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individual parameter values is independently and randomly drawn
for each driver from the separate marginal distributions under the
(explicit or implicit) assumption that parameters are uncorrelated.

Behavioral parameters in car-following and other models of driving
behavior are expected to be correlated, to the extent that these parame-
ters may reflect underlying factors such as risk aversion or personality
characteristics. For example, a driver with long reaction time may also
exhibit a high tendency to decelerate to avoid collision. Hence the like-
lihood of particular parameter combinations reflects particular corre-
lation patterns that characterize the driving population. The presence
of correlations affects the shape of the joint distribution (i.e., the sam-
pling space for the parameter set). When parameter correlation is not
considered, the sampling space enlarges, thereby allowing the simula-
tor to produce unrealistic parameter combinations (which may not
exist in real-world traffic) or to generate a biased representation of the
driving population. In other words, independent draws of individual
model parameters may produce driving behaviors that have no
counterpart (or that have a low likelihood of occurring) in the real
world. Therefore, ignoring the correlations of input parameters in
the random sampling procedure could lead to unrealistic system
performance, biased simulation outputs, and erroneous interpretations.

Image-processing techniques used in collecting microscopic trajec-
tory data enable many in-depth empirical studies to explore heteroge-
neous car-following behaviors beyond model parameter calibration.
Ossen and Hoogendoorn find considerable differences in the car-
following behaviors of individual drivers by estimating optimal param-
eter values of different specifications of the Gazis–Herman–Rothery
model for each driver (7). Hamdar et al. introduce a cognitive-based
stochastic car-following model in which acceleration is determined
by evaluating the probability of rear-end collision with candidate accel-
eration (8). They reveal the existence of considerable interindividual
variation and correlation among behavioral parameters. Hamdar
presents detailed distributions and a corresponding correlation
matrix (9).

The next logical questions to ask are, how can such heterogene-
ity be generated in microsimulation models? What is the impact
of parameter correlation on the resulting traffic stream properties and
simulation results—and conversely, what happens when such cor-
relation is ignored? How can such correlation be captured in traffic
microsimulation? These questions, which have not been addressed
in previous studies, are the focus of this paper. In particular, these ques-
tions are addressed in connection with car-following models. Thus,
an investigation is conducted into the effect of ignoring correlations
in the parameters of car-following models on the resulting movement
and properties of a simulated heterogeneous vehicle traffic stream.

Correlated Parameters in Driving
Behavior Models
Car-Following Example and Implications 
for Traffic Microsimulation

Jiwon Kim and Hani S. Mahmassani

Behavioral parameters in car following and other models of driving
behavior are expected to be correlated. An investigation is conducted into
the effect of ignoring correlations in three parameters of car-following
models on the resulting movement and properties of a simulated hetero-
geneous vehicle traffic stream. For each model specification, parameters
are calibrated for the entire sample of individual drivers with Next Gen-
eration Simulation trajectory data. Factor analysis is performed to
understand the pattern of relationships between parameters on the basis
of calibrated data. Correlation coefficients have been used to show statis-
tically significant correlation between the parameters. Simulation exper-
iments are performed with vehicle parameter sets generated with and
without considering such correlation. First, parameter values are sam-
pled from the empirical mass functions, and simulated results show
significant difference in output measures when parameter correlation
is captured (versus ignored). Next, parameters are sampled under the
assumption that they follow the multivariate normal distribution. Results
suggest that the use of parametric distribution with known correlation
structure may not sufficiently reduce the error due to ignoring correlation
if the underlying assumption does not hold for both marginal and joint
distributions.

