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A multi-mode analysis of micro-cantilever dynamics is presented. We derive the power spectral
density of the cantilever displacement due to a thermal noise source and predict the cantilevers’s
fundamental resonant frequency and higher harmonics. The first mode in the multi-mode model is
equivalent to the traditional single-mode model. Experimental results obtained with a silicon nitride
cantilever at 300 K are in excellent qualitative agreement with the multi-mode model. The
multi-mode model may be used to obtain accurate values of the cantilever properties such as the
elastic modulus, effective mass, thickness and moment of inertial9€y American Institute of
Physics[S0021-89787)04105-4

I. INTRODUCTION magnetic resonance imaging with single spin sensitivity is
. ) , . possible using detection techniques which employ a micro-
Micro-cantilevers are widely used for the detection of c4piilever. The basic experimental principles were demon-
forces in a variety of scanning force microscopestomic  gyrateq by Rugar and co-workers who detected a net spin of

interaction forces, magnetic forces, and electric forces havﬁpproximately 1®electrons and a net spin of approximately
been monitored using the deflection of the micro-cantilever y12 protons®” The limiting factor on sensitivity of these

as a measure of the forck§he cantilever deflection is typi- detection schemes is thought to be the thermal rfoise.
cally measured by optical or by electrical means. In Section Il of this paper, we give a multi-mode analy-
Although extrinsic factors such as background vibration,qis of the dynamics of a damped cantilever which is sub-
room temperature fluctuations, and transient interactions b‘?écted to time-varying forces. In Section IlI, the power spec-
tween the cantilever and the surrounding gaseous mediuly| density of the cantilever deflection due to the thermal
frequently limit the force detection in practice, fundamen-¢q rce is derived based on a multi-mode model of the canti-
tally it is the thermal noise of the cantilever that limits the o er Section IV establishes the relationship of the tradi-
sensitivity of scanning force microscopes_. An in-depth UN+ional model to the multi-mode model. In Section V, we
derstanding of the noise sources and their power spectra {iyesent experimental methods and in Section VI we give
micro-cantilevers is lacking. However, it may be useful in oqits and discussion. Finally, we give the summary in Sec-

improving cantilever design and for the analysis of experi-i,n vii
mental data. Previous thermal noise estimates were based on

an analysis where the cantilever is modeled as a single
spring-mass-damper systériestimates of the thermal noise !l. MULTI-MODE MODEL OF THE CANTILEVER

amplitude in a free undamped cantilever considering all Traditionally, micro-cantilevers for force microscopy
modes of vibration of the cantilever were recently obtaihed. have been modeled as a single spring-mass-damper system.

However, this does not provide information on the vibra-j; a5 suggested that in certain scanning schemes subhar-
tional amplitude in a frequency range, which is useful forp,onics of the fundamental modes of the cantilever are
lock-in detection schemes. driven. To predict these subharmonics it is essential that a

The estimates of the power spectral density of the cantiz, ,iti-mode model of the cantilever be use@etter esti-

lever displacement is of particular interest for studies of €X11ates of the thermal noise effects on the cantilever displace-

tremely weak forces such as de_tected in magnetic force Misyant and the error involved in using a single-mode approxi-
croscopy. It was proposed by Sidles and co-workéthat  ation can be obtained by using the multi-mode model.
With this motivation, we give a detailed multi-mode analysis
dElectronic mail: mcfar@engineering.ucsb.edu of the cantilever dynamics below.
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wl-sz L4

\L*=—F

(2.9

It can be shown that the cantilever deformatiafissatisfy
the relations:

L
Jo ?i(X) d(X)dx= L1}, (2.9
L 4
” ”n _
Jo @5 (X) di(X)dX= SjA L1, 2.7
FIG. 1. A schematic showing a cantilever subjected to an applied load, L 2(cosAjL+coshi L)
p(x,t), the damping forcepy(x,t) assumed constant per unit length and a ¢j(x)dX: - N = :\]j ) (2.9
concentrated forcel-(t), applied at a distancg; from the base of the 0 J
cantilever.

