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A generalized geometric model is presented which describes the collision efficiency factor of
aggregation �the probability of a binary particle or aggregate collision resulting in adhesion� for
systems comprised of two oppositely charged species. Application of the general model to specific
systems requires calculation of the area of each species available for collision with a second species.
This is in contrast to previous models developed for polymer-particle flocculation that are based on
the fractional surface coverage of adsorbed polymer. The difference between these approaches is
suggested as an explanation for previously observed discrepancies between theory and observation.
In the current work the specific case of oppositely charged nondeformable spherical particles
�heteroaggregation� is quantitatively addressed. The optimum concentration of oppositely charged
particles for rapid aggregation �maximum collision efficiency� as a function of relative particle size
is calculated and an excellent correlation is found with data taken from literature. © 2006 American
Institute of Physics. �DOI: 10.1063/1.2387172�

I. INTRODUCTION

Following the work of von Smoluchowski1 it is usual to
consider the rate of aggregate formation as proportional to
the number of binary particle or aggregate collisions, per unit
time and volume, resulting in adhesion �J�. For two species,
i and j, that may be either a particle or aggregate, this can be
expressed as

Jij = KijNiNjEij , �1�

where Ni and Nj are the number concentration of each spe-
cies, Eij is known as the collision efficiency factor, and Kij is
a second order collision rate constant which takes into ac-
count the physical parameters of the system �particle size,
temperature, etc.� as well as the transport mechanisms by
which collisions are facilitated.

The term Eij in Eq. �1� was introduced by Smellie and
La Mer2 to account for the possibility of a collision not re-
sulting in adhesion and is simply equal to the fraction of
collisions that do result in adhesion. It follows then from Eq.
�1� that if the suspension properties and particle concentra-
tion are constant for all flocculant dosages, Eij must be the
determining variable for aggregate growth rate. Even in the
face of temporal variations in the properties of an aggregat-
ing system prior to complete adsorption of flocculant, it has
been shown3 that the collision efficiency factor is nonethe-
less central to determining the optimum dosage of flocculant

for rapid aggregation. Indeed, maximization of the collision
efficiency factor is intrinsically connected to the effective
application of flocculation and heteroaggregation techniques.
Thus, understanding and controlling Eij is of considerable
importance not only for those who seek to understand the
fundamental aspects of flocculation kinetics but also those
who wish to apply this process to practical situations.

Some work has been done to try and develop a quanti-
tative theory for Eij,

2,4–13 specifically for the flocculation of
particles by polymers, but to date no model has proven to be
universally satisfactory. The goal of this work is to develop
and implement a more robust quantitative model for Eij

based on the existing models.

II. THEORY

A. Background

Smellie and La Mer2 noted that the rate of floc formation
should be dependent upon the amount of flocculant adsorbed
per particle ��� as well as the surface area still open per
particle �1−��. They proposed that Eij �the collision effi-
ciency factor for a collision between species i and j� could be
quantitatively defined as the probability of collision between
the bare fraction particle surface and the fraction of particle
surface covered by polymer,

Eij = P����1 − ��� , �2�

which was expressed quantitatively as simply the product of
� and �1−��,
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Eij = ��1 − �� . �3�

This probabilistic model implies a maximum collision effi-
ciency of 0.25 �25% chance of any given collision resulting
in adhesion� at an optimal fractional surface coverage of one
half. Hogg5 later noted that the original Smellie–La Mer for-
mulation does not take into account the probability of the
opposite situation, that is the probability of polymer-bare sur-
face interactions, P��1−�� ���. Assuming that these prob-
abilities are equivalent �the colliding species have the same
fraction of surface covered by polymer�, the correct formu-
lation of the Smellie–La Mer model should be

Eij = ���1 − ��� + ��1 − ���� = 2��1 − �� . �4�

According to Eq. �4�, the optimum surface coverage remains
one-half �as for Eq. �3��, but the maximum collision effi-
ciency is 0.5 rather than 0.25 at this surface coverage. This is
readily understood if one considers a situation where the
polymer is oppositely charged to the particle, lies flat against
the particle surface, and the size of each polymer patch is
large relative to the total surface area of the particle. If the
surface coverage is equal to one-half, the situation can be
likened to flipping coins: half a coin is heads and the other
half tails, so if two coins are thrown there is a 50% chance of
getting two of the same side �25% chance each for two heads
and two tails� and the same chance of getting two opposite
sides. However, as was noted by Hogg5 and De Witt and van
de Ven,9 despite the correction to the Smellie–La Mer model,
the model fails to explain reported optimum flocculant con-
centrations corresponding to surface coverages of signifi-
cantly less than one-half14,15 nor does it explain experimen-
tally determined values of Eij much greater than one-half, in
some cases approaching unity.16,17

Numerous attempts have been made to refine the model
of Smellie and La Mer to account for the discrepancies be-
tween theory and experimental observations. Formulations
have included terms for physical effects such as particle or
aggregate rotation during interaction,5 fractional activation of
surface function groups,6 the possibility of aggregation of
like-charged surfaces,4,7,12 temporal variation of surface
coverage,8 and multiple collisions during a single
encounter.13 However, none of these modifications has suc-
cessfully reconciled the noted discrepancies.

