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Abstract 21 

Aim Increasing sea-surface temperatures have resulted in poleward range expansions of 22 

scleractinian corals and declines in their core ranges. These changes may provide 23 

management opportunities for the long-term persistence of corals and associated species, but 24 

conservation science does not currently consider and anticipate these changes. We developed 25 

a spatio-temporal marine conservation plan in Japan that accommodates future coral range 26 

expansions based on projections of future sea-surface temperatures. Our aims were to (1) 27 

identify areas that consistently remain important for conservation through time and (2) 28 

determine the differences, if any, between priorities for marine protected areas that account 29 

for potential coral range expansions, and those that ignore them. 30 

31 

Location Japan 32 

33 

Methods We developed spatial planning approaches using temperature indices for coral 34 

habitat distributions in 2010, 2030, and 2100, and designed conservation plans for scenarios 35 

that incorporated different types of spatial and temporal connections between planning areas. 36 

Spatial connections are physical connections between adjacent and surrounding areas 37 

whereas temporal connections connect areas throughout time. 38 

39 

Results We found that protecting areas important for current and future coral habitat 40 

distributions is possible by incorporating temporal connections. This was accomplished with 41 

only a 6% increase in the overall reserve system costs, compared to reserve systems ignoring 42 

future coral habitat distributions. The attributes of priority areas (e.g. locations, outside 43 

boundary length, size) were substantially different when we varied the types of spatio-44 

temporal connections. 45 
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46 

Main conclusions This study demonstrated that areas with highest conservation priority now 47 

will not necessarily be optimal when planning for future change, such as coral range 48 

expansions. Furthermore, we showed that incorporating spatio-temporal connections into 49 

spatial prioritization achieves objectives of simultaneously conserving corals in the current 50 

climate and facilitating their expansions as sea-surface temperature rise. 51 

52 

Keywords climate change, climate model, conservation, marine protected area, range 53 

expansion, sea-surface temperature 54 

55 
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Introduction 56 

Coral reefs are in decline globally as a result of local and global-scale anthropogenic 57 

impacts such as eutrophication, coastal development, overfishing, and climate change related 58 

impacts such as warming sea water temperature, ocean acidification, and sea level rise 59 

(Anthony et al., 2011, Burke et al., 2011, Pandolfi et al., 2011). About 32.8% of scleractinian 60 

(hard) coral species listed in International Union for Conservation of Nature Red List 61 

Categories and Criteria were classified as threatened (Carpenter et al., 2008), and many are 62 

unlikely to persist in their current core ranges by 2050 under the most likely emission 63 

scenarios (Frieler et al., 2013, van Hooidonk et al., 2013). The current distribution of 64 

scleractinian corals is strongly influenced by water temperatures and also correlated with 65 

light availability and aragonite ion concentrations (Kleypas et al., 1999). While exceeding 66 

upper temperature tolerances of 30 °C or a few degrees above long-term mean temperature 67 

during the warmest month results in coral bleaching and often mortality (Goreau et al., 2000), 68 

low temperature mortality of the scleractinian corals has also been observed in high latitude 69 

communities in Japan and in the Carribbean (Veron & Minchin, 1992). 70 

Global seawater temperatures measured on the surface have increased by 0.6°C 71 

during the past 100 years due to global warming (Pachauri & Reisinger, 2007). Increasing 72 

sea-surface temperatures are causing marine species range shifts, contractions, or expansions 73 

(Booth et al., 2007, Figueira & Booth, 2010, Hoegh-Guldberg & Bruno, 2010, Yamano et al., 74 

2011). The poleward range expansion in relation to the increasing sea-surface temperatures 75 

has been reported recently in Japan using the data for the period from 1930s to 2010s 76 

(Yamano et al., 2011), the Caribbean (Precht & Aronson, 2004), and in Australia (Hughes et 77 

al., 2012). Poleward range expansions have also been reported for fish (Figueira & Booth, 78 