¢j(L)=2(cosh;Lsinh \jL—2sin\jLcoshAjL), (2.9
Figure 1 shows a cantilever subject to multiple loading. , ) )

One end of the cantilever is fixed and the other end is free. i (L)= ~2A;(SinhAjLsinA;L), (2.10

The distributed applied load per unit length is given bywherelj=(sin)\jL+sinh )\jL)Z, S;=0 if k#j andsy;=1 if

p(x,t). A concentrated load~(t) is applied at a distance k=j. Conveniently,wjz=kj/mj if we define

x; from the base of the cantilever. The distributed load may .

be due to a piezoelectric material on _the cantllever and the K ::EIJ () ! () dx

concentrated force may be due to the interaction between the 0

sample and the cantilever tip. The damping force per uni%md

length is denoted bypy(x,t). The length of the cantilever is

L, its Young’'s modulus of elasticity iE, its cross sectional L

area isA, and its area moment of inertialigall in Sl units. m; ::PAL #i(X) $j(x)dx. (211

A. Undamped free vibration Table | gives the values of important parameters for the first

In the absence of damping and applied loads, the equdive modes.
tion of motion of the cantilever is given by

I*z(x,t) %z(x,t)
Bl — @ tPA—7—=0, B. Forced vibration with damping
92(x.0) To study the dynamics of the cantilever subjected to
z(x,0)=a(x), at, =h(x), (2.1  time varying forces we apply tharinciple of virtual workto

obtain the equation of motichLet the displacement of the
wherea(x), b(x) are the initial conditions of the cantilever cantilever at positiox and timet be given byz(x,t). Sup-
andz(x,t) is the displacement of the cantilever. We will use pose the cantilever is given a virtual displacement of
the convention thaf’(x,t) denotes the spatial derivative, du(x,t). The elastic work and the inertial work done by the

af(x,t)/ax and f(x,t) denotes the time derivative, cantileverare given by

af(x,t)/at. It can be showhthat the solution of Eq(2.1) L L
has the form —EIJ Z'(éu)’dx and —pAJ Z(X,t) du(x,t),
0 0
z(x,t)= >, C:sifwit+38);, (2.2)  respectively, whereas the work done by the external applied
= . ik forces and the damping force are given by

with

L
SDHou(x,t)dx+Fé 't
¢j(X)=(sin \;L+sinh\;L)(cos\jx—coshi;x) fo P(x.t) du(x,t)dx uixy.t)

+(cos\jL+cosh);L)(sinh\jx—sin \;x), and

(2.3 _prd(x,t)éu(x,t)dx,
0

where)\; is a solution of
cos\;Lcoshi;L+1=0. (2.4  respectively. Using the principle of virtual work whereby the

The jth mode deformation of the cantilever is given by net work must be zero, we obtain

#;i(X), whereas the wavelength of th& mode is given by L , , .

\jL. The wavelengths are arranged in an ascending ordef 1~ EIZ"(8U)"—pAz(x,)Su(x,t) = pa(x,t) Su(x,t)

(AN 1<\y< ...). Therelation between the wavelength and

frequency of mode is given by +p(x,t) du(x,t)}dx+Fsu(x;,t)=0. (2.12

J. Appl. Phys., Vol. 81, No. 6, 15 March 1997 Salapaka et al. 2481



TABLE I. Important parameters for the first five modes.

