNPs 

rs2241767 and rs2082940, both in strong correlation with tag SNP rs1063537 (r2≥0.96), were also associated with DN progression in males. In 

females, ADIPOQ polymorphisms were not associated with the progression of DN.  

Conclusions: ADIPOQ genetic polymorphisms rs2241766 (+45T>G), rs1063537, rs2241767 and rs2082940 were correlated with the progression of 

DN in Taiwanese male patients with T2D. The role of gender in this ADIPOQ genetic association needs to be further investigated in other 
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populations.   

 

Keywords: ADIPOQ; diabetic nephropathy; gender-specific; polymorphism 

  

Introduction  

Diabetic nephropathy (DN) is the leading cause of end-stage renal disease (ESRD) [1], and affects more patients with type 2 diabetes (T2D) than 

those with type 1 diabetes (T1D) [2]. A global study has reported that the overall prevalence of albuminuria in T2D to be about 50% [3]. Asian and 

Hispanic patients have the highest prevalence of albuminuria (55%), while Caucasians have the lowest (40.6%) [3], indicating possible ethnic 

differences. The pathogenesis of DN is multifactorial, and thought to come about as a result of environmental and genetic factors [4]. Genetic factors 

play an important role in the observed ethnic disparity in the development of DN [4], and gender may predispose patients to the development of 

kidney disease, as both animal and human studies have reported a higher incidence and a faster progression rate of the disease among males [5-7].         

The adiponectin gene (ADIPOQ), located on human chromosome 3q27, has been mapped as a genetic susceptibility locus for obesity, insulin 

resistance, T2D, and cardiovascular disease (CVD) in different populations [8,9]. Adiponectin, encoded by ADIPOQ, is lower in patients with T2D 

and CVD due to its insulin-sensitizing, anti-inflammatory, and anti-atherogenic properties [10]. However, an increase in circulating adiponectin is 

found in patients with kidney diseases [11-13]. Polymorphisms in the two small regions of ADIPOQ, one in the promoter and another in the boundary 

of exon 2-intron 2, are the most commonly discussed variants. To date, a small number of case-control studies have reported an association between 

ADIPOQ polymorphisms and DN among T1D and T2D patients [14-19]. However, these studies were carried out predominantly among Europeans 

with only one being conducted in a Chinese population [16]. Zhang et al have recently reported an association between promoter polymorphism 
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rs17300539 (-11391A/G) and DN in European female subjects with T1D, though the biological basis of gender predisposition is not very well 

understood [14,15].  

In this prospective study, we first genotyped a larger number of 18 ADIPOQ polymorphisms, and then examined their genetic effects on the 

progression of DN in Taiwanese T2D patients. We further explored whether gender plays a role in this genetic association.  

 

Materials and Methods  

Study subjects   

The study subjects were diagnosed T2D patients enrolled in a study project involving diabetes management through an integrated delivery 

system (DMIDS) (ClinicalTrials.gov NCT00288678). Details of the study design and inclusion/exclusion criteria have been reported elsewhere [20]. 

Briefly, 1,209 T2D patients were recruited at baseline (August 2003 to December 2005) and followed until the end of 2009. We excluded 367 patients 

who did not have available specimens to perform ADIPOQ genotyping and 276 who had urinary albumin-to-creatinine ratio (ACR) ≥30 mg/g in at 

least one of the first two urine tests, leaving us with 566 subjects for genetic association analysis. This study was approved by the Ethics Committee 

of the National Health Research Institutes and Kaohsiung Medical University Hospital, Taiwan. Written informed consent was obtained from each 

subject.   

 

Clinical assessments and primary end point  

Anthropometric data (including height, weight, systolic and diastolic blood pressure), fasting venous blood (overnight≥8h), and morning spot 

urine were collected every 6 months. Glucose, triglycerides, cholesterol, LDL-C, HDL-C and creatinine were measured by an automatic analyser 



Page 5 of 24

Acc
ep

te
d 

M
an

us
cr

ip
t

(Hitachi 7060; Hitachi High Technologies, Tokyo, Japan). HbA1c was measured by high-performance liquid chromatography (Variant II; Bio-Rad 

Laboratories, Hercules, CA, USA) and urinary albumin by immunoturbidimetry (Hitachi 7060; Hitachi High Technologies, Tokyo, Japan). All 

samples were kept in 2-8°C, delivered to a central laboratory, and measured within 8 hours. Adiponectin was determined by a commercial enzyme-

linked immunosorbent assay (ELISA) kit (R&D systems, Minneapolis, MN, USA), using plasma samples cross-sectionally collected in 2008. 

