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Determination of effective brain connectivity from functional connectivity
with application to resting state connectivities
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Neural field theory insights are used to derive effective brain connectivity matrices from the functional
connectivity matrix defined by activity covariances. The symmetric case is exactly solved for a resting state
system driven by white noise, in which strengths of connections, often termed effective connectivities, are
inferred from functional data; these include strengths of connections that are underestimated or not detected by
anatomical imaging. Proximity to criticality is calculated and found to be consistent with estimates obtainable
from other methods. Links between anatomical, effective, and functional connectivity and resting state activity are
quantified, with applicability to other complex networks. Proof-of-principle results are illustrated using published
experimental data on anatomical connectivity and resting state functional connectivity. In particular, it is shown
that functional connection matrices can be used to uncover the existence and strength of connections that are
missed from anatomical connection matrices, including interhemispheric connections that are difficult to track

with techniques such as diffusion spectrum imaging.
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I. INTRODUCTION

Complex networks occur in many fields including neu-
roscience, communications, the internet, scientific collabora-
tions, genetics, ecology, econophysics, statistical mechanics,
and economics [1-6], and relationships between their structure
and dynamics are central to many applications. Some networks
have connectivities that are hard to observe directly, or can only
be studied via activity they support. This is especially true if
one is interested in effective connectivities that incorporate
changes in strength of connections that are physically present
but may or may not be active. Prominent among such networks
are those of the brain, which have anatomical structure
that can be observed only imperfectly via techniques like
diffusion imaging that can miss connections, especially long-
range ones such as those between brain hemispheres [3,4,7],
strengths of connectivity (often called effective connectivities,
or gains) that vary even for a given anatomical connection,
and functional connections set by correlations of network
activity itself [2—4]. These issues of function vs structure are
highly topical, and are currently being addressed by the US
National Institutes of Health Human Connectome Project, the
US BRAIN Initiative, and the European Human Brain Project,
for example, which recognize the need for a multidisciplinary
approach, including physical sciences. Additionally, since the
brain provides key examples of dynamical networks, results
pertaining to it are more widely applicable.
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Many current issues regarding brain networks center on
how structure determines dynamics and vice versa [2—4,8—17].
These have implications for understanding how brain ar-
chitectures and effective connectivities underpin information
processing and task execution [2,4,18], how they develop
and evolve, and whether their dynamics exhibit features like
marginal stability or criticality [12,13,19-28]. The forward
problem has been addressed at levels ranging from com-
putations of functional connectivity for specific structures
and connection strengths to more general approaches based
on linear responses or neural field theory (NFT) [10,16,19].
The more difficult inverse problem of determining effective
connectivity from function is of particular interest because of
the potential to use brain activity, which is relatively easy to
measure, to infer strengths of connections. The results carry
over to other types of dynamical networks [5,6,25].

Brain connectivity is often quantified via connection
matrices (CMs) whose rows and columns represent brain
areas and whose entries measure connectivities between
them [2-4]. Anatomical CMs (aCMs) show anatomical
connections, regardless of whether they are active, as in
Fig. 1(a), which shows a symmetric aCM inferred from
diffusion imaging [3,4,7,17]; direct effective CMs (deCMs,
which have also been termed gain matrices, eCMs, and
strength-of-connection matrices in the literature) embody the
strength of each direct connection between points in a given
brain state; total effective CMs (teCMs, termed eCMs in [19])
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FIG. 1. (Color online) Exemplar connectivity matrices (CMs).
Each of 998 nodes into which the cortex is divided corresponds
to one row and one column. Entries denote connections between
nodes, with largest connections near the main diagonal and two
diagonals that correspond to interhemispheric connections between
homologous regions. Figures (a) and (d) are adapted from [17].
(a) Experimental aCM from diffusion imaging. (b) f{CM derived by
assuming the structure in the aCM in (a) is an approximation to that
of the corresponding deCM. (c) deCM derived from the fCM in (d).
(d) Experimental f{CM from fMRI covariances after global signal
removal.

measure the total connectivity between points via both direct
and indirect paths; and functional CMs (fCMs) are determined
from correlations between activity at different points. Most
commonly, f{CMs are determined from equal-time correlations
(to within measurement resolution; i.e., covariances, which are
symmetric) of low-frequency functional magnetic resonance
imaging (fMRI) signals [2—4] that indirectly measure neural
activity [2-4,7,29]—see Fig. 1(d). Using NFT [30], we
recently showed that the deCM and teCM correspond to bare
and dressed propagators, respectively, and can be used to
compute the fCM [19], but the inverse problem is unsolved.

