Accepted Manuscript

The effect of poly- β -hydroxyalkanoates degradation rate on nitrous oxide production in a denitrifying phosphorus removal system

Yan Wei, Shuying Wang, Bin Ma, Xiyao Li, Zhiguo Yuan, Yuelan He, Yongzhen Peng

PII:	\$0960-8524(14)00856-6
DOI:	http://dx.doi.org/10.1016/j.biortech.2014.06.012
Reference:	BITE 13546
To appear in:	Bioresource Technology
Received Date:	13 March 2014
Revised Date:	2 June 2014
Accepted Date:	4 June 2014

Please cite this article as: Wei, Y., Wang, S., Ma, B., Li, X., Yuan, Z., He, Y., Peng, Y., The effect of poly-βhydroxyalkanoates degradation rate on nitrous oxide production in a denitrifying phosphorus removal system, *Bioresource Technology* (2014), doi: http://dx.doi.org/10.1016/j.biortech.2014.06.012

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	The effect of poly-β-hydroxyalkanoates
2	degradation rate on nitrous oxide production in
3	a denitrifying phosphorus removal system
4	
5	Yan Wei ¹ , Shuying Wang ^{1, *} , Bin Ma ¹ , Xiyao Li ¹ , Zhiguo Yuan ^{1,2} , Yuelan He ¹ ,
6	Yongzhen Peng ¹
7	
8	¹ Key Laboratory of Beijing for Water Quality Science and Water Environment
9	Recovery Engineering, Engineering Research Center of Beijing, Beijing University of
10	Technology, Beijing 100124, PR China.
11	² Advanced Water Management Center, The University of Queensland, St Lucia,
12	QLD 4072, Australia
13 14	* Corresponding author: wsy@bjut.edu.cn
15	
16	Abstract: Poly- β -hydroxyalkanoates (PHAs) and free nitrous acid (FNA) have been
17	revealed as significant factors causing nitrous oxide (N2O) production in denitrifying
18	phosphorus removal systems. In this study, the effect of PHA degradation rate on N_2O
19	production was studied at low FNA levels. N2O production always maintained at
20	approximately 40% of the amount of nitrite reduced independent of the PHA
21	degradation rate . The electrons distributed to nitrite reduction were 1.6 times that to
22	N_2O reduction. This indicated that electron competition between these two steps was
23	not affected by the PHA degradation rate. Continuous feed of nitrate was proposed,
24	and demonstrated to reduce N_2O accumulation by 75%. While being kept low, a
25	possible compounding effect of a low-level FNA could not be ruled out. The sludge

- 1 used likely contained both polyphosphate- and glycogen-accumulating organisms, and
- 2 the results could not be simply attributed to either group of organisms.
- 3 Keywords: nitrous oxide (N₂O); denitrifying phosphorus removal;
- Poly-β-hydroxyalkanoates (PHAs); nitrite 4

5 **1** Introduction

3	Keywords: nitrous oxide (N ₂ O); denitrifying phosphorus removal;
4	Poly-β-hydroxyalkanoates (PHAs); nitrite
5	1 Introduction
6	The enhanced biological phosphorus removal process (EBPR) is widely used as
7	one of the most economical and efficient processes for removing phosphorus (P) from
8	wastewater. It is achieved by polyphosphate-accumulating organisms (PAOs), which
9	take up P and store it intracellularly as poly-phosphate (poly-P) under alternate
10	anaerobic and aerobic conditions (Kuba et al., 1996; Wentzel et al., 1988). In the
11	anaerobic phase, PAOs take up volatile fatty acids (VFAs) in wastewater and store
12	them internally in the form of poly- β -hydroxyalkanoates (PHAs). Concomitantly, the
13	intracellular poly-P is degraded and released into the mixed liquor as ortho-phosphate
14	$(PO_4^{3^2}-P)$, to provide energy for the uptake of VFAs. In the subsequent aerobic stage,
15	PHAs are oxidized by oxygen to provide energy for PAOs to take up PO_4^{3-} -P to
16	recover the poly-P level, in which oxygen acts as the terminal electron acceptor (Ahn
17	et al., 2002; Zeng et al., 2003).
18	P uptake can also be accomplished under anoxic conditions, in which PAOs
19	utilize intracellular PHAs as electron donors and nitrate / nitrite as terminal electron
20	acceptors (Johwan Ahn, 2001; Ma et al., 2013b; Meinhold J, 1999; Oehmen et al.,
21	2007; Zhou et al., 2008a). The PAOs with that particular characteristic are referred to
22	as denitrifying polyphosphate-accumulating organisms (DPAOs) (Meinhold J, 1999),