2010, Last et al., 2011), sea urchins (Ling et al., 2009), seaweed (Wernberg et al., 2011), and 79 

intertidal fauna (Pitt et al., 2010). 80 
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Increasing water temperatures also threaten corals in the tropics, as they currently 81 

exist close to their physiological upper limit. Warm water events can cause widespread coral 82 

bleaching, where the symbiont dinoflagellate algae (zooxanthellae) are expelled from coral 83 

tissue, which can in turn lead to widespread coral mortality (Donner et al., 2005, van 84 

Hooidonk et al., 2013). As conditions on high-latitude reefs become tolerable with increasing 85 

water temperatures, poleward range expansions may provide refugia for scleractinian coral 86 

species, and their associated species (Riegl & Piller, 2003), although other ecological 87 

processes such as dependence on tropical propagule sources, increased rates of ocean 88 

acidification at higher latitudes and potentially the limiting light conditions may hinder long-89 

term establishment of coral populations at high latitudes (Hoegh-Guldberg et al., 2007). 90 

Given this uncertainty, combined with unknown potential adaptations of corals to the effects 91 

of climate change due to the lack of data (Baird & Maynard, 2008), it is important to identify 92 

high priority conservation sites for where corals can be protected both now, and in the future, 93 

as they expand their ranges towards potential refugia. 94 

Marine protected areas are being implemented for coral reef conservation around the 95 

world (Mora et al., 2006), but rarely consider the effects of climate change due to the lack of 96 

empirical scientific evidence or theory with supporting data (McClanahan et al., 2012). An 97 

increasing number of marine reserve systems are established based on spatial prioritization. 98 

Spatial prioritization is an objective-driven systematic framework of where, when and how to 99 

allocate the resources and/or actions for conservation most efficiently (Margules & Pressey, 100 

2000, Moilanen et al., 2009), and the incorporation of climate change and potential climate 101 

refuges in these decisions is a rapidly growing area of research (Hannah, 2008). 102 

There are numerous innovative prioritization approaches considering some aspects of 103 

climate change, including addressing the future declines in species in existing protected areas 104 

or current distribution (Araújo et al., 2004, Carroll et al., 2010, Carvalho et al., 2010, 105 
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Carvalho et al., 2011, Hannah et al., 2007), defining environmentally low variability areas 106 

(Iwamura et al., 2010, Game et al., 2011), considering temporal changes in water availability 107 

(Hermoso et al., 2012), incorporating the threat of coral bleaching (Game et al., 2008, 108 

Mumby et al., 2011, Levy & Ban, 2013). However, none of these studies have incorporated 109 

the spatial and temporal connections of protected areas over time, and how these relate to 110 

range expansions. 111 

It is important for marine protected area designs consider species range changes due 112 

to climate change if we want to be sure that the marine protected areas are protecting these 113 

species or habitats in the future (Araújo et al., 2004). There are two ways to design 114 

conservation areas to ensure they protect coral species as their ranges expand or shift over 115 

time. First, protected areas can be designed based on current species distributions and then 116 

moved as these distributions change (Hyrenbach et al., 2000, Soto, 2001). However, it can be 117 

politically challenging to move protected areas once they are established (Day, 2002). A 118 

second approach is to design protected areas that meet the needs of species both now and in 119 

the future – this is the focus of this paper. 120 

Here, we develop spatio-temporal marine protected area networks that ensure corals 121 

are protected over time based on future projections of sea-surface temperatures. We 122 

demonstrate a spatial prioritization process which includes connections through time and 123 

space to facilitate coral expansion and addresses two main questions: (1) how different, if at 124 

all, are designs for marine reserves when climate change is accounted for, compared to 125 

ignoring future change?; and (2) are there areas that are consistently important for protecting 126 

both current and future coral habitat distributions? 127 

128 
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(A) Methods129 

(B) Study region130 

Coral communities in Japan span subtropical to temperate areas. The highest latitude 131 

at which accreting coral reefs are located is at 34°N in Japan (Yamano et al., 2012) and the 132 

highest latitude scleractinian coral population (Oulastrea crispate (Lamarck 1816)) observed 133 

is at 38°N at the Sadogashima Island, Niigata Prefecture (Honma & Kitami, 1978). In this 134 

study, we considered the rocky areas within 1 km along the Japanese coastline and less than 135 

