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Abstract 

The Alpine Orogen in the Mediterranean region exhibits a series of orogenic 

curvatures (oroclines). The evolution of these oroclines is relatively well 

constrained by a plethora of geophysical and geological data, and therefore, their 

origin can inform us on the fundamental processes controlling oroclinal bending. 

Here I present a synthesis of the geometry of Mediterranean oroclines, followed 

by a discussion on their geodynamic origin. The geometrical synthesis is based 

on a new classification of Mediterranean oroclines, which defines a first-order 

orocline (Adriatic Orocline) by the general northward-convex shape of the 

Alpine Orogen from Cyprus to Gibraltar. Superimposed on the limbs of this 

orocline, are second-, third- and fourth-order oroclines. The major process that 

led to the formation of the Adriatic Orocline is the indentation of Adria into 

Europe, whereas second-and third-order oroclines (e.g., Western Mediterranean 

and Gibraltar oroclines, respectively) were primarily controlled by a 

combination of trench retreat and slab tearing. It appears, therefore, that the 

geodynamics of Mediterranean oroclines has been entirely dependent on plate 

boundary migration and segmentation, as expressed in the interlinked processes 

of indentation, trench retreat and slab tearing. The relative contribution of 

specific geodynamic processes, and their maturity, could be inferred from 

geometrical characteristics, such as the amplitude-to-width ratio, the orientation 

of the curvature (convex or concave) relative to the convergence vector, and 

their geometrical relationship with backarc extensional basins (e.g., in the 

concave side of the orocline). Based on the information from the Mediterranean 

oroclines, I conclude that oroclinal bending commonly involves lithospheric-

scale processes, and is not restricted to thin-skinned deformation. However, 

contrary to previous suggestions that assume that the whole lithosphere can 

buckle, there is no clear evidence that such processes occur in modern tectonic 

environments. 
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1. Introduction 

The geometry of the Alpine belt in the Mediterranean region is characterised by 

a series of tight bends commonly refer to as oroclines (Figure 1) (Carey, 1955; 

Lonergan and White, 1997; Rosenbaum and Lister, 2004a; Johnston and Mazzoli, 

2009). The term was coined by Carey (1955), who defined an orocline as an 

orogenic belt that was subjected to bending. In his pioneering work, Carey 

(1955) included an innovative restoration of the Mediterranean oroclines, 

illustrating the possibility that different segments of the Alpine-Mediterranean 

Orogen had once formed a continuous near-linear belt. The implication of this 

reconstruction - that orogenic belts could undergo continental-scale rotations 

and translations - is now a widely accepted notion in tectonics. However, at the 

time of publication, Carey’s ideas were difficult to comprehend, because the 

mechanisms that could possibly control oroclinal bending were unknown.  

A few years after the publication of Carey’s paper on the orocline concept, 

the theory of plate tectonics emerged. The recognition of fundamental 

geodynamic processes, such as seafloor spreading (Dietz, 1961), transform 

boundaries (Wilson, 1965) and subduction zones (Morgan, 1968), provided 

compelling evidence for the mobility of continents, and set the ground for 

understanding how and why oroclines form. Subsequent studies have 

demonstrated that relatively small continental blocks can travel large distances 

and then accrete onto the continental margins in convergent plate boundaries 

(Nur and Ben-Avraham, 1982). Furthermore, plate boundaries themselves, such 

as subduction zones, were found to be mobile tectonic elements (Elsasser, 1971; 

Garfunkel et al., 1986) that can retreat or advance independently of the motion 

of the converging plates (Dewey, 1980; Jarrard, 1986). The recognition of these 

processes added another level of complexity to the understanding of orogenic 

processes, and led to the development of geodynamic models that were capable 

of explaining the origin of curved plate boundaries and associated oroclines (e.g., 

Schellart and Lister, 2004; Morra et al., 2006; Schellart et al., 2007; Capitanio et 

al., 2011). Nevertheless, the origin of oroclines has remained a contentious topic 

in tectonic studies (e.g., Johnston et al., 2013), and there is still much debate on 

the mechanisms leading to orocline formation.  
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Proposed processes for orocline formation predominantly belong to one 

of the following three categories: (1) processes associated with deformation in 

thin-skinned fold-thrust belts (Marshak, 1988, 2004); (2) lithospheric buckling 

(Gutiérrez-Alonso et al., 2012; Johnston et al., 2013; Weil et al., 2013); and (3) 

along-strike variations in the rates of the plate boundary migration (Rosenbaum 

and Lister, 2004a; Schellart and Lister, 2004). Unfortunately, based on geological 

case studies, it is commonly difficult to assess the applicability of these 

processes, particularly because most recent research on oroclines has been 

focused on Palaeozoic examples for which the geodynamic setting is relatively 

poorly constrained. A large volume of research has recently been conducted on 

three Palaeozoic oroclines found in Variscan Europe (Weil et al., 2001; Gutiérrez-

Alonso et al., 2012; Weil et al., 2013), Central Asian Orogenic Belt (Levashova et 

al., 2003; Abrajevitch et al., 2007; Xiao et al., 2010) and Australian Tasmanides 

(Cawood et al., 2011; Glen and Roberts, 2012; Rosenbaum, 2012; Rosenbaum et 

al., 2012). All three oroclines demonstrate tight orogenic-scale curvatures and 

vertical-axis block rotations, but their deep (lithospheric-scale) structure is 

poorly constrained, and the exact plate tectonic setting during their formation 

remains speculative. The Palaeozoic examples, therefore, can only provide 

limited information on the geodynamics of oroclines. In contrast, robust 

geological and geophysical constraints are available from the Mediterranean 

oroclines, and these data can be utilised to unravel the fundamental mechanisms 

controlling oroclinal bending. 

