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Correlated Parameters in Driving

Behavior Models

Car-Following Example and Implications

for Traffic Microsimulation

Jiwon Kim and Hani S. Mahmassani

Behavioral parametersin car following and other models of driving
behavior areexpected tobecorrelated. An investigation isconducted into
the effect of ignoring correlationsin three parameters of car-following
modelson theresulting movement and propertiesof asimulated hetero-
geneousvehicletraffic stream. For each model specification, parameters
arecalibrated for the entire sample of individual driver swith Next Gen-
eration Simulation trajectory data. Factor analysis is performed to
under stand the patter n of relationshipsbetween parameterson thebasis
of calibrated data. Correlation coefficients have been used to show statis-
tically significant correlation between the parameters. Simulation exper-
imentsare performed with vehicle parameter sets generated with and
without considering such correlation. First, parameter valuesare sam-
pled from the empirical mass functions, and simulated results show
significant differencein output measur eswhen parameter correlation
iscaptured (versusignored). Next, parametersare sampled under the
assumption that they follow themultivariatenormal distribution. Results
suggest that the use of parametric distribution with known correlation
structuremay not sufficiently reducetheerror duetoignoring correlation
if the underlying assumption does not hold for both marginal and joint
distributions.

Microsimulation has long been recognized as an effective approach to
theanalysisof vehicular traffic flow becauseindividua driving behav-
iorscan be captured and i nteraction between vehiclesisreflected inthe
resulting collective traffic flow pattern. Accordingly, many micro-
scopic models of driving behavior—including car-following, lane-
changing, accel eration and decel eration, gap acceptance, and merging
models—have been incorporated in traffic microsimulation tools
(1-3). Typicaly, thesemodel sinclude numerous parametersthat must
be calibrated against real dataand provided as input to the smulation
(4-6). Many existing simulators adopt Monte Carlo sampling of
parameter valuesto model heterogeneous drivers by allowing users
to specify amarginal distribution for each parameter, represented by
the mean and standard deviation (SD) or, in some instances, by
empirical mass functions (1, 2). Concerns may arise when a set of
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individual parameter values is independently and randomly drawn
for each driver from the separate marginal distributions under the
(explicit or implicit) assumption that parameters are uncorrel ated.

Behavioral parametersin car-following and other modelsof driving
behavior are expected to be correl ated, to the extent that these parame-
tersmay reflect underlying factors such asrisk aversion or persondity
characteristics. For example, adriver with long reaction timemay also
exhibit ahigh tendency to decelerateto avoid collision. Hencethelike-
lihood of particular parameter combinations reflects particular corre-
lation patterns that characterize the driving population. The presence
of correlations affects the shape of thejoint distribution (i.e., the sam-
pling space for the parameter set). When parameter correlation is not
considered, the sampling space enlarges, thereby allowing the smula-
tor to produce unredlistic parameter combinations (which may not
exist in real-world traffic) or to generate a biased representation of the
driving population. In other words, independent draws of individual
model parameters may produce driving behaviors that have no
counterpart (or that have alow likelihood of occurring) in the real
world. Therefore, ignoring the correlations of input parametersin
the random sampling procedure could lead to unrealistic system
performance, biased simulation outputs, and erroneousinterpretations.

Image-processing techniques used in collecting microscopic trajec-
tory dataenable many in-depth empirica studiesto explore heteroge-
neous car-following behaviors beyond model parameter calibration.
Ossen and Hoogendoorn find considerable differencesin the car-
following behaviorsof individual driversby estimating optimal param-
eter values of different specifications of the Gazis-Herman—Rothery
model for each driver (7). Hamdar et a. introduce a cognitive-based
stochastic car-following model in which acceleration is determined
by evaluating the probability of rear-end collisionwith candidate accel -
eration (8). They reved the existence of considerableinterindividual
variation and correlation among behavioral parameters. Hamdar
presents detailed distributions and a corresponding correlation
matrix (9).

