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Abstract 

Human hemoglobin (2.2×10-4 M) detection has been demonstrated on AgO surface 

enhanced Raman scattering (SERS)-substrates. Hot spots that enable detection of 

hemoglobin using SERS are formed at the silver nanoclusters induced by the photo-

activation of AgO under Raman excitation wavelength (633 nm). Higher enhancement is 

observed at integration time (20 s) and threshold energy density (12 MJ/cm2). At higher 

excitation energy densities photo-chemical (or photo-thermal) activity of the hemoglobin 

molecules are dominated. These results are critical to the future use of AgO films as 

SERS substrates for the detection of biological molecules. 
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1. Introduction 

Surface-enhanced Raman scattering (SERS) is an extraordinary technique for 

detecting and characterizing biological and biomedical molecules [1, 2]. Hemoglobin is 

an oxygen transport protein in the human blood and has a major clinical significance. The 

early detection and structural information with respect to any changes in the blood caused 

by the diseases, infections are of very importance. Nie and Emory [3] and Kneipp and co-

workers [4, 5] were demonstrated that using colloidal silver nanoparticles the effective 

Raman cross section of small aromatic molecules could be increased by 14–15 orders of 

magnitude. Even though the chemical molecule detection has been reported on silver 

oxide SERS substrates [6, 7, 8], our focus of the present letter is the successful 

demonstration of biological molecule detection on AgO based SERS substrates. Early 

studies on hemoglobin detection by Xu et al [9] demonstrated up to single molecule level 

(1×10-11 M) by dispersing with the colloidal silver nanoparticles. Kang Y et al [10] have 

studied SERS studies of oxy and de-oxy hemoglobin on silver films prepared by 

electrolysis. Enhancement in the Raman signal can be achieved with silver based 

nanostructures because silver has a lower dielectric loss due to inter-band damping of 

plasmon resonance when compared to other plasmonic metal elements [11, 12]. However 

due to silver being highly reactive to the ambient species, it is often a challenge to 

prepare stable and reproducible silver based SERS substrates.  

In this letter we present the detection of human hemoglobin (hHb) on AgO based SERS 

substrates. It is easy to prepare AgO SERS substrates using any thin film deposition 

method. AgO photo-activation process is the underlying mechanism to enable hot spots 



of silver nanoclusters under Raman excitation. We identified the critical excitation energy 

density for the detection of hHb beyond which the structural changes of hHb molecule 

occur due to photo-chemical and /or photo-thermal reactions.  

 

2. Experimental section 

AgO SERS substrates were prepared using the pulsed laser deposition (PLD) 

method [13, 14]. Hemoglobin molecules of three different concentrations (2.2×10-4 M, 

5.8×10-4 M and 1.3×10-3 M)  were prepared; micro drops of these dilutions are dried on 

AgO substrates a few minutes before conducting the SERS measurements. Complete 

details on the substrate deposition and hemoglobin separation process are provided in the 

supplementary material [15, 16]. SERS studies are conducted at room temperature using 

a Jobin Yvon HR 800UV Raman spectrometer with 633 nm as an excitation wavelength. 

Spectral resolution of 0.6 cm-1 is achieved with a holographic grating of 1800 lines/mm 

and slit opening of 100 µm. Scanning electron microscope (SEM) images were collected 

on a high resolution Raith 150 Two instrument.  

 

3. Results and discussion 

Fig 1 shows the normal Raman spectra of hHb molecules of various 

concentrations dried on plain glass cover slips. All spectra are at an equal acquisition time 

of 20 s. The detection limit of hHb molecules with normal Raman spectroscopy is 

observed for the concentration of 2.2×10-4 M by noticing the absence of spectral features. 

However for the higher concentrations we can observe the spectral modes of hHb (nearly 

at 755, 1252 and 1576 cm-1) agreeing well with the reported literature [9, 10].  



 

 

FIG. 1. Raman spectra of human hemoglobin of various dilutions dried on glass cover 
slips. 
 
 
 
In order to detect hemoglobin on AgO SERS substrates we used the lowest concentration 

2.2×10-4 M hHb which is undetectable by the normal Raman method. The detection 

process using AgO SERS substrates is quite different from the normal SERS methods. 

Under a normal SERS experiment, the detection molecules are directly sitting on the 

surface of metal plasmonic nanostructures, because of which the enhancement in the 

molecule signal increases. In the case of AgO based SERS studies, though the geometry 

of the substrate and detecting molecule is the same, the substrate is purely AgO and it is 

highly insulating in nature. Preparation of AgO SERS substrates is simple and 

reproducible using any thin film deposition method. In contrast the usual commercial 



SERS substrates of nanostructure and pattern silver are involved rich process 

technologies.    

Under Raman excitation, the AgO SERS substrate undergoes photo-activation to produce 

silver nanoclusters. These silver nanoclusters then act as hot spots in enhancing the 

Raman signal of any nearby chemical or biological detecting molecule. Unlike in normal 

SERS studies the excitation laser here is also involved in creating hot spots. Detection is 

possible with AgO due to unique nature of photosensitivity and it can easily decompose 

into silver nano clusters by the visible light interaction.    

 

 

FIG. 2. SERS spectra of 2.2×10-4 M human hemoglobin dried on AgO substrate, recorded 
from 0 min (immediately after laser incident) to 8 min irradiation time intervals using 633 
nm laser light at 0.6 MW/cm-2 with 20 sec data acquisition time for each spectra collected 
in the range 300-1750 cm-1.  
 

