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A multi-mode analysis of micro-cantilever dynamics is presented. We derive the power spectral
density of the cantilever displacement due to a thermal noise source and predict the cantilevers’s
fundamental resonant frequency and higher harmonics. The first mode in the multi-mode model is
equivalent to the traditional single-mode model. Experimental results obtained with a silicon nitride
cantilever at 300 K are in excellent qualitative agreement with the multi-mode model. The
multi-mode model may be used to obtain accurate values of the cantilever properties such as the
elastic modulus, effective mass, thickness and moment of inertia. ©1997 American Institute of
Physics.@S0021-8979~97!04105-4#

I. INTRODUCTION

Micro-cantilevers are widely used for the detection of
forces in a variety of scanning force microscopes.1 Atomic
interaction forces, magnetic forces, and electric forces have
been monitored using the deflection of the micro-cantilever
as a measure of the forces.1 The cantilever deflection is typi-
cally measured by optical or by electrical means.

Although extrinsic factors such as background vibration,
room temperature fluctuations, and transient interactions be-
tween the cantilever and the surrounding gaseous medium
frequently limit the force detection in practice, fundamen-
tally it is the thermal noise of the cantilever that limits the
sensitivity of scanning force microscopes. An in-depth un-
derstanding of the noise sources and their power spectra in
micro-cantilevers is lacking. However, it may be useful in
improving cantilever design and for the analysis of experi-
mental data. Previous thermal noise estimates were based on
an analysis where the cantilever is modeled as a single
spring-mass-damper system.1 Estimates of the thermal noise
amplitude in a free undamped cantilever considering all
modes of vibration of the cantilever were recently obtained.2

However, this does not provide information on the vibra-
tional amplitude in a frequency range, which is useful for
lock-in detection schemes.

The estimates of the power spectral density of the canti-
lever displacement is of particular interest for studies of ex-
tremely weak forces such as detected in magnetic force mi-
croscopy. It was proposed by Sidles and co-workers3–6 that

magnetic resonance imaging with single spin sensitivity is
possible using detection techniques which employ a micro-
cantilever. The basic experimental principles were demon-
strated by Rugar and co-workers who detected a net spin of
approximately 108 electrons and a net spin of approximately
1012 protons.6,7 The limiting factor on sensitivity of these
detection schemes is thought to be the thermal noise.7

In Section II of this paper, we give a multi-mode analy-
sis of the dynamics of a damped cantilever which is sub-
jected to time-varying forces. In Section III, the power spec-
tral density of the cantilever deflection due to the thermal
source is derived based on a multi-mode model of the canti-
lever. Section IV establishes the relationship of the tradi-
tional model to the multi-mode model. In Section V, we
present experimental methods and in Section VI we give
results and discussion. Finally, we give the summary in Sec-
tion VII.

II. MULTI-MODE MODEL OF THE CANTILEVER

Traditionally, micro-cantilevers for force microscopy
have been modeled as a single spring-mass-damper system.1

It was suggested that in certain scanning schemes subhar-
monics of the fundamental modes of the cantilever are
driven. To predict these subharmonics it is essential that a
multi-mode model of the cantilever be used.8 Better esti-
mates of the thermal noise effects on the cantilever displace-
ment and the error involved in using a single-mode approxi-
mation can be obtained by using the multi-mode model.
With this motivation, we give a detailed multi-mode analysis
of the cantilever dynamics below.a!Electronic mail: mcfar@engineering.ucsb.edu
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Figure 1 shows a cantilever subject to multiple loading.
One end of the cantilever is fixed and the other end is free.
The distributed applied load per unit length is given by
p(x,t). A concentrated loadF(t) is applied at a distance
xf from the base of the cantilever. The distributed load may
be due to a piezoelectric material on the cantilever and the
concentrated force may be due to the interaction between the
sample and the cantilever tip. The damping force per unit
length is denoted bypd(x,t). The length of the cantilever is
L, its Young’s modulus of elasticity isE, its cross sectional
area isA, and its area moment of inertia isI ~all in SI units!.

A. Undamped free vibration

In the absence of damping and applied loads, the equa-
tion of motion of the cantilever is given by

EI
]4z~x,t !

]x4
1rA

]2z~x,t !

]t2
50,

z~x,0!5a~x!,
]z~x,0!

