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Abstract  15 

Sorghum and maize waxy starches were hydrophobically modified with octenylsuccinic 16 

anhydride (OSA) and treated with enzymes before being used to emulsify β-carotene 17 

(beta,beta-Carotene) and oil in water. Enzyme treatment with β-amylase resulted in emulsions 18 

that were broken (separated) earlier and suffered increased degradation of β-carotene, 19 

whereas treatment with pullulanase had little effect on emulsions. Combinations of 20 

surfactants with high and low hydrodynamic volume (Vh) indicated that there is a relationship 21 

between Vh and emulsion stability. Degree of branching (DB) had little direct influence on 22 

emulsions, though surfactants with the highest DB were poor emulsifiers due to their reduced 23 

molecular size. Results indicate that Vh and branch length (including linear components) are 24 

the primary influences on octenylsuccinylated starches forming stable emulsions, due to the 25 

increased steric hindrance from short amphiphilic branches, consistent with current 26 

understanding of electrosteric stabilization. The success of OSA-modified sorghum starch 27 

points to possible new products of interest in arid climates.  28 

Keywords  29 

octenylsuccinic anhydride starch; structural modification; emulsion stability; critical 30 

aggregation concentration; chemical degradation 31 

32 
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1. Introduction 33 

Starches modified with octenylsuccinic anhydride (OSA) have been produced for many 34 

years for their useful surfactant properties. The starch most often used as the basis of 35 

octenylsuccinylated (OS) starch is waxy maize starch. Starches from other botanical sources 36 

may give products with different properties. Sorghum has been recognized as an important 37 

resource in drier climates such as Australia (Jordan, Hunt, Cruickshank, Borrell & Henzell, 38 

2012), and hence more tolerant to climate change. Several varieties have been bred to produce 39 

waxy starches with similar properties to waxy maize starch, but as yet there are no value-40 

added applications of these as modified starches. 41 

This paper examines the modification of waxy sorghum and waxy maize starch with OSA, 42 

which is used to create an amphiphilic molecule with surfactant properties. There is some 43 

uniformity in research done on the optimal OSA modification reaction conditions for the 44 

many starches (Sweedman, Tizzotti, Schäfer & Gilbert, 2013), since the original conception 45 

of the process by Caldwell & Wurzburg (1953). This paper focuses on the structural 46 

similarities between the widely used waxy maize starch and the waxy sorghum starch of 47 

interest, and how and why these structural characteristics affect the resultant molecules’ 48 

surface activity.  49 

Elsewhere, we have highlighted the importance of branch structure in the colloidal stability 50 

of OS starch stabilized emulsions and chemical stability of substances within the oil phase, as 51 

well as the importance of molecular size, measured by hydrodynamic radius (Rh) or 52 

hydrodynamic volume (Vh), for emulsion stability (Sweedman, Hasjim, Schaefer & Gilbert, 53 

submitted). The structural characteristics of waxy sorghum and waxy maize starches have 54 
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previously been found to be quite similar (Taylor & Emmambux, 2010), mainly due to the 55 

former’s non-starch components. In terms of functional analysis, one might expect the two 56 

starch species to behave similarly, and any difference is likely to be the result of more subtle 57 

architecture of the starch molecules. 58 

OS starch has been previously compared to other stabilizers in the emulsion and chemical 59 

stability of β-carotene emulsions; however, these studies only used one commercial type of 60 

OS starch, which ignores the huge range of structures that may influence activity (Mao, Xu, 61 

Yang, Yuan, Gao & Zhao, 2009; Mao, Yang, Xu, Yuan & Gao, 2010). In one set of studies 62 

(Mao, Xu, Yang, Yuan, Gao & Zhao, 2009), the OS starch compared unfavorably against 63 

Tween-20 (T20), decaglycerol monolaurate (DML), and whey protein isolate (WPI). After 12 64 

days at 55 °C, they measured levels of just over 20% of initial β-carotene content compared to 65 

around 80, 40 and 40% for WPI, DML and T20, respectively. Strangely, the same samples 66 

subjected to similar tests (reported a year later (Mao, Yang, Xu, Yuan & Gao, 2010)) 67 

produced different results, with OS starch being comparable with T20 at ~55%, WPI strongly 68 

protective at ~70% and DML highly unfavorable at ~15%. The differences in these studies. 69 

which include some of the same authors, may perhaps highlight the great variability that 70 

occurs in emulsion studies due to the inherent instability of emulsions, but it also emphasizes 71 

that changes in the results can come from any number of variables. It should be noted that all 72 

these studies involved accelerated breakdown of the β-carotene (due to oxidation because of 73 

ambient air) in order to provide practicable analysis, whereas lower temperatures and the 74 

inclusion of anti-oxidants would facilitate storage of commercial products containing these 75 

ingredients.  76 

These OSA-modified starches are examples of electrosteric stabilizers, wherein colloidal 77 

stability (and hence emulsification properties) are (with some simplification) from two 78 
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effects: the enthalpic repulsion caused by the charged groups, and the entropic repulsion 79 

caused by the difficulty in compressing the water-soluble moieties when colloidal entities 80 

come too close. These precepts are useful in understanding the observations in this study. 81 

This paper is the first to examine specifically effects of OS starch’s molecular structure on 82 

emulsion stability and chemical stability of the oil phase, isolated from other constitutive 83 

properties like amylose content. Maintaining the oxidative stability of the oils suspended in 84 

emulsion systems is important for human consumables, both for quality assurance and 85 

because the breakdown products of lipid oxidation like aldehydes and ketones (Mordi, 1993) 86 

may be harmful to humans in higher doses (Siems et al., 2005). Oxidation of lipid-soluble 87 

compounds other than β-carotene have been investigated previously (Scheffler, Wang, 88 

Huang, San-Martin Gonzalez & Yao, 2010). The last-named study found the addition of ε-89 

polylysine improved the stability of lipids in emulsions stabilized by highly branched OS 90 

phytoglycogen; another attested to the superior surfactant ability of OS phytoglycogen over 91 

