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Abstract 

l1-SPIRiT is a fast magnetic resonance imaging (MRI) method which combines parallel imaging (PI) 

with compressed sensing (CS) by performing a joint l1-norm and l2-norm optimization procedure. 

The original l1-SPIRiT method uses two-dimensional (2D) Wavelet transform to exploit the intra-coil 

data redundancies and a joint sparsity model to exploit the inter-coil data redundancies. In this work, 

we propose to stack all the coil images into a three-dimensional (3D) matrix, and then a novel 3D 

Walsh transform-based sparsity basis is applied to simultaneously reduce the intra-coil and inter-coil 

data redundancies. Both the 2D Wavelet transform-based and the proposed 3D Walsh transform-based 

sparsity bases were investigated in the l1-SPIRiT method. The experimental results show that the 

proposed 3D Walsh transform-based l1-SPIRiT method outperformed the original l1-SPIRiT in terms 

of image quality and computational efficiency. 

 

Keywords: MRI; Compressed Sensing; l1-SPIRiT; Walsh transform 
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1.  Introduction 

In conventional magnetic resonance imaging (MRI), imaging speeds are limited by the sequential 

acquisition of the full k-space data. To reduce scan duration, two different types of techniques are 

often used. The first one is the multiple-coil based parallel MR imaging (pMRI) schemes, which have 

been actively investigated over the recent years using a variety of methods [1-12]. Some of these 

pMRI methods require the coil sensitivities to be known explicitly, while others reconstruct images 

with an implicit usage of the coil sensitivity information, through an auto-calibration process. These 

parallel imaging techniques have been successfully implemented in routine clinical practice. 

The second one is compressed sensing MR imaging (CS-MRI) [13], which exploits the sparsity of the 

signal in some transformation domain to reconstruct the MR images by using far fewer k-space data 

than those required for the conventional methods. Recently, a range of sparsity bases in spatial and 

temporal dimensions were proposed to implement the sparsifying transform, such as discrete Wavelet 

transform [14], discrete cosine transform [15], total variation [16], one-dimensional Fourier transform 

[17], KLT/PCA transform [18], singular value decomposition [19], motion estimation [20] and 

dictionary learning [21]. Compressed sensing (CS) method has been successfully applied in static and 

dynamic MRI studies. 

Recently, the combination of CS and pMRI methods has been proposed for fast imaging applications. 

Two typical methods have been developed for the implementation of hybrid CS-pMRI. The first 

method performs a joint optimization procedure for the image reconstruction. For example, Sparse 

Sensitivity Encoding (SENSE) [22] and its equivalents [23, 24] added Wavelets and total variation as 

l1 constraints. In addition, Weller et al. [25] minimized the image sparsity term (l1-norm) and the data 

deviation (l2-norm) term together during GeneRalized Autocalibrating Partially Parallel Acquisitions 

(GRAPPA) reconstruction. This method is easy to implement, however, a major concern is the 

relatively poor incoherence between the sparsity basis and the encoding matrix [23]. In the second 

method, the CS-pMRI reconstruction was treated as a separate stage either before or after the pMRI 

reconstruction stage. For example, the CS-SENSE algorithm first reconstructed a set of aliased images 
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with a localized field-of-view for each coil by using SparseMRI [16], and then formed the final image 

from the aliased images using Cartesian SENSE [26]. In addition, CS-MRI reconstruction was first 

carried out on each coil image, then GRAPPA [27] and nonlinear GRAPPA [28]  followed to 

reconstruct the final MR image, respectively. In [29], Auto-calibrating Reconstruction for Cartesian 

Sampling (ARC) parallel imaging was applied firstly, and then CS-MRI reconstruction was used 

independently on each coil image. These sequential methods can usually provide higher acceleration, 

however, noise and errors introduced in one operation can be augmented by the following procedure. 

l1-SPIRiT [30, 31] belongs to the first set of CS-pMRI methods. In this method, as an alternative to 

form a large linear system, the joint optimization with multiple objective functions was proposed and 

the solutions were iteratively constrained to satisfy Wavelet-sparsity constraints, data fidelity and 

calibration consistency. This iterative projection method can largely avoid the incoherence problem 

between the encoding matrix and the sparsity basis. 