The aim of this paper is to analyse the geometry of Mediterranean 

oroclines and to discuss processes that controlled their formation. Unlike the 

Palaeozoic examples, oroclinal bending in the Mediterranean region has 

occurred relatively recently (in the last 30 Ma), and their tectonic evolution is 

rigorously constrained by a plethora of geological and geophysical data. I argue 

that the most crucial processes leading to orocline formation in the 

Mediterranean region were associated with along-strike variations in the rates of 

plate boundary migration, involving indentation, trench retreat and subduction 

segmentation. To demonstrate this, I will first present an analysis of the 

geometry of Mediterranean oroclines irrespective of their paragenesis. This will 

be followed by a discussion on the major geodynamic processes that led to 
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oroclinal bending in the Mediterranean. The paper will be concluded with a 

discussion on the role of buckling during oroclinal bending and implications to 

the reconstruction of ancient oroclines. 

 

2. Geometry of Mediterranean oroclines 

Previous work on Mediterranean oroclines have mainly focused on individual 

curved segments of the Alpine-Mediterranean belt (Figure 1), such as the 

Gibraltar Orocline (Lonergan and White, 1997; Platt et al., 2003; Platt et al., 

2013), Calabrian Orocline (Van Dijk and Scheepers, 1995; Cifelli et al., 2007; 

Cifelli et al., 2008), Umbria-Marche Orocline (Speranza et al., 1997), Western 

Alps (Laubscher, 1991), Carpathian Orocline (Burchfiel, 1980) and Aegean 

Orocline (Kissel and Laj, 1988). The approach used here is somewhat different, 

and involves a new classification of Mediterranean oroclines, whereby lower-

order oroclines are defined if they are superimposed on the limbs of larger 

oroclines. The resulting hierarchy of oroclines and a synthesis of their 

geometrical characteristics are presented in Figure 2 and Figure 3, respectively.  

A first-order oroclinal structure is recognised at the scale of the whole 

Mediterranean, and is termed here the Adriatic Orocline (Figure 2a). The curved 

structure wraps the eastern, northern and western margins of the Adriatic Sea, 

changing the latitude of the Alpine-Mediterranean Orogen from 35-37°N in the 

western and eastern Mediterranean to 45-49°N in the Alps-Carpathian region. The 

Adriatic Orocline is characterised by a strongly irregular mushroom-shaped 

geometry. Its curvature is convex northward, with maximum width and 

amplitude of ~3800 km and 1740 km, respectively (Table 1 and Figure 3a). 

Superimposed on the Adriatic Orocline, three second-order oroclines can 

be defined. The characteristic scale of these oroclines is ~2000 km width and 

500-1000 km amplitude (Table 1 and Figure 3f,g). The Western Mediterranean 

Orocline is characterised by an asymmetric SSE-convex structure, stretching 

from the Apennines to North Africa and Gibraltar (Figure 2b). Its amplitude to 

width ratio (0.55) is considerably higher in comparison to the other two second-

order oroclines (0.26 and 0.27, respectively) (Figure 3h). Farther north, another 

second-order, northward-convex curvature can be defined (Figure 2c), stretching 

from the Ligurian Alps to the southern Carpathians. Finally, the Eastern 
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Mediterranean Orocline defines a SSW-convex curved segment, stretching from 

the Dinarides to the Hellenides and Cyprus (Figure 2d).  

Third-order oroclines are typically 350-800 km wide and 100-500 km in 

amplitude (Table 1). The Gibraltar Orocline (Figure 2e), which is defined by the 

continuation of the Betic and Rif chains in southern Spain and northern Morocco, 

respectively, has a tight westward-convex horseshoe shape (Figure 2). Its 

amplitude to width ratio (1.57) is anomalously high (Figure 3e). The opposite 

sense, eastward-convex Calabrian Orocline (Figure 2g), links the ~E-W oriented 

Sicilian Maghrebides with the NW-SE orientation of the Apennines. A much 

gentler curvature in the northern Apennines defines the Umbria-Marche 

Orocline (Figure 2f). Farther north, the link between the Alps and Apennines in 

Liguria (the “Ligurian knot”, Laubscher et al., 1992) marks an abrupt change in 

the orientation of the orogenic belt and is the southeastern edge of the 

westward-convex curvature of the Western Alps (Figure 2j). The orogenic belt 

then continues eastwards in a general E-W structural grain, before curving 

around the Pannonian Basin, forming the relatively large third-order Carpathian 

Orocline (Figure 2h). In the eastern Mediterranean, two third-order oroclines can 

be recognised: the Aegean Orocline and Cyprus Orocline (Figure 2i,k). Both 

oroclines have a southward-convex geometry (Figure 3e) with a relatively low 

amplitude-to-width ratio (0.25 and 0.29, Figure 3h). 

