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Validity and reliability of computerized 1 

measurement of lumbar intervertebral disc height 2 

and volume from magnetic resonance images 3 

Abstract 4 

Background context 5 

Magnetic resonance (MR) examinations of morphological characteristics of intervertebral discs 6 

(IVDs) have been used extensively for biomechanical studies and clinical investigations of the lumbar 7 

spine. Traditionally, the morphological measurements have been performed using time- and 8 

expertise-intensive manual segmentation techniques not well suited for analyses of large-scale 9 

studies. 10 

Purpose 11 

The purpose of this study is to introduce and validate a semi-automated method for measuring IVD 12 

height and mean sagittal area (and volume) from MR images to determine if it can replace the 13 

manual assessment and enable analyses of large MR cohorts. 14 

Study Design/Setting 15 

This study compares semi-automated and manual measurements and assesses their reliability and 16 

agreement using data from repeated MR examinations. 17 

Methods 18 

Seven healthy asymptomatic males underwent 1.5T MR examinations of the lumbar spine involving 19 

sagittal T2-weighted fast spin echo images obtained at baseline, pre-exercise and post-exercise 20 

conditions. Measures of the mean height and the mean sagittal area of lumbar IVDs (L1/L2 – L4/L5) 21 

were compared for two segmentation approaches: 1) a conventional manual method (10-15 minutes 22 
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to process one IVD); and 2) a specifically developed semi-automated method (requiring only a few 1 

mouse clicks to process each subject).  2 

This research was supported under Australian Research Council’s Linkage Projects funding scheme 3 

XXX (total amount of AUD $540k during 2010 – 2013). No conflicts of interest were reported by the 4 

authors of this manuscript. 5 

Results 6 

Both methods showed strong test-retest reproducibility evaluated on baseline and pre-exercise 7 

examinations with strong intra-class correlations for the semi-automated and manual methods for 8 

mean IVD height (ICC = 0.99, 0.98) and mean IVD area (ICC = 0.98, 0.99), respectively. A bias (average 9 

deviation) of 0.38 mm (4.1%, 95% confidence interval: 0.18 to 0.59 mm) was observed between the 10 

manual and semi-automated method for the IVD height, while there was no statistically significant 11 

difference for the mean IVD area (0.1 ± 3.5%). The semi-automated and manual methods both 12 

detected significant exercise-induced changes in IVD height (0.20 mm, 0.28 mm) and mean IVD area 13 

(5.7 mm2, 8.3 mm2), respectively.  14 

Conclusions 15 

The presented semi-automated method provides an alternative to time- and expertise-intensive 16 

manual procedures for analysis of larger cross-sectional, interventional and longitudinal MR studies 17 

for morphometric analyses of lumbar IVDs. 18 

19 
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1 Introduction 1 

Radiological examinations of the morphological characteristics of lumbar intervertebral discs 2 

(IVDs) such as height and volume have been used extensively for biomechanical studies and clinical 3 

investigations of the human spine [1,2]. Shape and volume of the IVDs influence the load-carrying 4 

capacity of the spinal column, and morphological abnormalities such as IVD space narrowing and 5 

thinning have been associated with acute or chronic disabilities of the lumbar spine [3]. Magnetic 6 

resonance (MR) imaging offers an ideal non-invasive modality to study the morphology of IVDs with 7 

excellent soft tissue visualization without exposing the participant to ionizing radiation [4]. However, 8 

the etiology of lower back pain and the relation to MR imaging findings is poorly understood [5–7]. 9 

Efforts in the search for imaging biomarkers that can be correlated to clinical symptoms have 10 

focused on biochemical MR [8,9], diffusion MR [10], sodium MR [11], and on assessment of 11 

morphological IVD features from structural MR imaging [12]. Morphometric measures derived from 12 