1	and the process referred to as the denitrifying phosphorus removal process. This
2	process enables the organic carbon accumulated under anaerobic conditions to be
3	used for simultaneous denitrification and P removal. This significantly saves the
4	carbon source required for nitrogen and phosphorus removal from wastewater.
5	Moreover, this process also leads to reduced sludge production and aeration costs
6	(Guo et al., 2013).
7	Unfortunately, nitrous oxide (N_2O) often appeared to be a significant
8	end-product of denitrification during denitrifying phosphorus removal (Kampschreur
9	et al., 2008; Lemaire et al., 2006; Wang et al., 2011a; Zhou et al., 2008a; Zhou et al.,
10	2008b). Although N_2O accounts for merely 0.03 percent of the total greenhouse gas
11	emitted to the atmosphere, its global warming potential of approximately 300-fold
12	that of carbon dioxide makes it a significant greenhouse gas in the atmosphere (IPCC,
13	2001). N ₂ O production may therefore severely compromise the advantage of
14	denitrifying phosphorus removal systems. N ₂ O is an intermediate of nitrate or nitrite
15	reduction. The factors that result in N_2O accumulation need to be understood, to
16	support the development of mitigation strategies.
17	The accumulation of nitrite or free nitric acid (FNA), an intermediate of nitrate
18	reduction and also an electron acceptor, has previously been reported to induce N_2O
19	accumulation in the denitrifying phosphorus removal process. Nitrite has been found
20	to inhibit N ₂ O reduction in this process (Zhou et al., 2008a; Lemaire et al., 2006;

- 21 Itokawa et al., 2001; Li et al., 2013a). Zhou et al. (2008b) concluded that FNA rather
- $\label{eq:22} \mbox{than nitrite was the inhibitor and caused N_2O accumulation during nitrite reduction.}$

1	The activity of N_2O reductase was inhibited by 50% at an FNA concentration of
2	1.0×10^{-3} mg HNO ₂ -N/L, whereas full inhibition occurred at FNA concentrations
3	of >4.0×10 ⁻³ mg NHO ₂ -N/L. These results confirmed that nitrite or FNA would
4	negatively influence N ₂ O reduction in the denitrifying phosphorus removal process.
5	In the meantime, the slow degradation kinetics of the PHAs, as electron donors,
6	has also been reported to influence N_2O accumulation in this process. Li et al. (2013b)
7	found that the dissolved N_2O concentration was up to 0.85 mgN/L when PHAs were
8	the sole carbon source, but decreased to 0.21 mgN/L when acetate was added
9	simultaneously. The proposed explanation was that the PHA degradation was not
10	capable of providing sufficient electrons for denitrification and caused electron
11	competition between the N_2O reductase and other denitrifying enzymes. Similarly,
12	Zhou et al. (2012) revealed that it was the degradation rate of PHAs that potentially
13	limited the N_2O reduction rate. Wang et al. (2011a) also reported that PHAs were the
14	inducer of N_2O production in this process. Based on these studies, it can be
15	hypothesised that the slow PHA degradation rate directly caused the decrease of
16	electron supply rate during the denitrification process. According to Pan et al. (2013),
17	the electron flux going to N_2O reductase was slowed down due to the declining
18	external carbon loading rate. So it could be further deduced that N_2O production
19	would be stimulated when the PHA degradation rate decreased gradually.
20	However, in most studies reported to date, both the nitrite / FNA concentration
21	and the PHA degradation rate varied concurrently, and hence the individual effect of
22	PHA degradation rate on N ₂ O accumulation in a denitrifying phosphorus removal

- 4 -

 \langle

system is not known at present. In this study, we investigate the effect of PHA

1

2	degradation rate on N_2O accumulation in a denitrifying phosphorus removal system
3	under controlled and low FNA concentration. The electron distribution between
4	different denitrification steps is calculated based on the measured consumption rates
5	of various electron acceptors, and correlated with the PHA consumption rate. Finally,
6	a strategy for effectively reducing N_2O accumulation was proposed and demonstrated.
7	2 Material and methods
8	2.1 Sludge source
9	The sludge was withdrawn from a 10 L laboratory-scale sequencing batch reactor
10	(called the parent SBR) fed with domestic wastewater, augmented with acetate. A
11	cycle time of the SBR was 8 h, consisting of 90 min anaerobic reaction (including 9
12	min feeding at the beginning of this phase), 180 min anoxic reaction, 60 min aerobic
13	reaction (including 5 min wasting at the end of this phase), 120 min settling and 30
14	min decanting phases. In the 9 min feeding period, 5 L wastewater (composition
15	described below) was added to the reactor. At the end of the anaerobic stage, 20 ml
16	NaNO ₃ stock solution (121.4 g/LNaNO ₃) was pumped into the SBR in one minute,
17	resulting in an initial nitrate concentration of 40 mgN/L. The 60 min aerobic phase
18	was included to take up the P remained at the end of the anoxic phase completely with
19	a constant air flow of 0.2 L/min, In the wasting period, 450 mL mixed liquor was
20	discarded to keep the solids retention time (SRT) in the reactor at approximately 15 d.
21	The hydraulic retention time (HRT) was 11 h. The mixed liquor suspended solids
22	(MLSS) and mixed liquor volatile suspended solids (MLVSS) concentrations were

