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Abstract. For gregarious animals the cost–benefit trade-offs that drive habitat selection
may vary dynamically with group size, which plays an important role in foraging and predator
avoidance strategies. We examined how habitat selection by bison (Bison bison) varied as a
function of group size and interpreted these patterns by testing whether habitat selection was
more strongly driven by the competing demands of forage intake vs. predator avoidance
behavior. We developed an analytical framework that integrated group size into resource
selection functions (RSFs). These group-size-dependent RSFs were based on a matched case–
control design and were estimated using conditional logistic regression (mixed and population-
averaged models). Fitting RSF models to bison revealed that bison groups responded to
multiple aspects of landscape heterogeneity and that selection varied seasonally and as a
function of group size. For example, roads were selected in summer, but not in winter. Bison
groups avoided areas of high snow water equivalent in winter. They selected areas composed
of a large proportion of meadow area within a 700-m radius, and within those areas, bison
selected meadows. Importantly, the strength of selection for meadows varied as a function of
group size, with stronger selection being observed in larger groups. Hence the bison–habitat
relationship depended in part on the dynamics of group formation and division. Group
formation was most likely in meadows. In contrast, risk of group fission increased when bison
moved into the forest and was higher during the time of day when movements are generally
longer and more variable among individuals. We also found that stronger selection for
meadows by large rather than small bison groups was caused by longer residence time in
individual meadows by larger groups and that departure from meadows appears unlikely to
result from a depression in food intake rate. These group-size-dependent patterns were
consistent with the hypothesis that avoidance of predation risk is the strongest driver of
habitat selection.
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INTRODUCTION

The profound impact that organisms can have on

their abiotic and biotic environment (e.g., Danell et al.

2006, Hastings et al. 2007) depends largely on their

patterns of distribution and abundance. Animal distri-

bution in heterogeneous landscapes is closely linked to

habitat selection (Boyce and McDonald 1999, Boyce

2006), which involves behavioral decisions guided by the

multiple needs and constraints faced by individuals. For

example, large herbivores have been reported to make

foraging choices consistent with energy maximization

principles (Fortin et al. 2002), a selection that ultimately

can shape their spatial distribution (Fryxell et al. 2004).

The search for resources by prey species, however, has to

be done while considering predation risk (Focardi and

Pecchioli 2005, Bowyer and Kie 2006). Animals can

trade off food acquisition and safety by adjusting space

use patterns to balance these often-conflicting demands.

For example, elk (Cervus elaphus) respond to spatial

patterns of wolf (Canis lupus) distribution by altering

their relative preference for aspen stands and forest as a

function of how risky they are (Creel et al. 2005, Fortin

et al. 2005).

The rate of resource acquisition and the risk of

predation generally change when an individual joins a

group. Collective vigilance makes larger groups more

effective at detecting predators (Dehn 1990). Each group

member also has a relatively lower risk of being the

victim of an attack because of cooperative defense,

together with dilution and confusion effects (Dehn 1990,

Bednekoff and Lima 1998, Isvaran 2007). Information

gained through social foraging can decrease uncertainty

Manuscript received 18 February 2008; revised 20 November
2008; accepted 5 December 2008. Corresponding Editor: B. P.
Kotler.

4 E-mail: Daniel.Fortin@bio.ulaval.ca

2480

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/43347745?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


about environmental quality, thereby increasing effi-

ciency (Fernandez-Juricic et al. 2006). Such benefits

provide an incentive to form a group and maintain its

cohesion. Conversely, group members often have to

share food, which can lead to a reduction in intake rate

when food supplies are limited (Hobbs et al. 1996,

Fortin et al. 2004). To remain in the group, individuals

must synchronize their activities with other members,

such as resting, foraging, and moving across the

landscape (Conradt and Roper 2000). This synchroni-

zation can be costly when it forces, for example, an

individual to interrupt a resting or foraging bout in

order to maintain spatial cohesion with its conspecifics.

All these costs should tend to reduce group stability.

Characteristics of the environment can vary over

space and time, which can result in dynamic changes in

the cost–benefit trade-offs of group living. For example,

prey may reduce their probability of being detected by

predators in forested environments by residing in

smaller groups. Conversely, prey are likely to be

detected when in open environments regardless of group

size, so this should favor the formation of larger, hence

relatively safer, groups (Jarman 1974, Pays et al. 2007).

Spatial heterogeneity thus can lead to group instability,

and spatial patterns of group fusion–fission allow us to

identify the habitat characteristics that are driving the

cost–benefit trade-offs of group living.

Habitat selection is recognized as a complex process

(Jonzén et al. 2004, Fryxell et al. 2005, McLoughlin et al.

2006), but studies accounting for the response of

animals to multiple habitat attributes generally overlook

potential group size effects, even when dealing with

gregarious animals (e.g., Johnson et al. 2001, 2004,

Boyce et al. 2003). Our understanding of the role of

group size in shaping distribution pattern in complex,

natural environments therefore remains limited.

Our study investigates three elements of animal

ecology that may drive the distribution dynamics of

large gregarious herbivores. The first element pertains to

how group size modifies resource selection behavior. We

demonstrate how group size effects can be integrated

into resource selection functions (RSFs) and then build

group-size-dependent multivariable RSFs for free-rang-

ing female plains bison (Bison bison bison) followed in

winter and summer using global positioning system

(GPS) collars. Resource selection functions are statisti-

cal tools that describe the relative probability of

occurrence of animals based on their complex behav-

ioral response to biotic and abiotic elements of their

habitat (Boyce 2006, McLoughlin et al. 2006). Resource

selection functions revealed that selection for meadows

was stronger when bison were part of larger groups.