B. Proposed modification

All attempts at quantifying the collision efficiency factor
to date have been based on the original Smellie–La Mer
model. Our conjecture is that this model, while conceptually
sound, is not sufficiently robust to allow refinement. This is
not to say that the refinements themselves are not correct at
least in a qualitative sense. All formulations of Eij compare
the fraction of particle surface covered by polymer to that
which is bare. However, the fraction of particle surface area
that is covered by flocculant ��� is actually not available for
particle-particle or particle-flocculant collisions because, by
definition, it is covered. Therefore it should only be included
in probability calculations for such collisions if the flocculant
sits relatively flat against the particle surface, as exemplified
by Fig. 1�a�, such that � equates to the area of flocculant

exposed to the possibility of collision. So by applying the
half surface coverage condition for maximum collision effi-
ciency in the Smellie–La Mer model, it is implicitly assumed
that the flocculant adopts a flat conformation during colli-
sions.

It has been shown from theory18 and experiment19 that
polymer chains adsorbed at low concentration on a substrate
can adopt a relatively flat equilibrium configuration �the
bound fraction at equilibrium nears 1 as surface coverage
approaches 0�. With increasing surface coverage the equilib-
rium bound fraction is found to decrease and the nonad-
sorbed polymer segments extend into the bulk phase as loops
and tails. As already mentioned, surface coverage at opti-
mum flocculation conditions is usually less than 0.5 so rela-
tively flat configurations are possible given sufficient relax-
ation time and good affinity of the polymer for the substrate.

However, due to the increase in flocculation rate with
increasing particle concentration20 and shear rate,21,22 the to-
tal flocculation times too short for significant polymer relax-
ation are often reported giving rise to so-called nonequilib-
rium flocculation �NEF�.23,24

The effect of polymer extension on aggregation kinetics
has been previously investigated.25,26 However, the fre-
quently observed increased rate of aggregation with polymer
extension is more commonly attributed to the effect of in-
creasing collision radius on the collision rate constant �Kij�.
It is important to note that while Kij is a function of collision
radius and therefore polymer extension, this does not pre-
clude the collision efficiency from also being a function of
the same variable. Indeed, it has been suggested
previously23,27 that the morphology of relaxing polymer
chains may be responsible for the observed discrepancies
between theoretical and experimental collision efficiency
factors, although no quantitative analysis has been under-
taken.

FIG. 1. Particle surfaces with adsorbed polymer �a� in a flattened confor-
mation such that the area of exposed polymer is equivalent to the area of
particle covered and �b� in an extended conformation such that the two areas
do not equate.
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The possibility of extended flocculant conformations af-
fecting collision efficiency was first noted by Healy and La
Mer.28 They considered the effect such conformations have
on the collision efficiency factor by calculating � for Eq. �3�
as a function of the number of adsorbing segments per poly-
mer molecule. This simply means that nonadsorbing seg-
ments do not contribute to the surface coverage. The model
of Swerin et al.11 also considers polymer conformation, but
rather than looking solely at the effect on surface coverage a
direct enhancement to the collision efficiency factor is at-
tempted. An extra term is included in their formulation addi-
tive with the probabilistic surface coverage term. The term
describing the polymer conformation is entirely empirical
and, as stated by the authors, should be regarded as a “rather
crude attempt” at including flocculant extension in the colli-
sion efficiency formulation. Nevertheless, it does highlight
the need to look beyond the effect of polymer conformation
in terms of � alone.

In addition to decreasing the fractional surface coverage
for a given amount of adsorbed polymer, extended confor-
mations will result in the exposed area of flocculant �the area
of the imaginary surface outlining the general shape of the
polymer� being greater than the area of the particle that it
covers. This is exemplified by Fig. 1�b� where a polymer in
an extended conformation �loops and tails� is adsorbed to a
particle surface. The surface coverage in this case is signifi-
cantly less than the exposed area of polymer, unlike the case
in Fig. 1�a�. Clearly it is the relative surface area of the
particle and flocculant exposed to collision that dictates the
chance of the two coming into contact rather than the surface
coverage of flocculant on particle. This certainly explains the
reported observations that optimum flocculation conditions
are achieved at flocculant concentrations corresponding to a
particle surface coverage of significantly less than one-half.
It will be shown in Sec. III of this work that it is possible to
define a generalized �system nonspecific� equation for colli-
sion efficiency as a function of the exposed area of flocculant
and particle.

