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Abstract 26 

Nitrous oxide (N2O) emissions from nitritation reactors receiving real anaerobic sludge 27 

digestion liquor have been reported to be substantially higher than those from reactors 28 

receiving synthetic digestion liquor. This study aims to identify the causes for the difference, 29 

and to develop strategies to reduce N2O emissions from reactors treating real digestion liquor. 30 

Two sequencing batch reactors (SBRs) performing nitritation, fed with real (SBR-R) and 31 

synthetic (SBR-S) digestion liquors, respectively, were employed. The N2O emission factors 32 

for SBR-R and SBR-S were determined to be 3.12% and 0.80% of the NH4
+-N oxidized, 33 

respectively. Heterotrophic denitrification supported by the organic carbon present in the real 34 

digestion liquor was found to be the key contributor to the higher N2O emission from SBR-R. 35 

Heterotrophic nitrite reduction likely stopped at N2O (rather than N2), with a hypothesised 36 

cause being free nitrous acid inhibition. This implies that all nitrite reduced by heterotrophic 37 

bacteria was converted to and emitted as N2O. Increasing dissolved oxygen (DO) 38 

concentration from 0.5 to 1.0 mg/L, or above, decreased aerobic N2O production from 2.0% 39 

to 0.5% in SBR-R, whereas aerobic N2O production in SBR-S remained almost unchanged 40 

(at approximately 0.5%). We hypothesised that DO at 1 mg/L or above suppressed 41 

heterotrophic nitrite reduction thus reduced aerobic heterotrophic N2O production. We 42 

recommend that DO in a nitritation system receiving anaerobic sludge digestion liquor should 43 

be maintained at approximately 1 mg/L to minimise N2O emission.  44 

 45 

Keywords: Nitrous oxide; Heterotrophic denitrification; Nitritation; Anaerobic digestion 46 

liquor; Free nitrous acid; Dissolved oxygen 47 

 48 

 49 

 50 
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1. Introduction 51 

Nitrous oxide (N2O) is not only a potent greenhouse gas, with a global warming potential of 52 

approximately 265 times stronger than carbon dioxide (CO2) (IPCC, 2013), but also leads to 53 

the destruction of the stratospheric ozone layer (Ravishankara et al., 2009). Wastewater 54 

treatment systems have been identified as a source of N2O. N2O is produced during both 55 

nitrification and denitrification processes (Desloover et al., 2012; Law et al., 2012; Ahn et al., 56 

2010; Kampschreur et al., 2009). Nitrification is a two-step process, with ammonium (NH4
+) 57 

being first oxidized to nitrite (NO2
-) by ammonium-oxidizing bacteria (AOB) and then further 58 

to nitrate (NO3
-) by nitrite-oxidizing bacteria (NOB). Although N2O is not an obligatory 59 

intermediate of nitrification, it can be produced by AOB through two main pathways: i) N2O 60 

as the final product of AOB denitrification, and ii) N2O as the by-product of incomplete 61 

oxidation of hydroxylamine (NH2OH, an intermediate of NH4
+ oxidation to NO2

-) (Ni et al., 62 

2014; Law et al., 2012; Wunderlin et al., 2012; Yang et al., 2009). In contrast, N2O is an 63 

obligatory intermediate of denitrification. The complete heterotrophic denitrification consists 64 

of sequential reductive reactions from NO3
- to NO2

-, nitric oxide (NO), N2O and finally to 65 

nitrogen gas (N2), carried out by heterotrophs. N2O can accumulate when N2O reduction is 66 

slower than N2O production (Pan et al., 2013; Desloover et al., 2012; Wunderlin et al., 2012; 67 

Law et al., 2012). 
68 

 69 

Nitrogen removal from the anaerobic sludge digestion liquor in a side-stream process has 70 

become a common practice in wastewater treatment plants (WWTPs) (Kampschreur et al., 71 

2008; Mulder et al., 2001). The sludge digestion liquor has a high ammonium concentration 72 

(500–1500 mg N/L) and an unfavourable chemical oxygen demand to nitrogen (COD/N) 73 

ratio for the conventional nitrification and denitrification process. One treatment option is 74 

nitritation (NH4
+
→NO2

-) followed by the anammox process (Kampschreur et al., 2008; van 75 
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Dongen et al., 2001). The nitritation process converts around 50% of the ammonium to nitrite, 76 

thus producing a mixture of nitrite and ammonium with a molar ratio of around 1:1, which is 77 

suitable for the subsequent anammox process.  78 

 79 

N2O emissions from nitritation systems treating anaerobic sludge digestion liquor have been 80 

extensively reported with the results showing huge variations. For instance, the N2O emission 81 

factors were determined to be 2.2–19.3% of the NH4
+-N oxidized in nitritation reactors 82 

treating real digestion liquor (Pijuan et al., 2014; Gustavsson et al., 2011; Kampschreur et al., 83 

2008). In contrast, in nitritation reactors receiving synthetic digestion liquor, the N2O 84 

emission factors were in the range of 0.7 to 1.6% of the NH4
+-N oxidized (Kong et al., 2013; 85 

Rodriguez-Caballero and Pijuan, 2013; Rodriguez-Caballero et al., 2013; Rathnayake et al., 86 