Thenext logical questionsto ask are, how can such heterogene-
ity be generated in microsimulation models? What is the impact
of parameter correlation on the resulting traffic stream propertiesand
simulation results—and conversely, what happens when such cor-
relation isignored? How can such correlation be captured in traffic
microsimulation? These questions, which have not been addressed
inpreviousstudies, arethefocusof thispaper. In particular, these ques-
tions are addressed in connection with car-following models. Thus,
aninvestigation is conducted into the effect of ignoring correlations
inthe parameters of car-following models on the resulting movement
and properties of asimulated heterogeneous vehicle traffic stream.
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Three car-following model specifications were selected: the Gipps
model (10), the Helly model (11), and the intelligent driver model
(IDM) (12, 13). For each model specification, the parameters were
calibrated for the entire sample of individual drivers using Next
Generation Simulation (NGSIM) trajectory data (14). Theseresults
form the basis for investigating three main aspects: understanding
qualitative relationships among parameters in selected car-following
models and identifying correlation structures, comparing simulated
car-following behaviors between parameter setswith and without pre-
serving correlations, and evaluating the performance of conventional
sampling approaches with parametric distribution assumption. Statis-
tical hypothesis tests are conducted to determine the significance of
differencesin output measures with respect to sampling methodsfor
correlated input parameters.

SELECTED MODELS

For calibration and subseguent correlation analysis, three car-
following modelswere selected: Gipps, Helly, and IDM. The model
specifications are presented in the following equations.

Gipps Model
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TABLE 1 Model Parameters for Estimation
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Helly Linear Model
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where

a,(t) = acceleration of follower n (and leader n— 1) at timet,

V,(t) = speed of follower n (and leader n— 1) at timet,

Xq(t) = location of follower n (and leader n— 1) at time't, and
I, = physical length of vehiclen.

The parametersto be estimated for each model arelistedin Table 1.

MODEL CALIBRATION

For model calibration, the downhill simplex (gradient-free opti-
mization) method was used to obtain optimal parameters that mini-
mize the objective function in Equation 6, which is the discrepancy
between the ssimulated value and the observed value for the speed
and the location (15). For each follower—leader pair with no lane
changing in the NGSIM trajectory data, three parameter setsfor the
Gippsmodel, the Helly model, and the IDM are estimated separately.
To prevent the algorithm from falling into local minima with

Model Parameter No. Parameter Description
Gipps 1 T Reaction time
2 a Maximum acceleration
3 d Maximum desirable deceleration (< 0)
4 V* Desired speed
5 s* Minimum net stopped distance from the |eader
6 o Sensitjvity factor;
od =d,.,, whered,_, isthe leader’ s desired decel eration estimated
by the follower n. When o < 1, the vehicle underestimates the
deceleration of the leader and becomes more aggressive;
more careful when o > 1 (1)
Helly 1 T Reaction time
2 C, Constant for the relative speed
3 C, Constant for the spacing
4 a* Desired net stopped distance from the leader
5 Y Constant for the speed in the desired following distance (D,,)
IDM 1 a Maximum acceleration
2 b Desired deceleration
3 Vo Desired speed
4 S Minimum net stopped distance from the |eader
5 Taw Desired safety time headway
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TABLE 2 Boundary Constraints for Parameters
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Gipps Model Helly Model IDM

Model Variable Parameter Model Variable Parameter Model Variable Parameter
0.2s< T <35s 0.2s< T <35s om/s? < a <8m/s
om/s*< a <8m/s 0.1< C, <30 om/s’< b <8m/s
—-8m/s’< d <0m/s 0.01< C, <30 50 km/h < Vo, <150 km/h
50 km/h < V* <150 km/h Om< d* <10m Om< S <10m
Om< s* <20m 0< Y <20 Os< Thw <10s
05< o <20

unreasonable values, boundary constraints are imposed on the
parameters. These values are determined from the published
literature, summarized in Table 2 (4, 13, 15).

F(vim AXs™) = = T
=3 (v 2+\/ vim)?
Sy [ E3 o)
T
le(Ax,‘ﬁs—AxﬁT)z
+ L= ®)
1 c obs\2 1 - sm)2
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T t=1 T t=1
where

Vit and V= simulated and observed speeds of vehicle n at
timet, respectively;

Ax3"and Ax% = simulated and observed distances between the
leader (n — 1) and the follower (n) at time't,
respectively; and

T = number of observationsin trajectory data.