MR images include IVD height (anterior, middle, posterior) [1], width (inferior, middle, superior) [13], 13 

concavity of the vertebral endplate [14,15] and IVD volume [2]. These measures have been used in 14 

the assessment of spine pathologies, including disc degeneration [1,16,17], disc herniation [18] and 15 

changes associated with osteoporosis [19,20], or to quantify biophysical effects on IVDs, such as 16 

ageing [1,21], lifestyle factors [22] and acute exercise bouts [23,24]. In addition to diagnostic testing 17 

or interventional studies, morphometric features have the potential to benefit surgical planning [18] 18 

and facilitate the design of IVD prosthesis [25]. Quantification of weight-bearing and impact 19 

activities on the IVDs can help to understand the effects of exercise training interventions and to 20 

design safe exercise prescriptions [23,24]. 21 

Traditionally, morphological measurements on IVDs in MR studies have been performed by 22 

specifically trained analysts using manual segmentation techniques [1,2,20]. These manual 23 

approaches are time- and expertise-demanding tasks, often requiring numerous hours of labor for 24 
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image segmentation and considerable supervised training of analysts from experienced radiologist 1 

to help reduce notable inter-rater (subjective) variation [26]. Computerized segmentation 2 

approaches have the potential to systematically deliver reproducible measurements to accelerate 3 

data analysis and processing in large research or clinical investigations. Several (semi-)automated 4 

approaches for two-dimensional (2D) segmentation of IVDs from MR images have been proposed in 5 

the literature [27–31]. Morphometric data for the IVDs are subsequently extracted from the 6 

segmented IVDs using additional computer algorithms, which for measurements such as the 7 

‘average’ IVD height is a nontrivial task. Computer driven automations for measuring IVD 8 

morphology have been developed for computed tomography (CT), where the high-intensity contrast 9 

between the cortical bone of the vertebrae and the IVDs allows well-defined reconstruction of the 10 

vertebrae and vertebral endplates. The IVD height can then be estimated from the distances 11 

between prominent points of the vertebral endplates [25] and the volume estimated from the 12 

measured IVD height and the axial surface of the vertebral endplates [32]. Recently, Tan et al. [33] 13 

have presented a semi-automated method for measuring average IVD heights from CT with high 14 

accuracy (95% confidence intervals (CI) between -1 and 1 mm) and reproducibility (intra-class 15 

correlation coefficient (ICC) > 0.98) requiring the manual input of one point per vertebra. Currently, 16 

very few computerized methods for morphometric analysis of IVDs from MR images have been 17 

presented in the literature. Boos et al. [34] and Roberts et al. [21] presented computerized 18 

measurements of IVD height from mid-sagittal MR slices but their approaches did not incorporate 19 

volumetric analyses. Moreover, the approach of Boos et al. [34] involved considerable user 20 

interaction and the method of Roberts et al. [21] was not quantitatively validated against manual 21 

analyses. 22 

In this work, a semi-automated three-dimensional (3D) analysis algorithm was used to calculate 23 

the average height and sagittal area of lumbar IVDs from T2-weighted MR images for comparison 24 

against manual measurements. The method is based on our previously presented automated 25 
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segmentation algorithm [35] that extracts 3D IVD volumes from MR scans. The segmentation 1 

method was previously quantitatively validated on a dataset of 14 asymptomatic volunteers [35] and 2 

successfully applied to a further dataset of 11 symptomatic patients with lower back pain 3 

(presenting 43/64 abnormal lumbar IVDs) [36]. In this paper, further procedures to obtain 4 

computerized morphological measurements of the IVDs are presented and validated against manual 5 

segmentation data. The aims of this study were: (i) to assess the reproducibility of IVD average 6 

height and area measurements for the semi-automated and manual methods (test-retest); (ii) to 7 

evaluate the measurement agreement between both methods (validity); and (iii) to compare MR 8 

measures of IVD morphology from both methods following an acute exercise bout. 9 

 10 

2 Methods 11 

2.1 Experimental design and imaging dataset 12 

Seven male volunteers (18–23 years of age, 69.4 ± 5.1 kg, 174 ± 2 cm) with no history of chronic 13 

back pain, injury or associated musculoskeletal disease gave written consent to participate in the 14 

study, which had ethics approval from XXX. Participants attended three MR scanning sessions on 15 

two days. On both days, the participants reported directly to the clinic within 30 minutes of rising 16 

from bed, after at least 10 hours of bed rest, and having undertaken minimal ambulatory activity. 17 