100m in depth to be potential sites for coral expansion (Fig. 1). We used the threshold for 136 

100m to buffer the normal coral zonation depth due to the light limitation (Kleypas et al., 137 

1999). To carry out spatial planning we developed hexagonal planning units of 5 km
2
 area for 138 

this entire region (n = 5457). 139 

140 

(B) Sea-surface temperature prediction data using a climate model141 

The future sea-surface temperature was obtained using a model MIROC3.2_hires 142 

under the Special Report on Emissions Scenarios A1B scenario, which assumed a rapid 143 

economic growth in the Fourth Assessment Report of the Intergovernmental Panel on 144 

Climate Change (IPCC, 2007). The bias of the model was corrected by Yara et al. (2011). 145 

This model was one of the climate models from the World Climate Research Programme’s 146 

phase 3 of Coupled Model Intercomparison Project performed for the Fourth Assessment 147 

Report of the Intergovernmental Panel on Climate Change  (Meehl et al. 2007). 148 

We assumed that poleward range expansion of corals results solely from sea-surface 149 

temperatures rise and ignored other factors that could affect range changes, such as ocean 150 

acidification (Yara et al., 2012). Three time slices were considered: 2010 to represent current 151 

conditions (Fig. 2a), 2030 for near future (Fig. 2b), and 2100 for distant future (Fig. 2c). We 152 

estimated sea-surface temperature values for these three time slices using the ten-year sea-153 
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surface temperature mean for February, since the coldest month of the year is the limiting 154 

factor for coral expansions (2000 to 2009 for 2010, 2020 to 2029 for 2030, 2090 to 2099 for 155 

2100) (Fig. 2). 156 

157 

(B) Conservation features158 

We used the three sea-surface temperature-based indices for coral habitat distribution 159 

proposed by Yara et al. (2009) and (2011) that are monthly-mean isothermal lines of 10°C, 160 

13°C and 18°C in the coldest months. These indices were based on the known low 161 

temperature limits for corals in Japan: 10°C marks the limit of existing coral occurrence 162 

(Oulastrea crispata in Sadogashima Island) (Honma & Kitami, 1978). A threshold of 13°C 163 

was considered viable for the establishment of coral communities as about 40 coral species 164 

established in locations where the average winter water temperature was 13.3 °C (Yamano et 165 

al., 2001, Yamano et al., 2012). A temperature of 18°C marks the lower limit to establish the 166 

majority of tropical hard corals and accreting reefs, where coral accretion of CaCO3 out 167 

weights erosion (Kleypas et al., 1999, Veron, 1995). Using these three sea-surface 168 

temperatures-based indices, we created three coral ecoregions in Japan, each defined by a 169 

different temperature range: “temperate” for 10-13°C, “subtropical” for 13-18°C, and 170 

“tropical” for 18-30°C, with 30 °C recognized as the high temperature limits for corals (Fig. 171 

2) (Yara et al., 2011, Yara et al., 2012). The terms used to name ecoregions (temperate,172 

subtropical, and tropical) represent temperature zones and not coral community types. We set 173 

these three coral ecoregions as our conservation features and aimed to protect 10% of the 174 

distribution of each in a network of protected areas. 175 

176 

(B) Spatial prioritization177 

We used Marxan (Ball et al., 2009), a decision-support tool 178 
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(http://www.uq.edu.au/marxan/), to design networks of protected areas that met our 179 

objectives. Marxan identifies areas that achieve specified conservation targets for a minimum 180 

cost. Marxan minimizes the objective function 181 

	�����
�

���
		 
����	���
1	–	����	
���,��

�

��

�

��
		
1�	

subject to 182 

������		 � 	��			, for
�

���
	� � 1,… , �								
2�	

where m is the total number of planning units (i = 1, … , m), and �� is the cost of selecting183 

planning unit i. If planning unit i is selected for conservation, ��= 1 and if not ��= 0. The184 

connectivity value matrix, 
���,��, reflects the strength of the connection between planning185 

units i1 and i2. The connectivity strength modifier, CSM, adjusts the importance of 186 

connectivity relative to planning unit costs and penalties for not meeting conservation targets 187 