Duplicate measurements were performed and coefficient of variation less than 10% were calculated for quality control.   

The end point of this study was progression to DN, which has been classically defined by the presence of microalbuminuria. In our cohort, 

microalbuminuria was defined as having urinary ACR ≥30 mg/g in two consecutive urine tests [20].  

 

SNP selection and genotyping   

We performed 18 single nucleotide polymorphisms (SNPs) in the ADIPOQ gene. Nine of these SNPs were tag SNPs with minor allele 

frequencies (MAF) >5% in the HapMap Han Chinese population. Tag SNPs, including rs16861194 (-11426A>G), rs266729 (-11377C>G), rs182052, 

rs822394, rs12495941, rs7627128, rs1501299 (+276G>T), rs3774261 and rs1063537, were selected. Two common SNPs, rs17300539 (-11391G>A) 

and rs2241766 (+45T>G, also known as +94T>G), were included in the selection based on previous review and meta-analysis studies [21,22]. The 

remaining seven SNPs (rs4632532, rs16861205, rs822396, rs2241767, rs3821799, rs6773957 and rs2082940) were genotyped in an attempt to 

duplicate/reproduce our findings, since they were highly correlated with one of the tag SNPs (r2≥0.8).  

Genomic DNA was isolated from human leukocytes using standard methods and stored at -20℃ until genotyping. The GenomeLabTM 
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SNPstream ® genotyping platform (Beckman Coulter Inc., Fullerton, CA, USA) and its accompanying SNPstream software suite were used to 

perform multiplex polymerase chain reaction (12-plex PCR) and SNP genotyping. The PCR primers were designed to amplify DNA, and probes were 

designed to identify the SNP. The SNPstream genotyping assay was performed according to methods previously described [23]. All SNPs were 

accurately genotyped with a call rate >95%.   

 

Statistical analysis  

Chi-squared or Student’s t-tests were used to compare baseline characteristics between nephropathy and non-nephropathy groups whenever 

appropriate. One-sample Kolmogorov-Smirnov test was used to examine the normality of the continuous variables, and a log transformation to 

normalize the skewed distribution. Pairwise |D’| and r2 values between SNPs were computed using the Haploview version 4.2 (Broad Institute, 

Cambridge, MA, USA). Frequencies of allele and genotype between the DN and non-DN groups were examined by Chi-squared or Fisher’s exact 

test. Each SNP in the non-DN control group was tested for deviation from Hardy–Weinberg equilibrium using X2 goodness-of-fit test. To examine the 

gender-specific effect on genetic risk for DN, we further stratified by gender.  

Kaplan-Meier estimates, log-rank tests, and univariate Cox proportional hazard models were used to explore the association of individual SNP 

with time to new DN events under different specifications of the genetic model, including allelic, additive, dominant and recessive models. Patient 

data were censored at the end of the study or the time of death or loss to follow-up. A hazard ratio (HR) in Cox proportional hazard models refers to 

the hazard of a (set of) risk genotype over the other non-risk genotypes of a SNP on developing nephropathy. Multivariate Cox proportional hazard 

models were further adjusted for diabetes duration, education (≤6, >6 years), blood pressure (≥140/90, <140/90mmHg), HbA1C, triglyceride, and use 

of ACEI or ARB (yes, no) at baseline to determine the independent genetic effects. Analyses of female patient data were additionally adjusted for 
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menopause status (pre-, post-menopause). We evaluated proportional hazard assumptions using log-log survival plots or time interactions for all 

covariates, with no violations noted.  

Posterior study power was estimated for each SNP associated with progression of DN separated by gender, using the genetic power calculator 

[24]. We also included 267 patients with urinary ACR≥30 mg/g at baseline to perform a case-control analysis in an attempt to investigate this genetic 

association in a larger sample size (total n=842, males=396, Supplemental Table 1 and 2). The independent association between ADIPOQ 

polymorphisms and DN was examined using multivariate logistic regression models.  

ANCOVA analyses were carried out to examine the adjusted mean plasma concentrations of adiponectin among genotypes stratified by disease 

status. All statistical operations were performed using the SPSS version 21.0 (SPSS Inc., Chicago, IL, USA). A two-sided P value <0.05 was 

considered significant.  