- 5 -

1	about 3500 mg/L and 2500 mg/L, respectively. The parent SBR was operated over six
2	months and reached pseudo steady state (as evidenced by the stable MLSS and
3	MLVSS concentrations and N and P removal performance).
4	2.2 Wastewater
5	Domestic wastewater drawn from a sewer line on campus was used as the reactor
6	feed after sedimentation. The wastewater, which had low COD: N: P ratios
7	(100:47:0.37) was supplemented with the acetate at a concentration of 200 mg/L COD
8	in order to be able to achieve satisfactory N and P removal . The mean influent COD,
9	NH4 ⁺ -N, NO2 ⁻ -N, NO3 ⁻ - N and PO4 ³⁻ -P were 340.6 mg/L, 68.7 mg/L, 0.003 mg/L,
10	0.45 mg/L, 5.24 mg/L, respectively, following acetate addition.
11	Synthetic wastewater used in the batch experiments described in 2.3 contained
12	98.80 mg/L KH ₂ PO ₄ , 112.50 mg/L of NH ₄ Cl, 14 mg/L CaCl ₂ ·2H ₂ O, 90mg/L
13	MgSO ₄ ·7H ₂ O, 300 mg/L NaHCO ₃ and 0.30 mL/L of trace elements solution. The
14	trace elements solution was made up of 1.50 g/L of FeCl ₃ ·6H ₂ O, 0.12 /g/L
15	MnCl ₂ ·4H ₂ O, 0.03g/LCuSO ₄ ·5H ₂ O, 0.15g/L of H ₃ BO ₃ , 0.18 g/L KI, 0.06 g/L
16	Na2MoO4·2H2O, 0.15 g/L CoCl2·6H2O, 0.12 g/L ZnSO4·7H2O, and 10 g/L EDTA
17	(Smolders et al., 1994).
18	2.3 Batch experiments

A 1.30 L sealed reactor was used for all the batch experiments. Magnetic stirrers were used to keep the sludge in suspension. In order to ensure completely anaerobic conditions, high-purity N_2 was sparged into it for 10 min before each batch test. All the tests were conducted in an air-conditioned laboratory, with the temperature

1 maintained at $20-22^{\circ}$ C.

2 2.3.1 Investigating N₂O production characteristics in the denitrifying phosphorus

3 removal reactor with pulse feed of nitrate

4	This experiment was carried out to investigate the N ₂ O production when
5	denitrification and P removal occurred concurrently (hereafter called Test 1). 1.20 L
6	sludge was withdrawn from the parent SBR at the end of the aerobic stage and
7	washed for three times by centrifugation to remove any remaining nitrate, nitrite, P
8	and external carbon. Then it was transferred into the batch reactor and mixed with the
9	same domestic wastewater as used by the parent SBR forming a liquid volume of 1.20
10	L and leaving a headspace of 0.1 L. The reactor was operated with a cycle time of 8 h,
11	with a phase design identical to that used for the parent SBR. 3.20 ml nitrate stock
12	solution (91.25 g/LNaNO ₃) was added as a pulse at the end of the anaerobic stage,
13	resulting in an initial nitrate concentration of 40 mgN/L. During the aeration stage,
14	DO was controlled at 2 mg/L. An N ₂ O microsensor (Unisense, Denmark) was
15	calibrated and then inserted into reactor to measure the dissolved N_2O on-line during
16	the 180 min anoxic reaction period. At the same time, off-gas sample were acquired
17	with a microsyringe from the reactor headspace and analyzed immediately for $N_2 O$
18	concentrations using the method to be further described in 2.4. Mixed liquor samples
19	were taken every 30 min throughout the experiment. The parameters analyzed
20	included PHAs, VFAs, glycogen, COD, nitrate, nitrite and PO ₄ ³⁻ -P.
21	2.3.2 Studying N_2O production during nitrite reduction under varying PHA

22 degradation rates

1	N_2O accumulation would appear when the nitrite consumption rate is faster than
2	the N_2O reduction rate. In order to explore the reason for N_2O accumulation in a
3	denitrifying phosphorus removal system, this experiment was undertaken by using
4	PHAs and nitrite as electron donors and electron acceptor, respectively (hereafter
5	called Test 2). In each test, 1.3 L sludge was withdrawn from the parent SBR when its
6	anaerobic reaction finished, and was washed for three times to remove the residual
7	external carbon to ensure PHAs would be the primary carbon source. The batch
8	reactor was filled with 1.30 L synthetic wastewater as described in 2.2. The resulting
9	MLSS and MLVSS concentration were approximately 4300 mg/L and 3800 mg/L,
10	respectively. During the experiment, nitrite in the reactor was kept relatively constant
11	and non-rate limiting levels (between 20-25mg N/L) by manual addition of a stock
12	nitrite solution (9.86 g/LNaNO ₂) every 30 min. pH was controlled at 8.00 ± 0.05 by
13	manually adding 0.50 M HCL and 0.50 M NaOH. pH was measured online using a
14	pH meter (pH/oxi340i, WTW Company, Germany). FNA was calculated according to
15	the formula: $S_{NO_2^N}/(K_a \times 10^{pH})$, with the K_a value determined by the formula
16	$K_a = e^{-2300/(273+T)}$ for the measured temperature T(°C) (Anthonisen et al., 1976). In
17	this case, the FNA was determined to be varying in a small range with a mean value
18	of 4.86×10 ⁻⁴ mg HNO ₂ -N/L.
19	With the potential effect of FNA on N_2O production kept constant through the
20	above experimental design, this experiment could investigate the impact of PHAs
21	variation on N ₂ O production under low FNA conditions. The activated sludge samples

22 were taken every 30 min for the analysis of PHAs and nitrite. The dissolved and