2013; Ahn et al., 2011; Law et al., 2011), which are much lower than those in systems 87 

receiving real digestion liquor. This implies that it may be possible to run a nitritation reactor 88 

with a relatively low N2O emission factor, if the underlying reasons for the higher N2O 89 

emission factors can be identified. 90 

 91 

While simulating the ammonium and bicarbonate concentrations in real digestion liquor, 92 

synthetic digestion liquor does not comprehensively mimic other substances such as heavy 93 

metals and various types of organic carbon, which have been shown to influence N2O 94 

production (Kampschreur et al., 2011; Zhu and Chen, 2011; Lu and Chandran, 2010). In 95 

addition, operational conditions applied in different studies, such as dissolved oxygen (DO) 96 

concentration and pH level, were also different. These factors have also been reported to 97 

affect N2O production (Wunderlin et al., 2012; Kampschreur et al., 2009; Tallec et al., 2008; 98 

Schulthess et al., 1994). 99 

 100 
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The aim of this study is to identify the causes for the much higher N2O emissions from 101 

nitritation systems receiving real anaerobic sludge digestion liquor than from those receiving 102 

synthetic digestion liquor. Two lab-scale sequencing batch reactors (SBRs) performing 103 

nitritation were operated. One SBR was fed with real digestion liquor and the other with 104 

synthetic digestion liquor. N2O emissions from the two SBRs were monitored and compared. 105 

Experiments were designed to investigate various potential causes for the higher N2O 106 

emission from the SBR receiving real digestion liquor. A potential strategy to mitigate N2O 107 

emission was proposed based on findings, and experimentally demonstrated. 108 

 109 

2. Materials and methods 110 

2.1. Characteristics of digestion liquor 111 

The real digestion liquor was collected from the liquid drainage of the full-scale centrifuge 112 

performing dewatering of the digested sludge at a local WWTP. Its main characteristics are 113 

shown in Table 1. The synthetic digestion liquor was used to simulate real digestion liquor. 114 

Its main characteristics are also shown in Table 1.  115 

 116 

(Approximate position for Table 1) 117 

 118 

2.2. Reactor set-up and operation 119 

Two lab-scale SBRs performing nitritation were operated. The return activated sludge from a 120 

domestic wastewater treatment plant in Brisbane, Australia, was used as the inoculum. One 121 

SBR (named as SBR-R) had a working volume of 4 L and was fed with real digestion liquor. 122 

The other SBR (named as SBR-S) had a working volume of 8 L and received synthetic 123 

digestion liquor. The two SBRs were both operated with a cycle time of 6 h, consisting of 25 124 

min settling, 8 min decanting, 5 min anoxic reaction I, 5 min feeding I (aeration on), 120 min 125 
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aerobic reaction I, 35 min anoxic reaction II, 5 min feeding II (aeration on), 120 min aerobic 126 

reaction II, 35 min anoxic reaction III, and 2 min sludge wasting (aeration on). In each 127 

feeding period, 0.5 L of real digestion liquor and 1 L of synthetic digestion liquor were 128 

pumped into SBR-R and SBR-S, respectively, which resulted in a hydraulic retention time 129 

(HRT) of 24 h in both SBRs. In each cycle, 91 and 182 mL of mixed liquor were wasted from 130 

SBR-R and SBR-S, respectively, giving rise to a sludge retention time (SRT) of 11 days in 131 

both SBRs. The reactors were mixed using a magnetic stirrer at 250 rpm in all phases except 132 

for the settling and decanting phases. The mixed liquor temperature was controlled at 33±133 

1 °C using a water jacket, mimicking the temperature typical for the reactors treating 134 

digestion liquor at full-scale WWTPs. During the feeding, aerobic reaction and wasting 135 

phases, aeration was supplied with constant air flow rates, leading to DO concentrations 136 

between 0.4 and 0.6 mg/L (0.5 mg/L on average) in both reactors. The real and synthetic 137 

digestion liquors had a pH of 7.6 and 8.0, respectively. As such, the pH in the SBR-R and 138 

SBR-S increased to around 7.1 and 7.4, respectively, after feeding and then dropped 139 

gradually with ammonium oxidation during a typical cycle. A NaHCO3 solution (1 M) was 140 

added automatically using a programmable logic controller (PLC) when pH dropped below a 141 

pre-determined pH set-point of 6.4. During the settling phase, biomass settling caused a N2O 142 

concentration gradient across the SBR columns. Therefore, anoxic reaction I was introduced 143 

after decanting to equilibrate the N2O concentration across the SBR columns by mixing, in 144 

order to determine N2O production during the settling phase. Anoxic reactions II and III were 145 

introduced to mimic the full-scale nitritation reactors, where the aeration is generally 146 

discontinuous (Gustavsson et al., 2011; Kampschreur et al., 2008). In full-scale operations, 147 

the volumetric ammonium loading rate may vary with time, and thus different aerobic time 148 

may be required to achieve a constant ammonium conversion ratio. Consequently, anoxic 149 

time is often included to keep the cycle time constant. 150 
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The gas and liquid phase N2O in the two SBRs were measured and compared every 3–4 days 151 

using on-line gas analysers and liquid microsensors, further described in section 2.6. Cycle 152 

studies in the two SBRs were carried out every week by analysing the ammonium, nitrite and 153 

nitrate concentrations with a sampling interval of 30 min throughout the 6 h cycle. The mixed 154 

liquor volatile suspended solids (MLVSS) concentrations were monitored once a week. 155 