Microsimulation has long been recognized as an effective approach to
the analysis of vehicular traffic flow because individual driving behav-
iors can be captured and interaction between vehicles is reflected in the
resulting collective traffic flow pattern. Accordingly, many micro-
scopic models of driving behavior—including car-following, lane-
changing, acceleration and deceleration, gap acceptance, and merging
models—have been incorporated in traffic microsimulation tools
(1–3). Typically, these models include numerous parameters that must
be calibrated against real data and provided as input to the simulation
(4–6). Many existing simulators adopt Monte Carlo sampling of
parameter values to model heterogeneous drivers by allowing users
to specify a marginal distribution for each parameter, represented by
the mean and standard deviation (SD) or, in some instances, by
empirical mass functions (1, 2). Concerns may arise when a set of
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Three car-following model specifications were selected: the Gipps
model (10), the Helly model (11), and the intelligent driver model
(IDM) (12, 13). For each model specification, the parameters were
calibrated for the entire sample of individual drivers using Next
Generation Simulation (NGSIM) trajectory data (14). These results
form the basis for investigating three main aspects: understanding
qualitative relationships among parameters in selected car-following
models and identifying correlation structures, comparing simulated
car-following behaviors between parameter sets with and without pre-
serving correlations, and evaluating the performance of conventional
sampling approaches with parametric distribution assumption. Statis-
tical hypothesis tests are conducted to determine the significance of
differences in output measures with respect to sampling methods for
correlated input parameters.

SELECTED MODELS

For calibration and subsequent correlation analysis, three car-
following models were selected: Gipps, Helly, and IDM. The model
specifications are presented in the following equations.

Gipps Model
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Helly Linear Model

IDM

where

an(t) = acceleration of follower n (and leader n − 1) at time t,
vn(t) = speed of follower n (and leader n − 1) at time t,
xn(t) = location of follower n (and leader n − 1) at time t, and 

ln = physical length of vehicle n. 

The parameters to be estimated for each model are listed in Table 1.

MODEL CALIBRATION

For model calibration, the downhill simplex (gradient-free opti-
mization) method was used to obtain optimal parameters that mini-
mize the objective function in Equation 6, which is the discrepancy
between the simulated value and the observed value for the speed
and the location (15). For each follower–leader pair with no lane
changing in the NGSIM trajectory data, three parameter sets for the
Gipps model, the Helly model, and the IDM are estimated separately.
To prevent the algorithm from falling into local minima with 

a t a

v t

V

s v t T
v t v

n

n

n
n n

( ) =

−
( )⎛

⎝⎜
⎞
⎠⎟

−
+ ( ) +

( )

1
0

4

0 HW

tt v t

ab
x t l t x t

n

n n n

( ) − ( )[ ]( )
( ) − ( ) − ( )

⎡

⎣
⎢

−

− −

1

1 1

2
⎢⎢

⎤

⎦
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

2 5( )

a t C v t T v t T

C x t T x t

n n n

n n

( ) = −( ) − −( )[ ]

+ −( ) −

−

−

1 1

2 1 −−( ) − ( )[ ]

( ) = +( ) + −( )−

T D t

D t d l v t T

n

n n n* ( )1 4γ

TABLE 1 Model Parameters for Estimation

Model Parameter No. Parameter Description

Gipps 1 T Reaction time
2 a Maximum acceleration
3 d Maximum desirable deceleration (< 0)
4 V* Desired speed
5 s* Minimum net stopped distance from the leader
6 α Sensitivity factor:

αd = d̂n−1, where  d̂n−1 is the leader’s desired deceleration estimated
by the follower n. When α < 1, the vehicle underestimates the
deceleration of the leader and becomes more aggressive;
more careful when α > 1 (1)

Helly 1 T Reaction time
2 C1 Constant for the relative speed
3 C2 Constant for the spacing
4 d* Desired net stopped distance from the leader
5 γ Constant for the speed in the desired following distance (Dn)

IDM 1 a Maximum acceleration
2 b Desired deceleration
3 V0 Desired speed
4 s0 Minimum net stopped distance from the leader
5 THW Desired safety time headway
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unreasonable values, boundary constraints are imposed on the
parameters. These values are determined from the published 
literature, summarized in Table 2 (4, 13, 15).

where

vsim
n,t and vobs

n,t = simulated and observed speeds of vehicle n at
time t, respectively;

Δx sim
n,t and Δxn,t

obs = simulated and observed distances between the
leader (n − 1) and the follower (n) at time t,
respectively; and

T = number of observations in trajectory data.

