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Abstract 1 

The gram-negative endosymbiotic bacteria, Wolbachia, have been found to colonize a wide range 2 

of invertebrates, including over 40% of insect species. Best known for host reproductive 3 

manipulations, some strains of Wolbachia have been shown to reduce the host life span by about 4 

50% and inhibit replication and transmission of dengue virus (DENV) in the mosquito vector, 5 

Aedes aegypti. The molecular mechanisms underlying these effects still are not well understood. 6 

Our previous studies showed that Wolbachia uses host microRNAs (miRNAs) to manipulate host 7 

gene expression for its efficient maintenance and limiting replication of DENV in Ae. aegypti. 8 

Protein arginine methyltransferases are structurally and functionally conserved proteins from yeast 9 

to human. In mammals, it has been reported that protein arginine methyltransferases such as 10 

PRMT1, 5 and 6 could regulate replication of different viruses. Ae. aegypti contains eight members 11 

of protein arginine methyltransferases (AaArgM1-8). Here, we show that the wMelPop strain of 12 

Wolbachia introduced into Ae. aegypti significantly induces the expression of AaArgM3. 13 

Interestingly, we found that Wolbachia uses aae-miR-2940, which is highly upregulated in 14 

Wolbachia-infected mosquitoes, to upregulate the expression of AaArgM3. Silencing of AaArgM3 15 

in a mosquito cell line led to the inhibition of Wolbachia replication, but had no effect on the 16 

replication of DENV. These results provide further evidence that Wolbachia uses the host miRNAs 17 

to manipulate host gene expression and facilitate colonization in Ae. aegypti mosquito. 18 

 19 

Key words: protein arginine methyltransferase 3; Aedes aegypti; Wolbachia; microRNA; dengue 20 

virus 21 

 22 

1. Introduction 23 

Wolbachia, the maternally inherited and gram-negative endosymbiotic bacteria, naturally occur in 24 

40-65% of insect species (Hilgenboecker et al., 2008; Jeyaprakash and Hoy, 2000; Zug and 25 

Hammerstein, 2012). In the absence of naturally present strains of Wolbachia in the main vectors of 26 
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dengue virus (DENV; Aedes aegypti) and malaria (Anopheles gambiae), Wolbachia strains from 27 

Drosophila melanogaster and Ae. albopictus have recently been successfully introduced into Ae. 28 

aegypti and other mosquito species (Bian et al., 2013; McMeniman et al., 2009; Xi et al., 2005). 29 

Although a recent study found natural infections of Wolbachia in An. gambiae field populations in 30 

Burkina Faso, West Africa (Baldini et al., 2014). In some cases, transinfected Wolbachia strains 31 

have established stable inherited infections in the lab and the field (Frentiu et al., 2014; Walker et 32 

al., 2011). Similar to their original hosts, the newly introduced Wolbachia strains induce 33 

cytoplasmic incompatibility and life-shortening in adult mosquitoes by as much as 50% 34 

(McMeniman et al., 2009; Moreira et al., 2009; Xi et al., 2005). In addition, Ae. aegypti infected 35 

with Wolbachia possesses very strong resistance to several arboviruses including DENV and 36 

Chikungunya virus (Bian et al., 2013; Moreira et al., 2009), and Plasmodium (Moreira et al., 2009) 37 

and filarial nematodes (Kambris et al., 2009). Thus, the utilization of Wolbachia to control 38 

arbovirus transmission from mosquitoes to vertebrate hosts has become one of the most exciting 39 

approaches in vector-borne disease control.  40 

The molecular mechanism(s) underlying suppression of replication of viruses in the presence of 41 

Wolbachia are thought to be complex and perhaps due to a combination of factors, but still largely 42 

unknown (see a recent review (Rainey et al., 2014). In its natural host, D. melanogaster, Wolbachia 43 

confer host resistance to RNA viruses and other pathogens via non-immune related mechanisms, 44 

since Wolbachia did not induce expression of innate immune genes (Bourtzis et al., 2000; Rances et 45 

al., 2013; Rancès et al., 2012). In Ae. aegypti, studies have shown that Wolbachia could use innate 46 

immune related mechanisms to suppress the replication of DENV by inducing the production of 47 

reactive oxygen species (ROS), overexpression of host immune genes and production of a variety of 48 

antimicrobial effectors (Bian et al., 2010; Kambris et al., 2010; Kambris et al., 2009; Moreira et al., 49 