Fluorescence in-situ hybridization (FISH) was performed to examine the microbial 156 

composition of the two SBRs while both achieved stable performance. The sampling and 157 

measurement procedures are as described in section 2.7.  158 

 159 

2.3. Batch tests to investigate factors leading to higher N2O emission from SBR 160 

receiving real digestion liquor 161 

Based on the N2O results obtained from the two SBRs, we proposed the following potential 162 

causes for the higher N2O emission from SBR-R than from SBR-S: i) lower pH in real 163 

digestion liquor resulted in the higher N2O emission, ii) lower copper concentration in real 164 

digestion liquor led to the higher N2O emission, iii) COD supporting heterotrophic 165 

denitrification contributed to the higher N2O emission from SBR-R, iv) possible inhibitory 166 

substances in real digestion liquor,  which might affect AOB metabolism leading to increased 167 

N2O emission from SBR-R. The inhibitory substances could be divided into two categories: a) 168 

non-adsorbable, soluble substances, therefore would stay in the liquid phase, b) adsorbable 169 

substances, which would adsorb into sludge. Five tests (T1–T5) were designed to test these 170 

potential causes, as summarised in Table 2. In each test, N2O was monitored over two 171 

consecutive cycles (6 h each) and N2O emission factors in each cycle were determined. The 172 

operating conditions of each cycle in these tests were identical to the normal conditions (see 173 

section 2.2), except that the conditions specified in Table 2 were applied. The tests were done 174 

in duplicate. 175 
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 176 

(Approximate position for Table 2) 177 

 178 

2.4. Batch tests to investigate anoxic N2O reduction by heterotrophs  179 

The tests in Table 2 revealed that heterotrophic denitrification was likely a key contributor to 180 

the higher N2O emission in SBR-R. We subsequently designed and carried out two tests to 181 

investigate nitrogen conversions during heterotrophic denitrification. Both tests were done 182 

directly in SBR-R. One test was performed with the same operating conditions as specified in 183 

section 2.2. The other test was conducted under the same conditions with the exception that 184 

N2 stripping was applied at 2 L/min during the anoxic phase. For each test, the anoxic emitted 185 

N2O in the gas phase and the anoxic accumulated N2O in the liquid phase were monitored 186 

over two consecutive cycles. The net anoxic N2O production (emitted amount + accumulated 187 

amount) in both cases was then compared. As the N2 sparging would actively strip off the 188 

dissolved N2O rendering it unavailable (or at least less available) for further reduction to N2, 189 

the comparison of anoxic N2O production with and without N2 sparging would reveal the 190 

extent of anoxic N2O reduction (N2O→N2) during normal anoxic conditions (no stripping). 191 

 192 

2.5. DO control as a potential N2O mitigation strategy 193 

Based on the N2O results obtained from the above batch tests, experiments were designed and 194 

carried out to investigate if aerobic N2O production from SBR-R could be reduced by 195 

increasing DO levels. To this end, the average aerobic DO levels in SBR-R were increased 196 

from 0.5 mg/L (i.e. normal operation) to 0.7, 1.0, 1.8 and 3.0 mg/L, respectively. 197 

Correspondingly, the average aerobic DO levels in SBR-S were also increased to 0.7, 1.0, 1.8 198 

and 3.0 mg/L, respectively, as control tests. At each DO level, N2O was monitored in two 199 

consecutive cycles and net aerobic N2O production was determined 200 
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 201 

2.6. N2O monitoring and emission calculation  202 

The gas phase N2O concentration was analysed with an infrared analyser (URAS 14 Advance 203 

Optima, ABB) and data was logged every 3 s. A t-shaped tubing joint was fitted onto the gas 204 

sampling tube connecting the gas outlet of the reactor and the gas analyser. This allowed the 205 

excess gas flow to escape from the system during aerated phases and gas influx into the 206 

system during non-aerated phases. During aerated phases, the flow rate of the analyser was 207 

always lower than the total flow rate in the reactor. The liquid phase N2O was measured 208 

online using a N2O microsensor (N2O-100, Unisense A/S. Aarhus, Denmark). A two-point 209 

calibration of the microsensor was done before and after each measurement. 210 

 211 

The net N2O produced (mg N2O-N) in the SBRs during each phase in a cycle was calculated 212 

using Eqs. (1) and (2): 213 

Net N2O produced=MN2O-N, liq,end-MN2O-N, liq,begin+N2O emitted                                             (1) 214 

N2O emitted=Σ((CN2O-N,off-gas-CN2O-N,air) ×Qair×∆t)                                                                 (2) 215 

where MN2O-N, liq,end=mass of dissolved N2O at the end of the phase (mg N2O-N); MN2O-N, 216 

liq,begin=mass of dissolved N2O at the beginning of the phase (mg N2O-N); CN2O-N,off-gas=N2O 217 

concentration in the off-gas of the SBR (mg N2O-N/L); CN2O-N,air=N2O concentration in the 218 

air (mg N2O-N/L); Qair=the flow rate of the aeration during an aerated phase (L/h) or gas flow 219 

rate through the analyser during a non-aerated phase (L/h); ∆t=time interval over which the 220 

off-gas N2O concentration was recorded. N2O concentration in the off-gas in mg N2O-N/L 221 

was calculated from ppmv (parts per million volume) recorded by the analyser based on the 222 

ideal gas law at standard pressure (101.3 kPa) and a temperature of 25 °C (i.e. the 223 

temperature of the gas sample).  224 

 225 
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The N2O emission factor (mg N2O-N/mg NH4-N oxidized) was determined based on the total 226 

amount of N2O emitted in the entire 6 h cycle relative to the total ammonium conversion in 227 

the particular cycle (Law et al., 2011; Ahn et al., 2010). N2O emission rate (mg N2O-N/h) 228 

was calculated by multiplying the gas phase N2O concentration by the known gas flow rate. 229 