   

Results   

Baseline characteristics of study subjects   

The baseline characteristics of the 566 selected T2D patients are shown in Table 1. Of these subjects, 263 (46.5%) were male, overall mean age 

was 55.2±8.4 years, and average diabetes duration was 4.6±5.5 years. Over a follow-up period of 6 years, 144 (25.4%) patients who had 

normoalbuminuria at baseline progressed to DN. Patients who progressed to DN were less educated and had a longer diabetes duration, higher 

concentrations of HbA1C and ACR at baseline (p<0.05). Additionally, they also tended to have higher blood pressure and increased ACEI or ARB 

medication use, although the differences only reached marginal significance. In female patients, we found that females with DN had a lower 

creatinine level than females without DN (55.3 vs.59.6 μmol/L, p=0.024). Generally, patients with increases in urinary albumin had increased serum 
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creatinine levels. It is possible that variations in muscle mass between the two groups may contribute to lower creatinine level observed in DN 

subjects. Assessment of body composition was unavailable for this cohort study. In the case-control design (n=842), 420 patients were defined as 

cases (DN group) in the end of 2009, who had a high prevalence (about 50%) of DN.  

 

LD analysis  

The G to A polymorphism at rs17300539 (-11391G>A) was not found in our population. We, therefore, performed linkage disequilibrium (LD) 

analyses and association analyses based on the remaining 17 SNPs. As shown in Fig. 1, tag SNP rs1063537 was in complete LD with rs2241767 

(r2=1) and in high LD with rs2082940 (r2=0.96). SNP rs2241766 was in strong LD with rs1063537 (r2=0.88), as were rs2241767 and rs2082940. 

Therefore, only rs2241766 and the 9 tag SNPs were presented without losing the power of using all SNPs. The allele and genotype frequencies in this 

cohort were all comparable to those in the HapMap Han Chinese population. In the non-DN group, the genotype distributions were consistent with 

Hardy-Weinberg equilibrium (p>0.05), except for rs266729, rs822394 and rs822396.  

 

Distribution and association of ADIPOQ polymorphisms with DN risk   

Overall, the distributions of ADIPOQ alleles and genotypes were not statistically different between nephropathy and non-nephropathy groups 

(Table 2). When analysed separately by gender, frequency of rs1063537 C allele was significantly higher in patients with DN progression compared 

to those without that progression in males (75.0% vs. 65.5%, p=0.040), but not in females (p=0.366) (Table 3). The HR for DN was 1.50 (95% CI: 

1.03-2.21, p=0.037) for C allele in males. We also found that distribution of rs2241766 T allele was higher in male subjects with DN progression 

(74.3% vs. 65.5%), however only reaching marginal significance (p=0.058). Additionally, frequencies of rs2241766 TT and rs1063537 CC genotype 



Page 9 of 24

Acc
ep

te
d 

M
an

us
cr

ip
t

were slightly higher in male patients with DN progression (chi-squared p=0.099-0.133), and those differences became significant in a larger sample 

size of case-control analysis (chi-squared p=0.002-0.006) (Table 3 and Supplemental Table 1). The odds ratio (OR) for DN was 2.61 (95% CI: 1.14-

5.95, p=0.023) for rs2241766 TT genotype and 3.10 (95% CI=1.33-7.20, p=0.009) for rs1063537 CC genotype (Supplemental Table 1).   

 

Survival analyses under different genetic models 

The associations between ADIPOQ SNPs and the risk of DN progression under different genetic models are shown in Table 4. In males, based 

on comparison of genotype effects, the recessive model was the most appropriate genetic model in this study, in which the adjusted HRs were 1.81 

(95% CI=1.10-2.96, p=0.019) for rs2241766 TT (vs. GT+GG) and 1.89 (95% CI=1.15-3.11, p=0.013) for rs1063537 CC (vs. CT+TT). In the additive 

model, rs2241766 and rs1063537 were also significantly associated with DN, with respective adjusted HRs of 1.66 (p=0.021) and 1.73 (p=0.013), 

suggesting a dose-additive manner. In the Kaplan-Meier survival curve estimate under the recessive model, we also found that male patients carrying 

rs2241766 TT (vs. GT+GG, p=0.050) and rs1063537 CC (vs. CT+TT, p=0.037) homozygotes had a reduced nephropathy-free survival rate compared 

to the reference group (Fig. 2). Additionally, two SNPs rs2241767 and rs2082940, both highly correlated with tag SNP rs1063537 (r2≥0.96), were 

also associated with the development of DN under the allelic, additive and recessive models among males (data not shown). In females, ADIPOQ 

SNPs were not associated with DN progression. We did not find an association between menopause status and DN in either uni- or multi-variate 

model, although sex hormone might be one plausible explanation of the gender difference in the development of DN. 