Participants were instructed to refrain from exercise for 24 hours and from consuming food for a 18 

minimum of 10 hours before examination. A baseline MR examination was performed on day 1 and 19 

two MR examinations on day 2. The first MR examination on day 2 was used to obtain pre-exercise 20 

data for evaluation of measuring agreement with baseline day 1 data using repeated measurements. 21 

The second (post-exercise) MR examination followed 30 minutes of treadmill running at moderate 22 

(70% of HRreserve) intensity and was used to evaluate changes in mean IVD height and area 23 
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determined with the semi-automated and manual methods. Further details about the experimental 1 

protocol can be found in XXX [24]. 2 

The MR examinations were performed on a 1.5T high-definition 16-channel system (GE Medical 3 

Systems, Waukesha, WI). Sagittal T2-weighted fast spin echo images (TR 2200-3000ms, TE 110ms, 4 

slice thickness 3mm, slice spacing 3.2mm, image matrix 352 × 320, pixel spacing 0.5469 × 0.5469mm, 5 

4 excitations, 11-13 sagittal slices) were acquired from the participants as they lay in a supine 6 

position. The individual MR examinations lasted between 7 and 10 minutes.  7 

 8 

2.2 Measurements 9 

2.2.1 Manual digitization 10 

The mean IVD height and area per sagittal slice of the individual L1/L2 – L4/L5 IVDs were 11 

computed from manual segmentation procedures performed by a single operator, with no prior 12 

digitization experience, after training and familiarization with processing the MR data. The manual 13 

segmentation approach involved digitizing a minimum of 7 points along the visible superior and 14 

inferior vertebral endplate surfaces defining the interface between IVDs and adjacent vertebral 15 

bodies in the sagittal slices (Figure 1A). Intraobserver reliability was determined using 10 repeated 16 

measurements of a randomly selected example for all IVD locations. Repeated measurements were 17 

completed on separate days with the operator blinded to previous measurements. The ICC and 18 

standard error of measurement for IVD height and volume were 0.99 (95% CI: 0.98 to 1.00) and 19 

0.027mm (95% CI: 0.023 to 0.030 mm) and 0.99 (95% CI: 0.99 to 1.00) and 0.07 mm3 (95% CI: 0.06 to 20 

0.08 mm3), respectively. Adjacent digitized points were linearly interpolated and the vertical 21 

distances between the segmented endplates were computed at 1 mm intervals. Additional details 22 

on the experimental methods including intra-observer reliability can be found in XXX [24] and in 23 

Figure 1A. Mean IVD height for an individual disc was determined as the average of all the 24 
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endplate distances (vertical heights) from the sagittal slices processed for data analyses. A 1 

standardized approach using the central 7 sagittal images for each IVD was used in the present 2 

analyses to enable complete coverage of the nucleus pulposus, which has an essential role for 3 

distributing hydraulic pressure during loading. Mean IVD area across the same 7 central MR slices 4 

was used as a volumeric estimate of the IVD mid-substance surrounding the nucleus pulposus. 5 

2.2.2 Semi-automated method 6 

An automated algorithm for 3D segmentation of IVDs and vertebral bodies modified from XXX 7 

[35] was used to segment the individual lumbar IVDs and vertebral bodies from the MR images. In 8 

the pre-processing stage, a customized intensity adjustment method based on the N4 bias field 9 

correction algorithm [37] was initially applied to the region of the lumbar spinal column. Image 10 

acquisition noise was reduced by anisotropic diffusion (15 iterations, time step 0.01, conductance 11 