The volumetric N2O emission rate (mg N2O-N/L/h) was calculated by dividing the N2O 230 

emission rate by the volume of the mixed liquor in each SBR. 231 

 232 

2.7. Chemical and microbial analyses 233 

Mixed liquor samples were taken using a syringe and immediately filtered through disposable 234 

Millipore filter units (0.22 µm pore size) for the analyses of ammonium, nitrite, nitrate and 235 

SCOD. The ammonium, nitrite and nitrate concentrations were analyzed using a Lachat 236 

QuikChem8000 Flow Injection Analyzer (Lachat Instrument, Milwaukee, Wisconsin). The 237 

MLVSS, SCOD and TCOD concentrations were determined according to the standard 238 

methods (APHA, 1998). The HCO3
- concentration was calculated from the total inorganic 239 

carbon (TIC) as a function of pH and temperature (Metcalf and Eddy, 2003). TIC was 240 

determined by the standard method at a total carbon analyser (Tekmar Dohrmann DC-190). 241 

The metal concentration was measured using inductively coupled plasma optical emission 242 

spectrometry (Perkin Elmer ICP-OES Optima 7300DV, Perkin Elmer, USA).  243 

 244 

The method described by Daims et al. (2001) was used to prepare the biomass samples for 245 

FISH analysis. The following probes were used: NSO190 (Mobarry et al., 1996), specific for 246 

Betaproteobacterial AOB; NEU (Mobarry et al., 1996), specific for Nitrosomonas spp.; 247 

Nsv443 (Mobarry et al., 1996), specific for Nitrosospira spp.; NIT3 (Wagner et al., 1996), 248 

specific for Nitrobacter spp.; Ntspa662 (Daims et al., 2000), specific for the Nitrospira genus; 249 

and EUB-mix (EUB338, EUB338-II, and EUB338-III) (Daims et al. 1999), covering most 250 
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bacteria. All the probes were either labelled with FITC, or Cy3, or Cy5. FISH-probed samples 251 

were visualised using a Zeiss LSM 510 Meta confocal laser scanning microscope (Carl Zeiss, 252 

Jena, Germany) and images were collected using a Zeiss Neofluar ×40/1.3 oil objective. 253 

FISH images were analysed using DAIME version 1.3 to determine the biovolume fraction of 254 

the bacteria of interest. 255 

 256 

3. Results and discussion 257 

3.1. Reactor performance and N2O emissions 258 

The two SBRs achieved stable performance two months after their start-up. In both reactors, 259 

50 ± 5% of the NH4
+-N in the feed was converted to NO2

--N at the end of each cycle, 260 

resulting in both effluent ammonium and nitrite concentrations of 430 ± 40 mg N/L in SBR-R, 261 

and 500 ± 50 mg N/L in SBR-S (Figs. 1A and B). Nitrate was below 10 mg N/L at all times 262 

in both reactors (Figs. 1A and B). The effluent TCOD and SCOD were determined to be 245 263 

± 16 and 240 ± 14 mg/L, respectively, for SBR-R, and 25 ± 3 and 16 ± 4 mg/L, respectively, 264 

for SBR-S. The other characteristics of the effluent of SBR-R and SBR-S are shown in Table 265 

1. Microbial community analyses with FISH revealed that the dominant population of AOB 266 

in both SBR-R and SBR-S was Nitrosomonas, at 65± 5% and 80 3% of the entire 267 

microbial communities, respectively. In contrast, NOB were not detected (< 1%) in either 268 

reactor, which supported the negligible nitrate production. The remaining fractions were 269 

believed to be heterotrophs, which were at 35± 5% and 20 3%, respectively, in SBR-R 270 

and SBR-S. The higher fraction of heterotrophs in SBR-R could be attributed to the presence 271 

of COD in the real digestion liquor, whereas in comparison no COD existed in the synthetic 272 

digestion liquor and the heterotrophs in SBR-S could only grow utilizing the bacterial lysate 273 

(Hao et al., 2009). The MLVSS concentrations in SBR-R and SBR-S were 610 30 and 400274 

±

±

±
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30 mg/L, respectively. The higher MLVSS concentration in SBR-R relative to SBR-S was 275 

probably again due to the COD loading to SBR-R.  276 

 277 

(Approximate position for Fig. 1) 278 

 279 

Figs. 1C and D show that N2O production occurred during both non-aerated (settling and 280 

anoxic phases) and aerated phases. In both SBRs, the liquid phase N2O started accumulating 281 

while entering the anoxic phase due to the absence of active stripping, reaching 0.40 and 0.13 282 

mg N2O-N/L in SBR-R and SBR-S, respectively, towards the end of the anoxic phases. The 283 

dissolved N2O was subsequently stripped into the gas phase in the following aerobic phase, 284 

resulting in peaks of volumetric N2O emission rate at around 3.8 and 1.9 mg N/h/L in SBR-R 285 

and SBR-S, respectively, at the start of each aerobic phase. In contrast to the non-aerated 286 

phases, N2O produced in aerobic phases was immediately stripped. Figs. 1C and D clearly 287 

show that the volumetric N2O emission rate and liquid phase N2O concentration in SBR-R 288 

were much higher than those in SBR-S. The N2O emission factor in SBR-R was determined 289 

to be 3.12± 0.16%, which was much higher than that (0.80± 0.09%) in SBR-S, as also 290 

summarised in Table 3. Further analyses indicate that most of the N2O was produced in the 291 

aerobic phase in both SBRs, accounting for around 65% of the net N2O production in the 292 

typical cycles (Figs. 1E and F).  293 

 294 

(Approximate position for Table 3) 295 

 296 

3.2. Identifying key contributing factors for higher N2O emission from SBR receiving 297 

real digestion liquor 298 

±
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In order to investigate the reasons for the higher N2O emission from SBR-R than from SBR-S, 299 

five tests were performed with results presented in Fig. S1 and further summarized in Table 3. 300 