Study power of a genetic association largely relies on the frequencies of risk allele and the prevalence of disease of interest. Due to a high 

frequency of risk allele at approximately 0.7 and a high prevalence of DN in T2D of at least 30%, our sample size of male patients was calculated to 

have a power of 85.9-89.7% to detect an HR of 1.81-1.89 for DN under the recessive model at α level of 0.05. Additionally, the association of 
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rs2241766 and rs1063537 with the risk of DN found in the prospective design was replicable in case-control design using multivariate logistic 

regression models (Supplemental Table 2). 

  

Levels of plasma adiponectin  

The mean adiponectin plasma concentration in our study was 6.9±6.0 ng/ml. Patients with nephropathy had slightly higher concentrations than 

those without nephropathy (7.5±7.0 vs. 6.7±5.6 ng/ml, p=0.318), but the differences did not reach statistical significance (Table 1). The adiponectin 

concentrations in females were significantly higher than in males in either nephropathy (8.7 vs. 6.3 ng/ml, p<0.001) or non-nephropathy groups (8.1 

vs. 5.0 ng/ml, p=0.005). We also found that post-menopausal women had a higher level of circulating adiponectin than pre-menopausal women (9.27 

vs. 6.31 ng/ml, p<0.001, data not shown). 

 

Discussion 

In this cohort of Taiwanese T2D patients, we found the rs2241766 (+45T>G) TT, rs1063537 CC, rs2241767 AA and rs2082940 CC recessive 

homozygotes of the ADIPOQ to be associated with a greater risk for progression to DN in male T2D patients but not in females over a 6 year follow-

up period. Males carrying these recessive homozygotes also had a reduced nephropathy-free survival rate. These four SNPs in our sample were 

highly correlated (r2>0.8), as they have also been reported among Europeans [25]. 

Only two prospective studies to date have found an association between +45T>G and DN risk in T2D. The +45G allele was associated with an 

increased risk of incident renal event in the French population [26], and the GG genotype of +45T>G was associated with DN in Korean patients 

[27]. The findings of both studies were inconsistent with ours as we found that +45T allele or TT genotype carriers had a greater risk for DN 
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progression. This discrepancy may be partially explained by differences in ethnic backgrounds. The mechanisms underlying the association of 

+45T>G polymorphisms with DN progression in the Taiwanese or Chinese population remain to be determined. Other case-control studies carried 

out among European T1D patients showed that SNPs in the promoter region, not in the exon region (+45T>G), may confer susceptibility to the risk 

of DN [14,15,17]. Among studies of Han-Chinese populations, only one Taiwanese case-control study found that a potential interaction among 

ADIPOQ (-11377C>G), GHSR and TCF7L2 might contribute to the risk of DN in T2D, though no single ADIPOQ genetic effect was found [16]. 

Most of previous studies [14-19] were performed using case-control designs and only analyzed a few common SNPs. The present study represents 

one of the few prospective investigations in the Chinese population examining the association between ADIPOQ genetic variations and the 

progression of DN with a wide selection of 18 ADIPOQ SNPs. 

In the Chinese population, there has been extensive investigation of the association of +45T>G polymorphism with metabolic disease and CVD. 

A few Taiwanese studies have associated the mutant G allele at +45T>G with improved insulin sensitivity [28] and reduced risks of obesity [29] and 

coronary artery disease [30]. These findings suggest that +45G allele may confer a protective effect against metabolic disease and CVD in the 

Taiwanese population. On the other hand, in other regions of China, meta-analysis studies have reported that the G allele does not consistently show 

protective effects on metabolic syndrome [31], T2D [22], or CVD [32]. These contrasting results in different regions of Chinese might be explained 

by regional variations and different study methods including diagnostic criteria, sample size, and study design. 

Gender is another important factor to consider in DN development since males have a more rapid progression to this complex disease than 

females [7]. The ratio is about 1.3:1 [33]. In the present study, the ADIPOQ associated risk for DN was only found in males, but not in females. 