]t
5b~x!, ~2.1!

wherea(x), b(x) are the initial conditions of the cantilever
andz(x,t) is the displacement of the cantilever. We will use
the convention thatf 8(x,t) denotes the spatial derivative,
] f (x,t)/]x and ḟ (x,t) denotes the time derivative,
] f (x,t)/]t . It can be shown2 that the solution of Eq.~2.1!
has the form

z~x,t !5(
j51

`

Cjsin~v j t1d j !f j , ~2.2!

with

f j~x!5~sin l jL1sinhl jL !~cosl j x2coshl j x!

1~cosl jL1coshl jL !~sinhl j x2sin l j x!,

~2.3!

wherel j is a solution of

cosl jLcoshl jL1150. ~2.4!

The j th mode deformation of the cantilever is given by
f j (x), whereas the wavelength of thej th mode is given by
l jL. The wavelengths are arranged in an ascending order
(l1,l2, . . . ). The relation between the wavelength and
frequency of modej is given by

~l jL !45
v j
2rAL4

EI
. ~2.5!

It can be shown that the cantilever deformationsf j satisfy
the relations:

E
0

L

f j~x!fk~x!dx5dk jLI j , ~2.6!

E
0

L

f j9~x!fk9~x!dx5dk jl j
4LI j , ~2.7!

E
0

L

f j~x!dx52
2~cosl jL1coshl jL !

l j
5:Jj , ~2.8!

f j~L !52~cosl jLsinhl jL22sinl jLcoshl jL !, ~2.9!

f j8~L !522l j~sinhl jLsinl jL !, ~2.10!

whereI j5(sinljL1sinhl jL)
2, dk j50 if kÞ j anddk j51 if

k5 j . Conveniently,v j
25kj /mj if we define

kj :5EIE
0

L

f j9~x!f j9~x!dx

and

mj :5rAE
0

L

f j~x!f j~x!dx. ~2.11!

Table I gives the values of important parameters for the first
five modes.

B. Forced vibration with damping

To study the dynamics of the cantilever subjected to
time varying forces we apply theprinciple of virtual workto
obtain the equation of motion.9 Let the displacement of the
cantilever at positionx and timet be given byz(x,t). Sup-
pose the cantilever is given a virtual displacement of
du(x,t). The elastic work and the inertial work done by the
cantilever are given by9

2EIE
0

L

z9~du!9dx and 2rAE
0

L

z̈~x,t !du~x,t !,

respectively, whereas the work done by the external applied
forces and the damping force are given by

E
0

L

p~x,t !du~x,t !dx1Fdu~xf ,t !

and

2E
0

L

pd~x,t !du~x,t !dx,

respectively. Using the principle of virtual work whereby the
net work must be zero, we obtain

E
0

L

$2EIz9~du!92rAz̈~x,t !du~x,t !2pd~x,t !du~x,t !

1p~x,t !du~x,t !%dx1Fdu~xf ,t !50. ~2.12!

FIG. 1. A schematic showing a cantilever subjected to an applied load,
p(x,t), the damping force,pd(x,t) assumed constant per unit length and a
concentrated force,F(t), applied at a distancexf from the base of the
cantilever.
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We assume that the damping is uniform and given by
pd(x,t)5j ż(x,t). It can be shown that any functionr (x)
which satisfies the boundary conditions imposed by the
fixed-free cantilever defined between 0 andL can be ex-
panded asr (x)5(k51

` fk(x)qk wherefk(x) were obtained
from the free undamped vibration.9 Thus, any deformation of
the cantilever can be represented as a weighted combination
of the fundamental mode deformations of the unforced can-
tilever. Therefore coefficientsqk(t) and duk(t) exist such
that

z~x,t !5 (
k51

`

fk~x!qk~ t !

and

du~x,t !5 (
k51

`

fk~x!duk~ t !. ~2.13!

Substituting Eq.~2.13! into Eq. ~2.12!, we obtain

(
j51

`

(
k51

`

EIE
0

L

fk9f j9dxqk~ t !duj~ t !

1(
j51

`

(
k51

`

rAE
0

L

fkf jdxq̈k~ t !duj~ t !

1(
j51

`

(
k51

`

jE
0

L

fkf jdxq̇k~ t !duj~ t !

5(
j51

` E
0

L

p~x,t !f j~x!dxduj~ t !

1(
j51

`

F~ t !f j~xf !duj~ t !.