2009; Pan et al., 2012; Xi et al., 2008). Recently, our studies demonstrated that Wolbachia use host 50 

microRNAs (miRNAs) to manipulate the expression of several host genes such as the 51 

metalloprotease ftsh, MCT, MCM6 and AaDnmt2, which facilitate Wolbachia colonization and 52 
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some contribute to inhibition of DENV replication in Ae. aegypti (Hussain et al., 2011; Osei-Amo et 53 

al., 2012; Zhang et al., 2013). 54 

miRNAs are an evolutionarily conserved class of small non-coding RNAs (~22 nucleotides), which 55 

down- or upregulate gene expression via partial or complete complementarity to their target gene 56 

sequences. They play important roles in cellular processes including development, differentiation, 57 

apoptosis, immunity and host-microorganism interactions (reviewed in Asgari, 2013; Bartel, 2009). 58 

miRNAs may bind to the 3’UTR, 5’UTR or coding region of target genes. Previous studies have 59 

shown that one miRNA could target several genes or several miRNAs could target one gene (e.g. 60 

Osei-Amo et al., 2012; Zhang et al., 2013). The expression levels of cellular miRNAs may 61 

substantially change in response to bacterial and viral infections in animals and plants (Fehri et al., 62 

2010; Huang et al., 2007; Hussain et al., 2011; Lu et al., 2008; Tili et al., 2007). In our previous 63 

studies, we found differential expression of several miRNAs in Wolbachia-infected Ae. aegypti 64 

mosquitoes (Hussain et al., 2011) leading to up- or downregulation of a variety of host genes, which 65 

facilitate colonization and host resistance to DENV in Ae. aegypti (Hussain et al., 2011; Osei-Amo 66 

et al., 2012; Zhang et al., 2013). 67 

In this study, we identified protein arginine methyltransferase 3 (AaArgM3) as another target gene 68 

of the Wolbachia-induced mosquito-specific aae-miR-2940-5p in Ae. aegypti. AaArgM3 belongs to 69 

protein arginine methyltransferase family, which includes eight members in Ae. aegypti (denoted 70 

AaArgM1-8). Arginine methyltransferases play diverse functions in cellular functions such as RNA 71 

processing and transcription (reviewed in Bedford and Clarke, 2009) and host-pathogen interactions 72 

(e.g. Duong et al., 2005; Souki et al., 2009; Yu et al., 2010). We investigated the effect of 73 

Wolbachia and DENV on these miRNAs and in turn their effect on replication of the two 74 

microorganisms. Our results suggest that AaArgM3 plays an important role in the maintenance of 75 

Wolbachia infection in mosquito cells but has no effect on DENV replication. 76 

 77 

2. Materials and Methods 78 
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2.1. Mosquitoes and insect cell lines 79 

Ae. aegypti infected with the wMelPop-CLA strain of Wolbachia (Wol+) and a Wolbachia-free 80 

strain, tetracycline-cured line (Wol-), were the stocks as previously described (McMeniman et al., 81 

2009). Ae. aegypti was reared at 25 ºC with 80% relative humidity and a 12-h light regime. Larvae 82 

were maintained with fish food pellets (Tetramin, tetra) at a density of 50 larvae per litre water in 83 

flat trays. Adults were supplied 10% (W/V) sucrose solution, ad libitum. Ae. aegypti Aag2 cells and 84 

wMelPop infected Aag2 cells (denoted as aag2.wMelPop-CLA) (Frentiu et al., 2010) were 85 

maintained in a 1:1 mixture of Mitsuhashi-Maramorosch and Schneider’s insect media (Invitrogen) 86 

supplemented with 10% FBS.  87 

2.2. RNA extraction, cDNA synthesis and polymerase chain reaction (PCR) 88 

Total RNA from female and male mosquitoes (separately) and mosquito cell lines was isolated 89 

using Tri-Reagent (Molecular Research Center). The RNA was treated with DNase I before used 90 

for reverse transcription (RT). The first strand cDNA was synthesized by RT with a Poly(dT) 91 

primer. In each RT reaction, approximately 2 µg of total RNA was used as template in a total 92 

volume of 20 µl. Following cDNA synthesis, 2 µl of RT products were used for each PCR in a total 93 

reaction volume of 25 µl with AaArgM3 gene-specific primers (Forward: 5’-94 

GTAGACGTAGACTGTCCC-3’; Reverse: 5’-ACCGGAATCGGTTCCTCG-3’). The 95 

amplification was performed at 94 ºC for 3 min, followed by 35 cycles of 94 ºC for 30 sec, 56 ºC 96 

for 30 sec, 68 ºC for 1 min, and a final extension at 68 ºC for 5 min. The ribosomal protein S17 97 

(RPS17) gene was used as control. 98 

2.3. Quantitative PCR (qPCR) of Wolbachia density 99 

Total genomic DNA was extracted from aag2.wMelPop-CLA cells. Wolbachia density in cells was 100 

determined by qPCR using the wsp gene-specific primers as described previously (Zhang et al., 101 