OS amylopectin (Scheffler, Huang, Bi & Yao, 2010). Nevertheless, phytoglycogen is unlikely 92 

to supersede amylopectin as the most popular substrate for industrial OS polysaccharides, due 93 

to the substantial difference in their availabilities. What these studies do emphasize is that 94 

more highly branched parent polysaccharides are generally superior to less branched ones, 95 

which is consistent with research on amylose content (Song, Zhao, Li, Fu & Dong, 2013) and 96 

industry (empirical) preferences in this field. The fundamental reason for this is that the more 97 

highly branched water-soluble moieties in a surfactant are, the less compressible they are as a 98 

result, which by the generally accepted model of steric stabilization (Napper, 1983) increases 99 

their stabilizing power. 100 

As pointed out by a reviewer, the heterogeneous nature of the modification process means 101 

that most of the modified starches are at the surface of the granule, while those in the interior 102 
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have no or little modification. Thus the emulsification properties examined here are those 103 

arising from starch molecules located towards the surface of the granule. Now, starch 104 

molecular structure does not vary strongly with location in the granule (Angellier-Coussy, 105 

Putaux, Molina-Boisseau, Dufresne, Bertoft & Perez, 2009), and thus structure-property 106 

correlations deduced in this paper should be generally applicable, irrespective of the location 107 

of that molecule in the granule. 108 

The degree of branching, DB, is inversely related to average chain length, but this latter, 109 

being a single measure, does not say anything about the underlying chain-length distribution: 110 

quite different distributions can have the same DB while subtleties of structure-property 111 

relations may result in significantly different properties. The goal of the current work is to 112 

extricate those structural aspects of OS starches from each other, so as to determine what 113 

properties of highly branched parent starches play the greatest role in their surfactant function. 114 

This is achieved by taking samples of specific, known and consistent architecture, and 115 

subjecting them to controlled enzymatic transformations of the desired qualities. These data 116 

also enable mechanistic explanations for the results to be deduced.  117 

2. Methods and materials 118 

2.1. Materials 119 

Waxy sorghum grains (A1*F_B004215) were gifts from the Queensland Department of 120 

Agriculture, Fisheries and Forestry (DAFF). Mazaca waxy maize was purchased from 121 

Penford (Tamworth, NSW, Australia) and used as received. Hydrochloric acid (37%, 122 

analytical reagent) was from Lab Scan Analytical Sciences (Patumwan, Bangkok, Thailand). 123 

Pyrene (Sublimed, 99%), β-carotene (Type I, synthetic > 93%, C9750), sodium hydroxide 124 

(reagent grade, ≥98%, pellets, anhydrous), OSA (97% mixture of cis and trans, 416487, 125 
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Batch #: 06515DA), β-amylase (Type II-B, from barley), protease from Streptomyces griseus 126 

(P5147), LiBr (Reagent Plus, ≥ 99%), DMSO-d6 (99.5% atom D) and TFA-d1 (99% atom D) 127 

were purchased from Sigma Aldrich (Castle Hill, NSW, Australia) and used as received. All 128 

water was Milli-Q™ ultra-pure deionized with a resistivity of 18.2 MΩ cm. DMSO (GR for 129 

analysis ACS), methanol, ethanol and isopropanol were purchased from Merck & Co., Inc. 130 

(Kilsyth, VIC, Australia). Isoamylase was from Pseudomonas sp. (210 U mg–1 (40 °C, pH 131 

3.5, oyster glycogen), Megazyme, Wicklow, Ireland). Other chemical reagents are analytical 132 

grades.  133 

2.2. Preparation of samples 134 

2.2.1. Isolation of waxy sorghum starch 135 

Waxy sorghum grain was wet-milled as described previously (Sweedman, Hasjim, 136 

Tizzotti, Schäfer & Gilbert, 2013). To loosen protein structures, grain (1 kg) was washed 137 

thoroughly with water and soaked overnight in sodium bisulfite solution (9 g L–1). This was 138 

blended and passed through a 150 μm sieve. Permeate slurry was washed three times with 139 

water and subsequent centrifugation (3000 g, 3 min), then treated with protease for 1.5 h, 140 

cleaned and dried as described in (Sweedman, Hasjim, Tizzotti, Schäfer & Gilbert, 2013). A 141 

crude starch/protein material (csp, as described later) was taken from the upper layer in the 142 

final stage of pelleted starch. This was dried at 65 °C in the same manner as the starch and 143 

used in samples “SP” as described later. The final starch and csp products were analysed by 144 

combustion using a LECO (Baulkham Hills, NSW) TruSpec CHN analyser and found to have 145 

nitrogen contents of 0.31 and 3.14 wt%, which given a conversion factor of 5.65 (Mosse, 146 

1990) equates to crude protein contents of 1.75 and 17.74 wt%, respectively.  147 
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2.2.2. Acid hydrolysis in alcohol  148 

Acid hydrolysis was based on methods given by (Tizzotti, Sweedman, Schäfer & Gilbert, 149 

2013), which were slightly modified using information in (Ma & Robyt, 1987). The solvent 150 

system was chosen to provide molecular size distributions of degraded starch that are larger 151 

than those obtained using other alcohols and with less dispersity than systems containing 152 

significant amounts of water (Supplementary material, Figure S1). The solvent used was 39.5, 153 

59.5 and 1.0 % methanol, isopropanol and HCl (saturated, 37%), respectively. Granular starch 154 

was suspended in an equivalent weight of solvent and allowed to sit at room temperature with 155 

gentle stirring for 5 d. Upon completion, starch was recovered using a centrifuge (3000 g, 1 156 

min) and the sample washed three times with tricine buffer (pH 7.5, 250 mM), then washed 157 

twice by suspending it in ethanol, followed by centrifugation, before being allowed to dry 158 

overnight at 65 °C.  159 

2.2.3. OSA modification of starches 160 

OSA modification was performed based on methods previously published (Song, He, Ruan 161 

& Chen, 2006). OSA (4.5 g) was dissolved in ethanol (22.5 g), as this ratio has been found 162 

optimal for other starches (Shi & He, 2012). Starch (150 g) was suspended in water (450 mL) 163 

at 35 °C. The pH was continually maintained at 8.5 with 0.2 M NaOH over a 3 h period as the 164 

OSA mixture was added drop-wise during the first 2 h. Samples were neutralized with 0.02 M 165 

HCl, washed twice with ethanol and centrifugation (3000 g, 3 min), and dried overnight at 65 166 