 301 

The N2O emission factor in T1 (synthetic digestion liquor as feed to SBR-R; 1.11± 0.03%) 302 

was comparable (p>0.05) to that in T2 (SBR-R effluent + NH4
+ + HCO3

- as feed to SBR-R; 303 

1.22± 0.08%), and was only slightly higher (p<0.05) than during normal operation for SBR-304 

S (0.80± 0.09%). This indicates that a slightly lower pH (7.6 vs. 8.0), the potential non-305 

biodegradable inhibitory substances, and the lower copper concentration (0.01 vs. 0.20 mg/L) 306 

in real digestion liquor were not the main factors leading to the higher N2O emission from 307 

SBR-R. Since the N2O production in SBR-S was primarily due to the AOB-related pathways 308 

(Law et al., 2011), N2O production in T1 and T2 were believed to be due to AOB. N2O 309 

emission factor increased substantially from 1.11± 0.03% to 2.48± 0.08% while using 310 

synthetic digestion liquor + milk powder (T3) instead of synthetic digestion liquor (T1) as the 311 

feed to SBR-R. This suggests that COD supporting heterotrophic denitrification was likely 312 

the main contributor to the higher N2O emission from SBR-R than from SBR-S, and that the 313 

potential biodegradable inhibitory substances in real digestion liquor did not play a dominant 314 

role in N2O production from SBR-R. The slightly lower (p<0.05) N2O emission factor in T3 315 

(2.48± 0.08%) than under the normal operation of SBR-R (3.12± 0.16%) might be because 316 

the milk powder could not be utilized as efficiently as the COD present in real digestion 317 

liquor, thus a lower N2O emission in T3 was observed. Also, the liquid phase N2O only 318 

accumulated to approximately 0.10 mg N2O-N/L in T1 during the anoxic phase (see Fig. S1-319 

A). In contrast, the liquid phase N2O accumulated to up to 0.50 mg N2O-N/L in T3 over the 320 

anoxic phase (see Fig. S1-C). Given the fact that the only difference between the feed in T1 321 

and in T3 was organic carbon, heterotrophic denitrification was most likely the primary 322 

contributor to the anoxic N2O production. 323 
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 324 

In SBR-S, the use of the SBR-R effluent (T4) resulted in a similar (p>0.05) N2O emission 325 

factor (0.98± 0.09%) to under normal operation (0.80± 0.09%). This confirms that the real 326 

digestion liquor did not contain non-adsorbable, non-biodegradable, soluble inhibitory 327 

substances that would significantly cause N2O emission. In contrast, a significant increase in 328 

N2O emission (from 0.98± 0.09% to 1.91± 0.04%) was observed when real digestion liquor 329 

(T5) rather than SBR-R effluent + NH4
+ + HCO3

- (T4) was used as the feed to SBR-S. This 330 

supports that COD-related heterotrophic denitrification was likely mainly responsible for the 331 

higher N2O emission from SBR-R. However, the N2O emission factor in SBR-S (1.91±332 

0.04%) was lower relative to that in SBR-R (3.12± 0.16%) while the two reactors received 333 

the real digestion liquor. This could be due to the fact that the heterotrophs in SBR-S had a 334 

lower COD utilization efficiency in comparison to the heterotrophs in SBR-R, thereby 335 

leading to a lower N2O emission.  336 

 337 

Previous studies in nitritation systems treating anaerobic sludge digestion liquor indicated 338 

that AOB were the main contributors to N2O production (Wunderlin et al., 2013; Gustavsson 339 

et al., 2011; Kampschreur et al., 2008). In contrast, the above batch test results demonstrated 340 

that the COD in real digestion liquor contributed significantly to the N2O emission, strongly 341 

suggesting the contribution of heterotrophic bacteria to N2O production in nitritation systems 342 

receiving real digestion liquor.  343 

 344 

3.3. Anoxic N2O reduction in SBR receiving real digestion liquor 345 

Net anoxic N2O production with and without N2 sparging in SBR-R was compared in order to 346 

qualitatively investigate the extent of N2O reduction in SBR-R. The net anoxic N2O 347 

production in the presence of N2 sparging (Fig. S1-F) was determined to be 0.68± 0.02 mg 348 
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N2O-N/L, which was comparable (p>0.05) to the net anoxic N2O production without N2 349 

sparging (0.73± 0.10 mg N2O-N/L). This indicates that anoxic N2O reduction probably did 350 

not occur in SBR-R. In other words, all nitrite reduced by heterotrophs in this reactor was 351 

converted to N2O rather than N2. If the sludge in SBR-R did reduce N2O anoxically, the 352 

amount of N2O reduced should be substantially higher in the absence of N2 (much higher 353 

availability of liquid N2O) than in the presence of N2. The enhanced N2O reduction without 354 