Of particular current interest are the architecture and
role of networks that are active when the brain is not
performing specific experimental tasks—so-called “resting
state” (a misnomer because the normal brain is always active)
or “default-mode” networks, which also appear to be activated
by many tasks [2—4,8—-19,30-33]. These networks are central
to much brain activity, but it is not clear to what extent they
involve specialized regional neural connections as opposed to
simply being the lowest eigenmodes of network activity.

In this paper we combine NFT [19] with matrix analysis and
stability criteria to solve the inverse problem of determining
deCMs and teCMs from fCMs. Because fCMs determined
from covariances are symmetric by definition, and most
aCMs are only measured in symmetric form, we focus
mostly on the symmetric case. Implications of the results
for brain connectivity, stability, and criticality are outlined
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and illustrated at the proof-of-principle level by means of the
data used to produce Fig. 1. We exclude cases in which CMs
change on time scales comparable to the activity itself, thus
ruling out some task-related dynamic connectivity problems,
which remain for future investigation. Section II outlines the
relevant theory and derives the necessary inversion formulas.
Section III then applies these to illustrative examples of
anatomical and functional connection matrices and relates the
results to other network measures.

II. THEORY

We write the synaptic activity that dominates brain
metabolism and fMRI [7,34] as a column vector ®(¢) with
one entry per physical location. This follows the approach
in [19], but we show the time dependence via the argument ¢.

In [19] it was pointed out that a relatively weak signal is
sufficient to establish the existence of a connection between
two points, and most normal large scale brain activity has been
established to be approximately linear [19,30], a point that we
further establish below. Linear NFT of discrete networks then
implies

(1) = / AQG¢ — HY®()dt' + N@), )

where N is a vector of external inputs; the causal propagator
A is identified as a spatiotemporal deCM [19] and depends
only on t —t'. Equation (1) is equally valid for spatially
continuous systems if the index that labels elements is replaced
by a continuous position vector, most conveniently written as
an argument alongside time.

Fourier transforming (1) vs ¢ gives

®(w) = [1 - AVW)] 'N(w), 2)
= T(w)N(w), A3)
= [1+ A(w)IN(w), )

where o is the angular frequency, I is the unit matrix, the
transfer matrix T is defined by comparison of (2) and (3), and
the teCM A is defined by comparison of (2) and (4) [19].

If we define the spatial f{CM to be the covariance matrix of
the activity, it can be written

C = (®(n)®" (1)), (5)

where the angle brackets indicate an average over t. We Fourier
transform the quantities on the right of (5) and note that the
average is the zero-frequency component of this expression.
Then, if the average is done first, we find [19]

C=/cwﬂ$ ©)
2
~ C(o = 0), %

where C is the normalized correlation matrix whose equal-time
value in coordinate space is C, as given by the integral in (6).
The approximation (7) is valid for the very low frequencies
of fMRI, which responds significantly only to frequencies
o <1 s7! [7,29]; as an approximation to (6) it could be
replaced without loss of generality by a weighted average over
bandwidth.
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Using (3) we can write the right side of (7) in terms of the
transfer function, which leads to

C=Tw=0T(»=0), (8)

where the dagger in (8) indicates a Hermitian conjugate and
(8) assumes uncorrelated inputs with

(N(ONT(¢")) =T18(t — ). 9

From this point on, all matrices assume very low » and the
argument o is omitted from Fourier representations.