°C.  167 

2.2.4. Stabilizer preparation 168 

Emulsions were prepared according to the schema in Figure 1; in eight formulations using 169 

OS starch, six using a derivative of waxy maize starch (WM, Bam1, Bam2, M2:B1, M1:B2 170 
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and PULL), and two using a derivative of waxy sorghum starch (WS and SP). Starches were 171 

dispersed in water and dissolved by heating in boiling water bath for 20 min. After cooling to 172 

40 °C, sodium acetate buffer was added for a final starch concentration of 10 g L–1 in a 0.05 173 

M, pH 5 buffer solution, except for sample SP, which used 8 g L–1 OS waxy sorghum starch, 174 

with an additional 3 g L–1 csp (later measurements of Critical Aggregation Concentration 175 

(CAC) give the actual starch content). Three formulations using waxy maize were treated 176 

with β-amylase at 10 mg L–1 according to methods developed by (Sweedman, Hasjim, 177 

Tizzotti, Schäfer & Gilbert, 2013) and another (PULL) was treated with pullulanase at 1.5 mL 178 

L–1. These four formulations were kept at 40 °C for 10 (Bam1) and 30 (Bam2, in duplicate), 179 

and 40 (PULL) minutes, respectively, before being stopped in the following manner. All 180 

samples were subject to the enzyme-stopping procedure regardless of whether or not they 181 

were treated with enzyme. Samples were acidified with 15 mL 3 M HCl for one minute, 182 

before being returned to pH 5 with 15 mL 3 M NaOH, and then further adjusted to pH 7 183 

before boiling again for 20 min. To prepare combined samples M2:B1 and M1:B2, replicates 184 

of waxy maize (WM) and β-amylase treated waxy maize (Bam2) formulations were used in 185 

ratios 2:1 and 1:2, respectively. This was designed to provide samples with properties related 186 

to the component formulations, with increased dispersity. After cooling, NaN3 was added as a 187 

preservative to each solution to a concentration of 0.04%.  188 

2.2.5. Emulsion preparation and storage 189 

Emulsions of β-carotene in canola oil in water were prepared in duplicate from the starch 190 

solutions according to methods published elsewhere (Sweedman, Hasjim, Schaefer & Gilbert, 191 

submitted). Beta-Carotene 2% w/w was dissolved in Canola oil (food grade) by heating in 192 

boiling water bath for 10 min with agitation. The starch solution (pH 6.5 – 7.0) was allowed 193 

to cool, and sodium azide was added to a final concentration of 0.02% w/w. The β-carotene in 194 
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canola oil solution was added for a final concentration of 1.0% w/w, giving a final, overall β-195 

carotene content of 200 mg L–1. The entire mixture was shaken, coarsely homogenized using 196 

an ultra-turrax T25 (IKA-Werke GmbH & Co. KG, Staufen, Germany) for 20 min at 9500 197 

min–1 and finally homogenized using a TwinPanda400 two-stage valve homogenizer (GEA 198 

Niro-Soavi, Parma, Italy), with a two-stage pressure of 250 bar. In the case of the current 199 

study, only 3 passes were used for each emulsion, to limit degradation by shear scission. 200 

During preparation by HPH (high pressure homogenization), the temperatures for all samples 201 

did not exceed 40 °C. After HPH, 1 mL aliquots of each emulsion were stored at 55 °C, and 202 

50 mL aliquots were stored in the dark at 55 °C, room temperature (rt, 22 ± 2 °C) and 4 °C.  203 

2.3. Analytical methods I – Structure 204 

2.3.1. Size exclusion chromatography 205 

Analytical SEC was performed using methods previously described (Vilaplana & Gilbert, 206 

2010). The apparatus utilized an Agilent 1100 (PSS, Mainz, Germany) series with an isocratic 207 

pump, an autosampler injecting from a 100 µL piston without temperature control, an online 208 

degasser, calibrated to pullulan standards, with the column oven at 80 °C. For size separation, 209 

combined GRAM Pre-Column, 30 and 3000 analytical columns (PSS) at 0.3 mL min–1 were 210 

used. Data shown are from DRI (differential refractive index; RID-10A, Shimadzu, Kyoto, 211 

Japan) detection, operating at 635 nm and thermostated at 45 °C (i.e. this is the SEC weight 212 

distribution: the weight of particles as functions of size). All samples were fully dissolved in 213 

DMSO with 0.5% LiBr (w/w), thus providing the optimal conditions for separation. Data 214 

were processed using PSS WinGPC Unity (Build 5403; PSS, Mainz Germany).  215 
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2.3.2. Nuclear magnetic resonance 216 

Samples were prepared and 1H-NMR spectra were obtained using methods previously 217 

described (Tizzotti, Sweedman, Tang, Schaefer & Gilbert, 2011) with modifications to allow 218 

better stability of the OS group, as previously described (Sweedman, Hasjim, Schaefer & 219 

Gilbert, submitted). Spectra were recorded at 50 °C on a Bruker Avance NMR spectrometer 220 

operating at an observation frequency of 500.15 MHz for 1H, equipped with a BBO5 probe 221 

(Bruker Biospin, Alexandria, New South Wales, Australia). Data were processed using 222 

Bruker TOPSPIN software (v2.1; Bruker Biospin). All spectra were manually phased and 223 

baseline-corrected. Values were taken from 3 technical replicates. A Lorentzian fit was used 224 

for spectral deconvolution.  225 

2.3.3. Isolation of starch from emulsions 226 

Starch was isolated from emulsions by first combining a 1:3:3 v/v mixture of 227 

emulsion:ethanol:hexane, followed by 6 or more sequential washes with water:ethanol:hexane 228 

in the same ratio (until a white pellet was retained), based on the method of (Mao, Xu, Yang, 229 

Yuan, Gao & Zhao, 2009). Separation at each stage was facilitated by thorough mixing, 230 

followed by centrifugation at 3000 g for 2 min, after which the liquid layers were removed. 231 

Pellets were finally washed twice with pure ethanol and centrifugation, then dried overnight at 232 

65 °C.  233 

2.4. Analytical methods II- Function 234 

2.4.1. Critical aggregation concentration 235 

CACs of OSA modified starches were determined using methods published previously by 236 

(Tizzotti, Sweedman, Schäfer & Gilbert, 2013). Starch solutions of 18 concentrations from 237 