1.0) and image signal intensity histograms were normalized to the signal intensity histogram of an 12 

atlas image. Subsequently, images were reformatted using B-Spline interpolation to an isotropic 13 

resolution of 0.5469 mm.  14 

The segmentation algorithm is based on an active shape model approach [38] defining models of 15 

anatomical variability. These models have to be located at initial referent positions in the MR image 16 

before they are deformed to fit previously trained signal intensity information. In the present study, 17 

a manual initialization was performed by the user through a single mouse click in the mid-sagittal 18 

portion of each lumbar vertebral body in the baseline scans. The input points were used to 19 

approximate the lumbar spine curvature and pre-cursor IVD models were automatically positioned 20 

mid-way between the points marking the vertebral bodies and oriented to follow the estimated 21 

curve. A rigid registration algorithm [39] and propagation of results from the baseline segmentations 22 

were used for automatic initialization on images from the pre-exercise and post-exercise MR 23 

examinations.  24 
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The automated segmentation algorithm provides 3D masks of individual IVDs and vertebral 1 

bodies (Figure 1B). These masks fully cover the visualized IVD volumes, including sections exceeding 2 

the (parallel) anterior or posterior margins of adjacent vertebral bodies not included in the manual 3 

digitization protocol.  Therefore, a constrained (bone-bounded) IVD region was defined to enable a 4 

direct comparison to manually extracted measures. This was completed by dilating the IVD 5 

segmentation mask using a ball structuring element with 1 mm diameter, and by finding the 6 

intersection with the segmentation masks of adjacent vertebral bodies (Figure 1B). The anterior and 7 

posterior boundary points of these intersections were linearly connected (dotted lines in Figure 8 

1B,C,D) between the inferior and superior borders of vertebral bodies, defining a constrained IVD 9 

region used for computation of IVD height and area.  10 

Automatic measurement of an objects’ height (or thickness) involves creating a unique 11 

association between points on its inner and outer boundary, and some definition of the distance 12 

between them. For calculations of IVD heights in this work, we applied the method of Laplacian 13 

thickness presented by Jones et al. [40] which is used widely in medical image analysis [41,42]. The 14 

inner and outer boundaries are assigned potentials ψ0 and ψ1 (ψ0 ≠ ψ1) for which the Laplace’s 15 

equation ∆ψ=0 is solved. This system defines a partial derivative equation with boundary conditions 16 

that allows a unique solution. The thickness at any point is calculated from the solution function as a 17 

length of the unique streamline (path of the gradient) connecting boundaries and passing through 18 

this point (see Jones et al. [40] for further details). 19 

The Laplacian thickness in the present study was computed in 3D over the ‘extended’ IVD 20 

regions (Figure 1C), defining smooth boundary conditions for Laplace’s equation and avoiding any 21 

discontinuities at the anterior and posterior IVD borders. The mean IVD height and area were 22 

computed by averaging over voxels belonging to the ‘non-extended’ (bone-bounded) IVD region in 23 

the 7 original central sagittal slices used for manual digitization. 24 
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2.3 Statistical analysis 1 

Test-retest reliability of the semi-automated and manual methods were assessed on baseline 2 

and pre-exercise conditions using the ICC, 95% CI and limits of agreement (LOA) in Bland-Altman 3 

plots. Concurrent agreement between the semi-automated and manual methods was determined 4 

using pooled repeated measurements according to Bland and Altman [43].  5 

A three-way repeated measures (RM) ANOVA was performed for comparisons between the 6 

measurement methods (semi-automated and manual), timing conditions (baseline, pre-exercise, 7 

post-exercise) and IVD levels (L1/L2 – L4/L5) on IVD height and area. Significant main effects for the 8 

measurement method and timing condition were further investigated post-hoc using pairwise 9 

comparisons with Bonferroni adjustment. Two-way RM ANOVAs were performed to determine the 10 

main effect of IVD level and timing condition for both measuring methods independently.  11 

In all ANOVA tests, an a priori significance level of p < 0.05 was adopted for rejection of the null 12 

hypothesis and the effect size was reported using partial eta-squared (ηp
2). Statistical analyses were 13 

carried out using IBM SPSS Statistics 22.0 (SPSS; Chicago, IL). 14 

 15 

3 Results 16 

Prior to quantitative analyses, the quality of the semi-automated segmentations was visually 17 

assessed to exclude data from failed segmentations. The segmentation was considered 18 

unsatisfactory, if a patently discrepancy from the imaged IVD volume was identified within the first 19 

two seconds of the visual inspection. Overall, three IVDs (1× L2/L3, 2× L4/L5) were removed from the 20 