However, Zhang et al [14,15] reported that European female T1D patients, but not males, had ADIPOQ genetic risk for DN. One Japanese study also 

reported gender differences in the association of ADIPOQ but with T2D in male subjects [34]. Considering gender factor into genetic research seems 
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to be more complicated, and the effects are not universal in different populations. Besides genetic factor, other factors such as differences in diet, 

nephron number or renal mass and the direct/potential effects of sex hormone may also explain the gender predisposition in the development of 

kidney disease [7]. Estrogens may confer protective effect on kidney disease as a result of its potent antioxidant actions in the mesangial 

microenvironment [6]. To date, many studies are still accumulating evidence to address the questions of gender and ethnic disparities and to elucidate 

the biological mechanisms underlying gene-gender interactions in such a complex disease.  

Increased concentrations of circulating adiponectin have been found in patients with ESRD and DN [11-13]. In the present study, we did not 

observed a statistically significant difference in adiponectin concentrations between DN and non-DN groups. This could be explained by the finding 

that most of our T2D patients were in early stage of kidney disease (over 90% of patients with a glomerular filtration rate ≥60ml/min/1.73m2 at 

baseline). Due to the beneficial effects of adiponectin, an increase in its concentrations among patients with kidney disease may result from the 

physiological counter regulatory response which is up-regulated to reduce endothelial damage and renal insufficiency, and which could contribute to 

the development of secondary resistance to adiponectin [11,13]. In addition, we found an increased circulating adiponectin level in post-menopausal 

females. This could also be explained by adiponectin resistance or reduction in adiponectin clearance associated with renal function decline after 

menopause [35]. 

The +45T>G polymorphism, a synonymous mutation (Gly→Gly) in the exon region, may affect expression levels of adiponectin by altering 

pre-mRNA splicing [36]. One possible explanation for the absence of an association of +45T>G or other SNPs with circulating adiponectin in the 

current study is that a large variation of adiponectin concentrations in our DN patients. One Taiwanese study found that the +45G allele was 

associated with a reduced risk of obesity as it led to increased mRNA expressions in omental adipose tissue [29]. In our study, we also found that 

patients carrying +45 GG genotype had higher circulating adiponectin levels than GT+TT carriers, although the difference did not reach statistical 
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significance. However, one European study showed that +45G allele carriers had a greater risk of renal event resulting from high adiponectin 

concentrations in this group [26]. The ADIPOQ genetic mechanisms in the mRNA expression and adiponectin production remain largely unknown in 

patients with kidney disease. 

The strength of the present study was its prospective design. The study is limited in that it had a relatively small sample size when further 

stratified by gender. However, the results found in males did reach 80% of power and were reproducible in the case-control analysis. Another 

limitation is that the genetic association found in this study may not be generalized to other ethnic groups. Larger ethnically matched studies might 

help clarify whether this genetic association can be found in other Asian and Chinese populations. 

In conclusion, this study provides evidence that the rs2241766 (+45T>G), rs1063537, rs2241767 and rs2082940 polymorphisms in the ADIPOQ 

are associated with the progression of DN in Taiwanese male patients with T2D. Whether gender plays some roles in the association between 

ADIPOQ genetic variations and the development of DN warrants further investigations in different ethnic populations.   
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Table 1 Baseline clinical characteristics of 566 patients with type 2 diabetes stratified by nephropathy progression and gender  
 Nephropathy Non-Nephropathy P-values 
 All Male Female All Male Female All Male Female 
Number 144 70 74 422 193 229    
Age (y) 55.5 ± 9.0 54.7 ± 8.9 56.3 ± 9.1 55.1 ± 8.2 53.4 ± 8.4 56.6 ± 7.7 0.621 0.250 0.774 
Diabetes duration (y) 5.5 ± 5.6 5.1 ± 5.3 5.9 ± 5.9 4.3 ± 5.5 3.9 ± 4.1 4.6 ± 6.3 0.021 0.084 0.114 

Education≤6y (%) 