 Three fourth-order oroclines (Hyblean, Jura and Eratosthenes) are 

superimposed on the larger curvatures (Figure 2l-n). Their characteristic width 

is 100-300 km, and their amplitude of 20-70 km is substantially smaller than 

higher-order oroclines (Figure 3f-h). All three oroclines have a northward-

convex shape (Figure 3e).   

 

3. Indentation 

The indentation of Adria into Europe was responsible for the development of the 

first-order Adriatic Orocline. Although other mechanisms, such as trench retreat, 

have substantially modified the oroclinal structure, the general northward-

convex shape of the Adriatic Orocline reflects the shape of the Adriatic indenter 

(Figure 4a), which was attached to the African plate while moving northward 

relative to Europe (Channell et al., 1979; Rosenbaum et al., 2004). Indentation 
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commenced in the Eocene (~45 Ma) and resulted in collisional orogenesis in the 

Alps (Stampfli et al., 1998; Rosenbaum and Lister, 2005; Beltrando et al., 2010). 

A number of studies have demonstrated that the style of deformation is generally 

in agreement with the expected strain associated with an indentation mode 

(Ratschbacher et al., 1991; Regenauer-Lieb, 1996; Regenauer-Lieb and Petit, 

1997) (Figure 4b,c), although the exact geometry and velocity vectors of the 

indenter are still a matter of debate (Platt et al., 1989; Regenauer-Lieb, 1996; 

Lickorish et al., 2002; Rosenberg et al., 2004; Rosenberg et al., 2007). 

Strain resulting from indentation involves strike-slip faults that 

accommodate a tectonic escape towards the free boundaries and opposite-sense 

rotations around vertical axes (Figure 4c), thus forming an oroclinal structure. 

Ultimately, the geometry and scale of the orocline is a function of the indenter 

width, amount of indentation, convergence velocity, the rheological contrast 

between the two plates, and the exact geometry of the contacts. 

While the process of indentation is here attributed to the formation of the 

first-order oroclinal structure, it can also occur at any other scale. In the 

Mediterranean, there are at least two examples of fourth-order oroclines that 

formed by indentation. The Eratosthenes Seamount is a submerged continental 

fragment belonging to the African plate (Robertson, 1998), which collided with 

Cyprus and led to a local deflection of the Africa-Europe plate boundary. A 

second example is the collision of the Hyblean-Malta Plateau, which similarly to 

the Eratosthenes Seamount, represents a local collision of an African continental 

fragment along the Africa-Europe plate boundary (Ben-Avraham and Grasso, 

1990). Numerical modelling of this collision by Ben Avraham et al., (1995) 

demonstrated that the formation of the cuspate oroclinal structure can be 

attributed to the impingement of a relatively buoyant continental fragment 

(Hyblean-Malta Plateau) into the subduction zone. The buoyant material resists 

subduction and can thus be responsible for locally pinning the otherwise 

migrating plate boundary zone.  

In summary, formation of oroclines by indentation can operate at all 

scales, depending on the size of the indenter. The diagnostic features of 

indentation-related oroclines are: (1) a curved convex geometry towards the 

direction of indentation; (2) pronounced contractional deformation in the 
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collisional zone; and (3) escape-tectonic structures that move material sideways 

towards the free boundaries.  

 

4. Trench retreat 

Trench retreat has been arguably the most important mechanism that controlled 

oroclinal bending in the Mediterranean region (Royden, 1993; Faccenna et al., 

2004; Rosenbaum and Lister, 2004a). Its driving force is the negative buoyancy 

of subducting slabs, which can pull the slab in the opposite direction of 

subduction and can further drive rollback-induced mantle flow (Garfunkel et al., 

1986; Schellart, 2004). This positive feedback mechanism, unless stalled by the 

arrival of buoyant material at the subduction zone (Rosenbaum and Mo, 2011) 

or compensated by faster convergence (Schellart, 2008), can lead to rapid 

changes in the geometry of the plate boundary. The overriding plate deformation 

in response to trench retreat is associated with widespread backarc extension 

(Jarrard, 1986; Heuret et al., 2007; Schellart and Moresi, 2013).  