Application of the generalized model to specific systems
requires calculation of the exposed areas of particles and
flocculant �as a function of time in the case of transient mor-
phology�. Since it is difficult to know the exact dimensions
of a polymer adsorbed at a surface, especially given that its
conformation may change with time, calculation of the ex-
posed area of flocculant is not trivial. However, if we con-
sider the extreme case of NEF, where the collision rate of
particles is infinitely fast, polymer chains are incapable of
reconfiguration before collision with another particle. So, as-
suming adsorption of polymer chains from solution with
minimal deformation until contact, a spherical coil configu-
ration can be assumed as a limiting case in the same way as
a completely flat conformation is the limiting case of equi-
librium flocculation �EF�. While it is likely that in most real
systems some reconfiguration will occur during adsorption of
polymeric flocculants and as such they are not ideally mod-
eled as spheres when combined with the Smellie–La Mer
model for a flattened configuration, these models describe
limiting cases between which reality may lie. The more ap-

plicable model for a specific system will be determined by
various physical factors affecting the relative rates of poly-
mer relaxation and particle aggregation.

The clear benefit of assuming a spherical flocculant is
that it is relatively simple to calculate exposed surface areas.
Additionally, calculations of exposed area are readily appli-
cable to aggregation of oppositely charged particles, the so-
called “heteroaggregation.” Indeed, Stoll and Buffle29 have
described polymer bridging flocculation as a case of hetero-
aggregation in which macromolecular configurations and
lengths play an additional role. Heteroaggregation then pro-
vides a means by which the generalized model presented in
Sec. III can be experimentally tested, as will be shown in
Sec. IV of this work.

III. COLLISION EFFICIENCY FACTOR MODEL

A. Probability equations

The collision efficiency factor for any two colliding sys-
tems �i and j�, whether comprised entirely of particles, as in
heteroaggregation, or polymer and particles, as in floccula-
tion �or any other combination of charged species�, is the
summed conditional probability of a collision involving a
positive or negatively charged area in i with a negative or
positively charged area in j, respectively, and vice versa,

Eij = 1
2 �P�j+�i−�P�i−� + P�j−�i+�P�i+� + P�i+�j−�P�j−�

+ P�i−�j+�P�j+�� , �5�

where P�i−�, for example, denotes the probability of the
negatively charged area in i being involved in a collision and
P�j+ � i−� denotes the conditional probability of the positive
area in j being involved in a collision once the negative area
in i is involved.

If the involvement of an area in i in a collision has no
effect on the probability of involvement of an oppositely
charged area in j in a collision and vice versa then P�j+ � i−�
= P�j+�, P�j− � i+�= P�j−�, and so on. Thus Eq. �5� can be sim-
plified to

Eij = 1
2 �P�j+�P�i−� + P�j−�P�i+� + P�i+�P�j−�

+ P�i−�P�j+�� , �6�

which may be further simplified to

Eij = P�i+�P�j−� + P�i−�P�j+� , �7�

if i and j contain the same relative areas of positive and
negative charges. At least one of these generalized equations
can be used to describe the collision efficiency factor for any
system comprised of two oppositely charged species.

It is prudent at this point to note that Eqs. �5�–�7� con-
sider only the chance of alignment of oppositely charged
species during a collision, and in so doing they ignore sev-
eral other possible effects that may result in some degree of
deviation from predicted collision efficiencies. In particular,
these equations do not take into account the possibility of
collisions between like-charged species resulting in adhe-
sion, as discussed by Ash and Clayfield4 and subsequent
authors.7,9,10,12 Presumably the modifications these authors
suggested for the Smellie–La Mer model of the collision