0.01 to 10 g L–1 were produced by dilution of replicates of each formulation (excluding oil 238 
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and β-carotene) in water containing 0.04% NaN3. Concentrations of 20 g L–1 were achieved 239 

by lyophilization to remove water from the dissolved surfactant, and dissolution in half the 240 

original volume of water. Samples were allowed to cool, and then pyrene in ethanol (40.5 mg 241 

L–1) was added to a final pyrene concentration of 1 × 10–6 M. After storing in the dark 242 

overnight, these samples were analysed in a quartz cuvette at room temperature (23 ± 2 °C) 243 

using a RF–5301 PC spectrofluorophotometer (Shimadzu). The emission wavelength and 244 

excitation/emission slit were at 390 and 5 nm, respectively. Intensity ratios were plotted 245 

against the log of concentration with a linear fit. The data points chosen for the super-CAC 246 

linear region reflect the point above which the R2 value is at a maximum containing at least 4 247 

points. The CAC in each case was the point where the super-CAC line reaches the I327/I334 248 

(intensity ratio at the indicated wavelengths) equivalent to zero concentration. 249 

2.4.2. Degradation of β-carotene 250 

The color of intact emulsions was determined using a ChromaMeter CR-400 (Konica 251 

Minolta Sensing, Japan) calibrated with standard white tile and using an average from 3 252 

measurements. Color evaluation used the L* (overall lightness), a* (redness and greenness), 253 

b* (yellowness and blueness) scale. Analysis used 10 mL samples stored at 55 °C in 15 mL 254 

tubes, taking 5 ml of emulsion for each analysis in a 6 mL glass beaker, shielded from 255 

ambient light, with a sample depth of 17 mm.  256 

Residual β-carotene was determined using the method in (Sweedman, Hasjim, Schaefer & 257 

Gilbert, submitted), which was based on that of (Mao, Xu, Yang, Yuan, Gao & Zhao, 2009). 258 

β-Carotene was isolated from emulsions using 4 and 3 mL of hexane and ethanol, 259 

respectively, and diluted with hexane as appropriate to achieve concentrations within the 260 

linear standard curve of 0 to 2 mg L–1. Standards were prepared from the same β-carotene in 261 

oil that was used for sample preparation. Samples were analyzed in triplicate by PharmaSpec 262 
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UV-1700 Spectrophotometer (Shimadzu) at a wavelength of 453 nm in 4 ml PMMA cuvettes 263 

(www Labco-online.com).  264 

2.4.3. Determination of droplet size  265 

Emulsion samples were consistently collected from approximately 20 mm below the 266 

emulsion surface after gentle inversion, and diluted to 10% of the original concentration to 267 

prevent multiple scattering effects. Analysis used 4 mL PMMA cuvettes in a Zetasizer Nano-268 

ZS (Malvern Instruments, Worcestershire, UK) at a fixed detector angle of 90 °. Results were 269 

obtained for z-average size (nm) and polydispersity index (PDI). 270 

2.4.4. Paste clarity  271 

Before the addition of oil and β-carotene, each gelatinized starch was analysed by 272 

spectrophotometer to determine %T at a wavelength of 650 nm, similar to the methods of 273 

(Bello-Pérez, Agama-Acevedo, Sánchez-Hernández & Paredes-López, 1999). 274 

2.5. Statistical analysis 275 

All samples were performed in duplicate or triplicate, or in the case of CAC measurements 276 

were justified with high R2 values for the linear components over 18 data points. Correlation 277 

analysis (Supplementary material, Table S1) and analysis of variance (ANOVA) were 278 

performed using Minitab 16 (State College, PA, USA). ANOVA used Fisher 95% individual 279 

confidence intervals from the mean values of replicate measurements. 280 



Page 14 of 37

Acc
ep

te
d 

M
an

us
cr

ip
t

 14

3. Results and Discussion 281 

3.1. Starch structural parameters in emulsion 282 

Acid hydrolysis of granular starch is understood to affect α-(1⟶6) linkages to a greater 283 

extent than α-(1⟶4), an effect that is reversed when the starch is gelatinized (Bertolini, 284 

2010). Bertolini’s studies referred to acid hydrolysis in water, and the difference between 285 

granular and gelatinised starch was the result of the crystalline structure in granules. In the 286 

presence of alcohols in the current study, it can be expected that the crystalline effects are 287 

augmented by the low solubility of starch in alcohols. After acid hydrolysis and OSA 288 

modification, the DS and DB, respectively, were 0.0219 and 2.8% for waxy maize starch; and 289 

0.0217 and 2.4% for waxy sorghum starch. This is slightly lower than the normal DB for 290 

waxy starches (Sweedman, Hasjim, Tizzotti, Schäfer & Gilbert, 2013), consistent with the 291 

theory from (Bertolini, 2010) on the effects of significant acid treatment during preparation.  292 

It should be noted that the SEC apparatus used in this study is optimized for smaller 293 

molecules, as this study is most concerned with highly degraded starches (Vilaplana & 294 

Gilbert, 2010). The effects of acid hydrolysis and OSA modification can be seen in Figure 295 

2A. While the method of OSA modification is chosen to minimize starch damage, it does 296 
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produce minor, inconsistent degradation (Sweedman, Hasjim, Tizzotti, Schäfer & Gilbert, 297 

2013; Sweedman, Tizzotti, Schäfer & Gilbert, 2013; Tizzotti, Sweedman, Schäfer & Gilbert, 298 

2013). While the native structures of the two starches appear similar (peak Rh ~ 300 – 400 299 

nm, Figure 2A, m0 and s0), the waxy maize starch suffered greater degradation as a result of 300 

acid hydrolysis (Figure 2A, m0⟶m1) than did sorghum starch (Figure 2A, s0⟶s1). The acid 301 

hydrolysis of sorghum starch resulted in an apparent increase in the relative population of 302 

larger molecules, which was probably the result of smaller molecules being selectively 303 

removed during acid hydrolysis. On the other hand, the waxy sorghum starch alone suffered 304 

some degradation during OSA modification (Figure 2A, s1⟶s2), which had the effect of 305 

bringing the peak Rh to around 25 nm, coincident with the waxy maize starch before and after 306 