Fig 2 shows the SERS spectra of the lowest concentration hHb molecules on the AgO 

SERS substrate. The laser energy density is the critical parameter for the photo-activation 



process to occur in AgO. We chose a lower energy wavelength of 633 nm as an excitation 

laser light and performed the photo-activation process of the AgO substrate without any 

hemoglobin on the surface at various laser energy densities. It was determined that 0.6 

MW/cm-2 with the total spectra acquisition time of 20 s is necessary to photo-activate the 

AgO substrate. Complete details of the AgO photo-activation experiment is discussed in 

the supplementary material [15].  Using these critical laser parameters we have collected 

the SERS spectra of hHb molecules dried on the AgO substrate.  

In order to understand the effect of silver nano cluster (photo-activated AgO) on the 

detection molecule we collected spectra at five different time intervals from 0 min 

(immediately after laser incidence) to 8 min. As seen in Fig 2, spectra collected 

immediately after laser incidence hHb Raman modes are sighted; whereas the same 

concentration of hHb on a bare glass cover slip (without AgO SERS substrate) is 

undetectable (as observed in Fig. 1). This enhancement in the Raman signal of hHb is 

possible only when the hot spots are developed near the hHb molecules on the AgO 

surface under the 633 nm excitation laser spot. Here the hot spots are the silver 

nanoclusters created by the photo-activation of AgO. In the next series of spectra we can 

notice a slight variation in the relative spectral intensities of the hHb modes without 

changing the Raman shift.  

 



 

FIG. 3. SERS intensity variation of 2.2×10-4 M human hemoglobin on AgO substrate 
irradiated using 633 nm laser light at 0.6 MW/cm-2 at different collection time intervals.     
 

Variation in intensity of hHb modes at different collection intervals are plotted in Fig 3. 

The non linear variation in the intensity of the modes corresponds to the dynamic 

variation of the hot spot (size of silver nanoclusters) near the hHb molecule under the 

excitation laser interaction spot. Under the interaction of light, properties of the dielectric 

media present in the vicinity of the silver nanocluster are highly sensitive due to the 

plasmonic fields of the cluster [17].  

In order to further understand the nature of the hotspot, we have recorded the SEM image 

of the AgO SERS substrate immediately after 8 min of irradiation.  

 



 

 

FIG. 4. SEM image of 8 min irradiated (using 633 nm laser light at 0.6 MW/cm-2) AgO 
SERS substrate having hHb (2.2×10-4 M) dried on the surface. Inset of the figure shows 
the histogram of silver nanoclusters distributed on the same AgO SERS substrate.   
 

Fig 4 shows the SEM image of an 8 minute irradiated AgO SERS substrate. From the 

SEM image we can observe that the size distribution of silver clusters ranged from10 nm 

to 70 nm.  These silver nanoclusters yield the electromagnetic enhancement under laser 

interaction and are responsible for the amplification of hHb Raman signal. To amplify the 

hHb Raman signal further we increased laser energy density to 1.2 MW/cm2. The 

position and relative intensities of the hHb Raman modes drastically changed and some 

of the modes completely disappear. The change in Raman modes implies the structural 

change of the hHb molecule. This may be due to the photo-chemical or photo thermal 

processes occurring due to high laser energy density. High intensity SERS experiments 

are discussed in the supplementary material [15]. These findings indicate that the 

threshold energy density should be maintained while detecting biological molecules on 

AgO SERS substrates. As the AgO photo-activation is a dynamic process under the laser 



interaction spot, in-situ real time experiments must be conducted in order to rationalize 

the Raman modes by correlating with respect to the dynamic size distribution. Further 

experiments are in progress to understand the complete process of AgO photo-activation.    

 

4. Conclusions 

In conclusion, we demonstrated the application of AgO SERS substrates for the 

detection of biological samples. Raman modes of the 2.2×10-4 M human hemoglobin on 

the AgO SERS substrates were identified. The results indicate that a photo-activation 

process of AgO is responsible in creating hot spots (nano silver clusters) which further 

contribute to the enhancement of hHb Raman signal. Optimum laser (633 nm) threshold 

intensity (0.6 MW/cm2) and acquisition times (20 s) are identified for the AgO photo-

activation by conducting photo-activation studies on Raman spectroscopy. These are the 

important parameters for the realization of SERS detection of biological samples using 

AgO substrates.   
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Figure Captions 

Fig.1. Raman spectra of human hemoglobin of various dilutions dried on glass 

cover slips. 

 

Fig.2. SERS spectra of 2.2×10-4 M human hemoglobin dried on AgO substrate, 

recorded from 0 min (immediately after laser incident) to 8 min irradiation time 

intervals using 633 nm laser light at 0.6 MW/cm-2 with 20 sec data acquisition 

time for each spectra collected in the range 300-1750 cm-1. 

 

Fig.3. SERS intensity variation of 2.2×10-4 M human hemoglobin on AgO 

substrate irradiated using 633 nm laser light at 0.6 MW/cm-2 at different collection 

time intervals.     

 

Fig.4. SEM image of 8 min irradiated (using 633 nm laser light at 0.6 MW/cm-2) 

AgO SERS substrate having hHb (2.2×10-4 M) dried on the surface. Inset of the 

figure shows the histogram of silver nanoclusters distributed on the same AgO 

SERS substrate.  

 
 
The present manuscript has the following highlight points for the consideration of review: 
 

 Novel silver oxide surface enhanced Raman scattering substrates 
 

 Hemoglobin detection 
 

 Threshold energy density of silver oxide photo-dissociation 
 

 Optimized conditions for the detection of hemoglobin on silver oxide SERS 
substrates 

 
 

 
 