NGSIM trajectory datawere collected from video recorded at 10
frames per second on 1-80 eastbound in the San Francisco Bay Areaof
California. The study area consisted of six freeway lanes approxi-
mately 500 m long. In the full data set, 45 min of data are available,
segmented into three 15-min periods. Datafrom each period were cal-
ibrated separately to check the consistency and reliability of the opti-
mization process. Calibration results show identica distribution
patternsfor all three datasets. Resultswith the objectivefunction value
greater than or equal to 0.2 were considered invalid and thereforewere
discarded. Thefind descriptive statistics arelisted in Table 3.

PARAMETER CORRELATION
Factor Analysis

Before the correlation structure of the parameterswasinvestigated,
a factor analysis was performed to understand how behavioral
parameters are influenced by underlying common factors (16).
Based on the eigenvalue of factors, factor |oading patterns with the
two most influential factors are plotted on rotated axes such that the
pointsfall closeto Factor 1 or Factor 2 (Figure 1); these two factors
account for nearly half of the total variance.

For the Gipps model (Figure 1a), Factor 1is primarily a measure
of o, which shows negative relationships with d and T and might
explain why along reaction time tends to lead to high deceleration
dueto an abrupt driving maneuver. For the Helly model (Figure 1b),
Factor 1 is strongly related to C, and vy, which are associated with
speed, whereas Factor 2 is strongly related to C, and d*, which are
associated with spacing. The plot suggests a positive relationship
between C, and C, and anegeative relationship between yand d* with
respect to both factors. For the IDM (Figure 1c), Factor 1 revedsa
positiverelationship between V, and . If Equation 5issimplified as
a,(t) = a[1 - f(V,") — g(s)] using functions of V,* and s, g(so)
decreases when f(V,*) increases and vice versa, which leads to the
positive relationship between V, and s, depending on the prevailing
traffic mode (i.e., free flow versus car following) (14).

TABLE 3 Descriptive Statistics of
Calibrated Parameters

Parameter Mean SD No. Obs.
Gipps

T 0.78 0.42 484
a 2.38 1.44 484
d -3.09 1.40 484
V* 76.08 21.42 484
s* 3.43 2.56 484
o 1.08 0.32 484
Helly

T 0.44 0.24 803
C, 0.51 0.24 803
C, 0.13 0.11 803
d* 4.85 257 803
Y 0.86 0.46 803
IDM

a 141 1.01 465
b 2.23 1.85 465
Vo 85.72 26.55 465
S 2.17 1.15 465
Thw 1.27 0.51 465

NortEe: Data Sets | (4:00-4:15 p.m.), Il (5:00-5:15
p.m.), and I11 (5:15-5:30 p.m.). For d in Gipps
model, absolute values are used for subsequent
analyses throughout this paper. No. Obs. = number
of observations.
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FIGURE 1 Factor plots in rotated factor space for (8) Gipps model, (b) Helly model, and (c) IDM, with (d) total variance explained.

Correlation Coefficient

Although factor analysis provides useful insight for qualitative inter-
pretations of parameter relationships, correlation coefficients provide
direct quantitative measuresthat can be used in the sampling procedure
for simulation. Pearson correlation coefficients for parametersin the
three models are presented in Tables 4, 5, and 6, and several parame-
ter pairs show statistically significant correlation. Overal, correlation
patterns are consistent with the preceding factor analysis, particularly
for pairswith relatively high correlation. Scatter plots for six selected
pairs are presented in Figure 2, in which various levels and types of
dependencies are observed. Certainly, less-frequent combinations
of parameters exist (represented by sparse areasin the plots) whose
patterns may not be captured by individual marginal distributions.
The questions addressed in the remainder of the paper are what
would happen if the parameter values used in asimulation study were
sampled from the sparse areas of the plots (which represent parameter

value combinations not observed in rea data) and how to prevent the
undesirable conseguences of otherwise ignoring these correlations.