The original l1-SPIRiT method enforces the sparsity penalty term in two steps. Firstly, 2D Wavelet 

transforms were performed on different coil images to exploit the intra-coil redundancies; secondly, a 

joint-sparsity model is proposed to correlate Wavelet coefficients of different coils to exploit the inter-

coil redundancies. In this work, we propose to jointly exploit the intra-coil and inter-coil redundancies 

by stacking coil images into a 3D matrix, which facilities a 3D Walsh transform of the coil images for 

the follow-up CS reconstruction. As a useful signal processing way, the Walsh transform technique 

has been widely used in various fields. For example, the one-dimensional (1D) Walsh transform is the 

fundamental technique of code division multiple access (CDMA) in the wireless communication field 

[32]. In the CS field, the 2D Walsh transform has been used as sensing matrix in recent studies [33, 

34]. In this work, the 3D Walsh transform has been developed as a novel sparsity basis for the CS-

MRI application. In the rest of the paper, we first introduce the mechanism of the proposed method in 

terms of exploiting the intra-coil and inter-coil data redundancies, and then validate the performance 

of the developed sparsity basis in l1-SPIRiT imaging reconstruction. 
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2. Theory 

2.1 l1-SPIRiT 

The l1-SPIRiT method integrates CS with the auto-calibrating parallel imaging method SPIRiT to 

accelerate MRI signal sampling processes. To reliably reconstruct a MR image from the under-

sampled k-space data collected by multiple coils, a concatenated problem is solved with a joint l1-

Wavelet minimization, data fidelity and calibration consistency constraints: 

1       (Ψ ( ))waveletmminimize Joint l m                    (1) 

       subject to DFm y                           (2) 

Gm m                           (3) 

Here m  refers the MR coil images to be reconstructed, y  is the k-space data collected by multiple 

coils. F  represents a Fourier operator for each coil image, D  is a under-sampling operator for k-

space data collection. G  is the SPIRiT operator that enforces the calibration consistency. Ψwavelet  

represents a 2D Wavelet transform operator on coil images. The 2D Wavelet transform-based joint 

sparsity model in Eq.(1) can be formulated as follows: 

 
2

1    rc

r c

wJoint l w                       (4) 

where ( )waveletw m  , rcw is the Wavelet coefficients, r  is the coil index and c  is the Wavelet 

coefficient index in each coil. The coefficients at the same spatial positions but from different coils 

are jointly penalized to protect small coefficients from being suppressed. As mentioned above, the 2D 

Wavelet transform Ψwavelet  exploits the intra-coil data redundancies and the joint-sparsity model in Eq. 

(4) exploits the inter-coil data redundancies. 
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2.2 3D Walsh transform-based sparsity basis 

The 1D Walsh transform is a non-sinusoidal, orthogonal transformation technique that decomposes a 

signal into a set of Walsh functions [35, 36]. The Walsh functions are rectangular or square waves 

with values of +1 or –1. The first eight Walsh functions are defined as: 

Index Walsh function values 

0 1 1 1 1 1 1 1 1 

1 1 1 1 1 -1 -1 -1 -1 

2 1 1 -1 -1 -1 -1 1 1 

3 1 1 -1 -1 1 1 -1 -1 

4 1 -1 -1 1 1 -1 -1 1 

5 1 -1 -1 1 -1 1 1 -1 

6 1 -1 1 -1 -1 1 -1 1 

7 1 -1 1 -1 1 -1 1 -1 

 

For a 1D signal ( )f x  with length I , its Walsh transform and the inverse Walsh transform are 

defined as: 

1

0

1
( , )

I

n i

i

w f WAL n i
I





                    (5) 

1

0

( , )
I

i n

i

f w WAL n i




                    (6) 

where 0,1,..., 1n I   and ( , )WAL n i  is the i -th value of the n -th Walsh function. As shown in Eq. 