2013). qPCR was carried out by using Platinum SYBR Green Mix (Invitrogen) with 20 ng of total 102 

genomic DNA in a Rotor-Gene thermal cycler (QIAGEN) under the following conditions: 95 ºC 103 
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hold for 30 sec, then 40 cycles of 95 ºC for 15 sec, 50 ºC for 15 sec and 72 ºC for 20 sec, followed 104 

by the melting curve analysis (68 ºC to 95 ºC). For this experiment, three biological replicates with 105 

three technical replicates were analysed. The RPS17 gene was used for normalization of DNA 106 

templates. The student’s t test was used to compare the differences in means between different 107 

treatments. 108 

2.4. RT-qPCR 109 

For RNA samples from mock and DENV-2 infected female mosquitoes, samples produced 110 

previously were utilized (Zhang et al., 2013). Following the RT reaction, qPCR with DENV gene-111 

specific primers (forward: 5’-GTGGTGGTGACTGAGGACTG-3’; reverse: 5’-112 

CCATCCCGTACCAGCATCCG-3’) was carried out to determine DENV genomic RNA (gRNA) 113 

levels in cells. Platinum SYBR Green Mix (Invitrogen) was used for qPCR with 1 µl of RT 114 

products as described above. For this experiment, three biological replicates with three technical 115 

replicates were analysed. The RPS17 gene was also used for normalization of RNA templates. The 116 

student’s t test or ANOVA was used to compare the differences in means. 117 

For tissue-specific analysis of AaArgM3 transcript levels, total RNA was extracted from ovaries, 118 

salivary glands, thoracic muscle, midgut and fat body dissected from 4-day-old Wol+ and Wol- 119 

female mosquitoes (Zhang et al., 2013). RT-qPCR reactions were performed using AaArgM3 gene-120 

specific primers as described above. Similarly, three biological replicates with three technical 121 

replicates were analysed for each tissue of mosquito type. Each biological replicate consisted of a 122 

pool of total RNA extracted from different tissues of 10 female mosquitoes. The RPS17 gene was 123 

also used for normalization of RNA templates. 124 

2.5. miRNA target prediction and validation 125 

NCBI BLAST (http://www.ncbi.nih.gov/BLAST), RNAHybrid (Rehmsmeier et al., 2004) and 126 

RNA22 software (IBM) were used to identify the potential miRNAs induced in Wolbachia-infected 127 

female mosquitoes interacting with AaArgM3 using the seed region complementarity and minimum 128 
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free energy (mfe) of -21 kcal/mol as the two main criteria.  129 

To experimentally confirm the interaction between miRNAs and the target gene, AaArgM3, 130 

fragments of 200-500 bp long of AaArgM3 3’UTR containing the target sequences of aae-miR-131 

2940, aae-miR-278, aae-miR-315, and aae-miR-1000 were amplified using primers with specific 132 

restriction sites XbaI and SacII. The fragments were then extracted from agarose gel, digested with 133 

XbaI and SacII, and ligated into pIZ/V5-His vector (Invitrogen) downstream of the GFP open 134 

reading frame. The right plasmids, confirmed by sequencing, were subsequently co-transfected into 135 

Sf9 cells (derived from Spodoptera frugiperda) together with control or miRNA mimics, 136 

respectively. All mimics were synthesized by Genepharma and used in transfection studies at a 137 

concentration of 100 µM/ml. Cells were collected at 72 h after transfections, total RNA was 138 

extracted and RT-qPCR analyses were performed to determine the expression levels of the GFP 139 

gene. Three biological replicates with three technical replicates were analysed. 140 

2.6. RNAi-mediated gene silencing 141 

For RNAi-based experiments, dsRNAs were synthesized in vitro using the T7 Megascript 142 

transcription kit according to the manufacturer’s instruction (Ambion Inc., USA). T7 promoter 143 

sequences (TAATACGACTCACTATAGGG) were incorporated in both forward and reverse 144 

primers designed to amplify a ∼500 bp fragment of the Ae. aegypti Dicer-1 (forward: 5’-145 

CCCGGACCAAGTCCTAGTA-3’; reverse: 5’-CAACTCTTTCGGCACGTAA-3’),  AaArgM3 146 

(forward: 5’-ATGCTATCCTCGATAACG-3’; reverse: 5’-TGCTATGATGTTAGCATTG-3’) and 147 

the jellyfish GFP genes. For dsRNA synthesis, 200-500 ng of PCR product was used for each 148 

reaction. Reactions were incubated for 12 h at 37 ºC, DNase-treated and precipitated by the lithium 149 

chloride method following the manufacturer’s instructions. A total of 5 µg of dsRNA was used to 150 

transfect Aag2 or aag2.wMelPop-CLA cells with 5 µl of Cellfectin transfection reagent 151 