95 (66.0) 39 (55.7) 56 (75.7) 213 (50.5) 60 (31.1) 153 (66.8) 0.001 <0.001 0.152 

Current smoker (%) 28 (19.4) 26 (37.1) 2 (2.7) 67 (15.9) 58 (30.1) 9 (3.9) 0.323 0.276 0.624 
ACEI or ARB use (%) 102 (70.8) 49 (70.0) 53 (71.6) 264 (62.6) 118 (61.1) 146 (63.8) 0.073 0.187 0.215 
Body mass index (kg/m2)  26.1 ± 4.0 26.0 ± 3.1 26.2 ± 4.8 26.0 ± 3.7 26.1 ± 3.5 26.0 ± 3.9 0.949 0.920 0.990 
Systolic BP (mmHg)  130.6 ± 15.6 131.4 ± 14.9 129.8 ± 16.2 127.8 ± 15.4 127.3 ± 15.7 128.3 ± 15.1 0.076 0.057 0.519 
Diastolic BP (mmHg)  81.3 ± 9.7 82.3 ± 9.6 80.3 ± 9.8 80.0 ± 10.0 80.8 ± 9.7 79.4 ± 10.1 0.173 0.240 0.480 
HbA1C (%)  8.5 ± 1.8 8.5 ± 1.7 8.5 ± 1.8 8.0 ± 1.7 8.0 ± 1.8 8.0 ± 1.7 0.005 0.042 0.049 
Triglyceride (mmol/L)  1.9 ± 1.4 2.1 ± 1.7 1.6 ± 0.9 1.7 ± 1.2 1.7 ± 1.3 1.7 ± 1.1 0.156 0.021 0.639 
Cholesterol (mmol/L)    5.0 ± 1.0 5.1 ± 1.0 5.0 ± 0.9 4.9 ± 1.0 4.9 ± 1.1 5.0 ± 1.0 0.561 0.162 0.586 
LDL cholesterol (mmol/L) 3.3 ± 0.8 3.3 ± 0.9 3.2 ± 0.8 3.2 ± 0.9 3.2 ± 0.9 3.2 ± 0.9 0.843 0.698 0.912 
HDL cholesterol (mmol/L) 1.2 ± 0.3 1.2 ± 0.3 1.3 ± 0.3 1.3 ± 0.4 1.1 ± 0.2 1.4 ± 0.4 0.799 0.743 0.726 
Creatinine (μmol/L)  67.8 ± 23.6 81.2 ± 24.9 55.3 ± 13.2 67.0 ± 18.0 76.0 ± 15.7 59.6 ± 16.4 0.806 0.232 0.024 
ACR (mg/mmol)  1.2 ± 0.8 1.2 ± 0.9 1.1 ± 0.8 0.7 ± 0.7 0.7 ± 0.7 0.7 ± 0.6 <0.001 <0.001 <0.001 
Adiponectin (ng/ml)1 7.5 ± 7.0 6.3 ± 6.4 8.7 ± 7.3 6.7 ± 5.6 5.0 ± 3.6 8.1 ± 6.6 0.318 0.207 0.662 
Data are presented as mean±SD or n (%). Abbreviation: ACEI: angiotensin-converting-enzyme inhibitor; ARB: angiotensin receptor blockers; ACR: urinary albumin-to-creatinine ratio.  