AL 1.875 4.694 7.855 10.996 14.137
cosL) —0.300 —-0.0184 —0.001 4.257x10°4 1.669<10 4
cosh\jL) 3.3371 54.6493 1.289810° 2.9818<10* 6.8959« 10°
sin(\L) 0.9541 —.99998 1 -1 1
sinh(\;L) 3.1837 54.6402 1.289310° 2.9818< 10* 6.8959« 10°
#;(L) -8.27 107.27 —2.738%1C° 5.996x 10* —1.379x 1¢°
I 17.1215 2.87%10° 1.6649< 10° 8.89x 10 4.735¢ 10"
J;/L —3.2401 —23.2769 —328.2742 —5.42x10° —9.755x 10
m 17.1215 2.87%10° 1.664% 10° 8.89x 10 4.735¢< 101
PpAL
kL 211.615 1.3968 10° 6.3382¢ 10° 1.299x 10 1.899x 10
El
g 17.1215 2.87%10° 1.6649< 10° 8.89x 107 4.735< 101
a
,PAL* 12.3596 485.4811 3.80710° 1.462x 10¢ 3.9942< 10
“ITEl

We assume that the damping is uniform and given by > L L
pa(x,t)=£z(x,t). It can be shown that any function(x) Zl (Elfo [¢}/(X)]2dXQJ(t)+PAJO B7(x)dxg,
which satisfies the boundary conditions imposed by thé

fixed-free cantilever defined between O ahdcan be ex- 5 .

panded as (X)=3;_; d(X)0x Where ¢, (x) were obtained +§¢J(X)dxqj_pj(t)_’:i(t)) 6uj(1)=0,
from the free undamped vibratidnThus, any deformation of

the cantilever can be represented as a weighted combinatid¥ere

of the fundamental mode deformations of the unforced can-

L
tilever. Therefore coefficients(t) and Su,(t) exist such pj(t)3=J p(X,t) ¢;(x)dx
that 0
and
2(4,8)= Y, S (X)a(b) Fi(:= dix0F ().
k=1 As Su;(t) is arbitrary, we have
and m;g;(t) +c;q;(t) +k;o;(t)=p;(t) + Fj(t)
" for all j=1,2,..., (2.149
5u(x,t)=z dr(X)du,(t). (2.13  where thejth modal mass, spring constant, and damping
k=1

coefficient are defined as

Substituting Eq(2.13 into Eqg.(2.12), we obtain m = AJ"‘ 200vdx. ki .:Elf" 7(x))2
ji=p 0¢J() S O(dn())

- ~ L
121 kgl EIJ;) ¢ﬁ¢;,dqu(t) 5Uj(t) and

L
® Cj :zgf BT (X)dx.
+3 3 o[ dadxaou i
j=1k=1 P o KK : To obtain the necessary initial conditions @f(t) for Eq.
(2.14, we assume that

0w |
+j§1 2 ffo bubjdx(t) 8U; (1) z(x,0=a(x) and 2z(x,0=b(x).
From Eq.(2.13, we have

_ - )
& fo POx.1) &j(x)dxau; (1) a()=3 $(x)a0) and b= 3, F()aK(O).

% Multiplying the above equations by;(x) and integrating,
+j21 F(t) ¢;(xs) 8u;(1). we have the necessary conditions
pAS5a(x) ¢;(x)dx
q;(0)= )
Therefore, m

]

2482 J. Appl. Phys., Vol. 81, No. 6, 15 March 1997 Salapaka et al.



and

- . 3.
. 0) E1/5b(x) ¢ (x)dx 015 —mw?+ic;w+k (3.5
q;(0)= . .

] Ki Therefore the power spectral density @f(t), quqj(w) is
If the initial conditions are zerfthat isa(x)=b(x)=0] then  given by'!
g;(0)=q;(0)=0. Assuming zero initial conditions and tak- —lu 2
ing the Fourier transform of Eq2.14), we obtain quqj(w) [Hj()] Spipj(w)

1

S pi(@)+F(w) _ S , 3.6
Z(X,(D):gl —nijwz-i—icjw-l-kj ¢J(X) (216) (kj_mjw2)2+Cj2w2 pjpj(w) ( )

Thus, we have obtained an expression of the cantilever digvhereS;, . (w) is the power spectral density @f(t). This
placement in terms of the forces on the cantilever. implies that