In the Mediterranean region, the contribution of trench retreat is evident 

in the formation of second- and third-order oroclines. All three second-order 

oroclines (Figure 2), and most evidently the Western Mediterranean Orocline, are 

characterised by large areas affected by extensional deformation in the concave 

side of the oroclines (Figure 4a). These regions, which are occupied by thinned 

continental lithosphere or new oceanic lithosphere, have been positioned at the 

overriding plate relative to the retreating subduction zones (Royden, 1993; 

Wortel and Spakman, 2000; Rosenbaum et al., 2002a; Royden and Papanikolaou, 

2011; Carminati et al., 2012). The fact that the areas subjected to backarc 

extension are geometrically related to the shape of the second-order oroclines 

(Figure 4a) indicates that the mechanism of oroclinal bending was directly linked 

to trench retreat and backarc extension. This concept was adopted in kinematic 

reconstructions of the western Mediterranean, which demonstrated how the 

independent (and palaeomagnetically constrained) movement of continental 

fragments (e.g., Corsica-Sardinia, Kabylies, Balearic Islands and Betic-Rif; Figure 

4a) was made possible by the combination of trench retreat and overriding plate 

extension (Rosenbaum et al., 2002a; Rosenbaum and Lister, 2004a). These 

overriding-plate block rotations, which predominantly took place in the 
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extending backarc regions, have resulted in the rearrangement of orogenic 

segments in a curved manner, thus forming the Western Mediterranean 

Orocline.  

In comparison to the western Mediterranean, the role that trench retreat 

played in controlling oroclinal bending in the eastern Mediterranean was 

somewhat smaller, as expressed in the lower value of amplitude-to-width ratio 

of the Eastern Mediterranean Orocline (Figure 3b,h). This difference reflects 

different stages in the history of trench retreat, with the western Mediterranean 

being a mature system that has essentially consumed all available oceanic 

lithosphere by subduction. Accordingly, the western Mediterranean was able to 

develop mature backarc extensional basins that have locally led to continental 

breakup (Nicolosi et al., 2006; Schettino and Turco, 2006). In the eastern 

Mediterranean, in contrast, trench retreat has been slower (Royden and 

Papanikolaou, 2011), and the subducting oceanic lithosphere (Ionian Sea, 

Herodotus Basin and Levant Basin) has not been entirely consumed (Garfunkel, 

1998; Ben-Avraham et al., 2002; Speranza et al., 2012). The overriding plate in 

the eastern Mediterranean has been stretched substantially (Jolivet and Brun, 

2010), but has not reached breakup. The Eastern Mediterranean Orocline, 

therefore, is potentially still evolving, although its growth is restricted by the 

confined space of the remaining oceanic lithosphere and its thick sedimentary 

cover that impedes rollback.  

In summary, trench retreat is an efficient mechanism for oroclinal 

formation, and multiple lines of evidence support its contribution to the 

development of Mediterranean oroclines. Its major diagnostic features include: 

(1) evidence for widespread backarc extension in the concave side of the 

orocline; and (2) evidence for temporal changes in the position of the supra-

subduction system (forearc, arc and backarc), following the trajectories of the 

plate boundary migration.  
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5. Slab tearing 

Propagation of vertical tears in subducting slabs is responsible for subduction 

segmentation and is intimately linked to the process of trench retreat. Slab 

tearing is expected to occur at the edges of retreating subduction zones and/or 

in cases when the rates of trench retreat change along strike (Govers and Wortel, 

2005; Rosenbaum et al., 2008; Hale et al., 2010). There are a number of different 

ways in which slab tearing promotes oroclinal bending. Similarly to the 

processes discussed in the previous section, tearing is kinematically controlled 

by trench retreat and backarc extension, which enable oroclinal bending by 

overriding-plate blocks rotations. This process is further amplified by slab 

tearing, which would act to create narrower slab segments that are likely to be 

subjected to accelerated rates of trench retreat (Dvorkin et al., 1993). As a result, 

lower-order oroclines are likely to be developed, characterised by a higher 

amplitude-to-width ratio. Another positive feedback mechanism promoting 

oroclinal bending is the torodial mantle flow, which is applied at the slab edges 

and allows opposite-sense rotations (Figure 5) (Schellart et al., 2007). Slab 

tearing will facilitate this process by enhancing pathways for mantle flow and 

creating smaller-scale convection cells (Faccenna and Becker, 2010).  

 The third-order Gibraltar Orocline is an example for oroclinal bending 

assisted by slab tearing (Figure 5). In this area, westward trench retreat since the 

Miocene has been accompanied by vertical slab tearing, leading to the 

development of the Alboran Sea as a backarc extensional basin (Lonergan and 

White, 1997). Slab tearing is observed in seismic tomography (Spakman and 

Wortel, 2004; Garcia-Castellanos and Villaseñor, 2011; Palomeras et al., 2014), 

and is consistent with the pattern of intermediate-depth seismicity (Meighan et 

al., 2013, and references therein). Furthermore, mantle anisotropy derived from 

SKS splitting shows a radial pattern of fast polarization directions around the 

slab edges (Diaz et al., 2010), supporting the suggestion that slab tearing and 

rollback have been accompanied by a torodial mantle flow (Figure 5). Along the 

tear fault and associated strike-slip faults, “tear-related” magmatism has 

occurred, driven by the heat supplied from the uprising asthenosphere (Maury et 

al., 2000; Pérez-Valera et al., 2013). These processes were accompanied by 

rotations of crustal blocks around vertical axes, involving counterclockwise 



Page 11 of 34

Acc
ep

te
d 

M
an

us
cr

ip
t

 11 

rotations in the Betics and clockwise rotations in the Rif (Lonergan and White, 

1997; Platt et al., 2003). The collective evidence, therefore, clearly demonstrates 

that the formation of the tight horseshoe oroclinal structure has been controlled 

by the combination of trench retreat and slab tearing.  