1. Plasma adiponectin concentrations were measured cross-sectionally in the year 2008 of this cohort. 
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Table 2 Genotype and allele distribution of 18 ADIPOQ polymorphisms in type 2 diabetic patients with and without progression to nephropathy   
SNPs  Location M/m Nephropathy (n=144) Non-Nephropathy (n=422)   HWE 
   Genotype (MM/Mm/mm) Allele (M/m) Genotype (MM/Mm/mm) Allele (M/m) P1 P2 P3 
rs4632532 (-19166 T>C) promoter T/C 47/70/27 (32.6/48.6/18.8) 164/124 (56.9/43.1) 123/223/76 (29.1/52.8/18.0) 469/375 (55.6/44.4) 0.657 0.685 0.150 
rs16861194 (-11426 A>G) promoter A/G 106/32/6 (73.6/22.2/4.2) 244/44 (84.7/15.3) 299/114/9 (70.9/27.0/2.1) 712/132 (84.4/15.6) 0.253 0.884 0.626 
rs17300539 (-11391G>A) promoter  G/A 144/0/0 (100.0/0.0/0.0) 288/0 (100.0/0.0) 422/0/0 (100.0/0.0/0.0) 844/0 (100.0/0.0) - - - 
rs266729 (-11377 C>G) promoter C/G 98/44/2 (68.1/30.6/1.4) 240/48 (83.3/16.7) 283/133/6 (67.1/31.5/1.4) 699/145 (82.8/17.2) 0.974 0.841 0.027 
rs182052 (-10066 G>A) intron 1 G/A 50/71/23 (34.7/49.3/16.0) 171/117 (59.4/40.6) 136/220/66 (32.2/52.1/15.6) 492/352 (58.3/41.7) 0.828 0.748 0.138 
rs16861205 (-9215 G>A) intron 1 G/A 107/33/4 (74.3/22.9/2.8) 247/41 (85.8/14.2) 298/113/11 (70.6/26.8/2.6) 709/135 (84.0/16.0) 0.659 0.477 0.941 
rs822394 (-4120 A>C) intron 1 C/A 106/36/2 (73.6/25.0/1.4) 248 /40 (86.1/13.9) 309/111/2 (73.2/26.3/0.5) 729/115 (86.4/13.6) 0.444 0.911 0.016 
rs822396 (-3971 G>A) intron 1 A/G 107/29/2 (77.5/21.0/1.4) 243/33 (88.0/12.0) 311/102/2 (74.9/24.6/0.5) 724/106 (87.2/12.8) 0.287 0.724 0.036 
rs12495941(-2668 G>T) intron 1 G/T 45/78/21 (31.2/54.2/14.6) 168/120 (58.3/41.7) 153/204/65 (36.3/48.3/15.4) 510/334 (60.4/39.6) 0.461 0.531 0.825 
rs7627128 (-2049 C>A) intron 1 C/A 90/46/8 (62.5/31.9/5.6) 226/62 (78.5/21.5) 253/154/15 (60.0/36.5/3.6) 660/184 (78.2/21.8) 0.406 0.923 0.149 
rs2241766 (+45 T>G)  exon 2 T/G 77/57/10 (53.5/39.6/6.9) 211/77 (73.3/26.7) 206/186/30 (48.8/44.1/7.1) 598/246 (70.9/29.1) 0.614 0.434 0.168 
rs1501299 (+276 G>T) intron 2 G/T 78/57/9 (54.2/39.6/6.2) 213/75 (74.0/26.0) 221/179/22 (52.4/42.4/5.2) 621/223 (73.6/26.4) 0.785 0.899 0.062 
rs2241767 (+349 A>G) intron 2 A/G 78/57/9 (54.2/39.6/6.2) 213/75 (74.0/26.0) 212/180/30 (50.2/42.7/7.1) 604/240 (71.6/28.4) 0.712 0.434 0.324 
rs3821799 (+639 T>C) intron 2 T/C 45/72/27 (31.2/50.0/18.8) 162/126 (56.2/43.8) 139/221/62 (32.9/52.4/14.7) 499/345 (59.1/40.9) 0.513 0.393 0.086 
rs3774261 (+712 A>G) intron 2 A/G 41/72/31 (28.5/50.0/21.5) 154/134 (53.5/46.5) 121/228/73 (28.7/54.0/17.3) 470/374 (55.7/44.3) 0.503 0.514 0.052 
rs6773957 (+2858 A>G) 3' UTR A/G 40/73/31 (27.8/50.7/21.5) 153/135 (53.1/46.9) 123/224/75 (29.1/53.1/17.8) 470/374 (55.7/44.3) 0.608 0.450 0.121 
rs1063537 (+3228 C>T) 3' UTR C/T 78/57/9 (54.2/39.6/6.2) 213/75 (74.0/26.0) 212/180/30 (50.2/42.7/7.1) 604/240 (71.6/28.4) 0.712 0.434 0.324 
rs2082940 (+3317 T>C) 3' UTR C/T 76/59/9 (52.8/41.0/6.2) 211/77 (73.3/26.7) 212/181/29 (50.2/42.9/6.9) 605/239 (71.7/28.3) 0.864 0.605 0.246 

Data are presented as n (%). Abbreviation: SNP: single nucleotide polymorphism; M/m: major allele/minor allele; 3’UTR: 3’untranslated region; HWE: Hardy-Weinberg equilibrium.  

1. Genotype p-value and 2. Allelic p-value were examined by chi-squared tests. 3. Chi-squared test was used to test HWE for genotype frequencies in the non-nephropathy group.  
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Table 3 Gender stratified analysis of genotype and allele distribution of ADIPOQ 1 
polymorphisms in type 2 diabetic patients with and without progression to nephropathy  2 

