OUURNAL of SPORTS SCIENCE \& MEDICINE

ISSN: 1303-2968
ISI 2013 IF 2-Year: 0.90 5-Year: 1.34 Average Citations per item: 4.2 SCOPUS 2013 SJR: 0.56 Cites per Doc. 2-Year: 1.05 3-Year: 1.38 4-Year: 1.57

FIND ARTICLES

- Current Issue BI RSS
- In Press R| Riss
- Back Issues

Back Issue

June 2014-Volume 13, Issue 2

Table of Contents

Research article	
$252-258$	The Influence of Serial Carbohydrate Mouth Rinsing on Power Output during a Cycle Sprint
	Shaun M. Phillips, Scott Findlay, Mykolas Kavaliauskas, Marie Clare Grant

Research article
271-279 Acute Impact of Inhaled Short Acting B-Agonists on $\mathbf{5}$ Km Running Performance
John Dickinson, Jiu Hu, Neil Chester, Mike Loosemore, Greg Whyte

$$
\text { Abstract } \quad \text { Fulltext } \quad \text { PDF }
$$

Research article

280-286
Acute Differences in Foot Strike and Spatiotemporal Variables for Shod, Barefoot or Minimalist Male Runners

Indexed in SCI Expanded, Focus on: Sports Science \& Medicine, SciSearch, PubMed, PubMed Science \& Medicine, SciSearch, PubMed, PubMed Central, ProQuest (Physical Education Index),
CAB Abstracts, SCOPUS, Index Copernicus, EBSCO, SPORTDiscus, DOAJ, J-Gate, GALE, EBSCO, SPORTDiscus, DOAJ, J-Gate, GALE,
GoogleScholar, ERA and SPONET

Most Readed Articles

Most Cited Articles
 pionaut fo hon ph IT COBE

It is forbidden the total or partial reproduction of this web site and the published materials, the treatment of its database, any kind of transition and for any means, either electronic, mechanic or other methods, without the previous written permission of the JSSM.

Sports Science \& Medicine
Home | Editorial Board | Submission | Statistics

Volume 13(2); May 2014

Case Reports

Could Low-Frequency Electromyostimulation Training be an Effective Alternative to Endurance Training? An Overview in One Adult
Gaëlle Deley, Nicolas Babault
J Sports Sci Med. May 2014; 13(2): 444-450. Published online May 1, 2014.
PMCID: PMC3990903
Article PubReader PDF-322K
An Unusual Case of Traumatic Internal Carotid Artery Dissection during Snowboarding
George Kalantzis, Ilias Georgalas, Bernard Y.P. Chang, Chin Ong, Nabil El-Hindy
J Sports Sci Med. May 2014; 13(2):451-453. Published online May 1, 2014.
PMCID: PMC3990904
Article PubReader PDF-187K

Letters to Editors

Lack of Enjoyment Reduces the Motivation to Succeed in Sport
Carra Johnson, Ronald J. Peters, Jr.
J Sports Sci Med. May 2014; 13(2): 454-455. Published online May 1, 2014.
PMCID: PMC3990905
Article PubReader PDF-112K
Stereotypes of Athletes' Use of Performance Enhancing Products
Carra Johnson, Ronald J. Peters, Jr.
J Sports Sci Med. May 2014; 13(2): 456-457. Published online May 1, 2014.
PMCID: PMC3990906
Article PubReader PDF-110K

Reply to Letter to Editor: Stereotypes of Athletes' Use of Performance Enhancing Products
Nkaku Kisaalita, Michael E. Robinson
J Sports Sci Med. May 2014; 13(2):458-459. Published online May 1, 2014.
PMCID: PMC3990907
Article PubReader PDF-238K