184906-3 Collision efficiency model for particle aggregation J. Chem. Phys. 125, 184906 �2006�
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efficiency factor to account for this possibility could be
adapted to the model presented herein. Introducing the terms
for the sticking probability based on the potential and kinetic
energies of interaction for negative-negative, positive-
negative, and positive-positive interactions ��1, �2, and �3

respectively�, Eij may be expressed as

Eij = �1�P�i−�P�j−� + P�i−�P�j−�� + �2�P�i+�P�j−�

+ P�i−�P�j+�� + �3�P�i+�P�j+� + P�i+�P�j+�� . �8�

The energy of interaction terms are typically ascribed an ar-
bitrary constant value or are chosen to reflect the collision
efficiency of one species in the absence of the other �the
stability of the separate dispersions�. However, rather than
being constant, these terms may actually vary with the rela-
tive surface area of opposite charge. Miklavic et al.30 suggest
that the rate of decay of interaction potential between two
heterogeneous surfaces and therefore the probability of ho-
moaggregation is a function of the periodicity �spacing� and
size of the charged areas on each. However, at small Debye
lengths ��−1�, relative to the charge area and periodicity, the
decay is less dependent on these parameters and is a prima-
rily a function of �−1 alone. It can be expected in such situ-
ations that the values of �1, �2, and �3 are approximately
constant for all dosages. So, provided that for the given �−1

these particles are stable as separate dispersions ��1=�3

=0�, the interaction energy terms from Eq. �8� can be ig-
nored. A condition of considering only the alignment terms
of the collision efficiency factor then �as is the case herein�
must be that the size of the charged areas is large relative to
�−1 �or, perhaps more accurately, the distance of interaction�.

Other deviations may arise from neglecting to include
the other refinements mentioned in Sec. II A. It is expected
that both rotation of particles5 and multiple collisions,13 for
example, would somewhat increase the collision efficiency
factor. Conversely, the so-called hydrodynamic �or viscous�
effect,31,32 whereby particle collision is inhibited by resis-
tance to displacement of the intervening liquid, may some-
what reduce the collision efficiency. However, for the pur-
poses of this work only the alignment probability will be
considered.

B. Collision efficiency factor

Application of Eqs. �5�–�7� to specific systems requires
the calculation of the conditional and unconditional probabil-
ity terms for the given system. The probability of a charged
surface �solid or imaginary� within either colliding system
being involved in a collision is the total area of the surface
carrying that charge relative to the total area of the system.

For a collision between two single, oppositely charged
particles, Eq. �7� may be reexpressed as

Eij = � �Ai+

�Ai+ + �Ai−
�� �Aj−

�Aj− + �Aj+
�

+ � �Ai−

�Ai− + �Ai+
�� �Aj+

�Aj+ + �Aj−
� , �9�

where �Ai+ and �Ai− are the total positive and negative sur-
face areas in system i and so on �the � notation is used here

to indicate that each area is the sum of all identical surface
areas in a system�. It is assumed that any point on the surface
of each system can be described as either positive or nega-
tive. For a collision in which i is a positive particle and j is
a negative particle, �Ai− and �Aj+ are both equal to zero, so
from Eq. �9� Eij is equal to 1, as is expected for a collision
between two oppositely charged particles. Likewise, if i and
j are of the same charge Eq. �9� returns a value of zero for Eij

indicating that adhesion will never occur.
Extension of the model to collisions involving clusters of

particles requires further qualification of surface areas. Con-
sider a binary aggregate �m� comprised of two oppositely
charged particles of different size radii �Fig. 2�. The surface
area in the interstitial region near the point of contact of the
two particles is shielded from collisions with other similarly
sized particles. So the area on each particle within the aggre-
gate exposed to collisions will be less than the total surface
area of the binary aggregate. If each aggregate contains some
relative number of two oppositely charged species, the area
on each species within each aggregate exposed to collisions
with each other species must be defined. This is a total of
eight different surface areas, four per aggregate, as opposed
to the two areas discussed for a collision between two oppo-
sitely charged particles. The area on a small particle exposed
to collisions with another small particle must be greater than
that exposed to collisions with a large particle. Likewise the
area on a large particle exposed to collision with another
large particle must be less than that exposed to collision with
a small particle. Consequently it is necessary to differentiate
between oppositely charged particle species according to
their size. The larger particle species, should a size difference
exist, will be denoted as 1 and the smaller particle species as
2. For example, the total area of the larger species of particle

FIG. 2. Areas on particles within a binary aggregate exposed to and shielded
from collisions with other particle species �note that the colliding particles
depicted may be included within an aggregate�.
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contained within an aggregate m exposed to collisions with
any oppositely charged smaller species is denoted �Am2�1�
and so on.

It is possible to derive an expression for the collision
efficiency factor for two aggregates �m and q�, each contain-
ing any number of equivalent or different sized oppositely
charged particles �not necessarily the same for both aggre-
gates�. In this case, the probability of collision with a
charged surface is dependent on the surface of the other sys-
tem involved in the collision so the simplification made for
Eq. �6� does not apply and Eq. �5� must be used.