Therefore,

(
j51

` SEIE
0

L

@f j9~x!#2dxqj~ t !1rAE
0

L

f j
2~x!dxq̈j

1jf j
2~x!dxq̇j2pj~ t !2F j~ t ! D duj~ t !50,

where

pj~ t !:5E
0

L

p~x,t !f j~x!dx

and

F j~ t !:5f j~xf !F~ t !.

As duj (t) is arbitrary, we have

mjq̈j~ t !1cj q̇j~ t !1kjqj~ t !5pj~ t !1F j~ t !

for all j51,2, . . . , ~2.14!

where the j th modal mass, spring constant, and damping
coefficient are defined as

mj :5rAE
0

L

f j
2~x!dx, kj :5EIE

0

L

~f j9~x!!2

and

cj :5jE
0

L

f j
2~x!dx.

To obtain the necessary initial conditions ofqj (t) for Eq.
~2.14!, we assume that

z~x,0!5a~x! and ż~x,0!5b~x!.

From Eq.~2.13!, we have

a~x!5 (
k51

`

fk~x!qk~0! and b~x!5 (
k51

`

fk~x!q̇k~0!.

Multiplying the above equations byf j (x) and integrating,
we have the necessary conditions

qj~0!5
rA*0

La~x!f j~x!dx

mj

TABLE I. Important parameters for the first five modes.

l jL 1.875 4.694 7.855 10.996 14.137

cos(ljL) 20.300 20.0184 20.001 4.25731024 1.66931024

cosh(l jL) 3.3371 54.6493 1.28933103 2.98183104 6.89593105

sin(ljL) 0.9541 2.99998 1 21 1
sinh(l jL) 3.1837 54.6402 1.28933103 2.98183104 6.89593105

f j (L) 28.27 107.27 22.7383103 5.9963104 21.3793106

I j 17.1215 2.8773103 1.66493106 8.893107 4.73531011

Jj /L 23.2401 223.2769 2328.2742 25.423103 29.7553104

mj

rAL

17.1215 2.8773103 1.66493106 8.893107 4.73531011

kjL
3

EI

211.615 1.39693106 6.33823109 1.29931013 1.89931016

cj
jL

17.1215 2.8773103 1.66493106 8.893107 4.73531011

vj
2
rAL4

EI

12.3596 485.4811 3.8073103 1.4623104 3.99423104
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and

q̇ j~0!5
EI*0

Lb~x!f j~x!dx

kj
. ~2.15!

If the initial conditions are zero@that isa(x)5b(x)50] then
qj (0)5q̇ j (0)50. Assuming zero initial conditions and tak-
ing the Fourier transform of Eq.~2.14!, we obtain

z~x,v!5(
j51

`
pj~v!1F j~v!

2mjv
21 ic jv1kj

f j~x!. ~2.16!

Thus, we have obtained an expression of the cantilever dis-
placement in terms of the forces on the cantilever.

III. THERMAL NOISE

Thermal noise is often the factor limiting the sensitivity
of scanning probe microscopes. In this section the multi-
mode model of the cantilever is used to obtain the effect of
thermal noise on the cantilever displacement.

The potential energy in the beam at any time,t, is given
by

PE~ t !5
1

2
EIE

0

L

@z9~x,t !#2dx. ~3.1!

Using Eq.~2.13!, we have

PE~ t !5
1

2
EI(

l51

`

(
j51

`

ql~ t !qj~ t !E
0

L

f l9~x!f j9~x!dx

5
1

2(j51

`

kjqj
2~ t !.

Note thatqj (t) is the displacement of a simple harmonic
oscillator of frequencyv j5Akj /mj . The expectation value
for the energy of the quantized harmonic oscillator of fre-
quencyv is simply10

\v

e\v/kBT21
. ~3.2!

That the expected value of the potential and kinetic energies
are equal implies that the expected value of the potential
energy of thej th harmonic oscillator~which has frequency
v j ) is

^PEj~ t !&5
1

2

\v j

e\v j /kBT21
, ~3.3!

where ^.& denotes the expectation value andPEj (t):5
1
2

kjqj
2(t). For the first few modes which satisfy\v j ! kBT we

have ^PEj (t)&5 1
2kBT. If we assume that the force on the

cantilever is solely thermal in origin then the equation of
motion for thej th harmonic oscillator is given by

mjq̈~ t !1cj q̇~ t !1kjqj~ t !5pj~ t !, ~3.4!

wherepj (t) is the forcing due to thermal source. From Eq.
~3.4!, qj (t) can be considered to be the output of a linear
time invariant systemHj (v) for an inputpj (t) and transfer
function

Hj~v!5
1

2mjv
21 ic jv1kj

. ~3.5!