 A similar mechanism, involving slab tearing and trench retreat, has been 

responsible for the formation of the Calabrian Orocline (Faccenna et al., 2004; 

Govers and Wortel, 2005; Cifelli et al., 2008; Rosenbaum et al., 2008; Argnani, 

2009). In this region, a series of tear faults have been developed to accommodate 

along-strike variations in the rates of trench retreat, with many of the tear faults 

providing pathways for “tear-related” magmatism (Gvirtzman and Nur, 1999; 

Rosenbaum et al., 2008; Gasparon et al., 2009). Similarly to the situation in the 

Gibraltar Arc, evidence from SKS splitting is indicative for asthenospheric 

torodial flow around the edges of the Calabrian slab (Civello and Margheriti, 

2004; Lucente et al., 2006). At the overriding plate, the along-strike variations in 

the rates of trench retreat gave rise to the opening of the asymmetric, wedge-

shaped, Tyrrhenian Sea as a backarc extensional basin (Malinverno and Ryan, 

1986; Faccenna et al., 1996; Rosenbaum and Lister, 2004b). This process was 

accompanied by opposite-sense block rotations of crustal blocks (Channell et al., 

1980; Scheepers et al., 1993; Scheepers et al., 1994; Speranza et al., 1999; 

Gattacceca and Speranza, 2002; Speranza et al., 2003; Mattei et al., 2004; Cifelli et 

al., 2007). The magnitude and timing of block rotations, as inferred from 

palaeomagnetic data, is indicative of progressive oroclinal bending, combined 

with the presence of lateral heterogeneities within the subducting lithosphere 

(Cifelli et al., 2008).  

 In summary, feedback effects between trench retreat and slab tearing act 

to accelerate the process of oroclinal bending and can lead to the development of 

mature third-order oroclines. Oroclines formed by these processes are typically 

characterised by the following diagnostic features: (1) a tight curvature with a 

high amplitude-to-width ratio; (2) occurrence of tear-related magmatism along 

the limb(s) of the orocline(s); and (3) syn-oroclinal strike-slip faulting.    
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6. Discussion 

6.1. Formation of Mediterranean oroclines 

The examples from the Mediterranean region provide compelling evidence for 

the role of plate boundary migration during oroclinal bending. The formation of 

the Mediterranean oroclines, in the last ~30 Ma, has involved extreme changes in 

the Africa-Europe plate boundary, associated with trench retreat, subduction 

segmentation and local collisions. During this period, the convergence of Africa 

with respect to Europe has been characterised by a consistent and slow 

northward trajectory (Rosenbaum et al., 2002b). It seems, therefore, that plate 

convergence has played a relatively minor role in controlling changes in the 

actual configuration of the plate boundary. This is not surprising, because 

enhanced rates of plate convergence would reduce the effect of trench retreat 

(Schellart, 2005), meaning that the slow movement of Africa with respect to 

Europe since the Oligocene has provided ideal kinematic boundary conditions 

for triggering rapid rates of trench retreat and backarc extension (Jolivet and 

Faccenna, 2000).  

 In the absence of a significant plate convergence component, the primary 

control on the rate and orientation of trench retreat is the availability of 

subductable oceanic lithosphere. Areas occupied by oceanic lithosphere are 

likely to be consumed by subduction and subjected to trench retreat, whereas 

the arrival of continental lithosphere or bathymetric highs at the subduction 

zone resists subduction and impedes slab rollback (Rosenbaum and Mo, 2011; 

Moresi et al., 2014). Therefore, any heterogeneity in the subducting lithosphere 

is likely to result in along-strike variations in the rates of trench retreat and the 

formation of oroclines. Commonly, this is accompanied by slab tearing and 

subduction segmentation. Accordingly, the geometry of oroclines, such as 

Gibraltar and Calabrian oroclines, may reflect the shape of pre-existing oceans 

and the structure of lithospheric heterogeneities within the downgoing plate. 

The same concept has also been demonstrated in other tightly curved plate 

boundaries, such as the ones surrounding the Caribbean Sea (Pindell et al., 

1988), Scotia Sea (Barker, 2001) and Banda Sea (Hall, 2012).  

 It appears, therefore, that the geometry of oroclines can provide a clue on 

the geodynamic processes that controlled their formation. The amplitude-to-
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width ratio in second-order Mediterranean oroclines informs us on the role of 

trench retreat, with higher values predicting a major contribution by this process 

and a mature backarc extension. In the third-order oroclines, higher values of 

amplitude-to-width ratio correspond to oroclinal bending assisted by slab 

tearing. Furthermore, the relative orientation of curvature is also process-

dependent and can thus help unravelling the geodynamics of oroclines (Figure 6). 