Standard matrix theory implies that A can be written in
the form

AQ = ULOU", (10)

where U is a unitary matrix whose columns are the eigenvec-

tors of AQ, Uf = U™!, and L© is a diagonal matrix of the
eigenvalues A;O) of A(O), written

Y

The matrix A® represents direct connections between
points, while its powers represent successively higher-order
polysynaptic paths [19]. The sum of these contributions is the
teCM A, with

LO = diag(1").

00
A= Z[A(O)]m’

(12)
m=1
oo
= > LU, (13)
m=1
=) UL, (14)
m=1
since UTU = L. The sum in (14) commutes with U, so
A = ULU', (15)
with
L = diag(2), (16)
50
— di J
_d1ag<1 —kg.o))’ (17)

where (16) and (17) define A ; in terms of )»39) . For convergence
of the series in (12) and stability of the system, one requires
|X(I.O)| < 1 for all j [19], with criticality at the boundary of this
circle in the complex plane.

Following similar steps to the derivation of (11)-(17),
Egs. (3), (4), and (17) imply

T = U6OU', (18)
with
O=I+L, (19)
= diag(1 + A;), (20)
= diag([1 - 2"]7"). @1
Similarly, from (8), (18), and (21), we find
C = UKU', (22)
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with

K = diag(«x), (23)

. 0)|—2

= diag(|1 — )\_(/- |79, (24)
where (23) and (24) define «; in terms of ASQ). A previous
analysis of brain network dynamics with a purely spatial
deCM followed a different approach to find a result with
some similarity to (24) [16]. However, that result erred by
setting to zero averages of quantities like ®(w)Nf(w) in the
present notation, whereas the input N and the response @ that
it generates are actually correlated. Another analysis restricted
to networks of nonindentical oscillators governed by first-order
ordinary differential equations with a specialized aCM whose
row sums must be zero also found a related result [35].

The meaning of the result (18) is best seen when one
retains the argument w (which leaves these results otherwise
unchanged). Then (18) is seen to be the standard quadratic-
form expansion of the Green function T in terms of its
eigenfunctions [36], in which poles due to zeros of the de-
nominator of (21) give resonances in the propagation between
points via excitation of the eigenmodes. When the system is
spatially uniform, a spatial Fourier transform yields poles that
correspond to the dispersion relations of the eigenmodes.

III. RESULTS

In this section we first outline some theoretical conse-
quences of the analysis in Sec. II. We then demonstrate that
the results obtained for the data in Fig. 1 enable the proximity
of the system to criticality to be measured and are consistent
with estimates obtained from electroencephalographic (EEG)
analyses. We then show that the deCM obtained by inverting
the fCM in Fig. 1(d) contains significant interhemispheric
connections that are missing from the aCM in Fig. 1(a)—as is
expected since the imaging technique used to obtain Fig. 1(a)
is known to miss many such connections [3,4,17]. This
demonstrates that the f{CM can potentially be used to infer
the deCM, rather than relying on estimates from the aCM
[which is known to omit many long-range connections and
hence doesn’t generate the correct f{CM, as seen in Fig.1(b)].

Several results follow from the above analysis.

(i) Given the f{CM C, one can immediately invert (24) to
find

AP =1 =k eV (25)
where
W;1 < cos™" (3x;'7%) (26)

places A(jo) in the unit circle required for stability. (Stability has
previously been exploited to constrain strengths of connection
indeCMs [10,11].) In the symmetric case, Eq. (23) then allows
us to write the explicit result

A =U[I - KU,

K2 = diag(/cj_l/z).

27)
(28)

If A9 is symmetric (e.g., as measured by diffusion
imaging), k(io) is real and ¥; =0 in (25); otherwise, any
complex eigenvalues come in complex conjugate pairs that
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correspond to oscillatory solutions. fMRI is only sensitive to
o < 1571 [7,29], so the only eigenvalues that can be reliably
determined are real, or very nearly so [since Imkgo) = Rew].
This corresponds to the symmetric part of the connectivity,
and C is inherently symmetric in any case. We also note
that large amplitude oscillatory solutions likely correspond
to pathologies such as epileptic seizures, not relevant to the
normal brain [9,26,28].