(5), it can be seen that the Walsh coefficients are generated from the linear combination of the original 

signal and the predefined Walsh functions. 

In our simulations, it was observed that 1D Walsh transform has effective energy concentration 

capabilities in the pMRI datasets. We took comparisons between the 1D Walsh transform and the 

two-level Daubechies Wavelet on an in vivo eight-coil brain dataset. This dataset (as shown in Figure 

1) was acquire on a 1.5T GE scanner with TR = 4200 ms, TE = 85 ms, the sizes of the acquired coil 

images were 200 × 200 × 8 and in this work we interpolated them to 256 × 256 × 8 [12]. 

Figure 1 
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The first test was performed to compare the sparsity in the coil directions. In pMRI system, the coils 

are designed to maximize the difference and minimize the correlations of each coil sensitivity, 

therefore it becomes challenging to generate sparsity in the coil direction. In our study, as shown in 

Figure 1, each coil element is relatively large enough to ‘see’ entire field of view, although it is 

shaded in the far region of the image. In this case, the structural similarities between coil images still 

exist, and the same view has also been reported in [37] and [38]. With the existence of the inter-coil 

redundancies, we can then conduct sparsity transform studies. In Figure 2, the magnitudes of 64th row, 

64th column pixels in multiple coil images are denoted in blue curve with squares, due to the 

influences of the sensitivities, the pixel magnitudes varies in the same positions of the different coil 

images. However, the Walsh transform (green curve with stars) can still concentrate the energies into 

a few large coefficients, while the Wavelet transform coefficients (red curve with circles) are on 

average large. 

The second test was presented to compare the sparsity on one row of pixels on one coil image. In 

Figure 3, the blue curve with squares shows the magnitude changes of the 128th row pixels on the 

first coil image. The green curve with stars shows the Walsh transform coefficients and the red curve 

with circles shows the Wavelet transform coefficients, it can be found that the green curve decline 

much faster than the red curve. 

Figure 2 

Figure 3 

For individual coil image, the 2D Walsh transform can be implemented by first performing 1D Walsh 

transforms on all the rows (x- direction), and second performing 1D Walsh transforms on all the 

columns (y- direction). Given a 2D signal f(x, y)  with a size of I J , the 2D Walsh transform and its 

inverse are formulated as: 

1 1

, ,

0 0

1
( ( , )) ( , )

I J

m n i j

i j

w f WAL n j WAL m i
I J

 

 



               (7) 

1 1

, ,

0 0

( ( , )) ( , )
I J

i j m n

i j

f w WAL n j WAL m i
 

 

                  (8) 
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The multiple coil images can be stacked to form a 3D matrix, then the 3D Walsh transform can be 

implemented by performing the sequential 1D Walsh transforms in three directions: firstly in the coil 

direction, secondly in the x- direction and lastly in the y- direction. In this way, given a 3D signal 

f(x, y,z)  with a size of  I J K  the 3D Walsh transform and its inverse are formulated as: 

1 1 1

, , , ,

0 0 0

1
( ( ( , )) ( , )) ( , )

I J K

m n c i j k

i j k

w f WAL c k WAL n j WAL m i
I J K

  

  


 

        (9) 

1 1 1

, , , ,

0 0 0

( ( ( , )) ( , )) ( , )
I J K

i j k m n c

i j k

f w WAL c k WAL n j WAL m i
  

  

              (10) 

Figure 4 visualized the 3D Walsh coefficients slice by slice, from the top to the bottom in the coil 

direction. For each slice, the z-axis shows the magnitudes of the coefficients. It is observed that (a) for 

each slice, large coefficients concentrate on the corners; (b) the largest coefficients in each slice 

decrease from the top (first) slice to the bottom (eighth) slice. 