NGSIM trajectory data were collected from video recorded at 10
frames per second on I-80 eastbound in the San Francisco Bay Area of
California. The study area consisted of six freeway lanes approxi-
mately 500 m long. In the full data set, 45 min of data are available,
segmented into three 15-min periods. Data from each period were cal-
ibrated separately to check the consistency and reliability of the opti-
mization process. Calibration results show identical distribution
patterns for all three data sets. Results with the objective function value
greater than or equal to 0.2 were considered invalid and therefore were
discarded. The final descriptive statistics are listed in Table 3.

PARAMETER CORRELATION

Factor Analysis

Before the correlation structure of the parameters was investigated,
a factor analysis was performed to understand how behavioral
parameters are influenced by underlying common factors (16).
Based on the eigenvalue of factors, factor loading patterns with the
two most influential factors are plotted on rotated axes such that the
points fall close to Factor 1 or Factor 2 (Figure 1); these two factors
account for nearly half of the total variance.
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For the Gipps model (Figure 1a), Factor 1 is primarily a measure
of α, which shows negative relationships with d and T and might
explain why a long reaction time tends to lead to high deceleration
due to an abrupt driving maneuver. For the Helly model (Figure 1b),
Factor 1 is strongly related to C1 and γ, which are associated with
speed, whereas Factor 2 is strongly related to C2 and d*, which are
associated with spacing. The plot suggests a positive relationship
between C1 and C2 and a negative relationship between γ and d* with
respect to both factors. For the IDM (Figure 1c), Factor 1 reveals a
positive relationship between V0 and s0. If Equation 5 is simplified as
an(t) = a[1 − f(V −1

0 ) − g(s0)] using functions of V −1
0 and s0, g(s0)

decreases when f(V −1
0 ) increases and vice versa, which leads to the

positive relationship between V0 and s0, depending on the prevailing
traffic mode (i.e., free flow versus car following) (14).

TABLE 2 Boundary Constraints for Parameters

Gipps Model Helly Model IDM

Model Variable Parameter Model Variable Parameter Model Variable Parameter

0.2 s < T < 3.5 s 0.2 s < T < 3.5 s 0 m/s2 < a < 8 m/s2

0 m/s2 < a < 8 m/s2 0.1 < C1 < 3.0 0 m/s2 < b < 8 m/s2

−8 m/s2 < d < 0 m/s2 0.01 < C2 < 3.0 50 km/h < V0 < 150 km/h

50 km/h < V* < 150 km/h 0 m < d* < 10 m 0 m < s0 < 10 m

0 m < s* < 20 m 0 < γ < 2.0 0 s < THW < 10 s

0.5 < α < 2.0

TABLE 3 Descriptive Statistics of
Calibrated Parameters

Parameter Mean SD No. Obs.

Gipps

T 0.78 0.42 484

a 2.38 1.44 484

d −3.09 1.40 484

V* 76.08 21.42 484

s* 3.43 2.56 484

α 1.08 0.32 484

Helly

T 0.44 0.24 803

C1 0.51 0.24 803

C2 0.13 0.11 803

d* 4.85 2.57 803

γ 0.86 0.46 803

IDM

a 1.41 1.01 465

b 2.23 1.85 465

V0 85.72 26.55 465

s0 2.17 1.15 465

THW 1.27 0.51 465

NOTE: Data Sets I (4:00–4:15 p.m.), II (5:00–5:15
p.m.), and III (5:15–5:30 p.m.). For d in Gipps
model, absolute values are used for subsequent
analyses throughout this paper. No. Obs. = number
of observations.
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Correlation Coefficient