(ii) Equation (24) implies that the eigenvalues «; of
any covariance matrix must be non-negative. Moreover, the
stability condition |)\_(j0)| < 1 implies k; > %.

(iii) Values k; < 1 correspond to )\EO) < 0;i.e., to inhibitory
Interactions.

(iv) The largest eigenvalues of T will dominate the fCM,
the response to stimuli, the deCM, and the teCM, because
these correspond to the least damped modes. This explains
widely observed qualitative similarities between spontaneous
activity patterns, evoked responses, deCMs, and f{CMs [2—4],
because the eigenfunctions are the same for all CMs and
activity is dominated by the least-damped modes. We note
that the system must be near criticality (max |A(]Q)| ~ 1) for
this similarity to apply, as previously inferred from EEG
spectra [13,21-24,27], whose results imply max () to have
an average value of 0.85 £ 0.07 [22], 0.84 £ 0.07 [23], and
0.84 £ 0.05 [24], based on data from 100 to 1500 subjects.
This implies that the brain is linearly stable and justifies the
use of linear analysis.

We now demonstrate the above results on the data in
Fig. 1 [17]. We begin by using the experimental aCM in
Fig. 1(a) as an approximation to the deCM in the relevant brain
state and use this to calculate the corresponding fCM. (This
approximation will be poor if the aCM misses connections,
or if some of the connections found in the aCM have greater
or lesser activity than their anatomical weight would imply.)
We then carry out the inverse process, starting from the
experimental f{CM in Fig. 1(d) to compute the corresponding
deCM to see especially whether it reveals missing connections.
One complication in this procedure is that the experimental
fCM has had the global average signal removed, which
prevents identification of this mode and induces substantial
negative correlations [37,38] in Fig. 1(d), but should not affect
other eigenvalues and eigenvectors. Hence this should be seen
as a proof-of-principle illustration that we hope will stimulate
experimental tests. Using Egs. (10), (17), and (23), the aCM
in Fig. 1(a) yields the f{CM in Fig. 1(b) when we minimize
the norm of the difference from the observed f{CM in Fig. 1(d)
to estimate the (unknown a priori) normalization of the aCM.
This yields max A;O) = 0.87, in excellent agreement with the
EEG estimates, placing the network near criticality.

The calculated fCM 1(b) shows strong connections near the
main diagonal, as in Fig. 1(d), but with weaker block-diagonal
structure. Some functional connections are not reproduced,
especially interhemispheric connections between homologous
regions (the prominent secondary diagonals). This is not
surprising because the imaging methods used in Fig. 1(a) have
difficulty in identifying these known interhemispheric anatom-
ical links that would otherwise appear in Fig. 1(a) [3,4,17]
and the connection strengths inferred from Fig. 1(a) are
only approximate estimates derived from numbers of fibers
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FIG. 2. CM eigenvalues «; vs mode number j = 1-998, ordered

by size for the f{CMs in Fig. 1(b) (gray) and Fig. 1(d) (black). Inset
shows vertical zoom.

connecting regions, taking no account of whether or not these
are active.

The fCM in Fig. 1(d) shows covariances of activity
between different points. This activity is supported by all
active connections, whether or not their strengths are inferred
correctly by the measurements used to derive the aCM in
Fig. 1(a), so the analysis in Sec. Il should enable the deCM to be
determined. Hence we next invert the fCM in Fig. 1(d) to obtain
the deCM in Fig. 1(c), which we discuss below. The fCM’s
leading eigenvalues satisfy the stability condition «; > i, as
seen in the plot in Fig. 2. However, the smaller eigenvalues do
not all fulfill this requirement, and some are even negative (the
most negative is —0.97). These discrepancies likely result from
global signal removal, measurement noise, and the necessarily
nonzero bandwidth employed. Certainly, we find that if we
artificially add a small random component to the analytic
fCM in Fig. 1(b) it induces similar negative eigenvalues, while
waves of activity have previously been found to induce neg-
ative correlations between locations separated by around half
a wavelength [19]. We conclude that such effects in Fig. 1(d)
can easily produce eigenvalues k; < }1 in measured CMs.