To derive expressions for the conditional probabilities in
Eq. �5� for cluster-cluster collisions we need to understand
which collisions are precluded in the event of each particular
area being involved in a collision. The interactions between
certain sets and subsets that are precluded due to shielding
are described by the expression

P��Aq1�2���Am1�2� − �Am1�1��

= P��Aq1�2���Am2�2� − �Am2�1�� = 0. �10�

This relationship is also applicable with the subscripts q and
m interchanged. From this relationship and also Eqs. �A2�
and �A3� �Appendix A�, we are left then with a limited num-
ber of mutually exclusive interactions that are possible once
a given area in one aggregate is assumed to take part in the
collision, all of which are shown in Table I.

For any given row in Table I, the probability of each area
in the second column being involved in a collision, condi-
tional upon the area in the first column being involved, is the
area in question in the second column relative to the sum of
all areas in that column. Thus we can calculate the condi-
tional probability terms from Eq. �5�, yielding a general ex-
pression for the collision efficiency of cluster-cluster colli-
sions,

Emq =
1

2���Aq2�1�

�Aq2�1�
���Am1�2� − �Am1�1�

�Am�T�
�

+ � �Aq2�1�

�Aq2�1� + �Aq1�1�
���Am1�1�

�Am�T�
� + ��Aq1�2�

�Aq�T�
�

���Am2�1�

�Am�T�
� + ��Am2�1�

�Am2�1�
���Aq1�2� − �Aq1�1�

�Aq�T�
�

+ � �Am2�1�

�Am2�1� + �Am1�1�
���Aq1�1�

�Aq�T�
�

+ ��Am1�2�

�Am�T�
���Aq2�1�

�Aq�T�
�	 , �11�

where �Am�T� is the total area in m exposed to collisions and
is given by

�Am�T� + �Am1�2� + �Am2�2�, �12�

the derivation of which is presented in Appendix A. The
second bracketed term of each pair of multiplicative terms in
Eq. �11� represents the chance of the area denoted by the
numerator being involved in a collision. The first bracketed
term represents the chance of this collision, should it occur,

being with a particle of opposite type. For example, from the
first two terms we see that if the attractive area not included
in the repulsive area on a larger particle ��Am1�2�−�Am1�1�� is
involved in a collision, this must result in adhesion because
the only possible area on another particle that can collide
with this area is the attractive area on a smaller particle,
�Aq2�1�.

In the event that the two aggregates with the same rela-
tive number of 1 and 2 particles �m and m�� such that the
relative area of each is the same, P�m� �m� is equal to
P�m �m��, and Eq. �11� simplifies to

Emm� = ��Am�2�1�

�Am�2�1�
���Am1�2� − �Am1�1�

�Am�T�
�

+ � �Am�2�1�

�Am�2�1� + �Am�1�1�
���Am1�1�

�Am�T�
�

+ ��Am�1�2�

�Am��T�
���Am2�1�

�Am�T�
� . �13�

Equations �11� and �13� are reasonably system nonspecific
insomuch as they may be applied to any binary system of
monodisperse species with an inherent net attraction. Tran-
sient morphology may be accounted for, provided a mean
morphology may be assumed, if the values of �A are con-
sidered functions of time rather than simply constant. How-
ever, if the instantaneous morphology of either species varies
greatly across the system �multiple polymer chains in various
states of relaxation, for example� a more rigorous approach
would be required. Note also that �A is based on effective
collision radius, which may be somewhat larger than the ac-
tual radius of the particles in the presence of long range
attractive and repulsive forces. For the work presented here-
after, the assumptions of a nondeformable spherical species
in the absence of any long range forces will be invoked.

IV. APPLICATION TO HETEROAGGREGATION

A. Shielded area calculation

As mentioned earlier, we have chosen to work with a
system comprised of two oppositely charged solid spherical
particles as this is the simplest for calculation purposes. The
species are denoted as 1 and 2 as before, where type 2 par-
ticles are the smaller �assuming a size difference exists�. The
particle and aggregate specific subscripts �i, m, etc.� will not
be used in this section since only one aggregate needs to be
discussed for demonstrative purposes.

Collision and adsorption of particles to form aggregates
create areas on each particle within the aggregate that is

TABLE I. Possible mutually exclusive collisions between areas of two par-
ticles.