With Africa moving generally northward towards Europe (Rosenbaum et al., 

2002b), it is expected that crustal blocks belonging to the African plate will result 

in northward convex structures if subjected to indentation (Figure 6b). Indeed, 

Figure 3e shows that northward convex curvatures (Adriatic, Hyblean and 

Eratosthenes oroclines) are the ones associated with indentation. In contrast, 

southward convex curvatures are the ones formed by trench retreat parallel to 

plate convergence (Figure 6c). This pattern is recognised in the second-order 

Western Mediterranean and Eastern Mediterranean oroclines and in the third-

order Aegean and Cyprus oroclines. The formation of these oroclines is 

attributed to the overall northward subduction of the African plate, and the slow 

plate convergence that has failed to compete with the faster rates of southward 

trench retreat. This is the reason why the most extreme expressions of trench 

retreat, accompanied by slab tearing, occur in west- and east-facing curvatures 

(Gibraltar and Calabrian oroclines; Figure 6d). In these cases, the orientation of 

trench retreat was perpendicular to plate convergence, thus allowing a rapid ~E-

W migration of the plate boundary.  

 

6.2. Roles of thin-skinned deformation and buckling  

In earlier work on oroclines, much emphasis was given to the role of thin-

skinned deformation during oroclinal bending (Marshak, 1988; Macedo and 

Marshak, 1999; Marshak, 2004). These studies have demonstrated (e.g., in 

sandbox experiments) that orogenic curvatures can develop in response to 

interactions between foreland obstacles and the fold-thrust wedge, or due to 

other heterogeneities in the architecture of the fold-and-thrust belt, such as 

lateral variations in the thickness of a pre-deformational basin fill or the strength 

of the detachment surface (Marshak, 1988; Macedo and Marshak, 1999). These 

mechanisms provide a reasonable explanation for the origin of relatively gentle 
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orogenic curvatures in thin-skinned fold-thrust belts, such as the Appalachians’ 

salients and recesses. Nevertheless, such processes have not likely played a 

primary role in the development of the much deeper Mediterranean oroclines 

(e.g., Figure 5). The geodynamics of oroclinal bending, as inferred from the 

Mediterranean examples, has involved bending and tearing of the plate 

boundary in response to indentation and trench retreat. The upper crustal 

expression of these processes may involve block rotations within the fold-thrust 

belt, but the fundamental control on oroclinal bending is dictated by the whole 

lithosphere. For example, based on seismic tomography, it has been shown that 

even the gentle curvature of the Umbria-Marche Orocline (Figure 2f) is rooted in 

the lithosphere, as indicated by a similar curvature of the lithospheric slab at 35-

100 km depth (Lucente and Speranza, 2001). Out of all the oroclines discussed in 

this paper, the only one that does not seem to be related to lithospheric-scale 

deformation is the fourth-order Jura Orocline (Figure 2m), which developed 

farther from the plate boundary on top of a Triassic décollement (Laubscher, 

1972).  

 With thin-skinned deformation playing a relatively minor role in the 

development of oroclines, one must consider the geodynamics of lithospheric 

deformation in order to unravel the origin of oroclines. The mechanisms 

discussed in this paper - indentation, trench retreat and slab tearing - have being 

studied extensively, and their applicability to geodynamics is supported by 

observations and modelling (e.g., Schellart et al., 2007; Billen, 2008; Thatcher, 

2009; Stadler et al., 2010, and numerous other references).  Nevertheless, in a 

large number of recent publications, it has been assumed that the process of 

oroclinal bending involved buckling of the whole lithosphere (Gutiérrez-Alonso 

et al., 2012; Pastor-Galán et al., 2012; Johnston et al., 2013; Weil et al., 2013). In 

comparison to the geodynamic processes discussed in this paper, buckling is a 

fundamentally different mechanism, because it considers that the tectonic forces 

that allow oroclinal bending were applied parallel to the orientation of the pre-

existing near-linear belt (e.g., see figure 3b in Gutiérrez-Alonso et al., 2012). 

Evidence supporting buckling, for example in the late Palaeozoic Iberian-

Armorican Orocline, includes palaeomagnetic data that suggest vertical-axis 

block rotations, and structural data from joints and faults (Gutiérrez-Alonso et 
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al., 2012, and references therein). In addition, the occurrence of post-orogenic 

magmatic rocks in the core of the orocline has been interpreted to represent 

post-thickening delamination due to buckling (Gutiérrez-Alonso et al., 2011). 