Research Articles

The Paroxetine Effect on Exercise Performance Depends on the Aerobic Capacity of Exercising Individuals
Francisco Teixeira-Coelho, João Paulo Uendeles-Pinto, Ana Cláudia Alves Serafim, Samuel Penna Wanner, Márcio de Matos Coelho, Danusa Dias Soares
J Sports Sci Med. May 2014; 13(2): 232-243. Published online May 1, 2014.
PMCID: PMC3990874
Article PubReader PDF-533K
The Occurrence of Core Muscle Fatigue During High-Intensity Running Exercise and its Limitation to
Performance: The Role of Respiratory Work
Tomas K. Tong, Shing Wu, Jinlei Nie, Julien S. Baker, Hua Lin
J Sports Sci Med. May 2014; 13(2): 244-251. Published online May 1, 2014.
PMCID: PMC3990875
Article PubReader PDF-384K
The Influence of Serial Carbohydrate Mouth Rinsing on Power Output during a Cycle Sprint
Shaun M. Phillips, Scott Findlay, Mykolas Kavaliauskas, Marie Clare Grant
J Sports Sci Med. May 2014; 13(2): 252-258. Published online May 1, 2014.
PMCID: PMC3990876
Article PubReader PDF-290K
Effects and Sustainability of a 13-Day High-Intensity Shock Microcycle in Soccer
Patrick Wahl, Matthias Güldner, Joachim Mester

J Sports Sci Med. May 2014; 13(2): 259-265. Published online May 1, 2014.
PMCID: PMC3990877
Article PubReader PDF-384K
An Enjoyable Distraction During Exercise Augments the Positive Effects of Exercise on Mood
Gregory J. Privitera, Danielle E. Antonelli, Abigail L. Szal
J Sports Sci Med. May 2014; 13(2): 266-270. Published online May 1, 2014.
PMCID: PMC3990878
Article PubReader PDF-2.58K

Acute Impact of Inhaled Short Acting $B_{2}-$-Agonists on 5 Km Running Performance
John Dickinson, Jiu Hu, Neil Chester, Mike Loosemore, Greg Whyte
J Sports Sci Med. May 2014; 13(2): 271-279. Published online May 1, 2014.
PMCID: PMC3990879
Article PubReader PDF-4.58K
Acute Differences in Foot Strike and Spatiotemporal Variables for Shod, Barefoot or Minimalist Male Runners Ciara McCallion, Bernard Donne, Neil Fleming, Brian Blanksby
J Sports Sci Med. May 2014; 13(2): 280-286. Published online May 1, 2014.
PMCID: PMC3990880
Article PubReader PDF-301K

The Effects of Interset Rest on Adaptation to 7 Weeks of Explosive Training in Young Soccer Players
Rodrigo Ramirez-Campillo, David C. Andrade, Cristian Álvarez, Carlos Henríquez-Olguín, Cristian Martínez,
Eduardo Báez-SanMartín, Juan Silva-Urra, Carlos Burgos, Mikel Izquierdo
J Sports Sci Med. May 2014; 13(2): 287-296. Published online May 1, 2014.
PMCID: PMC3990881
Article PubReader PDF-293K
Effect of Court Dimensions on Players' External and Internal Load during Small-Sided Handball Games
Matteo Corvino, Antonio Tessitore, Carlo Minganti, Marko Sibila
J Sports Sci Med. May 2014; 13(2): 297-303. Published online May 1, 2014.
PMCID: PMC3990882
Article PubReader PDF-236K
Ball Machine Usage in Tennis: Movement Initiation and Swing Timing While Returning Balls from a Ball Machine and from a Real Server
Jan Carboch, Vladimir Süss, Tomas Kocib
J Sports Sci Med. May 2014; 13(2): 304-308. Published online May 1, 2014.
PMCID: PMC3990883
Article PubReader PDF-371K
A Simplified Approach for Estimating the Ventilatory and Respiratory Compensation Thresholds
Giancarlo Condello, Ezekiel Reynolds, Carl Foster, Jos J. de Koning, Erika Casolino, Megan Knutson, John P. Porcari
J Sports Sci Med. May 2014; 13(2): 309-314. Published online May 1, 2014.
PMCID: PMC3990884
Article PubReader PDF-791K

Does Acute Vibration Exercise Enhance Horizontal Jump Performance?
Darryl J. Cochrane, Hayden Booker
J Sports Sci Med. May 2014; 13(2): 315-320. Published online May 1, 2014.
PMCID: PMC3990885
Article PubReader PDF-241K