(Invitrogen). To reinforce silencing, cells were transfected again with the same reagent at 48 h after 152 

the first transfection. Cells were collected for RNA or DNA isolation as required for further analysis 153 

at 24 h after the second transfection. Gene silencing was confirmed by RT-qPCR using gene-154 
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specific primers to Dicer-1 and AaArgM3 genes. 155 

2.7. Western blotting 156 

Cell samples were resuspended in PBS buffer to which 4×SDS-PAGE loading buffer was added. 157 

Proteins were separated on a 10% SDS-PAGE and transferred onto a nitrocellulose membrane. 158 

After blocking the membrane, it was probed with anti-GFP antibody (Abcam) and subsequently 159 

with alkaline phosphatase conjugated anti-rabbit antibody (Sigma). The same blot was subsequently 160 

probed with anti-histone H3 antibody (Invitrogen) to confirm equal loading of samples. 161 

3. Results 162 

3.1. Expression profile of AaArgM3 in Ae. aegypti mosquito 163 

By performing the NCBI BLAST, RNAHybrid and RNA22 software, a putative protein arginine 164 

methyltransferase 3 (AaArgM3, GeneBank ID: XM_001654962) from Ae. aegypti was identified as 165 

another target of a Wolbachia upregulated miRNA, aae-miR-2940-5p, which was previously 166 

confirmed to upregulate the transcript levels of the metalloprotease ftsh (MetP) gene (Hussain et al., 167 

2011) and downregulate the transcript levels of AaDnmt2 gene (Zhang et al., 2013). aae-miR-2940 168 

is a mosquito-specific miRNA with its homolog absent in other insects (based on miRBase v.20). 169 

Sequence alignment showed that AaArgM3 is a homologue of protein arginine methyltransferases, 170 

PRMT3 from human and DART3 from Drosophila (Bedford and Clarke, 2009; Boulanger et al., 171 

2004). PRMT3 is a type I PRMT, and has been shown to be a cytosolic protein. Alignment results 172 

showed that there is 48% amino acid identity between Drosophila DART3 and Ae. aegypti 173 

AaArgM3. 174 

In Drosophila, human and other animals, the expression of ArgM3 is developmentally and tissue-175 

specifically regulated (Bedford and Clarke, 2009; Boulanger et al., 2004). By using AaArgM3 gene-176 

specific primers, we first investigated the expression pattern of AaArgM3 in different 177 

developmental stages of Ae. aegypti by RT-PCR. Results showed that the transcripts of AaArgM3 178 

were detectable in the first and fourth instar larvae and adult female mosquitoes, but hardly 179 
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detectable in the second and third instar larvae (Fig. 1A). Further analysis showed that AaArgM3 180 

was mainly expressed in the abdomen of both male and female mosquitoes (Fig. 1B), which 181 

suggests that AaArgM3 could be specifically expressed in some organs in the abdomen. Tissue-182 

specific RT-qPCR analyses of five tissues (ovary, midgut, salivary, muscles and fatty body) from 4-183 

day-old female Ae. aegypti confirmed that AaArgM3 was mainly expressed in the ovary (Fig. 2A).  184 

3.2. Wolbachia induces the expression of AaArgM3 by using host miRNAs  185 

It has been shown that Wolbachia manipulates host gene expression by regulating miRNA 186 

expression in Ae. aegypti, which improves colonization and blockage of DENV replication in the 187 

host (Bian et al., 2010; Hussain et al., 2011; Moreira et al., 2009; Osei-Amo et al., 2012; Zhang et 188 

al., 2013). Based on these, we investigated the expression of AaArgM3 in female mosquitoes 189 

infected with Wolbachia and DENV using RT-qPCR. Results showed about two-fold higher 190 

transcript levels of AaArgM3 in Wolbachia-infected mosquito tissues compared with those of the 191 

tet-cured mosquitoes (without Wolbachia; Wol-) (Fig. 2A-D). In Ae. aegypti mosquitoes infected 192 

with DENV, the transcript levels of AaArgM3 did not significantly change compared with the 193 

mock-infected mosquitoes (Data not shown). 194 

We also investigated the expression profiles of AaArgM3 in Ae. aegypti cell lines infected with 195 

wMelPop-CLA (aag2.wMelPop-CLA) or without (Aag2) by RT-PCR. Results indicated that 196 

AaArgM3 was expressed at much higher levels in aag2.wMelPop-CLA cells compared with Aag2 197 

cells (Fig. 3A). To investigate whether miRNAs are involved in the regulation of AaArgM3, the 198 

