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Abstract 

Tyrosinase is a copper-containing enzyme that mediates the hydroxylation of 

monophenols and oxidation of o-diphenols to o-quinones. This enzyme is 

involved in a variety of biological processes, including pigment production, 

innate immunity, wound healing, and exoskeleton fabrication and hardening (e.g. 

arthropod skeleton and mollusc shell). Here we show that the tyrosinase gene 

family has undergone large expansions in pearl oysters (Pinctada spp.) and the 

Pacific oyster (Crassostrea gigas). Phylogenetic analysis reveals that pearl 

oysters possess at least four tyrosinase genes that are not present in the Pacific 

oyster. Likewise, C. gigas has multiple tyrosinase genes that are not orthologous 

to the Pinctada genes, indicating that this gene family has expanded 

independently in these bivalve lineages. Many of the tyrosinase genes in these 

bivalves are expressed at relatively high levels in the mantle, the organ 

responsible for shell fabrication. Detailed comparisons of tyrosinase gene 

expression in different regions of the mantle in two closely-related pearl oysters, 

P. maxima and P. margaritifera, reveals that recently-evolved orthologous 

tyrosinase genes can have markedly different expression profiles. The expansion 

of tyrosinase genes in these oysters and their co-option into the mantle’s gene 

regulatory network is consistent with mollusc shell formation being 

underpinned by a rapidly evolving transcriptome. 

 

Keywords: Tyrosinase; bivalve; gastropod; mantle; shell formation. 
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1. Introduction 

Tyrosinases, tyrosinase-related proteins, hemocyanins and catechol 

oxidases are members of the type-3 copper protein superfamily. These enzymes 

possess a conserved pair of copper-binding domains, known as Cu(A) and Cu(B), 

each of which is coordinated by three conserved histidines [1, 2]. Members of 

this superfamily are present in both eukaryotes and prokaryotes, and are 

involved in a wide array of biological processes, including pigmentation, innate 

immunity, oxygen transport, sclerotisation, and wound healing [3-6]. The type-3 

copper protein superfamily can be classified into three subclasses based on 

domain architecture and conserved residues in the copper-binding sites – 

secreted (α), cytosolic (β) and membrane-bound (γ) subclasses – and is typified 

by multiple and independent lineage-specific gene expansions and gene losses 

[7].  

Tyrosinases (EC 1.14.18.1) catalyse both the initial hydroxylation of 

monophenols (e.g., tyrosine) and the further oxidation of o-diphenols (e.g., DOPA 

and DHI) to o-quinones [8], to produce melanin. In vertebrates, tyrosinase and 

its related proteins regulate pigment synthesis [3, 4]. In some invertebrates, 

melanin can physically encapsulate pathogens [5], and is therefore an important 

component of the immune system. Moreover, in insects other products of the 

melanin pathway participate in cuticle sclerotisation and wound healing [6]. In 

molluscs, tyrosinase is secreted (α-subclass) and appears to contribute to shell 

pigmentation and formation by the cross-linking of o-diphenols and quinone-

tanning to form the non-calcified periostracal layer [9-12]. Tyrosinase gene 

expression and spatial localisation in the organ responsible for shell formation 
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and patterning in molluscs, the mantle, is consistent with a role in shell 

fabrication [13].  

Here, we reveal through comparative genomics and transcriptomics that 

the tyrosinase gene family has undergone substantial expansions in at least two 

bivalve lineages, and that the resulting gene duplicates have been co-opted into 

the mantle gene regulatory network. Unique expression profiles of orthologous, 

lineage-restricted tyrosinase genes in the mantles of two closely-related pearl 

oysters, Pinctada maxima and P. margartifera, which are estimated to have 

diverged 8 million years ago [14], indicates that regulatory evolution further 

contributes to the neofunctionalisation of these new tyrosinase genes in shell 

formation.  

  

2. Materials and methods 

2.1 Genome- and transcriptome-wide surveys of tyrosinase genes 

 All potential tyrosinase genes were identified by HMMER searches using 

default parameters, an inclusive E-value of 0.05 and the tyrosinase domain 

(PF00264) as the profile HMM (www.hmmer.org). The analysed molluscan 

genomes included Lottia gigantea (http://genome.jgi-

psf.org/Lotgi1/Lotgi1.home.html) [15], Crassostrea gigas (http://oysterdb.cn/) 

[16] and Pinctada fucata (http://marinegenomics.oist.jp/pinctada_fucata) [17]; 

the non-redundant protein database at the NCBI (National Centre for 

Biotechnology Information) was also analysed. Additionally, publicly available 

mantle transcriptome data from P. margaritifera (NCBI SRA: SRR057743, [18]), 

P. fucata (DDBJ SRA: DRS000687 and DRS000688, [19]), C. gigas 

(http://gigadb.org/dataset/view/id/100030, [16]), Mytilus edulis 

http://gigadb.org/dataset/view/id/100030
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(http://www.ebi.ac.uk/ena/data/view/PRJEB4516, [20], Hyriopsis cumingii 

(NCBI SRA: SRR530843, [21], Laternula elliptica (NCBI SRA: SRA011054, [22]), L. 

gigantea (NCBI EST: FC558616-FC635770), Patella vulgata [23], Haliotis asinina 

(NCBI EST: EZ420605-EZ421271, [24], H. rufescens 

(http://datadryad.org/resource/doi:10.5061/dryad.85p80, [25] were 

downloaded. P. maxima mantle transcriptome was obtained using 454 GS-FLX 

Plus sequencer (F. Aguilera et al. 2013, unpublished data).  