Efficacy of the FIFA 11+ Warm-Up Programme in Male Youth Football: A Cluster Randomised Controlled Trial
Oluwatoyosi B. A. Owoeye, Sunday R. A. Akinbo, Bosede A. Tella, Olajide A. Olawale
J Sports Sci Med. May 2014;13(2): 321-328. Published online May 1, 2014.
PMCID: PMC3990886
Article PubReader PDF-226K

The Effects of Cervical Muscle Fatigue on Balance - A Study with Elite Amateur Rugby League Players
Guy Gosselin, Michael J. Fagan
J Sports Sci Med. May 2014; 13(2): 329-337. Published online May 1, 2014.
PMCID: PMC3990887
Article PubReader PDF-40.5K

Sandra Rogen, Peter Hofmann, Thomas Bauernhofer, Wolfram Müller
J Sports Sci Med. May 2014; 13(2): 338-348. Published online May 1, 2014.
PMCID: PMC3990888
Article PubReader PDF-29.5K

The Association of Flexibility, Balance, and Lumbar Strength with Balance Ability: Risk of Falls in Older Adults
Emilio J. Martínez-López Emilio, Fidel Hita-Contreras, Pilar M. Jiménez-Lara, Pedro Latorre-Román, Antonio Martínez-Amat
J Sports Sci Med. May 2014; 13(2): 349-357. Published online May 1, 2014.
PMCID: PMC3990889
Article PubReader PDF-480K

Performance Indicators Related to Points Scoring and Winning in International Rugby Sevens
Dean G. Higham, Will G. Hopkins, David B. Pyne, Judith M. Anson
J Sports Sci Med. May 2014; 13(2): 358-364. Published online May 1, 2014.
PMCID: PMC3990890
Article PubReader PDF-294K

Assessment of Isometric Trunk Strength - The Relevance of Body Position and Relationship between Planes of Movement
Andrej Kocjan, Nejc Sarabon
J Sports Sci Med. May 2014; 13(2): 365-370. Published online May 1, 2014.
PMCID: PMC3990891
Article PubReader PDF-289K

Physical Activity and Sedentary Behavior in an Ethnically Diverse Group of South African School Children Joanne McVeigh, Rebecca Meiring
J Sports Sci Med. May 2014; 13(2): 371-378. Published online May 1, 2014.
PMCID: PMC3990892
Article PubReader PDF-283K
Towards Uniform Accelerometry Analysis: A Standardization Methodology to Minimize Measurement Bias
Due to Systematic Accelerometer Wear-Time Variation
Tarun R. Katapally, Nazeem Muhajarine
J Sports Sci Med. May 2014; 13(2): 379-386. Published online May 1, 2014.
PMCID: PMC3990893
Article PubReader PDF-776K
Learning Effects Associated With the Least Stable Level of the Biodex® Stability System During Dual and
Single Limb Stance
Mutlu Cug, Erik A. Wikstrom
J Sports Sci Med. May 2014; 13(2): 387-392. Published online May 1, 2014.
PMCID: PMC3990894
Article PubReader PDF-230K
Moderate Recovery Unnecessary to Sustain High Stroke Volume during Interval Training. A Brief Report
Jamie Stanley, Martin Buchheit
J Sports Sci Med. May 2014; 13(2): 393-396. Published online May 1, 2014.
PMCID: PMC3990895
Article PubReader PDF-216K

Balance Training Exercises Decrease Lower-Limb Strength Asymmetry in Young Tennis Players
Italo Sannicandro, Giacomo Cofano, Rosa A. Rosa, Andrea Piccinno
J Sports Sci Med. May 2014; 13(2): 397-402. Published online May 1, 2014.
PMCID: PMC3990896
Article PubReader PDF-24.3K