Area in m aggregate Possible collisions with q aggregate

��Am1�2�−�Am1�1�� �Aq2�1�

�Am1�1� �Aq2�1�, �Aq1�1�

��Am2�2�−Am2�1�� �Aq2�1�, ��Aq2�2�−Aq2�1��
�Am2�1� �Aq2�1�, ��Aq2�2�−Aq2�1��, �Aq1�1�, ��Aq1�2�−�Aq1�1��
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shielded from further attractive collisions �a1�2� and a2�1�� or
repulsive collisions �a1�1� and a2�2��, as illustrated in Fig. 2
and in two dimensions in Fig. 3. Using simple geometric and
trigonometric relationships it is possible to determine this
area for particles of known dimensions �Appendix B�. For
attractive collisions the shielded area is given by

a = 4�� R1R2

R1 + R2
�2

, �14�

where a=a1�2�=a2�1�, and for repulsive collisions

a1�1� = 2�R1� R1R2

R1 + R2
� �15�

and

a2�2� = a1�1��R2

R1
� . �16�

The remaining area on each particle accessible to a colliding
species is simply the total area of the sphere less the value of
a, such that

�A1�2� = 4�R1
2 −

N2

N1
a , �17�


 A2�1� =
N2

N1
�4�R2

2 − a� , �18�


 A1�1� = 4�R1
2 −

N2

N1
a1�1�, �19�


 A2�2� =
N2

N1
�4�R2

2 − a2�2�� , �20�

where �N2 /N1� is the relative number concentration of par-
ticles present, which in a system of aggregates comprised of
different particle ratios would require aggregate and particle
specific subscripts �for example, Nm1 is the number of type 1
particles in aggregate m�. The value of �N2 /N1� must be
greater than or equal to 1 otherwise the large particles must
be considered to flocculate the small particles and the nu-
merical subscripts must be interchanged. It is assumed that
the surface charge density of both particle species is greater
than the packing density of oppositely charged particles, so
that in any �A1�2� or �A2�1� there is at least one charged site.

Equations �17� and �19� assume a reasonably even dis-
tribution of small particles at the surface of each larger par-
ticle such that no overlap of the shielded areas on the surface
of the latter occurs. This is a reasonable assumption given
that adsorption of like-charged particles in close proximity is
unfavorable due to their mutual repulsion. However, at high
concentrations of the smaller species of particle relative to
the larger, overlap of shielded areas will be unavoidable and
accurate calculation of the exposed area requires a correction
factor. For the work presented herein it is assumed that the
correction factor has negligible effect on the calculated col-
lision factor and can thus be ignored. It is intended that the
overlap correction factor will be presented in a later paper for
application of the model to the specific case of high �N2 /N1�.

To test the validity of the proposed model it is necessary
to investigate a system in which the collision efficiency fac-
tor is equivalent for all possible collisions and is not affected
by any change in the system due to a collision resulting in
adhesion. The most obvious system fitting this description is
a system of aggregates, each comprised of the same ratio of
positive and negative particles such that this ratio is constant
irrespective of a collision resulting in adhesion. The indi-
vidual collision efficiency factor can then be calculated for a
given ratio of oppositely charged particles by substituting the
appropriate area calculations into Eq. �13�.

B. Collision efficiency and optimum dosage

Comparison of actual collision efficiency predictions
with measured aggregation rates for different dosages is dif-
ficult since the aggregation rate is not solely dependent on
the steady-state collision efficiency factor. Rather, the aggre-
gation rate is dependent on both the steady-state collision
efficiency factor and the mean collision efficiency factor up
to the given point in time. This has been shown in some
cases3 to produce a bimodal aggregation rate response to
dosage rather than the expected monomodal response.

In previous work3,33 small-angle static light scattering
data were presented representing the aggregation rate of op-
positely charged polystyrene latex �PSL� particles in re-
sponse to the relative concentration of each species �N2 /N1

where N1 is constant�. These experiments were performed
under perikinetic conditions at pH 5 and with a background
electrolyte �KNO3� concentration of 0.01 mol l−1, corre-
sponding to a �−1 of approximately 3 nm. It was shown that

FIG. 3. Shielding of adsorbed particles from collisions with particles �indi-
cated by the dashed line� of �a� opposite charge, the shielded areas on the
large and small particle are denoted as a1 and a2, respectively, and �b� like
charge, the shielded areas on the large and small particles are denoted as
a1�1� and a2�2�, respectively.
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under these conditions a bimodal response to dosage was
often observed, the significance of the uppermost peak on the
abscissa �that related to the mean collision efficiency� de-
creasing with increasing difference in particle size.