- 8 -

- 1 off-gas N₂O concentrations were measured as described in Test 1. The experiments
- 2 lasted for 4 h until nitrite reduction ceased.
- 3 2.3.3 Controlling N₂O production in the denitrifying phosphorus removal reactor
- 4 via continuous feed of nitrate
- 5 With the aim to control the N_2O production during denitrifying phosphorus
- 6 removal, this experiment was conducted (hereafter called Test 3). Test 3 was similar
- 7 to Test 1 except that nitrate was added continuously rather than as a pulse. 60 ml
- 8 NaNO₃ stock solution (4.86g/LNaNO₃) was continuously fed into reactor during the
- 9 anoxic reaction period with a peristaltic pump, which ensured that the total amount of
- 10 nitrate was equal to that added in Test 1.
- 11 **2.4 Analytical methods**

12	Mixed liquor samples were filtered through 0.45 μ m filter paper for the analysis
13	of COD, NO_2^{-} -N, NO_3^{-} -N, PO_4^{3-} -P, and VFAs. VFAs were measured with gas
14	chromatography according to Su et al. (2013). COD, NO ₂ ⁻ -N, NO ₃ ⁻ -N, PO ₄ ³⁻ -P, MLSS
15	and MLVSS were measured according to the standard methods (American Public
16	Health Association (APHA), 1995). The solid-phase samples were used to measure
17	PHAs and glycogen after freeze-drying. The total PHAs stored in the DPAOs were
18	determined by the sum of poly- β -hydroxybutyrate (PHB) and poly- β -hydroxyvalerate
19	(PHV), and both of them were analyzed according to Oehmen et al. (2007). Glycogen
20	was measured with the method of colorimetry of sulfuric acid-anthrone (Frølund et al.,
21	1996). The off-gas N_2O was measured via gas chromatograph (GC, Agilent 6890N,
22	U.S.) (Yang et al., 2009), and the dissolved N_2O was continuously measured with an

- 1 N₂O microsensor (with a detection limit of $3 \mu molN_2O$ -N/L in water, Unisense,
- 2 Denmark). The sensor was calibrated before each experiment.

3	The PHA, nitrite, N ₂ O consumption rates were determined through linear
4	regression of their profiles (R^2 >0.90), with accumulation represented as negative
5	consumption. Since nitric oxide (NO), the precursor of N ₂ O, usually does not
6	accumulate during denitrification due to its toxicity on microorganism (Richardson et
7	al., 2009), its reduction rate was assumed to be equal to the nitrite reduction rate. The
8	biomass specific PHA degradation rate was determined by dividing its consumption
9	rate by MLVSS. The specific reduction rate of nitrogen oxides, electron consumption
10	rate of denitrifying enzymes and electron distribution percentages during
11	denitrification were calculated according to Pan et al. (2013).
12	3. Results and discussion
13	3.1 N ₂ O production characteristic in the denitrifying phosphorus removal
14	process with pulse feed of nitrate
15	Test 1 was undertaken to investigate the N_2O accumulation characteristic in the
16	denitrifying phosphorus removal process. Fig.1(a) and Fig.1(b) show the cycle
17	profiles of various parameters measured in this process. The phenotype of DPAOs
18	was observed. In the anaerobic period with external carbon (COD) being available
19	(feast period), microbial respiration proceeded immediately when nitrate was added.

- 20 The COD and VFAs (calculated as COD) decreased from 233 and 119 mg/L to 80
- and 4 mg/L, respectively. Concurrently, the release of PO_4^{3-} -P was observed, which
- reached 13 mg/L. The relatively low P release to VFA uptake ratio (0.1 molP/molC)

1	suggests the likely presence of glycogen-accumulating organisms (GAOs), which
2	would compete for organic carbon with PAOs anaerobically (Lopez-Vazquez et al.,
3	2007). In the subsequent period of no external carbon (famine period), the anoxic
4	nitrate concentration decreased from the initial 40 mg N/L to 0.27 mg N/L at 210 min,
5	and approximately 90% of the PO_4^{3-} -P was removed. In the aerobic stage, the
6	remaining PO_4^{3-} -P (1.56 mg/L) was successfully taken up with oxygen as the terminal
7	electron acceptor. At the end of the aerobic period, PO_4^{3-} -P and PHAs reached
8	approximately zero and glycogen recovered to 10.7 mMC/gVSS.
9	The nitrite and N_2O production during the test are shown in Fig.1 (b). Nitrite
10	gradually increased, reaching 7.0 mg N/L at 210 min, corresponding to an FNA level
11	of 0.06×10^{-3} mg HNO ₂ -N /L, when nitrate depleted, The dissolved N ₂ O also increased,
12	reaching approximately 0.15 mg N/L at this time. Accumulation of N_2O in the gas
13	phase was also observed, giving an overall (liquid + gas) N_2O accumulation of about
14	0.20 mg N/L.
15	Significantly, nitrite and N_2O reached their highest levels almost at the same
16	time. The dissolved N_2O then rapidly dropped to 0 mg N/L when the accumulated
17	nitrite decreased to the lowest level. These profiles indicate that the accumulated FNA
18	could have been an inducer of N_2O accumulation in this system. Although Zhou et al.
19	(2008b) revealed the inhibitory effect of FNA at a concentration of 0.06×10^{-3} mg
20	HNO ₂ -N /L on DPAOs was negligible, this conclusion may not be directly applicable
21	to our sludge. The microbial community in our sludge, which likely contained a
22	significant amount of GAOs, was different from that studied in Zhou et al. (2008b),