analysis. The reported mean values and LOA were computed on the remaining 25 IVDs. In all ANOVA 21 

tests, the missing values for the three IVDs were replaced using trend analysis to maximize the 22 

degrees of freedom. These estimates were computed from the group mean of the other IVDs at the 23 
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same segmental level multiplied by a scaling factor for the particular subject. The scaling factor was 1 

computed from values at the adjacent superior IVD level as the ratio of the value for the particular 2 

subject, computed over the mean measurement at this superior level.  3 

3.1 Reproducibility  4 

Tables 1 and 2 present values for the mean IVD height and area. The semi-automated and 5 

manual methods both demonstrated very strong test-retest reproducibility for baseline and pre-6 

exercise height (ICC = 0.99, 0.98) and area (ICC = 0.98, 0.99) measurements. Bland-Altman plots of 7 

reproducibility for each method are shown in Figure 2. The 95% LOA for the mean IVD height were 8 

0.93 ± 3.99% (semi-automated) and 1.64 ± 5.55% (manual). The 95% LOA for the mean IVD area 9 

were 0.78 ± 7.40% (semi-automated) and 2.34 ± 6.05% (manual) method.  10 

3.2 Concurrent agreement 11 

The interaction between method, timing condition and IVD level factors was not statistically 12 

significant (F6,36 = 0.68, p = 0.101). There was a significant difference in mean IVD height measured 13 

by each method (F1,6 = 20.4, p = 0.004, ηp
2 = 0.773), timing (F2,12 = 17.8, p < 0.001, ηp

2 = 0.841) and 14 

IVD levels (F3,18 = 31.0, p < 0.001, ηp
2 = 0.930). The statistically significant bias between the 15 

measurement methods was 0.38 mm (95% CI: 0.18 to 0.59 mm, 4.1 ± 2.2%). The bias is further 16 

illustrated by the pooled 95% RM LOA on baseline and pre-exercise data (-0.42 to 1.16 mm), and the 17 

Bland-Altman plots in Figure 3A,B. Two-way RM ANOVA for the semi-automated measurements 18 

revealed a significant main effect of timing (F2,12 = 15.5, p < 0.001, ηp
2 = 0.720) and IVD level (F3,18 = 19 

25.3, p < 0.001, ηp
2 = 0.808). Baseline and pre-exercise mean IVD heights measured by the semi-20 

automated method were not statistically different (95% CI: -0.07 to 0.23 mm, p = 0.365) and there 21 

was a significant reduction in mean IVD height after exercise (95% CI: 0.04 to 0.35 mm, p = 0.010). 22 

Similarly, there was a significant main effect of timing (F2,12 = 12.4, p = 0.001, ηp
2 = 0.673) and IVD 23 

level (F3,18 = 31.9, p < 0.001, ηp
2 = 0.842) on the mean IVD height measured by the manual method. 24 
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No statistically significant difference was found between baseline and pre-exercise conditions (95% 1 

CI: -0.09 to 0.40 mm, p = 0.229), and the reduction in the mean IVD height after exercise was 2 

statistically significant (95% CI: 0.06 to 0.45 mm, p = 0.009).  3 

For the mean IVD area, there was no significant difference between the methods (F1,6 = 0.003, p 4 

= 0.956), while the main effects of timing (F2,12 = 13.8, p = 0.001, ηp
2 = 0.697) and IVD level (F3,18 = 5 

23.8, p < 0.001, ηp
2 = 0.798) were statistically significant. The interaction between measuring 6 

method, timing condition and IVD level were not statistically significant (F6,36 = 0.886, p = 0.515). The 7 

95% CI between both methods was -8.9 to 9.3 mm2 (0.1 ± 3.5%) and the pooled 95% RM LOA were -8 

27 to 30 mm2 (there was no systematic bias). The Bland-Altman plots are presented in Figure 3C,D. 9 

Two-way RM ANOVA for mean IVD area measured by the semi-automated method showed a 10 

significant main effects of timing (F2,12 = 4.4, p = 0.037, ηp
2 = 0.423) and IVD level (F3,18 = 16.7, p < 11 