Although factor analysis provides useful insight for qualitative inter-
pretations of parameter relationships, correlation coefficients provide
direct quantitative measures that can be used in the sampling procedure
for simulation. Pearson correlation coefficients for parameters in the
three models are presented in Tables 4, 5, and 6, and several parame-
ter pairs show statistically significant correlation. Overall, correlation
patterns are consistent with the preceding factor analysis, particularly
for pairs with relatively high correlation. Scatter plots for six selected
pairs are presented in Figure 2, in which various levels and types of
dependencies are observed. Certainly, less-frequent combinations
of parameters exist (represented by sparse areas in the plots) whose
patterns may not be captured by individual marginal distributions.

The questions addressed in the remainder of the paper are what
would happen if the parameter values used in a simulation study were
sampled from the sparse areas of the plots (which represent parameter

value combinations not observed in real data) and how to prevent the
undesirable consequences of otherwise ignoring these correlations.

PARAMETER SAMPLING

Empirical Data

Input Data Preparation

To investigate the impact of parameter correlation on the resulting
traffic stream and simulation results, a simple simulation experiment
is designed using two vehicle sets: one with correlated parameters (in
which the original correlation structure in the calibrated parameters
is preserved) and another with uncorrelated parameters (in which
correlations between parameters are ignored). These two vehicle sets
are generated as described below.
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FIGURE 1 Factor plots in rotated factor space for (a) Gipps model, (b) Helly model, and (c) IDM, with (d ) total variance explained.
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Because calibrated parameter sets are available for each vehicle
from the NGSIM data, 500 randomly sampled vehicles with the
entire set of corresponding parameters were used. That is, correlated
parameters represent a subset of the original NGSIM data so the pop-
ulation correlation structure is preserved in correlated parameters.
For uncorrelated parameters, each parameter is sampled separately
from the respective calibrated parameters such that the marginal dis-
tribution of the individual parameter remains the same as the NGSIM
data but the joint distribution (correlation structure) is not preserved.
This procedure is illustrated in Figure 3.

In the Gipps model, however, α has an instability issue when the
ratio between the follower’s and leader’s deceleration capabilities
is high (i.e., α is far from 1), thereby requiring certain caution in
choosing α (1). To exclude the effect of a relationship between
two parameters, which is a known source of problematic driving
behaviors, d and α are tied in simulation outputs with uncorrelated
parameter sampling, and consequently, the correlation between the
two is preserved as in correlated parameters.

Vehicle movement is simulated on a 1,000-m straight single-lane
highway section. Given a virtual initial leader with a fixed trajectory
(which is created from actual NGSIM data and used identically for

all simulation runs), 500 vehicles are inserted into the highway
according to the Poisson process with an interarrival time of 2.0 s.
The process of vehicle generation and simulation is replicated 50 times
to obtain the distribution of output results for correlated and uncor-
related parameters, respectively. This procedure is repeated for each
model specification.

Output Performance and Car-Following 
Behavior Measures

To examine the effect of input parameter sets with and without
correlation on the simulation results, six output measures are
defined below. The first two measures reflect overall network per-
formance, and the other four reflect car-following dynamics in terms
of spacing.

1. Network exit time (s) is the time until all 500 vehicles exit the
network (i.e., the last vehicle’s exit time).

2. Total travel time (min) is the sum of the net driving time spent
by all vehicles after entering the network.

TABLE 4 Pearson Correlation Coefficients: Gipps Model

Gipps

Parameter T a d V* s* α

T Corr. coeff. 1.000 −0.042 0.173 0.037 −0.090 −0.334
Sig. 0.357 0.000 0.419 0.048 0.000

a Corr. coeff. −0.042 1.000 0.130 0.062 −0.025 0.068
Sig. 0.357 0.004 0.176 0.579 0.134

d Corr. coeff. 0.173 0.130 1.000 0.075 0.063 −0.339
Sig. 0.000 0.004 0.100 0.166 0.000