Unfortunately, the data in Fig. 1 are too noisy to resolve
issues of negative eigenvalues. This will require further
analysis and experimental verification with low-noise deCMs
and fCMs for the same subjects and retention of the global
signal in the data. In the present work, we conclude that
eigenvalues are only reliable to within an amount of order
=£1, given that values of —0.97 are seen when only «; > 1/4
would be possible for a precisely measured f{CM. We then
proceed by retaining only the first 76 eigenvalues (k; > 1.0)
and corresponding eigenvectors. Omission of activity in the
remaining eigenvectors is found to have only a slight effect
on the fCM, with its norm changing by less than 1.6%. The
largest eigenvalue is 69, whence (22) implies max A;O) ~ 0.88,
in excellent agreement with EEG-based results and again
implying near criticality. Notably, this implies that 88% of
activity in the dominant mode is generated internally with
only 12% from external sources [12,21]. Using this method,
interrelating the deCM and fCM does not require us to
minimize the norm of the difference between theoretical and
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experimental fCMs, and the results determine the strengths of
the deCM entries objectively.

Figure 1(c) captures the existence of interhemispheric
connections, mostly between homologous regions, identifying
these via the eigenfunctions of the f{CM, which include their
effects. The changes near the main diagonal are mostly due
to an overall rescaling to accommodate the effects of the
additional interhemispheric connections identified; however,
some connections have different relative strengths than in
Fig. 1(a) (which is an aCM, not a deCM, so is only
approximately comparable in any case). Some deCM strengths
are found to be slightly negative in Fig. 1(c), but this is due to
the removal of the global signal from Fig. 1(d)—certainly, we
find a similar result if Fig. 1(a) is modified by removing the
contribution from the global mode.

Further experimental and anatomical testing using low-
noise anatomical, effective, and functional data sets obtained
for the same subjects is needed to explore these findings in
detail and refine the overall criticality measure to improve
global mode removal. However, we stress that the present
proof-of-principle results demonstrate the potential to infer
deCMs from fCMs in situations where the observed aCM
(viewed as an approximation to the deCM) does not yield an
accurate prediction of the f{CM, either because connections are
missed or their relative strengths are not estimated correctly.
We further emphasize that there was no a priori reason why
the additional connections in Fig. 1(c) would be the very ones
that are known to be underestimated by the technique used
to obtain Fig. 1(a) so their detection further underlines the
potential of the method.

As a final result, we demonstrate that the incomplete
“patchiness” of the secondary diagonals in the aCM in Fig. 1(a)
is responsible for the strong square features in Fig. 1(b)
when the aCM is used to approximate the deCM. Conversely,
we show that the strong similarity of the interhemispheric
submatrices in Fig. 1(d) (top right and bottom left quadrants) to
the intrahemispheric ones (top left and bottom right quadrants)
is linked directly to the existence of the approximately
uniform one-to-one interhemispheric connections between
homologous regions seen in the deCM in Fig. 1(c).

We begin by approximating the deCM as

(29)

where A is the intrahemispheric deCM (approximated as being
the same for both hemispheres) and D is a diagonal matrix that
approximates the interhemispheric connectivity as being one
to one but not necessarily the same for all pairs of homologous
points. If we then write the transfer matrix as

X Y
(¥ ¥) (30)
where X and Y are symmetric matrices, we find
X=[I—-A-DI-A)'1", 31)
Y =XDI-A)"!, (32)

where I is a unit matrix of the same size as A.
Rather than proceed in full generality, we now assume that
the norm of D is small compared to that of A, which suffices
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to establish the key results. In this case, Eq. (8) implies
X2 z
(%)

Z ~ X(XD + DX)X,

(33)

(34)

to first order in D.