Dicer-1 gene was silenced using RNAi in aag2.wMelPop-CLA cells. After confirming gene 199 

silencing, RT-PCR was carried out to explore the expression of AaArgM3. The expression levels of 200 

AaArgM3 were considerably decreased compared with mock-transfected aag2.wMelPop-CLA cells 201 

(Fig. 3B), which suggested that the upregulation of AaArgM3 expression in aag2.wMelPop-CLA 202 

cells could be mediated by miRNAs.  203 

3.3. AaArgM3 is targeted by aae-miR-2940 204 

The target sequences of aae-miR-2940-5p were predicted in the 3’ UTR of AaArgM3 from 205 
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nucleotides 1991 to 2013 with significant complementarity to the miRNA’s seed region (Fig. 4A). 206 

To confirm the interaction of aae-miR-2940-5p with AaArgM3, we transfected aag2.wMelPop-CLA 207 

cells with specific synthetic aae-miR-2940-5p and aae-miR-2940-3p inhibitors. RT-PCR results 208 

showed much lower transcript levels of AaArgM3 in the cells transfected with aae-miR-2940-5p 209 

specific inhibitor compared with the cells transfected with the control aae-miR-2940-3p specific 210 

inhibitor (Fig. 4B). To further validate the positive interaction of aae-miR-2940 with AaArgM3, the 211 

target sequences were cloned downstream of the GFP gene in the pIZ/V5 vector (Fig. 5A). The 212 

plasmid was subsequently co-transfected into Sf9 cells together with aae-miR-2940 mimic and a 213 

control mimic (random sequences).  The Sf9 cell line, which lacks the miRNA, provides an 214 

independent system to test the miRNA-target interaction. RT-qPCR analyses were carried out to 215 

assess the effect of miRNA-mRNA interaction on the transcript levels of the GFP gene. The results 216 

showed that there were significantly higher levels of GFP transcripts in cells transfected with aae-217 

miR-2940 mimic compared to cells transfected with mock and control mimic (Fig. 5B). The 218 

upregulation was also confirmed at the protein level using an anti-GFP antibody (Fig. 5C). These 219 

results suggested that aae-miR-2940-5p upregulates the transcript levels of AaArgM3, which is 220 

consistent with the expression pattern of AaArgM3 gene in mosquitoes with or without Wolbachia 221 

(Fig. 2). 222 

Further bioinformatics analysis indicated that AaArgM3 could also be a potential target of three 223 

other miRNAs, aae-miR-278, -315, and -1000. We investigated the interaction of AaArgM3 gene 224 

with these predicted miRNAs by cloning their corresponding target sites in AaArgM3 (Fig. 6A) 225 

downstream of the GFP gene. The constructs were co-transfected into Sf9 cells with their 226 

corresponding mimics. While aae-miR-278 and -1000 had no effect, aae-miR-315 mimic increased 227 

GFP transcript levels compared with mock and the control mimic (Fig. 6B). However, when we 228 

checked our previous microarray data (Hussain et al., 2011), we found that aae-miR-315 levels 229 

slightly increased in Wolbachia-infected female mosquitoes but the difference was not significant. 230 

Aae-miR-315 may regulate AaArgM3 but perhaps not in the context of Wolbachia-mosquito 231 
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interaction.  232 

3.4. AaArgM3 facilitates Wolbachia replication 233 

In previous studies, we reported that Wolbachia infection leads to up- or downregulation of a 234 

number of host genes, which facilitate Wolbachia replication and maintenance in mosquito cells 235 

(Hussain et al., 2011; Osei-Amo et al., 2012; Zhang et al., 2013). Considering that aae-miR-2940-236 

5p upregulates the transcript levels of AaArgM3, we first investigated whether AaArgM3 has any 237 

effect on Wolbachia replication in aag2.wMelPop-CLA cells. For this, AaArgM3 was silenced in the 238 

cells and the density of Wolbachia was analysed by qPCR. RT-qPCR confirmed that the silencing 239 

efficiency was over 90% (Fig. 7A). qPCR results with wsp gene-specific primers revealed that 240 

Wolbachia density was significantly lower in AaArgM3 silenced cells, when compared with cells 241 

transfected with dsGFP or mock (Fig. 7B). This result suggests that AaArgM3 enhances Wolbachia 242 

replication in the cell line, which is consistent with the expression profile that AaArgM3 expression 243 

is considerably higher in the female mosquitoes with Wolbachia, compared with tet-cured 244 

counterpart mosquitoes (Fig. 2). 245 

3.5. AaArgM3 does not regulate DENV-2 replication 246 

In both Ae. aegypti mosquitoes and cell lines, Wolbachia was found to limit replication of DENV 247 