SkeT=(PE;(1))=1ki(0;(1)%)= 3K;Rq ¢,(0)

Il. THERMAL NOISE 1 1 (=
=5k —f Sq.q.(@w)dw
Thermal noise is often the factor limiting the sensitivity 27 2m )
of scanning probe microscopes. In this section the multi- 1 " 1
mode model of the cantilever is used to obtain the effect of = _klf >
thermal noise on the cantilever displacement. 4m ) e (k= mje?)*+ cjo
The potential energy in the beam at any timeis given
by p ay y timeis g X Sy p (@)da,
1 L R wherequqj(T) is the autocorrelation function a@f;(t) and is
PE(t)=5El J; [2"(x,t)]°dx. (3.9 equal to(g;(t)q;(t+ 7)) [it is also the inverse Fourier trans-
_ form of Spjpj(“’)]- Assumingp; is white noise with a spec-
Using Eq.(2.13, we have tral density given by a constant’, we have
PHU=—HEDZQMMﬁﬁ.MWWHmW L K,
2 =iz 0 2kBT yp. 7oo(kj_mjw2)2+cl'2w2dw. (3.7
_ Ez k-q-z(t). Assuming that the damping is small enougkf?<4
2= Y ElpAN] for j=1,...N), we can show thafsee Appendik
Note thatq;(t) is the displacement of a simple harmonic o 1 -
oscillator of frequencyw;= vk;/m;. The expectation value f (k—mw?)Z+c sdw= Tom (3.8
for the energy of the quantized harmonic oscillator of fre- —e W@ i @,
quencyw is simply'° Therefore,
fiw
WkBT—_l. (32) O'jZZZkBTCJ- . (39)

2
That the expected value of the potential and kinetic energie?nce k;[he_ vz?]lues of thej are Ie\cljalua_ted ;r?qm Ec(3|.9), we f
are equal implies that the expected value of the potentia‘fan obtain the power spectral density of the displacement o

enerav of theit" harmonic oscillatorwhich has frequenc the cantilever due to thermal noise by the relation
gy ; i q 4 z(x,t)=2}\‘=1qj(t)¢j(x), where we have assumed that the

@) s effect of modes higher thaN are negligible. Asg;(t) are
1 o, independent, it follows that
(PE/(1)=5 Zroriet— (33 P
2eifl—1 N
where (.) denotes the expectation value aRE(t):=3; S, (0)=2, quqj(w)¢>j2(x). (3.10
=1

qujz(t). For the first few modes which satishyw; < kgT we

have(PEj(t)>=%kBT. If we assume that the force on the Therefore, from Eq(3.6), we have
cantilever is solely thermal in origin then the equation of

motion for thej!" harmonic oscillator is given by 2kgTc; ¢j2(X)

. . S w)=2 202, 2, 2°
m;d(t) +¢;q(t) +kia; (1) = p; (1), (3.9 =1 (k=mje%) "+ cjw
wherep;(t) is the forcing due to thermal source. From Eq. In many detection schemes, the measurement is restricted to
(3.4), q;(t) can be considered to be the output of a linearfrequencies well beloww, . The root-mean-square displace-
time invariant systentd;(w) for an inputp;(t) and transfer ment of the tip of the cantilever in a frequency range
function [-Aw,Aw], is given by

(3.1

J. Appl. Phys., Vol. 81, No. 6, 15 March 1997 Salapaka et al. 2483



1 (Ae m1q,(t) +k.q(t)=F4(t). 4.3
<22(L)>::2_ S, ()do | 1q-1( ) +kiq(t) =Fq(t) - .( -)
TJ-Aw Multiplying the above equation byp;(L) and substituting
N

L)F(t) for Fy(t), h
1 Aw 2kBTCJ¢JZ(L) ¢1( )() or 1() we nave .
wa(kj—mjwz)%cfwzd“" myZ(L, 1)+ ke Z(L, 1) = 1 (L)°F (V).
Substituting the values ah;, k; and ¢4,(L) from Table I,