Acute Effects of Static and Dynamic Stretching on Balance, Agility, Reaction Time and Movement Time
Dimitris Chatzopoulos, Christos Galazoulas, Dimitrios Patikas, Christos Kotzamanidis
J Sports Sci Med. May 2014; 13(2): 403-409. Published online May 1, 2014.
PMCID: PMC3990897
Article PubReader PDF-271K
Physiological Responses during Cycling With Oval Chainrings (Q-Ring) and Circular Chainrings
Alfredo Cordova, Iban Latasa, Jesus Seco, Gerardo Villa, Javier Rodriguez-Falces
J Sports Sci Med. May 2014; 13(2): 410-416. Published online May 1, 2014.
PMCID: PMC3990898
Article PubReader PDF-4.52K

Comparative Kinematic Analysis of the Snatch Lifts in Elite Male Adolescent Weightlifters
Erbil Harbili, Ahmet Alptekin
J Sports Sci Med. May 2014; 13(2): 417-422. Published online May 1, 2014.
PMCID: PMC3990899
Article PubReader PDF-308K

What is the Safest Sprint Starting Position for American Football Players?
Bruno Bonnechere, Benoit Beyer, Marcel Rooze, Jan Serge Van Sint J Sports Sci Med. May 2014; 13(2): 423-429. Published online May 1, 2014. PMCID: PMC3990900
Article PubReader PDF-2.3M
Cross-Cultural Adaptation and Validation of the Spanish Version of the Performance Enhancement Attitude Scale (Petróczi,)
Jaime Morente-Sánchez, Pedro Femia-Marzo, Mikel Zabala
J Sports Sci Med. May 2014; 13(2): 430-438. Published online May 1, 2014.
PMCID: PMC3990901
Article PubReader PDF-28oK
Correct, Fake and Absent Pre-Information Does Not Affect the Occurrence and Magnitude of the Bilateral Force Deficit
Lars Donath, Tobias Siebert, Oliver Faude, Christian Puta
J Sports Sci Med. May 2014; 13(2): 439-443. Published online May 1, 2014.
PMCID: PMC3990902
Article PubReader PDF-259K

Review Article

Biomechanical Analysis of the Swim-Start: A Review
Julien Vantorre, Didier Chollet, Ludovic Seifert
J Sports Sci Med. May 2014; 13(2): 223-231. Published online May 1, 2014.
PMCID: PMC3990873
Article PubReader PDF-416K

Articles from Journal of Sports Science \& Medicine are provided here courtesy of Dept. of Sports Medicine, Medical Faculty of Uludag
University

Research article

Moderate Recovery Unnecessary to Sustain High Stroke Volume during Interval Training. A Brief Report

Jamie Stanley ${ }^{1,2} \boxtimes$ and Martin Buchheit ${ }^{\mathbf{3}}$
${ }^{1}$ Centre of Excellence for Applied Sport Science Research, Queensland Academy of Sport, Brisbane, Australia; ${ }^{2}$ The University of Queensland, School of Human Movement Studies, Brisbane, Australia; ${ }^{3}$ Sport Science Unit, Myorobie Association, Montvalezan, France

Abstract

It has been suggested that the time spent at a high stroke volume (SV) is important for improving maximal cardiac function. The aim of this study was to examine the effect of recovery intensity on cardiovascular parameters during a typical high-intensity interval training (HIIT) session in fourteen well-trained cyclists. Oxygen consumption $\left(\mathrm{VO}_{2}\right)$, heart rate (HR), SV, cardiac output (Qc), and oxygenation of vastus lateralis (TSI) were measured during a HIIT ($3 \times 3-\mathrm{min}$ work period, 2 min of recovery) session on two occasions. $\mathrm{VO}_{2}, \mathrm{HR}$ and Qc were largely higher during moderate-intensity (60%) compared with low-intensity (30\%) $\left(\mathrm{VO}_{2}\right.$, effect size; $\left.\mathrm{ES}=+2.6 ; \mathrm{HR}, \mathrm{ES}=+2.8 ; \mathrm{Qc}, \mathrm{ES}=+2.2\right)$ and passive $(\mathrm{HR}, \mathrm{ES}=+2.2$; Qc, $\mathrm{ES}=+1.7$) recovery. By contrast, there was no clear difference in SV between the three recovery conditions, with the SV during the two active recovery periods not being substantially different than during exercise (60%, $\mathrm{ES}=-0.1 ; 30 \%$, $\mathrm{ES}=-0.2$). To conclude, moderateintensity recovery may not be required to maintain a high SV during HIIT.