(Watts et al., 2009). Larger values of the CSM create a more connected reserve system, 188 

whereas smaller values create a less connected reserve system. In equation (2), �� is the target189 

amount for feature j (j=1, …, n) and ��  is the amount of feature j in planning unit i.190 

In this study the cost of protecting each coral reef reflects the estimated amount of 191 

fishing occurring on a reef to represent the burden to fishers when an area is reserved. Ideally, 192 

we would estimate fishing pressure using fishing data depicting where people fish and how 193 

much they fish (Adams et al., 2011, Scholtz et al., 2011). As fishing data do not exist at a 194 

fine scale for our study region, we used human population to represent fishing pressure. We 195 

made the parsimonious assumption that fishing pressure is correlated with coastal population. 196 

The cost of each planning unit was calculated by adding up the number of people living 197 

within 20 km from its center point. We used a 20km buffer because it covers coastal towns or 198 
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cities by providing a non-zero value for all planning units with the least overlapping between 199 

the buffers. We used the population count grid data for 2000 (CIESIN et al., 2005). 200 

201 

(B) Definition of connections202 

The connections that we define here were applied for all of the planning units to 203 

calculate the connectivity value matrix, 
���,��, in equation (1). We named planning units204 

according to their position in space and time, where the first number in an ordered pair was 205 

the spatial location and the second number was the year, e.g. (1, 2010). We defined “spatial 206 

connection” as physical connections between adjacent and surrounding planning units within 207 

a time slice. For example, if the two planning units i1 = (1, 2010) and i2 = (2, 2010) shared a 208 

boundary then they are connected spatially within a single time slice and 
���,�� > 0. We209 

defined  “temporal connection” as connections between one planning unit and that same 210 

planning unit in the future. For instance, if planning units i1 = (1, 2010) and i2 = (1, 2030) are 211 

located geographically in the same place then they are connected temporally if 
���,�� > 0212 

(Fig. 3). Planning units are connected temporally only if one of the conservation features 213 

exists in the planning unit through time. Finally, planning units can be connected through 214 

time and space if the value in the connectivity matrix is positive and the indices differ in both 215 

time and space (Fig. 3). Spatial connections between planning units within a single time slice 216 

were calculated as the shared boundary length of adjacent planning units. Additionally, we 217 

calculated a connection between nearby planning units between time slices to represent easier 218 

migration of species to neighboring sites through time. For every planning unit in a time slice, 219 

we identified nearby planning units in the future at three spatial scales - near neighbors and 220 

neighbors that are two and three hexagon(s) away and used a weighting of 1/2, 1/4, and 1/8 221 

for 1-3
rd
 degree neighbors, respectively, to represent the declining likelihood of local 222 

dependencies with distance among neighboring sites (Fig. 3). 223 
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224 

(B) Scenarios and Marxan analyses225 

We produced systems of marine protected areas for three different scenarios (Fig. 4) 226 

and compared their results. In scenario 1, “within a time slice adjacency connections”, we 227 

planned for each time slice separately (2010, 2030 and 2100), accounting for spatial 228 

connections between planning units in a single time slice but with no temporal connections 229 

(Fig. 4a). In scenario 2, “within a time slice adjacency + between time slices temporal 230 

connections”, we included all time periods (2010, 2030, and 2100) in one analysis, 231 

considering spatial connections between adjacent planning units in a single time slice and 232 

temporal connections between time slices (Fig. 4b). In this scenario, spatial connections were 233 

considered only within one time slice so that the spatially connected planning units in a year 234 

were not connected in multiple time slices. The spatial connection is independent for every 235 

time slice. Lastly, in scenario 3, “between time slices adjacency + between time slices 236 

temporal connections”, we planned the entire time range together incorporating spatial and 237 