Habitat selection thus appeared to be partly shaped by

group size, which varies dynamically in bison, as in other

ungulates (e.g., Conradt and Roper 2000, Focardi and

Pecchioli 2005, Isvaran 2007). The next two elements of

our research were therefore oriented toward a better

understanding of temporal changes in group size and the

use of meadows by bison groups under predation risk.

Fusion–fission group dynamics are rarely studied for

ungulates in their natural environment, presumably

because of the difficulty of observing group dynamics

(Pays et al. 2007). We addressed this challenge by

investigating conditions under which pairs of radio-

collared bison merged and split up. Given that those

bison were captured in different groups found in all

parts of the bison range and that individuals were

otherwise a random sample of the female bison

population, examination of bison pairs should provide

general insights into group fusion–fission dynamics.

Group cohesion entails activity synchronization among

members (Conradt and Roper 2000), and circadian

rhythms in movement rates are common in ungulates

(Green and Bear 1990, Ager et al. 2003, Forester et al.

2007). On this basis, we predicted that fission of bison

dyads (i.e., pairs of radio-collared bison that have

grouped) would be more likely during parts of the day

when distances moved are longer and more variable

among individuals because there would be more

opportunities for conflicts in activity synchronization.

Group size is also expected to be larger in open areas

than in forest (Pays et al. 2007), which implies that

fusion of bison groups should be more likely in

meadows and that the transition from meadow to forest

should promote group fission.

Predation risk also may influence group dynamics

(Jedrzejewski et al. 2006). We tested whether inter-

meadow movements were better explained from a

response to exploitative competition or to predation

risk in a landscape composed of meadows interspersed

in a forest matrix. If exploitative competition were

driving inter-meadow movements, we would expect

longer residence time when individuals were in small

groups rather than in large groups because food would

then be shared among fewer individuals and, therefore,

should be depleted more slowly. Large herbivores

should be able to maintain their intake rate until very

little food remains in the food patch (Fortin et al. 2004)

because food search can overlap with vegetation

processing (Spalinger and Hobbs 1992). Such multi-

tasking leads to gain functions that are virtually linear

until the complete depletion of the vegetation patch

(Illius et al. 2002, Fortin et al. 2004). We also examined

whether most of the vegetation available at a given

location had been consumed before the departure of

bison, as could be expected if depression in intake rate

triggered meadow departure. On the other hand,

predation risk may precipitate departure from meadows.

Mitchell and Lima (2002) suggested that frequent

movements diminish predation risk by reducing the

predictability of prey’s location when predators have

good spatial memory, such as wolves (Gude et al. 2006).

Individuals most at risk might be inclined to make more

frequent inter-meadow movements, resulting in more

time spent in the forest matrix and thereby reducing the
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strength of selection for meadows. The predation risk

hypothesis predicts that bison should perceive higher
risk when in small rather than in large groups, leading to

shorter local residence time, more time spent in forests,
and weaker selection for meadows when in smaller

groups. We tested these hypotheses on the bison
population of Prince Albert National Park, Saskatch-
ewan, Canada.

METHODS

Study area

The study was conducted in the Prince Albert
National Park, Canada, during the summers of 2005–

2007 (20 May to 20 August 2005; 1 June to 16 August
2006; 31 May to 9 August 2007) and the winters of 2006

and 2007 (16 January to 12 March 2006, 18 January to 7
March 2007). The park harbors one of the few free-

ranging populations of plains bison. The population was
estimated at 385 individuals in 2006 (Parks Canada,
unpublished data). The bison range is established in the

southwest corner of the park, which is mostly composed
of forests (85%), meadows (10%), and water bodies (5%;

Fortin et al. 2003). The bison range includes few roads
that are accessible to park’s staff and researchers, but

generally not to visitors. Wolf predation on bison was
observed sporadically during the study.

Bison locations and group size

The distribution of bison groups was determined by
following 15 female bison in summer and nine females in

winter. The females were equipped with global position-
ing system collars (GPS collar 4400M; Lotek Engineer-

ing, Newmarket, Ontario, Canada) taking locations at
3-h intervals. They were captured across the entire bison

range to insure broad sampling of the population.
Group size (3 to .150) of each collared female was
determined on average 15 times in summer (range ¼ 5–

28) and seven times (range ¼ 2–20) in winter.

Individuals were considered in the same group when
they were at a distance ,100 m (Fortin et al. 2003).
Group size displayed temporal variation, with the

consequence that each time that group size was observed
for a given radio-collared bison, we assumed that group

cohesion would remain for 24 h. The GPS locations (i.e.,
eight locations per 24 h) of that individual on that day

were thus associated with the observed group size for
that day.

Habitat covariates

Land cover types at observed and random locations
were characterized based on two classified Landsat

Enhanced Thematic Mapper (ETMþ) satellite images
(path 38, rows 22 and 23; 28.5 m resolution; collected on

3 August 2001). The 18 landscape cover types originally
recognized were combined to form five more general
cover types: (1) meadow, including areas near lakes and

rivers dominated by grasses, forbs, and sedges (MEAD-
OW); (2) riparian areas largely comprised of shrubs and

located near streams and rivers (RIPARIAN); (3) forest

consisting of deciduous, conifer, and mixed stands

(FOREST); and (4) water bodies (WATER). All cells

in this raster-based land cover map that contained a road

or major hiking trail (determined using a vector GIS

roads layer) were reclassified to form a fifth cover type

(ROAD). To remain consistent with the resolution of the

thematic mapper (TM) image, bison were considered on

the road when ,15 m away. Classification accuracy was

91.8% based on 110 random field locations (within 2 km

from a road) in the various land cover types.