Figure 4 

Figure 5 compares the transform coefficients in curve views. The Wavelet coefficients, 2D Walsh 

coefficients and the 3D Walsh coefficients were sorted according to the magnitude and then plotted as 

curves. Figure 5(a) shows all the sorted transform coefficients. It is obvious that the 2D Wavelet 

coefficients are much larger than the 2D and 3D Walsh coefficients in the first 2×10
5
 coefficients. 

Figure 5(b) shows the first 512 coefficients, this figure provides clear comparison between the 

Wavelet coefficients and Walsh coefficients. Figure 5(c) zooms in Figure (b) to compare the 2D 

Walsh coefficients and the 3D Walsh coefficients, it can be seen that the 3D Walsh coefficients drop 

faster than the 2D Walsh coefficients. Therefore, from the curve view, the 3D Walsh coefficients have 

the sparsest representation among the three methods, and the 2D Walsh-based representation is 

sparser than the Wavelet-based representation. 

Figure 5 

Figure 6 compares the reconstruction qualities of the first coil images using the largest 2.5×10
4
, 5×10

4
 

and 1×10
5
 coefficients. The left column shows the sparse coefficients of the 3D Walsh transform 

(only show the top slice, where large values concentrate), the 2D Walsh transform and the 2D 

Daubechies Wavelet transform on the first coil image. Figure 7 shows the corresponding error maps 
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in Figure 6. Serious information lost was observed in the second and third columns for the 2D 

Wavelet-based method, while the 2D and 3D Walsh methods can still keep most of the details. From 

the second column, it can also be found that image recovered from the 2D Walsh coefficients was 

blurrier than the image recovered from the 3D Walsh coefficients. 

Figure 6 

Figure 7 

Suppose m  is the multiple coil images, Ψ ( )walsh m  is the 3D Walsh transform which is implemented 

by sequential 1D Walsh transforms, the new l1-SPIRiT method can be formulated as: 

1     (Ψ ( ))walm shminimize l m                    (11) 

       subject to DFm y                      (12) 

Gm m                       (13) 

3. Methods and Materials 

Experiments were performed on two in vivo eight-coil brain datasets and one eight-coil phantom 

dataset. The first brain dataset (shown in Figure 1) was acquire on a 1.5T GE scanner with TR = 4200 

ms, TE = 85 ms, the sizes of the coil images were 200 × 200 × 8 and in this work we interpolated 

them to 256 × 256 × 8[12]. The second brain dataset (shown in Figure 8) was acquired on a 3T GE 

scanner (GE Healthcare, Waukesha, WI) with TR = 700 ms, TE = 11 ms, FOV = 22 × 22 cm
2
, and 

matrix = 256 × 256 × 8 [26]. The phantom dataset was generated using the sensitivities of dataset 1 

and was shown in Figure 9. 

Figure 8 

Figure 9 

The l1-SPIRiT method was performed in two stages, the calibration stage and the reconstruction stage. 

In the calibration stage, the SPIRiT kernel size was set to be 5 × 5 and the Tykhonov regularization 
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parameter was set to be 0.01. In the reconstruction stage, the fast composite splitting algorithm (FCSA) 

method was used [39], the iteration number was set to be 50 and the weights for the sparsity 

regularization were optimized respectively from multiple trials. 

Two sampling patterns were used (Figure 10), the Cartesian pattern that under-samples k-space in the 

phase direction only, and the radial pattern that under-samples k-space in both the phase and 

frequency directions. All the reconstructions were performed on a laptop with a 2.10 GHz Core i7 

CPU, 6G memory. The reconstruction times were then recorded to measure the algorithm efficiencies. 

The peak signal-to-noise ratio (PSNR) was used to evaluate the image quality, which was computed 

as: 

10

1
20logPSNR

MSE
  

Here MSE  is the mean squared error between the fully-sampled dataset and the reconstructed dataset. 

Figure 10 

4. Results 

Tables 1-3 recorded the PSNR of the reconstructed images and the runtimes in the reconstruction 

stages. It can be observed that the Walsh transform-based method obtained 2 to 4 dB higher PSNR 

than the Wavelet transform-based method, and the improvements were very robust in our various tests. 