0.001, ηp
2 = 0.736). Baseline and pre-exercise mean IVD area measured by the semi-automated 12 

method were not statistically different (95% CI: -8.3 to 14.2 mm2, p > 0.999) and IVD area was 13 

significantly reduced after exercise (95% CI: -0.3 to 10.7 mm2, p = 0.030). For the manual method, 14 

significant main effects existed for timing (F2,12 = 16.1, p < 0.001, ηp
2 = 0.728) and IVD level (F3,18 = 15 

27.4, p < 0.001, ηp
2 = 0.821). No significant difference was found between baseline and pre-exercise 16 

conditions (95% CI: -1.5 to 13.0 mm, p = 0.118), and the reduction in mean IVD area after exercise 17 

was statistically significant (95% CI: 2.5 to 13.9 mm, p = 0.005). 18 

3.3 Computational time 19 

The estimated average time needed for the manual digitization of a single IVD was between 10 20 

and 15 min to obtain both the mean height and area. This estimation does not include staff training, 21 

pilot work and other preparations because variability in software, operator skill and training 22 

procedures are likely to limit generalizability. 23 

The (semi)-automated computer calculations were performed as a single thread on an Intel i5-24 
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3750 3.4 GHz CPU with 16GB RAM. An average time to pre-process one MR scan was 21 s, to 1 

segment one IVD 15 min and to extract the mean area and height with the Laplacian method 4 min 2 

30 s per IVD. Several computational optimization strategies can be implemented to significantly 3 

reduce the calculation time, such as region-of-interest image cropping and parallelization in the 4 

segmentation. The manual initialization was performed in 5-8 seconds for each case, decidedly 5 

reducing the manual processing time from at least 40 minutes (10 to 15 minutes per IVD).  6 

4 Discussion 7 

Both the manual and semi-automated method showed strong test-retest reliability for 8 

calculating average IVD height and area. The observed range of the LOA for both mean IVD height 9 

and area obtained from the current 3 mm thick sagittal slices highlights the challenges of performing 10 

such measurement on 2D MR images (either manually or automatically). The use of higher 11 

resolution MR scans (e.g. 3D SPACE as used in our recent work [36]) would likely improve the 12 

reproducibility of the computerized method. The pooled 95% LOA showed good congruent 13 

agreement between methods, considering the reproducibility LOA of both approaches. There is a 14 

systematic bias between the semi-automatically and manually measured IVD heights related to the 15 

different computation techniques that would need to be considered when comparing findings based 16 

on manual approaches similar to present study. In contrast, there was no systematic bias between 17 

the methods for mean IVD area.  18 

There have been a limited number of studies investigating computerized methods for MR 19 

measurements of IVD height and volume. The results of this study support the future use of our 20 

specifically developed methods for computation of IVD height (using Laplacian thickness) and IVD 21 

volume (using sagittal areas) for in vivo studies of IVD morphometry. The concurrent agreement is 22 

comparable to those reported by Tan et al. [33] on CT data, who found (using a similar manual 23 

intervention step) differences between manual and semi-automated measurements of -0.072 ± 0.65 24 
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mm, 0.36 ± 0.68 mm, and 0.012 ± 0.59 mm for anterior, middle and posterior mid-sagittal IVD 1 

height, respectively. This translates to the LOA of -1.35 to 1.20 mm, -0.97 to 1.69 mm, and -1.14 to 2 

1.17 mm. LOA of our technique fit well within these ranges despite the fact that MR data is generally 3 

more challenging to (semi-)automatically process due to the higher resolution and well-defined 4 

boundary of the vertebral cortical bone in CT data [28,44]. Future work will be required to further 5 

improve the accuracy by identifying sources of variation for both semi-automated and manual 6 

techniques to increase the power in detecting clinically important changes in IVD morphology [1,20].   7 

XXX [24] have previously reported that 30 min of moderate-intensity running results in a 8 

decreased mean IVD height and volume as determined with manual digitization. In the present 9 

study, both semi-automated and manual analyses showed a statistically significant decrease in the 10 

measures adopted in this work after exercise. These results provide a compelling rationale for the 11 

use of the semi-automated method in larger MR investigations into longitudinal morphometric 12 

changes, where a change of at least 0.20 mm in IVD height (as in the present study) is expected. 13 