OSA modification (Figure 2A, m1 and m2). Hydrolysis during OSA modification can result 307 

from the harsh pH modifiers used in the OSA reaction if NaOH is added too quickly, for 308 

example; however, only the final structures are of interest here.  309 

After the various enzyme treatments and HPH, all samples were degraded in size (Figure 310 

2B), whether it was a result of the pre-HPH treatments, or due to shear scission during HPH. 311 

The HPH degradation of OS starches of various structures has been examined in (Sweedman, 312 

Hasjim, Schaefer & Gilbert, submitted), and these results have been used in the current study. 313 
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The acid hydrolysis chosen for this study resulted in populations of molecules above the 314 

maximum size to which HPH degrades under the conditions used. As expected, the SEC 315 

weight distributions of sorghum samples were similar regardless of the original protein 316 

content. As a result, WM, SP and WS have very similar weight distributions after HPH, all 317 

peaking at Rh ~ 20 nm. PULL contained two peaks, the larger of which is only slightly 318 

smaller than the higher group. Pullulanase treatment resulted in a decrease to 12 nm for the 319 

main peak, with the addition of smaller peaks at 0.6 and 0.03 nm, respectively. The smaller 320 

peaks represent populations of essentially linear components after removal from the main 321 

molecules by pullulanase, while the main peak at 12 nm represents the remaining highly 322 

branched components. This is consistent with the long-held understanding that pullulanase 323 

acts on terminal (linear) branches (Bender & Wallenfels, 1966; Manners, 1997). Both Bam1 324 

and Bam2 have successively smaller peak Rh, which is more attributable to the enzyme 325 

treatment than shear scission during HPH, due to being well below the upper size limit for 326 

shear scission. The results show that β-amylase treatment resulted in significant decrease 327 

from peak Rh around 20 nm (Figure 2A, m2) down to about 2.5 nm for Bam2 and 8 nm for 328 

Bam1. Mixed samples M1:B2 and M2:B1 showed two peaks with height ratios that varied 329 

according to their constitutions of WM and Bam2 (Figure 3). The relationship between peak 330 

ratios of Bam2 and WM components in M1:B2 and M2:B1 is not linear, and is dominated by 331 

the mass of WM. This is the result of β-amylolysis of Bam2, which actually reduces the total 332 

mass of the starch content as detected by SEC. Much of the mass of β-amylolyzed samples is 333 

removed when the maltose components are washed away during sample preparation, because 334 

ethanol does not precipitate the smaller dextrins. In the cases of CAC and emulsion analysis 335 

in this study, all breakdown products remain in the sample.  336 
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As β-amylase specifically targets α-(1⟶4) linkages from the non-reducing end of the 337 

starch molecule (Bernfeld, 1955), its action results in significantly increased DB (Table 1), 338 

though it may be that many of these branch points where β-amylase halts are generally two or 339 

three monomers, meaning the structural impact of such a branch is limited. The results from 340 

NMR (Table 1; supplementary material, Figure S2) indicate that DS and DB have been 341 

predictably affected by enzyme treatments. The highest DB occurred in Bam2 (7.5%), which 342 

was the most significantly affected by β-amylase. Bam1 was the second highest (4.8%), but 343 

still significantly lower DB than Bam2, whereas PULL had the lowest DB of all (1.8%). 344 

Measurements of DS were not significantly varied between samples, so that differences in DS 345 

can be excluded as contributing to the results in these experiments. In the samples of various 346 

combinations of Bam2 and WM (Figure 3), DB trended upwards (R2 = 0.91), whereas DS 347 

was not significantly affected (R2 = 0.14).  348 

3.2. Critical aggregation concentrations 349 

The ability of OS starch to self-aggregate (and in emulsion systems continuously layer 350 

upon the oil-water interface), as well as the rigidity of the molecules, determines its capacity 351 

to conform to the surface of droplets. (Prochaska, Kedziora, Le Thanh & Lewandowicz, 352 

2007) found that OS potato starch had an high capacity to lower the surface tension of 353 

solutions, but had low efficiency of adsorption. Assuming the low efficiency of adsorption is 354 

a property of OS starches in general, the stabilizing capacity is more likely a result of self-355 

aggregation and rigidity.  356 
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The CACs of all samples (Table 1) were determined. The sample SP had the lowest CAC, 357 

followed closely by WS. The samples WM and PULL were closely matched, and there was a 358 

distinct increase in the CAC with β-amylolysis, though the increase was not proportional to 359 

the level of hydrolysis. The mixed samples varied in CAC, β-carotene degradation and 360 

droplet size as seen in Figure 3. The results build on those seen in (Tizzotti, Sweedman, 361 

Schäfer & Gilbert, 2013), who reported lower CACs for larger molecules where the branch 362 

structure was the same, but also for those where both size and amylopectin content were 363 

lower. These results are consistent with expectations from the way in which electrosteric 364 

stabilizers act, as discussed in the Introduction. 365 

(Varona, Martin & Cocero, 2009) found CACs (called “critical micelle concentration” 366 

(CMC) in that paper) for OS starches between 4.3 and 7.2 g L–1; however, using several 367 

different methods, (Krstonosic, Dokic & Milanovic, 2011) reported much lower values of 368 

0.41 to 0.88 g L–1. The current study reports values between 0.65 and 0.81 g L–1, which are 369 

more in line with the Krstonosic paper.  370 

Comparisons between the samples used in this study show surprisingly little disparity 371 

between the highest and lowest CACs, considering that two of the starches resulted in 372 

emulsions that broke very quickly. Bam2 had the highest CAC of all (0.81 g L–1), and its 373 

combinations with WM (CAC = 0.76 g L–1) decreased in CAC proportionally, consistent with 374 

relationships established in (Tizzotti, Sweedman, Schäfer & Gilbert, 2013). The lowest CAC 375 

was observed in WS (0.72 g L–1) and SP (0.66 g L–1). This indicates that the presence of 376 

protein may have had some effect on the CAC. Regardless, the low CAC for sample WS is an 377 

indication of good surface activity, comparable and perhaps superior to that of WM.  378 

It is also notable that the CAC of the partially debranched sample PULL was not 379 

significantly different from that of WM, indicating that the removal of branches from WM did 380 
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not result in an overall gain or loss of amphiphilic properties. As PULL contained two distinct 381 

size populations of molecules (Figure 2B), one of which was similar to WM, the other much 382 

smaller, and presumably mostly linear, one might expect the influence of the larger 383 

population to be diminished by the smaller population, as is seen in the mixtures of WM and 384 