Therefore the power spectral density ofqj (t), Sqjqj(v) is
given by11

Sqjqj~v!5uHj~v!u2Spjpj~v!

5
1

~kj2mjv
2!21cj

2v2Spjpj~v!, ~3.6!

whereSpjpj(v) is the power spectral density ofpj (t). This
implies that

1
2kBT5^PEj~ t !&5 1

2 kj^qj~ t !
2&5 1

2 kjRqjqj
~0!

5
1

2
kj

1

2pE2`

`

Sqjqj~v!dv

5
1

4p
kjE

2`

` 1

~kj2mjv
2!21cj

2v2

3Spjpj~v!dv,

whereRqjqj
(t) is the autocorrelation function ofqj (t) and is

equal to^qj (t)qj (t1t)& @it is also the inverse Fourier trans-
form of Spjpj(v)]. Assumingpj is white noise with a spec-

tral density given by a constants j
2 , we have

1

2
kBT5

s j
2

4pE2`

` kj
~kj2mjv

2!21cj
2v2dv. ~3.7!

Assuming that the damping is small enough (j2,4
EIrAl j

4 for j51, . . .N), we can show that~see Appendix!

E
2`

` 1

~kj2mjv
2!21cj

2v2dv5
p

v j
2cjmj

. ~3.8!

Therefore,

s j
252kBTcj . ~3.9!

Once the values of thes j
2 are evaluated from Eq.~3.9!, we

can obtain the power spectral density of the displacement of
the cantilever due to thermal noise by the relation
z(x,t)5( j51

N qj (t)f j (x), where we have assumed that the
effect of modes higher thanN are negligible. Asqj (t) are
independent, it follows that

Szz~v!5(
j51

N

Sqjqj~v!f j
2~x!. ~3.10!

Therefore, from Eq.~3.6!, we have

Szz~v!5(
j51

N 2kBTcjf j
2~x!

~kj2mjv
2!21cj

2v2 . ~3.11!

In many detection schemes, the measurement is restricted to
frequencies well belowv1 . The root-mean-square displace-
ment of the tip of the cantilever in a frequency range
@2Dv,Dv#, is given by
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^z2~L !&:5
1

2pE2Dv

Dv

Szz~v!dv

5
1

2p (
j51

N E
2Dv

Dv 2kBTcjf j
2~L !

~kj2mjv
2!21cj

2v2dv.

~3.12!

If Dv ! Ak1/m15v1 , then the following approximation
holds

^z2~L !&5
1

2p (
j51

N E
2Dv

Dv 2kBTcjf j
2~L !

~kj2mjv
2!21cj

2v2dv

'(
j51

N 4kBTcjf j
2~L !Dv

2pmj
2v j

4 . ~3.13!

This means that the root mean square displacement due to
thermal noise in a frequency range 2D f can be approximated
as

^z2~L !&'(
j51

N 4kBTcjf j
2~L !D f

mj
2v j

4 , ~3.14!

whereD f5Dv/2p.
It is to be noted that for the modes which satisfy\v j

! kBT the total energy in the mode is a constant irrespective
of the modal frequency. However, the energy in a certain
range of frequencies depends on the transfer function
Hj (v) which in turn depends on the physical parameters of
the cantilever. The design of the cantilever with respect to
thermal noise issues is equivalent to shapingHj (v) for a
desirable distribution of energy between different frequency
ranges. It is desirable to shapeHj (v) such that the energy
due to thermal noise, in the frequency band in which the
measurements are restricted, is minimized.Hj (v) can be
altered by changing the physical parameters of the cantilever.
Another method which has not been widely exploited is to
actively alterHj (v) using feedback control. Active control
of the cantilever in scanning probe microscopes is studied
~based on a one-mode model of the cantilever! in Refs. 12
and 13. The multi-mode model can be used to obtain a better
model for active cantilever control.