PARAMETER SAMPLING
Empirical Data
Input Data Preparation

To investigate the impact of parameter correlation on the resulting
traffic stream and simulation results, asimple simulation experiment
isdesigned using two vehicle sets: onewith correlated parameters(in
which the original correlation structure in the calibrated parameters
is preserved) and another with uncorrelated parameters (in which
correl ations between parameters areignored). Thesetwo vehicle sets
are generated as described below.
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TABLE 4 Pearson Correlation Coefficients: Gipps Model

Gipps

Parameter T a d V* s* o

T Corr. coeff. 1.000 —0.042 0.173 0.037 —-0.090 -0.334
Sig. 0.357 0.000 0.419 0.048 0.000

a Corr. coeff. —0.042 1.000 0.130 0.062 -0.025 0.068
Sig. 0.357 0.004 0.176 0.579 0.134

d Corr. coeff. 0.173 0.130 1.000 0.075 0.063 —-0.339
Sig. 0.000 0.004 0.100 0.166 0.000

V* Corr. coeff. 0.037 0.062 0.075 1.000 -0.023 —-0.003
Sig. 0.419 0.176 0.100 0.610 0.948

s Corr. coeff. —0.090 —-0.025 0.063 —-0.023 1.000 —-0.097
Sig. 0.048 0.579 0.166 0.610 0.033

o Corr. coeff. -0.334 0.068 —-0.339 —0.003 —-0.097 1.000
Sig. 0.000 0.134 0.000 0.948 0.033

NoTE: Correlation (corr.) issignificant (sig.) at the 0.01 level (2-tailed). Coeff. = coefficient.

Correlation is significant at the 0.05 level (2-tailed).

Because calibrated parameter sets are available for each vehicle
from the NGSIM data, 500 randomly sampled vehicles with the
entire set of corresponding parameterswere used. That is, correlated
parametersrepresent asubset of the original NGSIM data so the pop-
ulation correlation structure is preserved in correlated parameters.
For uncorrelated parameters, each parameter is sampled separately
from the respective calibrated parameters such that the marginal dis-
tribution of theindividual parameter remainsthe sameasthe NGSIM
data but thejoint distribution (correl ation structure) is not preserved.
This procedureisillustrated in Figure 3.

In the Gipps model, however, o has an instability issue when the
ratio between the follower’ sand leader’ s decel eration capabilities
ishigh (i.e, a isfar from 1), thereby requiring certain caution in
choosing o (1). To exclude the effect of a relationship between
two parameters, which is a known source of problematic driving
behaviors, d and o are tied in simulation outputs with uncorrelated
parameter sampling, and consequently, the correlation between the
two is preserved asin correlated parameters.

Vehicle movement is simulated on a 1,000-m straight single-lane
highway section. Given avirtual initial leader with afixed trgjectory
(which is created from actual NGSIM data and used identically for

TABLE 5 Pearson Correlation Coefficients: Helly Model

al simulation runs), 500 vehicles are inserted into the highway
according to the Poisson process with an interarrival time of 2.0 s.
Theprocessof vehiclegeneration and smulationisreplicated 50 times
to obtain the distribution of output results for correlated and uncor-
related parameters, respectively. Thisprocedureisrepeated for each
model specification.

Output Performance and Car-Following
Behavior Measures

To examine the effect of input parameter sets with and without
correlation on the simulation results, six output measures are
defined below. Thefirst two measuresreflect overall network per-
formance, and the other four reflect car-following dynamicsin terms
of spacing.