_ §3.12-) we obtain an equation identical to E¢.1). This implies that
If Aw < Vki/m=w;, then the following approximation the values of mass and spring constant as presented tradition-

- 2’771':1

holds ally are related ton; andk; by
N 2 my Ky
1 Aw 2kBTC¢(L) m= d k= —— 4.4
(FHL)=5,2, J,Aw (k—mwd? T Za? 0 $a(L) (L)
In the single spring-mass-damper approximation, the
N 2 . ) 1
> 4kgTcjdj(L)Aw damping effects are often described by @dactor! In the
= 2mmie? ) (3.13 model presented here, we have used the paranjetierin-
=1 i @

) ) clude damping effects. For the traditional single spring-
This means that the root mean square displacement due

> ; ass-damper system, the equation of motion is given by
thermal noise in a frequency rangd £ can be approximated

as mz(t)+cz(t)+kz(t)=1f(t). (4.5
N 2
(Z(L))~ D 4ksTci¢j(L)Af (3.14 The predicted power spectral density of the Langevin forcing
=1 m’ o} : ' term, f(t) is equal to XgTc." The relation betwee® factor
whereAf = Aw/21 andc is given byQ= yknvc. If only one mode of the multi-

It is to be noted that for the modes which satigfy, mode model is used then the equation of motion is given by

< kgT the total energy in the mode is a constant irrespective  m, g, +c,q+kq=p4(t), (4.6)
of the modal frequency. However, the energy in a certain .
range of frequencies depends on the transfer functiof/N€ré we have assumed that the only forcing is due to
H () which in turn depends on the physical parameters of€ thermal sourcep,(t). From the relation z(L,t)

) ; ; ; ; = ¢4(L)qg4(t) and Eq.(4.4), we know that the tip deflection
the cantilever. The design of the cantilever with respect to= %1 1 A

thermal noise issues is equivalent to shapiigw) for a dynamics are given by
desirable distribution of energy between different frequency mZL,t)+ C1 2L 1) +kz(L,t)= Pa(t) 4.7)

ranges. It is desirable to shapk(w) such that the energy $5(L) #1(L)

due to thermal noise, in the frequency band in which thgyq 4 choosé such that=c; / $3(L). From Eq.(3.9 we
measurements are restrlcteq, is minimizéfj(w) can b,e can conclude that the power spectral densitp@j is given
altered by changing the physical parameters of the cantlleveEjy cr§=2kBTc1 This means that the forcing term in Eq

Another method which has not been widely exploited is to - . 2

acivly alier (o) using feedback contol. Acive coniol 3,175 3201 SPecte denay guer biLLAD]

of the cantilever in scanning probe MICTOSCOPES 1S StUd'e(the first mode of the multi-mode model we have presented

(based on a one- mode model of the cant|l¢verRef_s. 12 agree with the dynamics of the traditionally employed model

and 13. The mulu—mo_de model can be used to obtain a bett%ote that some authdr& 15employ a single-sided spectral

model for active cantilever control. density convention, rather than denote the double-sided con-
vention used here resulting in a factor of 2 differendeur-

IV. RELATION TO TRADITIONAL MODELS thermore, the power spectral densities of the Langevin forc-

Previous studies have modeled the cantilever as a singi@9 term of the two models are identical. For
spring-mass systefnThe damping is introduced to fit the C1 —— Vkm= 1 Vkymy 4.9
experimental data. The spring constant is taken &Y 3%, $I(L) T Q  $i(L) Q '
and the effective mass is taken as @24 and are denoted h
by k andm, respectively: Therefore, the equation of motion we have Jkim
for the deflection of the tipz(t) of the cantilever is = 1m1_