N2 sparging would lead to a low net N2O production in this case, which contradicts our 355 

experimental results. One possible explanation for the cessation of N2O reduction is the 356 

inhibition of N2O reduction by free nitrous acid (FNA). Zhou et al. (2008) demonstrated that 357 

N2O reduction was completely inhibited by FNA when the FNA concentration was greater 358 

than 0.004 mg HNO2-N/L. Based on the pH, nitrite concentration and temperature in SBR-R, 359 

the FNA concentrations in SBR-R were determined according to Anthonisen et al. (1976), to 360 

have varied between 0.05 and 0.32 mg HNO2-N/L during a typical cycle. While the 361 

inhibitory threshold reported in Zhou et al. (2008) was for a denitrifying phosphorus removal 362 

sludge and hence may not be directly applicable to our sludge, the FNA range in our reactors 363 

was 1 – 2 orders of magnitude higher, and is expected to be seriously inhibitory to N2O 364 

reduction by the heterotrophic bacteria in the sludge.  365 

 366 

3.4. Effect of DO concentrations on aerobic N2O production 367 

The results reported above suggest that i) the increased N2O was due to heterotrophic nitrite 368 

reduction and ii) N2O produced was not reduced to N2 by the sludge likely due to FNA 369 

inhibition. With the above, we hypothesised that N2O emission could be reduced by 370 

inhibiting nitrite reduction. A higher DO would help to achieve this goal (Hiatt and Grady, 371 

2008). Therefore, a series of tests at different DO levels were conducted to: i) further verify 372 
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that heterotrophic reduction was primarily responsible for the higher N2O emission in SBR-R 373 

and ii) develop an N2O mitigation strategy. 374 

 375 

The effect of DO concentration on aerobic N2O production in both SBR-S and SBR-R is 376 

shown in Fig. 2 and Fig. S2. The aerobic N2O production in SBR-S was not significantly 377 

affected (p>0.05) by the tested DO concentrations (between 0.5 and 3.0 mg/L) and always 378 

remained at 0.52%± 0.02 of the NH4
+-N oxidized (see Fig. 2). This indicates that DO did not 379 

have a significant effect on the AOB-induced aerobic N2O production among the tested DO 380 

levels (0.5-3.0 mg/L), given the fact that AOB play a dominant role in N2O production in 381 

SBR-S (Law et al., 2011). Fig. S2-(A-D) indicates that the aerobic N2O production rate 382 

increased with increased DO concentration. Fig. S2-(A-D) also indicates that the specific 383 

AOB activity increased with increased DO concentration, as reflected by the fact that a 384 

shorter aerobic duration was required to achieve 50% ammonium conversion. This suggests 385 

that the increased specific AOB activity may be the reason for the increased aerobic N2O 386 

production rate. This is in agreement with that reported by Law et al. (2011). Unfortunately, 387 

the specific AOB activity could not be accurately determined due to the varying pH (between 388 

6.4 and 7.4) during a typical cycle, which would result in varying specific AOB activity (Law 389 

et al., 2011). In contrast, the aerobic N2O production in SBR-R decreased substantially (from 390 

2.00± 0.05% to 0.68± 0.03% of the NH4
+-N oxidized) (p<0.05) when DO increased from 391 

0.5 to 1.0 mg/L, and then remained almost unchanged (p>0.05) with the further increase in 392 

DO level up to 3 mg/L (0.54± 0.13% of the NH4
+-N oxidized at a DO level of 3.0 mg/L). 393 

The decreased N2O emission at the higher DO levels was most likely due to the fact that 394 

higher DO inhibits heterotrophic nitrite reduction (Hiatt and Grady, 2008), thereby decreasing 395 

N2O production. Although a higher DO is also expected to inhibit N2O reduction, this does 396 

not necessarily add further to the already strong FNA-related inhibition of N2O reduction. 397 
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The decreased N2O emission at higher DO levels further confirms our finding that COD-398 

supported heterotrophic denitrification played a vital role in the N2O production in a 399 

nitritation system receiving real digestion liquor. The comparable (p>0.05) aerobic net N2O 400 

production among SBR-S (0.52± 0.02% of the NH4
+-N oxidized), SBR-R at DO=1.0 mg/L 401 

(0.68± 0.03% of the NH4
+-N oxidized) and SBR-R at DO=3.0 mg/L (0.54± 0.13% of the 402 

NH4
+-N oxidized) indicates that, heterotrophic nitrite denitrification in SBR-R was largely 403 

suppressed when DO concentration was higher than 1.0 mg/L.  404 

 405 

(Approximate position for Fig. 2) 406 

 407 

3.5. Reducing N2O emission in nitritation systems receiving nitrogen-rich wastewater 408 

This study showed, for the first time, that COD-supported heterotrophic denitrification plays 409 

an important role in the N2O production in nitritation systems. The study further showed that 410 

increasing DO from 0.5 to 1.0 mg/L (or above) significantly decreases aerobic N2O 411 

production (from 2.00± 0.05% to 0.68± 0.03% and 0.54± 0.13%) due to the suppression of 412 

heterotrophic nitrite reduction. Therefore, operating a nitritation reactor at a DO of 1 mg/L or 413 

above is a potential strategy for reducing N2O emission from nitritation systems receiving 414 

nitrogen-rich wastewater.  415 

 416 

While increasing DO to mitigate N2O emission, energy consumption will increase 417 

accordingly, thus increasing indirect CO2 emission. To evaluate the total operational carbon 418 

footprint of implementing the N2O mitigation strategy via increasing DO, we performed a 419 

desktop scaling-up study on a full-scale WWTP with a population equivalent (PE) of 350,000. 420 