temporal connections among multiple time slices (Fig. 4c). 238 

We ran Marxan 100 times for each scenario. We chose a connectivity strength 239 

modifier, CSM= 10, by finding the trade-off point between the cost and connectivity using a 240 

method developed by Stewart and Possingham (2005). We kept the CSM value constant for 241 

all scenarios. 242 

Each scenario produced solutions for marine protected area networks for the three 243 

time slices (2010, 2030 and 2100). We compared how the priorities changed over time in one 244 

scenario and overall reserve system costs across all scenarios using the best solutions (i.e. the 245 

reserve system with the minimum score from 100 runs) as well as the average of the best ten 246 

solutions. Differences in selection frequency across 100 runs were compared to contrast the 247 

spatial configurations of priority areas. 248 

249 
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Results 250 

When we planned for spatial connections within a single time slice (scenario 1 251 

“within a time slice adjacency connections”), the selected planning units changed 252 

considerably over time (Table 1). In fact, only 29% of planning units were selected 253 

consistently through time. Moreover, there was very little overlap in the priorities for 254 

conservation in 2010 with those in 2100. Of the priority sites delineated in 2010, 88% will 255 

cover the conservation feature “tropical”, 12% will include “subtropical” and none 256 

“temperate” in 2100. In addition, 15% of selected planning units were prioritized only in 257 

2030 and not before or after, and conversely 6% of selected planning units were prioritized in 258 

2010 and 2100 and not in 2030. When we considered temporal connections in the planning, 259 

we found that 93% (in scenario 2 “within a time slice adjacency + between time slices 260 

temporal connections”) and 94% (in scenario 3 “between time slices adjacency + between 261 

time slices temporal connections”) of planning units were selected in every time period in the 262 

best solutions, even though conservation features moved over time (Fig. 2) (Table 1). 263 

Incorporating temporal connections (scenario 2) increased the overall reserve system 264 

costs by only 6% compared with the baseline scenario 1 (Table 2). However, there was 48% 265 

increase in the overall reserve system costs in scenario 3 when both adjacency connections 266 

between time slices and temporal connections were considered. The total number of selected 267 

planning units decreased by 5% in scenario 2 than that of in scenario 1 although more 268 

connection (temporal connection) was incorporated (Table 2). The largest reserve network 269 

system in terms of the number of planning units was designed in scenario 3 when the highest 270 

number of connections was considered (Table 2). The outside boundary length of the reserve 271 

networks of the best solutions through time was the smallest in scenario 3. The boundary 272 

length was approximately three times larger in scenario 2 and 19 times larger in scenario 1, 273 

compared with that of scenario 3. The overall selection frequency decreased in scenario 3 274 
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compared to other scenarios. In scenario 3, the number of high priority planning units 275 

(selected more than 50 times in 100 runs) was about 6 times and 5 times less than scenarios 1 276 

and 2 respectively. 277 

Spatial prioritization approaches that took into account predicted future sea-surface 278 

temperatures rise delivered substantially different spatial priorities compared with an 279 

approach that ignored the future, as seen in the differences in selection frequency between 280 

scenarios (Fig. 5). When the adjacency connections between time slices and temporal 281 

connections were considered (scenario 3), some planning units were more frequently selected 282 

than in scenarios that ignored the connections (red areas in Fig. 5b,c). These highly selected 283 

planning units were prioritized over all time slices. Overall solutions were similar between 284 

scenario 1 and 2 than between other pair of scenarios (Fig. 5). The spatial allocation of 285 

priority areas differed dramatically in the best solution of scenarios (Fig. 6). Priority areas 286 

moved through in scenario 1 (Fig. 6a) whereas priority areas were stable in scenario 2 and 3 287 

(Fig 6b,c). Priority areas in scenario 3 were more clumped than that of scenario 2 by adding 288 

the spatial connection between multiple time slices (Fig. 6b,c). 289 

290 
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Discussion 291 

It is important that marine protected area designs reflect the dynamic physical and 292 

biological processes that change over time (Hughes et al., 2010, Mumby et al., 2011, Mumby 293 