1. Network exit time (s) isthetime until al 500 vehicles exit the
network (i.e., thelast vehicle' s exit time).

2. Total travel time (min) isthe sum of the net driving time spent
by all vehicles after entering the network.

TABLE 6 Pearson Correlation Coefficients: IDM

Helly IDM
Parameter T C, C, d* Y Parameter a b Vo S Taw
T Corr. coeff. 1000 @ -0206 -0.177 0.114 0.179 a Corr. coeff. 1.000 0.126 -0.021 0.152 -0.142
Sig. 0.000 0.000 0.001 0.000 Sig. 0.006 0.656 0.001 0.002
C,  Corr. coeff. = —0.206 1.000 0.217 -0.108 —0.359 b Corr. coeff. 0.126 1.000 0.038 0.009 -0.049
Sig. 0.000 0.000 0.002 0.000 Sig. 0.006 0.412 0.839 0.288
C, Corr.coeff. = =0.177 0.217 1.000 | -0.282 0.000 Vo Corr. coeff.  —0.021 0.038 1.000 0.248 0.039
Sig. 0.000 0.000 0.000 0.995 Sig. 0.656 0.412 0.000 0.399
d* Corr. coeff. 0.114 -0.108 -0.282 1.000 & -0.292 S Corr. coeff. 0.152 0.009 0.248 1.000 = -0.143
Sig. 0.001 0.002 0.000 0.000 Sig. 0.001 0.839 0.000 0.002
Y Corr. coeff. 0.179  -0.359 0.000 | -0.292 1.000 Taw  Corr. coeff. = —-0.142  —0.049 0.039 | -0.143 1.000
Sig. 0.000 0.000 0.995 0.000 Sig. 0.002 0.288 0.399 0.002
NoOTE: Correlation is significant at the 0.01 level (2-tailed). NoOTE: Correlation is significant at the 0.01 level (2-tailed).
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o Calibrated parameter set for the Gipps model for each vehicle

l T a d v* s* a
Vehicle 1 0.8 4.0 4.7 80.4 29 1.2
Vehicle 2 . . . . . . H
ehicle2ll 07 | __ 23 |38 | - 1040 | __: 23 1 05 __ U "\
Vehicle 3 0.4 3.9 4.3 146.0 4.3 1.1 Parameterset
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M ——— “ pETEET
Vehicle 9 1.0 3.1 2.9 145.0 3.3 1.1
R —— rd

FIGURE 3 Parameter sampling methods for correlated parameters (CO) and uncorrelated parameters (UC).
(Note: For each model, 500 vehicles for CO and 500 vehicles for UC are generated.)

3. Mean of average spacing (m) isthe mean of each vehicle' saver-
age spacing, where A x¥(t) is the net distance between the vehicle n
and itsleader at timet, Nisthe number of vehicles, and u$*" denotes
the average spacing over timefor vehiclen.

N
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4. SD of average spacing (m) isthe intervehicle variability.
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5. Mean of coefficient of variation (CV = o/|) of spacing is
the average intravehicle variation, where ¢¥*" denotes the SD
of the spacing over timefor vehicle n and CV $*" denotes the ratio
of the SD over timeto its mean for vehicle n.
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6. SD of CV of spacing isthe intervehicle variability of average
intravehicle variation.

n=1
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Simulation Results

To determinewhether the output distribution from correlated param-
eterswas significantly different from the output distribution from
uncorrelated parameters, the two-sample Kolmogorov—-Smirnov (K-S)
test was conducted on 100 redlizations (50 from correl ated parameters
and 50 from uncorrelated parameters) of each output measure.

Fisher’ sexact test was used in the analysis of contingency tablesfor
categorical data(17). For each output measure, 100 realizationswere
combined and divided into two categories: outputs greater than or
equal to the median, and outputs less than the median. Then a con-
tingency table was built with corresponding counts (Table 7). If the
range of output values from correlated and uncorrelated parameters
are significantly different, the ratio of correlated and uncorrelated
parameters in one category will be significantly different from that
in the other category. The null hypotheses H, of both tests claim
identically that outcomes from correlated and uncorrelated param-
eters are not different. Both tests were conducted for all six output
measures for each model.

The K-Stest and Fisher'stest yield similar results at the 5% sig-
nificance level (Table 8). For the Gipps model and the IDM, four of
six measures reject Hy in both tests, indicating that the correspond-
ing simulation outputs are significantly different and affected by
ignoring correlations in model parameters. For the Helly model, H,
isregjected for two output measures in the K-S test and three in the
Fisher'stest.

The results can be better examined from the empirical cumulative
distributions for each measure presented in Figure 4, with the K-Stest
resultsand p-values presented at thetop of each plot. Clear differences
in correlated and uncorrel ated parametersare observed inthelast three
plotsfor the Gipps model (Figure 4a). Ignoring correlation appearsto
increase drivers' sensitivity because both inter- and intravehicle vari-

TABLE 7 Example of Contingency Table for
Fisher’s Exact Test

Output Measure Category CO uc Tota
Network exit time < median a b a+b
(example) > median c d c+d
Total 50 50 100

NOTE: a, b, ¢, d = frequency counts for each category.
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TABLE 8 Significance Test Results
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2-Sample K-S Test