Regardless of the large volume of palaeomagnetic, structural and geochemical 

data from the Iberian-Armorican Orocline, the suggestion that oroclinal bending 

must have formed by lithospheric-scale buckling remains tenuous, because the 

observations are not unique and can be explained by a range of other 

mechanisms. For example, oroclines formed by a combination of trench retreat 

and slab tearing (e.g., Calabrian Orocline) can also possess similar structural 

characteristics, including opposite-sense block rotations and limb-parallel strike-

slip faults. More diagnostic for buckling is the evidence for outer-arc extension 

and inner-arc shortening (Weil et al., 2013), but it is also possible that such 

structures represent alternating episodes of contraction and extension in the 

forearc region (e.g., Van Dijk and Scheepers, 1995). Finally, the occurrence of 

mantle-derived magmatism during oroclinal bending (Gutiérrez-Alonso et al., 

2011) could also be explained in the context of slab tearing (Gvirtzman and Nur, 

1999; Maury et al., 2000; Rosenbaum et al., 2008; Gasparon et al., 2009). 

 Based on the above arguments, I argue that the idea that lithospheric-

scale buckling has controlled oroclinal bending is supported by inconclusive 

evidence. Johnston and Mazzoli (2009) have suggested a buckling model for the 

Calabrian Orocline, driven by the convergence of Africa and Europe. However, 

contrary to the expectation from the buckling model, the role of plate 

convergence in Mediterranean tectonics has actually been reduced during 

oroclinal bending (Jolivet and Faccenna, 2000). With the absence of 

unambiguous examples for buckled oroclines in modern orogenic belts, and the 

lack of support from geodynamic modelling, one must conclude that buckling is 

not a primary mechanism in the geodynamics of oroclinal bending.  

 

6.3. Implications for reconstructions of ancient oroclines 

The reconstruction of ancient oroclines remains a problematic issue. If ancient 

oroclines formed in a similar way to modern analogues, then it is likely that the 

geodynamic processes associated with their formation occurred at scales and 

durations that are too difficult to detect by the resolution of available geological 
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data. The Calabrian Orocline, for example, developed during a period of less than 

10 Myr and involved geodynamic interactions (trench retreat and slab tearing) 

that were ostensibly unrelated to the larger-scale plate kinematics of Africa-

Europe convergence. Tracing evidence for such processes in the Precambrian or 

Palaeozoic geological record is a challenging task.  

Regardless of the difficulty in reconstructing ancient oroclines, the 

existence of diagnostic features outlined in this paper, may provide some clues 

on the major geodynamic processes associated with their formation. For 

example, the occurrence of syn-oroclinal extensional sedimentary basins in the 

concave side of the orocline is a diagnostic feature for trench retreat. The value 

of the amplitude-to-width ratio could inform us on the maturity of the system, 

and the occurrence of asthenospheric-derived magmatism could account for slab 

tearing. Such interpretations, however, should be treated with caution, because 

with the absence of direct constraints on the geodynamic processes (e.g., seismic 

tomography, geodetic measurements), there are normally multiple ways that can 

explain the same geological observations.  

An example for a comparison between modern and ancient oroclines is 

shown in Figure 7, highlighting the strongly contorted structures that can be 

developed in forearc regions. The spatial distribution of Devonian-Carboniferous 

forearc units in the New England Orogen (eastern Australia, Figure 7a) delineates 

an ear-shaped structure (Rosenbaum, 2012; Rosenbaum et al., 2012), with the 

strongest oroclinal-related deformation concentrated in the “core” of the 

structure (Nambucca Block, Figure 7a) (Shaanan et al., in review). The origin of 

this curved structure is enigmatic, particularly because its offshore continuation 

is entirely unknown. Nevertheless, the comparison of this system with the 

oroclines in the central Mediterranean (Figure 7b) is intriguing. Both systems 

show that the expression of oroclinal bending in the forearc regions could be 

strongly irregular. Furthermore, observations from the Ionian Sea show that the 

interactions between two systems undergoing trench retreat in opposite 

directions (Calabrian and Hellenic trenches) could result in a local collisional 

zone between the two accretionary complexes (Huguen et al., 2001; Polonia et 

al., 2011; Gallais et al., 2012). Whether or not this collisional zone is equivalent to 

the syn-oroclinal deformation in the Nambucca Block is an open question. 
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Additional observations from the New England Orogen on syn-oroclinal 

extensional tectonism (Korsch et al., 2009) and tear-related volcanism 

(Caprarelli and Leitch, 2001; Li et al., 2014) further support a geodynamic origin 

involving trench retreat and backarc extension.  

 
7. Conclusions 

Oroclines in the Mediterranean region occur at multiple scales, with smaller 

oroclines superimposed on the limbs of larger oroclines. The fundamental 

processes that controlled their formation were associated with migration and 

segmentation of the Africa-Europe plate boundary, involving indentation, trench 

retreat and slab tearing. All these processes involved lithospheric-scale 

deformation, suggesting that the role of thinned-skinned deformation in 

triggering oroclinal bending was relatively minor. Using the Mediterranean 

region as a natural laboratory for the study of oroclines, it is concluded that 

similar processes may have controlled the formation of other oroclines in 

modern and ancient tectonic environments. Finally, the lack of conclusive 

evidence for lithospheric-scale buckling in modern oroclines calls for revisiting 

the validity of this mechanism, which is commonly applied in reconstructions of 

ancient oroclines.  
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Figure Captions 

Figure 1. Relief map of the Mediterranean Sea (from Amante and Eakins, 2009) 

highlighting the structural grain of Alpine-Mediterranean oroclines.  