Key words: High-intensity interval training; cardiac output; cardiac function; arteriovenous oxygen difference.

Introduction

High-intensity interval training (HIIT) is recognized as one of the most effective means of improving cardiorespiratory and metabolic function in athletes (Buchheit and Laursen, 2013). A typical HIIT session involves the repetition of periods of high-intensity exercise (i.e., the intervals) interspersed with periods of lower intensity (i.e., recovery periods) (Buchheit and Laursen, 2013). Long intervals (i.e., $>3 \mathrm{~min}$) are typically completed close to the speed/power associated with maximal oxygen consumption $\left(\mathrm{VO}_{2 \text { max }}\right)$, because it is believed that this is optimal stimulus for eliciting maximal cardiovascular and peripheral adaptations (Buchheit and Laursen, 2013). However, because VO_{2} and cardiac output (Qc) can be dissociated during intense exercise (Lepretre et al., 2004), and attaining and maintaining an elevated stroke volume (SV) is likely important for improving maximal cardiac function (Cooper, 1997), increasing time spent at maximal Qc (Qcmax) and/or training at an intensity associated with maximal SV may also be important (Lepretre et al., 2004).

The intensity of exercise that maximizes the time at maximal SV is difficult to predict (González-Alonso, 2008; Mortensen et al., 2005; Warburton and Gledhill,
2008). The most appropriate HIIT format inducing increased time at Qcmax in well-trained and elite athletes remains to be determined. In untrained males, compared with peak exercise during a graded exercise test, 30 -s allout sprints (typical of sprint interval training sessions (Buchheit and Laursen, 2013)), might allow attainment of similar Qc (effect size; $\mathrm{ES}=-0.1$) and even largely higher SV (ES $=+1.3$) (Fontana et al., 2011). The recovery period is another key factor of HIIT with respect to cardiopulmonary responses (Buchheit and Laursen, 2013). Conjecture remains as to whether maximal SV is reached during the recovery period or during work periods-and whether this response is recovery-intensity dependent (Buchheit and Laursen, 2013; Cumming, 1972; GonzálezAlonso, 2008; Warburton and Gledhill, 2008). Therefore, the aim of the current study was to examine the effect of recovery intensity on cardiovascular parameters during HIIT.

Methods

Subjects

Fourteen endurance-trained male cyclists participated in the study (age, 25 ± 4 years; body mass, $69.6 \pm 4.9 \mathrm{~kg}$; height, $1.77 \pm 0.04 \mathrm{~m} ; \mathrm{VO}_{2 \max }, 66.6 \pm 4.2 \mathrm{~mL} \cdot \mathrm{~kg}^{-1} \cdot \mathrm{~min}^{-1}$; peak power output, $405 \pm 28 \mathrm{~W}$). The experimental procedure was approved by the Human Research Ethics Committee at The University of Queensland.

Experimental overview

The complete methodology has been reported elsewhere (Stanley et al., 2014). Briefly, the cyclists completed an incremental cycling test to determine the power at $\mathrm{VO}_{2 \text { max }}$ $\left(\mathrm{pVO}_{2 \text { max }}\right)$ and maximal Qc (Qcmax), and two cycling (Wattbike ${ }^{\circledR}$, Wattbike Ltd., UK) HIIT sessions (12-min warm-up, three 3 -min work periods (Ex) at $90 \% \mathrm{pVO}_{2 \max }$) 5-7 days apart. The 2 -min recovery periods were completed at either $30 \% \mathrm{pVO}_{2 \max }(30 \%)$ or $60 \% \mathrm{pVO}_{2 \max }$ (60%) in a randomized order with passive (PAS) recovery always following the final interval. Respiratory gas exchange (ParvoMedics TrueOne ${ }^{\circledR}$ 2400, Utah, USA) and HR, SV and Qc (PhysioFlow, Manatec Biomedical, France) (Charloux et al., 2000) were measured continuously. Oxygenation of vastus lateralis (tissue saturation index; TSI) was determined using near-infrared spectroscopy (PortaMon, Artinis Medical Systems BV, The Netherlands). Arteriovenous difference $\left(\mathrm{a}-\mathrm{vO}_{2}\right)$ was calculated using the Fick equation. All data were sampled at 5 -s
intervals, and the average for each work period (e.g., 3 min average for Ex , and 2 min average for the recovery period) was determined during the HIIT. Unfortunately due to technical difficulties, Qcmax was only determined for 5 cyclists during the incremental test. The coefficient of variation (CV) for each variable during Ex was as follows: $\mathrm{HR}, 1.2 \%$; SV, 5.5%; Qc, 5.8%; $\mathrm{VO}_{2}, 3.4 \%$; TSI, 9.9%; and a-vO O_{2} diff, 2.5%.