V* Corr. coeff. 0.037 0.062 0.075 1.000 −0.023 −0.003
Sig. 0.419 0.176 0.100 0.610 0.948

s* Corr. coeff. −0.090 −0.025 0.063 −0.023 1.000 −0.097
Sig. 0.048 0.579 0.166 0.610 0.033

α Corr. coeff. −0.334 0.068 −0.339 −0.003 −0.097 1.000
Sig. 0.000 0.134 0.000 0.948 0.033

NOTE: Correlation (corr.) is significant (sig.) at the 0.01 level (2-tailed). Coeff. = coefficient.

Correlation is significant at the 0.05 level (2-tailed).

TABLE 6 Pearson Correlation Coefficients: IDM

IDM

Parameter a b V0 s0 THW

a Corr. coeff. 1.000 0.126 −0.021 0.152 −0.142
Sig. 0.006 0.656 0.001 0.002

b Corr. coeff. 0.126 1.000 0.038 0.009 −0.049
Sig. 0.006 0.412 0.839 0.288

V0 Corr. coeff. −0.021 0.038 1.000 0.248 0.039
Sig. 0.656 0.412 0.000 0.399

s0 Corr. coeff. 0.152 0.009 0.248 1.000 −0.143
Sig. 0.001 0.839 0.000 0.002

THW Corr. coeff. −0.142 −0.049 0.039 −0.143 1.000
Sig. 0.002 0.288 0.399 0.002

NOTE: Correlation is significant at the 0.01 level (2-tailed).

TABLE 5 Pearson Correlation Coefficients: Helly Model

Helly

Parameter T C1 C2 d* γ

T Corr. coeff. 1.000 −0.206 −0.177 0.114 0.179
Sig. 0.000 0.000 0.001 0.000

C1 Corr. coeff. −0.206 1.000 0.217 −0.108 −0.359
Sig. 0.000 0.000 0.002 0.000

C2 Corr. coeff. −0.177 0.217 1.000 −0.282 0.000
Sig. 0.000 0.000 0.000 0.995

d* Corr. coeff. 0.114 −0.108 −0.282 1.000 −0.292
Sig. 0.001 0.002 0.000 0.000

γ Corr. coeff. 0.179 −0.359 0.000 −0.292 1.000
Sig. 0.000 0.000 0.995 0.000

NOTE: Correlation is significant at the 0.01 level (2-tailed).
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3. Mean of average spacing (m) is the mean of each vehicle’s aver-
age spacing, where Δ xn

net(t) is the net distance between the vehicle n
and its leader at time t, N is the number of vehicles, and µn

spacing denotes
the average spacing over time for vehicle n.

4. SD of average spacing (m) is the intervehicle variability.

5. Mean of coefficient of variation (CV = σ/µ) of spacing is 
the average intravehicle variation, where σn

spacing denotes the SD 
of the spacing over time for vehicle n and CVn

spacing denotes the ratio
of the SD over time to its mean for vehicle n.

6. SD of CV of spacing is the intervehicle variability of average
intravehicle variation.

Simulation Results

To determine whether the output distribution from correlated param-
eters was significantly different from the output distribution from
uncorrelated parameters, the two-sample Kolmogorov–Smirnov (K-S)
test was conducted on 100 realizations (50 from correlated parameters
and 50 from uncorrelated parameters) of each output measure.
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FIGURE 3 Parameter sampling methods for correlated parameters (CO) and uncorrelated parameters (UC). 
(Note: For each model, 500 vehicles for CO and 500 vehicles for UC are generated.)

TABLE 7 Example of Contingency Table for 
Fisher’s Exact Test

Output Measure Category CO UC Total

Network exit time < median a b a + b
(example) ≥ median c d c + d

Total 50 50 100

NOTE: a, b, c, d = frequency counts for each category.