Figure 2. Classification of Mediterranean oroclines based on a scale-dependent order, 

whereby smaller oroclines are superimposed on the limbs of larger oroclines. 

Figure 3. (a-d) Geometry of Mediterranean oroclines calibrated for a uniform width. 

In all diagrams, oroclines are rotated in a way that their widths and amplitudes are 

aligned parallel to the horizontal and vertical axes, respectively. (e) The azimuth 

orientation of the oroclines relative to a northward convex curvature. (f) Widths of 

oroclines. (g) Amplitudes of oroclines. (h) Amplitude-to width ratios of oroclines. 

Figure 4. (a) Tectonic setting of the Adriatic indenter relative and the geometry of the 

first-order Adriatic Orocline. Ba, Balearic Islands; Be, Betic; Co, Corsica; Ka, 

Kabylies; Ri, Rif; Sa, Sardinia. (b) Indentation-related structures in the Alpine 

collisional zone during Alpine collision (40-35 Ma) (Ratschbacher et al., 1991). GF, 

Guidicarie Fault; PF, Pustertal Fault; TF, Tonale Fault. (c) Predicted slip lines in 

response to indentation (Regenauer-Lieb, 1996). Note the similarity between the 

predicted slip lines and the geometry of the Tonale, Guidicarie and Pustertal faults.  

Figure 5. Schematic block diagram illustrating the inferred shape of the slab in 

Gibraltar and its associated vertical tears (after Palomeras et al., 2014). Blue lines 

indicate fast polarization directions of SKS splitting measurements (Diaz et al., 2010), 

which represent fossil mantle anisotropy that is consistent with the expected torodial 

mantle flow around the slab edges. Curved red arrows represent the sense of block 

rotations inferred from palaeomagnetic data (Platt et al., 2013, and references therein). 

Figure 6. Schematic illustration of possible changes in the geometry of the Africa-

Europe plate boundary. VC = rate of plate convergence; VR = rate of trench retreat. (a) 

Fixed plate boundary oriented E-W, with the African plate subducting beneath 

Europe. (b) Northward convex boundary in response to indentation. (c) Southward 

convex boundary due to trench retreat (VR > VC). (d) Eastward and westward convex 

boundaries due to trench retreat perpendicular to plate convergence assisted by 

lithospheric-scale tear faulting.  
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Figure 7. Complex oroclinal structures in ancient and modern forearc regions, shown 

in a similar scale. (a) The ear-shaped structure of the southern New England Orogen 

(eastern Australia) is indicated by the rotation of forearc basin blocks (dark grey) and 

the structural fabrics in the accretionary complex (light grey) (after Li et al., 2012; Li 

and Rosenbaum, 2014). Stars show locations of syn-oroclinal, and supposedly tear-

related, volcanism (Werrie Basalt and Alum Mountain). The thick black line is an 

inferred curved structural marker (serpentinites) that delineates the shape of the 

oroclines (Rosenbaum, 2012). NB, Nambucca Block. (b) The central Mediterranean 

Calabrian and Hellenic forearc regions (grey areas). Note that trench retreat in 

opposite two directions has resulted in a collisional zone between the Calabrian 

accretionary wedge (CAW) and the Hellenic accretionary wedge (HAW). Dashed 

lines indicate the structural grain within the accretionary complexes based on seafloor 

lineaments, anticlinal folds and reverse faults (Polonia et al., 2011; Gallais et al., 

2012; Polonia et al., 2013). Stars show locations of the Mount Etna-Hyblean tear-

related volcanism. The thick black delineates the approximate shape of the oroclines. 
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Table 1. Geometrical aspects of Mediterranean oroclines. 

Order Name Width 

(km) 

Amplitude 

(km) 

Amplitude/ 

Width 

Orientation relative to 

northward-convex 

1 Adriatic  3814 1740 0.46 1E 

2 Western 

Mediterranean 

2082 1145 

0.55 

148E 

2 Alps-Carpathian 1819 468 0.26 6W 

2 Eastern 

Mediterranean 

2309 623 

0.27 

150W 

3 Gibraltar 350 549 1.57 114W 

3 Calabrian 361 267 0.74 115E 

3 Umbria-Marche 406 66 0.16 37E 

3 Carpathian 835 377 0.45 29E 

3 Western Alps 388 219 0.56 68W 

3 Aegean 765 225 0.29 165W 

3 Cyprus 458 113 0.25 178E 

4 Hyblean 308 59 0.19 3E 

4 Jura 267 68 0.25 36W 

4 Eratosthenes 110 19 0.17 0 
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Figure
Click here to download high resolution image

http://ees.elsevier.com/geod/download.aspx?id=54358&guid=821c2656-23ea-46c0-8e17-6983936c9f45&scheme=1
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Figure 2
Click here to download high resolution image
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Figure 3
Click here to download high resolution image
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Figure 4
Click here to download high resolution image
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Figure 5
Click here to download high resolution image
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Figure 6
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Figure 7
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