Data analysis

All data in the text and figures are presented as mean ($\mathrm{n}=$ 14) or percentage $(\mathrm{n}=5)$ of incremental test peak values with 90% confidence limits (CL). Standardized differences/changes in all monitored variables were calculated using the pooled between-subject standard deviations. Threshold values were >0.2 (small), >0.6 (moderate) and >1.2 (large) (Hopkins et al., 2009). Uncertainty in each effect was expressed as $90 \% \mathrm{CL}$ and its probabilities that
the true difference was substantially greater or lower than the CV for each variable. These probabilities were used to make a qualitative mechanistic inference about the true effect (Hopkins et al., 2009). Data as a percentage of incremental test peak values were included to provide an indication of relative load and demonstrated similar trends to raw values. Statistical comparisons were not performed on data as a percentage of incremental test peak values because data was only available for 5 cyclists.

Results

The effect of recovery intensity on cardiorespiratory variables (both mean and percentage of incremental test peak values) is displayed in Figure 1. No clear differences in SV were observed between recovery conditions. There was a possible small difference in SV between PAS and Ex.

Figure 1. Heart rate (HR), stroke volume (SV), cardiac output (Qc), oxygen consumption (VO_{2}), arteriovenous oxygen difference (a-vO \mathbf{O}_{2} diff), and tissue saturation index (TSI) measured simultaneously during the different intensities during the HIIT session: pre-exercise rest (Rest), 3-min work periods at $\mathbf{9 0 \%} \mathbf{p V O} \mathbf{2 m a x}$ (Ex), passive recovery (PAS), low-intensity recovery $\mathbf{(3 0 \%})$, moderate-intensity recovery $(\mathbf{6 0 \%})$). Data are presented as mean ($\mathrm{n}=14$; circles) and percentage of incremental test peak values $(\mathrm{n}=$ 5 ; squares) with 90% confidence intervals. VO_{2} values for Rest were calculated based on ($5 \mathrm{~mL} \cdot \mathrm{~kg}^{-1}$) (Medbø and Tabata, 1989) and were not available for PAS. TSI was not measured during rest or the max test. Letters ' a ', ' b ', and ' c ' indicate a substantial difference versus PAS, 30%, and 60% respectively, with the number of letters representing a small (1 letter), moderate (2 letters), and large (3 letters) standardized differences respectively. If the 90% CL of the standardized differences overlapped small positive and negative values, the magnitude was deemed unclear; otherwise that magnitude was deemed to be the observed magnitude (Hopkins et al., 2009). For clarity, letters have been omitted for differences between Rest and all other intensities as all were clear and large. Data as a percentage of incremental test peaks were provided to indicate the relative load and demonstrated similar trends to raw values, however, because data was only available for 5 cyclists, statistical comparisons were not performed.

Discussion

This is the first study to describe Qc and SV during a typical HIIT session performed by well-trained athletes. The main finding was that moderate-intensity recovery periods are not necessary to maintain high SV during the exercise intervals of HIIT.