Fisher’s exact test was used in the analysis of contingency tables for
categorical data (17). For each output measure, 100 realizations were
combined and divided into two categories: outputs greater than or
equal to the median, and outputs less than the median. Then a con-
tingency table was built with corresponding counts (Table 7). If the
range of output values from correlated and uncorrelated parameters
are significantly different, the ratio of correlated and uncorrelated
parameters in one category will be significantly different from that
in the other category. The null hypotheses H0 of both tests claim
identically that outcomes from correlated and uncorrelated param-
eters are not different. Both tests were conducted for all six output
measures for each model.

The K-S test and Fisher’s test yield similar results at the 5% sig-
nificance level (Table 8). For the Gipps model and the IDM, four of
six measures reject H0 in both tests, indicating that the correspond-
ing simulation outputs are significantly different and affected by
ignoring correlations in model parameters. For the Helly model, H0

is rejected for two output measures in the K-S test and three in the
Fisher’s test.

The results can be better examined from the empirical cumulative
distributions for each measure presented in Figure 4, with the K-S test
results and p-values presented at the top of each plot. Clear differences
in correlated and uncorrelated parameters are observed in the last three
plots for the Gipps model (Figure 4a). Ignoring correlation appears to
increase drivers’ sensitivity because both inter- and intravehicle vari-
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TABLE 8 Significance Test Results

2-Sample K-S Test Fisher’s Exact Test

Output Measure Gipps Helly IDM Gipps Helly IDM

Network exit time Not reject Reject Reject Not reject Reject Reject

Total travel time Reject Reject Not reject Reject Reject Not reject

Mean of avg. spacing Not reject Not reject Not reject Not reject Not reject Not reject

SD of avg. spacing Reject Not reject Reject Reject Reject Reject

Mean of CV of spacing Reject Not reject Reject Reject Not reject Reject

SD of CV of spacing Reject Not reject Reject Reject Not reject Reject

Number of H0 rejections 4 2 4 4 3 4

NOTE: Avg. = average.

1080 1100 1120 1140
0

0.2

0.4

0.6

0.8

1

Network Exit Time (sec)

F
(x

)
F

(x
)

Not reject H0 (CO=UC), p=0.155

CO (μ=1108.8)

UC (μ=1113.1)

580 600 620 640
0

0.2

0.4

0.6

0.8

1

Total Travel Time (min)

Reject H0 (CO≠UC), p=0.004

CO (μ=602.5)

UC (μ=608.7)

22 23 24 25 26
0

0.2

0.4

0.6

0.8

1

Mean of Avg. Spacing (m)

Not reject H0 (CO=UC), p=0.056

CO (μ=23.9)

UC (μ=23.7)

10 12 14 16 18
0

0.2

0.4

0.6

0.8

1

SD of Avg. Spacing (m)

Reject H0 (CO≠UC), p=0.000

CO (μ=13.5)

UC (μ=15.3)

0.2 0.25 0.3 0.35
0

0.2

0.4

0.6

0.8

1

Mean of CV of Spacing

Reject H0 (CO≠UC), p=0.000

CO (μ=0.21)

UC (μ=0.27)

0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

SD of CV of Spacing

Reject H0 (CO≠UC), p=0.000

CO (μ=0.23)

UC (μ=0.32)

(a)

FIGURE 4 Cumulative distribution function (CDF) for six output measures (CO versus UC) for (a) Gipps model.
(continued on next page)

ation of spacing increase for uncorrelated parameters related to corre-
lated parameters. The IDM shows a similar yet less obvious pattern for
the spacing variation (Figure 4b). Such results may lead to a wrong
interpretation of unstable driving behavior or suggest false heterogene-
ity. Moreover, after the network becomes complicated, how such vari-
ation would affect the entire traffic flow is unpredictable. For the Helly
model, ignoring parameter correlations results in statistically signifi-
cant differences not in spacing variation, but in the overall travel time,
as shown in the first two plots (Figure 4c). However, the Helly model
does not produce realistic perturbation propagation in the scenario used
for this study. Therefore, most vehicles travel in free-flow mode (as

determined from average spacings larger than in the other two mod-
els), and the true effect of correlation on leader–follower interactions
is not sufficiently reflected in simulation outputs.