We also estimated snow water equivalent (SWE) for

the bison range based on the snow model presented in

Fortin (2007). The model relied on the sampling of 18

meadows distributed all across the bison range. An

inverse distance weighting function (Schloeder et al.

2001) was used to extrapolate SWE from the 18

meadows to other locations across the study area. Snow

water equivalent was adjusted for the influence of tree

canopy on snow accumulation. The snow model was

robust to cross-validation, with relationships between

observed and predicted estimates having a mean R̄ ¼
0.76. The 18 meadows were sampled eight times (survey

06-1, 20–22 January 2006; survey 06-2, 2–3 February

2006; survey 06-3, 17–19 February 2006; survey 06-4, 7–

10 March 2006; survey 07-1, 21–22 January 2007; survey

07-2, 31 January to 1 February 2007; survey 07-3, 13–14

February 2007; survey 07-4, 28 February to 1 March

2007), and the information from surveys 06-1 to 06-4

and 07-1 to 07-4 was used to estimate SWE over the

following periods: 10–30 January 2006, 31 January to 13

February 2006, 14 February to 4 March 2006, 5–19

March 2006, 19–26 January 2007, 27 January to 6

February 2007, 7–20 February 2007, and 21 February to

7 March 2007, respectively.

Integrating group size effects into

resource selection functions

In many gregarious species (e.g., Conradt and Roper

2000, Focardi and Pecchioli 2005, Isvaran 2007),

including bison (Lott and Minta 1983), individuals

experience frequent changes in group size and/or

resource availability. In these dynamic systems, a

matched case–control design should be used to integrate

group size directly into RSFs. Indeed, group size must

be associated with both observed and random locations.

Each observed location (scored 1) needs to be linked to a

set of random locations (scored 0) where the group

could have been at that time, and the decision for a

group to use a given location becomes contingent on

local alternatives. For longitudinal data, random

locations can be drawn within a limited domain

corresponding to the distance to which the group could

have traveled given the time interval between successive

locations (Johnson et al. 2001, Boyce et al. 2003,

Ciarniello et al. 2007). In our case, each observed

location was associated with 10 random locations

sampled within a 700-m radius circle of the GPS
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location, a radius that encompassed .80% of the

distances observed between two successive GPS loca-

tions (3-h time interval) during any season. Habitat

characteristics at observed locations are compared to the

characteristics at random locations while accounting for

nonindependence between pairs of random and ob-

served locations. Group size associated with focal

individuals becomes an explanatory variable that takes

a unique value for an observed location and its

associated random locations. Group size thus remains

constant within each choice set, but group size can

change over time (between choice sets).

Assuming that we are interested in the relative

probability of use of k independent variables (x1, . . . , k),

as well as in the potential influence of group size (G) on

the selection for independent variable x1, the group-size-

dependent RSF then takes the following structure:

wðxÞ ¼ expðb1x1 þ b2x2 þ � � � þ bkxk þ bkþ1x1GÞ ð1Þ

where bkþ1 is the selection coefficient associated with the

interaction term x1G. Because each observed location

and its associated random locations are assigned the

same group size, G cannot appear in the model as a main

effect, but rather as an interaction term whose interpre-

tation is that the link between bison distribution and

habitat attribute x1 changes with group size (Train

2003). The inclusion of G into RSFs (matched case–

control models) is a fundamental aspect of the

framework we propose here. A significant interaction

bkþ1x1G would indicate that the link between bison

distribution and the habitat attribute x1 changes as a

function of group size.

Group-size-dependent resource selection

functions for free-ranging bison

Group-size-dependent RSFs were estimated based on

locations of the 15 radio-collared bison. Because of our

interest in group size effects, the analysis only considered

GPS locations during those 24-h periods for which

group size was estimated, and other locations were

omitted from the RSFs, leaving 1863 bison locations in

summer for the 15 radio-collared females and 546

locations in winter for the nine bison. Habitat covariates

considered in the analyses included a set of dummy

variables representing four land cover types (i.e.,

ROAD, MEADOW, RIPARIAN, WATER), with

FOREST being used as the reference category. We also

considered the proportion of meadow area within a 700-

m radius ( pmead) centered on observed or random

locations (see Boyce et al. 2003 for a similar approach),

as well as SWE in winter. Group size was included in

RSFs through interaction with ROAD, MEADOW, and

pmead. Resource selection functions were assessed for

multicollinearity, which became an issue when condition

indices were .10 (Belsley et al. 1980). Multicollinearity

arose when SWE þ SWE2 were included in RSFs, but

once standardized (i.e., SWEi�mean SWE), collinearity

was absent from the models.