Fisher's Exact Test

Output Measure Gipps Helly IDM Gipps Helly IDM
Network exit time Not reject Reject Reject Not reject Reject Reject
Total travel time Reject Reject Not reject Reject Reject Not reject
Mean of avg. spacing Not reject Not reject Not reject Not reject Not reject Not reject
SD of avg. spacing Reject Not reject Reject Reject Reject Reject
Mean of CV of spacing Reject Not reject Reject Reject Not reject Reject
SD of CV of spacing Reject Not reject Reject Reject Not reject Reject
Number of H, rejections 4 2 4 4 3 4

NoTE: Avg. = average.

ation of spacing increase for uncorrelated parametersrelated to corre-
|ated parameters. Thel DM showsasimilar yet lessobvious pattern for
the spacing variation (Figure 4b). Such results may lead to a wrong
interpretation of unstabledriving behavior or suggest fal se heterogene-
ity. Moreover, after the network becomes complicated, how such vari-
ationwould affect the entiretraffic flow isunpredictable. For theHelly
model, ignoring parameter correlations results in statistically signifi-
cant differences not in spacing variation, but in the overall travel time,
as shown in the first two plots (Figure 4c). However, the Helly model
doesnot produce redlistic perturbation propagation in the scenario used
for this study. Therefore, most vehicles travel in free-flow mode (as

Not reject H, (CO=UC), p=0.155

Reject H, (CO=UC), p=0.004

determined from average spacings larger than in the other two mod-
els), and the true effect of correlation on leader—follower interactions
isnot sufficiently reflected in simulation outputs.

Parametric Distribution

Resultsin the previous section confirm the importance of considering
correlation inthe parameter-sampling procedure. However, empirical
joint distributions may not be readily available in practice. In such a
case, the use of a parametric model with an appropriate distribution

Not reject H, (CO=UC), p=0.056
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FIGURE 4 Cumulative distribution function (CDF) for six output measures (CO versus UC) for (a) Gipps model.

(continued on next pagel
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Reject H, (CO#UC), p=0.017

Reject H, (CO#UC), p=0.002
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Not reject Hy (CO=UC), p=0.508

- . 1
CO (u=1207.8) CO (u=376.6) /JJ CO (u=51.3) //d
0.8 C (u=1203.0) 0.8 UC (u=373.2) 0.8 UC (u=51.4)
0.6 0.6 0.6
=
g
0.4 0.4 0.4
0.2 02 0.2 7
0 > 0 - . 0
1180 1200 1220 1240 360 370 380 390 49 50 51 52 53
Network Exit Time (sec) Total Travel Time (min) Mean of Avg. Spacing (m)
Not reject H, (CO=UC), p=0.056 Not reject Hy (CO=UC), p=0.358 Not reject H, (CO=UC), p=0.645
1 — 1 1 r
CO (u=16.0) ! CO (u=0.15) ffl CO (u=0.31)
0.8 UC (u=15.8) ,_f 0.8 UC (u=0.15) 0.8 UC (1=0.30)
i
0.6 0.6 0.6 /
x
g
0.4 0.4 0.4
0.2 0.2 0.2
0 0 0 f
14 17 041 0.15 0.2 0.2 0.3 0.4 0.5
SD of Avg Spacmg Mean of CV of Spacing SD of CV of Spacing
(b)
Reject H, (CO=UC), p=0.017 Not reject H, (CO=UC),p=0.841 Not reject H, (CO=UC), p=0.056
1 — 1 1 —=
CO (u=1141.4) CO (u=680.0) CO (u=21.2) Jﬁf
0.8 UC (u=1155.0) 0.8 UC (u=679.0) 0.8 UC (u=21.6)
0.6 0.6 0.6
x
s
0.4 0.4 0.4
0.2 0.2 J/ 0.2
0 . 0 {_"J- N 0 — n
1050 1100 11 50 1200 1250 600 650 700 750 18 20 22 24
Network Exit Time (sec) Total Travel Time (min) Mean of Avg. Spacing (m)
Reject H, (CO=UC), p=0.000 Reject H, (CO=£UC), p=0.001 Reject H, (CO=£UC), p=0.009
1 I 1 = 1 —
CO (u=8.7) CO (u=0.19) CO (u=0.11)
0.8 UC (u=9.8) 0.8 UC (u=0.21) 0.8 UC (u=0.12)
0.6 0.6 0.6
x
s
0.4 0.4 0.4
0.2 0.2 0.2
0 : 0 ' ' 0 ' : :
5 10 15 0.1 0.2 0.3 0.4 0.08 0.1 0.12 0.14 0.16
SD of Avg. Spacing (m) Mean of CV of Spacing SD of CV of Spacing
(©
FIGURE 4 (continued) Cumulative distribution function (CDF) for six output measures (CO versus UC) for (b) Helly model, and (c) IDM.
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assumption provides an aternative way to sample correlated param-
eters, as long as correlation coefficients or covariance matrix are
known, in addition to the mean and SD of the marginal distributions.