& Steneck, 2008). Yet, there are few examples where spatial and temporal dynamics have 294 

been considered in marine spatial prioritization (Grantham et al., 2008). To ensure that 295 

marine protected areas are protecting conservation features over time, it is necessary to 296 

account for species range changes due to climate change (Araújo et al., 2004). Our study 297 

incorporated spatial and temporal connections between multiple time slices among locations 298 

to accommodate likely changes in climate and corresponding range expansions in spatial 299 

prioritization. We applied this idea to scleractinian corals in Japan, because these corals are 300 

already expanding their range poleward (Yamano et al., 2011) and are vulnerable to climate 301 

change. It is uncertain how far or fast corals will change their distributions, and which species 302 

will be winners or losers. However, our approach has advantages because designing protected 303 

areas incrementally based on only current species distributions, with the aim of modifying 304 

protecting areas in the future as changes become evident, would be less cost-effective 305 

(Stewart et al., 2007) and also politically difficult (Day, 2002). 306 

Our results showed that priority areas were considerably different between scenarios 307 

that incorporated different types of connections. We demonstrated how to find places for 308 

protection that are important for conserving current and future conservation features. Finding 309 

these priority areas was achieved with a marginal increase in costs when we incorporated 310 

temporal connections and spatial connections within a single time slice (scenario 2). This 311 

scenario represented potential changes in coral communities over time in a single planning 312 

unit (area of 5 km
2
), and spatially clustered priority areas in each time slice. Coral larvae can 313 

disperse poleward for long distances in strong boundary currents (Beger et al., 2011, Treml et 314 

al., 2008). However, larval transport between priority areas is not necessarily ensured, 315 
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because the dispersal distance and survival dynamics of coral larvae differ significantly 316 

depending on the species and oceanographic factors (Cowen et al., 2000, Graham et al., 317 

2008). In scenario 3, we represented species being able to move to adjacent planning units 318 

with time by adding the spatial connections between time slices. This may safeguard the 319 

short-distance dispersing corals and their associated species (Shanks et al., 2003). However, 320 

there was a substantial increase in costs and a decrease in outside boundary length when we 321 

added the adjacency connections between time slices (scenario 3). 322 

Our approach made these trade-offs between costs and outside boundary length 323 

explicit, which can be used by planners to make informed decisions. Further, adding spatial 324 

connections between multiple time slices (scenario 3) decreased the overall selection 325 

frequencies of planning units, resulting in greater options for achieving the planning goals. 326 

Whether to incorporate spatial connection within a time slice or between time slices would 327 

also depend on the size of planning units and conservation objectives (i.e. to protect any 328 

particular species). Regardless, it is important to include not only spatial connections but also 329 

temporal connections (either within a time slice or between time slices) from the beginning 330 

when developing a marine conservation plan that allows for system dynamics. This is 331 

because it enables us to find priority areas that protect conservation features in the future. 332 

It is important to design reserve networks for coral reef conservation that are robust to 333 

future impacts (Kennedy et al., 2013). We delivered more spatially cohesive and stable 334 

solutions by considering spatio-temporal connections in the prioritization process. However, 335 

this study considered only one component of climate change, warming sea temperature. We 336 

focused on facilitating the expansion of corals, which is limited by sea-surface temperatures 337 

in the coldest month. However, sea-surface temperatures in summer could also affect suitable 338 

areas for coral, as elevated sea-surface temperatures in the hottest month can cause coral 339 

bleaching events (Fitt et al., 2001), and have been reported from high-latitude reefs at Load 340 
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Howe Island, Australia (Harrison et al., 2011). 341 

Furthermore, ocean acidification caused by atmospheric carbon dioxide is likely to 342 

limit the distribution of coral reefs (Hoegh-Guldberg et al., 2007, Meissner et al., 2012, Yara 343 

et al., 2012). Ocean acidification lowers calcification rates of corals (Anthony et al., 2008), 344 

leading to a point where future rates of reef erosion may exceed rates of reef accretion 345 