We assumed that an SBR with a working volume of 250 m3 was used to treat the anaerobic 421 

sludge digestion liquor at an average ammonium load of 250 kg NH4
+-N/d. The study was 422 
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performed with DO concentrations of 0.5 and 1.0 mg/L, based on the N2O emission data 423 

obtained in this study. The total operational carbon footprints in the two cases are compared 424 

in Table 4. With the increase of DO from 0.5 to 1.0 mg/L, the total operational carbon 425 

footprint is estimated to decrease by 60%. The decreased operational carbon footprint can be 426 

attributed to the decreased N2O emission despite the additional CO2 emission associated with 427 

the increased aeration. Therefore, mitigating N2O emissions via increasing DO could reduce 428 

the total operational carbon footprint, indicating it has a potential to be developed into a 429 

practical strategy. However, higher DO would also increase energy costs. The exact 430 

economic outcome will therefore depend on the price tag for carbon emissions. With the 431 

current energy price in Australia at $0.16 /kWh, the costs would be balanced by a carbon 432 

price of $2.4 /tonne CO2-eq.  433 

 434 

(Approximate position for Table 4) 435 

 436 

4. Conclusions 437 

The causes for the much higher N2O emissions from nitritation systems receiving real 438 

anaerobic sludge digestion liquor than from those receiving synthetic digestion liquor were 439 

investigated. The main conclusions are: 440 

 441 

• Heterotrophic denitrification supported by the organic carbon present in real digestion 442 

liquor is the key contributor to the higher N2O emission from nitritation systems 443 

receiving real anaerobic digestion liquor. 444 

• Heterotrophic denitrification plays an important role in N2O emission from nitritation 445 

systems receiving anaerobic sludge digestion liquor. 446 

• Heterotrophic nitrite reduction in nitritation systems receiving anaerobic digestion 447 
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liquor likely stopped at N2O (rather than N2), with a hypothesised cause being free 448 

nitrous acid inhibition. 449 

• DO at 1 mg/L or above suppress heterotrophic nitrite reduction thus reduce aerobic 450 

heterotrophic N2O production. We recommend that DO in a nitritation system 451 

receiving anaerobic sludge digestion liquor should be maintained at approximately 1 452 

mg/L to minimise N2O emission.  453 

 454 
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Table 1 - Characteristics of the influent and effluent of both SBR-R and SBR-S (with standard errors where applicable) 

Parameter Influent of SBR-R Influent of SBR-S Effluent of SBR-R Effluent of SBR-S 

NH4
+-N (mg/L) 861 ± 13 1,000 430 ± 40 500 ± 50 

HCO3
- (mg/L) 3,300 ± 36 4,347 Not determined Not determined 

Total COD (TCOD) (mg/L) 345 ± 15 Below detection limit 245 ± 16 25 ± 3 

Soluble COD (SCOD) (mg/L) 285 ± 6 Below detection limit 240 ± 14 16 ± 4 

Cu (mg/L) 0.01 ± 0.01 0.20 0.01 ± 0.01 0.07 

Iron (mg/L) 1.65 ± 0.62 0.52 0.39 ± 0.16 0.24 

Zn (mg/L) 0.03 ± 0.01 0.25 0.01 ± 0.01 0.08 

Mn (mg/L) 0.03 ± 0.01 0.71 0.01 ± 0.01 0.25 

Co (mg/L) 0.02 ± 0.01 0.20 0.02 ± 0.01 0.07 

As (mg/L) 0.02 ± 0.01 Below detection limit 0.02 ± 0.01 Below detection limit 

Cr (mg/L) 0.02 ± 0.01 Below detection limit 0.02 ± 0.01 Below detection limit 

Ni (mg/L) 0.03 ± 0.01 Below detection limit 0.02 ± 0.01 Below detection limit 

pH 7.6 ± 0.1 8.0  6.4 ± 0.1 6.4 ± 0.1 
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Table 2 - Summary of experimental design 

Reactor Test Key condition Aim 

SBR receiving real 

digestion liquor 

(SBR-R) 

Normal operation Feed: Real digestion liquor  Control test 

T1 
Sludge was washed using SBR-S effluent; 

Feed: Synthetic digestion liquor 

To evaluate the effect of adsorbable substances in real 

digestion liquor on N2O emission 

T2 Feeda: SBR-R effluent + NH4
+ + HCO3

- 

To evaluate the effect of lower pH in the feed, possible 

non-biodegradable inhibitory substances and lower Cu 

level in real digestion liquor on N2O emission 

T3 Feed: Synthetic digestion liquor + milk powderb 
To evaluate the effect of COD and possible 

biodegradable inhibitory substances on N2O emission 

SBR receiving 

synthetic digestion 

liquor (SBR-S) 

Normal operation Feed: Synthetic digestion liquor Control test 

T4 
Sludge was washed using SBR-R effluent; 

Feeda: SBR-R effluent + NH4
++HCO3

-  

To evaluate the effect of non-adsorbable, non-

biodegradable, soluble substances in real digestion 

liquor on N2O emission 

T5 
Sludge was washed using SBR-R effluent; 

Feed: Real digestion liquor 
To confirm the findings from the above tests  

a Biodegradable COD (bCOD) was expected to be quite low in SBR-R effluent. In T2 and T4, concentrated NH4HCO3 and NaHCO3 solution was added to the 

feed to make it contain a similar level of NH4HCO3 to that in real and synthetic digestion liquor, respectively. 
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b Milk powder resulted in a bCOD concentration of around 100 mg/L in the feed, which was to roughly mimic the bCOD concentration in real digestion liquor. 