 For transcriptome datasets, low quality reads were removed and the 

remaining sequences de novo assembled using Trinity software [26] with default 

settings, followed by clustering of redundant contigs using CAP3 [27]. All 

transcripts from each species were translated into open reading frames and 

surveyed for tyrosinase sequence signatures using HMMER profiling. Tyrosinase 

sequences are available in supplementary data File S1. P. maxima tyrosinase 

sequences have been submitted to NCBI (accession numbers KJ533301-15). The 

derived protein sequences were BLASTP searched against the NCBI non-

redundant protein database with an e-value of 1e-5 in order to corroborate 

tyrosinase as the best-hit matches. 

 

2.2 Phylogenetic analyses 

 The retrieved protein sequences were aligned using the MAFFT algorithm 

[28] and then manually inspected to remove those hits fulfilling one of the 

following conditions: 1) not possessing all six conserved histidine residues in the 

copper-binding sites; 2) incomplete sequence with >99% sequence identity to a 

complete sequence from the same taxa and 3) sequences that showed extremely 

long branches in the preliminary maximum likelihood trees. The final alignment 

http://www.ebi.ac.uk/ena/data/view/PRJEB4516
http://datadryad.org/resource/doi:10.5061/dryad.85p80
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was refined using the RASCAL webserver [29] and analysed with Gblocks 0.91b 

[30] to select conserved regions. Neighbour-Joining (NJ) reconstructions were 

performed using MEGA 5.2.2 [31] using the JTT substitution model [32] (4 

gamma categories) and 1,000 bootstrap replicates. Maximum-likelihood (ML) 

trees were constructed using RAxMLGUI v1.3 [33] and the WAG substitution 

model [34], gamma distribution (“PROTGAMMA” implementation), four discrete 

rate categories, starting from a random tree and 1,000 bootstrap replicates. 

Bayesian inferences (BI) were performed using MrBayes v3.2 [35] and the WAG 

model [34] (4 gamma categories). The inference consisted of 1,500,000 

generations with sampling every 100 generations, starting from a random 

starting tree and using 4 chains. Two runs were performed to confirm the 

convergence of the chains. Trees were visualised and edited using FigTree v.1.3.1 

(http://tree.bio.ed.ac.uk/software/figtree/). All alignments are available upon 

request. 

 

2.3 Gene architecture and synteny analysis 

 The draft assembly genomes of L. gigantea, C. gigas and P. fucata were 

downloaded from each genome portal mentioned above. In brief, the genomes 

were searched using the tyrosinase genes retrieved by HMM searches and the 

TBLASTN algorithm. Any identified scaffolds with similarity to tyrosinase genes 

were extracted for further analysis. Next, the intron-exon architectures of these 

genes were determined by alignment to the transcript. Each alignment was 

manually annotated with Geneious v6.0.5 (Biomatters Ltd.) and viewed using 

CLC Genomics Workbench v6.5.1 (CLC Bio). 
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 To test whether the genes adjacent to the tyrosinase genes are shared 

across mollusc species (indicating syntenic conservation), scaffolds containing 

tyrosinase genes were analysed by Augustus v2.7 [36] to predict protein-coding 

sequences. All predicted sequences were BLASTX and BLASTP searched against 

NCBI non-redundant protein database, using an e-value cut off of 1e-5, and the 

best-hit match was recorded. In a pairwise approach, predicted amino acid 

sequences for gene models adjacent to P. fucata, C. gigas and L. gigantea 

tyrosinase genes were reciprocally BLASTP searched and the genomic location of 

five genes upstream and downstream of each tyrosinase genes was compared. 

Due to the limited length of P. fucata scaffolds, additional TBLASTN searches 

were performed between the genes adjacent to C. gigas and L. gigantea 

tyrosinases against the P. fucata genome to identify the scaffolds of these 

neighbours within this species and determine synteny conservation.  

 

2.4 Tissue sampling, total RNA extraction and cDNA synthesis 

 P. margaritifera were collected from the reef flat at Heron Island Reef, the 

Great Barrier Reef, Queensland, Australia, and P. maxima were provided by 

Clipper Pearls/Autore Pearling, Broome, WA, Australia. Four individuals of each 

pearl oyster species were sampled. The gill, foot, adductor muscle, mouth, labial 

palp, mantle edge and mantle pallial were dissected from these individuals. 

Additionally, a section of mantle from the outer edge to the centre of four 

individuals of both pearl oyster species was divided into four equal sections in 

order to evaluate tyrosinase gene expression across the mantle. 

 Total RNA was extracted from the tissues and mantle sections with Tri 

reagent (Sigma-Aldrich) following a protocol modified from Gao et al. [37] to 
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remove inhibitory pigments. RNAs (500 ng) were treated with Amplification 

Grade DNase following the instructions of the manufacturer (Invitrogen). cDNA 

was synthesised using Superscript III reverse transcriptase (Invitrogen) 

according to the manufacturer’s instructions.  