(Bian et al., 2010; Moreira et al., 2009), which could be due to manipulation of the host gene 248 

expression via miRNAs by Wolbachia. To explore the effect of AaArgM3 on DENV replication, we 249 

silenced AaArgM3 by transfecting Aag2 cells with AaArgM3 dsRNA that were subsequently 250 

infected with DENV-2. Total RNA at 72 h after viral infection was isolated and analysed by RT-251 

qPCR with DENV-specific primers. RT-qPCR confirmed that the silencing efficiency was about 252 

85% (Fig. 8A). The results showed that the relative abundance of DENV was not significantly 253 

different in AaArgM3 silenced cells compared with cells transfected with dsGFP or mock (Fig. 8B). 254 

Even silencing of the gene in aag2.wMelPop-CLA cells in which higher levels of AaArgM3 are 255 

found, DENV replication was not different in mock, dsGFP or dsAaArgM3 cells (Fig. 8C). These 256 

results suggest that AaArgM3 might not regulate replication of DENV in the mosquito cells, which 257 
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is consistent with the expression profile that the transcript levels of AaArgM3 were not different in 258 

non-infected and DENV-infected mosquitoes. 259 

4. Discussion 260 

Utilization of Wolbachia has appeared as a viable non-chemical control strategy to limit 261 

transmission of vector-borne pathogens since they block replication of a variety of pathogens, 262 

including arboviruses. Wolbachia strains have been successfully introduced into Ae. aegypti and An. 263 

gambiae, the important vectors of dengue fever and malaria, and others in an effort to suppress 264 

transmission of DENV and Plasmodium (Bian et al., 2013; Bian et al., 2010; Blagrove et al., 2012; 265 

McMeniman et al., 2009; Xi et al., 2005). To survive and persist in the new hosts, the 266 

endosymbiotic bacteria have to evade or overcome host immune responses. Hussain et al. (2011) 267 

have previously reported that Wolbachia wMelPop-CLA strain induces differential expression of a 268 

number of host miRNAs, including the mosquito-specific aae-miR-2940, in Ae. aegypti. In Ae. 269 

aegypti, aae-miR-2940 upregulates the expression of one target gene, metalloprotease ftsh (MetP), 270 

which is crucial for efficient replication and maintenance of the endosymbiont (Hussain et al., 271 

2011). Osei-Amo et al. (2012) found that differentially expressed aae-miR-12 downregulates the 272 

expression of two target genes, MCT1 and MCM6, which also play a role in Wolbachia’s fitness in 273 

the mosquito cells. In addition, the methyltransferase AaDnmt2 was identified to be another target 274 

of aae-miR-2940 and plays an important role in the replication of Wolbachia and contributes to the 275 

inhibition of DENV replication in Ae. aegypti (Zhang et al., 2013). These findings have shed light 276 

on molecular mechanisms by which Wolbachia manipulate the host’s environment in Ae. aegypti.  277 

In the present study, AaArgM3 was identified as another target gene of aae-miR-2940. The 278 

interaction of aae-miR-2940 with AaArgM3 was confirmed and validated by using a synthetic 279 

inhibitor and mimic of aae-miR-2940 (Fig. 4B and 5). By examining the expression patterns, we 280 

found that the transcript levels of AaArgM3 were significantly higher in Wolbachia-infected female 281 

mosquitoes (Fig. 2) and cells (Fig. 3A). Silencing of AaArgM3 gene in aag2-wMelPop-CLA by 282 

RNAi showed a significant decline in Wolbachia density, but no effect on DENV (Fig. 7B, 8C). 283 
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Further, silencing of AaArgM3 gene followed by DENV infection in Aag2 cells showed no 284 

significant effect on DENV replication. These results suggest that by inducing the expression of 285 

aae-miR-2940, Wolbachia upregulates the expression of AaArgM3, which in turn benefits 286 

Wolbachia in Ae. aegypti. 287 

Methylation of arginine residues is a widespread posttranslational modification of proteins 288 

catalyzed by a conserved family of protein arginine methyltransferases. Protein arginine 289 

methyltransferases are classified into three types by methylated arginine residues including 290 

asymmetric ω-NG, NG-dimethylarginine (ADMA), symmetric ω-NG, NG-dimethylarginine (SDMA) 291 

and ω-NG-dimethylarginine (MMA). Type I includes PRMT1, 2, 3, 4 and 8; type II includes 292 

PRMT5 and 7 and type III includes PRMT7 (Bedford and Clarke, 2009; McBride and Silver, 2001). 293 