In addition, the reconstruction times of the Walsh transform-based method were much shorter than the 

Wavelet transform-based methods. The improvements in computation efficiency benefited from the 

quick implementation of the 3D Walsh transform. In experiments, a typical 3D Walsh transform 

(including the pixel-wise multiplication with the scale maps) on a 256 × 256 × 8 matrix took only 

0.26 seconds, while a batch of 2D Wavelet transforms on the same matrix took 0.98 seconds. 

Figures 11-13 visualized the reconstructed images and the error maps. In most cases, the 

reconstructed image qualities by the Walsh transform-based method are much better than the Wavelet 
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transform-based method. The red arrows in the figures marked some obvious artifacts in the 

reconstructed images by using the 2D Wavelet transform-based method. 

Table 1 

Table 2 

Table 3 

Figure 11 

Figure 12 

Figure 13 

5. Discussion 

5.1 The utility of inter-coil similarities in CS-pMRI reconstruction 

Compared with the original image, the image obtained from each coil is sensitivity weighted, that is, 

the coil images share same structures of the object but with varied gray scales from position to 

position. In the early CS-pMRI works, this image similarity was not effectively exploited. The 

sequential methods [27,28,29] first reconstructed each coil image in the CS stage; then the joint 

optimization methods was proposed to construct the whole image, but each coil image was still 

sparsified by 2D sparsity bases. In this work, we stacked coil images as a 3D matrix and then a 3D 

Walsh transform was applied to explore the data similarity between the coil images. As a new sparsity 

basis, the 3D Walsh transform makes use of both the intra-coil and inter-coil redundancies 

information, facilitating the CS reconstruction of array coil based imaging. 

5.2 The 3D Walsh transform-based sparsity basis: a time-efficient way for reconstruction 

As shown in Tables 1, 2 and 3, the proposed Walsh transform-based method is capable of achieving 

equivalent or superior reconstruction qualities to the original Wavelet transform-based method. The 

proposed method is quite robust in terms of reconstructed image qualities under various experimental 
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settings. Another obvious advantage of the proposed method is its computational efficiency. The 

experiments have shown that for a reconstruction of the same size, the proposed method is around 4 

times faster than the original method. It has been well acknowledged that the CS-MRI reconstruction 

is quite time-consuming, while the proposed method can save a great deal of time without sacrificing 

reconstructed image qualities. This computational efficiency is important for the practical application 

of CS-MRI in clinical settings.  

5.3. Extensions of the 3D Walsh transform-based sparsity basis to other CS-MRI methods 

Although here we only tested the 3D Walsh transform-based sparsity basis on l1-SPIRiT, it is quite 

straightforward to apply the proposed sparsity basis to other CS-MRI applications, such as the joint 

method Sparse SENSE [22] and the sequential method CS-SENSE [23]. In the future, the 3D Walsh 

transform scheme can also be investigated in the dynamic imaging method to generate inter-frame 

sparse representations [40]. 

6. Conclusion 

In the CS-pMRI scheme, the sparsity of the MR coil images play an important role in image 

reconstruction. Conventional 2D Wavelet transforms are limited in sparsifying individual coil images, 

without making use of the correlations between coil images. In this work, the 3D Walsh transform-

based sparsity was proposed to implement CS-pMRI reconstruction. The experimental results showed 

that the proposed method was capable of reconstructing the MR image with better quality and less 

reconstruction time than the original method. In the future work, we will extend the Walsh transform-

based method for other CS-MRI applications. 
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Figure 1. The fully-sampled combined image and eight coil images (dataset 1). 

Figure. 2 Energy concentration capability comparisons between the Walsh transform and the Wavelet 

transform in the coil direction. 

Figure. 3 Energy concentration capability comparisons between the Walsh transform and the Wavelet 

transform on one row of individual coil image. 