 

2.5 Transcriptome profile analysis and real-time quantitative-reverse transcription 

PCR (qPCR) 

Tyrosinase transcript abundances were assessed for five bivalve species 

(P. maxima, P. margaritifera, P. fucata, C. gigas and L. elliptica) using the single- 

and pair-end read sequences retrieved from each species. All mantle 

transcriptomes were sequenced from adult animals [16, 18, 19, 22], allowing for 

direct RNA-Seq comparisons.  

Tyrosinase quantification from RNA-Seq data was conducted with RSEM 

v1.2.8 [38]. It allows for an assessment of transcript abundances based on the 

mapping of RNA-Seq reads to the assembled transcriptome. Gene level 

expression was multiplied by one million to obtain a measure given as 

transcripts per million (TPM) for each gene. Because gene length may vary 

between samples (isoforms) and species (orthologues), we prefer the use of TPM 

values over RPKM (read per kilobase per million) values. TPM is independent of 

the mean expressed transcript length and thus more comparable between 

different species and samples even if mRNA lengths differ [38, 39]. 

Nine genes encoding tyrosinase proteins (P. maxima-TyrA2, -TyrB1.1, -

TyrB1.2, -TyrB2.2, -TyrB5 and P. margaritifera-TyrA2, -TyrB1, -TyrB2, -TyrB5.3) 

were analysed by qPCR. Three reference genes (ferritin, nascent polypeptide-

associated complex alpha subunit (-nac) and enoyl-CoA hydratase (enCOA); P. 
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maxima accession numbers: GT279936, GT279668, GT278168, and P. 

margaritifera: supplementary dataset S2) were selected as the most stably 

expressed genes from a number of potential candidates using the geNorm 

program [40]. All primer sequences are available upon request. PCR efficiencies 

for each primer set were determined by performing qPCR analysis on a serial 

dilution of a pooled cDNA sample. 

qPCR was performed on triplicate samples in a reaction mix of SYBR 

Green PCR Master Mix (Roche) for amplification (55 cycles of 95C for 15 sec, 

58C or 60C for 5 sec and 72C for 45 sec) on a Roche LightCycler® 480. 

Thermocycling was carried out in a final volume of 15 L containing 3 L cDNA 

sample (1:50 dilution), 0.5 L of each primer (10 M) and 7.5 L of SYBR Green I 

Master mix (Roche). Absence of nonspecific products was confirmed by 

dissociation curve analysis (65-90C). Quantification of tyrosinase gene 

expression in each sample relative to a standard were performed using the 

Roche LightCycler® 480 software. Normalisation of qPCR data to reference genes 

was performed using REST© [41], incorporating calculated primer efficiencies. 

All data were represented in terms of relative transcript abundance of the mean 

of the three replicates using log10 base scale. 

   

3. Results 

3.1 Identification of tyrosinase genes in molluscs 

 Profile HMM identification and sequence verification identified 88 

tyrosinase genes from 9 bivalves, 4 gastropods and 2 cephalopods. No tyrosinase 

genes were detected in the mantle transcriptomes of the tropical abalone 

Haliotis asinina and the red abalone H. rufescens. These all encode tyrosinases 
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with a conserved pair of copper-binding domains. Genes and gene models 

lacking either the Cu(A) or Cu(B) domain were deemed to not be tyrosinases in 

this study.  Although some of these may represent bona fide genes or 

pseudogenes, many of these appear to be incompletely or incorrectly assembled 

transcriptome or genome models. 

 Many bivalves have multiple tyrosinases (Table 1). The expansion of 

tyrosinase genes appears to be a common feature in bivalves, with more than ten 

gene family members present in Pinctada spp. and Crassostrea gigas. The 

freshwater mussel Hyriopsis cumingii has at least six genes, the green mussel 

Perna virilis has at least five genes, which have been previously identified to be 

expressed in the foot [42], and the saltwater clam Laternula elliptica minimally 

has two genes. Note that published transcriptomes are restricted to specific 

tissues and life cycles stages and thus might not include all tyrosinases in these 

bivalve genomes. Gastropods appear to have a limited number of genes encoding 

tyrosinases, with two genes present in the draft Lottia gigantea genome. We note 

that we found fewer than the recently reported 21 tyrosinase genes in the P. 

fucata genome [43], this is because several of these genes do not encode the six 

conserved histidine residues within the copper-binding domains that are 

essential for tyrosinase function ; these were not included in subsequent 

analyses. 

 

3.2 Phylogenetic analyses of tyrosinase genes in molluscs 

 The most conserved regions in tyrosinase proteins correspond to the 

copper-binding sites [1, 2]. Using this region, we previously analysed the 

evolution of the entire type-3 copper protein superfamily [7]. Our analysis of 
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molluscan tyrosinases produce phylogenetic trees with very low support for 

many nodes (Fig. 1 and Fig. S1-S3), as was observed in the wider survey [7]. This 

may be because of the high level of conservation in the residues surrounding the 

copper-binding sites, resulting in a weak phylogenetic signal. Nonetheless, these 

analyses reveal two distinct clades of tyrosinase proteins (Fig. 1), one comprising 

bivalve, gastropod and cephalopod tyrosinases (clade A) and the other 

comprising only bivalve tyrosinases (clade B).  