They have diverse biological roles in the regulation of a large array of cell processes including 294 

signal transduction, subcellular localization, RNA processing and transcription (Bedford and 295 

Clarke, 2009; Krause et al., 2007; McBride and Silver, 2001). In recent years, PRMTs from 296 

mammals have been found to play essential roles in regulating the replication, production and 297 

infectivity of a variety of viruses. For example, PRMT1 negatively regulated Hepatitis Delta virus 298 

(Li et al., 2004), hepatitis B virus (Benhenda et al., 2013), hepatitis C virus (Duong et al., 2005) and 299 

Herpes Simplex virus (Souki et al., 2009; Yu et al., 2010). PRMT1 and PRMT5 together repressed 300 

HIV long terminal repeat transcription and consequently suppressed replication of the virus (Kwak 301 

et al., 2003). PRMT6 inhibited HIV-1 transcription through the methylation of Tat, Rev and 302 

nucleocapsid proteins (Boulanger et al., 2005; Invernizzi et al., 2007; Invernizzi et al., 2006; 303 

Singhroy et al., 2013; Xie et al., 2007). In our preliminary experiment, exposure of Aag2 cells to a 304 

protein arginine methyltransferase inhibitor (adenosine-2,3-dialdehyde) led to increased DENV 305 

replication (Zhang et al., unpublished data). In this study, we did not find that silencing of 306 

AaArgM3 had any effect on DENV replication, but we cannot exclude the possible role of 307 

AaArgM3 in regulating DENV replication. This is because in Ae. aegypti there are eight family 308 

members of protein arginine methyltransferases, which could have overlapping function probably 309 
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compensating the function of AaArgM3 when it was silenced. Further study is required to 310 

investigate which family member(s) play a role in regulating DENV replication.  311 

miRNAs have been implicated as gene regulators controlling diverse biological processes including 312 

development, cancer, immunity and host–microorganism interactions. They usually downregulate 313 

their target genes by either degradation of the target mRNA or repression of translation (reviewed in 314 

Asgari, 2013; Bartel, 2009). A large number of miRNAs have been identified to control the DNA 315 

and RNA methylation machineries (Denis et al., 2011). However, very few miRNAs have been 316 

identified to regulate protein arginine methylation. Recently miR-181a, b, c, and d family members 317 

were found to directly regulate CARM1 (PRMT4) expression in human embryonic stem cells (Xu et 318 

al., 2013). All the miR-181 family members target the 3’ UTR of CARM1. 319 

In our study, we identified and confirmed that aae-miR-2940, which is induced in the presence of 320 

Wolbachia, enhances the expression of a protein arginine methyltransferase, AaArgM3, in Ae. 321 

aegypti, which appears to be important for Wolbachia fitness. This suggests a positive feedback 322 

loop in which Wolbachia infection induces aae-miR-2940 that in turn positively regulates 323 

AaArgM3 leading to more Wolbachia. However, the mechanism by which the protein facilitates 324 

Wolbachia maintenance remains to be investigated. Our results suggest that Wolbachia manipulates 325 

host physiology and gene expression for colonization in mosquitoes using multiple targets of 326 

differentially regulated miRNAs. 327 
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Figure Legends 463 

Fig. 1. AaArgM3 expression in Ae. aegypti. (A) RT-PCR analysis was performed using the total 464 

RNA samples from Ae. aegypti mosquito larvae and female adults. (B) RT-PCR analysis was 465 

performed with head+thorax (HT) and abdomen (Ab) of mosquito females and males.  Rps17 gene 466 

was used as control to show the integrity of RNA. 467 

Fig. 2. Tissue-specific expression of AaArgM3 in female Ae. aegypti mosquitoes. RT-qPCR 468 

analysis of transcript levels of AaArgM3 in ovary, midgut, salivary glands (Salivary), thoracic 469 

muscle tissues (Muscle) and fat body from 4-day-old (A) tetracycline-treated non-infected (Wol-) 470 

and (B) Wolbachia-infected (Wol+) female mosquitoes. The transcript levels of AaArgM3 were also 471 

compared in (C) the ovaries and (D) fat body in the samples. Asterisks indicate a significant 472 

difference between treatments (** p < 0.001). 473 

Fig. 3. AaArgM3 expression in aag2-wMelPop-CLA and Aag2 cells. (A) RT-PCR analysis of 474 

RNA extracted from aag2-wMelPop-CLA (Pop) and Aag2 cells. (B) RT-PCR analysis of RNA 475 

extracted from mock and dsDicer-1 transfected aag2-wMelPop-CLA cells. Rps17 gene was used as 476 

control to show the integrity of RNA. 477 

Fig. 4. AaArgM3 transcript levels are upregulated by aae-miR-2940-5p. (A) Schematic diagram 478 

showing the AaArgM3 mRNA and its target sequences with complete complementarity of aae-miR-479 