1	which contained a negligible GAO population according to Zhou et al. (2008a).
2	GAOs have previously reported to be a major contributor to N_2O production in
3	denitrifying phosphorus removal systems (Zeng et al., 2003; Zhu et al., 2011).
4	Equally significantly, the maximum N ₂ O accumulation also appeared to coincide
5	with slow PHA degradation (Fig.1(a) and Fig.1(b)), suggesting that the PHA
6	degradation rate could also be a contributor. This is in agreement with previous
7	studies. Zhou et al. (2012) also suggested that the N_2O accumulation could be
8	attributed to the shortage of electrons provided by PHA oxidation. Li et al. (2013b)
9	reported that the accumulated N_2O during dinitrification with PHAs decreased sharply
10	with acetate addition. According to Pan et al. (2013), Nos has a lower affinity for
11	electron carries than Nir. All these supported that lower PHA degradation rates would
12	lead to N_2O accumulation during denitrification with PHAs as the sole carbon source.
13	Therefore, Test 2 reported below was designed to reveal the effect of the PHA
14	degradation rate on N_2O production by the sludge. Its effect is separated from that of
15	FNA by keeping FNA at a constant and low level.
16	3.2 The effect of PHA degradation rate on N_2O production during denitrifying
17	phosphorus removal at a constant and low FNA level
18	With the aim to investigate the individual effect of PHA degradation rate on N_2O
19	production in the denitrifying phosphorus removal system, nitrite concentration was
20	controlled at a relatively constant level. pH was controlled at a constant level of 8.0.
21	Fig. 2 shows the variations of nitrite, N ₂ O and PHAs during nitrite reduction. The

22 nitrite level was successfully controlled within the range of 20-25 mg N/L in the

1	whole test, and the FNA was thus controlled at a relatively constant and low level of
2	4.86×10^{-4} mg HNO ₂ -N/L. The produced N ₂ O kept rising until nitrite reduction almost
3	ceased. PHAs decreased gradually from 3.0 to 1.5 mMC/gVSS, and it degraded more
4	slowly at the later stage of this test. Zhou et al. (2012) and Miao et al. (2014) also
5	observed N ₂ O accumulation when nitrite reduction was supported with internal
6	carbon sources (i.e. PHAs). By replenishing the reduced nitrite every 30 min (Fig. 2),
7	the total reduced nitrite was 20.9 mg N/L. In comparison, the produced N_2O reached
8	8.4 mg N/L, accounting for 40% of the reduced nitrite.
9	Interestingly, Fig.3 (a) shows that all the N_2O production percentages (the
10	percentages of N_2O produced accounting for the total reduced nitrite) in every 30 min
11	interval fluctuated around the average value of about 40%. Fig.3 (b) and (c) show the
12	nitrite and N_2O specific reduction rates within 240 min obtained from linear
13	regression of nitrite and N_2O concentrations in every 30 min period, respectively. It
14	was found that both the nitrite and N_2O reduction rates decreased with time, which
15	can be described with the exponential model. Comparing the parameters of the
16	functions revealed that nitrite dropped more quickly than N_2O . This suggests that the
17	N_2O production rate was above its reduction rate during nitrite reduction, resulting in
18	the apparent N_2O accumulation all the time.
19	Fig.3 (d) shows that the PHA degradation rates declined from 0.15×10^{-1} to
20	0.01×10^{-1} mMC/(gVSS×min), implying that the electron supply rate varied during
21	nitrite reduction. The prediction of PHA degradation rate was close to the exponential
22	model as shown in Fig. 3(d). Beun et al. (2000) also observed that the PHB

- 13 -

1	degradation rate become lower when denitrification proceeded.
2	Pan et al. (2013) demonstrated that the Nir would obtain more electrons
3	compared to Nos when electron competition was intensified by the slower electron
4	supply rate, resulting in more severe inhibition with the N_2O reduction. Consequently,
5	the disparity of electron consumption rates between Nir and Nos would become much
6	greater. However, Fig.3 (d) and Fig.4 (a) showed that both the Nir and Nos electron
7	consumption rates descended simultaneously with the decreased PHA degradation
8	rate (determining the electron supplying rate). The electron consumption rate for Nir
9	fell from 0.05×10^{-1} to 0.02×10^{-1} m mole / (gVSS×min), and the rate for Nos fell from
10	0.03×10^{-1} to 0.01×10^{-1} m mole / (gVSS×min). This suggests that the electron
11	competition between Nir and Nos did not get more intensified when carbon was
12	degraded more slowly in denitrification with PHAs.
13	The electron distribution is shown in Fig.4 (b). The percentages of electrons
14	distributed to Nir and Nos remained approximately constant irrespective of the change
15	in the PHA oxidation rate, which were about 40% and 25% of the total electrons
16	consumed, respectively. This result was significant, for it could potentially account for
17	the constant N_2O accumulation during nitrite reduction under varing PHA degradation
18	rates. In this case, the nitrite reduction rate seemed to be always 1.6 times that of N_2O .
19	This result is different from the electron competition observed in the
20	methanol-utilizing denitrification process (Pan et al., 2013). During the denitrification
21	with external carbon sources, the electrons were mainly used for microbial respiration
22	and biomass growth. However, the electrons were also utilized for glycogen

