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Comment on “Phase separation in a two-species Bose mixture”
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In an article in 2007, Mishra et al. [Phys. Rev. A 76, 013604 (2007)] investigated the two-component Bose-
Hubbard model using the numerical density-matrix renormalization-group procedure. In the regime of interspecies
repulsion Uab larger than the intraspecies repulsion U , they found a transition from a uniform miscible phase
to phase separation occurring at a finite value of U , e.g., at around U = 1.3 for � = Uab/U = 1.05 and
ρa = ρb = 1/2. In this Comment, we show that this result is not correct, and in fact, the two-component
Bose-Hubbard model is unstable to phase separation for any Uab > U > 0.
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In an article in 2007, Mishra et al. [1] studied the
two-component Bose-Hubbard model and phases that can
be described by this model with their modified form of
the finite-size density-matrix renormalization-group (DMRG)
method. The studied lattice has a density of ρa(b) bosons
of species a(b) per site with intraspecies repulsion U and
interspecies repulsion Uab while the tunneling coefficient t

is chosen as the energy unit. One of their results is that, for
any fixed � = Uab/U > 1, the system undergoes a transition
from a miscible phase at small U to phase separation at large
U . Unfortunately, we find that this conclusion is invalid and
the system is phase separated whenever � > 1 for all values
of U > 0.

We show this by perturbation analysis where the miscible
phase is unstable at first order for any density profile and U >

0, � > 1. As an example, we also perform an infinite DMRG
(iDMRG) calculation for the density profile ρa = ρb = 1/2
with � = 1.05, which is one of the three studied density
profiles in Ref. [1]. Moreover, by finite DMRG simulation
with the above set of parameters, we point out that a plausible
reason for the mistake of Mishra et al. is they have not
performed a sufficient number of sweeps in their finite-size
DMRG algorithm.

When U � t , we can prove, by a first-order perturbation
theory in the thermodynamic limit, that the phase-separated
energy per site is always lower than that of the miscible phase.
The Hamiltonian is composed of the kinetic term and the
on-site repulsion term,

H = HT + HU. (1)

On L sites with periodic boundary conditions, these terms take
the form in the momentum space as

HT = −2t

L−1∑

q=0

cos(2πq/L)(a†
qaq + b†qbq), (2)

HU = U

2L

L−1∑

q1,q2,

q3,q4 = 0

δq1+q2,q3+q4

(
a†

q1
a†

q2
aq3aq4 + b†q1

b†q2
bq3bq4

)

+ Uab

L

L−1∑

q1,q2,

q3,q4 = 0

δq1+q2,q3+q4a
†
q1

b†q2
aq3bq4 , (3)

where the operator in momentum space is defined as

a†
q(b†q) = 1√

L

L∑

j=1

ei(j2πq/L)a
†
j (b†j ), (4)

creating a species a(b) boson with momentum 2πq/L.
In the ground state of the miscible phase with U = 0, all

the bosons are in the q = 0 level, therefore, we have

|miscible〉 = 1√
na!nb!

(a†
q=0)n

a

(b†q=0)n
b |0〉, (5)

where na(b) = ρa(b)L is the number of species a(b) bosons.
In the phase-separated regime, the system will split into two

domains, each with momentum q → 0 in the thermodynamic
limit. Each domain only has one species present, therefore,
we can write the wave function in this region, e.g., with only
species a present, as

|phase-sep.〉 = 1√
na!

(a†
q=0)n

a |0〉, (6)

and similarly for species b.
Both states give the same kinetic energy per site, EK =

−2t(ρa + ρb). But the first-order perturbation gives different
corrections: For the miscible state, we have

EU
miscible = U

2

(
ρ2

a + ρ2
b + 2 �ρaρb

)
. (7)

FIG. 1. (Color online) The total energy per site obtained from
finite DMRG (black dashed line), infinite DMRG for a miscible phase
(red dashed-dotted line), and for phase separation (blue solid line).
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FIG. 2. (Color online) The expectations na
i and nb

i for (a) an
initial random wave function, (b) the wave function after about 20
sweeps, and (c) after about another 200 sweeps when U = 1.

On the other hand, we have

EU
phase-sep. = U

2
(ρa + ρb)2. (8)

In consequence, as long as � > 1, the phase-separated energy
per site is lower than the miscible phase.

The same conclusion can be drawn from the calculation
of the ground-state energy per site of a one-component Bose-
Hubbard model using an iDMRG [2]. A ground state with
the density ρ = 1/2 simulates a state in the miscible phase,
and with the density ρ = 1, it simulates a phase-separated
state.

In Fig. 1, we compare the total energy per site for the
miscible phase and the phase separation. We can find, when
U is comparable to t , the miscible phase apparently has a
higher energy than the phase separation. In addition, the finite
DMRG gives a slightly higher total energy. The tiny extra
energy should stem mainly from the open boundary and from
the domain wall between two domains in the phase-separated
state. We also verified that, for � = 1, the DMRG calculation
produces a miscible phase as expected.

When the energy difference between miscible and phase-
separated states is small, it may take a lot of iterations for
the DMRG to converge to the correct state. For instance, we
recognize the imbalance in occupations near the boundaries in
Fig. 3 of Ref. [1] with U = 1 is a precursor to a fully phase-

(a) (b)

FIG. 3. (Color online) The expectations na
i and nb

i when (a) U =
0.1 and (b) U = 0.2, respectively (symbols used as in Fig. 2).

separated state. We have carried out DMRG calculations for
an example parameter set ρa = ρb = 1/2, � = 1.05, to verify
that the DMRG does reproduce the expected phase-separated
state. This is shown in Fig. 2 where we start from a random
wave function. The randomness can be seen in the occupation
expectations na

i and nb
i in Fig. 2(a). After around 20 sweeps,

na
i and nb

i evolve to a pattern displayed in Fig. 2(b) where
we find the phase separation also starts from the boundaries.
After about another 200 sweeps, the occupation expectations
are clearly phase separated as shown in Fig. 2(c).

In conclusion, we have shown, through a perturbation
analysis, that the two-species Bose mixture is unstable to phase
separation whenever � > 1 for any U > 0. Additionally, we
have also carried out DMRG calculations for an example
parameter set to verify that the DMRG does reproduce the
expected phase-separated state. In Figs. 3(a) and 3(b), we can
easily see that, even when U is very small, two species of
bosons could not coexist and two domains are formed when
enough sweeps have been performed. Therefore, the erroneous
conclusion in Ref. [1] is likely due to an insufficient number
of sweeps.
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