Bam2. As this is not the case, we conclude that the population of smaller molecules also plays 385 

an equally important role in aggregation, and that their diminished DB does not affect the 386 

aggregation of the population of larger molecules. While it is possible that the size difference 387 

affects kinetic factors of the aggregation process, there is no reason given in literature why it 388 

should affect the CAC.  389 

3.3. Degradation of β-carotene 390 

The reflected color of the intact emulsion showed dramatic changes over 8 d 391 

(Supplementary material, Figure S3); the results across all samples demonstrated no 392 

significant differences. These results are consistent with results reported previously 393 

(Sweedman, Hasjim, Schaefer & Gilbert, submitted). (Mao, Yang, Xu, Yuan & Gao, 2010) 394 

investigated the effect of HPH on droplet size in nanoemulsions containing β-carotene, and 395 

found that higher pressures resulted in higher temperatures and smaller droplet size, as 396 

reported previously. In the same study, they determined the effects of surfactant (including 397 

one OS starch) on the degradation of β-carotene; unfortunately, they did not report a 398 

comparison between droplet size and degradation of β-carotene.  399 

In the current study, the initial uptake of β-carotene in emulsions was recorded (Figure 4) 400 

and subsequent measurements were taken as a percentage of these initial values. Experimental 401 

design meant that all emulsions were saturated with oil phase to give distinctions based on 402 

upper limits of the various surfactants’ capabilities. For each preparation, the total β-carotene 403 

concentration was around 200 mg L–1, and after HPH the suspended β-carotene was between 404 
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80 and 130 mg L–1. Loss of β-carotene at this stage in processing is through the unstabilized 405 

oil phase (which floats to the top of emulsions) and heat damage during HPH; only the former 406 

of these is likely to be significantly different between samples. Bam2 and PULL showed the 407 

lowest uptake of oil (~80 mg L–1), with Bam1 only slightly higher (~90 mg L–1). In the case 408 

of the β-amylase treated samples, the low oil uptake can be attributed to a lower total mass of 409 

amphiphilic polymer in the solution, since the maltose released during β-amylolysis probably 410 

does not contain OS groups (Sweedman, Hasjim, Tizzotti, Schäfer & Gilbert, 2013), but it is 411 

also a result of the significantly weaker emulsion stability as discussed in the next section.  412 

The degradation of β-carotene in emulsions was recorded over 13 d, and showed greater 413 

degradation than previously reported; however, these results are more similar to those of 414 

(Mao, Xu, Yang, Yuan, Gao & Zhao, 2009) than (Mao, Yang, Xu, Yuan & Gao, 2010) 415 

(Figure 5), between which there is some disagreement. The relationship between degradation 416 

and time in this study is also more logarithmic than the linear results presented in the two 417 

Mao papers. It is notable that one sample (WM) for this study was prepared by an equivalent 418 

method to one used in (Sweedman, Hasjim, Schaefer & Gilbert, submitted) (“WH23”). The 419 

greater degradation is likely the result of the presence of salts within the buffer of the 420 

continuous phase, that being the key difference between the two methodologies. We excluded 421 

the number of cycles as a cause of this difference, as any effect from a change of HPH 422 

parameters would be noticeable as a difference in droplet size and the temperature reached 423 

during HPH. This presents a challenge, as (Qian, Decker, Xiao & McClements, 2012) 424 

recently found that ionic strength does not affect the degradation of β-carotene to any 425 

significant extent. Salts are well known to destabilize emulsions (Klaus, Tiddy, Solans, 426 

Harrar, Touraud & Kunz, 2012), particularly where the stabilizer has an electrostatic 427 

component; however, in the case of electrosteric OS starch, the primary stabilization 428 

mechanism is accepted to be steric (Tesch, Gerhards & Schubert, 2002).  429 
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By 13 d, all samples were almost completely depleted of β-carotene. However, at earlier 430 

times, where the difference between samples is greater, there was faster degradation at the 431 

higher levels of hydrolysis resulting from the β-amylase treatment. The sample WS was again 432 

comparable with WM and PULL, and the presence of protein in SP resulted in negligible 433 

decrease in β-carotene residue compared to WS. After 13 d, measurements were also taken 434 

for those samples stored at room temperature (23 ± 2 °C) and 4 °C (Figure 6). Results for 435 

heat-stored samples are not shown on the same graph, due to being almost entirely depleted. 436 

The results indicate that under cooler conditions there is less breakdown of the β-carotene, but 437 

again the greatest decrease in β-carotene content was in Bam2, and to a lesser extent Bam1. 438 

Once again there is negligible difference between WM, WS and SP; however, PULL actually 439 

showed insignificantly superior β-carotene protective qualities, which is interesting as the size 440 

distribution (Figure 2B) is significantly decreased from its parent (WM). Pullulanase 441 

treatment has resulted in a significant decrease in DB from 2.4 to 1.8% (Table 1), and the 442 

development of a significant population of smaller molecules. This is apparently in 443 

contradiction to the notion that stability of the emulsion relies on the highly rigid, densely 444 

branched structures alone. Considering that the emulsion containing PULL showed an initial 445 

β-carotene content of only slightly more than ¾ that of WM, it is possible that the similarities 446 

in residual β-carotene content are indicative of similar structure of the surface active 447 

components in the peak at higher Rh in PULL’s weight distribution, which may imply that the 448 

linear components played little role in stabilizing the emulsion. However, when the 449 

proportion of the two populations of molecules in PULL are compared with the loss of oil 450 

uptake in emulsion, while considering as well the overall consistency in other emulsion 451 

properties like droplet size, it is clear that molecules in the smaller, less branched population 452 

are playing an important role.  453 
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From this study it is clear that β-amylase enzymatic modification is not ideal for the 454 

production of useful surfactant molecules of OS starch, despite previous indications that the 455 

greater DB should be advantageous, and also regardless of other advantages such as paste 456 

clarity and viscosity. The sample with decreased DB showed no strong change in either β-457 

carotene protection or emulsion properties, supporting the conclusion that DB itself is less 458 

important than macromolecular architecture, branch length and overall size (Rh). These results 459 