We consider two approaches of group-size-dependent

RSF estimation. The first approach is based on mixed-

effect conditional logistic regression, in which individual

variation in habitat selection is modeled explicitly. This

subject-specific approach relies on explicit modeling of

the correlation structure between all locations for a given

animal (Train 2003). We evaluated whether group-size-

dependent habitat selection was similar among radio-

collared bison by contrasting mixed-model Akaike

Information Criterion (AIC) values of group-size-

dependent RSFs, some of which included individual as

random effects while others were their fixed RSF

counterpart. (Given our objective to draw inference on

group size effects, we used standard marginal AIC [Vaida

and Blanchard 2005].) In our case, model parsimony

decreased with the inclusion of random effects (see

Results). We thus considered a population-averaged

approach, which involved fixed-effect conditional logis-

tic regression in conjunction with generalized estimating

equations (GEE). This second approach allows for

population-averaged inference and is robust to misspe-

cification of the within-individual correlation structure

(Fortin et al. 2005, Craiu et al. 2008). Robust variances

(cf. Fortin et al. 2005) were calculated to ensure that the

conclusions were not biased from potential temporal

autocorrelation issues. As indicated previously, our

analyses were based on a series of eight locations

gathered during 24-h periods centered on the time that

group size was determined for a particular female bison,

with each series being considered as a cluster. Also, when

females were together, we assumed that decisions were

nonindependent, and we assigned their locations to the

same cluster. Overall, analyses were based on 165 clusters

in summer and 58 clusters in winter.

We used k-fold cross validation for case–control

design to evaluate model robustness. An RSF was built

using 80% of randomly selected strata. This RSF was

then used to estimate w(x) scores for the observed and

random locations of the 20% withheld strata. The

observed location of each stratum was ranked against

its associated random locations from 1 to 11 (i.e., 11

potential ranks given that a stratum included 1 observed

and 10 random locations) based on the w(x) scores,

where 1 was the lowest and 11 was the highest possible

rank for that stratum. Ranks of observed locations were

then tallied into the 11 potential bins. Spearman rank

correlation (rS) was performed between the bin’s ranking

(1–11) and its associated frequency. The process was

repeated 100 times, and the mean and range of rS were

reported. The mean and range of expected rs were also

evaluated, assuming a completely random pattern of

habitat selection by following the same steps, up to the

use of the 20% withheld strata. Instead of ranking the

observed locations against the random ones, we simply

ranked one random location (selected randomly among

the 10 random locations per stratum) against the other

nine random locations (i.e., from 1 to 10). Ranks of the

focal random locations were then tallied into the 10
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potential bins. A Spearman rank correlation (rS) was

performed between the bin’s ranking (1–10) and its

associated frequency. The process was repeated 100

times.

Analysis of fusion–fission dynamics of bison pairs

Fusion–fission dynamics of bison groups was evalu-

ated using all the radio-collared bison locations. We

considered that two radio-collared bison had merged

into a group when they were ,100 m apart (Fortin et al.

2003), and we assumed that group cohesion remained as

long as they traveled together (see Fig. 1 for an example

of the dynamics of bison pairs). We defined a fission

event as two or more consecutive locations separated by

a distance of .100 m.

We evaluated whether pairs of radio-collared bison

were more likely to merge in meadows than the forest.

When two radio-collared bison first became part of the

same group, the GPS location of one randomly chosen

individual was associated with 10 random locations

sampled within a 700 m radius buffer. Observed and

random locations were then contrasted based on

conditional logistic regression estimated by GEE, with

robust SE calculated by grouping individual bison dyads

into distinct clusters.

Once a group had formed, we used a mixed-effect Cox

proportional hazards model, with pairs of bison as a

random effect term, to assess temporal changes in the risk

of fission, as well as to evaluate whether fission events

were more likely when distance moved was greater and

more variable (i.e., 09:00, 12:00, 15:00, 18:00 in winter

and 06:00, 09:00, 18:00, 21:00 in summer; Appendix B)

and when bison moved between land cover types.

Bison use of meadows

We used a mixed-effect Poisson regression model, in

which the individual bison was considered a random

term, to investigate whether the number of consecutive

fixes spent in meadows varied as a function of group

size. The number of consecutive fixes was proportional

to meadow residence time. Linear mixed-effect models

with normal distribution were used to test for a

relationship between group size and meadow size, while

considering individual bison as a random effect.

We also evaluated the amount of vegetation con-

sumed and the biomass remaining following the visit of

bison groups. In summer 2007, we surveyed the

vegetation in meadow sections averaging 3 6 1 ha

(mean 6 SD; range ¼ 0.4–5 ha, n ¼ 35). Total dry

biomass (B, in grams per square meter) was estimated in

16 6 3.5 quadrats (range¼ 8–25 quadrats, depending on

area), systematically located over the meadow sections,

by measuring the height from the ground (in centime-

ters) that a calibrated plastic square (0.25 m2) settled on

the vegetation. The relationship followed: B ¼�8.78 þ
1.623height; R2¼ 0.80, F1, 105¼ 426.45, P , 0.0001, n¼
107 (Fortin 2007). We then visually estimated the

proportion of individual plants that had been consumed

(proportion ‘‘attacked,’’ A). Knowing that bison eat

;40% of each plant (Fortin et al. 2002), we calculated
the percentage of dry biomass consumed as A 3 0.40 3

100, and the plant biomass consumed as B 3 A 3 0.40.
In winter 2007, vegetation was estimated in meadow

sections of 9 6 7 ha (range¼ 2–20 ha, n¼ 11) before the
passage of bison (i.e., snow was undisturbed over the

area). We used a 0–10 visual scale to evaluate total dry
plant biomass (in grams per square meter) in 7–43
quadrats (24 6 12, depending on meadow section area)

of 0.25 m2, systemically organized within the survey
area. The visual scale was calibrated by clipping the

aboveground vegetation in 0.25-m2 quadrats, drying the
samples at 608C, and weighting plants after 48 h of

drying. The calibrated scale followed B ¼ 6.58 þ visual
estimation1.81 (R2¼ 0.94, F1,39¼ 592.87, P , 0.0001, n¼
41). Following the passage of bison, we used a handheld
GPS unit to delineate the foraging areas (i.e., areas with

snow craters made by bison). We then visually estimated
the proportion of vegetation consumed in the foraging

areas by sampling 13 6 10 quadrats (range ¼ 5–35
quadrats, depending on the area). Percentage of biomass

of dry vegetation consumed following the passage of
bison was then estimated by considering the total

biomass originally available in the whole meadow
section minus the biomass removed from the foraging
area.