These analyses also demonstrate that the molluscan tyrosinase gene 

family has undergone independent lineage-specific gene expansions, with many 

of the tyrosinase genes present in Pinctada spp. and C. gigas restricted to these 

lineages (Fig. 1). This complex evolutionary history of molluscan tyrosinase 

genes required a naming scheme. First, genes falling into clade A or B are 

designated as TyrA or TyrB, respectively.  These are then followed by an Arabic 

number to indicate different groups. In cases where two or more genes from the 

same species are part of a group a decimal number was added at the end of the 

name. For example, C. gigas-TyrA1.1 and C. gigas-TyrA1.2 are different genes that 

are part of the TyrA1 group (Fig. 1). Lineage-specific expansions are followed by 

a species-specific identifier and an Arabic number (e.g. C. gigas-TyrACgig1 and H. 

cumingii-TyrAHcum1). The phylogenetic distribution of tyrosinases is consistent 

with a tyrosinase type A (TyrA) being ancestral and potentially present in the 

last common molluscan ancestor. This ancestral form likely duplicated and 

diverged before the diversification of bivalves surveyed in this study, giving rise 

to the tyrosinase type B (TyrB) (Figs 1, 2). TyrA and TyrB genes then underwent 

extensive expansions in the lineages leading to C. gigas and Pinctada spp., 

respectively (Figs 1, 2; Figs S1-S3). 
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The availability of genomic and transcriptomic resources for three 

closely-related pearl oyster species has allowed us to analyse the dynamics of 

tyrosinase gene family evolution in more detail. The phylogenetic relationships 

of the three species P. fucata, P. maxima and P. margaritifera are well 

understood, with latter two species diverging from P. fucata about 14 Mya and 

from each other approximately 8 Mya [14]. We identified at least six orthologous 

tyrosinase groups containing representatives from all Pinctada species, TyrA2, 

A3, TyrB1-4. TyrA1 may have been lost in the P. maxima + P. margaritifera 

lineage, although without genomic sequence this is difficult to ascertain, and 

TyrB5 appears to be an orthology group restricted to these two species (Figs 1, 

2).  In each of the conserved groups, there are cases of further lineage-specific 

gene duplications, such that there may species-specific paralogues within a given 

Pinctada orthology group (e.g. P. fucata and P. margaritifera have four and two 

paralogues respectively within orthology group TyrB4; Fig. 1; Figs S1-S3).  

 

3.3 Linkage  and syntenic relationship of tyrosinase genes in molluscan genomes 

 To further investigate the evolution of the tyrosinase gene family in 

molluscs, we examined the structure and organisation of tyrosinase genes in 

three molluscs whose genomes have been sequenced, assembled and annotated, 

L. gigantea, C. gigas and P. fucata. In the gastropod L. gigantea, two tyrosinase 

genes were located on different scaffolds. In C. gigas, there are five scaffolds with 

two or more tyrosinase genes. Only two of these scaffolds (337 and 867) possess 

a non-tyrosinase gene within the tyrosinase cluster (Fig. 3). In P. fucata, we 

found two tyrosinase gene clusters in the genome (Fig. 3), however the scaffolds 

for this species are relatively short and thus other tyrosinase clusters may exist. 



  

 Page 13 

In most clusters, one of the tyrosinase genes shows significantly higher 

expression (in terms of transcripts per million) than other genes located within 

that cluster (Table 2). Comparison of exon-intron architecture reveals that there 

is little conservation of tyrosinase gene structure within and between clusters. 

Two exceptions include C. gigas scaffolds 203, which contains closely related 

TyrACgig3 and TyrACgig4 with identical exon-intron organisation, and 867, 

which has two distantly related genes – TyrA3.3 and TyrB6 - with conserved 

architectures (Fig. 3). 

We analysed five upstream and downstream genes that are adjacent to 

each tyrosinase and looked for synteny in L. gigantea, C. gigas and P. fucata 

genomes. Comparisons of C. gigas and P. fucata scaffolds identified two 

microsyntenic regions. Specifically C. gigas scaffold 867, which included TyrB6, 

TyrA3.3, TyrA3.4 and TyrA2.2 along with non-tyrosinase genes, is syntenic to P. 

fucata scaffolds 13287, 1286 and 19072, which house TyrA3.1, TyrA3.2 and 

TyrA2.2 and orthologous non-tyrosinase genes (Fig. 4; Fig. S4). TyrA1.2 and 

TyrA1 are adjacent to Forkhead box gene, FOXP1, in both C. gigas and P. fucata 

scaffolds (Fig. 4). No shared genes surrounding tyrosinase loci of L. gigantea and 

either bivalve species were identified. The exon-intron organisation of all 

syntenic tryosinase genes differed between C. gigas and P. fucata (Fig. 3), 

indicating that although synteny exists, the structure of these genes has evolved 

since the divergence of Crassostrea and Pinctada lineages. 