indicate that the effect of botanical origin between sorghum and maize is largely 460 

inconsequential per se for emulsion properties, as is DB directly. This finding regarding DB 461 

is a refinement on our previous work (Sweedman, Hasjim, Schaefer & Gilbert, submitted), 462 

wherein the difference in DB was the result of differing amylose:amylopectin contents, rather 463 

than direct enzymatic alteration of the DB. The conclusion from this information is that other 464 

aspects of branching structure are influential, most importantly the length of detached linear 465 

components in pullulanase treated samples (PULL), which is also a significant structural 466 

difference between amylose and amylopectin.  467 

3.4. Emulsion stability  468 

The function of OS starches as steric stabilizers requires their hydrophilic components to 469 

be actively capable of preventing physical contact between oil droplets (Napper, 1983), thus 470 

preventing coalescence and the separation of oil and water phases. This steric hindrance is 471 

more effective when the bulk of polymer surfactants lie on the convex side of curved 472 

interfaces (i.e. outside the oil droplets), as is the case with OS starches (Dickinson, 2009) 473 

Within 24 h of forming the emulsions in this study, Bam1 and Bam2 emulsions were both 474 

observed to break, regardless of storage conditions; however, all other emulsions appeared to 475 

remain intact for the duration of the experiment 20 d. Droplet size (Figure 7) is the best 476 

objective indicator of the physical stability of the emulsions used in this study (given that the 477 
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emulsification conditions were the same). Contrasted with (Sweedman, Hasjim, Schaefer & 478 

Gilbert, submitted), the emulsions stored under warm conditions (55 °C) showed no greater 479 

signs of instability than those stored at room temperature. Only one sample (Bam1) showed 480 

significant change between warm and room temperature storage, having consistently larger 481 

droplet size in the warmer samples. This, along with the clearly visible instability of the 482 

emulsion, may be accounted for by a tendency for smaller droplets to settle out or acquiesce 483 

in this sample. The log10 values for droplet size in room temperature and hot emulsions 484 

showed a positive correlation with DB (p < 0.005, R2 = 0.91 and 0.93, respectively, 485 

supplementary material, Figure S4), meaning droplets were actually larger in emulsions 486 

containing OS starches of higher DB immediately after HPH. The size of the stabilized 487 

droplet would be the radius of the oil droplet, plus the thickness of any surfactant layer. 488 

Unfortunately the surfactant layer thickness is difficult to determine even though the peak Rh 489 

of the surfactant molecules is known to be up to 20 nm, because molecules that are fully 490 

dispersed are likely more compacted at the interface and not limited to a single layer 491 

(theoretical maximum at a single Rh equivalent) of the starch surfactant. Densely branched 492 

molecules (higher DB) generally have greater rigidity and will probably contribute to an 493 

increase in droplet size by providing a thicker adsorbed layer, though the extent to which this 494 

is relevant is probably insignificant given the relative size of the oil droplets. 495 

The sample WS consistently resulted in smaller droplet sizes than all other samples only 496 

by an insignificant margin, and was comparable in droplet size to emulsions with WM, 497 

debranched waxy maize PULL and SP. Higher proportions of WM to Bam2 led to decreasing 498 

droplet size in the sequence, Bam2>M1:B2>M2:B1>WM. (Song, Zhao, Li, Fu & Dong, 499 

2013) investigated the oil droplets in emulsions stabilized by four OS starches of differing 500 

amylopectin contents, and reported less dispersity in droplet size and smaller droplets. This 501 

was supported by finding positive effects of higher amylopectin content in a recent study 502 
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(Sweedman, Hasjim, Schaefer & Gilbert, submitted). Keeping in mind that the emulsion 503 

containing Bam2 broke after 24 h, whether hot or cold, it is not surprising that that sample 504 

shows a large droplet size and significant fluctuations in droplet polydispersity index (PDI). 505 

The PDI of the droplet size became considerably lower at the higher temperature, possibly 506 

because the higher temperatures have an effect on the viscosity of oil itself, thus lowering the 507 

threshold for Ostwald ripening effects (Taylor, 1998).  508 

In this study, only waxy starches were chosen, so the considerable differences between 509 

results can be deliberately linked to the specific structural changes that have been performed. 510 

The almost complete breaking of emulsions stabilized by the OS starches treated by β-511 

amylase (Bam1 and Bam2) indicated that DB alone is not a good predictor of surfactant 512 

quality, and this position is supported by the results from the PULL sample. For researchers 513 

considering starches in general, the relationship between DB and average branch length is 514 

almost a natural assumption, but in the case of samples like PULL, where there is an 515 

artificially high number of short, linear pieces of OS starch in the sample, the measurable DB 516 

is diminished, whereas the average branch length bears more resemblance to the parent 517 

amylopectin than to amylose of a similar DB. As such, the present results indicate that short 518 

linear components are probably just as effective as branched molecules in stabilizing 519 

emulsions. This suggests that the long history of empirical evidence supporting OS 520 

derivatives of amylopectin and phytoglycogen (Scheffler, Huang, Bi & Yao, 2010; Scheffler, 521 

Wang, Huang, San-Martin Gonzalez & Yao, 2010) surfactant activity over amylose is almost 522 

certainly the result of having optimal branch lengths, rather than being explicitly related to 523 

DB. Furthermore, when one looks outside the realm of OS starch for branched surfactants, 524 

there is evidence that supports linear molecules over branched ones, at least when concerned 525 

with the hydrophobic region (Varadaraj, Bock, Valint Jr, Zushma & Brons, 1990; Wormuth & 526 

Zushma, 1991). (Varadaraj, Bock, Valint Jr, Zushma & Brons, 1990) ascribed lower foam 527 
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stability to weaker intermolecular cohesive forces in branched hydrophobes than unbranched 528 

ones; on the other hand, (Wormuth & Zushma, 1991) found linear surfactants to stabilize 529 

equal parts of oil in water more efficiently than branched ones, an effect that was also 530 

proportional to the level of branching. From this information it is possible that the successful 531 

emulsion from PULL is explained by the more linear molecules being less hindered 532 

intramolecularly than the branches in their intact counterpart WM, thereby allowing greater 533 

movement of individual molecules to areas where steric hindrance is useful at the interface. 534 