IV. RELATION TO TRADITIONAL MODELS

Previous studies have modeled the cantilever as a single
spring-mass system.1 The damping is introduced to fit the
experimental data. The spring constant is taken as 3EI/L3,
and the effective mass is taken as 0.24rAL and are denoted
by k andm, respectively.1 Therefore, the equation of motion
for the deflection of the tip,z(t) of the cantilever is

0.24rALz̈~ t !1
3EI

L3
z~ t !5F~ t !, ~4.1!

where it is assumed that the only loading on the cantilever is
the concentrated loading applied at the tip. Thereforexf5L
andpd5p50. Note that if only one mode of the multi-mode
model is used then

z~L,t !5f1~L !q1~ t !, ~4.2!

whereq1(t) satisfies

m1q̈1~ t !1k1q~ t !5F1~ t !. ~4.3!

Multiplying the above equation byf1(L) and substituting
f1(L)F(t) for F1(t), we have

m1z̈~L,t !1k1z~L,t !5f1~L !2F~ t !.

Substituting the values ofm1 , k1 andf1(L) from Table I,
we obtain an equation identical to Eq.~4.1!. This implies that
the values of mass and spring constant as presented tradition-
ally are related tom1 andk1 by

m5
m1

f1~L !2
and k5

k1
f1~L !2

. ~4.4!

In the single spring-mass-damper approximation, the
damping effects are often described by theQ factor.1 In the
model presented here, we have used the parameterj to in-
clude damping effects. For the traditional single spring-
mass-damper system, the equation of motion is given by

mz̈~ t !1cż~ t !1kz~ t !5 f ~ t !. ~4.5!

The predicted power spectral density of the Langevin forcing
term, f (t) is equal to 2kBTc.

1 The relation betweenQ factor
andc is given byQ5Akm/c. If only one mode of the multi-
mode model is used then the equation of motion is given by

m1q̈11c1q̇1kq5p1~ t !, ~4.6!

where we have assumed that the only forcing is due to
the thermal sourcep1(t). From the relation z(L,t)
5f1(L)q1(t) and Eq.~4.4!, we know that the tip deflection
dynamics are given by

mz̈~L,t !1
c1

f1
2~L !

ż~L,t !1kz~L,t !5
p1~ t !

f1~L !
. ~4.7!

We can choosej such thatc5c1 /f1
2(L). From Eq.~3.9! we

can conclude that the power spectral density ofp(t) is given
by s1

252kBTc1 . This means that the forcing term in Eq.
~4.7! has a power spectral density given bys1

2@1/f1
2(L)#

5 2kBTc. Thus for the choice ofj above, the dynamics of
the first mode of the multi-mode model we have presented
agree with the dynamics of the traditionally employed model
~note that some authors6,14,15employ a single-sided spectral
density convention, rather than denote the double-sided con-
vention used here resulting in a factor of 2 difference!. Fur-
thermore, the power spectral densities of the Langevin forc-
ing term of the two models are identical. For

c1
f1
2~L !

5c5
Akm
Q

5
1

f1
2~L !

Ak1m1

Q
, ~4.8!

we have

c15
Ak1m1

Q
.

Substituting values from Table I, we have

j5
3.515

Q
A EIrA

L4
. ~4.9!

V. EXPERIMENTAL METHODS

The power spectral density of the cantilever tip displace-
ment was measured experimentally. A diving-board cantile-
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ver ~obtained from Digital Instruments! was used with a
thickness of 0.421/20.03 mm. The specified lengthL,
breadthb and densityr of the cantilever were 204mm, 20
mm, and 3400 kg/m3, respectively. The experiment was per-
formed at a temperature,T, equal to 300 K. The cantilever
was coated with Au/Cr which was removed by dipping the
cantilever in the etchant solutions for Au and Cr, respec-
tively.

The cantilever deflection was measured with an atomic
force microscope~Nanoscope III AFM, Digital Instruments,
CA! using a focused laser reflected from the cantilever onto
a position-sensitive photodetector. The deflection of the can-
tilever was estimated by monitoring the position of the re-
flected laser. The signal from the photodetector was mea-
sured using the Hanning function of a dynamic signal
analyzer~HP3562A!.

The photodiode was calibrated from the slope of a force
curve obtained from the interaction between the cantilever
and a standard sample positioned on a calibrated piezo-
scanner of the atomic force microscope.16 This allowed for
the estimation of the cantilever deflection~in m/AHz) from
the output of the photodiode~in V/AHz).

VI. RESULTS AND DISCUSSION

Figure 2 shows the power spectral density of the canti-
lever displacement as obtained by a one-mode model, by a
two-mode model and by the experiment. The two-mode
model is seen to predict the modal frequencies accurately.