Figure 4 shows the data presented for heteroaggregation
of anionic and cationic PSL particles of radii of 75 and
310 nm, respectively. Note that both particle species are
large compared with to �−1, as required in Sec. III A. As can
be seen the lower �steady-state collision efficiency� peak is
the dominant peak thus allowing the best possible compari-
son with the predicted collision efficiency factors, indicated
by the solid line. While there is some offset between the
predicted and measured values, the general shape of the
curves are quite similar �ignoring the secondary peak in the
case of the measured data of course�. The offset may be due
to the presence of the second peak shifting the apparent po-
sition of the lower peak upwards on the abscissa to some
extent, or may simply be a result of error in the assumed
particle sizes or concentration.

Data sets presented elsewhere33 do not show such a
dominant lower peak, however, and so comparisons with
predicted collision efficiencies are much less successful: the
greater the significance of the upper peak, the greater the
distortion in shape of the lower peak. Nevertheless, the shift
upwards of the actual position of the lower peak should not
be so great as to disallow comparison with predicted opti-
mum dosages �N2 /N1� for maximum collision efficiency
from Eq. �13�.

Finding the value of �N2 /N1� corresponding to the maxi-
mum value of Eq. �13� for a given particle size ratio requires
an optimization routine, in this case a simplex search method
using the MATLAB software package. It was noted that above
certain values of �N2 /N1�, evaluation of Eqs. �17� and �19�,
prior to substitution into Eq. �13�, yields negative values of
�A1�1� and �A1�2�, respectively. Negative values of surface
area are clearly unphysical and so were assumed to be zero
instead. It is likely that values of �N2 /N1� yielding negative
area values coincide with the prevention of large-large and
large-small interactions due to the close proximity of ad-
sorbed smaller particles.

Predicted optimum concentrations determined by opti-
mization of Eq. �13� for a range of particle size ratios are
presented in Fig. 5 �indicated by the solid line�. Comparison

of these predictions with those made using the half surface
coverage condition �in this case, half the maximum packing
density as calculated using the approximation suggested by
Hansen and Matijević,34 indicated by the dashed line� of the
Smellie–La Mer model reveals a significant discrepancy, the
predicted optimum being considerably less than that pre-
dicted by the Smellie–La Mer model.

The position of the lower peaks from the experimental
data in literature3,33 is also presented in Fig. 5 compared with
the predicted values from both the model presented herein
and the Smellie–La Mer model. It can be seen that the mea-
sured optima �indicated by the closed circles� correlate very
closely with the optima predicted by Eq. �13� �indicated by
the solid line�. By contrast, comparison with the optima pre-
dicted by the Smellie–La Mer model, indicated by the
dashed line, shows the measured optima are at lower concen-
trations, in agreement with previously reported
observations5,14,15 as mentioned.

A plot of the maximum collision efficiency factors, cal-
culated using Eq. �13� at the predicted optimum dosage, for a
range of particle size ratios is shown in Fig. 6. Unlike the
Smellie–La Mer model, which predicts a maximum collision
efficiency of 0.5 �after the correction made by Hogg5� at any
optimum concentration irrespective of size ratio, the model
presented herein predicts a maximum collision efficiency of
0.5 only if R2 /R1 is equal to 1. With increasing difference in
particle size the maximum collision efficiency asymptoti-

FIG. 4. Predicted �—� collision efficiency factor as a function of the number
ratio oppositely charged particles �N2 /N1� for a particle size ratio �R2 /R1� of
0.24 compared with the measured ��� aggregation rate of anionic and cat-
ionic PSL particles �R1=310 nm and R2=75 nm� given in arbitrary units.

FIG. 5. Predicted �—� and measured ��� optimum ratios of anionic PSL
particles to cationic PSL particles �N2 /N1� for maximum �Emm� for a range
of particle size ratios �R2 /R1� compared with the optima predicted by the
Smellie–La Mer model �---�. Error bars indicate the nearest dosage
investigated.

FIG. 6. Collision efficiency at optimum dosage for a range of particle size
ratios predicted by the �—� current model and �---� Smellie–La Mer model.
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cally approaches 1, accounting for the observation of Hogg
that such collision efficiencies have been found experimen-
tally.

While the above calculations work very well for hetero-
aggregation, making the assumption that a polymer chain
adopts a coiled spherical conformation when adsorbed to a
particle surface is probably oversimplifying the situation. As-
suming a flat adsorbed conformation, however, as in the
Smellie–La Mer model, is no doubt also an oversimplifica-
tion. The true case probably lies somewhere between these
two extremes, subject to the physical properties of the sys-
tem that affect polymer conformation �e.g., particle collision
time, the molecular weight of the polymer, and its affinity for
the particle surface�. Nevertheless, these models may allow
us to can define upper and lower boundary conditions for
optimum dosage, the current model being the upper bound-
ary, and the Smellie–La Mer model being the lower, in terms
of �N2 /N1�. Obviously the flatter the conformation adopted
by a polymer the closer the optimum should be to the lower
boundary. However, given the widespread use of high mo-
lecular weight flocculants in concentrated suspensions of
solid particles it is likely that in practice flattening will be
minimal and the model presented herein will be more appro-
priate.