 

3.4 Tyrosinase transcript abundance and gene expression across the mantle tissue 

of pearl oysters 
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 De novo mantle transcriptome assembly for five bivalve species yielded a 

large number of putative single-copy genes, ranging from 25,135 to 224,965 

unigenes (Table 3). Mantle RNA-seq data were used to evaluate tyrosinase 

transcript abundance in each species. Tyrosinase gene expression levels, as 

assessed by RNA-Seq read counts converted into TPM [38], vary markedly 

between genes and species (Fig. 5). Overall, pearl oysters had higher tyrosinase 

expression levels than the other bivalves, with few exceptions (Fig. 5). Many of 

these genes, at least in P. maxima and P. margaritifera, have significantly higher 

expression in the mantle tissue than other tissues (Table 4), which is consistent 

with previously reports of high tyrosinase expression levels in the mantle 

compared to other tissues in the Pacific oyster [16, 44]. Our qPCR analyses are 

consistent with transcript abundance estimations based on RNA-Seq data, 

lending further support to high tyrosinase transcript abundance in pearl oysters.  

 We assessed transcript abundance levels of nine of tyrosinase genes in 

different regions of the mantle in two species of pearl oyster (P. maxima and P. 

margaritifera) by qPCR; seven genes were deemed as orthologues based on 

phylogenetic analyses (Fig. 1) (P. maxima-TyrA2 and P. margaritifera-TyrA2 

(group A2), P. maxima-TyrB1.1 and -TyrB1.2 and P. margaritifera-TyrB1 (group 

B1), and P. maxima-TyrB2.2 and P. margaritifera-TyrB2 (group B2). P. maxima-

TyrB5 and P. margaritifera-TyrB5.3 are also orthologues but were only found in 

these sister species. The mantle tissue was divided into different zones, distal, 

two central and proximal, with the distal zone in direct contact with the 

prismatic shell layer and the central and proximal zones with the nacreous shell 

layer (Fig. 6). Tyrosinase gene expression levels varied between regions of the 
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mantle and species and even between individuals within the same species (Fig. 

6; Fig. S5). Most genes are more highly expressed at the distal mantle edge. 

Among the genes analysed, the orthologous gene pair P. maxima-TyrB2.2 

and P. margaritifera-TyrB2 were the most highly expressed at the distal mantle 

edge. Expression of these genes was approximately 1000-fold less in the central 

and proximal zones in both species.  Although the expression profiles of these 

orthologues across the mantles of these two species are similar, the P. maxima 

gene is about 100 times more highly expressed (Fig. 6). The orthologous pairs P. 

maxima-TyrB5 and P. margaritifera-TyrB5.3 showed a decrease from the distal 

(outer part) to the proximal zone (mantle centre), however in this case the P. 

margaritifera gene is about 10 times more highly expressed in the distal mantle, 

but more lowly expressed in the other regions of the mantle. P. maxima-TyrB1.1 

and –TyrB1.2 and P. margaritifera-TyrB1 are expressed at similar levels in the 

distal mantle but vary in other mantle territories. Likewise, the orthologous 

TyrA2 genes display species-specific profiles across the mantle (Fig. 6).  

 

4. Discussion 

4.1 Independent large-scale expansions of the tyrosinase gene family in bivalves 

 The tyrosinase gene family has undergone multiple lineage-restricted 

expansions [7], including in the closely-related bivalve superfamilies Ostreoidea 

(containing Crassostrea) and Pterioidea (containing Pinctada) [45, 46]. In this 

study, we sought to reconstruct the evolution of this gene family in bivalves and 

other molluscs using existing and new genome and transcriptome data. Although 

this survey is far from exhaustive and largely relies on transcriptome data, 

phylogenetic analyses revealed that large tyrosinase gene expansions occurred 
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these taxa. Smaller lineage-restricted expansions were observed in other 

bivalves, including P. viridis and H. cumingii, leaving open the possibility that the 

tyrosinase gene family may have expanded in multiple mollusc lineages.  

 Phylogenetic analyses reveal that the ancestral molluscan tyrosinase gene 

duplicated early in bivalve evolution, giving rise to an ancestral clade (A) and 

bivalve-specific clade (B) (Fig. 1). Although it is difficult to further resolve the 

evolution to tyrosinase A genes, it is clear that the ancestral gene has undergone 

further independent duplication and divergence in both bivalves and gastropods.  

For example, there are three TyrA orthologues shared between Pinctada spp. and 

C. gigas. C. gigas-TyrA1.2, -TyrA3.3 and -TyrA2.2 are orthologous to P. fucata-

TyrA1, -TyrA3.1 and -TyrA2.2, respectively, indicating that these genes duplicated 

before the divergence of these two bivalve lineages (Fig. 1). These orthologues 

also display conserved synteny (Fig. 4). In addition to the expansion of TyrA 

genes prior to the divergence of Crassostrea and Pinctada lineages, there have 

been a number of separate Crassostrea-specific and Pinctada-specific expansions. 

In C. gigas, there has been a large TyrA expansion, leading to 12 paralogues and a 

number of other duplicates (24 genes total). There are only three TryB genes in 

C. gigas.  In contrast, there appears to have been little further expansion of the 

TyrA genes in Pinctada after it diverged from the C. gigas lineage. Instead, TyrB 

genes have undergone continuous expansion during evolution of Pinctada, with 

shared and species-specific duplications evident (Figs 1, 2). 