This section focuses on the question of how to capture correlation
in conventional microsimulation tools, and how closely the correla
tion effect isreplicated when using adistributional assumption instead
of an empirical distribution.

Multivariate Normal Distribution

When parameters have a multivariate normal (MVN) distribution
with mean 1 and covariance matrix X, the correlated parameter set
can be drawn from N(y, X) using the Choleski decomposition
approach (18). To usethe MV N distribution assumption, every lin-
ear combination of each parameter component must follow the nor-

T (Gipps) (L= 0.781 ¢ = 0.418)

71

mal distribution. The lognormal distribution also can be used by
taking logarithms. Figure 5 presents empirical distributions for all
parameters and the corresponding best-fitting normal or lognormal
density function. Overall, parameter marginal distributions appear
well fitted by the normal or the lognormal distribution.

Assuming an MV N distribution, noting that joint or marginal distri-
butions of some parameters might not be normal, 500 draws are taken
from N(U, Z), Where [ is mean values in Table 3 and X, is the
covariance matrix, which reflectsthe correlation structurein Tables 4,
5, and 6. This correlated parameter set from a MV N distribution is
denoted as COyyy. By simply replacing X, with X, ,—Vvariance
matrix with the same diagonal elements as X, but with zero off-
diagonal elements—an uncorrelated parameter set (UCy,yn) also can
be generated. The UCy\ Case can be seen asthe conventiona sampling
approach, where only the mean and the variance for each parameter are
used. The boundary constraintsin Table 2 also are applied.

a (Gipps) (L= 2.382 6 = 1.436)
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FIGURE 5 Histogram of calibrated parameters with fitted lognormal distribution for (a) Gipps model.
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FIGURE 5 (continued) Histogram of calibrated parameters with fitted lognormal distribution for (b) Helly model.
(continued)]



Kim and Mahmassani

70

60 |
50 |
40 |

30
20
10

50

40

30

20

50

40

30

20

10

FIGURE 5 (continued]

73

a (IDM) (u = 1.406 6 = 1.012)

b (IDM) (u = 2.225 ¢ = 1.849)

Histogram of calibrated parameters with fitted lognormal distribution for (c) IDM.
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Simulation Results

The same scenario asin the previous section is used for the simula-
tion experiments, whereby 500 vehiclesfor each COyyn and UCyyn
are simulated 50 times, respectively, and the resulting outputs are
measured. The four cases are

1. CO, a correlated parameter set from the empirical joint
distribution;

2. UC, an uncorrelated parameter set from the empirical margina
distributions,

0.3 4
0.2

Correlation Coefficient
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3. COpuyn, acorrelated parameter set from the MV N distribution
with correlation; and

4. UCyyn, an uncorrelated parameter set from the MV N distri-
bution without correlation.

The correlation coefficients of the sampled parameters (averaged
over 50 simulation runs) for the four cases with the original correla
tion coefficients obtained from the calibrated datapresented in Tables
4,5, and 6 (denoted as NGSIM) are compared in Figure 6. The x-axis
represents all pairs of parameters; R; denotes the correlation coeffi-
cient between parametersi and j, wherei and j represent the order of
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FIGURE 6 Comparison of parameter correlation coefficients for (a) Gipps model, (b) Helly model, and (c) IDM.
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parametersin Table 1. As expected, CO and COyyy preserve the
correlation coefficients close to those of NGSIM, whereas UC and
UCyvn exhibit nearly no correlation between parameters. How-
ever, for Ry (correlation between d and ) in the Gipps model, cor-
relation is maintained for all cases to avoid the known instability
issue mentioned in the sampling procedure for uncorrelated param-
eters. For some parameters in COyyy, the correlation structure is
insufficiently replicated, indicating the limitation of the MVN
assumption.