RESULTS

Group-size-dependent resource selection functions

Behavioral responses to habitat attributes were similar
among radio-collared female bison. Indeed, adding

random slopes in RSFs generally reduced model
parsimony (Appendix A). Further inferences on habitat

selection thus were based on fixed-effect model RSFs
estimated by GEE (Table 1).

Group size of radio-collared female bison averaged
46 6 36 (mean 6 SD) individuals (range ¼ 3–150

individuals, n¼ 165) in summer and 16 6 8 individuals
(range¼ 6–41 individuals, n¼ 58) in winter. Group-size-

dependent RSFs revealed that bison distribution was the
result of a behavioral response to multiple habitat
attributes (Table 1). Cross-validation indicated that

models were useful predictors of habitat selection in
bison, as the distribution of observed rS was higher than

expected by chance alone (Table 1). Overall, RSFs
indicated that bison avoided riparian areas during

summer. In winter, bison were never in those areas
and only once within 700 m of them, with the

consequence that RIPARIAN could not even be
considered in candidate winter RSFs (models would

not converge). The probability of occurrence of bison
groups increased with the proportion of meadows within

a 700-m radius (Table 1). Water bodies were avoided in
summer, but selected in winter. We also found that bison

groups made selective use of the road network in
summer (Table 1), but not in winter (�0.85 6 1.02 [b 6

SE], P ¼ 0.67). In winter, SWE had a quadratic
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relationship with the probability of occurrence of bison,

with negative effects only occurring when SWE . 1.9 cm

(Fig. 2). Our analysis also revealed that the bison–

habitat relationship varied as a function of group size.

Bison groups generally selected meadows (Table 1), but

the strength of meadow selection increased with group

size in both summer and winter (positive interaction

term, MEADOW 3 G; Table 1). Because forest was the

reference category, the increase in the selection for

meadows with group size also implies that the proba-

bility of occurrence of bison in the forest decreases with

increasing group size. To avoid multicolinearity, an RSF

could only include one interaction term involving group

size. We thus built individual RSFs that, instead of

including MEADOW 3 G, were based on ROAD 3 G,

SWEstd 3 G or pmead 3 G. In all cases, 95% CIs of

interaction coefficients included zero. Therefore, our

study only provides evidence for group-size-dependent

association with meadows.

Fusion–fission dynamics of bison groups

Size of bison groups was highly variable over time.

We observed 589 fusion–fission events in summers

(median ¼ 8 events per pair; range ¼ 1–34 events per

FIG. 1. Example of temporal changes in the distance between pairs of radio-collared female bison followed in (A) summer 2006
and (B) winter 2007 in Prince Albert National Park, Saskatchewan, Canada. Switch between sequences of short and large
interindividual distances reveals the dynamics of the group fusion–fission process in bison dyads. Gaps in the sequence are due to
missing locations from either of the individuals from the pair.
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pair) and 60 events in winters (median ¼ 4 events per

pair; range¼ 1–13 events per pair) among radio-collared

bison pairs. Probability of occurrence of fusion events

was higher in meadows than in the forest during both

summer (conditional logistic regression, 1.88 6 0.10 [b
6 SE], P , 0.001) and winter (1.71 6 0.25, P , 0.001).

Following a fusion, bison dyads remained together for

a median time of 21 h in summer and 30 h in winter. The

probability of dyad cohesion decreased over time at a

faster rate observed in summer than in winter (Fig. 3).

Also, the risk of fission was 1.79 (i.e., exp[0.58]) times

higher in summer and 2.05 (exp[0.72]) times higher in

winter during the time of day when distance moved was

longest and most variable (Table 2), which generally

occurred during daylight hours (Appendix B). Fission

risk, however, was not related to meadow size (Table 2).

In summer, moving into the forest increased the risk of

dyad fission by .1.65 (exp[0.50] or exp[0.67]) times

compared to the absence of transition between cover

types (Table 2). It might appear obvious that fission

would be more likely when bison transit between land

cover types. However, moving into the forest was the

only transition type influencing fission events (Table 2).

Moreover, most fission events occurred in the absence of

transition between land cover types (summer, 55.5%, n¼
557; winter, 58.8%, n ¼ 51).

Use of meadows by bison

Group-size-dependent RSFs detected stronger selec-

tion for meadows by larger bison groups (Table 1). This

stronger selection can be explained by larger groups

having longer residence time in individual meadows.

Indeed, the number of consecutive locations within

meadows increased with group size in summer (mixed-

effect model with Poisson distribution; coefficient for

group size,þ0.019, F1, 414¼ 5.12, P¼ 0.02) and in winter

(þ0.151, F1, 105 ¼ 5.42, P ¼ 0.02). On the other hand,

meadow size was independent of group size in summer

TABLE 1. Resource selection function for bison (Bison bison) groups in Prince Albert National
Park, Saskatchewan, Canada, in summer and winter.