Pfirrmann et al. [1] reported that the IVD height decreased by 0.43 mm with each grade of IVD 14 

degeneration (using 4 grades: normal, mild, moderate, severe). Kwok et al. [20] found an increase in 15 

middle IVD height of 0.85 mm between normal and osteopenia group, and 0.92 mm between 16 

normal and osteoporosis group. This comparison suggests that our technique has the requisite 17 

sensitivity to be used for quantitative analyses in clinical studies in symptomatic populations. 18 

Using the semi-automated method reduced the manual processing time to a few seconds per 19 

subject required for manual location of the lumbar vertebral bodies and to visually assess the quality 20 

of the obtained segmentation results. Our highly automated method does not require any expert 21 

training, is not reliant on the subjective identification of IVD boundaries and reduces the processing 22 

time required by the manual method (10-15 minutes to measure a single IVD). It offers a time- and 23 

expertise-efficient, low cost solution for analyses of large MR datasets/study cohorts. It reduces the 24 

manual processing time from one hour to a few seconds per subject and does not require the 25 
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operator specialized previous knowledge or training in manual IVD segmentation. Moreover, it 1 

provides reproducible and objective results, and the capacity for advanced quantitative analysis of 2 

local morphological changes (Figure 4).  3 

 4 

4.1 Study limitations and future work 5 

The relatively small subject database is a limitation of the present study. Although the results are 6 

promising, the general application of the approach in terms of different experimental design, 7 

demographics, pathologies or MR acquisition protocols require further investigation. At this stage, 8 

asymptomatic participants were chosen for the current study to assess day-to-day reliability of the 9 

technique under controlled conditions without effects of pathology. Despite this, the segmentation 10 

scheme has previously been quantitatively validated using several 3D similarity metrics on 68 lumbar 11 

and 46 thoracic IVDs (including 7 degenerative IVDs) from 14 asymptomatic subjects [35]. 12 

Furthermore, the segmentation algorithm was previously used and validated in a morphological 13 

study on 11 symptomatic patients [36].  In that previous work [36], the segmentation results were 14 

evaluated by computing the Dice score similarity coefficient [45], and by comparing measures of 15 

mid-sagittal middle IVD height and width against manual references. Since the performance of the 16 

quantification method presented in the current study is heavily based on the segmentation 17 

algorithm, there is good evidence that the proposed methods will generalize well on broader 18 

population with IVD pathology. This will however need to be carefully evaluated in future work on 19 

larger cohorts. Nevertheless, the number of participants presented in the current study is 20 

comparable to other similar validation studies, presenting results on 8 [33] or 10 [34] subjects. 21 

The application of this computerized technique on diverse and larger datasets to focus on 22 

detecting localized changes in IVD morphology due to more intensive and/or complex loading 23 

interventions represent a logical progression for future work. The computerized approach provides 24 
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volumetric segmentations that can be used to assess regional and shape differences, hence 1 

potentially allowing observation and quantification of the presence and location of subtle IVD 2 

changes. To enhance research and clinical application for investigations that utilize 2D MR images, 3 

further effort is required to yield a fully automated processing pipeline by eliminating the manual 4 

initialization step. 5 

Orientation of individual IVDs with respect to acquisition plane, slice gap, slice thickness and 6 

image resolution influence the visualization of IVDs in MR images and are potential sources of 7 

variability that the current study did not directly account for. Future work will include investigations 8 

of effects or MR acquisition parameters on morphological measures. 9 

5 Conclusion 10 

This study presents a computerized method for measurement of IVD height (using Laplace’s 11 

equation) and volume (using sagittal areas) from 2D MR scans of the lumbar spine. The results were 12 

compared against measures obtained by manual digitization. Strong reliability was observed for both 13 

manual and semi-automated methods and good congruent agreement between the methods was 14 

found. Both methods detected acute changes induced by moderate intensity exercise. The 15 