With the output measures for all four cases, the two-sample K-S
test was performed again to determine whether output measuresfrom
each case were significantly different. In addition to the previous
results for CO versus UC, CO versus COyyy and CO versus UCyyn
were tested; results are presented in Figure 7. For the Gipps model,
sampling from the MV N distribution with known correlation does
not replicate the output performance under sampling from theempir-
ical distribution (i.e., CO # COyyy) for al six measures (Figure 7a).
However, COyyn shows less bias than the conventional approach
represented by UCyyn, Which is farthest away from CO in the last
threeplots. For theHelly model, it ishard to seethe statistically signif-
icant effect of sampling methods in the test results (Figure 7b).
However, thereisadlight distinction between outputsfrom correl ated
parameters (COyyn and CO) and outputs from uncorrel ated param-
eters (UCyyn and UC), especially in thefirst two plots, providing evi-
dence of correlation effects. The IDM produces a pattern similar to

CO=UC CO#COyyyy CO=UCyyn

1 1

CO#UC CO#£CO,yyy CO£UC
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that of the Gipps model; CO is not equal to COyyy for five of six
output measures, but COyyy iscloser to CO than UCy,yy isfor al six
measures (Figure 7¢).

CONCLUSIONS

This study presents a detailed analysis of the existence and extent
of correlation between parameters in car-following models and its
impact on microsimulation results. Three selected models (Gipps,
Helly, and IDM) were calibrated and the correlation structures iden-
tified. Factor analysiswas conducted to examine underlying common
factorsthat characterize interrelation among parameters. Qualitative
interpretations from factor analysis agree with the results from the
computed correlation coefficients between parameters.

Two simulation experiments were conducted. First, based on
empirica distributions of calibrated parameters, parameter setswere
sampled with and without correlation, and car-following movements
were simulated for each model. Six output measureswere defined
and collected during the simulation to compare performance. For the
Gipps model and IDM, statistically significant differences between
CO and UC parameter sets are observed for four output measures,
three of which arerelated tointer- and intraindividual variationsof the
spacing. Depending on the hypothesistest type, two to three measures
show significant differences for the Helly model.
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FIGURE 7 CDF for six output measures for all four cases (CO, UC, COyyy, and UCyyy) for (a) Gipps model.
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FIGURE 7 (continued)

CDF for six output measures for all four cases (CO, UC, COyyy, and UCyyy) for (b) Helly model, and

(c) IDM (A # B if Hy is rejected at the 5% level for two samples from A and B; A = B otherwise).
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Next, assuming that parameters have the MV N distribution, both
CO and UC parameter setswere generated using the estimated covari-
ance matrix from the calibrated data. The aim was to explore a prac-
tical way to capture correlation in microsimulation when empirical
dataarenot available. For the Gipps model and theIDM, even though
correlations between parameters were replicated well, parameters
drawn from the MV N distribution did not provide the same results
(stetistically) asthose with the correlated empirical distribution. One
reason for this disagreement may be the poor fit of the normal mar-
ginal distributionsto some parameters. Another reasonisthe possible
existence of nonlinear correlations between parameters. Because the
Pearson correlation coefficient detects only alinear relationship, any
nonlinear correlation cannot be replicated through the correlation
structure used in MV N-based sampling, thereby generating param-
etersinconsistent with the original calibrated parameters. Finally, the
Helly model shows limited effects of parameter correlation because
insufficient leader—follower interactionswere captured in the present
car-following simulation experiment.

To summarize, when correlation is present between parametersin
car-following models, parameters simply drawn from uncorrelated
marginal distributions could yield unreliable resultsin simulation and
consequently inaccurate interpretation. However, the use of paramet-
ric distributions with an estimated correlation structure may not nec-
essarily reducetheerror duetoignoring correlation if theunderlying
distributional assumption does not sufficiently hold for both marginal
and joint distributions.
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