. 3EI Q

0.24pALZ()+ 5 2()=F(1), (4.1)  Substituting values from Table I, we have
where it is assumed that the only loading on the cantilever is £= 3.515 / ElpA 4.9
the concentrated loading applied at the tip. Therefqrel Q L4 - '

andpy=p=0. Note that if only one mode of the multi-mode
model is used then

(L= a(L)au(), (4.2 The power spectral density of the cantilever tip displace-
whereq,(t) satisfies ment was measured experimentally. A diving-board cantile-

V. EXPERIMENTAL METHODS

2484 J. Appl. Phys., Vol. 81, No. 6, 15 March 1997 Salapaka et al.



103 : — . T . sources are likely to excite the resonant modes of the canti-

g N experimental — | lever and therefore the peaks in the plot are attributed to the
10 one-mode model — 73
2z two-mode model — ] thermal source.

g 10%¢ ] We determined the value of by calculatingé using the

2 I 3 first mode[ £ was calculated using E.9); the Q factor for

£ 10t the first mode was found to be] @nd then determining,

% 10-? using the formulac,= & 5¢3(x)dx. The plots in Figure 2

‘g » are based on these values. In the damping model, we as-
@ 10 sumed that the damping force is proportional to the velocity
g 107 and is independent of the position along the cantilever. Be-
= 1075 ' . 60'00 80'00 o000 cause of these assumptions on the damping model, coeffi-

0.00 200 00 kHz ) ’ cientsc; are completely determined onéas fixed. To better

FIG. 2. The noise power spectral density of the detector output plotteddentlfy th_e cantilever, one can z_abandon the assumptions on
against frequency. The plot predicted by the two-mode model agrees qualthe damping(so thatc; can be fixed independenilynade

tatively with the experimental data. The experimental noise amplitude ishere and fix the values @ based on the experimental data.
greater than the predicted values is attributed to other noise sources. The The thermal noise calculations presented here are for a
traditional single-mode model agrees with the two-mode model for frequen-

cies less than approximately 50 kHz. cantilever fixed at one end and free at another. However, in
actual operation of scanning force microscopes this is not

_ o . necessarily the operational configuration because the end
ver (obtained from Digital Instrumentswas used with a with the tip is subjected to constraining forces. An analysis

thickness of 0.42/—0.03 um. The specified length.,  similar to the one carried out for the fixed-free cantilever can
breadthb and densityp of the cantilever were 20&m, 20 pe performed when both ends of the cantilever are fixed by
um, and 3400 kg/rh respectively. The experiment was per- using the mode shapes of the unforced fixed-fixed cantilever
formed at a temperaturd,, equal to 300 K. The cantilever to form the basis for the expansion of any possible deforma-
was coated with Au/Cr which was removed by dipping thetion of the cantilever in the fixed-fixed configuration. The
cantilever in the etchant solutions for Au and Cr, respecthermal noise in actual operation will lie between the values
tively. for fixed-free and the fixed-fixed cases.

The cantilever deflection was measured with an atomic  The contribution of thermal noise to a particular mea-
force microscopgNanoscope Il AFM, Digital Instruments, surement depends on the relevant frequency range. The area
CA) using a focused laser reflected from the cantilever ontainder the power spectral density curve for a specified fre-
a position-sensitive photodetector. The deflection of the canquency range is easily estimated and will represent the net
tilever was estimated by monitoring the position of the re-contribution of the thermal noise to the measurement. Nu-
flected laser. The signal from the photodetector was meamerical values can be obtained using Equati®ni?).
sured using the Hanning function of a dynamic signal  The number of modes invoked in the multi-mode model
analyzer(HP3562A. depends on the specific frequency range of the experiment. If