1 g milk powder contains around 0.3 g protein, 0.3 g fat and 0.4 g carbohydrate. 
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Table 3 - N2O emission factors in different tests (with standard errors) 

Reactor Testa 
N2O Emission factor 

(mg N2O-N/mg NH4
+-N oxidized) 

SBR receiving real 

digestion liquor (SBR-R) 

Normal operation 3.12 ± 0.16% 

T1 1.11 ± 0.03% 

T2 1.22 ± 0.08% 

T3 2.48 ± 0.08% 

SBR receiving synthetic 

digestion liquor (SBR-S) 

Normal operation 0.80 ± 0.09% 

T4 0.98 ± 0.09% 

T5 1.91 ± 0.04% 

a See Table 2 for the testing conditions 
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Table 4 - Comparison of operational carbon footprint from nitritation systems operated at 

DO concentrations of 0.5 and 1.0 mg/L on a desktop scaling-up full-scale WWTP 

Parameter DO=0.5 mg/L DO=1.0 mg/L 

Aerobic N2O production 

(mg N2O-N/mg converted-N (%)) 
2.00 0.68 

Annual N2O emission (kg/y) 2,870 980 

CO2 equivalent emissions for N2O emissions 

(kg CO2-eq/y)a 
760,000 260,000 

Aeration flow rate (m3/d)b 96,000 104,000 

Annual energy requirements for aeration (kwh/y) 93,700 102,000 

CO2 equivalent emissions for aeration 

(kg CO2-eq/y)c  
51,000 55,500 

Annual operational carbon footprint (kg CO2-eq/y) 811,000 315,500 

Annual decrease in operational carbon footprint  

at DO=1.0 mg/L (kg CO2-eq/y) 
(811,000-315,500)/811,000=60% 

a 0.544 kg CO2-eq/kWh (UKWIR, 2008) 

b Aeration flow rates shown here were scaled up from lab-scale in proportion to reactor 

volume  

c 265 kg CO2-eq/kg N2O
 (IPCC, 2013) 
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Fig. 1 - (A and B) Experimental profiles of ammonium, nitrite, nitrate, DO and pH; (C and D) 

Volumetric N2O emission rate and liquid phase N2O profiles over a typical 6 h cycle; and (E 

and F) Net N2O produced and emitted during settling, anoxic and aerobic phases of a typical 

cycle. (A, C and E: SBR receiving real digestion liquor; B, D and F: SBR receiving synthetic 

digestion liquor). Cycle phases in sequence: 25 min settling, 8 min decanting, 5 min anoxic 

reaction I, 5 min feeding I, 120 min aerobic reaction I, 35 min anoxic reaction II, 5 min 

feeding II, 120 min aerobic reaction II, 35 min anoxic reaction III, and 2 min sludge wasting 
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 Fig. 2 - Effect of DO concentration on aerobic N2O production 
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► Heterotrophic denitrification plays a crucial role in N2O emission. 

► Heterotrophic nitrite reduction likely stopped at N2O rather than N2. 

► DO at 1 mg/L or above reduce aerobic heterotrophic N2O production. 

► DO should be about maintained at 1 mg/L to minimise N2O emission.  
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Heterotrophic denitrification plays an important role in N2O production 1 

from nitritation reactors treating anaerobic sludge digestion liquor 2 

 3 
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Fig. S1 - Volumetric N2O emission rate and liquid phase N2O profiles under different testing 20 

conditions. A: T1; B: T2; C: T3; D: T4; E: T5; F: N2 stripping during the anoxic phase of 21 

SBR-R. See Table 2 for the explanations of T1-5. Cycle phases in sequence: 25 min settling, 22 

8 min decanting, 5 min anoxic reaction I, 5 min feeding I, 120 min aerobic reaction I, 35 min 23 

anoxic reaction II, 5 min feeding II, 120 min aerobic reaction II, 35 min anoxic reaction III, 24 

and 2 min sludge wasting. DO and pH profiles in the cases of T2, T5 and N2 stripping are 25 
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similar to those in Fig. 1C, and DO and pH profiles in the cases of T1, T3 and T4 are similar 26 

to those in Fig. 1D. 27 

 28 
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Fig. S2 - Volumetric N2O emission rate and liquid phase N2O profiles at different aerobic DO 29 

levels. A: DO=0.70 mg/L in SBR-S; B: DO=1.00 mg/L in SBR-S; C: DO=1.80 mg/L in 30 

SBR-S; D: DO=3.00 mg/L in SBR-S; E: DO=0.70 mg/L in SBR-R; F: DO=1.00 mg/L in 31 

SBR-R; G: DO=1.80 mg/L in SBR-R; H: DO=3.00 mg/L in SBR-R. The aerobic phase began 32 

when N2O emission rate started increasing, and the aerobic phase ended when liquid phase 33 

N2O started accumulation. The duration of the aerobic period decreased with increased DO 34 

levels to achieve 50% ammonium conversion and to avoid excessive aeration since the 35 

specific AOB activity increased with the increased DO levels.  36 
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