Gender SNPs Genotype Nephropathy Non-Nephropathy P-value HR (95% CI) P-value 
Male rs2241766  GG 3 (4.3) 18 (9.3) 0.133 1.00  
  GT 30 (42.9) 97 (50.3)  1.64 (0.50-5.38) 0.413 
  TT 37 (52.9) 78 (40.4)  2.47 (0.76-8.00) 0.132 
  T allele 104 (74.3) 253 (65.5) 0.058 1.45 (0.99-2.12) 0.053 
 rs1063537 TT 3 (4.3) 19 (9.8) 0.099 1.00  
  CT 29 (41.4) 95 (49.2)  1.72 (0.52-5.65) 0.371 
  CC 38 (54.3) 79 (40.9)  2.65 (0.82-8.57) 0.105 
  C allele 105 (75.0) 253 (65.5) 0.040 1.50 (1.03-2.21) 0.037 
Female rs2241766  GG 7 (9.5) 12 (5.2) 0.446 1.00  
  GT 27 (36.5) 89 (38.9)  0.63 (0.27-1.45) 0.275 
  TT 40 (54.1) 128 (55.9)  0.66 (0.30-1.47) 0.306 
  T allele 107 (72.3) 345 (75.3) 0.462 0.90 (0.63-1.29) 0.575 
 rs1063537  TT 6 (8.1) 11 (4.8) 0.515 1.00  
  CT 28 (37.8) 85 (37.1)  0.70 (0.29-1.69) 0.429 
  CC 40 (54.1) 133 (58.1)  0.66 (0.28-1.55) 0.336 
  C allele 108 (73.0) 351 (76.6) 0.366 0.87 (0.60-1.25) 0.439 

Data are presented as n (%) and HR (95% CI). Abbreviation: SNP: single nucleotide polymorphism.  3 
 4 
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Table 4 Gender stratified analysis of association between ADIPOQ polymorphisms and the 24 
progression of diabetic nephropathy under different genetic models 25 

Gender SNPs Genetic models Crude model Adjusted model 1 
   HR (95% CI) P-value HR (95% CI) P-value 
Male rs2241766  Dominant (GT+TT vs. GG)  2.01 (0.63-6.41) 0.235 1.74 (0.55-5.57) 0.348 
  Recessive (TT vs. GT+GG) 1.59 (1.00-2.55) 0.053 1.81 (1.10-2.96) 0.019 
  Additive (GG/GT/TT) 1.53 (1.02-2.29) 0.038 1.66 (1.08-2.56) 0.021 
  Allele (T vs. G)  1.45 (0.99-2.12) 0.053 1.50 (1.02-2.21) 0.041 
 rs1063537 Dominant (CT+CC vs. TT) 2.15 (0.68-6.82) 0.196 1.90 (0.59-6.05) 0.280 
  Recessive (CC vs. CT+TT) 1.64 (1.03-2.63) 0.039 1.89 (1.15-3.11) 0.013 
  Additive (TT/CT/CC) 1.57 (1.05-2.35) 0.027 1.73 (1.12-2.66) 0.013 
  Allele (C vs. T) 1.50 (1.03-2.21) 0.037 1.56 (1.06-2.31) 0.026 
Female rs2241766  Dominant (GT+TT vs. GG) 0.65 (0.30-1.41) 0.271 0.84 (0.36-1.98) 0.689 
  Recessive (TT vs. GT+GG) 0.97 (0.61-1.52) 0.878 1.03 (0.65-1.66) 0.890 
  Additive (GG/GT/TT) 0.90 (0.63-1.30) 0.573 0.99 (0.68-1.44) 0.957 
  Allele (T vs. G)  0.90 (0.63-1.29) 0.575 0.99 (0.68-1.44) 0.958 
 rs1063537  Dominant (CT+CC vs. TT) 0.67 (0.29-1.55) 0.354 0.91 (0.36-2.30) 0.842 
  Recessive (CC vs. CT+TT) 0.89 (0.56-1.40) 0.606 0.95 (0.59-1.52) 0.822 
  Additive (TT/CT/CC) 0.86 (0.60-1.25) 0.435 0.95 (0.65-1.39) 0.793 
  Allele (C vs. T) 0.87 (0.60-1.25) 0.439 0.95 (0.65-1.38) 0.796 

Data are presented as HR (95% CI). Additive genetic effects were modeled by defining continuous variable with levels 1, 2, and 3 26 
corresponding to genotypes (i.e. rs2241766 was coded as 1 for GG, 2 for GT, and 3 for TT; rs1063537 was coded as 1 for TT, 2 for CT, and 27 
3 for CC). Dominant model was coded as 1 for any genotype that contains disease allele and 0 otherwise. Recessive model was coded as 1 28 
for the homozygous disease genotype and 0 otherwise.   29 
1. Adjusted model: diabetes duration, education (≤6, >6 years), blood pressure (≥140/90, <140/90mmHg), HbA1C, triglyceride, and use of 30 
ACEI or ARB (yes, no) at baseline. Female patients were additionally adjusted for baseline menopause status (pre-, post-menopause).  31 
 32 
 33 
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