In the present study, during the $3-\mathrm{min}$ work periods at $90 \% \mathrm{pVO}_{2 \max }$, Qc reached $\sim 89 \%$ and SV reached $\sim 102 \%$ of the peak values attained during the incremental test. Due to the limited number of data sets in the present study ($\mathrm{n}=5$), caution is advised when comparing these findings. Nevertheless, the Qc values in the present study are consistent with the $\sim 85 \%$ observed during a 4 -min exercise interval at an intensity $\sim 90 \% \mathrm{pVO}_{2 \text { max }}$ (Richard et al., 2004). However, present data contrast with that observed during a sprint interval session (30-s all-out sprints), where Qc reached $\sim 102 \%$, and SV $\sim 134 \%$ of Qcmax and maximal SV respectively (Fontana et al., 2011). Nevertheless, HIIT is likely a better stimuli for cardiovascular improvements as the total time spent at or near maximal SV and $\mathrm{VO}_{2 \text { max }}$ is likely substantially greater during a HIIT session (e.g., $15-\mathrm{min}$ HIIT: 3×3-min at $90 \% \mathrm{pVO}_{2 \text { max }}$ interspersed with 2 min active recovery $=$ >9 min near max) compared with a SIT session of comparable duration (e.g., $15-\mathrm{min}$ SIT: 6×30-s all-out efforts interspersed with 2 min passive recovery (Buchheit and Laursen, 2013) $=\sim 3$ min near max). These data illustrate that cardiovascular responses during exercise are likely HIIT protocol-dependent.

During recovery periods we observed that SV did not surpass the levels attained during exercise (Figure 1). Because the statistical analysis included all 14 cyclists, we are confident with this finding. This is contrary to the belief that SV could reach maximal levels during the recovery periods of HIIT (Buchheit and Laursen, 2013; Cumming, 1972). In a well-trained cyclist, higher SV values were consistently observed during recovery periods, not work periods, irrespective of the type of exercise (incremental exercise, long intervals, or sprints) (Buchheit and Laursen, 2013). The reason for these disparities is not clear. However, differences in training status (well-trained vs. untrained) and mode of exercise (upright vs. supine) likely influenced venous return, cardiac preload, and peripheral resistance that can influence SV.

Interestingly, we observed that despite the expected differences in peripheral metabolic demands (as inferred from the greater $\mathrm{a}-\mathrm{vO}_{2}$ diff and lower TSI, figure 1), the SV response was not affected by recovery intensity (Figure 1). Our data suggest that SV already reached a plateau at a low intensity (González-Alonso, 2008; Warburton and Gledhill, 2008). Because active recovery involves rhythmical contraction of exercising muscles irrespective of intensity, it is likely that the effect of the muscle pump influenced peripheral resistance and venous return, such that a similarly high SV (compared with the exercise intervals) was maintained.

Conclusion

The present study demonstrates that moderate-intensity
recovery periods are not necessary to maintain high SV during the exercise intervals HIIT. We acknowledge that the impedance method used to assess cardiovascular function in this study has not been validated during maximal exercise. Therefore, rather than compare our data in absolute terms (to previous studies), we have made comparisons with respect to difference in exercise intensity. Nevertheless, the CV for our data suggest similar reliability to that observed during sub-maximal exercise (Charloux et al., 2000). The practical implication of this finding is that reducing the intensity of the recovery period during a HIIT protocol may prolong the time to exhaustion (Dupont et al., 2003), potentially allowing completion of additional high-intensity intervals, which can, in turn, increase the time accumulated at Qcmax. Using the HIIT protocol in the current study as an example, completion of an additional two intervals would increase the time spent at Qcmax by 67%. Whether achieving a specific quantity of time at Qcmax is necessary to maximize cardiac adaptation remains unknown.

Acknowledgements

The authors thank the cyclists for their generous time commitment and effort throughout the study. This study was supported by the Australian Institute of Sport High Performance Research Fund and the Centre of Excellence for Applied Sport Science Research at the Queensland Academy of Sport.