1	replenishment besides those with the sludge used in this study. Whether this
2	contributed to this difference remains to be further investigated.
3	Various carbon sources have been found to significantly influence N ₂ O production
4	in denitrifying phosphorus removal systems. Wang et al., (2011b) showed that N ₂ O
5	production went up when the carbon source was switched from acetate to propionate.
6	This could be related to the different amount and composition of PHAs produced
7	anaerobically. Contradictorily, Li et al. (2013b) showed N_2O generation decreased by
8	about 70 % by using propionate as the carbon source in place of acetate. Zhu & Chen
9	(2011) found that the use of waste-activated sludge fermented under alkaline
10	conditions as the carbon sources in an anaerobic – aerobic process decreased N_2O
11	production by 69% compared to acetate. They hypothesized that the presences of Cu_2^+
12	in the fermented products favored the proliferation of bacteria capable of reducing
13	N_2O to N_2 .
	2.2 Controlling N.O. and design denity if sing about home removal by
14	5.5 Controlling N ₂ O production during demonstrating phosphorus removal by
15	inmiting the electron supply rate via continuous feed of hitrate
16	Based on the above results, this test was performed by limiting the electron
17	acceptor supply rate to control N_2O production via continuous feed of nitrate (Fig.
18	5(a)). VFAs were completely consumed anaerobically, resulting in PHA generation.
19	PHAs were consumed with the continuous nitrate feed, declining from 7.9 to 3.3
20	mMC/gVSS. PHAs degraded faster in the first 90 min of the anoxic period, consistent
21	with Fig.1 (a). Efficient P removal and glycogen replenishment were achieved in the
22	anoxic stage. PO ₄ ³⁻ -P decreased from 11.7 to 0.67mg/L, and glycogen rose from 4.6 to

23 8.6 mMC/gVSS.

1	The nitrate level was controlled below 1.5 mg N/L (Fig. 5(b)). Nitrite was less
2	than 2.5 mg N/L at all time. The dissolved N_2O accumulation of up to 0.04 mgN/L
3	coincided with nitrite accumulated to 2.3 mgN/L, which was much lower than the
4	nitrite accumulation in Test 1. More significantly, the maximum N ₂ O production was
5	0.05 mg N/L, which was 75% less than that in the denitrification process with pulse
6	feed of nitrate. Therefore, the continuous feed of nitrate could efficiently reduce N_2O
7	accumulation in the denitrifying phosphorus removal system. With the slow feeding
8	applied in Test 3, the electron supply resulting from PHA oxidation was meeting the
9	electron demand of all steps of denitrification, with the rates of all denitrification steps
10	limited by the nitrate supplying rate. Accordingly, the N_2O production rate (nitrite
11	reduction rate) was well balanced with its reduction rate, and hence most of the N_2O
12	produced was converted to N_2 . In addition, this method also attenuated the FNA
13	inhibition on N_2O reduction, for the highest FNA concentration decreased from
14	0.06×10^{-3} mg HNO ₂ -N to 0.02×10^{-3} mg HNO ₂ -N.

15 Conclusions

 N_2O accumulation in a denitrifying phosphorus removal system was investigated. N_2O accumulation in a denitrifying phosphorus removal system was investigated. Lower PHA degradation rates did not stimulate higher N_2O production. Electron distribution for Nos during nitrite reduction supported by PHAs did not vary with the PHA oxidation rate and remained at approximately 25%. As the sludge likely contained both PAOs and GAOs, the above observation cannot be uniquely attributed to either group. N_2O accumulation can be reduced substantially by loading nitrate slowly in comparison to pulse feeding of nitrate.

1 Acknowledgements

- 2 This research was financially supported by Natural Science Foundation of China
- 3 (51178007) and the project of scientific research base and scientific innovation
- 4 platform of Beijing Municipal Education Commission.

5 **References**

- 6 [1] Ahn, J., Daidou, T., Tsuneda, S., Hirata, A. 2002. Characterization of denitrifying
- 7 phosphate-accumulating organisms cultivated under different electron acceptor
- 8 conditions using polymerase chain reaction-denaturing gradient gel
- 9 electrophoresis assay. Water Res., 36, 403-412.
- 10 [2] American Public Health Association (APHA), A.W.W.A.A., Water Environment
- 11 Federation (WEF). 1995. Standard Methods for the Examination of Waterand
- 12 Wastewater, Washington, DC.
- 13 [3] Anthonisen, A., Loehr, R., Prakasam, T., Srinath, E. 1976. Inhibition of
- 14 nitrification by ammonia and nitrous acid. Journal (Water Pollution Control
- 15 Federation), 835-852.
- [4] Beun, J., Verhoef, E., Van Loosdrecht, M., Heijnen, J. 2000. Stoichiometry and
 kinetics of poly-β-hydroxybutyrate metabolism under denitrifying conditions in
 activated sludge cultures. Biotechnol.Bioeng., 68, 496-507.
- 19 [5] Frølund, B., Palmgren, R., Keiding, K., Nielsen, P.H. 1996. Extraction of
- 20 extracellular polymers from activated sludge using a cation exchange resin. Water
- 21 Res., 30, 1749-1758.
- 22 [6] Guo, G., Wang, Y., Wang, C., Wang, H., Pan, M., Chen, S. 2013. Short-term