This advantage in pullulanase debranched molecules appears to be enough to counteract any 535 

disadvantage as the result of a loss of rigidity compared to the original molecules. (Nilsson, 536 

Leeman, Wahlund & Bergenståhl, 2007) reported that higher molecular weight polymers 537 

adsorb preferentially to the oil-water interface over their low molecular weight counterparts, 538 

meaning PULL might be expected not to perform well considering its high content of smaller 539 

molecules; however, (Nilsson & Bergenstahl, 2006) also reported the role of kinetic factors in 540 

the colonization of oil droplets by surfactants, which may represent another advantage for 541 

smaller, more mobile molecules in the early stages of emulsion formation.  542 

4. Conclusions 543 

OSA modified starches of different structures resulting from enzyme treatments and 544 

different botanical origins have been tested for their capacity to maintain emulsions, and 545 

protect β-carotene in the oil phase against chemical stress. In all tests, samples containing 546 

larger molecules performed better in both emulsion stability and protection of the β-carotene 547 

from chemical stress, with waxy maize starch performing best overall, though both waxy 548 

sorghum starch tests showed very low CACs, perhaps influenced by residual protein. As well 549 

as average degree of branching, molecular size and branch-length fine structure are important 550 
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in emulsification and protection against oxidation. Thus the common use of average branch 551 

length can be a misleading criterion for selection of emulsifier. 552 

Waxy sorghum starch has similar properties to waxy maize starch, though the presence of 553 

high amounts of protein in the grain leads to either greater purification requirements or 554 

alternatively lower paste clarity.  555 

It appears from these results that the presence of sorghum proteins does not significantly 556 

affect the emulsion properties, allowing for waxy sorghum to be used as a suitable substitute 557 

for waxy maize to produce modified starches in areas too dry for the latter. Overall, molecular 558 

size and branch length seem to be the greatest contributing factors in the OS starch 559 

stabilization of emulsions, consistent with the general precepts of electrosteric stabilization; 560 

but it is interesting to see that the effects of shorter branch length extends to partially 561 

debranched samples. Further work may determine the effects of branch length distribution on 562 

the properties of OS starches and bring focus to the specific molecular structures that inhabit 563 

the interface of oil droplets.  564 
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Figures  662 

 663 

Figure 1. Schema of experimental design outlining the 8 surfactant formulations.  664 
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 665 

Figure 2. SEC weight distributions (arbitrary units) of starches. In panel A: Before HPH; 666 
(m0) native waxy maize starch, (m1) acid hydrolyzed waxy maize starch, (m2) OS acid 667 
hydrolyzed waxy maize starch, (s0) waxy sorghum starch, (s1) acid hydrolyzed waxy 668 
sorghum starch, (s2) OS acid hydrolyzed waxy sorghum starch. In panel B: OS starches after 669 
preparation (post-HPH), labelled as named in text. 670 

 671 
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 672 

Figure 3. Values resulting from combination of M and Bam2 at different ratios. CAC, 673 
paste clarity, DS, DB and peak ratio (IM = intensity at peak Rh of WM; and IB = intensity at 674 
peak Rh of Bam2); and β-Carotene residual (%) at ( ) 1, ( ) 2 and ( ) 4 d after 675 
storage at 55 °C and 13 d at ( ) 4 °C and ( ) room temperature. 676 
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 677 

 678 

Figure 4. Initial concentrations of β-carotene in emulsions. 679 

680 
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 680 

 681 

Figure 5. Residual β-carotene content over 13 d at at 55 °C. ( ) WM, ( ) M2:B1, 682 
( ) M1:B2, ( ) Bam2, ( ) Bam1, ( ) PULL, ( ) WS, ( ) SP.  683 

684 
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 684 

 685 

Figure 6. Residual β-carotene in emulsions after storage for 13 d at room temp (left 686 
columns) and at 4 °C (right columns) as % of initial levels. 687 
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 688 

Figure 7. Analysis of droplet size in emulsions stored at room temperature (a, c) and at 55 689 
°C (b, d). ( ) WM, ( ) M2:B1, ( ) M1:B2, ( ) Bam2, ( ) Bam1, ( ) 690 
PULL, ( ) WS, ( ) SP. 691 

 692 



Page 36 of 37

Acc
ep

te
d 

M
an

us
cr

ip
t

 36

 693 

Table 1. Experimental values.  694 

Sample Peak Rh (nm) DB (%) DS Paste Clarity 
(%T) CAC (g L-1) 

WM 23.17 ± 5.21ab 2.53 ± 0.95d 0.0190 ± 0.0068a 94.1 ± 0.7c 0.76 (r2 =0.93) 
M2:B1 20.92 ± 0.97ab 3.57 ± 2.75c 0.0187 ± 0.0299a 97.6 ± 0.3a 0.79 (r2 =0.86) 
M1:B2 23.77 ± 4.24ab 4.46 ± 2.00b 0.0171 ± 0.0084a 98.1 ± 0.1a 0.80 (r2 =0.92) 
Bam2 5.07 ± 0.13c 7.45 ± 0.46a 0.0211 ± 0.0109a 95.5 ± 0.6b 0.81 (r2 =0.90) 
Bam1 8.13 ± 0.34c 4.80 ± 0.97b 0.0197 ± 0.0056a 95.8 ± 0.2b 0.79 (r2 =0.92) 
PULL 16.56 ± 1.80b 1.81 ± 0.24e 0.0167 ± 0.0050a 89.8 ± 0.4d 0.77 (r2 =0.74) 
WS 25.83 ± 5.46a 2.48 ± 0.57d 0.0197 ± 0.0100a 64.2 ± 0.3e 0.72 (r2 =0.94) 
SP 25.27 ± 4.81a 2.65 ± 0.66d 0.0121 ± 0.0089a 3.8 ± 0.6f 0.66 (r2 =0.99) 

Means ± standard deviations. 695 
Superscripts indicate ANOVA significant difference at p < 0.05. 696 
CAC values correct to r2 values calculated in excel.  697 

698 
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Highlights: 698 

Emulsification properties of OSA starches were examined 699 

A range of molecular structures of these starches was used 700 

Waxy sorghum starch performs as well as market leading waxy maize 701 

Molecular size and chain-length fine structure are important 702 

Use of average degree of branching alone can be a misleading criterion 703 

 704 

 705 