2940-5p seed region (bold and underlined) with the sequences. (B) RT-PCR analysis of AaArgM3 480 

relative transcript levels using RNA extracted from aag2.wMelPop-CLA cells transfected with 481 

mock, synthetic aae-miR-2940-5p or aae-miR-2940-3p (control) inhibitors. Rps17 gene was used as 482 

control to show the integrity of RNA. 483 

Fig. 5. Target validation of aae-miR-2940. (A) Schematic diagram showing the cloning strategy 484 

of AaArgM3 target sequence complementary to the miRNA seed region from the AaArgM3 3’UTR 485 

under the GFP reporter gene in the pIZ vector. (B) RT-qPCR analysis of GFP transcript levels 486 

using the RNA extracted from Sf9 cells co-transfected with pIZ-GFP-target and mock, synthetic 487 
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control mimic or aae-miR-2940 mimic. Actin gene was used as the normalizing control. Asterisks 488 

indicate a significant difference between mock or control mimic and aae-miR-2940 mimic 489 

transfections (p < 0.0001). (C) Western blot analysis of Sf9 cells transfected with pIZ/GFP-target 490 

together with aae-2940-5p mimic (2940), control mimic (Cmimic), no mimic (Nmimic) or mock 491 

transfected without plasmid (Mock). The blot was probed with anti-GFP antibody and subsequently 492 

with anti-histone H3 to show equal loading of samples. 493 

Fig. 6. Interactions of AaArgM3 with predicted miRNAs. (A) Ae. aegypti AaArgM3 was 494 

predicted to be the target of aae-miR-278, -315, and -1000 with complete complementarity of their 495 

seed regions (bold and underlined) with the sequences. (B) RT-qPCR analysis of GFP expression 496 

using RNA extracted from Sf9 cells transfected with pIZ-GFP-target and mock, synthetic control 497 

mimic, aae-miR-278, -315 or -1000 mimics. Actin gene was used as the normalizing gene. There 498 

are statistically significant differences between treatments with different letters at p < 0.05. 499 

Fig. 7. AaArgM3 facilitates Wolbachia replication. RNAi-mediated silencing of AaArgM3 gene 500 

was carried out in aag2.wMelPop-CLA cells for 72 h. (A) RT-qPCR analysis of AaArgM3 gene 501 

relative to RPS17 in aag2.wMelPop-CLA cells transfected with mock, GFP and AaArgM3 dsRNAs. 502 

(B) qPCR analysis of Wolbachia density in aag2.wMelPop-CLA cells 72 h after transfection with 503 

mock, GFP and AaArgM3 dsRNAs using primers specific to the Wolbachia wsp gene. Asterisks 504 

indicate a significant difference between transfection with AaArgM3 dsRNA and other treatments 505 

(*** p < 0.0001; ** p < 0.001). 506 

Fig. 8. AaArgM3 has no effect on DENV replication in Aag2 or Wolbachia-infected Aag2 cells. 507 

RNAi-mediated silencing of AaArgM3 gene was carried out in Aag2 cells. 72 h after transfection 508 

with dsRNA, cells were infected with DENV-2. At 72 h after infection, total RNA was extracted 509 

from cells. (A) RT-qPCR analysis of AaArgM3 gene relative to RPS17 in Aag2 cells transfected 510 

with mock, GFP and AaArgM3 dsRNAs and infected with DENV-2. (B) RT-qPCR analysis of 511 

RNA using DENV-specific primers in Aag2 cells transfected with mock, GFP and AaArgM3 512 
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dsRNAs and then infected with DENV-2. (C) RT-qPCR analysis of RNA using DENV-specific 513 

primers from aag2.wMelPop-CLA cells transfected with mock, GFP and AaArgM3 dsRNAs and 514 

then infected with DENV-2 for 72 h. Silencing of AaArgM3 in aag2.wMelPop-CLA cells was 515 

confirmed as shown in Fig. 7A. Asterisks indicate a significant difference between transfection with 516 

AaArgM3 dsRNA and other treatments (*** p < 0.0001). 517 
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Figure 8
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Highlights 

•••• Arginine methyltransferase was found as another target of aae-miR-2940-5p, a mosquito-
specific miRNA 
•••• Arginine methyltransferase is induced in Wolbachia-infected Aedes aegypti mosquitoes and 
cells 
•••• Arginine methyltransferase is positively regulated by aae-miR-2940-5p. 
•••• Arginine methyltransferase contributes to replication/maintenance of Wolbachia but has no 
effect on dengue virus replication. 
 