If interhemispheric connections are uniform and one to one,
then D = al, where we assume a is a small constant. Then,
Z = 2aX?>. Since X is itself dominated by entries that fall off
rapidly in magnitude with distance from the principal diagonal,
the structure of Z is very similar to that of X2, which explains
the qualitative form of the f{CM in Fig. 1(d). Comparison of the
norms of the submatrices implies a ~ 0.4, thereby confirming
that interhemispheric connections are non-negligible with
respect to intrahemispheric ones. [This value of a implies that
second-order terms are of order 0.2, so a full analysis, starting
from (31) and (32), is needed for detailed quantitative results.]

If interhemispheric connections are one to one, but do not
exist between all homologous points, then D will be patchy,
as in Fig. 1(a) where it has two regions of particularly strong
entries. Each strong entry (or group) gives rise to a strong
row (or group of adjacent rows) in the term DX in (34) and
to a strong column (or group of adjacent columns) in the
term XD. In the case of Fig. 1(a), this produces a structure
in Z that is dominated by the intersections of two groups of
strong neighboring rows and the corresponding two groups
of columns, leading to the four dominant regions seen in
this submatrix in Fig. 1(b). This explains how incomplete
observation of interhemispheric connectivities leads to strong
artifacts in the fCM. The appearance of the same artifact in
the intrahemispheric submatrices of the fCM arises from the
higher-order terms in D that are retained if we analyze (31)
and (32) exactly.

IV. SUMMARY AND DISCUSSION

We have shown that the f{CM C can be used to infer the trans-
fer matrix T, the teCM A, and the deCM A? in the symmetric
case. This avoids forward modeling (indeed, we do not assume
any particular neural model) and fitting predicted to observed
fCMs. It identifies the correctly normalized deCM, including
interhemispheric connections and strengths that differ from
ones estimated by diffusion imaging or from approximation of
the deCM by the aCM (an approximation that does not allow
for connections that may be physically present but inactive, or
for ones that may have been omitted from the aCM). Inferences
of interhemispheric connections, for example, are predictions
that can be experimentally tested as better imaging techniques
become available for tracking long-range axons.

Our results imply that the brain is in a near-critical state,
with criticality measures very close to values obtained from
EEG spectra, thereby explaining similarities between various
CMs and brain activity patterns. We suggest that imposition
of joint deCM-fCM constraints on stability and sign of
connection strengths might further assist in distinguishing
global fMRI signal from artifact [37,38], e.g., by restricting
global-mode subtraction to levels that do not induce negative
deCM entries if it can be reliably argued that these do not
occur at the relevant scales. Generalization of the present work
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will be needed to probe asymmetric, rapidly time varying,
and oscillatory cases and to deal with measurement effects
systematically. Rigorous experimental verification of inferred
connections in individual subjects will also be required to fully
validate the method—data that are not currently available to
us with corresponding fMRI. Notably, a paper submitted and
published since submission of the present work has found
similar omission of interhemispheric connections in aCMs
by simulating activity on the aCM, using a specific neural
model, then progressively adjusting connection strengths until
the best match with the resulting numerically calculated fCM
is achieved [39]. That work also concluded that near criticality
is required for a good match, in agreement with the present
work and Ref. [19].

The present method has significant advantages for probing
and mapping brain activity, structure (i.e., strengths of con-
nections), and structure-function relationships. It differs from
techniques such as dynamic causal modeling (DCM) [40,41],
which requires a specific dynamic model to be assumed at each
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node, and which cannot handle networks with large numbers of
nodes. In contrast, our method assumes no specific dynamics
aside from approximate linearity (and justifies this for the
brain via the resulting experimental stability measure), and
can easily deal with networks such as the 998-node one in
Fig. 1. Indeed, the reasons that DCM can work for sparse
networks of regions of interest were recently elucidated by
application of Eq. (1) [42].

Aside from brain applications, the method described here
is also relevant to other complex networks discussed in the
Introduction, whose structure is difficult to measure directly
and more readily probed via activity supported—e.g., econo-
physical, genetic, economic, ecological, and social networks.
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