(Hoegh-Guldberg et al., 2007, McCulloch et al., 2012). According to some future projections, 346 

ocean acidification could have a larger impact on coral habitats than sea-surface temperatures 347 

rise (Meissner et al., 2012, Yara et al., 2012). However, this may not be true for all species- 348 

the impacts of ocean acidification are different for hard coral species at the organismic scales 349 

(Rodolfo-Metalpa et al., 2010). Moreover, coral calcification trends in massive Porites in 350 

high-latitude of Western Australia were a response to increasing temperature rather than 351 

ocean acidification (Cooper et al., 2012). Coral species up-regulate pH internally (McCulloch 352 

et al., 2012), which may lead to delayed responses to acidification and buy time for potential 353 

emission reductions to take effect. Research investigating the influences of the combined 354 

stress factors is emerging but not yet conclusive. For example, Madin et al. (2012) found that 355 

increases in storm intensity had a relatively minor effect on long-term population persistence 356 

of the table coral Acropora hyacinthus (Dana, 1846), compared to the ocean acidification. 357 

The combined effects of ocean acidification and temperature trends may limit the pole-ward 358 

expansion of corals. Considering multiple threats within the planning process, as well as 359 

information on coral ecology and environmental data such as ocean currents, will improve 360 

conservation outcomes.  For example, in our study region the Kuroshio Current (the warm 361 

pole-ward currents flowing from the equator) is projected to extend and shift polewards due 362 

to global warming (Sakamoto et al., 2005). This could result in higher speeds and latitudes of 363 

coral expansion (Yamano et al., 2011). 364 

Improving the spatial representation of socio-economic values of coral reefs to users, 365 

Page 16 of 39

Diversity and Distributions

Diversity and Distributions

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



17

such as opportunity costs of reef fishing, using the field data and involving stakeholders 366 

would better represent social desires and minimize the impacts on stakeholders (Klein et al., 367 

2009, Yates & Schoeman, 2013). Especially in Japan, the fishing industry and markets are 368 

very large. There are approximately a thousand of marine managed areas where some kind of 369 

fishing is allowed (Yagi et al., 2010), but our analysis is concerned with no-take areas that 370 

would exclude all fishing. Our study shows a novel way for addressing changing distributions 371 

in conservation plans, however, we used the population surrogate to represent fishing 372 

opportunity costs due to the lack of spatial data, and projections of how the distribution and 373 

intensity of fishing activity may change. Including such improved information to account for 374 

human impacts from fishing is an urgent research priority to improve planning approaches for 375 

the future. 376 

Designing marine protected areas in the face of climate change means making 377 

management decisions in the face of uncertainty (Wintle et al., 2011). Yet, social and 378 

political willingness to undergo repeated reserve designation processes is unlikely in most 379 

places, and whether such redesign processes can keep pace with changes in ocean climate is 380 

questionable. Finding areas that will fulfill conservation objectives now and in the future will 381 

thus help to avoid species or habitat losses. Our approach considering climate change by 382 

incorporating temporal and spatial connections into reserve planning overcomes this 383 

challenge. Our method can be applied to any dynamic conservation-planning problem not 384 

only for the sea but also on land. Our approach enables governments and planners to choose 385 

marine reserves that will be more robust to climate change as countries strive to expand the 386 

world’s reserve system to fulfill the strategic plan for biodiversity 2011-2020, including 387 

Aichi Biodiversity Targets of the Convention on Biological Diversity by 2020. 388 

389 
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Tables 657 

Table 1.  Percentages of combination of selected planning units for three time slices in each scenario. For example, 29% of selected planning 658 

units were selected in all time slices and 15% of selected planning units are selected only in 2030 in scenario 1. Every planning unit can be 659 

selected (status of  “1”) as priority for conservation or not selected (status of  “0”) in every time slice (2010, 2030, and 2100). 660 