Covariate

Summer Winter

b 6 SE P b 6 SE P

RIPARIAN �2.20 6 0.67 0.001 ��� ���
WATER �1.25 6 0.27 ,0.001 1.66 6 0.32 ,0.001
ROAD 0.79 6 0.18 ,0.001 �0.85 6 1.02 0.67
pmead 1.09 6 0.49 0.03 6.27 6 1.64 ,0.001
MEADOW 1.07 6 0.26 ,0.001 1.70 6 0.40 ,0.001
MEADOW 3 G� 0.15 6 0.07 0.04 0.05 6 0.02 0.03
SWEstd ��� ��� �0.31 6 0.10 0.002
SWE2

std
��� ��� �0.07 6 0.03 0.01

Notes: Coefficients are presented with robust standard errors (SE) corrected for autocorrelation
and associated P values. Model robustness was evaluated using k-fold cross-validation, which was
based on observed r̄S and r̄S expected under random patterns (see Methods for details). The k-fold
values (r̄S values and ranges), were: for summer, observed, 0.37 (0.26–0.50) and random, �0.04
(�0.35–0.21); for winter, observed, 0.90 (0.65–0.99) and random, �0.12 (�0.81–0.51).

� Group size, G, corresponds to G in winter and to ln(G) in summer.

FIG. 2. Relative probability of occurrence by groups of
plains bison in Prince Albert National Park, as a function of
snow water equivalent (SWE). Relative probabilities were
calculated based on the model displayed in Table 1 for winter.

FIG. 3. Temporal changes in the probability of group
cohesion for radio-collared bison dyads in summer and winter
in Prince Albert National Park. Start time at 0 is the onset of
group fusion.
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(mixed-effect model with normal distribution; coefficient

for meadow area,þ0.0003, F1, 414¼0.21, P¼0.65) and in

winter (þ0.001; F1, 105 ¼ 1.95, P ¼ 0.17).

Finally, bison groups consumed only a small propor-

tion of the vegetation before leaving an area. In summer,

a total of 176 6 84 g/m2 (n ¼ 35) of dry vegetation

remained in meadows following the passage of bison,

and 6% 6 4% of the available vegetation had been eaten.

In winter, a total of 98 6 58 g/m2 (n ¼ 11) remained

following a visit by a bison group, during which only 2%

6 2% of the vegetation was consumed.

DISCUSSION

Group-size-dependent resource selection function

Group-size-dependent RSFs revealed that bison make

stronger selection for meadows when they are part of a

large group than when they are part of a small group.

The use of RSFs has increased in recent years (Johnson

et al. 2004, Boyce 2006, Lele and Keim 2006) and,

although commonly applied to gregarious animals (e.g.,

Johnson et al. 2001, 2004, Boyce et al. 2003), RSFs have

yet to directly integrate group size. This omission may

be problematic given that our understanding of animal–

habitat relationships is becoming increasingly shaped by

RSFs and that group dynamics can influence habitat

selection. We demonstrate that a case-control design can

be used to build multivariable RSFs in which the

response to habitat varies as a function of group size.

Group-size-dependent RSFs revealed that habitat selec-

tion in bison is a complex process that involves a

behavioral response to multiple habitat elements, the

nature of which can vary seasonally and with group size.

We found that bison avoided water bodies in summer,

which probably reflects their sporadic and brief use

(relative to our 3-h relocation interval) for drinking. In

contrast, bison made selective use of water bodies in

winter. The vegetation emerging from rather deep water

becomes available in winter, once the water has frozen

and can support bison. Snow water equivalent had little

effect until a threshold of SWE was reached, at which

point snow had an adverse affect on probability of bison

occurrence. Snow can influence animal movement,

travel costs, feeding ability, probability of survival,

and susceptibility to predation (Telfer and Kelsall 1984,

Mech et al. 2001, Fortin et al. 2003). Bison appear

particularly sensitive to the potentially negative effects

of snow conditions compared to other large herbivores

(Telfer and Kelsall 1984).

The use of roads by large herbivores may imply the

need for management actions (Bruggeman et al. 2006).

The importance of negative impacts, such as traffic

disturbance and collision with vehicles, should be related

to the frequency of use by animals. Bison selected roads

for traveling in summer, but not in winter. Bison seem

opportunistic in their use of roads (Bruggeman et al.

2007), using them when they are conveniently located to

move between meadows. A network of unpaved roads

and human trails provides links among several meadows

in the bison summer range, but not in the more northern

winter range where roads and trails are uncommon.

Moreover, only a small portion (;1 km) of the road

network is plowed in winter; hence the use of roads

might not facilitate movement.

Bison generally selected areas largely comprised of

meadows, and within those areas, they selected mead-

ows. This selection for meadows was stronger for large

than for small groups. Bison–habitat relationships thus

depended on whether individuals were in a large or a

small group. Habitat selection analyses were based on

the assumption that group cohesion lasted 24 h. Our

evaluation of fusion–fission dynamics of bison dyads

confirms this is a reasonable assumption. The likelihood

of observing a given group should be proportional to the

length of time this group remains as a unit. For example,

a group that remains together 8 h would be twice as

likely to be observed in the field as a group that had only

remained 4 h together. Based on this principle and on

the observed distribution of cohesion time for radio-

collared bison dyads, we evaluated that the assumption

TABLE 2. Mixed-effect Cox model investigating the risk of fission for bison dyads.