Duplicated Crassostrea and Pinctada tyrosinase genes can be found in 

clusters within the genomes of these species (Fig. 3), and likely arose via tandem 

duplication [47, 48]. In support of this hypothesis, many clusters consisted of 

genes that grouped closely within the phylogenetic tree and likely reflect more 
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recent duplicates (e.g., C. gigas-TyrA3.5 and C. gigas-TyrA3.6; C. gigas-TyrCgig3 

and C. gigas-TyrACgig4; P. fucata-TyrB3.2 and P. fucata-TyrB3.3, Fig. 3.). In some 

cases, however, clusters consisted of more distantly-related tyrosinase genes, for 

example, the cluster found on scaffold 867 of the C. gigas genome contains 

tyrosinase genes from Clades A and B.  These genes also share a conserved exon-

intron architecture, suggesting this may have been the organisation of the 

ancestral bivalve TyrA and TyrB genes.  This cluster also displays synteny with 

the P. fucata genome, indicating that this arrangement has been maintained over 

evolutionary time. A number of reasons for the generation and/or maintenance 

of gene clusters have been proposed, including sharing of regulatory elements or 

the requirement for co-expressed genes to reside in a specifically-regulated 

region of chromatin [49, 50]. Genes from the same metabolic pathway are often 

found clustered within genomes [51]. The observation that one gene from each 

cluster is often much more highly expressed than the others may point towards a 

proximity-based shared enhancer, which may play a role in cluster maintenance 

[52]. 

 

4.2 Does functional divergence explain the retention of multiple tyrosinase 

duplicates? 

 The reason for the extensive tyrosinase gene duplication in Crassostrea 

and Pinctada lineages is difficult to ascertain. Retention of gene duplicates is 

often attributed to subfunctionalisation (division of ancestral roles between 

duplicated genes) or neofunctionalisation (attainment of a new functional role) 

of the duplicated genes, after which gene loss becomes detrimental [53-55]. We 

therefore investigated whether tyrosinase genes display differences in the 
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location or level of gene expression, as differences in gene expression are likely 

to reflect functional differences between the gene products. We analysed the 

gene expression profiles of nine tyrosinase genes in different tissues and across 

the mantle of two closely-related pearl oyster species, P. maxima and P. 

margartifera. Tissue-specific expression showed that tyrosinase transcripts are 

mostly expressed in the mantle, which contributes to the formation of the shell 

[56]. Within the mantle, tyrosinase genes were differentially expressed along the 

proximo-distal axis. In mollusc shells, the deposition of shell layers appears to be 

controlled by regionalised expression of genes within different zones of the 

mantle [57, 58]. Our qPCR results show high expression of several tyrosinase 

genes in the distal zone, suggesting roles in prismatic shell layer construction 

and/or periostracum formation. These results, and the detection of tyrosinase in 

different parts of the shell and at different ontological stages [9, 13, 59], indicates 

that tyrosinase duplicates may be retained because of their functional 

diversification in the mantle. 

 

4.3 Substrate affinity and insights into the functionalities of tyrosinase genes in 

shell biomineralization 

 Although, the exact role of duplicated tyrosinase genes in shell formation 

is unknown, two lines of evidence suggest that they play key structural roles in 

shell formation. First, enzymatic assays and in situ hybridisation analyses reveal 

tyrosinase gene expression in the mantle cells of the middle fold, consistent with 

a role in periostracal layer formation [9]. Second, the spatial localisation of 

tyrosinase in the pigmented shell and mantle tissue suggest a role in shell 

pigmentation [13]. The enzymatic mechanism of tyrosinases in shell formation 
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and pigmentation is still under debate because of the presence of two catalytic 

activities and different substrate affinities. Nonetheless, the oxidation of 

monophenols to quinones [6, 12], and the subsequent reaction of quinones with 

nucleophilic amino acids can result in cross-linking accompanied by 

pigmentation [6]. This evidence suggests that tyrosinase has an important 

function in tanning periostracum proteins [11]. Different enzymatic inhibitors 

reveal differences in tyrosinase activity in various tissues in C. gigas [60], 

suggesting that new catalytic activities and metal binding properties may have 

evolved. This may be analogous to the vertebrate tyrosinase-related protein 2, 

which uses zinc instead of copper as cofactor [61]. These substrate affinities, in 

addition to the localisation and high level of expression of the genes, suggest that 

tyrosinases are important structural components of molluscan shells. It is 

therefore likely that the diversification of tyrosinase proteins in C. gigas and 

Pinctada spp. has contributed to the diversity of structure and patterning 

observed within these bivalve shells. 

 

5. Conclusion 

 We show that the tyrosinase gene family has greatly expanded in two 

oyster lineages, with duplications occurring both before and after the divergence 

of Ostreoidea and Pterioidea. The majority of the tyrosinase genes in these 

groups are expressed at high levels in the mantle. However, there are noticeable 

differences in orthologue expression levels and profiles in this shell-fabricating 

organ between sister species, P. maxima and P. margaritifera. As these species 

diverged about 8 Mya [14], differences in expression levels are consistent with 

the rapid evolution of the regulatory architecture controlling expression of these 
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genes in mantle cells. These results are consistent with our previous 

suppositions that marked differences in the structure, colour and pattern of 

shells between closely related mollusc species, and sometimes individuals within 

a species, are underpinned by the rapid evolution of gene families that encode 

secreted proteins and are part of the mantle gene regulatory architecture [57, 

62].    
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Tables 
 
Table 1. Minimal number of tyrosinase genes present in the genome or 
transcriptome of a variety of molluscs. 
 