The photodiode was calibrated from the slope of a forcehis range is far below the first cantilever harmonic then a
curve obtained from the interaction between the cantilevegingle mode approximation is appropriate. Even if the mea-
and a standard sample positioned on a calibrated piez&urements are restricted to the lower end of the frequency
scanner of the atomic force microscdfeThis allowed for  spectrum, the higher modes do contribute to the noise dis-
the estimation of the cantilever deflectiéin m/\Hz) from placement. For data presented h@figure 2, it is clear that
the output of the photodiodén V/\/Hz). if the measurements are restricted to a frequency range less

than 40 kHz then the second mode can be neglected.
VI. RESULTS AND DISCUSSION

Figure 2 shows the power spectral density of the canti—V”' SUMMARY
lever displacement as obtained by a one-mode model, by a In this paper we have described the cantilever dynamics
two-mode model and by the experiment. The two-modeand thermal noise behavior of a cantilever relevant to scan-
model is seen to predict the modal frequencies accurately. ning probe microscopy or other micro-cantilever based mea-

Itis likely that precise quantative agreement between thasurement techniques. Based on the free vibration modes of
experimental data and the model is lacking due to errors itthe cantilever, a detailed analysis of the dynamics of the
the cantilever parameters supplied by the manufacturer. Thierced cantilever is given. This analysis was used to predict
model can be used to accurately determine these physictie power spectral density of the cantilever deflection caused
parameters. As an example a range of values were specifidy thermal noise. The relationship to traditional noise analy-
for the thickness of the cantilever used in the experimensis was established so that the results obtained here can be
performed. However, fot=0.43 um, the predicted and the applied easily. The power spectral density of the displace-
experimental data showed good agreement suggesting thatent of a cantilever was obtained experimentally and com-
this might be the actual thickness of the cantilever. The acpared to analytic predictions of the model. The results show
tual displacement amplitude is greater than the predicted angood agreement. Fitting experimental data to the multi-mode
plitude. We may attribute this to other noise sources such asodel is shown to be a practical method for accurate identi-
the detector or the laser. However, none of the other noisécation of cantilever parameters.
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APPENDIX J

Evaluation of integrals and important parameters

Here, we give a closed form solution to the following where w; : = yk;/m;. For notational convenience we define

integral b:=(cf/m?) — 2w and evaluate the following integral:
1 . wf L o]
—_— J’_ —_ —_
Jw 1 g fw w® d 1 Joc w?® g F w® g
S w“+bw2+w]4 = -, wf w_;jz 0 wjz z 2 ¢ 0 “’1'2 ? 2 N
w +b+ — w— —| +2wi+b o+ —| —2wi+Db
1) I0) ! 1) )

We SubStitutG=w—(wj2/w) and T=w+(wj2/w) into the first and the second integrals, respectively, to obtain

© 1 1 © 1 0
—F———dw=— —dt— —— X d
f_m a)4-|-ba)2-|-(u]4 @ wjz(j_w t2+b+2wj2 o 7'2+b—2wj2 T)

1 foc 1 dt fw 1 q
= — o dt— — =2 —4ar
;J'z — o0 2 CJ — C] 2
t°+ W 7'2+ W—4w]-
i i
Note that
fw 1 dt Jt —1tmj)oo mJ’7T
—Z _ — an —_— = ,
_ootz C]- Cj Cj w Cj
T2
i
and
m- o0
j
——
o 1 m; m; \/c2 —4w’m?
f 2—de ﬁ if cj2—4wj2m1-2>0= ﬁ Iog J -
—® 2 CJ 2 \CJ—4mel 2\/CJ_4(1)J mJ mJ
T+W_4wj T+ 2 Awlm?
J NG —aoimy /|
=0 if ¢f~4w’m’<0=0 if c/~4wm’=0.
Also,

2 2.2 L 2 L 2 2 t 2 L ” 2
Cj —4wim; =§fo ¢j(x)dx—4kjmj= gJO ¢j(x)dx —4E|pAJ0 ¢>j(x)dxj0 [d)j(x)] dx

=(£L1))2=4EIpALI\LI=(L1))%(£2—-4EI1pALN]).

Therefore foré?<4ElpA\}, we have

f“ 1 q 11
e (k—med) e T Mol ¢ wiem;’
(A1)
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