presented computerized method has the potential to replace time- and expertise- intensive manual 16 

procedures. Quantitative morphological data on IVD geometry can benefit larger clinical (cross-17 

sectional, interventional or longitudinal) studies, design of IVD prosthesis and surgical planning or 18 

help studying influence of physical activity and exercise on the spine. 19 

 20 

21 
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Figures 1 

 2 

Figure 1 Illustration of manual and automatic procedures for calculation of mean IVD height. (A) Manual assessment 3 

involves delineation of the IVD boundaries by the human operator (black dots) after which a sequence of height measures 4 

are (automatically) interpolated at 1mm intervals along these edges (dotted vertical lines). (B) Semi-automatically obtained 5 

segmentation masks of vertebral bodies (yellow) and a dilated mask of an IVD (green, overlap with the vertebral bodies in 6 

red). Anterior and posterior boundary points of the intersections (black dots) in each slice define a bone bounded IVD 7 

space that is used for automatic computations. (C) The extended IVD regions defining potentials ψ0 (inferior IVD boundary) 8 

and ψ1 (superior IVD boundary) for Laplace’s equation. (D) The final Laplacian thickness (quantified by 1mm for 9 

visualization purposes). For the colored version of the figure please refer to the online version of the article. IVD, 10 

intervertebral disc. 11 

 12 

Figure 2 Bland-Altman plots showing the relationship between mean values and differences between baseline and pre-13 

exercise measures of mean IVD height using the (A) semi-automated and (B) manual method, and of mean IVD area using 14 

the (C) semi-automated and (D) manual method. The dotted lines show 95% limits of agreement. IVD, intervertebral disc. 15 

 16 

Figure 3 Bland-Altman plots showing the congruent agreement between the semi-automated and manual measurements 17 

of mean IVD height using the (A) baseline and (B) pre-exercise data, and of mean IVD area using the (C) baseline and (D) 18 

pre-exercise data. The dotted lines show 95% limits of agreement. IVD, intervertebral disc. 19 

 20 

Figure 4 Example IVD (L4/L5) height at (A) baseline, (B) pre-exercise and (C) post-exercise, computed with the Laplacian 21 

method illustrating a decrease in overall IVD height across the profile of the disc following exercise. For colored version of 22 

the figure please refer to the online version of the article. s, superior; a, anterior; r, right.  23 
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Table 1 Mean disc height (mean ± standard deviation) measured with the semi-automated and manual method.  

 Semi-automated (mm)  Manual (mm) 

 Baseline Pre-exercise Post-exercise  Baseline Pre-exercise Post-exercise 

L1/L2 8.26 ± 0.56 8.32 ± 0.43 8.05 ± 0.45  7.75 ± 0.29 7.70 ± 0.31 7.38 ± 0.40 

L2/L3 9.25 ± 0.74 9.14 ± 0.77 8.93 ± 0.70  9.08 ± 0.50 8.80 ± 0.64 8.65 ± 0.56 

L3/L4 9.92 ± 0.69 9.74 ± 0.65 9.54 ± 0.71  9.71 ± 0.65 9.57 ± 0.52 9.23 ± 0.51 

L4/L5 10.79 ± 1.40 10.66 ± 1.37 10.59 ± 1.33  10.32 ± 1.16 10.16 ± 1.08 9.87 ± 0.98 
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Table 2 Mean disc sagittal area (mean ± standard deviation) measured with the semi-automated and manual 

method. 

 Semi-automated (mm
2
)  Manual  (mm

2
) 

 Baseline Pre-exercise Post-exercise  Baseline Pre-exercise Post-exercise 

L1/L2 226 ± 33 225 ± 27 220 ± 26  216 ± 24 211 ± 23 202 ± 20 

L2/L3 267 ± 30 263 ± 34 257 ± 31  267 ± 30 259 ± 32 250 ± 30 

L3/L4 275 ± 39 273 ± 36 267 ± 36  282 ± 37 276 ± 32 270 ± 33 

L4/L5 294 ± 56 292 ± 61 286 ± 51  301 ± 58 295 ± 54 285 ± 49 
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