Organism Class Family N° of genes  

Pinctada maxima Bivalvia Pteriidae 11 

Pinctada margaritifera Bivalvia Pteriidae 10 

Pinctada fucata Bivalvia Pteriidae 19 

Crassostrea gigas Bivalvia Ostreoidae 27 

Azumapecten farreri Bivalvia Pectinidae 1 

Mytilus edulis Bivalvia Mytilidae 0 

Perna viridis Bivalvia Mytilidae 5 

Hyriopsis cumingii Bivalvia Unionidae 6 

Laternula elliptica Bivalvia Laternulidae 2 

Lottia gigantea Gastropoda Lottidae 2 

Patella vulgata Gastropoda Patellidae 2 

Haliotis rufescens Gastropoda Haliotidae 0 

Haliotis asinina Gastropoda Haliotidae 0 

Illex argentinus Cephalopoda Ommastrephidae 2 

Sepia officinalis Cephalopoda Sepiidae 1 
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Table 2. Expression of  tyrosinase genes in the C. gigas and P. fucata mantle 
tissues, as transcripts per million (TPM), with their corresponding expected 
counts (EC). 

 

C. gigas  TPM EC P. fucata  TPM EC 

scaffold203   scaffold31287.1   

C. gigas-TyrACgig3 8.65 372.22 P. fucata-TyrA3.1 0.87 2 

C. gigas-TyrACgig4 67.4 3018.71 P. fucata-TyrA3.2 0 0 

scaffold337   scaffold1032.1   

C. gigas-TyrA1.4 0.2 8 P. fucata-TyrB3.3 0 0 

C. gigas-TyrA3.2 0.23 13 P. fucata-TyrB3.2 6.88 33.07 

scaffold552   P. fucata-TyrB3.4 1 5.05 

C. gigas-TyrA3.5 6.49 392.51    

C. gigas-TyrA3.6 0.9 53.3    

scaffold867      

C. gigas-TyrB6 0.02 1    

C. gigas-TyrA3.4 0.07 4    

C. gigas-TyrA3.3 12.98 643.25    

C. gigas-TyrA2.2 0.79 28.39    

scaffold43702      

C. gigas-TyrACgig6 0.09 4    

C. gigas-TyrACgig7 26.19 1199.7    

C. gigas-TyrACgig12 0.22 8.9    
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Table 3. Summary of de novo assembled transcripts and open reading frame 
(ORFs) predictions of five bivalve species used to quantify tyrosinase transcript 
abundance. 
 
Speciesa Total raw 

reads 
Total clean 
reads 

Total 
transcripts 

Transcript 
mean length 

Transcript 
N50 

Predicted 
ORFs 

P. maxima 318,850 287,000 37,833 827.7 1,091 31,977 

P. margaritifera 276,735 246,886 38,867 410.7 480 33,797 

P. fucata 322,742 158,036 25,135 396.3 484 20,902 

C. gigas 38,105,927 31,516,399 224,965 608.1 1,804 204,940 

L. elliptica 1,033,522 804,965 69,256 438.6 551 54,093 
a P. maxima, P. margartifiera, P. fucata and L. elliptica raw reads were obtained 
using 454 sequencing technology, and C. gigas raw reads were obtained using 
Illumina sequencing technology. 
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Table 4. Relative gene expression of nine tyrosinase genes in different tissues of 
the pearl oysters P. maxima and P. margaritifera. 
 

 P. maxima tyrosinase gene expression 

Tissues Pmax-TyrA2 Pmax-TyrB1.1 Pmax-TyrB1.2 Pmax-TyrB2.2 Pmax-TyrB5 

gill 3.70 0.00 4.41 0.00 2.97 

foot 0.00 0.03 0.01 0.03 0.00 

adductor muscle 0.56 0.13 0.52 0.00 9.80 

mouth 0.01 0.05 0.49 11.89 0.07 

labial palp 0.05 0.00 0.49 17.10 0.00 

mantle edge 0.10 14.57 0.00 16977.88 25.77 

mantle pallial 11.45 10.55 2.49 0.17 9.49 

 P. margaritifera tyrosinase gene expression 

Tissues Pmar-TyrA2 Pmar-TyrB1 Pmar-TyrB2 Pmar-TyrB5.3  

gill 0.10 0.01 2.14 0.00  

foot 0.00 0.00 0.00 0.00  

adductor muscle 0.00 0.00 0.00 0.00  

mouth 5.13 8.66 3.61 6.49  

labial palp 0.06 0.00 0.00 0.00  

mantle edge 20.30 33.19 219.83 55.86  

mantle pallial 4.35 0.28 0.12 0.04  
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Figure legends 
 

Fig. 1. Phylogenetic analysis of tyrosinase proteins in molluscs. A consensus 

midpoint-rooted phylogenetic tree based on Maximum Likelihood topology is 

shown. Percentage bootstrap values (BV) are indicated at the nodes; first 

number NJ bootstrap support; second number, ML bootstrap support; third 

number, Bayesian posterior probabilities (BPP). Only statistical support values 

>50% and posterior probabilities >0.50 are shown. A black dot in the node 

indicates BV >90% and BPP >0.9. Bivalve and molluscan orthology TyrA groups 

are indicated by thick brackets and annotated A1-A3.  Pinctada-specific TyrB 

orthology groups are bracketed and annotated B1- B4 and BPmax/Pmar5. 