Parametric Distribution

Results in the previous section confirm the importance of considering
correlation in the parameter-sampling procedure. However, empirical
joint distributions may not be readily available in practice. In such a
case, the use of a parametric model with an appropriate distribution
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FIGURE 4 (continued) Cumulative distribution function (CDF) for six output measures (CO versus UC) for (b) Helly model, and (c) IDM.
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assumption provides an alternative way to sample correlated param-
eters, as long as correlation coefficients or covariance matrix are
known, in addition to the mean and SD of the marginal distributions.

This section focuses on the question of how to capture correlation
in conventional microsimulation tools, and how closely the correla-
tion effect is replicated when using a distributional assumption instead
of an empirical distribution.

Multivariate Normal Distribution

When parameters have a multivariate normal (MVN) distribution
with mean µ and covariance matrix Σ, the correlated parameter set
can be drawn from N(µ, Σ) using the Choleski decomposition
approach (18). To use the MVN distribution assumption, every lin-
ear combination of each parameter component must follow the nor-

mal distribution. The lognormal distribution also can be used by
taking logarithms. Figure 5 presents empirical distributions for all
parameters and the corresponding best-fitting normal or lognormal
density function. Overall, parameter marginal distributions appear
well fitted by the normal or the lognormal distribution.

Assuming an MVN distribution, noting that joint or marginal distri-
butions of some parameters might not be normal, 500 draws are taken
from N(µ, Σcov), where µ is mean values in Table 3 and Σcov is the
covariance matrix, which reflects the correlation structure in Tables 4,
5, and 6. This correlated parameter set from a MVN distribution is
denoted as COMVN. By simply replacing Σcov with Σvar—variance
matrix with the same diagonal elements as Σcov but with zero off-
diagonal elements—an uncorrelated parameter set (UCMVN) also can
be generated. The UCMVN case can be seen as the conventional sampling
approach, where only the mean and the variance for each parameter are
used. The boundary constraints in Table 2 also are applied.
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FIGURE 5 Histogram of calibrated parameters with fitted lognormal distribution for (a) Gipps model.
(continued on next page)
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FIGURE 5 (continued) Histogram of calibrated parameters with fitted lognormal distribution for (b) Helly model.
(continued)
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FIGURE 5 (continued) Histogram of calibrated parameters with fitted lognormal distribution for (c) IDM.
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Simulation Results

The same scenario as in the previous section is used for the simula-
tion experiments, whereby 500 vehicles for each COMVN and UCMVN

are simulated 50 times, respectively, and the resulting outputs are
measured. The four cases are

1. CO, a correlated parameter set from the empirical joint
distribution;

2. UC, an uncorrelated parameter set from the empirical marginal
distributions;

3. COMVN, a correlated parameter set from the MVN distribution
with correlation; and

4. UCMVN, an uncorrelated parameter set from the MVN distri-
bution without correlation.

The correlation coefficients of the sampled parameters (averaged
over 50 simulation runs) for the four cases with the original correla-
tion coefficients obtained from the calibrated data presented in Tables
4, 5, and 6 (denoted as NGSIM) are compared in Figure 6. The x-axis
represents all pairs of parameters; Rij denotes the correlation coeffi-
cient between parameters i and j, where i and j represent the order of

(a)

(b)

(c)

FIGURE 6 Comparison of parameter correlation coefficients for (a) Gipps model, (b) Helly model, and (c) IDM.



Kim and Mahmassani 75

parameters in Table 1. As expected, CO and COMVN preserve the
correlation coefficients close to those of NGSIM, whereas UC and
UCMVN exhibit nearly no correlation between parameters. How-
ever, for R36 (correlation between d and α) in the Gipps model, cor-
relation is maintained for all cases to avoid the known instability
issue mentioned in the sampling procedure for uncorrelated param-
eters. For some parameters in COMVN, the correlation structure is
insufficiently replicated, indicating the limitation of the MVN
assumption.