1	effects of excessive anaerobic reaction time on anaerobic metabolism of
2	denitrifying polyphosphate-accumulating organisms linked to phosphorus removal
3	and N ₂ O production. Front. Environ. Sci. Eng., 7, 616-624.
4	[7] Halet, D., Defoirdt, T., Van Damme, P., Vervaeren, H., Forrez, I., Van de Wiele, T.,
5	Boon, N., Sorgeloos, P., Bossier, P., Verstraete, W. 2007. Poly-β-hydroxybutyrate
6	-accumulating bacteria protect gnotobiotic Artemia franciscana from pathogenic
7	Vibrio campbellii. FEMS Microbiol.Ecol., 60, 363-369.
8	[8] IPCC. 2001. Climate Change 2001: the Scientific Basis. CambridgeUniversity
9	Press.
10	[9] Itokawa, H., Hanaki, K., Matsuo, T. 2001. Nitrous oxide production in
11	high-loading biological nitrogen removal process under low cod/n ratio condition.
12	Water Res., 35, 657-664.
13	[10] Johwan Ahn, T.D., Satoshi Tsuneda, Akira Hirata. 2001. Metabolic Behavior of
14	Denitrifying Phosphate-Accumulating Organisms under Nitrate and Nitrite
15	Electron Acceptor Conditions. J. Biosci. Bioeng., 92, 442-446.
16	[11] Kampschreur, M.J., van der Star, W.R.L., Wielders, H.A., Mulder, J.W., Jetten,
17	M.S.M., van Loosdrecht, M.C.M. 2008. Dynamics of nitric oxide and nitrous
18	oxide emission during full-scale reject water treatment. Water Res., 42, 812-826.
19	[12]Kuba, T., Van Loosdrecht, M., Heijnen, J. 1996. Phosphorus and nitrogen removal
20	with minimal COD requirement by integration of denitrifying dephosphatation
21	and nitrification in a two-sludge system. Water Res., 30, 1702-1710.
22	[13] Lemaire, R., Meyer, R., Taske, A., Crocetti, G.R., Keller, J., Yuan, Z. 2006.

1	Identifying causes for N ₂ O accumulation in a lab-scale sequencing batch reactor
2	performing simultaneous nitrification, denitrification and phosphorus removal. J.
3	Biotechnol., 122, 62-72.
4	[14]Li, C., Liang, S., Zhang, J., Ngo, H.H., Guo, W., Zheng, N., Zou, Y. 2013a. N ₂ O
5	reduction during municipal wastewater treatment using a two-sludge SBR system
6	acclimatized with propionate.Chem.Eng. J., 222, 353-360.
7	[15]Li, C., Zhang, J., Liang, S., Ngo, H.H., Guo, W., Zhang, Y., Zou, Y. 2013b.
8	Nitrous oxide generation in denitrifying phosphorus removal process: main causes
9	and control measures. Environ. Sci. Pollut. Res. Int., 20, 5353-5360.
10	[16]Lopez-Vazquez, C.M., Hooijmans, C.M., Brdjanovic, D., Gijzen, H.J., van
11	Loosdrecht, M.C.M. 2007. A Practical Method for Quantification of Phosphorus-
12	and Glycogen-Accumulating Organism Populations in Activated Sludge Systems.
13	Water Environ Res, 79, 2487-2498.
14	[17]Ma, B., Peng, Y., Zhang, S., Wang, J., Gan, Y., Chang, J., Wang, S., Wang, S., Zhu,
15	G. 2013a. Performance of anammox UASB reactor treating low strength
16	wastewater under moderate and low temperatures. Bioresour. Technol., 129,
17	606-611.
18	[18] Meinhold J, A.E., Isaacs S 1999. Effect of nitrite on anoxic phosphate uptake in
19	biological phosphorus removal activated sludge. Water Res., 33, 1871-1883.
20	[19]Miao, Z., Zeng, W., Wang, S., Peng, Y., Cao, G., Weng, D., Xue, G., Yang, Q.
21	2014. Effect of temperature on anoxic metabolism of nitrites to nitrous oxide by
22	polyphosphate accumulating organisms. J. Environ. Sci. China, 26, 264-273.

1	[20] Oehmen, A., Lemos, P.C., Carvalho, G., Yuan, Z., Keller, J., Blackall, L.L., Reis,
2	M.A. 2007. Advances in enhanced biological phosphorus removal: from micro to
3	macro scale. Water Res., 41, 2271-2300.
4	[21]Pan, Y., Ni, B.J., Bond, P.L., Ye, L., Yuan, Z. 2013. Electron competition among
5	nitrogen oxides reduction during methanol-utilizing denitrification in wastewater
6	treatment. Water Res., 47, 3273-3281.
7	[22]Richardson, D., Felgate, H., Watmough, N., Thomson, A., Baggs, E. 2009.
8	Mitigating release of the potent greenhouse gas N_2O from the nitrogen cycle -
9	could enzymic regulation hold the key? Trends Biotechnol., 27, 388-397.
10	[23] Smolders, G., Van der Meij, J., Van Loosdrecht, M., Heijnen, J. 1994.
11	Stoichiometric model of the aerobic metabolism of the biological phosphorus
12	removal process. Biotechnol.Bioeng.,44, 837-848.
13	[24] Su, G., Huo, M., Yuan, Z., Wang, S., Peng, Y. 2013. Hydrolysis, acidification and
14	dewaterability of waste activated sludge under alkaline conditions: combined
15	effects of NaOH and Ca(OH) ₂ . Bioresour. Technol., 136, 237-243.
16	[25] Wang, Y., Geng, J., Ren, Z., He, W., Xing, M., Wu, M., Chen, S. 2011a. Effect of
17	anaerobic reaction time on denitrifying phosphorus removal and N_2O production.
18	Bioresour. Technol., 102, 5674-84.
19	[26]Wang, Y., Geng, J., Guo, G., Wang, C., Liu, S. 2011b. N ₂ O production in
20	anaerobic/anoxic denitrifying phosphorus removal process: The effects of carbon
21	sources shock. Chem Eng J, 172, 999-1007.
22	[27] Wentzel, M., Loewenthal, R., Ekama, G., Marais, G. 1988. Enhanced