Sequences used in this tree can be found in supplementary dataset S1. See 

supplementary Figures S1-S3 for trees of molluscan tyrosinase proteins 

generated using each phylogenetic method. Species are colour coded as follows: 

red: Pinctada maxima; blue: P. margaritifera; green: P. fucata; brown: P. 

martensii; black: Hyriopsis cumingii; orange: Crassostrea gigas; light green: Perna 

viridis; grey: Laternula elliptica; magenta: Azumapecten farreri; pink: Lottia 

gigantea; purple: Patella vulgata; sky blue: Illex argentinus and yellow: Sepia 

officinalis.  

 

Fig 2. Evolution of bivalve and other molluscan tyrosinase genes. The 

phylogenetic relationship between the species is based on [45] and [46]. The 

origin of  tyrosinase A groups (red dots) and B groups (blue dots) are shownand 

follows the nomenclature in figure 1. The number adjacent to the dots signify the 

minimal increase in gene number along a lineage. Circle with a slash represents 
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gene loss (A2 along gastropod lineage). Other gene losses may exist but can not 

be confirmed solely by comparing transcriptomes. Species are labelled according 

to colour code shown in Figure 1.  

 

Fig. 3. Tyrosinase gene clusters in C. gigas and P. fucata. Scaffolds containing 

tyrosinase genes are to the left, with scaffold numbers corresponding to the 

original genome annotations for these species [16, 17]. Gene location and 

orientation are denoted by red arrows on the scaffolds. The distances between 

genes are shown, along with the location of this cluster from the ends of the 

scaffold. The exon-intron architecture of the Tyr genes are shown to the right. 

Exons are indicated by boxes and introns (not drawn to scale) are indicated by 

lines adjoining these. Scale bars presented for all gene models apply only to 

exons. 

 

Fig. 4. Analysis of local synteny between the C. gigas and P. fucata genomes. Each 

C. gigas or P. fucata scaffold is represented as black bar and annotated as per Fig. 

3. Predicted genes within each segment were identified by BLAST search 

similarity searching and are shown as rectangles. C. gigas or P. fucata 

orthologues are connected by a red line. Gene abbreviations are as follows: 

APOD: Apolipoprotein D; SYF2: SYF2 pre-mRNA-splicing factor; KDM4B: Lysine 

(K)-specific demethylase 4b; SETBP1: SET binding protein 1; HDAC11: Histone 

deacetylase 11; PACSIN1: Protein kinase C and casein kinase substrate in neurons 

1; LACC1: Laccase (multicopper oxidoreductase) domain containing 1; FOXP1: 

Forkhead box P1; HTR2B: 5-hydroxytryptamine (serotonin) receptor 2B, G protein-

coupled; KLHL24: Kelch-like family member 24 and ADRBK4: Adrenergic, beta, 
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receptor kinase 4. For more details on hypothetical proteins that are adjacent to 

tyrosinase genes see Fig.  S4. 

 

Fig. 5. Relative abundance of tyrosinase genes in the mantle tissue of five 

bivalves. A) P. maxima. B) P. margaritifera. C) P. fucata. D) C. gigas. E) L. ellitica. 

Values are expressed as transcripts per million (TPM) calculated using RSEM 

software [36] (From panel A to E).  

 

Fig. 6. Comparison of quantitative PCR expression profiles between silver-lipped 

pearl oyster (P. maxima) and black-lipped pearl (P. margaritifera). A) Schematic 

of the internal anatomy of the pearl oyster. The region from which mantle tissue 

was extracted for qPCR analysis is indicated by red dotted line. (pl: prismatic 

layer; nl: nacreous layer; ma: mantle; gi: gill; by: byssus; fo: foot; lp: labial palp; 

dg: digestive gland; li: ligament; go: gonad; he: heart; am; adductor muscle; in: 

intestine). Adapted from http://journal.goingslowly.com/2010/12/peaceful-

ride-on-phu-quoc. B) Schematic of the mantle tissue and shell of the pearl oyster 

to show sampling zones (of: outer mantle fold: mf: middle fold; if: inner fold). C) 

Relative expression (log scale) of nine tyrosinase genes. P. maxima mean 

expression is shown in red (N = 4 mantle zones/data points) for four individuals, 

P. margaritifera mean expression is shown in blue (N = 4 mantle zones/data 

points) for four individuals. See Fig. S5 for individual expression profiles. 
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Evolutionary history of tyrosinase gene family in bivalves Tyrosinase gene expression across mantle 
tissue in two pearl oyster species
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