With the output measures for all four cases, the two-sample K-S
test was performed again to determine whether output measures from
each case were significantly different. In addition to the previous
results for CO versus UC, CO versus COMVN and CO versus UCMVN

were tested; results are presented in Figure 7. For the Gipps model,
sampling from the MVN distribution with known correlation does
not replicate the output performance under sampling from the empir-
ical distribution (i.e., CO ≠ COMVN) for all six measures (Figure 7a).
However, COMVN shows less bias than the conventional approach
represented by UCMVN, which is farthest away from CO in the last
three plots. For the Helly model, it is hard to see the statistically signif-
icant effect of sampling methods in the test results (Figure 7b).
However, there is a slight distinction between outputs from correlated
parameters (COMVN and CO) and outputs from uncorrelated param-
eters (UCMVN and UC), especially in the first two plots, providing evi-
dence of correlation effects. The IDM produces a pattern similar to

that of the Gipps model; CO is not equal to COMVN for five of six
output measures, but COMVN is closer to CO than UCMVN is for all six
measures (Figure 7c).

CONCLUSIONS

This study presents a detailed analysis of the existence and extent
of correlation between parameters in car-following models and its
impact on microsimulation results. Three selected models (Gipps,
Helly, and IDM) were calibrated and the correlation structures iden-
tified. Factor analysis was conducted to examine underlying common
factors that characterize interrelation among parameters. Qualitative
interpretations from factor analysis agree with the results from the
computed correlation coefficients between parameters.

Two simulation experiments were conducted. First, based on
empirical distributions of calibrated parameters, parameter sets were
sampled with and without correlation, and car-following movements
were simulated for each model. Six output measures were defined
and collected during the simulation to compare performance. For the
Gipps model and IDM, statistically significant differences between
CO and UC parameter sets are observed for four output measures,
three of which are related to inter- and intraindividual variations of the
spacing. Depending on the hypothesis test type, two to three measures
show significant differences for the Helly model.
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FIGURE 7 CDF for six output measures for all four cases (CO, UC, COMVN, and UCMVN) for (a) Gipps model.
(continued on next page)
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FIGURE 7 (continued) CDF for six output measures for all four cases (CO, UC, COMVN, and UCMVN) for (b) Helly model, and 
(c) IDM (A � B if H0 is rejected at the 5% level for two samples from A and B; A � B otherwise).
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Next, assuming that parameters have the MVN distribution, both
CO and UC parameter sets were generated using the estimated covari-
ance matrix from the calibrated data. The aim was to explore a prac-
tical way to capture correlation in microsimulation when empirical
data are not available. For the Gipps model and the IDM, even though
correlations between parameters were replicated well, parameters
drawn from the MVN distribution did not provide the same results
(statistically) as those with the correlated empirical distribution. One
reason for this disagreement may be the poor fit of the normal mar-
ginal distributions to some parameters. Another reason is the possible
existence of nonlinear correlations between parameters. Because the
Pearson correlation coefficient detects only a linear relationship, any
nonlinear correlation cannot be replicated through the correlation
structure used in MVN-based sampling, thereby generating param-
eters inconsistent with the original calibrated parameters. Finally, the
Helly model shows limited effects of parameter correlation because
insufficient leader–follower interactions were captured in the present
car-following simulation experiment.

To summarize, when correlation is present between parameters in
car-following models, parameters simply drawn from uncorrelated
marginal distributions could yield unreliable results in simulation and
consequently inaccurate interpretation. However, the use of paramet-
ric distributions with an estimated correlation structure may not nec-
essarily reduce the error due to ignoring correlation if the underlying
distributional assumption does not sufficiently hold for both marginal
and joint distributions.
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