Covariate

Summer Winter

b 6 SE P b 6 SE P

MaxMov 0.58 6 0.09 ,0.001 0.72 6 0.32 0.02
(Meadow size)0.5 �0.11 6 0.11 0.30 0.05 6 0.36 0.89

Transition

Forest to meadow 0.18 6 0.14 0.19 0.62 6 0.51 0.23
Meadow to forest 0.50 6 0.11 ,0.001 0.64 6 0.47 0.17
Forest to other �0.21 6 0.33 0.53 ��� ���
Other to forest 0.67 6 0.27 0.01 0.68 6 0.66 0.30
Meadow to other 0.08 6 0.33 0.81 �0.40 6 1.03 0.70
Other to meadow 0.42 6 0.30 0.17 0.33 6 0.78 0.67

Random effect 0.78 6 0.71 0.27 0.00 6 0.00 0.95

Notes: The investigation was undertaken to determine whether the risk of fission for bison dyads
increased during the time of day when the distance bison moved was greatest (MaxMov: 06:00,
08:00, 18:00, or 21:00 in summer and 09:00, 12:00, 15:00, or 18:00 in winter; Appendix B) and when
there was a transition between land cover types from the current and the next location.
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that group unity lasted at least 24 h should have been

correct .75% of the time in summer and .85% in

winter. Our finding that habitat selection in bison

depends on group size thus should be robust to this

assumption. We thus found that spatial distribution of

bison depended on fission–fusion dynamics that govern

group structure, as also suggested for other ungulate

species (Haydon et al. 2008).

Fusion–fission dynamics of bison groups

Group formation and breakdown were related to

habitat structure and to circadian rhythm in movement

patterns. Fusion of bison groups was most likely in open

meadows. In open areas, conspecifics can see each other

at relatively far distances, which should favor group

formation in gregarious herbivores with unstable group

dynamics (Pays et al. 2007). Once a group has formed,

its cohesion implies that members must remain in the

same place at the same time and must synchronize their

activities (Conradt and Roper 2000). Synchronization of

activity budget among group members may entail costs,

which should promote group fission. Consistently,

fission events of bison dyads were most likely during

the period of the day when displacements were largest

and most variable among individuals. Thus, we found

that circadian rhythms in movement patterns, which are

frequently observed in ungulates (e.g., Ager et al. 2003,

Forester et al. 2007), seem to encourage group

instability.

Fission risk was further influenced in summer by

movements leading into the forest. Such reaction should

lead to larger groups in meadows than in forests. This,

however, should not be the mechanism behind our

finding of stronger selection for meadows by large than

by small bison groups. Independently of their size, bison

groups were almost exclusively determined in meadows

because accurate counts are difficult in the forest.

Variation in group size used in habitat selection analyses

was therefore not the result of a transition from meadow

to forest. Instead, meadow selection was stronger for

large than for small groups because large bison groups

had longer residence time and thus spent less time in the

forest matrix.

Group-size-dependent habitat use under predation risk

Bison have evolved in the presence of wolves. Their

behavioral response to habitat structure has thus likely

been shaped by cost–benefit trade-offs of antipredator

strategies. Creel and Winnie (2005) suggested that prey

may respond to risk by one of two ‘‘pure’’ strategies:

they can (1) behave in a manner that would be optimal

in the absence of predators or (2) minimize risk while

accepting the costs of antipredator strategies. Of course,

animals are likely to use a mixture of both strategies.

According to optimality principles (Brown and Kotler

2004), social foraging by bison may be such that

individuals deplete meadows until the energy intake rate

drops to the point at which foraging costs from risk and

energy expenditures are not being covered. In this sense,

both risk and resources should matter. Nevertheless, it is

informative to evaluate the relative influence of bottom-

up and top-down forces on space use patterns of

animals.

In absence of predation, bison could maximize energy

gains via optimal patch residency/occupancy times. We

found little evidence, however, that this pure strategy

was used by bison groups. If exploitative competition

were driving inter-meadow movements, longer residence

time would be expected when individuals were in small

rather than in large groups because small groups should

deplete food relatively slowly. We observed exactly the

opposite, i.e., shorter residence time for smaller groups.

Moreover, little vegetation (,6%) was consumed before

bison left a meadow. Meadow departure thus appears

unlikely to be triggered solely by depression in intake

rate, even for large groups (Fortin et al. 2004).

Exploitative competition alone appears to be insufficient

to explain differences in meadow residence time between

large and small groups.

So why are bison groups constantly on the move?

Perhaps small groups are looking for conspecifics to

form larger groups. But if this were the case, why would

group cohesion be so weak in the first place? Minimizing

predation risk is considered the most general and

important benefit of grouping in large herbivores

(Isvaran 2007), and we may have observed a behavioral

response to changes in risk with group size (i.e., related

to Creel and Winnie’s [2005] second strategy). Bison are

certainly at risk in Prince Albert National Park: four of

the 20 radio-collared female bison followed from 2005 to

2008 (total sampling effort ¼ 8356 days 3 individuals)

died from wolf predation (D. H. Frandsen, unpublished

data). Regardless of predation risk, bison forage mostly

in open areas (Hernàndez and Laundré 2005). Bison can

nonetheless reduce risk by adjusting distribution pat-

terns, depending on group size. First, grouping provides

greater advantages in open areas (Isvaran 2007). In the

forest, predation risk would be more closely related to

the probability of detection, which may favor the

formation of small groups (Jarman 1974). Such evolu-

tionary pressure might explain why we observed

increased risk of group fission as individuals moved

into the forest. Second, frequent movements diminish

predation risk by reducing the predictability of prey

location (Mitchell and Lima 2002, Gude et al. 2006).