V. SUMMARY

A general quantitative theory has been presented relating
the collision efficiency factor for a system of two oppositely
charged species to the relative area of each exposed to the
possibility of a collision. This differs from previous models,
derived for polymeric flocculants, which relate the collision
efficiency factor to the fractional surface coverage of poly-
mer chains on particles. The theory has been applied to the
specific case of a system comprised of two species of oppo-
sitely charged, nondeformable spherical particles as in het-
eroaggregation. Specific equations were derived for the col-
lision efficiency factor for particle-aggregate and aggregate-
aggregate collisions. Subsequent derivation of equations
describing the shielded areas on particles within an aggregate
allowed the calculation of actual collision efficiency factors
for given particle size and number concentration ratios.

The validity of the model was tested by application to
the prediction of the optimum number ratio of oppositely
charged PSL particles for maximum aggregation rate. Com-
parison of the predicted optima with measured data from
previous work shows an excellent correlation with the pre-
dicted values. The proposed model also accounts for previ-
ous observations16,17 of collision efficiency factors approach-
ing unity, a phenomena that cannot be accounted for by the
Smellie–La Mer model.

It is important to note that while a close correlation was
observed, our model makes several assumptions that in many
practical situations may not be correct. In particular, it is
assumed that electric double layer interactions can be ig-
nored. It is likely then that considerable deviation from pre-
dicted results would be observed if the same experiments
were performed at a lower electrolyte concentration. Never-
theless, our model goes some way to explaining, at least

qualitatively, the discrepancies between the predictions of
previous models based on particle surface coverage and ex-
perimental observations and provides a solid foundation
from which models describing other systems �such as poly-
meric flocculants� may be developed.
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APPENDIX A: DERIVATION OF TOTAL EXPOSED
AREA

The total area in m exposed to collisions, �Am�T�, may be
expressed as

�Am�T� = �Am1�T� + �Am2�T�, �A1�

where �Am1�T� and �Am2�T� are, respectively, the total area of
large and small particles in m exposed to collisions. Refer-
ring to Fig. 2, the area of attractive interaction on the smaller
particles contained within an aggregate m, �Am2�1�, forms a
proper subset of �is entirely contained within� the area of
repulsion, �Am2�2�, which can be expressed as

�Am2�1� � �Am2�2�, �A2�

while for the larger particles the area of repulsion, �Am1�1�,
forms a proper subset of the area of attraction, �Am1�2�, so

�Am1�1� � �Am1�2�. �A3�

Invoking Eqs. �A2� and �A3�, �Am1�T� and �Am2�T� can be
expressed as

�Am1�T� = �Am1�1� + ��Am1�2� − �Am1�1�� = �Am1�2� �A4�

and

�Am2�T� = �Am2�1� + ��Am2�2� − �Am2�1�� = �Am2�2�, �A5�

respectively. So Eq. �A1� can be expressed in its simplest
form as

�Am�T� = �Am1�2� + �Am2�2�. �A6�

APPENDIX B: DERIVATION OF SHIELDED
AREA

The surface area of part of a sphere above the intersec-
tion of a plane �a spherical cap� is given by the equation

a = 2�Rh , �B1�

where R is the radius of the sphere and h is the distance to
the edge of the sphere perpendicular to the plane. Referring
to Fig. 3�a�, application of the law of cosines gives us

cos �1�2� = 1 −
2R2

2

�R1 + R2�2 , �B2�

and again for a right angle triangle,
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cos �1�2� =
R1 − h1�2�

R1
. �B3�

Equating �B2� and �B3� it can be shown that

R1h1�2� = 2� R1R2

R1 + R2
�2

, �B4�

which, by interchanging the numerical subscripts, must also
be the solution to R2h2�1�. So from Eq. �B1� a1�2� is equal to
a2�1�, both of which will be denoted as a for simplicity. So
for all values of R1 and R2, there is an equal area on each
particle made unavailable for further adsorption of oppo-
sitely charged particles, given by the expression

a = 4�� R1R2

R1 + R2
�2

. �B5�

The expressions for the shielded areas for repulsive interac-
tions can be calculated using the same sequence of equa-
tions.
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