It is likely that precise quantative agreement between the
experimental data and the model is lacking due to errors in
the cantilever parameters supplied by the manufacturer. The
model can be used to accurately determine these physical
parameters. As an example a range of values were specified
for the thickness of the cantilever used in the experiment
performed. However, fort50.43mm, the predicted and the
experimental data showed good agreement suggesting that
this might be the actual thickness of the cantilever. The ac-
tual displacement amplitude is greater than the predicted am-
plitude. We may attribute this to other noise sources such as
the detector or the laser. However, none of the other noise

sources are likely to excite the resonant modes of the canti-
lever and therefore the peaks in the plot are attributed to the
thermal source.

We determined the value ofc1 by calculatingj using the
first mode@j was calculated using Eq.~4.9!; theQ factor for
the first mode was found to be 6# and then determiningc2
using the formulac25j*0

Lf2
2(x)dx. The plots in Figure 2

are based on these values. In the damping model, we as-
sumed that the damping force is proportional to the velocity
and is independent of the position along the cantilever. Be-
cause of these assumptions on the damping model, coeffi-
cientsci are completely determined oncej is fixed. To better
identify the cantilever, one can abandon the assumptions on
the damping~so thatci can be fixed independently! made
here and fix the values ofci based on the experimental data.

The thermal noise calculations presented here are for a
cantilever fixed at one end and free at another. However, in
actual operation of scanning force microscopes this is not
necessarily the operational configuration because the end
with the tip is subjected to constraining forces. An analysis
similar to the one carried out for the fixed-free cantilever can
be performed when both ends of the cantilever are fixed by
using the mode shapes of the unforced fixed-fixed cantilever
to form the basis for the expansion of any possible deforma-
tion of the cantilever in the fixed-fixed configuration. The
thermal noise in actual operation will lie between the values
for fixed-free and the fixed-fixed cases.

The contribution of thermal noise to a particular mea-
surement depends on the relevant frequency range. The area
under the power spectral density curve for a specified fre-
quency range is easily estimated and will represent the net
contribution of the thermal noise to the measurement. Nu-
merical values can be obtained using Equation~3.12!.

The number of modes invoked in the multi-mode model
depends on the specific frequency range of the experiment. If
this range is far below the first cantilever harmonic then a
single mode approximation is appropriate. Even if the mea-
surements are restricted to the lower end of the frequency
spectrum, the higher modes do contribute to the noise dis-
placement. For data presented here~Figure 2!, it is clear that
if the measurements are restricted to a frequency range less
than 40 kHz then the second mode can be neglected.

VII. SUMMARY

In this paper we have described the cantilever dynamics
and thermal noise behavior of a cantilever relevant to scan-
ning probe microscopy or other micro-cantilever based mea-
surement techniques. Based on the free vibration modes of
the cantilever, a detailed analysis of the dynamics of the
forced cantilever is given. This analysis was used to predict
the power spectral density of the cantilever deflection caused
by thermal noise. The relationship to traditional noise analy-
sis was established so that the results obtained here can be
applied easily. The power spectral density of the displace-
ment of a cantilever was obtained experimentally and com-
pared to analytic predictions of the model. The results show
good agreement. Fitting experimental data to the multi-mode
model is shown to be a practical method for accurate identi-
fication of cantilever parameters.

FIG. 2. The noise power spectral density of the detector output plotted
against frequency. The plot predicted by the two-mode model agrees quali-
tatively with the experimental data. The experimental noise amplitude is
greater than the predicted values is attributed to other noise sources. The
traditional single-mode model agrees with the two-mode model for frequen-
cies less than approximately 50 kHz.
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APPENDIX

Evaluation of integrals and important parameters

Here, we give a closed form solution to the following
integral

E
2`

` 1

~kj2mjv
2!21cj

2v2dv

5
1

mj
2E

2`

` 1

~v j
22v2!21

cj
2

mj
2v2

dv

5
1

mj
2E

2`

` 1

v41S cj
2

mj
2 22v j

2Dv21v j
4

dv,

wherev j :5Akj /mj . For notational convenience we define
b:5(cj

2/mj
2)22v j

2 and evaluate the following integral:
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We substitutet5v2(v j
2/v) andt5v1(v j

2/v) into the first and the second integrals, respectively, to obtain
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Also,
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Therefore forj2,4EIrAl j
4 , we have
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