Individuals most at risk might be inclined to make more

frequent inter-meadow movements, which implies more

time spent in the forest matrix, thereby reducing the

strength of selection for meadows. Given that little

variation in the group composition (female : calf ratio)

was found to be linked to group size for the focal radio-

collared females (Fortin 2007), individuals in smaller

groups should have faced greater per capita risk

following an encounter with wolves (Dehn 1990; see

also Introduction). On this basis, and contrary to the

food competition hypothesis, the predation risk hypoth-
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esis predicts that individuals should perceive risk as

relatively higher when in small groups rather than in

large groups, leading to a shorter residence time, more

time spent in the forest, and a weaker selection for

meadows by individuals in smaller groups. This trend

should be reinforced by the fact that forest areas appear

safer than meadows for ungulates (Creel et al. 2005,

Fortin et al. 2005, Kauffman et al. 2007), including

bison (Hernàndez and Laundré 2005). For both summer

and winter, our field observations supported all the

predictions related to the predation risk hypothesis.

Group size differences in trade-offs between food

availability and predation risk thus can explain varia-

tions in the strength of meadow selection by small and

large bison groups.
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‘landscape of fear’ and its implications for habitat use and
diet quality of elk Cervus elaphus and bison Bison bison.
Wildlife Biology 11:215–220.

Hobbs, N. T., D. L. Baker, G. D. Bear, and D. C. Bowden.
1996. Ungulate grazing in sagebrush grassland: mechanisms
of resource competition. Ecological Applications 6:200–217.

Illius, A. W., P. Duncan, C. Richard, and P. Mesochina. 2002.
Mechanisms of functional response and resource exploitation
in browsing roe deer. Journal of Animal Ecology 71:723–734.

Isvaran, K. 2007. Intraspecific variation in group size in the
blackbuck antelope: the roles of habitat structure and forage
at different spatial scales. Oecologia 154:435–444.

Jarman, P. J. 1974. The social organisation of antelope in
relation to their ecology. Behaviour 48:215–267.

Jedrzejewski, W., H. Spaedtke, J. F. Kamler, B. Jedrzejewska,
and U. Stenkewitz. 2006. Group size dynamics of red deer in
Bialowieza Primeval Forest, Poland. Journal of Wildlife
Management 70:1054–1059.

Johnson, C. J., K. L. Parker, and D. C. Heard. 2001. Foraging
across a variable landscape: behavioral decisions made by
woodland caribou at multiple spatial scales. Oecologia 127:
590–602.

Johnson, C. J., D. R. Seip, and M. S. Boyce. 2004. A
quantitative approach to conservation planning: using
resource selection functions to map the distribution of
mountain caribou at multiple spatial scales. Journal of
Applied Ecology 41:238–251.

Jonzén, N., C. Wilcox, and H. P. Possingham. 2004. Habitat
selection and population regulation in temporally fluctuating
environments. American Naturalist 164:E103–E114.

Kauffman, M. J., N. Varley, D. W. Smith, D. R. Stahler, D. R.
MacNulty, and M. S. Boyce. 2007. Landscape heterogeneity
shapes predation in a newly restored predator–prey system.
Ecology Letters 10:690–700.

Lele, S. R., and J. L. Keim. 2006. Weighted distributions and
estimation of resource selection probability functions.
Ecology 87:3021–3028.

Lott, D. F., and S. C. Minta. 1983. Random individual
association and social group instability in American bison
(Bison bison). Zeitschrift für Tierpsychologie 61:153–172.

McLoughlin, P. D., M. S. Boyce, T. Coulson, and T. Clutton-
Brock. 2006. Lifetime reproductive success and density-
dependent, multi-variable resource selection. Proceedings of
the Royal Society B 273:1449–1454.

Mech, L. D., D. W. Smith, K. M. Murphy, and D. R.
MacNulty. 2001. Winter severity and wolf predation on a
formerly wolf-free elk herd. Journal of Wildlife Management
65:998–1003.

Mitchell, W. A., and S. L. Lima. 2002. Predator–prey shell
games: large-scale movement and its implications for
decision-making by prey. Oikos 99:249–259.

Pays, O., S. Benhamou, R. Helder, and J. F. Gerard. 2007. The
dynamics of group formation in large mammalian herbi-
vores: an analysis in the European roe deer. Animal
Behaviour 74:1429–1441.

Schloeder, C. A., N. E. Zimmerman, and M. J. Jacobs. 2001.
Comparison of methods for interpolating soil properties
using limited data. Soil Science Society of America Journal
65:470–479.

Spalinger, D. E., and N. T. Hobbs. 1992. Mechanisms of
foraging in mammalian herbivores: new models of functional
response. American Naturalist 140:325–348.

Telfer, E. S., and J. P. Kelsall. 1984. Adaptation of some large
North American mammals for survival in snow. Ecology 65:
1828–1834.

Train, K. E. 2003. Discrete choice models with simulation.
Cambridge University Press, Edinburgh, UK.

Vaida, F., and S. Blanchard. 2005. Conditional Akaike
information for mixed-effects models. Biometrika 92:351–
370.

APPENDIX A

List of candidate resource selection functions for groups associated with female plains bison in Prince Albert National Park,
Saskatchewan, Canada (Ecological Archives E090-174-A2).

APPENDIX B

Temporal variations in median distance moved during a three-hour interval by female plains bison in Prince Albert National
Park, Saskatchewan, Canada (Ecological Archives E090-174-A1).
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