661 

Time slice Scenario 

2010 2030 2100 

1: within a time 

slice adjacency 

connections 

2: within a time slice adjacency + 

between time slices temporal 

connections 

3: between time slices adjacency 

+ between time slices temporal

connections 

Planning unit state 1 1 1 29% 93% 94% 

through time 1 1 0 5% 0% 1% 

1: selected 1 0 1 6% 1% 1% 

0: not selected 0 1 1 6% 1% 0% 

1 0 0 19% 0% 1% 

0 1 0 15% 1% 2% 

0 0 1 19% 4% 2% 

662 

663 

664 

665 
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Table 2. Average of the costs, human pressure, of each time slice of the best ten solutions of each scenario. 666 

Scenario 

Time 

slice 

Costs (population within 20 km from  

the center point of each planning unit) 

Total number of 

selected 

planning units 

1: within time slice adjacency connections 2010 356,721 317 

2030 352,695 317 

2100 364,437 333 

2: within time slice adjacency + 2010 376,511 303 

between time slices temporal connections 2030 382,153 306 

2100 384,113 313 

3: between time slice adjacency +  2010 539,591 355 

between time slices temporal connections 2030 538,040 357 

2100 516,770 361 

667 

668 

669 

670 
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Figure legends 671 

Figure 1. Rocky areas in our study region of Japan. Our study region includes areas 1 km 672 

from the coastline and less than 100m in depth (as potential sites for coral expansion). 673 

674 

Figure 2. Conservation features over time (2010, 2030 and 2100). The lines are in units of 675 

degree Celsius (°C). Our conservation features were different temperature ranges: “temperate” 676 

for 10-13°C, “subtropical” for 13-18°C, and “tropical” for 18-30°C.  These conservation 677 

features change over time due to the climate change. 678 

679 

Figure 3. Concept of scenario 3 (between time slice adjacency + between time slices temporal 680 

connections). We term the format of a planning unit i1 = (1, 2010), where the first number in 681 

the ordered pair is the spatial location of the planning unit and the second number is the year. 682 

The “between time slice adjacency” connections are physical connections between adjacent 683 

and surrounding planning units within a time slice (e.g. planning unit i1 = (1, 2010) and i2 = 684 

(2, 2010)), as well as between time slices (e.g. planning unit i1 = (3, 2010), i2 = (6, 2030)). 685 

The latter “between time slices temporal” connections are between one planning unit and that 686 

same planning unit in the future (e.g. planning unit i1 = (1, 2010), i2 = (1, 2030)). 687 

688 

Figure 4. Illustration of three scenarios: (a) scenario 1 “within a time slice adjacency 689 

connections”; (b) scenario 2 ”within a time slice adjacency + between time slices temporal 690 

connections”; and (c) scenario 3 “between time slice adjacency + between time slices 691 

temporal connections”. Scenario 2 investigates how the temporal connections influence the 692 

spatial prioritization compared to the baseline scenario 1. Scenario 3 examines the effects of 693 

adding spatial connections between multiple time slices. 694 

695 
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Figure 5. Comparison of selection frequency between scenarios: (a) scenario 1 (adjacency 696 

connections within a time slice) vs. scenario 2 (adjacency connections within a time slice and 697 

temporal connections), (b) scenario 1 vs. scenario 3 (adjacency connections between time 698 

slices and temporal connections), and (c) scenario 2 vs. scenario 3. The sum of selection 699 

frequency of all time slices in a scenario was calculated and the differences between 700 

scenarios were calculated by subtraction. For example, if the color is closer to red, the areas 701 

were more selected in scenario 3, whereas if the color is green these areas were more selected 702 

in scenario 1 (b) or 2 (c). 703 

704 

Figure 6. Spatial configuration of priority areas of the best solution (i.e. minimum reserve 705 

size out of 100 solutions) in Kyusyu, southwest Japan (see Fig. 1) for every time slices of 706 

each scenario: (a) scenario 1, (b) scenario 2, and (c) scenario 3. 707 

708 

709 
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Figures 710 

Figure 1. 711 

712 

713 
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Figure 2. 714 
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Figure 3. 717 
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Figure 4. 720 
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Figure 5. 723 

724 

725 

Page 38 of 39

Diversity and Distributions

Diversity and Distributions

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



39

Figure 6. 726 
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