References

Buchheit, M. and Laursen, P.B. (2013) High-intensity interval training, solutions to the programming puzzle part i: Cardiopulmonary emphasis. Sports Medicine 43, 313-338.
Charloux, A., Lonsdorfer-Wolf, E., Richard, R., Lampert, E., OswaldMammosser, M., Mettauer, B., Geny, B. and Lonsdorfer, J. (2000) A new impedance cardiograph device for the noninvasive evaluation of cardiac output at rest and during exercise: Comparison with the "direct" fick method. European Journal of Applied Physiology 82, 313-320.
Cooper, G. (1997) Basic determinants of myocardial hypertrophy: A review of molecular mechanisms. Annual Review of Medicine 48, 13-23.
Cumming, G.R. (1972) Stroke volume during recovery from supine bicycle exercise. Journal of Applied Physiology 32, 575-578.
Dupont, G., Blondel, N. and Berthoin, S. (2003) Performance for short intermittent runs: Active recovery vs. Passive recovery. European Journal of Applied Physiology 89, 548-554.
Fontana, P., Betschon, K., Boutellier, U. \& Toigo, M. (2011). Cardiac output but not stroke volume is similar in a wingate and $\mathrm{vo}_{2 \text { peak }}$ test in young men. European Journal of Applied Physiology, 111, 155-158.
González-Alonso, J. (2008) Point:Counterpoint: Stroke volume does/does not decline during exercise at maximal effort in healthy individuals. Journal of Applied Physiology 104, 275276.

Hopkins, W.G., Marshall, S.W., Batterham, A.M. and Hanin, J. (2009) Progressive statistics for studies in sports medicine and exercise science. Medicine and Science in Sports and Exercise 41, 3-13.
Lepretre, P. M., Koralsztein, J. P. \& Billat, V. L. (2004). Effect of exercise intensity on relationship between $\mathrm{VO}_{2 \text { max }}$ and cardiac output. Medicine and Science in Sports and Exercise 36, 13571363.

Medbø, J. and Tabata, I. (1989) Relative importance of aerobic and anaerobic energy release during short-lasting exhausting bicycle exercise. Journal of Applied Physiology 67, 1881-1886.
Mortensen, S.P., Dawson, E.A., Yoshiga, C.C., Dalsgaard, M.K., Damsgaard, R., Secher, N.H. and Gonzalez-Alonso, J. (2005). Limitations to systemic and locomotor limb muscle oxygen delivery and uptake during maximal exercise in humans. Journal of Physiology-London 566, 273-285.
Richard, R., Lonsdorfer-Wolf, E., Dufour, S., Doutreleau, S., Oswald-

Mammosser, M., Billat, V. and Lonsdorfer, J. (2004) Cardiac output and oxygen release during very high-intensity exercise performed until exhaustion. European Journal of Applied Physiology 93, 9-18.
Stanley, J., Peake, J., Coombes, J. and Buchheit, M. (2014) Central and peripheral adjustments during high-intensity exercise following cold water immersion. European Journal of Applied Physiology 114(1), 147-163.
Warburton, D.E.R. and Gledhill, N. (2008) Counterpoint: Stroke volume does not decline during exercise at maximal effort in healthy individuals. Journal of Applied Physiology 104, 276-278.

Key points

- Moderate-intensity recovery periods may not be necessary to maintain high stroke volume during the exercise intervals of HIIT.
- Stroke volume did not surpass the levels attained during the exercise intervals during the recovery periods of HIIT.
- The practical implication of these finding is that reducing the intensity of the recovery period during a HIIT protocol may prolong the time to exhaustion, potentially allowing completion of additional highintensity intervals increasing the time accumulated at maximal cardiac output.

Jamie STANLEY
Employment
Post-Doctoral Research Fellow, School of Human Movement Studies, The University of Queensland and Centre of Excellence for Applied Sport Science Research, Queensland Academy of Sport, Brisbane, Australia.Research Scientist, Queensland Academy of Sport, Triathlon, Brisbane, Australia

Degree

PhD
Research interest
Exercise physiology, performance, recovery monitoring
E-mail: j.stanley@uq.edu.au

Martin BUCHHEIT

Employment
Physiologist \& Sport Scientist, Myorobie Association, Montvalezan, France
Degree
PhD

Research interest

Exercise physiology, performance monitoring, progressive statistics, football, soccer, handball.
E-mail: mb@martin-buchheit.net

Jamie Stanley

School of Human Movement Studies, The University of Queensland, Brisbane, Queensland 4072, Australia