Figure 4. 3D Walsh coefficients for eight coil images. The logarithmic computation log(1+double(w)) 

was used to stretch the magnitudes of Walsh coefficients for better visualization. 

Figure 5. The sorted coefficients for 2D Wavelet, 2D Walsh and 3D Walsh transform. (a) All the 

sorted transform coefficients. The coefficients amount to 256×256×8=524288 for the eight-coil 

dataset 1. (b) The first 512 large sorted transform coefficients. (c) The zoomed-in comparison 

between the 2D and 3D Walsh coefficients. 

Figure 6 The reconstructed images from subset of the largest 2.5×10
4
, 5×10

4
 and 1×10

5
 transform 

coefficients using the 3D Walsh transform, the 2D Walsh transform and the 2D Wavelet transform. 

Figure 7 The error maps between the fully-sampled image and the reconstructed images from subset 

of the largest 2.5×10
4
, 5×10

4
 and 1×10

5
 transform coefficients using the 3D Walsh transform, the 2D 

Walsh transform and the 2D Wavelet transform. For the fourth column, the error maps were 

magnified 10 times for clear visualization. 

Figure 8. The fully-sampled combined image and eight coil images (dataset 2). 

Figure 9. The fully-sampled combined image and eight coil images (phantom). 

Figure 10 Sampling patterns. Left column: Cartesian sampling pattern. Right column: radial sampling 

pattern. 

Figure 11 Reconstructed images and error maps for dataset 1 with reduction 4. First column: 2D 

Wavelet transform-based method using Cartesian trajectories. Second column: 3D Walsh transform-

based method using Cartesian trajectories. Third column: 2D Wavelet transform-based method using 

radial trajectories. Fourth column: 3D Walsh transform-based method using radial trajectories. 
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Figure 12 Reconstructed images and error maps for dataset 2 with reduction 4. First column: 2D 

Wavelet transform-based method using Cartesian trajectories. Second column: 3D Walsh transform-

based method using Cartesian trajectories. Third column: 2D Wavelet transform-based method using 

radial trajectories. Fourth column: 3D Walsh transform-based method using radial trajectories. 

Figure 13 Reconstructed images and error maps for phantom with reduction 4. First column: 2D 

Wavelet transform-based method using Cartesian trajectories. Second column: 3D Walsh transform-

based method using Cartesian trajectories. Third column: 2D Wavelet transform-based method using 

radial trajectories. Fourth column: 3D Walsh transform-based method using radial trajectories. 
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Table 1. Reconstruction performance for dataset 1. 

Sampling 

Patterns 

Reduction 

Factor 
Methods PSNR (dB) Runtime (s) 

Cartesian 

3 
Walsh 30.23 62.98 

Wavelet 28.08 193.49 

4 
Walsh 27.26 65.77 

Wavelet 26.49 196.19 

Radial 

3 
Walsh 28.84 63.87 

Wavelet 26.96 221.19 

4 
Walsh 28.71 60.08 

Wavelet 24.85 217.99 
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Table 2. Reconstruction performance for dataset 2. 

Sampling 

Patterns 

Reduction 

Factor 
Methods PSNR (dB) Runtime (s) 

Cartesian 

3 
Walsh 30.82 65.23 

Wavelet 26.27 188.21 

4 
Walsh 25.48 66.34 

Wavelet 23.25 187.58 

Radial 

3 
Walsh 32.40 65.01 

Wavelet 29.22 197.61 

4 
Walsh 28.71 65.88 

Wavelet 26.01 196.86 
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Table 3. Reconstruction performance for the phantom dataset. 

Sampling 

Patterns 

Reduction 

Factor 
Methods PSNR (dB) Runtime (s) 

Cartesian 

4 
Walsh 24.74 66.59 

Wavelet 23.44 196.98 

5 
Walsh 22.66 67.89 

Wavelet 20.94 198.67 

Radial 

4 
Walsh 27.06 68.83 

Wavelet 23.49 196.36 

5 
Walsh 25.70 68.79 

Wavelet 22.69 197.86 

 

 