1	polyphosphate organism cultures in activated sludge systems- Part 1: Enhanced
2	culture development. Water S. A., 14, 81-92.
3	[28] Yang, Q., Liu, X., Peng, C., Wang, S., Sun, H., Peng, Y. 2009. N ₂ O production
4	during nitrogen removal via nitrite from domestic wastewater: main sources and
5	control method. Environ. Sci. Technol., 43, 9400-9406.
6	[29]Zeng, R.J., Yuan, Z., Keller, J. 2003. Enrichment of denitrifying glycogen-
7	accumulating organisms in anaerobic/anoxic activated sludge system. Biotechnol.
8	Bioeng., 81, 397-404.
9	[30]Zhou, Y., Lim, M., Harjono, S., Ng, W.J. 2012. Nitrous oxide emission by
10	denitrifying phosphorus removal culture using polyhydroxyalkanoates as carbon
11	source. J. Environ. Sci. China, 24, 1616-1623.
12	[31]Zhou, Y., Pijuan, M., Yuan, Z. 2008a. Development of a 2-sludge, 3-stage system
13	for nitrogen and phosphorous removal from nutrient-rich wastewater using
14	granular sludge and biofilms. Water Res., 42, 3207-17.
15	[32]Zhou, Y., Pijuan, M., Zeng, R.J., Yuan, Z. 2008b. Free Nitrous Acid Inhibition on
16	Nitrous Oxide Reduction by a Denitrifying-Enhanced Biological Phosphorus
17	Removal Sludge. Environ. Sci. Technol., 42, 8260-8265.
18	[33]Zhu, X., Chen, Y. 2011. Reduction of N ₂ O and NO generation in
19	anaerobic-aerobic (low dissolved oxygen) biological wastewater treatment process
20	by using sludge alkaline fermentation liquid. Environ Sci Technol, 45, 2137-43.

Table and Figure captions 1

- Fig. 1 Variations of COD, VFAs, PHAs, PO₄³⁻-P and Glycogen (a) and nitrate, nitrite 2
- and N₂O (b) in a typical cycle during denitrifying phosphorus removal with pulse feed 3
- of nitrate 4
- Fig.2 The nitrite and N₂O concentration profiles during nitrite reduction using PHAs 5
- as the carbon source 6
- 7 Fig.3 N₂O production (a), specific nitrite reduction rate (b), specific N₂O reduction
- rate (c), specific PHA degradation rate (d) during nitrite reduction using PHAs as the 8
- 9 carbon source
- Fig.4 Electron consumption rate (a) and electron distribution (b) during nitrite 10
- reduction using PHAs as carbon source 11
- Fig. 5 Variations of COD, VFAs, PHAs, PO₄³⁻-P and Glycogen (a) and nitrate, nitrite 12
- and N_2O (b) in a typical cycle during denitrifying phosphorus removal with 13
- 14 continuous feed of nitrate
- CCE 15

- 3 Fig. 1 Variations of COD, VFAs, PHAs, PO_4^{3} -P and Glycogen (a) and nitrate, nitrite and N₂O (b) in a typical
- 4 cycle during denitrifying phosphorus removal with pulse feed of nitrate
- 5

Fig.2 The nitrite and N_2O concentration profiles during nitrite reduction using PHAs as the carbon source 2

1

2 Fig.3 N₂O production (a), specific nitrite reduction rate (b), specific N₂O reduction rate (c), specific PHA

- 25 -

- 3 degradation rate (d) during nitrite reduction using PHAs as the carbon source
- 4

5

6

2 Fig.4 Electron consumption rate (a) and electron distribution (b) during nitrite reduction using PHAs as carbon

- 3 Fig. 5 Variations of COD, VFAs, PHA s, PO_4^{3-} -P and Glycogen (a) and nitrate, nitrite and N_2O (b) in a typical
- 4 cycle during denitrifying phosphorus removal with continuous feed of nitrate
- 5

ACC

1		Research highlights
2		
3	Ŷ	N ₂ O production in denitrifying phosphorus removal process was studied.
4	¢	The decrease of PHAs degradation rate did not cause an increase in N_2O
5		production.
6	¢	The electrons distributed to nitrite reductase were 1.6 times of that to N_2O
7		reductase.
8	Ŷ	Controlling nitrate supply rate via continuous feed could reduce N_2O production.
9 10 11		
Y		